
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology

Department of Software Science

Marieke Jahn 201684IVCM

FORENSIC DATA ACQUISITION SOFTWARE

DEVELOPMENT FRAMEWORK FOR INTEGRATED SMART

HOME ECOSYSTEMS
Master Thesis

Supervisor

Pavel Chikul

PhD early stage researcher

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Marieke Jahn

(signature)

Date: May 16th, 2022

i

Abstract

Due to the complex nature of IoT, traditional forensics methods to analyse their data traces

are not sufficient. Though, having become a staple in our lives, IoT devices can be a rich

source of evidence.

The aim of our study is to explore if it is possible to devise a framework to assist forensic

software development for data acquisition in smart home environments.

Within our research, we conduct a case study on an experimental smart home setup, ex-

tracting and analysing generated data, deriving a process-oriented and technical framework

from the results.

As IoT can serve many different purposes, making one tool to support all of them is not

realistic, which was also a main takeaway from our case study, in which we compared

different devices and traces left by them. The organisational part framework is based on an

agile software development approach, supplemented with additional information such as

common file locations and formats, while the practical part consists of blueprint classes

written in Python which can be extended for specific data sources.

Validating the framework by developing forensic software along it, indicated that it has a

beneficial effect on the development process and can be used to proliferate forensic tools

specific to IoT.

ii

List of abbreviations and terms

IoT Internet of Things

API Application Programming Interface

UML Unified Modeling Language

DFRWS Digital Forensic Research Workshop

iii

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Objective and Contributions 2

1.3 Methods . 3

1.4 Scope . 3

2 Literature Review / Related Works 4

3 Data Generation 15

3.1 Devices and Setup . 15

3.2 Data Generation . 17

3.3 Data Acquisition . 20

3.3.1 IoT Forensics - Fibaro Home Center Lite and Google Home Mini 21

4 Results 27

4.1 Data Analysis . 27

4.1.1 Google (Home Mini / Takeout) 27

4.1.2 Fibaro Home Center . 30

4.1.3 Mobile . 31

4.2 Common aspects . 39

4.2.1 Google Home and Fibaro Smart Home 39

4.2.2 Mobile . 40

4.3 Framework Development . 42

4.3.1 Framework . 49

4.3.2 Code Development . 52

4.3.3 Technical Implementation . 57

iv

5 Framework Validation 60

6 Discussion 64

7 Conclusion 67

Bibliography 70

v

List of Figures

1 Schematic of room layout . 16

2 Google Takeout export structure . 28

3 DFRWS Investigative Process[25] . 43

4 Agile vs. Waterfall[28] . 47

5 Organisational Framework - Forensic Software Development 49

6 UML diagram hierarchy . 59

vi

List of Tables

1 Events that were synthetically produced. 19

2 Fibaro API available functions. 25

3 Google Takeout export contents . 29

4 Backup Data Extraction . 33

5 Rooted phone logical data acquisition 35

6 Physical acquisition data . 37

7 Common data types . 40

vii

1. Introduction

1.1 Motivation

Recent years have seen a continuous growth in development and deployment of IoT devices

in both the industrial[1] and private[2] sector. Smart homes have become a wide-spread

phenomenon, aiding to improve quality of life. Yet, security of IoT devices has fallen short

so far also impeding the further adoption in businesses and business processes.[3]

With IoT devices becoming more prevalent in our lives, such as smart watches and smart

home appliances, the attack surface grows, as long as security is not a standard part of

these applications. With these devices being very interconnected with their users’ lives,

the stakes are high and the risk becomes very real, but at the same time, this opens up

an opportunity for forensic data analysis[4]. While it is crucial to be able to extract and

analyze data from attacks targeting IoT devices, crimes have not only been committed

through and with IoT. These smart devices can also be a rich source of relevant information

to a case when not directly targeted, but being part of the environment in which the crime

has been carried out[5]. Smartwatches, smart speakers, smart hubs, smart TVs, and many

more smart appliances and sensors collect vast amounts of data about users’ behaviour and

location, for example. This data can pose as valuable evidence in criminal cases.

Though, when dealing with data from IoT devices, there are a multitude of factors that

complicate matters of data extraction and analysis - big volumes of data, heterogeneous

architecture, and proprietary soft- and hardware are examples of these challenges. Hence,

there is an existing need to be able to overcome these challenges. One solution to face these

issues could be to add support for IoT devices and their data traces to forensic tools which

automate these processes, yet this is where another challenge is faced: the vast amount of

devices and producers of IoT systems makes it sheer impossible for the few commercial

forensic tools to keep up with development. Since smart devices are made for very specific

purposes and there exist no standards for their development whatsoever, their architecture

1

varies greatly and parallels across devices are difficult to establish. Additionally, there is a

high throughput of IoT devices. Hence, it is up to the forensic community and specialists to

develop tools for their specific needs and help contribute to the area of IoT forensic. With

combined efforts it is possible to better tackle the issue of IoT forensics lagging behind.

1.2 Research Objective and Contributions

Our research will aim to answer the following questions:

■ What is the current state of IoT forensics and related tools?

■ What are common aspects and differences across IoT devices and their traces in

smart home environments?

■ Can these aspects be integrated into a framework to aid forensic tool development

for automation of data acquisition and analysis?

By reviewing research on IoT forensics and the analysis of IoT devices and their traces,

we will establish an overview of current capabilities and challenges when dealing with

IoT environments in forensic investigations, underlining the need for tools supporting

automation of extraction and analysis of IoT traces.

The main goal will be to develop such a framework to ease and support the process of tool

development for data acquisition and analysis in smart home environments which will aid

future developers in their endeavour and encourage the making of such tools. The focus

will be on data that can be extracted from mobile applications and through API access.

Within our case study, the data that is generated will be analysed for commonalities across

sources such that the framework can be developed with these aspects in mind, to be easily

adaptable for other IoT data sources.

To validate the framework and show its applicability and practicality, we will develop a

standalone tool that automates part of the data processing with data generated from our

case study (Fibaro, Google Home), following our proposed framework.

The data generated during and for this work will be made available for the public for

reference and as a possibility for others to conduct their own research on it. The same goes

for all tools developed in the scope of our research which will be open-source.

2

1.3 Methods

To establish the current state-of-the-art and provide background information, we conduct

a literature review on IoT forensics and related tools, as well as tool development in this

particular field. For the second part of this work which involved data generation, extraction,

and analysis we used experimental science by conducting a case study from which the

proposed framework is developed. The validation of the framework is done by developing

software in Python.

1.4 Scope

Since IoT encompasses a very wide range of environments and devices that vary greatly in

architecture and functionality, the focus of this study will remain on integrated smart home

ecosystems.

The devices used within our work are Fibaro sensors and home center, a Google Home

smart speaker, a d-link IP camera, and an Android smartphone. Data generation and

analysis is done on these devices and their respective traces. Due to the complex nature and

infrastructure of IoT systems, relevant data can be found across multiple sources, such as

the network layer, on the cloud, on mobile phones, and on the IoT devices themselves. For

the purpose of our research, we will limit the scope to server-side available data, accessible

through an API, as well as artifacts that can be recovered from related mobile phones. Any

physically intrusive analysis will not be encompassed in our studies.

3

2. Literature Review / Related Works

While IoT has become more prevalent in the life of many, ways to analyze data generated

and stored by IoT devices and environments have not been developing as fast.

To provide an overview of current trends and possibilities in the domain of IoT forensics,

relevant literature has been reviewed and the findings will be presented in the following

chapter. This literature will consist of three main topics to be reviewed: firstly, a general

look and the state-of-the-art in IoT forensics, including existing solutions and challenges

are established. Next, we follow up with existing frameworks in the (IoT) forensics domain

that we could adapt to fit our needs, and lastly forensic case studies on IoT devices, which

will provide references for our own work.

To create an understanding of the base issue, we first need to present characteristics of IoT

devices that create a challenging environment for forensic analysis. Atlam et al. provide

a comprehensive overview of IoT from the perspective of security: the authors explain

that IoT combines diverse networks that enable heterogeneous devices and platforms to

connect and communicate.[6]

These devices can be equipped with all different kinds of sensors, advanced technologies,

and software. Smart devices are able to gather, process, and communicate data, to provide

different services and applications to improve the quality of life of their users. So, IoT

is not a single technology, but merges several, such as Big Data, AI, edge and cloud

computing. Only within recent years has IoT spread into multiple domains, ranging from

simple household devices to complex and sophisticated industrial equipment and machines.

Applications, where IoT can be found, include smart healthcare, supply chains, smart

homes, smart grids, smart cars, and smart industries.[7]

The architecture of IoT can be described in four layers: perception layer, network layer,

application layer, transport layer. On the perception layer, the data is generated and

4

gathered by various devices, usually sensors, for example, temperature sensors or smoke

detectors. The network layer is used by the devices to communicate with each other and

the applications. Data is received from the lower layer and mapped to the required format

of the upper layer. The application or service layer is where gather data is processed in

various ways and presented. Responsible for end-to-end communication over the network

is the transport layer, which provides flow control and reliability multiplexing. Various

different protocols are used on the different layers.[8]

IoT can be applied in many of our daily activities, in different domains. The personal

and social domain allow users to communicate with their environment and other users.

This is the domain that our own study will be concerned with, as smart homes are part of

the personal domain. The mobility and transportation domain includes anything sensory

related to roads and vehicles.[7]

IoT forensics can generally be described as a branch of digital forensics, though due to the

aforementioned differences between conventional computers and computer networks and

the equivalent counterparts of IoT, there can be several layers defined on which forensics

can be applied:[9]

■ Device level: The IoT devices themselves can store data, which can be extracted

in various ways, such as logically or physically. For that, the devices have to be

targeted and identified physically. This may include mobile forensics, as mobile

phones can be an important part and controller of IoT systems.

■ Network level: Since IoT is all about communication between the many devices,

anything happening on the network layer plays a big role as well. Types, forms, and

content of network communication can be analysed, such communication sources,

exchanges, communication times, or extraction of valuable information.

■ Cloud level: One of the most important parts of IoT environments, is the cloud,

as the devices themselves do not have a lot of storage or computing power and

need to rely on the cloud for that. Hence, a lot of the data that is generated in such

environments, ends up in the cloud.

5

A very recent study[10] delves into the topic of security in IoT. Missing and inadequate

security in IoT is one of the main reasons that calls for the adoption of forensics in the

field. The authors reviewed about 200 papers, pointing out a multitude of aspects that

make IoT environments vulnerable to cyberattacks by adversaries. Omolora et al. explore

various levels of security in IoT, analysing existing research findings, presenting challenges,

emerging issues, and open issues that are yet to be addressed by research. It has to be

considered that while IoT provides many beneficial opportunities for the quality of life,

security issues in their application and resulting cyber incidents raise concerns and distrust

in both commercial and industrial users and possible users which impedes further adoption

of these technologies. The paper first creates a main understanding of the concept of IoT,

discusses industrial development trends of IoT, and identifies their security challenges and

privacy issues. The authors identify the majorly lacking areas in IoT as security and privacy,

due to added complexity in architecture, implementation, maintenance, sustainability, and

minimal control, as well as pliability, compared to conventional home computers. They

express the opinion it is likely that if nothing is done by stakeholders and the government

to intervene with the current trend of IoT development, security being more optional

than by design, IoT will remain insecure. The lack of security stems from low-cost and

an increasing amount of devices. Main security challenges faced by IoT, as defined by

Omolora et al. are:[10]

■ insecure web interfaces,

■ insufficient authentication and authorization,

■ insecure network services,

■ lack of transport encryption,

■ privacy concerns with stored data,

■ insecure cloud interfaces,

■ unprotected mobile interfaces and networks,

■ software and firmware issues,

■ physical security issues,

■ environmental constraints e.g., hardware/software, limitations

■ cross-device dependencies.

6

These challenges stem from related vulnerabilities that IoT inhabits, for example weak,

hard-coded passwords on client software and firmware, insecure update mechanisms,

inadequate privacy protection, lack of device management, and insecure default settings,

among other issues.

Another topic that the authors covered in their survey considers forensics in the era of IoT.

They explain that data from smart devices can be a rich source of evidence, but the nature

of these devices and ecosystems complicates the topic of digital forensics as the usage of

IoT devices increases. IoT forensics faces some more challenges:[10]

■ growing number of devices,

■ relevance of devices,

■ non-standard formats,

■ multi-tenant cloud infrastructure,

■ resulting multi-jurisdictional litigation,

■ end-to-end encryption,

■ blurry network boundaries and edgeless networks,

■ increase in volume of data,

■ new technologies,

■ physical acquisition of devices,

■ need for close coordination among law enforcement,

■ need for educated and properly equipped personnel to perform forensic processes in

IoT environments,

■ distributed digital data processing due to cloud-native and client-side forensics,

■ insufficient integrity of data due to being (partially) overwritten or compressed,

■ difficulty to provide chain of custody,[10]

■ difficulty of admissibility in front of the court,

■ lack of forensic tools.[9][11]

New methods and processes to conduct forensic analysis in IoT environments need to be

identified through research and developed to accommodate these factors, as the number of

IoT-connected devices grows.

The authors define long-term goals for IoT forensics, which should be pursued in the future:

7

firstly, digital forensic standards should be created and used for IoT and IoT security, which

would ease IoT-based investigations. Though, the opinion has been stated that as long as

stakeholders and the government do not intervene with the current development of IoT,

meaning allowing basically unfinished products on the market, with security not being by

design, but rather optional, IoT is likely to remain insecure.

Commonly proposed solutions to these security challenges stated in the paper are: [10]

■ securing of IoT network,

■ Authenticate IoT devices,

■ usage of IoT data encryption,

■ usage of IoT security analytics,

■ usage of IoT API security methods,

■ hardware tests,

■ development of secure IoT apps,

■ no rushed releases of IoT devices,

■ being aware of current IoT security breaches and threats.

While these are often proposed solutions, this does not mean that they are generally adopted.

These solutions usually come at a trade-off price with e.g., cost- and time-efficiency.[10]

With IoT forensics being a rather new research topic, a few case studies have been

conducted to explore the possibilities and shine some light on the unknown.

In the context of related research, Servida and Casey conducted a similar case study to

ours, though with a shifted focus and outcome. The authors conducted case studies on

several smart home devices, focusing on information accessible from the network layer

and mobile phone (applications).

In the scope of their work, the authors tried to extend existing methods for extraction and

analysis of data on mobile phones to IoT devices, developed a scenario for the 2018-2019

DFRWS IoT forensic challenge, and several tools as well as plugins for the forensic tool

Autopsy were created. Additionally and incidentally, previously unknown vulnerabilities

8

on some of the IoT devices were discovered. [12]

In "Challenges and opportunities for wearable IoT forensics: TomTom Spark 3 as a case

study" the authors conducted a forensic analysis on data generated by a wearable IoT

device (TomTom Spark 3 GPS fitness smartwatch) and its companion app in a set of

controlled experiments. The authors pointed out the usefulness of such data, limitations of

existing forensic tools, and that in development of future tools the ableness to register all

generated data by an IoT device may be useful. For that the memory of the smartwatch

itself, the data accessible through the app, and event logs, as well as proprietary activity

files were analysed to establish a timeline of events. Forensic tools used in this setup were

Cellebrite and FTK Imager, but non-forensic tools such as a database browser and runalyze

web application also found application in this case and were used to decode and interpret

proprietary files.[13]

The work identifies file paths of evidence sources and reconstructs the user activity by uti-

lization of non-forensic tools. The authors highlight that their methodology was presented

on the case study of this particular smartwatch, but that it can be extended to other fitness

trackers and IoT devices if tools to support the extraction of relevant files are developed.

Their research shows the limit of today’s (commercial) forensic tools and helps create

references for future investigations.[13]

Becirovic et al. conducted a case study on the manual device level extraction of data on a

smartwatch. Prior work is reviewed and the experimental scenario plus its results presented.

The aim is to provide a reference to approach the data extraction of the particular IoT

device analysed in this work.[14]

For this paper the Samsung Gear S3 Frontier smartwatch was analysed, and a series of

events executed to proliferate data for this scenario. These actions were recorded in a table

to later compare this with the dataset acquired through analysis. For the analysis directories,

where relevant information was saved, were identified and from there copied. In the results,

the authors established a timeline that showed all executed events were possible to be

reconstructed and even more details could be found than in the initial recording of events.

Locations, where important data could be found, was recorded. Some aspects such as

GPS ended up not bringing the hoped results of location status and some databases were

9

encrypted. Through the analysis the authors were able to determine when the user moved

their wrist, how they rotated, what applications were used, data about the connected phone

and user account, as well as notifications on the watch could be discovered. The work

concludes that the forensic investigation of smartwatches is able to uncover important

evidence, but definition of privacy levels for IoT data as to not jeopardize the user’s privacy

completely needs to be defined.[14]

Stated as a work in progress, the paper by Iqbal et al. deals with the feasibility on

conducting forensic analysis on Smart Plugs (conducting an experimental case study) and

what issues this might entail, also conducting a research review on related work.

In this related work, known vulnerabilities and flaws in some of Smart Plugs and other IoT

devices are highlighted, as well as previously conducted forensic analysis studies of IoT

devices.

With the experimental setup the goal was to identify what and where those traces can

be found after performing certain actions on the Smart Plugs, how such evidence can be

captured on the network, and if there are any digital forensic challenges along the way.

The setup is described, and activities that were performed for the scenario, recorded.

For the analysis path with relevant data were identified and the files with fitting tools

analysed. On the smartphone, relevant information was mostly stored in the databases, but

only limited evidence was found as not all performed activities had stored logs. The authors

encountered encryption issues on some files and network traffic. Port scans revealed some

open ports and possibilities to discover e.g. the model and firmware.

Main challenges pointed out by the research included variety of data formats encountered,

calling for many separate tools, encrypted files and network traffic, interpretation of the

work was not always possible, and the possibility of missing logs being stored on cloud

services.[15]

"Digital Forensic Approaches for Amazon Alexa Ecosystem" aims to contribute by com-

bining cloud-native forensics with device forensics to provide practical reference to future

digital investigations. Some related work is reviewed to establish background information,

a case study is conducted, and based on this scenario a proof-of-concept tool is proposed.

The environment of the Amazon Alexa ecosystem is explained, as well as the proof-of-

10

concept tool for cloud-based IoT systems which is able to access Alexa’s cloud traces and

analyse traces of web-based applications on the client-side.

The experiments were performed over a period of two months with two Amazon Echo Dot

devices and client- as well as cloud-side analysis conducted. On the client-side paths of

relevant artifacts were provided and databases analysed. It was noticed that only very little

information was actually stored locally.

The Cloud-based IoT Forensic Toolkit that was proposed provided a user interface and

normalises the collected data.[16]

Kim et al. focus on analysing data from companion apps, web interfaces, and APIs of a

smart home, an IoT service platform, and proposes scenarios in which digital forensics

could make use of this data. For this data (sources) are identified that could be used as

evidence, and correlation between the data established.

The study considers previous work analysing such IoT-generated data as reference and

considers devices that have not been previously studied. An experimental setup of a smart

home was built for this purpose, including several different smart home appliances, such

as a Google Nest Hub and a SmartThings Motion Sensor. From this setup an analysis of

obtained data from the apps, web interfaces, and API was conducted, singling out the paths

and content while also rating the usefulness of the data.

Possible scenarios of smart home data in digital forensics were outlined by the authors:

base stations that connect other IoT devices within the home contain information about

installed devices, which can be useful in identification. Data collected about movement

can assist in establishing a timeline. Call logs (to e.g. Google Nest Hub) can provide

additional information.

The study concludes that data acquired from a smart home environment can be useful in

forensic investigations and suggests that future research should include a wider range of

IoT devices.[17]

We also explored existing frameworks related to IoT forensics and present them for context.

Goudbeek et al. present a framework that is specific to the forensic investigation of smart

home environments. The main goal of their research is to provide information on po-

tential data generated in smart home environments, and how this data can be acquired.

11

Background information, as well as challenges faced, when investigating smart home

environments are provided to establish a basis for the framework.

The proposed framework consists of seven phases. First comes the preparation off-site. For

this step it should be ensured that forensic investigator with appropriate skills and knowl-

edge are available and that relevant technologies (hardware, software) can be provided.

The second phase is the search for a home automation system on-site. This entails looking

for physical devices, recording device information also in form of pictures or videos. It

should also be checked for remote access and access through mobile phone applications.

Next, the system should be preserved as close to the way it was found as possible. Phase

four sees to creating an understanding of the specific home automation system, in form of

e.g., a network topology. A security level check is performed in the next step, meaning

establishing if there are any security measures in place on the home automation system,

such as access control. A user list with rights should be compiled and status of software

patches explored. After compiling all this information, the next two steps comprise the

location and acquisition of possible evidence, as well as processing and analysis of said

data. The authors then proceed to explain how to apply their framework by applying it to

three case studies they conducted. From those case studies Goudbeek et al. concluded

that relevant artefacts could be recovered, following the framework. Future work that

the authors see is further validation with real-life home systems and the development of

tools.[18]

Kebande et al. address how current state of the art IoT can be integrated into the digital

investigation process, and the proposition of a generic and holistic framework (DFIF-IoT)

for the digital forensic investigation in IoT settings. The paper proposes a framework to

help guide the process of data collection and analysis in an IoT scenario. It defines several

building blocks – a proactive process, IoT Forensics, and a reactive process. In most

scenarios even nowadays, looking at the more commercial IoT environment, a proactive

process is not feasible. In industrial settings this might be possible. In the study, IoT

forensics is split into three subcategories – cloud forensics, network forensics, and device

level forensics. These are proposed aspects in an IoT environment that have the potential

to be investigated. The reactive process happens after an incident has occurred and consists

of the basic aspects initialisation, acquisitive process, and investigative process. While

12

the proposed framework has not been verified in this paper, it complies with the ISO/IEC

27043: 2015 standard and suggests better admissibility in front of the court. Yet, each step

is very generic and is not concerned with the actual difficulties of data acquisition and the

investigative process in IoT environments. Since this is only a guideline it may help in

structuring and planning an IoT forensic investigation, but references on how to actually

extract and analyse IoT traces were not given which is left for future work.[19]

In a later study by Kebande et al., the authors propose an integrated digital forensic

investigation framework, focusing on IoT-based ecosystems. For this they first analyse the

framework provided in their earlier work[19], forming the basis for their further research

which will extend this existing framework. This extended framework is provided in a high-

level overview and detailed view. Overall, 9 processes for the Integrated Digital Forensic

Investigation Framework for an IoT-based Ecosystem (IDFIF-IoT) have been defined -

"Things", Device Connectivity and Communication Network, Readiness Process Groups,

IoT Forensics, Digital Investigation Process, Concurrent Processes, IoT Management

Platform, IoT Policy, IoT Standards and Protocols. The provided framework complies

with the ISO 27043 standard and each component is described in detail to explain what

is to be done for each process, as the framework itself is given in flowchart form. The

authors evaluate their own work, pointing out the flexibility of it to be easily adopted,

but do surrender that at the time of conducting their research, there was not much to go

on regarding standards and accepted procedures in IoT. Differences from their previous

framework are pointed out and how they have developed it further. In the future, Kebande

et al. hope to implement their framework as a prototype, to identify critical forensic aspects

and develop their research further.[20]

In a comprehensive study by Hassan et al., the authors provide a high level overview

of current IoT forensics and introduces several IoT forensic frameworks. The Digital

Forensic Investigation Framework (DFIF) is described as a guide that can potentially

provide investigations in IoT environments. The Digital Forensic Framework For Smart

Environments (IoTDOTS) is presented as a two stage framework that help scan for relevant

information in smart applications during build time and then analysing the data using e.g.,

machine learning techniques, extracting forensically interesting information. Similarly, the

13

FSAIoT - Forensic State Acquisition from the Internet of Things - consists of two parts:

a central control unit called Forensic State Acquisition Control Unit, and a collection of

techniques on how to collect the current state of the IoT device.

Challenges faces in IoT forensics, as well as proposed solutions are briefly described.

The paper concludes that the majority of frameworks focuses on integrating IoT environ-

ments into the forensic processes of traditional forensics.[9]

From reviewing relevant literature, we were able to conclude trends in IoT forensics.

■ There is a lack of research done on IoT forensics.

■ There exist challenges in IoT environments that need further analysis, such as

proprietary hard- and software of IoT devices.

■ There is a need for standards in IoT systems, e.g. standardized data formats.

■ There is a need for development of automation in context of IoT because of big

volumes of data.

■ Case studies are useful in providing reference for future research and investigations.

■ There is a lack of forensic tools supporting traces from IoT environments.

With our research and the framework we propose, we will address some of the current and

aforementioned challenges being faced in forensic investigations, as well as lay groundwork

for future research and tool development.

14

3. Data Generation

This part of our research will encompass anything related to data - from the devices used

for the experiments and study, over to data generation and acquisition. The data analysis

and framework development will be included in the results section.

3.1 Devices and Setup

For generating, as well as analysing and comparing data needed for this study, the following

devices were used:

■ Google Home Mini

■ Fibaro Smart Home Center Lite

■ Fibaro Motion Sensor

■ Fibaro Window Sensor

■ D-Link Securicam

■ Xiaomi Redmi Note 7

The devices were setup across two rooms in an ordinary living space and thus over the

course of two months natural data was accumulated. A schema of the room layout and

setup of the devices is depicted in figure 1:

15

Figure 1. Schematic of room layout

1. Fibaro Home Center Lite

2. dlink camera

3. Google Home Mini

4. Fibaro Door Sensor

5. Fibaro Motion Sensor

The host machines used for the experiments were running Ubuntu 20.10 and Windows 10.

Tools used to extract and analyse the data were Andoird Debug Bridge (ADB), SQL Lite

Browser, a simple API parser, file converter, and data extractor for Fibaro .

16

3.2 Data Generation

Naturally, to assess what data will be found where, data has to be generated. This includes

triggering different events and behaviours on the sensors, as they would normally occur

in real life scenarios. The devices were situationally set up as depicted in figure 1 and

each node connected accordingly: the Fibaro Home Center Lite was connected to the local

network and acts as a base station for the sensors. The Fibaro sensors (motion sensor, door

sensor) were locally connected to the Home Center, and firmware updated as needed. The

camera first had to be setup in its own environment to then integrate it into Fibaro. It was

connected wirelessly through the mydlink app on the Xiaomi phone. After the setup, the IP

assigned to the camera within the network was not available from within the app, but could

be discovered from the router’s interface. The camera can be accessed over web browser,

but works exclusively with Internet Explorer, where additional changes and settings can be

made. The video feed can also be watched through the mydlink app on the network, as

well as remotely.

After having set up the network camera, it was possible to integrate it into the Fibaro

interface via the IP and credentials that were provided within the app. It is possible to

watch the video feed from there, but things such as motion detection or alerts are not

available from within Fibaro - this has to be configured and received through the mydlink

interface.

It was not possible to add the camera to Google Home / Google Assistant, as the camera

does not receive security updates anymore and has reached end of life, thus Google will

not support it, as it could pose a security risk. Integrating the Fibaro sensors into Google

Home was easily achieved by selecting Fibaro Smart Home from a list of devices/services

that work with Google Home. Though, the functionality concerning the Fibaro sensors

provided within Google Home is much more rudimentary than what is actually possible

from Fibaro’s native interface - the motion sensor includes a brightness sensor and both

sensors are also fitted with temperature sensors. Querying information about those addi-

tional measurements was not possible from either directly within the Google Home app

nor via voice command to the Google Home Mini. Actually, the Google Home app itself

did not offer any functionality regarding the sensors other than providing their info (name,

which home and rooms they are assigned to in Google Home, manufacturer, device type,

17

connected through), so not even the device state (safe / breached) was visible from the app

itself. The device state is queryable via voice commands by addressing the devices by their

names and devices can also be armed and disarmed (PIN needs to be provided).

Fibaro itself offers a much more broad spectrum of customization and information avail-

able.

The Google Home Mini itself was easily and intuitively setup with the Google Home

application. To be able to collect all information interesting for this study, certain settings

had to be considered though. For example, it was necessary to turn on voice match for

voice recordings to be made for the voiced out commands issued to the Google Home

Mini. It should also be noted that voices that were not set up for voice match were not

recorded in this matter.

All of the devices were connected sharing the same network.

Over the course of a few months, we conducted experiments in the loose sense for this

study. The data for these experiments was generated naturally, as the sensors were setup

in an environment where they were exposed to our everyday life. Thus this data is quite

life-like.

To correctly assess what information is processes and transferred by the respective de-

vices, sensors, and controllers, in addition to the naturally generated data which was

not documented, controlled synthetic events were created. These events were created

artificially, e.g., by triggering the sensors on purpose, and the time and course of action

were documented. The following table depicts these events:

18

Synthetic Events
Date Time Event
03.04.2022 22:00 Motion sensor breached

22:11 Door sensor disarmed
Door sensor armed

22:16 Door opened (safe -> breached)
Door sensor alarm disarmed
Door closed (breached -> safe)
Door open (safe -> breached)
Door closed (breached -> safe)

22:19 Motion sensor breached
22:24 Motion sensor armed

Door sensor armed
Motion sensor breached

22:25 Motion sensor alarm disarmed
22:31 Motion sensor armed through

Google Home Mini via voice
command

22:33 Motion sensor disarmed through
Google Home Mini via voice com-
mand
Issued voice command to Google
Home Mini - what’s the time

22:38 Door opened (safe -> breached)
22:42 Motion sensor breached
22:43 Motion sensor breached
22:47 Motion sensor breached
22:53 Motion sensor breached
22:54 Motion sensor breached
22:55 Motion sensor breached

Motion sensor breached
23:00 Door alarm disarmed

Turned on light close to motion sen-
sor / light sensor

23:04 Motion sensor breached
23:13 Motion sensor breached
23:32 Turned off light close to motion sen-

sor

Table 1. Events that were synthetically produced.

19

3.3 Data Acquisition

Since IoT encompasses many diverse technologies, some limitations need to be applied on

what data will be acquisitioned and later analysed, as well as be included in the framework.

When it comes to IoT, generally, data can be found on three different levels - the device

level, network level, and cloud level. Data from any of these levels can be interesting to

investigations, but especially the cloud level will contain big amounts of (relevant) data.

IoT devices do not possess a lot of storage space nor computing power, so the cloud is

oftentimes used for computing and to store data. Yet, there is little research done on

forensic analysis of cloud environments, especially when it comes to IoT. This can have

several reasons: The cloud, just like IoT has only become relevant within the recent years

and usually forensics need some time to catch up with current trends. But there are also

multiple issues that can arise when it comes to data stored on the cloud - multi-legislation

scenarios with cloud providers and their storage being located in different countries makes

accessing the data in a lawful way, more difficult. It could for example also be the case that

more than one person uses the same cloud storage, but there can be no real distinguishment

made between what data belongs to whom. This is especially true when it comes to

IoT devices. For example, sensors record/sense their environment and do not distinguish

(usually) between people. If someone steps into the view of a motion sensor or camera,

the sensor will trigger regardless of who it is. It will be difficult attribute some dataset to

one person if the sensor is located in a place where several people could have access to it.

Though of course this is true not only for IoT data stored on the cloud. Multi-jurisdiction

across provided cloud storage can make accessing the data even more complicated (read

up on this, I know I had some papers in lit rev that mentioned this stuff). Besides all of

these issues, there is also the problem that most of the time the user credentials are needed

for accessing the cloud. If devices are acquired that are already logged in, this might not

pose as a problem, but if that is not the case, the suspect or involved person does not have

to give out the password. Furthermore, data and information found on the cloud might

only have limited admissibility in front of the court - oftentimes, especially in the case of

smart home environments, the data that gets uploaded to the cloud is either compressed or

precomputed/filtered. But to be admissible in front of the court, the data has to be unaltered

- as it has been recorded. It might be possible to revert the data back to its original state.

20

3.3.1 IoT Forensics - Fibaro Home Center Lite and Google Home

Mini

The Fibaro Home Center which acts as a hub and base station for the sensors can be

accessed from a web interface, as well as the mobile application. From both interfaces it is

possible to manually query all information that Fibaro has to offer - about devices, settings,

users, etc.

The most interesting information that can be found, exists most likely on the events panel

where device state changes are documented; whenever a sensor was breached, disarmed,

alarms were triggered, and so on. As there exists an API for Fibaro, including an official

documentation, within the extent of this research we developed a simple parser for this

API to improve further processability and readability of the data. The following table gives

an exhaustive overview of all the available functions that are possible to query from the

official Fibaro API. The table was compiled by studying the official API documentation by

Fibaro, as well as the list of functions provided for this particular Home Center (Fibaro

Home Center Lite) at the URL http://<IP>/api/docs, as not all of the functions provided in

the documentation are applicable or exactly the same for each home center. For example,

the Home Center Lite contains less functionalities. On that URL it is also possible to try

out each function.

The name, URL, and a description for each function will be provided. It should also be

considered that most of these queries include subqueries that query for more specific data

under its category. This is especially useful and important, for example, for the events

panel, as not all events can be queried from just the general /api/events URL. A time frame

needs to be defined, translated to Unix Epoch time, and appended to the URL. There exist

also other options such as filtering for events of a specific device (by ID).

Fibaro API - available functions

Name URL Description

Settings

21

General settings /api/settings/info Returns a list of parameters of Home

Center controller, such as serial

number, soft version or default lan-

guage, etc.

Backups /api/settings/backups Returns a list of saved controller’s

backups and their parameters like

number of devices, rooms or scenes,

etc.

Location /api/settings/location Returns a list of parameters related

to date, time and location configured

by user in Home Center interface.

Network settings /api/settings/network Returns a list of parameters re-

lated to network connection, such as

DHCP status, remote access avail-

ability or IP number.

General

Devices /api/devices Returns a list of devices, contain-

ing the main controller, all added

devices, virtual devices and plugins

as well, including all their parame-

ters, properties and actions. Number

of available data depends on the se-

lected device.

Sections /api/sections Returns a list of sections, their

names, sort orders, etc.

Rooms /api/rooms Returns a list of rooms, their names,

icons, sort orders, etc.

Scenes /api/scenes Returns a list of all saved scenes and

their parameters, such as name, id

and sort order.

22

Users /api/users Returns a list of users, their names,

types, rights, etc.

Global variables /api/globalVariables Returns a list of global variables,

their values and parameters.

RGB programs /api/RGBPrograms Returns a list of RGB lights pro-

grams.

Tracking schedules /api/trackingSchedules Returns a list of weekly tracking

schedules divided into four parts of

the day.

Linked devices /api/linkedDevices Returns a list of linked devices and

their parameters.

Virtual devices /api/virtualDevices Returns a list of virtual devices, their

source codes, properties and actions.

iOS devices /api/iosDevices Returns a list of added iOS devices

and their parameters.

VoIP devices /api/voip Returns a list of VoIP clients asso-

ciated with Home Center end their

parameters.

Icons /api/icons Returns a list of icons available in

the system.

Panels

SMS notification /api/panels/sms Returns number of available sms

and list of associated phone num-

bers.

Location panel /api/panels/location Returns a list of predefined locations

and their parameters.

History panel /api/panels/history Gets an array of objects containing

actions stored in the event panel for

a specified time period.

Notifications panel /api/panels/notifications Returns a list of notifications and

their names.

23

Heating panel /api/panels/heating Returns a list of heating zones and

their settings, such as temperature

sets.

AC panel /api/panels/cooling Returns a list of cooling zones and

their settings, such as temperature

sets.

Humidity panel /api/panels/humidity Returns a list of humidity zones and

their settings, such as humidity lev-

els.

Alarm panel /api/panels/alarm Returns a list of alarms and associ-

ated devices.

Drenchers panel /api/panels/drenchers Returns a list of added drenchers and

their parameters.

Favorite colors /api/panels/favoriteColors Returns a list of favorite colors pre-

sets, representing their RGBW val-

ues.

Fibaro alarm panel /api/panels/fibaroAlarm Returns Fibaro Alarm settings list,

its properties, conditions, etc.

Energy panel /api/panels/energy Returns Energy panel data.

Temperature panel /api/panels/temperature Returns Temperature panel data.

Events panel /api/panels/event Returns events history from defined

time, device states, state changes,

their old and new values, etc.

Plugins

Plugin types /api/plugins/types Returns a list of plugins divided into

categories and their parameters.

Plugins installed /api/plugins/installed Returns a list of installed plugins,

their names and predefinition status.

Other

24

Login status /api/loginStatus Returns a list of parameters related

to user’s login, such as status, user-

name or type of currently logged in

user.

Password reminder /api/passwordForgotten Returns a password to your account

sending it by e-mail.

Refresh states /api/refreshStates Returns refreshment details and per-

formed changes.

Network discovery /api/networkDiscovery/arp Find IP and MAC physical ad-

dresses for specified network.

Table 2. Fibaro API available functions.

The data/response to requests made on the API are in JSON format. We developed a

parser that converts the responses from JSON to csv format, as this is a standard format

oftentimes used throughout investigations and it is also possible to be (more easily) read

by human beings and has good properties to be processed further. The GitHub repository

containing this parser can be found here.

The activity recorded on the Google Home Mini, or rather all activity related to the

particular Google account, can be viewed under the Google account’s My Activity tab. The

data itself can be viewed there, but not downloaded for offline viewing or processing. This

can be done under Google’s Takeout. The data that can be downloaded from there comes

in different formats, for example, HTML, CSV, or JSON. Many different kinds of data

can be included in this export, for example the locations history from Google Maps, Mail,

Google Pay, though the most interesting when it comes to smart home integration is data

associated with the Home App and My Activity. The Home App data includes information

about devices, rooms, and homes, as well as a history of events that happened in these

homes. Both in JSON format. Included are also audio recordings of the issued commands.

25

https://github.com/SkybuIIy/fibaro_api_parser

After the data is selected, an export will be created that can then be downloaded. Though

again, all of this is only possible with access to the user credentials or with a device that

has already been authenticated and even then, the password is still required to download

the export. Most of the data comes in JSON format and for this could again be a parser

developed that converts JSON to csv.

26

4. Results

4.1 Data Analysis

We analysed the data that we generated and extracted in the previous steps, to find out

relevancy, as well as commonalities and differences across devices and manufacturers.

4.1.1 Google (Home Mini / Takeout)

When exporting the data from Google Takeout, several data fields can be selected. For

the purpose of our research not all have been selected, but only those that could be of

interest in regards to data generated by our IoT devices, namely My Activity and Home

App. For actual forensic investigations, any of the data found in My Takeout could be of

interest and should be exported accordingly, though the exporting process could take a lot

more time in that case. As stated by Google this could take several hours or even days, so

prioritizing data can prove helpful for a timely progression of the investigation, seeing as

all the exported data then would also need to be analysed and useful information separated

from not so useful.

After a successful export the data can be downloaded and is arranged in folders for each

data type included. For our particular export, the structure was as follows:

27

Takeout

Home App

GoogleNestPartnerConnections.json

HomeApp.json

HomeHistory.json

SoundSensing.json

My Activity

Android

My Activity.json

Assistant

[several files of voice commands].mp3

My Activity.json

Google Play Store

My Activity.json

Maps

My Activity.json

Search

My Activity.json

archive_browser.html

Figure 2. Google Takeout export structure

A few of these files are actually empty for us, namely Takeout/Home App/GoogleNest-

PartnerConnections.json, Takeout/Home App/HomeHistory.json, and Takeout/Home

App/SoundSensing.json.

The other files are included in the following table with descriptions of their contents:

28

Directory Content
1 Takeout/Home App/Home-

App.json
Information about Home owners (emails), names and
devices of rooms. Further info about devices, such as
model, type, software version.

2 Takeout/My Activity/An-
droid/My Activity.json

Information about what services/apps and URLs An-
droid devices accessed, including access time.

3 Takeout/My Activity/As-
sistant/<various voice com-
mand files>.mp3

Files are named by date and time of voiced out com-
mands. Only recorded if voice match is turned on.

4 Takeout/My Activity/As-
sistant/My Activity.json

Includes transcribed voice commands, their initiation
times, how the vc was started, the service that was
queried, as well as the answers and notifications sent
by the assistant.

5 Takeout/My Activity/-
Google Play Store/My
Activity.json

Information about all activity within the Google Play
Store with timestamps, including searches, installa-
tions, and places visited.

6 Takeout/My Activity/Map-
s/My Activity.json

Timestamped information about when the user inter-
acted with Google Maps.

7 Takeout/My Activi-
ty/Search/My Activity.json

Timestamped information about Google searches and
webpages visited from Google, including searches
made from the Google Assistant/Google Home Mini.

Table 3. Google Takeout export contents

All files will also be included in GitHub for a more detailed look.

As is evident, Google records and stores a lot of information about their users and the users’

behaviour. Assessing the data that we were able to export and taking into account that

Google has a lot more data stored that we chose not to export to keep the focus on IoT and

the smart home environment, there is still a mentionable amount of related data. Especially

the voice commands, the recordings, transcriptions, and answers by the Assistant can

prove very valuable in investigations. From voice recordings it can become apparent if a

person was alone, who voiced out the command, and other cues can be delivered through

voice. It is especially interesting that voice commands are only recorded in mp3 format if

voice match is turned on, and the person speaking the command is the one whose voice has

been matched. This has likely been implemented due to privacy concerns. What is even

more interesting is that the PIN that is used to disarm the Fibaro sensors is included in the

transcript, as well as voice recordings. So, technically, if someone were to gain access

to a Google account that is being used with integrated Fibaro Home Center, and some

alarms were turned off / sensors disarmed via voice command, then that person would now

easily be able to disarm any sensors/alarms of this smart home. All names of smart devices

29

https://github.com/SkybuIIy/framework_validation

connected to the Google Home app can be discovered in artifact 1 (from table above), thus

each one of them could be addressed separately. One thing that falls into the eye though

is, that while there is a lot of information about the Google user’s internal activity, but

what could already be seen when integrating Fibaro into Google Home, there are not many

actions that can be performed on the sensors. The possible actions are defined in artifact

one, under "supported_traits". For the Google Home Mini, there are several traits defined:

the Assistant, Cast, Call, VideoCall, RemoteDucking. For the Fibaro door/window sensor,

there are two traits defined - OpenClose and ArmDisarm. Since the sensor cannot be

exactly opened or closed, that functionality is most likely to query the state, if opened or

closed, the other function to arm and disarm the sensor. The motion sensor only includes

the ArmDisarm trait.

4.1.2 Fibaro Home Center

By parsing the RESTful API of the Fibaro Home Center Lite, a lot of data could be

uncovered. Not all of this data may be useful for any investigations, but all of it should

definitely be considered, as even RGB lights programs could be of interest.

As can be seen from Table 2 there are many functions that can be queried for. Each function

was parsed, and each response from the server was written to a JSON file with our parser.

Each file/server response includes very detailed information on the given section/topic.

Usually, timestamps are given in Unix Epoch time format.

As the sensors and devices are integrated directly into the Fibaro interface, all of the data

that the sensors generate and receive is being gathered and stored here.

Information that is most likely interesting to any investigation in a smart home environment

was found by querying the following paths:

■ /api/settins/info: These general settings include standard information that can be

relevant e.g., for identifying devices. For example, the serial number, name, and

MAC address of the home center can be found here.

■ /api/settings/network: The network setting provides the IP address of the home

30

https://github.com/SkybuIIy/fibaro_api_parser

center.

■ /api/devices: Querying this provides a list of all related devices, as well as additional

information about those, such as serial numbers, names, in which room the device is

installed, and the device types.

■ /api/users: Returns a list of users, containing names, email addresses, and user

rights.

■ /api/panels/event: A list of events will be returned, including timestamps, the

involved device, and what happened/changed.

4.1.3 Mobile

The acquisition of respective data on the mobile phone is not "IoT forensics" per se, but is a

substantial part of investigations in smart home environments, and nowadays in general as

well and should not be excluded. Thus, we decided to cover at least the aspect concerning

IoT devices and integration, though of course a user’s smartphone can have a lot more to

offer and data to get from.

To access the data on the phone, it is more often than not required to know its PIN (to

unlock the screen). If no PIN or biometrics are applied by the user, this of course makes

things easier for the investigation. Usually, interacting with the phone is not encouraged

for investigators , but especially in smart home environments, it may be necessary to

assess the situation correctly in a timely manner. Identifying IoT devices can be a real

challenge, and though some solutions for this problem have been proposed, those solutions

may not always be accessible, and it may become necessary for investigators to interact

with the phone directly at the crime scene or location of interest to establish devices

in the network and possibly locate and secure them. It can be crucial to act fast in

IoT environments. The special architecture of IoT devices implies a bigger possibility

of volatile data - because of low computing power and memory, data is overwritten

more often than on conventional home computers or phones for example. Interacting

with the location of interest could thus eliminate relevant data - consulting a phone that

may be connected to IoT devices of interest can be a safer first choice to assess the

situation and identify possible devices. Though, of course interacting with the phone

may also trigger data changes, first of all, on the phone, and secondly across IoT devices.

31

This is generally less likely though. To minimize state and data changes across the

network and phone, it is recommended to perform a logical or physical acquisition of the

phone instead of interacting with it directly or to interact with it directly as little as possible.

Logical acquisition

For the purpose of our experiments, to access as much data from the phone as possible,

we rooted the phone, however it is still possible to access data that is available on user

level permissions/privilege without rooting. Hence, logical data acquisition of the phone is

possible on the fly to some degree. For a first look on what apps are installed to get an

idea about possible devices that may be present, interacting with the phone itself is also an

option.

To root the phone, the bootloader has to be unlocked (if it is not already) which is not

possible on every phone, as vendors can decide if they want to enable users to install

custom ROMs on their phones. For example, Huawei does not give out codes to unlock

the bootloader anymore.

From the backup that we created with ADB it is actually possible to access

Rooting of the phone was done following a guide[21] on the xda-developer forum. When

unlocking the bootloader, it is usually the case that all existing data on the phone is deleted.

With ADB (Android Debug Bridge) it is possible to create a backup beforehand, (with

e.g., $adb backup -shared -apk -all -f backup.ab) that can be pushed back onto the phone

after unlocking the bootloader (with $adb restore <path-to-backup-file>). To connect the

phone to ADB it is necessary to unlock the developer options, turn on USB debugging, and

unlock OEM. This way we are able to unlock the bootloader and root the phone without

losing all the data that this whole process was even started for. We used TWRP (Team

Win Recovery Project) to root the phone. TWRP is a custom recovery image for Android

devices that lets users flash their phones with third-party firmware. We used Magisk

Manager to grant root permission to apps and services. SuperSU is another popular option

for such kind of management, but imposes changes on the file system that could impact

forensic soundness and the integrity of data.

While the backup we created with abd can on one side be used to restore data on the phone

after unlocking and rooting it, but it can also be analyzed for data. By adding a valid

32

tar header to the file, it becomes extractable. For this we used the following command:

(printf "\x1f\x8b\x08\x00\x00\x00\x00\x00" ;

tail -c +25 backup.ab) | tar xfvz -

The following table gives an overview of artefacts that we were able to extract this way

- with a focus on data generated by or related to the IoT devices and sensors, but also

concerning the phone in general and data that can be interesting for forensic cases (that

could relate or be related to IoT).

Index Path Description
1 shared/0/DCIM/Camera Pictures (JPG) and videos (MP4)

that were taken with the phone in
question will appear here.

2 shared/0/DCIM/Screenshots Screenshots that were taken with the
phone in question will be saved in
this location.

3 shared/0/Pictures/mydlink Pictures that were taken within the
mydlink app will appear here (in
JPG format).

4 shared/apps/com.google.android.-
apps.chromecast.app/sp/com.-
google.android.apps.chromecast.-
app_preferences.xml

Some values concerning Google ser-
vices will be saved here. For exam-
ple, the related email address could
be read from here.

Table 4. Backup Data Extraction

As the phone had not been rooted beforehand, only a limited amount of data was available,

contributing to the fact that the file we extracted these artifacts from was only a backup

and no legitimate/valid data extraction method.

While not all these artifacts are recorded by a sensor node of our experiment, we felt it still

worth mentioning some of these more generally mobile forensics related aspects. As, for

example, pictures and videos that the user took and recorded (Index 1) could be essential

to solving a case/incident, but also reveal more information about IoT devices - e.g. their

location and setup. The same goes for screenshots (Index 2); they can give insights to

various aspects of the user’s behaviour, interests, plans.

Images specific to the mydlink app will be saved in a specific folder, as seen in Index 3.

These pictures have to be taken manually from within the app. They could potentially

be of importance, as different people could have been captured, certain changes, or other

developments. While there is no guarantee that there will be any images of significance, it

33

is worth checking these files out.

Index 4 is related to the Google services and in more life-like scenarios where the phone

is actually in use, this file may be populated more densely. Its content concerns mostly

the phone’s environment variables, with the most notable data being the email address

associated with the Google account, hence also the Google Home service.

After we rooted and flashed the phone, it was possible to get a shell with root permissions

through adb on the phone ($adb shell and then #su). This way we could explore the file

structure and look for artifacts of interest. Since we are considering mostly companion apps

and data generated by them, the /data/ directory is one the most relevant for us. Particularly,

the directories /data/data, /data/system, and /data/misc have been investigated. We copied

these directories onto a local machine by using the command $adb pull <directory-path>.

The following table gives an overview of data we deemed the most interesting for our

research and investigations.

34

Index Path Description
1 /data/data/com.android.chrome/app_-

chrome/Default/Cookies; History;
Login Data; Top Sites; Web Data

Database files (.db) that contain
the respective information of user’s
behaviour for the Google Chrome
browser

2 /data/data/com.android.chrome/app_-
Chrome/Default/Preferences

Text file (data in JSON format) that
contains information about prefer-
ences set in the Google Chrome
browser by the user. If the user is
logged into Chrome, the email ad-
dress will be available here.

3 /data/data/com.android.providers.-
contacts/databases/contacts2.db

Database file that contains informa-
tion about calls and contacts.

4 /data/data/com.android.providers.-
media/databases/external.db

Database file that contains informa-
tion about locations of all media files
on the phone.

5 /data/data/com.google.android.-
gm/databases/downloader.db

Database that contains files that
were downloaded via Gmail.

6 /data/data/com.android.vending/-
databases/localappstate.db

Database file that contains installa-
tion dates of apps that have have
been associated with the connected
account.

6 /data/com.android.vending/-
databases/suggestions.db

Database file that contains keywords
that were typed in the search bar of
the Playstore.

7 /data/system/packages.list List of installed applications.
8 /data/system/packages.xml Information about installed applica-

tions and their permissions.
9 /data/misc/wifi/WifiConfig-

Store.xml
Information about Wifis/SSIDs that
the phone has been connected to.

10. /data/system/sync/accounts.xml Information about accounts used for
apps and services and their sync abil-
ity.

11. /data/system/usagestats/0/-
daily/1649608573940

Information about usage statistics,
such as application name and times-
tamp of last usage. Also available
for monthly and yearly statistics.

Table 5. Rooted phone logical data acquisition

35

Most of the data addressed here is again generally more of the mobile forensic kind rather

than very much related to IoT. Nevertheless, these are all things that could be relevant

for investigations and may also provide further information about IoT devices used in the

smart home ecosystem. For instance, usage statistics (Index 11) and installed applications

(Index 7 and 8) can give insights to the users’ behavioural patterns, since when and what

(at least the brand or associated app) smart home devices have been installed, and how

much they are used/configured. Much of these different kinds of data can later also be used

for cross-validation - to check for possible alterations or inconsistencies. For example, if a

call was made or initiated from a smart device, such as the Google Home, that event will be

recorded in Google’s My Activity. From there it can be deleted, but the same information

about the call should still be available here which the user might not be aware of, or of

course vice versa.

Physical acquisition

Other than what might be expected when hearing "physical" acquisition, it is not necessarily

a physical procedure of dismantling the phone, for example. A physical acquisition in

terms of mobile forensics is simply a bit-for-bit copy of the device’s storage media. This is

something that can be achieved through invasive and non-invasive methods. Non-invasive

are usually software-based methods, e.g., through the Android Debug Bridge that we

already utilized for the logical acquisition of the phone. A complete copy of the physical

storage can be done by using the dd utility (stands for copy and convert and dd because

cc was already taken for c compiler). Usually the idea would be to copy the phone’s

internal storage onto an SD card, but instead we directly established a connection from the

computer to the phone using a TCP connection. Since for a connection to be established, a

service, in this case netcat needs to be listening on a port, this utility needs to be installed on

the phone first, as it is not natively included. Through Magisk Manager third party modules

can be installed. In this case we used BusyBox. Thus for this method we are using, it is

necessary to root the phone, as this third party service needs to be granted root access rights

to function properly. To find out which partition(s) includes the whole internal storage, we

estimated by size. The command $ cat /proc/partitions will show contents of a file that

contains partition block allocation information that will help identifying which partition

we will need to copy onto our local machine for analysis. There were two partitions close

36

to the size of the internal storage of the phone (32 GB) - mmcblk0 and dm-1. Both were

copied over. To establish the TCP connection, the following steps were followed:

■ computer: $ adb forward tcp:9999 tcp:9999

■ phone: $ dd if=/dev/block/ | busybox nc -l -p 9999

■ computer: $ nc 127.0.0.1 9999 > img.dd

To analyze these images, we used the forensic software Autopsy. In this particular case, the

machine running Autopsy had to be Windows, as the needed functionality was not given in

the version running on Unix. After feeding both sources to Autopsy, one of the images -

mmcblk0 - delivered no results/information whatsoever. From this result we determined

this partition to be encrypted. Android implements encryption by default since Android

version 6. Our phone has Android version 9 PKQ1.180904.001 running, hence this feature

is in effect. We were not able to retrieve any useful information from this partition. The

other partition delivered better results, as it was not encrypted:

Index Path Description
1 Carved Files tab (Autopsy) Any files that were deleted from the

phone could potentially be recov-
ered here.

2 /data/system_ce/recent_im-
ages

Includes screenshots (.png) of last
used applications.

3 /data/system_ce/recent_tasks Includes XML files of last used ap-
plications.

4 /data/system_ce/snapshots Includes screenshots (.png) of last
used applications.

5 /data/com.google.android.-
apps.chromecast.app/-
files/home_graph_-
dG90by5oYXJyaXN-
zb25AZ21haWwuY29t.-
proto

Includes information about the
Google Home environment.

Table 6. Physical acquisition data

A benefit that physical extraction brings with itself is the possibility to carve for files.

This way, deleted files may be recovered, as well as files present only in unassigned file

spaces discovered. The only files we will not be able to discover this way are damaged

or already (partly) overwritten files, as we simply do not have the data to repair them

37

(unless duplicates exist, but that’s not the point of this study). The carving of files can be

very interesting in the context of IoT because of their nature and special architecture - the

devices do not have a lot of computing power nor big amounts of memory, thus anything

stored on them (or the cloud - to save space) usually gets overwritten within a much shorter

period of time than on other, more conventional devices such as personal computers. This

also means, that if for example, hypothetically, a picture or screenshot of the videofeed of

a network camera was automatically taken in response to a triggering event, then saved by

the app on the phone, but eventually deleted after a certain timespan or manually deleted

by an individual, it might still be recoverable through physical data acquisition and data

carving. These files will not include any metadata usually, but can still be of high forensic

value. Data in index 1 symbolize these carved files, which of course can also be files of any

kind. Sleuthkit Autopsy natively includes the functionality to carve for files on forensic

images.

Files we ordered into index 2 and 4 both contain screenshots from when the last applications

were used on the phone. Those last applications can be cross-validated with the files from

index 3 (in .xml format) that contain the name of the last used applications. The screenshots

can give information about the interface and obviously apps that were last used.

Index 5 gives more information about the Google Home environment, for example the

name of the home, name of the rooms, associated email, type of connected devices and

functions of that device.

As can be seen, physical acquisition brings some novel data to the discussion which is

not available in logical acquisition. We only listed data here that we had not been able to

extract in the previous logical acquisition. Since the physical acquisition is a full bit-for-bit

copy of the complete internal memory, everything that we extracted logically before this

point, was also available in the memory dump of this step.

38

4.2 Common aspects

4.2.1 Google Home and Fibaro Smart Home

The first thing that needs to be mentioned is that while we only used the Fibaro API to

parse data from there, Google Home does actually have an API as well. But, for the data

stored by Google and its services, it was not necessary to aggregate it, as the possibility to

export it in a reasonable file format already exists. For the sake of data acquisition and

our research, it was not necessary to further complicate this process, though it would have

been possible to access the data from the API as well. So, this difference in accessing the

data should not be taken as a difference that might influence tool development - it was

mostly a decision made for brevity and simplicity. Nevertheless, we want to point out

that APIs are actually a very common approach to request and interact with data in IoT

environments and most smart home service providers include an API for developers to

implement their home automations[22].

The data we were able to access differed somewhat in structure - Google provides a much

more broad spectrum of services and this might be the reason why data on and from smart

home integration is less detailed with Google. Since Fibaro aims to provide smart home

automation, the data aggregated from Fibaro directly is more in-depth and sensor-centric

which is needed for this kind of automation. Google Home does not provide this kind

of functionality, at least with the Fibaro devices and integration, and also acts like a

middle-man - it does not receive the data from the sensors themselves, but from the Fibaro

API. Google has its own products (like the Google Home among others) that provide more

functionality and only somewhat supports other brands, mostly because it is so prominent

and widely used, that a lot of services depend on integration (and most likely pay a price)

so that people will even consider using their service. Available functions implemented by

Fibaro for the Google Assistant can be found online to assess the level of integration[23].

Because of that difference in what each service/provider actually is and does, there is a

noticeable difference in the provided data. The data formats from the Google Takeout

exports were rather generic and general - the directories were arranged for the different ser-

vices/categories Google provides, but each mostly only had a file called "My Activity.json"

that includes different kinds of information. For example, the HomeApp.json contains all

39

data that could loosely be associated with the smart home itself - devices, names, owners;

while Fibaro has smaller subsections, as devices, rooms, and users are each separately

queryable. While there is a difference, that also means that the data is available on both

interfaces - Fibaro and Google Home; the difference in structure just needs to be taken into

account.

That said, both data sources contain data of comparable information, namely:

Type of data Location Google Location Fibaro
Device data /Takeout/Home App/HomeApp.json http://<IP>/api/devices
User data /Takeout/Home App/HomeApp.json http://<IP>/api/users
Home data /Takeout/Home App/HomeApp.json http://<IP>/api/settings/info
Room data /Takeout/Home App/HomeApp.json http://<IP>/api/rooms
Mobile device
data

/Takeout/My Activity/Android/My
Activity.json

http://<IP>/api/linkedDevices;
http://<IP>/api/iosDevices;
http://<IP>/api/voip;
http://<IP>/api/devices

Events data /Takeout/My Activity/Assistant/My
Activity.json

http://<IP>/api/panels/event

Table 7. Common data types

As can be seen from the commonalities across the Google Home/Assistant services and the

data that is provided by the Fibaro Home Center Lite, there is data describing the same or

similar information. This data is not always 100 percent the same, which can be explained

by the fact that the devices used, specifically the Google Home Mini and the Fibaro Home

Center Lite have big differences in their functionalities. As mentioned - the Google Home

Mini/Assistant acts more like a middle-man or bridge between the user and the application

that employs and integrates the actual sensors for easier access and control for the end-user,

that being the service provided by Fibaro. The Home Center acts as a hub for the sensors,

receiving and processing all data that is generated by them. Some information that could

be very crucial for investigations is not stored or processed by Google.

4.2.2 Mobile

From mobile acquisitions it became apparent that on Android there are a lot of similarities.

Even between the different services of Fibaro and Google Home/Assistant, as data is

40

managed in apps which are somewhat universal and this could be considered the same

kind of source of data.

From the data acquisition on mobile it became apparent that on Android there are more

similarities than across APIs and whatnot, as Android handles data more uniformly in

applications and such. This way, even if data is accumulated from different apps, it is most

likely going to end up in similar places. Though, this does not necessarily mean that same

types of data is stored or that different apps generate/store the same information.

The data possible to extract from mobile was less specific to the different services (Fibaro,

Google Home), but instead gave insights about general things such as (last) app usage,

calls and contacts, installed applications, and WiFis the phone has been connected to,

as can be seen in tables 4-6. Hence, data possible to analyse from this source is more

user-behaviour-centric. Nevertheless, most information found here does not give a whole

lot of details about the smart home environment, especially concerning Fibaro. Actions

made on the sensors and events triggered are also not accessible/visible from the mobile

phone. As storage is limited, only the essential (and manually saved) data is stored.

41

4.3 Framework Development

In this section, we are going to present our proposed framework and explain the process of

developing it, as well as providing explanations for decisions taken.

This framework aims to provide future researchers and investigators with a guide to

kickstart automation in forensic investigations in smart home environments, specifically

to further forensic software development for data acquisition when dealing with smart

homes. The framework we propose consists of two parts - one being an organisational

guide that helps to define and structure processes needed for the software development

project, the other being a more applied and technical part of the framework in form of

blueprint or base classes containing predefined functions that can be applied to various

(data) sources, needing only small adjustments to fit the source-specific case. First, we

present the organisational framework, then moving on to introduce the concept of the

applied framework.

To identify which phases of an investigation our framework can be applied to, we will

first establish these phases and how they are typically defined. The two most notable

models that define the general investigative processes in digital forensics are published by

NIST (National Institute of Standards and Technology) and the DFRWS (Digital Forensic

Research Workshop). The following is the investigative process as presented by NIST[24]:

■ Collection: In this step, it is first of all essential to identify and record all potential

evidence sources that could be relevant to the incident. Next, the data from those

evidence sources needs to be collected in a preserving and forensically sound manner

to ensure integrity.

■ Examination: Once the evidence has been collected, the data needs to be examined

and assessed. Evidence should be separated into relevant and non-relevant to the

case while still ensuring its integrity.

■ Analysis: In the next step, the information given by the evidence separated in the

examination step is analysed to try and find answers to questions such as "what

happened?", "where?", "who was involved?", "when?", and so on (5WH questions).

■ Reporting: Finally, the evidence needs to be prepared and results presented, includ-

42

ing methods and tools that were used during the investigation.

In comparison to that, we take into consideration the investigative process by DFRWS

which offers a more detailed visual:

Figure 3. DFRWS Investigative Process[25]

As can be seen, an investigation can consist of many phases, which are also not always

completely separable. For example, in the model by DFRWS, preservation is a step,

which is also included in basically each other phase. It is necessary to preserve the

evidence and ensure its integrity throughout the whole investigation process to in the

end be able to actually use it as evidence in front of the court. For the scope of our

research, we are specifically taking into account and developing for the phase of evidence

collection/acquisition, extending towards examination of the data, specifically filtering and

data extraction. Nevertheless, the framework may still be applicable to other steps of the

investigative process, though the validation of this assumption and further development

and additions to the framework are left for future research. The decision to focus on

this particular part of the process stems from the necessity for automation in big data

43

processing, whether it be acquisition or analysis. With our research we are aiming to

propose and lay a base framework for future studies to build upon and extend as needed.

Hence, we are starting with the initial step that involves data processing. Additionally,

some solutions have been proposed for the discovery and identification of devices and

possible evidence in a smart home environment.

As there exist quite a few framework in the forensics domain already, taking a look at

existing work, we can take inspiration and derive a model that fits our own premise. While

a framework like the one we propose does not exist, there are manuals describing the

general forensic actions to be taken during an investigation, from start to finish. Some

of these are also specific to Internet of Things, for example Islam et al. describe a

comprehensive approach to to a digital forensic investigation framework for Internet of

Things to give guidance for forensic investigations in such environments and to reduce

dependencies on cloud service providers and network logs in an ongoing investigation.

Their framework is provided in form of a flowchart with some additional elements[26].

Thus, understandably so, while there exists a multitude of different kinds of frameworks,

IoT environments have only seen an increase in research in the last few years and the

focus of those newly developed frameworks concerning IoT has been on how to adapt the

existing investigative processes to include and better prepare for IoT as part of a crime

scene and evidence source, or have rather specific use cases and research interests, and

consider forensic readiness, while our study focuses on practicality and actuality. Tool

development as a framework is also not something that has seen much traction, as there

a few bigger commercial tools and companies that focus on tool development. While

there is not one forensic tool that satisfies all needs, it is usually possible to supplement

different options to one’s use case to cover as many aspects as possible. But when it come

to IoT there has not been made much progression in tools to include such devices and

environments, as it is not an easy feat, taking into account the nature of IoT devices, the

many different kinds and manufacturers there exits, the big throughput of devices, as well

as a lack of standards, and further complications introduced through proprietary software,

hardware, and communication.

44

Because of these challenges faced in IoT forensics, tools and their manufacturers have not

been able to keep up with integrating support for smart devices and the changes that come

with a smart home environment.

Additionally, when considering IoT and IoT forensics, it should be taken into account that

the mobile component, and thus also mobile forensics plays a big role. Data is spread

across different locations, including the phone(s) that is usually being used to control the

smart home variables. Though from the data we were able to recover from the phone

during our research, the most interesting parts (as we think) of the data such as triggers and

breaches of the actual sensors, were not recorded on the phone itself and only accessible

on cloud-/server-side through the API, or in the special case of Google, from the Google

account itself (Google Takeout).

Mobile forensics is a category and topic that has been around a while longer than IoT

forensics and there exist tools that support the analysis of data and images from these

devices, such as Sleuthkit Autopsy, FTK Imager, Encase Forensics, and some tools even

specialize on extraction from mobile devices, such as Cellebrite Touch or Oxygen Forensic

Suite[27]. While mobile forensics face some of the same challenges as in IoT, e.g., a

magnitude of different devices, in mobile the variability between devices is not as extreme

as it is the case across IoT devices since phones are still going to be phones and nowadays

there are just a few prevalent operating systems. But IoT devices can have very different,

very specific purposes. The differences are less severe, which makes data acquisition a bit

more predictable.

Despite all this, information on and from the phone can be and is still an important source

of evidence for the investigation and should definitely be considered when collecting data.

Most smartphones nowadays give great insights into their owner’s life and more. Thus,

while not our research will also take into account the mobile component of data acquisition.

We want to mention here that it is also very much possible to extend our framework further

to include more data sources, such as the network component. For example, the local

network could be analysed for additional information. It is even possible that otherwise

45

unavailable data is transmitted in plain text, such as login information. The network aspect

was outside of the scope of our research due to time limitations, but it could be a valuable

addition to the framework.

As the framework we are proposing is basically software development, it is possible to

use an existing model or methodology for software development as a basis which the

framework should follow. There were a few things to consider which change the usual

software development premise: While there do exist some major producers of IoT devices

or smart home appliances, there is a wide variety not only of devices, but also producing

companies. As already established, there will be minor and major differences across

products and producers, also when it comes to data generation, storage, and APIs for

example. Some devices and producers may be more common than others, but in many

cases tools will be developed for and due to current needs, not considering what may be

best for the future. This may happen under time pressure of investigations or research

projects, and the tools/automation may fit very specific needs and is most likely not going

to be developed for a very general or broad purpose. Thus, reusability may be limited and

existing tools along this framework may first need significant adjustments to be useful for

other cases. Nevertheless, existing tools will create a fantastic basis and code base to build

upon, even if tools are not actively maintained.

Realistically speaking, it is also unlikely that developers of such forensic tools, especially

when the tool is being developed for an ongoing investigation, will have much time or

thought to spare on code quality and code reviews. The language being developed in, will

most likely be decided by the skill level of the developer and the use case. Wanting our

framework to be life-like, realistic, and practical, we are taking these factors into account.

Considering existing methodologies that we could apply, we conducted a short comparison

of the waterfall and agile methodologies to determine which could better fit our needs.

While one may think at first look that having several iterations of development within

our premise - time pressure and the need to get results as quickly as possible - may

not be the best idea. But looking into it more closely, a more agile approach to project

46

Figure 4. Agile vs. Waterfall[28]

management can benefit the development in several ways. The very rigid and linear

waterfall development is less than ideal for the general use case for our framework, as we

expect it: each step has to be 100 percent completed before moving on to the next stage - it

is not intended behaviour to go back to some previous step to adjust or modify. Having a

linear development structure can be favourable in projects where clear requirements and

objectives can be defined. Such projects may adapt the waterfall method very well, but for

our purposes such a set-in-stone structure can mean delays and slowness in the develop-

ment. As already expressed, time can be critical when it comes to forensic investigations,

especially with IoT involved. Additionally, requirements may not be completely clear or

definable when first starting the development process and certain aspects may only arise

during a later stage. It may also happen that during implementation it is found out that

certain requirements are not possible to be met. While the agile methodology generally

focuses on an approach to extensive testing, feedback, and attaining quality code, it can

be applied in a way to benefit our framework - smaller subsets of requirements can be

taken and implemented to realize if the requirements are attainable or need reworking. In

turn, several iterations of "feature" releases can be completed, so developers may focus on

most (time) critical requirements, with a MVP (minimum viable product) release, proving

first functionalities earlier than for example with the waterfall methodology. Hence, we

concluded that approaching our framework with the intention of using agile methods as a

basis, made the most sense.

47

Though, for our purposes and in general the purpose of forensic tool development, these

models can be somewhat reduced, as the software development is not so customer-centric

and certain steps of the process may require less efforts than in usual software development.

In the following, we will present the first part of our framework based on the agile method-

ology and explain each step.

48

4.3.1 Framework

Figure 5. Organisational Framework - Forensic Software Development49

We kept all steps that are defined in the usual agile model, but want to emphasise that these

phases may hold different weight, depending on the project. This is something that should

be decided individually and it needs to be considered. We will go more into detail about

this in the following:

■ Requirements: Requirements are easily the most important part of the development

cycle. Setting clear and precise expectations for the project and precisely the tool to

be developed can help with expectations and faster progression in actual development.

Requirements will mostly concern the tool (development) itself, nevertheless the

project as a whole should be considered. Most important aspects to consider when

defining requirements are time constraints, necessary functionalities, and priorities.

Time constraints can come from ongoing investigations that need to progress in a

timely manner, or the possibility of losing valuable evidence if relevant data is not

extracted soon enough. Quite obviously, requirements should focus on functionalities

the finished product aka tool should offer. When defining requirements, it can be

beneficial to assign priorities. Since there will most likely be several iterations and

some functionalities may need to be prioritized, as mentioned possibly due to time

limitations or different levels of relevance of the data. Generally, requirements could

be looking at the scope of the project, supported devices or producers, which data

sources will be considered, where the data will be taken from (e.g., API, mobile

acquisition), what kind of data processing will be done, what the output should look

like. Requirements should cover everything considered to be relevant to the project,

and can also be adjusted after each iteration.

■ Design: It is possible that in general for forensic software development, the design

phase does not require a lot of effort. This does not mean design is not important, as

it should still be thought through. Things such as the programming language may

be chosen by the developer(s), considering their skill level or preferences. Other

factors may include the use case, as a research project can look very different from

a project within the scope of an investigation - time constraints may be different,

thus also the priorities. Priorities should be defined within the requirements and

applied in the development step. The decision (made in requirements preferably), if

the tool should be developed as a plugin for an already existing (forensic) software,

50

such as Autopsy, or if a standalone tool will be the result of the project should be

made. It is of course possible to do both within the same project, but time and efforts

should be considered when making this decision, as developing plugins brings more

constraints with itself.

■ Development: The development phase will be supplemented and supported by

the technical part of the framework which will be introduced shortly. The actual

development will depend a lot on defined requirements and the project itself. For

each project, it should be decided how much time and effort should be allocated to

the design, and in which iteration it should be considered. The priority level of the

design can vary greatly from project to project, depending on e.g., the use case the

tool is being developed for. In case of several runs or iterations of the development

cycle, those requirements that have been prioritized should be taken into account.

Subsets of requirements should be pushed for development first, which can also help

assess if requirements are well-defined and realistic, or if changes need to be made.

It may also happen that one run of the cycle may fail completely, if development of

set requirements proves not possible within the scope of the project.

■ Test: In most circumstances, after development, at least functionality testing should

be done, to ensure correct behaviour. Testing should be subject to prioritization

as well - in some cases, for some functionalities, more extensive testing may be

necessary, for example, if a UI is being developed. It is important to decide this for

each use case, run, and even functionality. Some functionalities with high priority

within the project may (need) go through several testing phases. Prioritizing testing

for some functionalities may be necessary, while leaving less pressing testing for

later iterations.

■ Release: In the environments in which these tools will be used and released, will

usually not need deployment or launch as such. First, it should be decided if there

will be a release in every iteration, like a version release cycle, or if only the final

product will be made available if a release is planned at all. It is of course possible

to not release the tool and only use it for whatever purpose it was intended to be

developed for. Though, we really encourage "releasing" the developed software in

any way. Version release can be useful if e.g., different iterations actually implement

different functionalities. The process of the release should be defined, for example,

51

where (e.g. GitHub, a research conference), at what milestones, progress, or time

the tool will be released.

■ Review / Maintenance: After each iteration, there should be a review of if the

subset of requirements has been fulfilled accordingly, any requirements should

be changed, or if there were any occurrences throughout the run that could be

improved in the next iterations or need adjustments in general. Additional review

and maintenance can happen both internally or externally, as after the release of

the developed software, other developers, or same developers for that matter, may

decide to reuse an existing code base that fulfills a similar purpose. Then, the cycle

will start anew - requirements will be (re-)defined, and functionalities adjusted and

repurposed accordingly to the needs.

Having defined and explained the necessary steps included in our framework, we are going

to have a detailed look into the development part, as we have gained some insights from

the manual analysis of the data generated by our experimental smart home setup. We hope

to provide guidance on possible locations where relevant data could reside, giving example

file paths from our case for others to apply them to their own. These file paths will also be

compiled in a list in the appendix for a better overview and for others to add to it more easily.

4.3.2 Code Development

In real life settings, it is only realistic that the author of the tool to be developed will choose

a programming language that they prefer or if developing a plugin, the language best

supported (API access) by the already existing software. While it would be reasonable to

ask authors to follow good coding practices and use languages that are common and fit the

task, but while short on time and with investigations needing to progress, we understand

that what works and is known to the developer/investigator is best and will be used. In any

case, it would be good to at least keep this in mind, even if it is not something that can be

asked or set as a hard requirement.

52

Mobile

If a mobile phone has been recovered that relates to the smart home or person of interest.

Basically, the analysis can be done with most forensic software of choice (e.g., Autopsy),

as physical dumps of most Android devices will be recognized and parsed there, since they

are in a way just small Unix systems. But, the part of data acquisition is something that

could be considered for development if wanted or needed, for example for reuse purposes.

In this case, since Android Debug Bridge will most likely need to be utilized, an automated

script for the data extraction as it was manually demonstrated by us, could be written. It

should be kept in mind that for physical data acquisition the phone needs to be rooted and

this is a process that is usually specific to phone model, and difficult to automate, though

this can be attempted if for example, the same kind of model is expected to be needed to

be rooted repeatedly.

It should also be noted that the automation of for example, server-side requests made

through an API is usually a more fruitful work, as reusability is more realistic. APIs are

a common thing, especially with smart home environments and even different models of

hubs or base stations that gather the data from the sensors, will usually have very similar

API access within one manufacturer/vendor. Referring to the data and tables from the data

acquisition section, we found locations on the phone, where relevant data was stored. We

will give these locations as recommendations to be considered when developing tools.

The camera roll or rather any folders where pictures or downloads are stored, can be a rich

source of information. Be it in general of things that were taken pictures of with the phone

and pictures that were downloaded to the phone, or what we could observe - pictures that

were taken within apps, like those of smart cameras (in our case mydlink app). These

pictures may be in the common downloads directory, or a folder might have been created

by the app itself. Interesting directories of this kind in our case were found under the

following paths. It should be taken into account that these paths are only representation of

a case study and should not be taken as absolutes. Please refer to our phone model and

compare.

■ shared/0/DCIM/Camera - This directory included pictures and videos taken with

the phone.

■ shared/0/DCIM/Screenshots - Screenshots that were taken with the phone will be

53

stored here.

■ shared/0/Pictures/mydlink - Pictures that were taken within the app, in this case

mydlink were stored here.

As stated, this framework concerns itself with data that is possible to be extracted from

various sources which is related to IoT and smart home environments. Hence, the phone

will only be considered from this aspect, though a complete data acquisition and analysis

of the phone may bring about other information or data relevant to the investigation or

research.

Generally, data regarding apps will be stored in the data partition of the phone of which an

extraction will require physical acquisition (a full bit-by-bit copy of the internal file system)

methods. The most interesting artefacts are usually found in the directories /data/data,

/data/system, and /data/misc.

Common locations to look for information concerning applications are:

■ /data/data/com.android.<app name>

■ /data/system/packages.list - This is a list of all installed applications.

■ data/system/packages.xml - This file will also contain information about installed

applications and their permissions.

■ /data/system/usagestats/0/ - Subdirectories contain data about usage statistics of

applications.

■ Additionally, /data/system/sync/accounts.xml contains information about accounts

that are used for apps.

■ /data/system_ce/recent_images & snapshots & recent_tasks - Information about

last used applications.

Locations to consider for Google services can for example be:

■ /data/data/com.android.chrome/app_chrome/Default/ - Subdirectories contain

database files about user’s behaviour for the Google Chrome browser.

54

■ /data/data/com.google.android.gm/databases/downloader.db - Database with

files downloaded via Gmail.

In case of IoT devices produced by Google and Google Home integration of other smart

home accounts/manufacturers’ products, there are likely additional file paths, for example:

■ /data/com.google.android.apps.chromecast.app/files/ - Information about the

Google Home environment.

The /data/misc directory can contain information about general settings, e.g.:

■ /data/misc/wifi/WifiConfig-Store.xml - Data stored about wireless networks that

the phone has been connected to.

This may provide additional insights.

55

API

The data sharing and processing across smart home environments is usually handled by

using APIs, though there may not always be support for a private person to use that API

and no (official) documentation available.

For this section we would like to refer to Table 2 which describes the functions that were

available for the Fibaro API through which we extracted the information as needed.

For starters, when first identifying the products present in the smart home environment,

it should be researched if the specific manufacturer or producer provides API access and

documentation. Should that be the case, which is very likely, the documentation should be

explored to figure out available functions and information that can be queried, as well as

considered which of that information or data should be prioritized.

Another factor that should be explored is the availability of the API - if it is something

only available on the local network or if it can also be accessed remotely. It is likely to be

the former, which should be kept in mind for development and usage.

Most of the time, request are easily written and executed in python. A script that was

quickly developed within the scope of our research can be found at the linked GitHub and

serve as an example. In our case, requests were made over HTTP and the responses were

in JSON format.

In case an API is not available, it should be explored which is the easiest and quickest

way to extract the data without too much interaction with the smart home environment

itself. For example, Google Home does actually have an API from which data could be

requested, but since the Google Takeout exists it was less time consuming to simply access

the data needed from there, as the file formats were common and could be easily fed to

forensic software for analysis. It is usually not as easy and straightforward to develop

data acquisition tools and automation when there is not a standardized way to access the

data, though it definitely is not impossible. If it is not possible to automate the process

of evidence collection with our framework, it may be possible to develop a tool for the

next step - data examination/analysis. For this step, the developer could for example try to

automate the sorting of data into relevant (to the case or in relation to IoT) and irrelevant

along our framework. It is no set in stone which step of the process can automation be

developed for with it, even if it was initially intended for data acquisition.

56

https://github.com/SkybuIIy/fibaro_api_parser

4.3.3 Technical Implementation

In this section, we will provide insights on implementation and development of a practical

part and adoption of the framework. This will further aid the development stage of the

earlier presented organisational-focused software development framework (Figure 5).

A substantial part of the framework we are proposing is to include a technical implemen-

tation of it. Meaning, a blueprint in form of base classes is provided that implements

generally useful functions. These classes and their functions are constructed from ref-

erences given by our case studies, taking into account what information can usually be

found, where, and in what form. With these base classes we are laying the basis for easier

adoption of forensic tools and inclusion of data sources not covered in our research. We

conducted our case study with the goal in mind to answer our research questions and

provide support for investigations and the research community. The reason to look for

commonalities in data builds on the construction of this technical part of the framework.

Aspects that are common can be summed up and integrated in this proposed technical

blueprint in form of classes. In our scope, we will construct a prototype implementation,

writing Python classes for certain tasks that could be useful in investigations and research.

These tasks could consist of automated API requests, saving the servers responses in the

desired file format, or a quick filtering of the necessary and interesting information from

the extracted source files.

The idea is to have one Python file where the functions are defined. The functions will

be more generic than an implementation for specific tools and require arguments that

will provide the level of customization needed for the smaller differences in the common

aspects we established across IoT sources. These classes can then be used to implement

the needed functionalities, only needing small adjustments or passing arguments. This

will speed up necessary investigative processes by a great margin and provide future tool

development with a solid base to be built upon. Basics will be given by the framework

and extended as needed. Functionalities will aim to unify file formats and aggregate

information in one place for easier accessibility and analysis.

The base classes will be inherited by extending classes - the ones for specific use cases,

57

e.g., Fibaro or Google Home/Assistant. Certain variables are required to be defined by

subclasses of this base class, so that necessary and source- or product-specific information

will be applied, to make use-specific applications of these blueprint classes.

Basic functions can be implemented in the base class which we were able to identify as

commonly applicable across the data sources and products used in our case study. We

derived these functions from analysis of the data we generated, looking at aspects that are

common or similar from different sources (Table 7). We identified following functions as

useful:

■ API requests: As APIs are generally a common occurrence with smart homes,

having a baseline for such requests can accelerate data acquisition.

■ File format conversion: For further processing it is essential to have files stored in a

uniform format and some file formats may be preferred in investigations or research.

■ Timestamp conversion: Converting timestamps into human readable formats is

essential for investigations and presentation in front of the court.

■ Data extraction: Big volumes of data which needs to be analysed for relevant

information waste a lot time and efforts if this has to be done manually. Extraction

of a few values that are interesting for the case or research can save this wasted

potential.

58

The classes can be constructed as visualized by the following UML diagram:

Figure 6. UML diagram hierarchy

Two base classes are constructed - one holding functions that perform actions on files, and

another where actions/requests for the API are defined. These classes are separated for a

better overview, each of them having the potential for extension.

In this example, subclasses are given which are extending the base classes. They inherit the

functions of the base classes and contain the specific required variables that are responsible

for the customisation to fit the use case, here, Fibaro.

The developed base classes that implement these functionalities can be found on my

GitHub.

59

https://github.com/SkybuIIy/framework_validation

5. Framework Validation

To validate our proposed framework, we developed a standalone tool, following the

organisational part of the framework and applying the technical part of it. In this section

we are going to describe the process of software development along the framework and

using the base classes to inherit given functions which should require only minimal effort

to adjust to the specifics of different data sources.

If time allows, we actually recommend developing modules for Autopsy, because it is a

widely used forensic suite. Sleuth Kit being a collection of utilities for data extraction and

analysis, and Autopsy providing a graphical interface to Sleuth Kit to analyse extracted

data. Individual developers are able to add functionalities to Autopsy in form of plugins

that can be written in either Java or Python. There are different kinds of modules which

can be developed:

■ Ingest Modules: Analyse data and content from different data sources and relay

results to the backend, for the user to be seen. This is the most common extension

point for Autopsy.

■ Report Modules: Report modules are usually run at the end of investigations, after

the data analysis, to produce a report.

■ Content Viewers: These are graphical modules and allow the user to view and

analyse files in different ways. The content viewer is located in the lower right part

of Autopsy.

■ Result Viewers: In contrast to content viewers, result viewers show information

about a set of files and are located in the upper right part of Autopsy. This is the

least common type of module to be developed for or extended.

The developed modules can be added to the Sleuth Kit’s GitHub repository for individual

60

https://github.com/sleuthkit/autopsy_addon_modules

add-on modules where they will be openly available in a centralised manner for the

community to download and install.

In the following, the validation has been documented and resulting code has been published

on GitHub. In the following, we are going to describe how the project and code was

developed while adhering to the framework, documenting the processes and decision.

Requirements

Following the framework, the first step towards the goal is to define clear requirements that

the finished product should meet. As for our scope - mainly the validation of the framework

- the tool does not need to be extremely sophisticated, but should serve a purpose. We

focused priority on functionality, considering less the environment in and for which the

software is being developed.

We decided to develop the tool for Fibaro. Since we already wrote a program to extract

the data via API, wanting to add something novel, for this tool we apply the framework

to the step of data analysis and (pre-)process the data that we extracted. In particular, we

will be dealing with JSON files, from which we want to extract some specific information.

Following the framework, the first step is to define requirements that we want the tool to

fulfill.

We are going to be working with the JSON files that we extracted by making requests to the

Fibaro API. For the scope of our work, we are going to define the following requirements.

The tool should extract the following information from the files:

■ Serial number of the home center (top priority)

■ Name of the home center and rooms (top)

■ IP and MAC address of the home center (top)

■ Software version of the home center (top)

■ Home center users and devices/sensors (top)

■ Single out file that is storing events (top) and convert timestamps to humanly readable

(mid priority), convert to csv (mid)

61

https://github.com/SkybuIIy/framework_validation

Assigning some priorities to the functionalities - all data we want extracted, including

identifying the events file, should take top priority and be included in the first run if

possible. It matters less in what format this data is provided in the first version, but a later

run should include a kind of report or csv table with this information. The file and time

conversion can be added after the first priorities have been fulfilled. Generally, if this was a

bigger project, including more functionalities, they would be grouped into several subsets,

based on priority. In our case, since we have only a few functions to implement, it will not

take a lot of time nor a lot of iterations.

Furthermore, for our purposes a UI is not necessary, as the software we are developing can

be counted as a pre-processing step or further data extraction, and will possibly still go

through some more analysis.

Design

Within the design phase, basically everything needed to set the environment for develop-

ment is defined and software architecture built. The software is defined by the requirements

we set, and because it will be just a cli tool, the graphical aspect was not considered ex-

tensively. The programming language to be developed in is Python, which we chose due

to personal preferences, skill level, and due to the fact that the provided base classes are

written in Python which we are trying to validate. Requirement subsets were defined, in

our case simply by priority, though estimation of effort and other factors can also be taken

into account when defining these subsets that are to be implemented in different iterations.

Development

Generally, the efforts within a team will be allocated and the software in accordance to the

requirements and priorities, and defined software architecture developed. Since this was a

one-person-job, this step simply included the implementation of design and requirements.

Since we were already working on data that we analysed, there was not much need to go

into detail in the analysis again. But important findings that are discovered during the

process may be documented here or in the process of defining requirements, for which it

62

might be necessary to already do preliminary research on the data sources.

For the actual development we used the File_Processing base class as shown in Figure

6 to inherit the extract_data() function. Only few adjustments were needed to make the

blueprint fit for the case of JSON files generated by Fibaro.

We ended up doing two iterations - the first implemented all top priority functionalities

and the second one added the second subset of requirements - the conversion of time and

file, as well as output being in csv instead of just on the command line. The iterations went

through all processes, though in the first two steps of the second run, nothing was changed.

Test

Testing was done only to check for all implemented functionalities and adjustments made

in the code, in case of errors or unintended behaviour.

Release

For backup purposes, accessibility, and synchronisation, we decided GitHub to be the

place for the release. It is a central platform where code can be deposited and accessed.

We uploaded the code for every run, so technically there exist two versions.

Review

After each run, we reviewed the code and checked if all requirements and priorities had

been met in the developed code, which was the case.

63

6. Discussion

In this part, we are going to summarize our results.

Firstly, the literature review we conducted helped us establish a good basis for our own

research. We presented how IoT systems work differently than conventional computers,

introduced general security flaws and vulnerabilities in IoT, and identified current chal-

lenges and possibilities in IoT forensics. The most severe issues which complicate forensic

investigations in IoT environments and need to be overcome are big volumes of data,

heterogeneity, and volatility of data. Furthermore, existing frameworks in the forensic

domain were explored to assess if it would be possible to apply our own use case to an

existing work and adapt it accordingly to our needs. In the end, this was not possible,

as only frameworks for the general forensic investigative process could be found, some

integrating the IoT component, but no software development frameworks that could apply

in our case. And finally, we reviewed research that presented case studies on IoT devices,

which provided us with a great deal of references. From this information we were able to

establish why our own study holds value and contributes in terms of research, as well as in

practical scenarios such as investigations.

From our research experiments with a life-like smart home environment we were able

to generate data for a case study. This study included the mostly manual extraction and

analysis of IoT-related data from the mobile phone, and on server-side from Fibaro through

API requests, as well as Google Takeout for relevant data for the Google Home. For the

API requests and responses a simple parser, as well as file converter was developed to ease

access and interactions. From this case study, we gained insights about locations of data

generated by IoT devices which could be interesting for investigations, and possibilities to

access and extract this data.

From analysing the data, we establish that common aspects could be found across the data

and data sources. When considering the comparison between data gathered from Google

64

Takeout and by making request to the Fibaro API, some of the same information could be

found, which can be relevant in investigations. Table 7. provides an overview of this data

- there were certain files that provided the same information, even if they were from the

different sources. Other commonalities were data locations on the phone, as the data was

generated by applications which have a standard way of storing information. Differences,

less in data sources but extraction methods of the data from the Google Home and Fibaro

Home Center - data from Fibaro could be easily accessed through a RESTful API, resulting

in JSON responses, while the information from Google could be downloaded through the

Google account which included various formats.

Additionally, even though there exists integration for Fibaro into Google Home, the data

generated by Fibaro that was accessible through Google Home was much sparser than the

amount that was actually created. This is likely due to the fact that Google only needs

access to a few functions to control the sensors, and does not aim to read and process all

information which is not relevant for integration of the sensors.

Google being a somewhat monopolistic provider of certain services, is a special case,

resulting in these differences. Google mostly does not produce smart devices itself, but

offers other producers to provide integration to Google Home - a convenient central unit

from which the smart home can be controlled. Nevertheless, APIs are a common thing

provided by the producers, as automation plays a big role in the smart home setting and

IoT in general.

Taking into account the findings of our case study and data analysis, establishing common

factors across data and data sources, we developed a two-part framework for software de-

velopment based on the agile methodology, supplemented with a technical implementation

of base classes with predefined and easily adjustable functions fitting the commonalities

we were able to identify. To better fit the use case of the framework, the implementation of

agile methods was adjusted accordingly, putting more focus on some steps and less on

others.

Results of our studies showed that there indeed are common aspects across different smart

devices and producers, as well as that providing general guidance on possible file paths,

formats, or API requests can be useful in providing initial pointers to guide development in

the right direction, and help with accelerating the development process, as well as getting

65

started faster.

We validated our proposed framework and blueprint classes written in Python by developing

a tool that provides automation in data acquisition and pre-processing on top of files

extracted from the Fibaro API, following the processes of the framework, extending the

base class, and using the relevant functions provided by this class.

As pointed out by relevant literature, the need to be able to analyse data from IoT settings

grows, along with the the need for automation in this area. With our framework we provide

a basis to address major challenges in IoT forensics by guiding and encouraging tool

development to automate data processing step in forensic investigation.

66

7. Conclusion

With our research, we were aiming to establish the current state of IoT forensics and

related tool development, and find common aspects of data traces left by different IoT

devices in smart home environments. The main goal was to then combine these aspects

into a framework to aid forensic tool development in automation of data acquisition, with

a possibility to extend this to further steps of forensic investigations.

By conducting a literature review, we were able to identify the current state of IoT forensics,

where research is lacking, and how our work can contribute. The general consensus is that

IoT forensics is a very little researched topic that needs to gain traction, as the necessity to

analyse data from such environments grows and challenges faced need to be overcome.

The experimental setup of a smart home ecosystem we constructed, provided us with

the possibility to conduct a case study. Data generated within that case study provided

us with insights about common aspects and differences across IoT devices and their

traces. Commonalities were prominent especially on mobile, though different data sources

(Fibaro API and Google Takeout) did include some of the same information, even if

formats differed. We incorporated these results into our framework prototype, also taking

into account findings from the literature review. Commonalities are considered in the

organisational part, as well as the technical implementation included in the framework.

The organisation-centric part is an adjusted version of the agile methodology better fitting

the use case of forensic software development, while the technical part is a practical

implementation of Python base classes, consisting of functions that can be used and easily

adjusted for several data sources.

In the end, we were able to provide a first version of a framework prototype that enables

to accelerate and ease forensic data acquisition software development in smart home

environments. With this framework, we hope that some of the challenges usually faced

in IoT can be overcome to some extent, and further development of the framework can

be conducted. Validation of the proposed framework happened by developing a tool from

67

the data we generated, following the framework, even applying it more to the step of data

analysis rather than extraction. Thus, along with the framework, we contribute by making

all of the data generated in our research available, providing the community with as many

references as possible - this includes data we extracted during our case study, as well as

any developed tools, which will be provided open-source.

Hence, we conclude our research questions to be successfully answered, even if the

framework is at this time just a prototype.

The biggest limitation we experienced during our research turned out being bound to

certain hardware that we had available. This should be considered when consuming our

results. As already mentioned, the developed framework is simply a prototype in its

beginning and by far no exhaustive study has been conducted. Adding more case studies to

this work, in turn developing the framework further to be able to accommodate other data

sources is something we hope will be achieved in future research. Be it file paths, example

API requests, file formats, or additional functions in the base classes. Providing this

information in a centralized document or guide can save a lot of time in the development.

Additionally, we are hoping to see an extension of the framework idea to the network layer

of IoT, as there is still a lot of data to be gather from traffic which could be very interesting

to investigations[12]. As this was not within the scope of our research it was not covered

within our work, but we want to mention it is definitely just as important, as for example,

due to missing security measures, login data could be submitted in plaintext. With the same

notion, we believe and think it to be possible to apply our framework to other steps of the

forensic investigative process. As was already shown, we were able to use the framework

on the examination step, even though it was developed with data acquisition in mind. If

the framework is extended accordingly, this could be a real possibility to be considered

and validated in future research.

Concerning the technical part of the framework, we see a lot of potential for adjustments,

and extension. As further case studies are conducted and possibly other common aspects

uncovered, additional classes and functions that serve as blueprints can be added. As our

current framework is only a prototype, we encourage and hope for further development.

Something we think that would be especially interesting and useful for future endeavours

is the adoption of base classes for the development of Autopsy modules.

68

We hope that with our framework and incentive, open-source development will be en-

couraged, to bring the community as a whole forward and focus efforts on where they

are needed, not wasting resources on repetitive tasks. If one-time use projects, specific to

investigations can be avoided or at least reduced by publishing any developed software,

which in turn can then be used by others and repurposed to fit other needs without having

to start from zero, then there has already significant progress been made. It is likely that

many investigators or researchers of this topic face the same problems. Working as a

community can help a great deal in furthering research in this particular, but really any

area. A team effort will bring research and investigations further. At this point, dealing

with IoT forensically is simply not feasible. Challenges need to be overcome and the few

commercial tools will not be able to do so anytime soon. We hope that in the future IoT will

become more regulated, also in terms of security, but staying within a realistic perspective,

this will not happen anytime soon. Hence, we have to focus on what is possible right now.

We prepared a base to support researchers and developers in their endeavours, and hope it

will stimulate growth and development among the community.

69

Bibliography

[1] Statista and Martin Placek. Industrial Internet of Things (IIoT) market size

worldwide from 2020 to 2028. [Accessed: 12-05-2022]. URL: https : / /

www.statista.com/statistics/611004/global-industrial-

internet-of-things-market-size/.

[2] Statista and Lionel Sujay Vailshery. Number of Internet of Things (IoT) connected

devices worldwide from 2019 to 2030. [Accessed: 12-05-2022]. URL: https:

//www.statista.com/statistics/1183457/iot-connected-

devices-worldwide/.

[3] Jayashree Mohanty et al. “IoT Security, Challenges, and Solutions: A Review”.

In: Progress in Advanced Computing and Intelligent Engineering. Ed. by Chhabi

Rani Panigrahi et al. Singapore: Springer Singapore, 2021, pp. 493–504. ISBN:

978-981-15-6353-9. DOI: 10.1007/978-981-15-6353-9_46.

[4] João Valle et al. “Using Traces from IoT Devices to Solve Criminal Cases”. In: June

2020. DOI: 10.1109/WF-IoT48130.2020.9221265.

[5] Casey C. Sullivan. How the IoT Is Solving Murders and Reshaping Discovery.

[Accessed: 12-05-2022]. URL: https://www.logikcull.com/blog/how-

the-iot-is-solving-murders-and-reshaping-discovery.

[6] Hany F. Atlam et al. “Internet of Things Forensics: A Review”. In: Internet of

Things 11 (2020), p. 100220. ISSN: 2542-6605. DOI: https://doi.org/10.

1016/j.iot.2020.100220. URL: https://www.sciencedirect.

com/science/article/pii/S2542660520300536.

[7] Sita Rani et al. Threats and Corrective Measures for IoT Security with Observance

of Cybercrime: A Survey. 2021. arXiv: 2010.08793 [cs.NI].

70

https://www.statista.com/statistics/611004/global-industrial-internet-of-things-market-size/
https://www.statista.com/statistics/611004/global-industrial-internet-of-things-market-size/
https://www.statista.com/statistics/611004/global-industrial-internet-of-things-market-size/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1007/978-981-15-6353-9_46
https://doi.org/10.1109/WF-IoT48130.2020.9221265
https://www.logikcull.com/blog/how-the-iot-is-solving-murders-and-reshaping-discovery
https://www.logikcull.com/blog/how-the-iot-is-solving-murders-and-reshaping-discovery
https://doi.org/https://doi.org/10.1016/j.iot.2020.100220
https://doi.org/https://doi.org/10.1016/j.iot.2020.100220
https://www.sciencedirect.com/science/article/pii/S2542660520300536
https://www.sciencedirect.com/science/article/pii/S2542660520300536
https://arxiv.org/abs/2010.08793

[8] Fadele Ayotunde Alaba et al. “Internet of Things security: A survey”. In: Jour-

nal of Network and Computer Applications 88 (2017), pp. 10–28. ISSN: 1084-

8045. DOI: https://doi.org/10.1016/j.jnca.2017.04.002.

URL: https://www.sciencedirect.com/science/article/pii/

S1084804517301455.

[9] Mohammad Hassan, Ghassan Samara, and Mohammad Fadda. “IoT Forensic Frame-

works (DFIF, IoTDOTS, FSAIoT): A Comprehensive Study”. In: International

Journal of Advances in Soft Computing and its Applications 14.1 (Mar. 2022),

pp. 73–83. DOI: 10.15849/ijasca.220328.06. URL: https://doi.

org/10.15849%5C%2Fijasca.220328.06.

[10] Abiodun Esther Omolara et al. “The internet of things security: A survey encom-

passing unexplored areas and new insights”. In: Computers Security 112 (2022),

p. 102494. ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.

2021.102494. URL: https://www.sciencedirect.com/science/

article/pii/S0167404821003187.

[11] Ibrar Yaqoob et al. “Internet of things forensics: Recent advances, taxonomy, re-

quirements, and open challenges”. In: Future Generation Computer Systems 92

(2019), pp. 265–275. ISSN: 0167-739X. DOI: https://doi.org/10.1016/

j.future.2018.09.058. URL: https://www.sciencedirect.com/

science/article/pii/S0167739X18315644.

[12] Francesco Servida and Eoghan Casey. “IoT forensic challenges and opportuni-

ties for digital traces”. In: Digital Investigation 28 (2019), S22–S29. ISSN: 1742-

2876. DOI: https://doi.org/10.1016/j.diin.2019.01.012.

URL: https://www.sciencedirect.com/science/article/pii/

S1742287619300222.

[13] Liam Dawson and Alex Akinbi. “Challenges and opportunities for wearable IoT

forensics: TomTom Spark 3 as a case study”. In: Forensic Science International:

Reports 3 (2021), p. 100198. ISSN: 2665-9107. DOI: https://doi.org/10.

1016/j.fsir.2021.100198. URL: https://www.sciencedirect.

com/science/article/pii/S2665910721000293.

71

https://doi.org/https://doi.org/10.1016/j.jnca.2017.04.002
https://www.sciencedirect.com/science/article/pii/S1084804517301455
https://www.sciencedirect.com/science/article/pii/S1084804517301455
https://doi.org/10.15849/ijasca.220328.06
https://doi.org/10.15849%5C%2Fijasca.220328.06
https://doi.org/10.15849%5C%2Fijasca.220328.06
https://doi.org/https://doi.org/10.1016/j.cose.2021.102494
https://doi.org/https://doi.org/10.1016/j.cose.2021.102494
https://www.sciencedirect.com/science/article/pii/S0167404821003187
https://www.sciencedirect.com/science/article/pii/S0167404821003187
https://doi.org/https://doi.org/10.1016/j.future.2018.09.058
https://doi.org/https://doi.org/10.1016/j.future.2018.09.058
https://www.sciencedirect.com/science/article/pii/S0167739X18315644
https://www.sciencedirect.com/science/article/pii/S0167739X18315644
https://doi.org/https://doi.org/10.1016/j.diin.2019.01.012
https://www.sciencedirect.com/science/article/pii/S1742287619300222
https://www.sciencedirect.com/science/article/pii/S1742287619300222
https://doi.org/https://doi.org/10.1016/j.fsir.2021.100198
https://doi.org/https://doi.org/10.1016/j.fsir.2021.100198
https://www.sciencedirect.com/science/article/pii/S2665910721000293
https://www.sciencedirect.com/science/article/pii/S2665910721000293

[14] Seila Becirovic and Sasa Mrdovic. “Manual IoT Forensics of a Samsung Gear S3

Frontier Smartwatch”. In: 2019 International Conference on Software, Telecommu-

nications and Computer Networks (SoftCOM). 2019, pp. 1–5. DOI: 10.23919/

SOFTCOM.2019.8903845.

[15] Asif Iqbal et al. “Smart Home Forensics: An Exploratory Study on Smart Plug

Forensic Analysis”. In: 2020 IEEE International Conference on Big Data (Big Data).

2020, pp. 2283–2290. DOI: 10.1109/BigData50022.2020.9378183.

[16] Hyunji Chung, Jungheum Park, and Sangjin Lee. “Digital forensic approaches for

Amazon Alexa ecosystem”. In: Digital Investigation 22 (2017), S15–S25. ISSN:

1742-2876. DOI: https://doi.org/10.1016/j.diin.2017.06.010.

URL: https://www.sciencedirect.com/science/article/pii/

S1742287617301974.

[17] Soram Kim et al. “Smart Home Forensics—Data Analysis of IoT Devices”. In:

Electronics 9 (July 2020), p. 1215. DOI: 10.3390/electronics9081215.

[18] Arnoud Goudbeek, Kim-Kwang Raymond Choo, and Nhien-An Le-Khac. “A Foren-

sic Investigation Framework for Smart Home Environment”. In: 2018 17th IEEE

International Conference On Trust, Security And Privacy In Computing And Commu-

nications/ 12th IEEE International Conference On Big Data Science And Engineer-

ing (TrustCom/BigDataSE). 2018, pp. 1446–1451. DOI: 10.1109/TrustCom/

BigDataSE.2018.00201.

[19] Victor R. Kebande and Indrakshi Ray. “A Generic Digital Forensic Investigation

Framework for Internet of Things (IoT)”. In: 2016 IEEE 4th International Confer-

ence on Future Internet of Things and Cloud (FiCloud). 2016, pp. 356–362. DOI:

10.1109/FiCloud.2016.57.

[20] Victor R. Kebande et al. “Towards an Integrated Digital Forensic Investigation

Framework for an IoT-Based Ecosystem”. In: 2018 IEEE International Confer-

ence on Smart Internet of Things (SmartIoT). 2018, pp. 93–98. DOI: 10.1109/

SmartIoT.2018.00-19.

[21] senerex. [All-in-One] Redmi Note 7 (lavender): Unlock Bootloader, Flash TWRP,

Root, Flash ROM. [Accessed: 12-05-2022]. URL: https://forum.xda-

72

https://doi.org/10.23919/SOFTCOM.2019.8903845
https://doi.org/10.23919/SOFTCOM.2019.8903845
https://doi.org/10.1109/BigData50022.2020.9378183
https://doi.org/https://doi.org/10.1016/j.diin.2017.06.010
https://www.sciencedirect.com/science/article/pii/S1742287617301974
https://www.sciencedirect.com/science/article/pii/S1742287617301974
https://doi.org/10.3390/electronics9081215
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00201
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00201
https://doi.org/10.1109/FiCloud.2016.57
https://doi.org/10.1109/SmartIoT.2018.00-19
https://doi.org/10.1109/SmartIoT.2018.00-19
https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751
https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751

developers.com/redmi- note- 7/how- to/one- redmi- note-

7-unlock-bootloader-t3890751.

[22] Joy Culbertson. 12 Popular Home Automation APIs. [Accessed: 12-05-2022]. URL:

https://www.programmableweb.com/news/12-popular-home-

automation-apis/brief/2020/09/06.

[23] Fibar Group. Google Assistant – FIBARO Integration. [Accessed: 12-05-2022].

URL: https://manuals.fibaro.com/knowledge-base-browse/

google-assistant-fibaro-integrations/.

[24] Karen Kent et al. “Guide to Integrating Forensic Techniques into Incident Response”.

In: NIST Special Publication (Jan. 2006).

[25] Collective Work. “The Digital Forensic Research Conference DFRWS USA”. In:

2001.

[26] Md. Jahidul Islam et al. “Digital Forensic Investigation Framework for Internet of

Things (IoT): A Comprehensive Approach”. In: 2019 1st International Conference

on Advances in Science, Engineering and Robotics Technology (ICASERT). 2019,

pp. 1–6. DOI: 10.1109/ICASERT.2019.8934707.

[27] Asier Martínez. Tools for carrying out forensic analyses on mobile devices. [Ac-

cessed: 12-05-2022]. URL: https://www.incibe-cert.es/en/blog/

mobile-forensic-analyses-tools.

[28] iam2mai. Agile vs Waterfall methodology for software development life cycle dia-

gram. [Accessed: 12-05-2022]. URL: https://www.shutterstock.com/

image-vector/agile-vs-waterfall-methodology-software-

development-1861899391.

73

https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751
https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751
https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751
https://forum.xda-developers.com/redmi-note-7/how-to/one-redmi-note-7-unlock-bootloader-t3890751
https://www.programmableweb.com/news/12-popular-home-automation-apis/brief/2020/09/06
https://www.programmableweb.com/news/12-popular-home-automation-apis/brief/2020/09/06
https://manuals.fibaro.com/knowledge-base-browse/google-assistant-fibaro-integrations/
https://manuals.fibaro.com/knowledge-base-browse/google-assistant-fibaro-integrations/
https://doi.org/10.1109/ICASERT.2019.8934707
https://www.incibe-cert.es/en/blog/mobile-forensic-analyses-tools
https://www.incibe-cert.es/en/blog/mobile-forensic-analyses-tools
https://www.shutterstock.com/image-vector/agile-vs-waterfall-methodology-software-development-1861899391
https://www.shutterstock.com/image-vector/agile-vs-waterfall-methodology-software-development-1861899391
https://www.shutterstock.com/image-vector/agile-vs-waterfall-methodology-software-development-1861899391

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Objective and Contributions
	Methods
	Scope

	Literature Review / Related Works
	Data Generation
	Devices and Setup
	Data Generation
	Data Acquisition
	IoT Forensics - Fibaro Home Center Lite and Google Home Mini

	Results
	Data Analysis
	Google (Home Mini / Takeout)
	Fibaro Home Center
	Mobile

	Common aspects
	Google Home and Fibaro Smart Home
	Mobile

	Framework Development
	Framework
	Code Development
	Technical Implementation

	Framework Validation
	Discussion
	Conclusion
	Bibliography

