
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Aleksei Obuhov 178198IASM

MULTI-CORE
ARCHITECTURES WITH HARDWARE

ACCELERATORS FOR PARALLEL DATA
PROCESSING

Master’s thesis

Supervisor: Aleksander Sudnitsõn

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Aleksei Obuhov 178198IASM

MITME-TUUMALISED ARHITEKTUURID
RIISTVARAKIIRENDAJAGA

PARALLEELSEKS
ANDMETÖÖTLEMISEKS

Magistritöö

Juhendaja: Aleksander Sudnitsõn

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksei Obuhov

04.05.2020

4

Abstract

Data sorting is a common operation in various modern applications. Most filtering and

searching operation utilize data sorting. The technology development brought the

necessity of fast sorting algorithms. The recently released Multiprocessor System-on-

Chip, such as UltraZed-EG, provide to possibilities to design a data sorting embedded

systems with high efficiency and lower power consumption.

This thesis provides hardware implementation of an O(1) Time Complexity Two-Step

Sorting Network on development board UltraZed-EG. The UltraZed-EG is based on

Xilinx Zynq UltraScale+ Multiprocessor System-on-Chip, which are available in the

Department of Computer Engineering in Tallinn University of Technology.

Through the process of implementation, the proposed sorting network was thoroughly

scrutinized. To achieve the desired goals, the Advanced eXstensible Interface and AXI4-

Steram protocol were examined, IP core for the Two-Step Sorting Network was created,

the communication between processing logic and implemented sorting network was

established. The Two-Step Sorting Network IP Core was written in VHDL hardware

description language. For testing purposes, the standalone application and Petalinux

application were additionally written in C programming language.

According to the experiment results, the proposed implementation works properly and

has better optimization of resource consumption regarding to the results in [1]. However,

the experiment results demonstrate the big growth of resource utilization by incrimination

of a data set size, which makes the use of this implementation impractical with large data

sets.

The implemented Two-Step Sorting Network IP core has multi-module structure, where

each module can be separately reused and improved in future works.

This thesis is written in English and is 38 pages long, including 6 chapters, 27 figures and

2 tables. The source code of the proposed design available at [2].

5

Annotatsioon
Mitme-tuumalised arhitektuurid riistvarakiirendajaga paralleelseks

andmetöötlemiseks

Andmete sorteerimine on tavaline toiming erinevate kaasaegsete rakendustes. Enamik

filtreerimis- ja otsimistoimingutest kasutatakse andmete sorteerimist. Tehnoloogia areng

tõi kaasa kiirte sorteerimisalgoritmide vajadusele. Hiljuti välja antud MPSoC, näiteks

UltraZed-EG, pakub suure tõhususega ja väiksema energiatarbega andmesorteerimise

manussüsteemide kujundamiseks võimalusi.

See lõputöö pakub O(1) ajaliselt keeruka kaheastmelise sorteerimisvõrgu riistvaralist

rakendamist arendusplaadil UltraZed-EG. Tallinna Tehnikaülikooli Arvutisüsteemide

instituudi UltraZed-EG arendusplaat, mis põhineb Xilinx Zynq UltraScale+

mitmeprotsessorilisel süsteemil.

Pakutud sorteerimisvõrk oli põhjalikult uuritanud arendamise käiguses. Selgitatakse

Advanced eXstensible Interface ja AXI4-Stream protokoll; arendatakse kaheastmelise

sorteerimisvõrgu PL tasemel IP-tuma kujul; realiseeritakse side PS ja arendatud

sorteerimisvõrgu vahel. Kaheastmelise sorteerimisvõrgu IP-tuma on kirjutatud VHDL

riistvarakirjelduskeeles. Standalone ja Petalinux rakendused on kirjutatud C

programmeerimiskeeles testimise eesmärgil.

Eksperimendite tulemuste alusel, arendatud kaheastmelise sorteerimisvõrk töötab

korralikult. Võrreldes [1] tulemusega ressursi tarbimine on optimeeritud paremaks.

Eksperimendite tulemused näitavad ressursi tarbimise suurt kasvu andmete hulka

suurendamise tänu, mis muudab selle rakendamise kasutamise ebapraktiliseks.

Arendatud kaheastmelise sorteerimisvõrgu IP-tuum on mitme mooduli struktuur, kus iga

moodulit saab tulevastes töödes eraldi uuesti kasutada ja täiustada.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 6 peatükki, 27

joonist, 2 tabelit. Lähtekood on saadaval [2].

6

List of abbreviations and terms

AXI Advanced eXtensible Interface

BSP Board Support Packages

C/S Comparator/Swapper

CLB Configurable Logic Block

CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

GPU Graphics Processing Unit

HP High Performance

ILA Integrated Logic Analyzer

IP Intellectual Property

LUT LookUp Table

MPSoC Multiprocessor System-on-Chip

OS Operating System

PC Personal Computer

PL Programmable Logic

PS Processing System

PSoC Programmable System-on-Chip

RTL Register Transfer Level

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

UART Universal Asynchronous Receiver-Transmitter

VHDL Very high speed integrated circuits Hardware Description
Language

7

Table of contents

1 Introduction ... 10

1.1 Motivation .. 10

1.2 Scope .. 10

1.3 Thesis Outline ... 11

2 Background .. 12

2.1 Sorting networks ... 12

2.2 An O(1) Time Complexity Two-Step Sorting Network 13

2.3 Design environment and hardware ... 16

3 System design solution for Two-Step Sorting Network .. 17

3.1 AXI Direct Memory Access IP core ... 18

3.2 AXI-Stream protocol .. 19

4 Two-Step Sorting Network IP Core implementation .. 21

4.1 AXI4-Stream receiver implementation .. 22

4.2 AXI4-Stream sender implementation ... 23

4.3 Two-Step Sorting Network implementation ... 25

5 Experiment results and analysis .. 29

5.1 Post-implementation results and resources utilization ... 29

5.2 Two-Step Sorting Network monitoring with Integrated Logic Analyzer 31

5.3 Two-Step Sorting Network execution result at Petalinux 32

6 Conclusion and Future work ... 34

References .. 35

Appendix 1 – AXI Direct Memory Access IP Core customization page 36

Appendix 2 – Configuration and building of Petalinux boot image............................... 37

8

List of figures

Figure 1.1 Simplified architecture of system. .. 11

Figure 2.1 (a) A comparator/swapper block. (b) in Knuth notation. 12

Figure 2.2 Odd-even transposition sorting network. .. 13

Figure 2.3 Structure of the O(1) Time Complexity Two-Step Sorting Network. 14

Figure 2.4 Two-step sorting network elements comparison depicted as graph.............. 14

Figure 3.1 Final architecture of system with Two-Step Sorting Network IP Core. 17

Figure 3.2 The final block design diagram in Vivado. ... 18

Figure 3.3 Block diagram of AXI DMA connections. ... 18

Figure 3.4 AXI4-Stream interface interconnection between master and slave IP cores. 19

Figure 3.5 Example of AXI4-Stream protocol transmitting process. 20

Figure 4.1 Two-Step Sorting Network IP core structure. ... 21

Figure 4.2 FSM of AXI4-Stream receiver. ... 22

Figure 4.3 Writing TDATA payload to FIFO data input buffer. 23

Figure 4.4 FSM of AXI4-Stream sender. ... 23

Figure 4.5 Reading data from data output buffer. .. 24

Figure 4.6 Structure of implemented Two-Step Sorting Network. 25

Figure 4.7 Optimization of the Edge Matrix. ... 25

Figure 4.8 Hardware representation of the Edge Computer for 4-input configuration. . 26

Figure 4.9 Reading of the Binary Vector representation in an upper triangular matrix

form. ... 27

Figure 4.10 Sorting Network internal entities in Vivado. .. 28

Figure 4.11 Simulation of implemented Two-Step Sorting Network. 28

Figure 5.1 The result of utilization LUTs with different data widths. 29

Figure 5.2 The result of utilization LUTs with different sizes of data set. 30

Figure 5.3 Integrated Logic Analyzer connections. ... 31

Figure 5.4 Sorting network IP core internal signal monitoring. 32

Figure 5.5 Transferring set of 8 test data by “axidmatransfer” application. 33

Figure 5.6 Validation of the result of sorting on hardware. ... 33

9

List of tables

Table 1 The result of utilization LUTs with different data widths. 30

Table 2 The result of utilization LUTs with different sizes of data set. 30

10

1 Introduction

This thesis explores hardware implementation of an O(1) Time Complexity Two-Step

Sorting Network on a field-programmable gate arrays (FPGA). It also addresses

investigation of resource consuming of proposed sorting method.

1.1 Motivation

Data sorting is a common operation in data processing area, such as image and video

processing, network communications and digital signal processing. Most filtering and

searching operation utilize data sorting.

Many data sorting methods require parallel data processing and high repetition of

operations. In case of large amounts of data, the execution of such sorting methods on a

CPU leads to consuming of a large amount of CPU resources. Sorting networks on a

hardware accelerators are intended to solve this problem. Implementation such of system

can be achieved on FPGA and programmable systems on chip (PSoC), because of their

flexibility, durability and availability. Those platforms allow us to design a data sorting

embedded systems with high efficiency and lower power consumption.

1.2 Scope

The current thesis is focused on the hardware implementation of an O(1) Time

Complexity Two-Step Sorting Network on UltraZed-EG Starter Kit that is based on the

Xilinx Zynq UltraScale+ MPSoC. The proposed sorting network is designed, analysed in

this work.

11

Figure 1.1 Simplified architecture of system.

The main idea is to implement scalable the sorting network as Intellectual Property (IP)

core in Xilinx Zynq Programmable Logic (PL) that communicates with Processing

System (PS) through AXI interface to find limitations of proposed sorting network. The

simplified system architecture view is shown in Figure 1.1. To generate data for sorting,

a standalone application or Petalinux application is used. [3]

1.3 Thesis Outline

The remaining part of the thesis contains 5 chapters.

Chapter 2 introduces the background information on sorting networks, an O(1) Time

Complexity Two-Step Sorting Network and tools that were used in current thesis.

Chapter 3 presents the proposed system design solution for Two-Step Sorting Network.

It also describes the AXI Direct Memory Access IP core and AXI4-Stream protocol.

Chapter 4 presents the implementation of Two-Step Sorting Network IP Core. It also

overviews internal components of the proposed implementation and explains their work.

Chapter 5 provides a method of doing experiment, shows and analyse the experimental

results of the proposed implementation.

Chapter 6 concludes the thesis and discusses the directions for the further work.

12

2 Background

2.1 Sorting networks

The implementation of parallel sorting method is a common problem in data processing

field. This problem has many solutions such as Parallel QuickSort, Parallel Radix Sort,

Sample Sort and algorithmic methods are based on sorting networks. The latter presents

a great interest for hardware acceleration, because such as algorithms requires high

repetition of simple operations which is can be optimized at hardware level.

Simple sorting network is comprised of wires and comparators/swappers (C/S). A

comparator/swapper, shown in Figure 2.1 (a), is a block with two inputs, A and B, and

two outputs, the top output is result of function max(A,B) and the bottom output is result

of function min(A,B). For simplification, uses Knuth notation in Figure 2.1 (b). [4]

Figure 2.1 (a) A comparator/swapper block. (b) in Knuth notation.

The sorting network represents a pipeline operation, where an unsorted data propagates

through the wires and C/S from left to right to produce the sorted data vector on the

outputs. One of the most simplest examples of sorting network is Odd-Even Transposition

sorting network depicted in Figure 2.2. [4]

13

Figure 2.2 Odd-even transposition sorting network.

Odd-even transposition sorting network for 𝑛𝑛 input data consists of 𝑛𝑛 comparator stages.

The number of comparators for this sorting network can be calculated as:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐/𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 = 𝑛𝑛
𝑛𝑛 − 1

2
 (1)

Number of clock cycles required of sorting n inputs by this sorting network equals number

of inputs. All aforementioned factors taken into account, 8 clocks and 28 C/S are required

to sort 8 input data. This type of sorting network is less efficient than other types of sorting

networks, but is considered more reliable and simpler. [4]

2.2 An O(1) Time Complexity Two-Step Sorting Network

An O(1) Time Complexity Two-Step Sorting Network was introduced in [1], which is

based on the graph theory concept, and in contrary to conventional sorting networks it

consists of edges instead of C/S. Furthermore, its sorting time is independent from the

number of inputs, therefore for 𝑛𝑛 data inputs requires an 𝑂𝑂(1) clock cycles. Structure of

proposed sorting network consists of three main blocks as shown in Figure 2.3. It is

including Edge Computer, Rank Computer and Data Router.

14

Figure 2.3 Structure of the O(1) Time Complexity Two-Step Sorting Network.

The unsorted inputs are directly connected to the Edge Computer and the Data Router.

The Edge Computer block consists of comparators, by which all inputs are compared

against each other, that can be depicted as graph for four-input configuration in Figure

2.4.

Figure 2.4 Two-step sorting network elements comparison depicted as graph.

The total number of comparators for n-input configuration can be calculated as:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 = 𝑛𝑛
𝑛𝑛 − 1

2
 (2)

The Edge Matrix is formed in the output of the Edge Computer according to results of

comparisons. The Rank Computer block produces Rank Vector by calculating sum of the

elements of each row in the Edge Matrix. The Data Router block directs the unsorted

inputs to their respective sorted positions at the output, according to information from the

Rank Vector. The Edge Computer finishes processing in a single clock pulse, while the

15

next two other blocks also require another clock pulse for finish processing.

Consequently, this sorting network requires only two clock cycle and the processing time

does not depend on the amount of input data. [1]

The Rank Computer can be described mathematical expression of two matrices

multiplication (3), where 𝑅𝑅 denotes the Rank Vector, 𝐸𝐸 represents the Edge Matrix and 𝐼𝐼

is the Identity Matrix.

𝑅𝑅 = 𝐸𝐸 × 𝐼𝐼 (3)

Each element of matrix 𝐸𝐸, that is 𝐸𝐸(𝑖𝑖, 𝑗𝑗), represents the result of comparing the 𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐(𝑖𝑖)

and the 𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐(𝑗𝑗). In the case when the 𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐(𝑖𝑖) is greater than or equal to the 𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐(𝑗𝑗),

“1” is written into the matrix at 𝐸𝐸(𝑖𝑖, 𝑗𝑗), otherwise “0”. [1]

The 𝐸𝐸(𝑖𝑖, 𝑗𝑗) values extracts out of the elements comparison graph, where considering to

the next condition: when the outgoing edge value is “1” or the incoming one is “0”, the

𝐸𝐸(𝑖𝑖, 𝑗𝑗) will be “1”, otherwise it will be “0”. The diagonal of the 𝐸𝐸 matrix will be filled

with zeros, since there is no need to compare the inputs with itself. With respect to the

graph depicted in Figure 2.4, matrix E is extracted as follows:

𝐸𝐸 = �

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

� (4)

According to (3) and (4) the Rank Vector for this inputs can be calculated as follow:

𝑅𝑅 = 𝐸𝐸 × 𝐼𝐼 = �

0 1 0 1
0 0 0 0
1 1 0 1
0 1 0 0

� × �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� = �

2
0
3
1

� (5)

Each element of the rank vector represents the position index in sorted order for

correspondent input. [1]

16

2.3 Design environment and hardware

The project is implemented on UltraZed-EG Starter Kit in Xilinx Vivado Design Suite

environment.

The UltraZed-EG Starter Kit is based on Xilinx Zynq UltraScale+ XCZU3EG-

1SFVA625 MPSoC with four ARM Cortex A53 cores, two Cortex R5 cores, a Mali-400

GPU, and FPGA fabric with 154K system logic cells and 71K CLB LUTs. The system

memory of this system is 2GB DDR4 SDRAM. [5]

17

3 System design solution for Two-Step Sorting Network

The main idea is to design and implement scalable hardware design solution of an O(1)

Time Complexity Two-Step Sorting Network on Xilinx Zynq UltraScale+ XCZU3EG-

1SFVA625 MPSoC such way to be able easily reconfigure system for different sorting

configurations such as number of sorting data or data-unit width.

Figure 3.1 Final architecture of system with Two-Step Sorting Network IP Core.

Figure 3.1 presents the proposed architecture of system is based on Xilinx Zynq

UltraScale+ MPSoC with using Two-Step Sorting Network IP Core as hardware

accelerator. We assume that the unsorted data generated by standalone or Linux

application are transferred through AXI HP (High Perfomance) port toward Direct

Memory Access (DMA) channel, where AXI DMA IP core stream this data to the Two-

Step Sorting Network IP Сore through AXI4-Stream port. When Two-Step Sorting

Network IP Core has completed processing, it sends the sorted data back to the AXI

DMA, where the AXI DMA will transferred the sorted data back to the application.

Personal Computer (PC) communicates with PS side through UART interface and allows

us to control Petalinux or launch and debug Standalone applicaion.

18

The final block design diagram with only interface connections is shown in Figure 3.2.

The AXI DMA is described in detail in Section 3.1. The implementation of Two-Step

Sorting Network IP Core is described in Chapter 4.

Figure 3.2 The final block design diagram in Vivado.

3.1 AXI Direct Memory Access IP core

The AXI Direct Memory Access IP core provides high-performance burst transfers

between Processing System DRAM and the Programmable Logic.

Figure 3.3 Block diagram of AXI DMA connections.

The AXI DMA has a AXI-Lite control interface, and a read and write channel which

provides access to the memory location, and a AXI4-Stream port for connecting to an IP

Core. The read channel reads from PS DRAM, and writes to a stream. The write channel

performs the opposite operation: reads from a stream and writes to PS DRAM. In case of

Xilinx Zynq UltraScale+ MPSoC the AXI DMA performs all commutation with PS side

through AXI HP port as depicted in Figure 3.3. [6] [7] [8]

19

The Xilinx Vivado Design Suite environment allows us to configure the AXI DMA IP

Core. The customization page is shown in Appendix 1 – AXI Direct Memory Access IP

Core customization page. The Stream Data Width parameter will be changed during

experiments. [6]

3.2 AXI-Stream protocol

Advanced eXstensible Interface (AXI) is the standard for communication between Xilinx

IP and it form the interface between the PS Processing System and Programmable Logic

in the Xilinx Zynq UltraScale+ MPSoC. For transmitting an arrays of data between PS

and Two-Step Sorting Network selected AXI4-Stream protocol. This type of AXI

protocol interface enables high-speed transmission of big volumes of data. AXI4-Stream

protocol can burst an unlimited amount of data and designed to transport arbitrary

unidirectional data streams. [9] [10]

Figure 3.4 AXI4-Stream interface interconnection between master and slave IP cores.

Figure 3.4 depicts the AXI4-Stream interface interconnection between master and slave

IP cores, which consists of four signals. The TDATA signal is a payload transferred per

clock cycle, which the width can be defined in the range from 8 to 1024 bits. The TVALID

signal indicates that the master is driving a valid transfer. The TREADY signal indicates

that the slave can accept a transfer in the current cycle. A transfer takes place when both

TVALID and TREADY are asserted. The TLAST signal indicates the boundary of a

packet. [11]

20

Figure 3.5 Example of AXI4-Stream protocol transmitting process.

Figure 3.5 depicts the example of AXI4-Stream protocol transmitting process, where

master performs sending four data parts by one packet. Handshake is executed as shown

in Figure 3.4 at sending "p1" payload: the master sets high TVALID signal and on the

next clock cycle the slave sets high TREADY signal as well. At this moment “p1” payload

is considering as read. After receiving “p2” payload, the slave cannot receive one more

payload and sets low TREADY. When the slave is ready to resume reception, it sets high

TREADY. At “p4” payload, the master sets high TLAST to indicate the boundary of the

packet and to finish the packet transmitting process. [12]

21

4 Two-Step Sorting Network IP Core implementation

The implementation of the proposed sorting network IP Core consists of five main entities

as shown in Figure 4.1. This IP Core is implemented to be compatible with AXI4-Stream

protocol and to be configurable at design. The AXI4-Stream receiver enables serial

receiving an array of unsorted data from AXI DMA through Slave AXI4-Stream Port and

collect them into the data input FIFO buffer. The AXI4-Stream sender enables serial

sending an array of sorted data from Data output buffer to AXI DMA through Master

AXI4-Stream Port.

Assuming that sorting is done in two clock cycles, the sending procedure has an internal

delay before sending. After receiving a signal about the arrival of new data, the AXI4-

Stream receiver send the control signal to the AXI4-Stream sender, it takes one clock

cycle, then AXI4-Stream waits one more clock cycle and initialize sending an array of

sorted data. The receiving of new data packet is stopped until the current packet finish

was processed and sent back to AXI DMA. The Two-Step Sorting Network reads and

writes whole array of data at ones.

The implementation of each entity is described in detail in the following sections.

Figure 4.1 Two-Step Sorting Network IP core structure.

22

4.1 AXI4-Stream receiver implementation

The implementation of AXI4-Stream receiver was executed to be compliant with AXI4-

Stream protocol as slave. The receiving procedure controlled by internal finite state

machine (FSM) as shown in Figure 4.2. [13]

Figure 4.2 FSM of AXI4-Stream receiver.

The FSM of AXI4-Stream receiver consists of three states: “IDLE”, “WRITE_FIFO” and

“PROCESSING”. At the “IDLE” state the receiver is waiting for the start of a new packet

transmission from the AXI DMA, which corresponds to a rising edge TVALID signal,

and low DATA_TRANSMITTED signal on the AXI4-Stream sender, which is described

in detail in the section 4.2. Moreover, during this state the receiver sends high reset signal

to the data input FIFO buffer. When conditions of receiving a new packet are met, the

receiver sets high TREADY signal and moves to “WRITE_FIFO” state. At

“WRITE_FIFO” state, the receiver is enabling writing in the data input FIFO buffer by

every clock cycle from TDATA as shown in Figure 4.3.

23

Figure 4.3 Writing TDATA payload to FIFO data input buffer.

After getting high signal TLAST or overflow of the data input FIFO buffer, it interrupts

receiving by setting low TREADY signal, then sets high NEW_DATA_READY signal

and moves to “PROCESSING” state. At this state, AXI4-Stream receiver is waiting high

DATA_TRANSMITTED signal from the AXI4-Stream sender to moves back to “IDLE”

state, sets low NEW_DATA_READY signal and is ready to receive a new packet.

4.2 AXI4-Stream sender implementation

The implementation of AXI4-Stream receiver was executed to be compliant with AXI4-

Stream protocol as master. The receiving procedure controlled by FSM shown in Figure

4.4.

Figure 4.4 FSM of AXI4-Stream sender.

24

In comparison with the FSM of the AXI4-Stream receiver, the FSM of the AXI4-Stream

sender consists of four states: “IDLE”, “READY_TO_SEND”, “SEND_STREAM” and

“DONE”. At the “IDLE” state the sender is waiting the finish of a new packet reception

by the AXI4-Stream receiver, which corresponds to a rising edge “READY_TO_SEND”

signal. The “READY_TO_SEND” state represents a one clock cycle delay. The transition

from “IDLE” to “READY_TO_SEND” state and the unconditional transition from

“READY_TO_SEND” to “SEND_STREAM” state takes a total of two clock cycles,

which are necessary for Two-Step Sorting Network to finish its job. At the

“SEND_STREAM” state the sender is performing a transmission to AXI DMA through

AXI4-Stream protocol according to the protocol specification. The sender uses the pointer

to read and send data from output data buffer, which is incremented at every transmission

clock cycle as shown in Figure 4.5.

Figure 4.5 Reading data from data output buffer.

When the read pointer reaches the size of the data output buffer, the sender is finalizing

transmitting the packet by setting high TLAST signal and moving to “DONE” state. At

this state AXI4-Stream sender is waiting low NEW_DATA_READY signal from the

AXI4-Stream receiver to moves back to “IDLE” state, sets low

M_DATA_TRANSMITTED signal and ready for sending a new packet.

25

4.3 Two-Step Sorting Network implementation

The implementation of the proposed sorting network is based on idea of an O(1) Time

Complexity Two-Step Sorting Network from [1] and consists of three main entities as

shown in Figure 4.6.

Figure 4.6 Structure of implemented Two-Step Sorting Network.

The Edge Computer simultaneously compares elements from the unsorted data array with

each other. The result of comparison is the Binary Vector, which width equals of total

number of comparisons between the elements of data array. Total number of comparisons

for n-elements can be calculated as follows:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 = 𝑛𝑛
𝑛𝑛 − 1

2
 (6)

The Binary Vector is optimized form of the Edge Matrix. The Edge Matrix optimization

process depicted in Figure 4.7.

Figure 4.7 Optimization of the Edge Matrix.

26

In optimization purposes, comparison between array elements will be executed only once

and in one direction, the comparison result in opposite direction is the result of inversion

of corresponding bit. In accordance with the foregoing, an upper triangular matrix was

obtained. On the next step, the upper triangular matrix is transformed into a Binary Vector

by reading each column from left to right and from up to down, with the exception of the

matrix diagonal.

Implementation the Edge Computer on hardware level represents a set of comparators as

shown in Figure 4.8.

Figure 4.8 Hardware representation of the Edge Computer for 4-input configuration.

27

The Rank Computer simultaneously calculates and counts number of ones for each data

element in the Binary Vector. Reading of the Binary Vector by the Rank Computer is

depicted in Figure 4.9 as an upper triangular matrix, in order to better understanding.

Figure 4.9 Reading of the Binary Vector representation in an upper triangular matrix form.

In upper triangular matrix representation, reading starts from the second column and

going down the matrix till matrix diagonal. In upper triangular matrix representation,

reading starts from the left column and going down the matrix till matrix diagonal, where

the reading is going from to right with inversion of bits as depicted in Figure 4.9. The

reading result of the comparison results for the second element from Figure 4.9 example,

can be expressed as following:

[𝑖𝑖0𝚤𝚤2�𝚤𝚤4�] = [10�0�] = [111] (7)

The final rank result for the second element from the unsorted data array equals 3. After

computation of all elements ranks, the Rank Vector is propagated to the Data Router.

Lastly, the Data Router is routing inputs according to a rank value of corresponding

element from the Rank Vector and outputs the data array in descending order. The

implemented Two-Step Sorting Network is shown in Figure 4.10. [14]

28

Figure 4.10 Sorting Network internal entities in Vivado.

This implementation takes two clock cycles to sort incoming data array. At first clock

cycle Edge Computer and Rank Computer calculates Binary Vector and Rank Vector. At

second clock cycle, the Data Router executes routing of unsorted data.

For testing purposes, the width of data and size of array is fully configurable for this

implementation. Simulation of implemented Two-Step Sorting Network with 8-bit 4-

input configuration is shown in Figure 4.11. [15]

Figure 4.11 Simulation of implemented Two-Step Sorting Network.

29

5 Experiment results and analysis

This chapter describes experimental results of Two-Step Sorting Network IP Core

implemented in Chapter 4 in scope of system designed in Chapter 3. Evaluation of the

proposed implementation has been done through a set of experiments with different

system configuration.

5.1 Post-implementation results and resources utilization

Evaluation of the post-implementation results and resources utilization has been done

through a set of experiments with different data width and data array size for sorting.

During this experiment we counted only the number of look-up tables (LUTs) utilized by

Two-Step Sorting Network IP Core, which are the primary PL/FPGA resources.

In the first set of experiments was selected four data sets with widths of 8, 16, 32 and 64

bits and constant size of array (8 items). The results are shown in Table 1 and Figure 5.1.

Figure 5.1 The result of utilization LUTs with different data widths.

30

Table 1 The result of utilization LUTs with different data widths.

Width of data (bit) Number of used LUTs

8 441

16 762

32 1399

64 2984

In the second set of experiments was selected four data sets sizes of 8, 16, 32 and 64

items, with constant width of data (32 bits). The results are shown in Table 2 and Figure

5.2.

Figure 5.2 The result of utilization LUTs with different sizes of data set.

Table 2 The result of utilization LUTs with different sizes of data set.

Number of 32-bit data items Number of used LUTs

8 1399

16 6452

32 37449

64 138030

31

The following conclusions can be drawn from the first and the seconds experiments:

• In proposed implementation of Two-Step Sorting Network IP Core utilizes less

number of LUTs for sorting 8 items 8-bit data set than the implementation in [1],

which utilizes 713 LUTs for the same configuration.

• The changing of the sorting data width leads to expected moderate exponential

growth of utilized LUTs.

• The changing size of sorting dataset leads to very intensive growing of utilized

LUTs. At 64 32-bit data set, the proposed implementation of sorting network

utilized more resources than available on Xilinx Zynq UltraScale+ XCZU3EG-

1SFVA625 MPSoC, which has only 71K LUTs.

• This implementation is not suitable for big data volumes, according to the

intensive growth of utilized resources with growth of data set size.

5.2 Two-Step Sorting Network monitoring with Integrated Logic

Analyzer

For analysing of correctness Two-Step Sorting Network implementation work at signal

level, additionally was added debug signals to the IP Core, which were connected to the

Integrated Logic Analyzer (ILA) IP Core, provided by Xilinx, as shown in Figure 5.3.

Figure 5.3 Integrated Logic Analyzer connections.

32

For testing purposes the standalone application was written in C programming language.

Its sends single set of 8 8-bit test data into Two-Step Sorting Network IP Core through

AXI DMA. The result of monitoring receiving and sorting by ILA is shown in Figure 5.4.

Figure 5.4 Sorting network IP core internal signal monitoring.

The Two-Step Sorting Network IP Core works as expected and performs sorting in two

clock cycle.

5.3 Two-Step Sorting Network execution result at Petalinux

For analysing of correctness two directional communication between Processing System

running on Petalinux OS and Two-Step Sorting Network IP Core through AXI DMA,

was performed the sorting on Two-Step Sorting Network IP Core and result validation by

additional developed application. The configuration and building of the Petalinux boot

image were described in Appendix 2 – Configuration and building of Petalinux boot

image. [16] [17]

The one of the result of execution sending and receiving set of 8 32-bit test data to Two-

Step Sorting Network IP Core is shown in Figure 5.5. Result of validation the unsorted

set of data and sorted set of data after transfer execution is shown in Figure 5.6.

33

Figure 5.5 Transferring set of 8 test data by “axidmatransfer” application.

Figure 5.6 Validation of the result of sorting on hardware.

Were performed 10 transferring and calculated the average elapsed time per transfer to

and from Two-Step Sorting Network IP Core, which equals 74.1 microseconds.

Assuming that the PL runs at 100 MHz and sorting takes two clock cycles, the time

consumes on sorting equals 20 nanoseconds or 0.02 microseconds. Moreover, transfer of

the packet with 8 data items through AXI4-Stream in one direction, at the same frequency,

will take 90 nanoseconds (8 clock cycles for data and plus one clock cycle for handshake).

Two transmitting and sorting will take 200 nanoseconds or 0.2 microseconds. As result,

73.9 microseconds were consumed by driver and operation system.

In accordance with the foregoing calculations, using Two-Step Sorting Network IP Core

with small volume of data is impractical due to the large time consumption on transfer.

34

6 Conclusion and Future work

This thesis explored hardware implementation of an O(1) Time Complexity Two-Step

Sorting Network on FPGA. This chapter summarizes the main thesis contributions and

outlines the directions for the future work.

The hardware accelerator proposed in this thesis is in very high demand in many fields

and especially in those where time and resource consumption is critical. Fast sorting is

vital task in many real-time systems.

The main contribution of the presented work is wider exploring an O(1) Time Complexity

Two-Step Sorting Network proposed in [1]. The results of experiments demonstrate the

big growth of resource utilization by incrimination of data set size for proposed Two-Step

Sorting Network implementation. Furthermore, using this implementation with Petalinux

is impractical due to the large time consumption on transfer. However, the implemented

sorting network works properly and has better optimization of resource consumption for

set of 8 8-bit data regarding to the results in [1] for the same configuration.

The following future work are possible to do:

• According to the AXI4-Stream protocol, the data transferred in serial. The

proposed solution can be more optimized for the work with AXI4-Stream

protocol, to dispose of two clock cycle delay for processing.

• Applying others sorting network for current implementation AXI4-Stream based

IP Core is possible. Proposed IP Core is based on module design and each module

easily can be replaced.

35

References

[1] P. TaghiniaJelodari, M. ParsaKordasiabi, S. Sheikhaei and B. Forouzandeh, An
O(1) Time Complexity Two-Step Sorting Network with Hardware, IEEE
Transactions on Very Large Scale Integration, 2019.

[2] A. Obuhov, Project source code git repository.
[3] Zynq UltraScale+ MPSoC Data Sheet, Xilinx, 2019.
[4] D. E. Knuth, The Art of Computer Programming vol. III, Addison-Wesley,

2011.
[5] D. Saveski, UltraZed-EG SOM Hardware User Guide, AVNET, 2017.
[6] AXI DMA v7.1 LogiCORE IP Product Guide, Xilinx, 2019.
[7] "PS/PL Interfaces," Xilinx, 2018. [Online]. Available:

https://pynq.readthedocs.io/en/v2.5/overlay_design_methodology/pspl_interfac
e.html. [Accessed March 2020].

[8] Zynq UltraScale+ MPSoC: Embedded Design Tutorial, Xilinx, 2019.
[9] J. Lant, C. Concatto, A. Attwood, J. A. Pascual, M. Ashworth, J. Navaridas, M.

Lujan and J. Goodacre, Enabling shared memory communication in networks of
MPSoCs, Wiley, 2017.

[10] AXI Reference Guide, 2011: Xilinx.
[11] AXI4-Stream Infrastructure IP Suite v3.0, Xilinx, 2018.
[12] L. Vosandi, "Arbitrary data streams," [Online]. Available: https://lauri.xn--

vsandi-pxa.com/hdl/zynq/axi-stream.html. [Accessed February 2020].
[13] S. Baranov, Logic and System Design of Digital Systems, TUT Press, 2008.
[14] Vivado Design Suite: Creating and Packaging Custom IP, Xilinx, 2018.
[15] V. A. Pedroni, Circuit design and simulation with VHDL, MIT press, 2004.
[16] PetaLinux Tools Documentation, Xilinx, 2019.
[17] PetaLinux SDK User Guide, Xilinx, 2013.
[18] B. Perez, "Linux driver for Xilinx's AXI DMA," GitHub, [Online]. Available:

https://github.com/bperez77/xilinx_axidma. [Accessed 2020].
[19] V. Sklyarov, I. Skliarova, J. Silva, A. Rjabov, A. Sudnitson and C. Cardoso,

Hardware/Software Co-design for Programmable Systems-on-Chip, TUT
PRESS, 2014.

36

Appendix 1 – AXI Direct Memory Access IP Core

customization page

37

Appendix 2 – Configuration and building of Petalinux boot

image

All operations in this chapter are done in PC with Ubuntu 20.04 LTS and installed

PetaLinux Tool 2018.3.

At the first step, was created the PetaLinux project from BSP available on AVNET home

page, using next command:

On the next step, the created project was configured according the generated hardware

description by Xilinx SDK, using next command. The settings were left by default.

After configuration generation, was initialized two additional Petalinux application and

one additional Linux kernel module by following commands:

In the Linux kernel module and the axidmatransfer application directory were added

sources from xilinx_axidma git repository. [19]

In the validator application was added separately developed source code, which is

available in project git repository. [2]

The last step before building the kernel, was added custom configuration for the AXI

DMA device tree to “system-user.dtsi” file in “~/projects/petalinux/linux/project-

spec/meta-user/recipes-bsp/device-tree/files” directory as follow:

38

At this moment, all preparation for building the PetaLinux boot image were done.

Building the PetaLinux boot image is done with “petalinux-build” command.

After, to finalizing building of the PetaLinux boot image, was executed last command:

Where “zynqmp_fsbl.elf” and “pmufw.elf” were generated in Xilinx SDK.

Final Linux boot image consists of three files: BOOT.BIN, image.ub and system.dtb.

	Author’s declaration of originality
	Abstract
	Annotatsioon Mitme-tuumalised arhitektuurid riistvarakiirendajaga paralleelseks andmetöötlemiseks
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Thesis Outline

	2 Background
	2.1 Sorting networks
	2.2 An O(1) Time Complexity Two-Step Sorting Network
	2.3 Design environment and hardware

	3 System design solution for Two-Step Sorting Network
	3.1 AXI Direct Memory Access IP core
	3.2 AXI-Stream protocol

	4 Two-Step Sorting Network IP Core implementation
	4.1 AXI4-Stream receiver implementation
	4.2 AXI4-Stream sender implementation
	4.3 Two-Step Sorting Network implementation

	5 Experiment results and analysis
	5.1 Post-implementation results and resources utilization
	5.2 Two-Step Sorting Network monitoring with Integrated Logic Analyzer
	5.3 Two-Step Sorting Network execution result at Petalinux

	6 Conclusion and Future work
	References
	Appendix 1 – AXI Direct Memory Access IP Core customization page
	Appendix 2 – Configuration and building of Petalinux boot image

