
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology
Thomas Johann Seebeck Department of Electronics

Electronics and Bionics

Tallinn 2014

Sven Kautlenbach

MSP430 Based Wireless Sensor Network
Master Thesis (30 ECTS)

Supervisor: Olev Märtens

2

Abstract

Structural health monitoring has been the extensive research topic for years.
Solutions are mostly applied to the civil engineering constructions, where the
monitoring could avoid accidents, caused by the malfunction and cracking of the
structures. With the rapidly developing semiconductor technologies the
researches have started to design and evaluate wireless monitoring nodes. The
advantages of wireless sensing nodes over wired ones are disparate. Using
wireless data communication enables more mobility, less dependability on
environment, faster installation times, less costs, more expandability and in
general more dynamic system. The small size associated with the wireless nodes
mean that they could also be integrated into the materials.

The problems with the energy consumption, wireless link data throughput and
latency are the main issues halting the widespread adaptation of these systems.
Alleviating the cons of wireless systems are in focus of the research topics.
Therefore testing new semiconductor devices and designs is needed. This work
gives condensed overview of different wireless sensor designs covering different
approaches to the problems. The state of the art of transceiver devices of
different manufacturers and their portfolio is given.

Finally the Texas Instruments MSP430 platform is taken into the focus of this
work. The CC430 family of transceiver microcontrollers is evaluated. The Texas
Instruments SimpliciTI wireless network library, which is part of Chronos
development kit, is modified and adapted for the requirements set in the work.
The work grades the performance of the system, measures the basic properties
and proposes solutions to overcome the shortcomings and the problems of the
system.

The work was conducted as a part of the Archimedes project AR 12139 “Smart
Composites – Design and Manufacturing”.

3

4

Table of contents

Abstract .. 2

Table of contents... 4

Table of figures .. 7

List of tables .. 8

Abbreviations ... 9

1 Introduction .. 12

1.1 Motivation ..12

1.2 Objectives ...13

1.3 Outline ...14

2 Overview of the technology ... 15

2.1 Prototype SHM systems...15

2.1.1 RQEM .. 15

2.1.2 WiMMS ... 17

2.1.3 RIMS .. 20

2.1.4 Reconfigurable 6LoWPAN based sensor network ... 21

2.1.5 Mobile agent SHM network ... 23

2.1.6 Summary and comparisons... 23

2.2 Low power transceiver devices ..27

2.2.1 Microchip .. 28

2.2.2 Nordic Semiconductor... 29

2.2.3 STMicroelectronics ... 29

2.2.4 NXP Semiconductors .. 30

2.2.5 Freescale ... 30

2.2.6 Silicon Labs .. 31

2.2.7 Atmel .. 32

2.2.8 Texas Instruments .. 32

5

2.2.9 Table of summary.. 34

3 Sensor network development on MSP430 ... 37

3.1 Development ...37

3.1.1 Development environments ... 37

3.1.2 Wireless development kits .. 42

3.1.3 Texas Instruments Chronos software ... 45

3.1.4 CC1101 Chipcon radio transceiver .. 48

3.1.5 SimpliciTI library ... 50

3.1.6 Tools ... 52

3.1.7 Software improvements ... 54

3.1.8 Radio network .. 59

3.2 Evaluation of wireless nodes ..63

3.2.1 Data rate tests ... 63

3.2.2 Line of sight tests ... 65

3.2.3 Energy consumption tests ... 65

3.2.4 Demo application .. 67

3.2.5 Results .. 68

4 Summary and future work ... 70

5 Acknowledgments .. 71

6 References ... 72

7 MSP430 platformil baseeruv sensorvõrk... 77

8 Appendices .. 78

Appendix A Radio link data rate test bed ...78

Appendix B SmartRF Packet Sniffer records of the SimpliciTI traffic79

Appendix C SmartRF Packet Sniffer „.psd“ file parser logic80

Appendix D Snapshot of the SmartRF Studio tool ..82

Appendix E Hyperlink to all the contents of the work ..83

6

Appendix F Git snapshots of the access point and the end device software
development history ..83

Appendix G Access point command line tool’s packet parsing logic84

7

Table of figures

Figure 1: RQEM prototype along with the test circuitry on a common PCB 17

Figure 2: First WiMMS prototype functional schematic .. 18

Figure 3: Second WiMMS prototype functional schematic ... 19

Figure 4: Third WiMMS prototype functional schematic .. 19

Figure 5: RIMS device in the box ... 21

Figure 6: A reconfigurable 6LoWPAN wireless sensor node 22

Figure 7: Snapshot of the IAR EW IDE .. 39

Figure 8: Snapshot of the CCS IDE .. 41

Figure 9: Olimex MSP430-CCRF development board ... 43

Figure 10: eZ430-Chronos kit devices – watch, programmer, access point 44

Figure 11: Chronos watch software flow ... 46

Figure 12: Data movement between the devices of Chronos development kit 47

Figure 13: The packet format of the CC1101 radio ... 49

Figure 14: CC1111 USB sniffer device .. 53

Figure 15: Complete set of devices used throughout development – access point,
packet sniffer (upper row), Olimex boards with Chronos watch module in
between (bottom row).. 60

Figure 16: CC430 radio register settings ... 62

Figure 17: End device packet structure for the tests .. 64

Figure 18: Access point packet structure for the tests ... 64

Figure 19: Measurement of the transmission current consumption 66

Figure 20: Sensor data object structure ... 68

Figure 21: Packet structure of the end device in the demo application 68

8

List of tables

Table 1: Comparison of different SHM systems .. 26

Table 2: Comparison of different 868 MHz transceivers... 35

Table 3: Comparison of IAR and CCS development environments 42

Table 4: Data rate test without acknowledgment .. 64

Table 5: Data rate test with the acknowledgment ... 65

Table 6: Current consumption ... 67

9

Abbreviations

A/D – Analog-Digital

ACK – Acknowledgment

ADC – Analog-to-Digital Converter

API – Application Programming Interface

ASK – Amplitude Shift Keying

CCA – Clear Channel Assessment

COM – Communication port

CRC – Cyclic Redundancy Check

CSV – Comma-Separated Values

DAC – Digital-to-Analog Converter

DMA – Direct Memory Access

DRAM – Dynamic Random-Access Memory

DSP – Digital Signal Processor

DSSS – Direct-Sequence Spread Spectrum

FCC – Federal Communications Commission

FCS – Frame Check Sequence

FFT – Fast Fourier Transform

FHSS – Frequency-Hopping Spread Spectrum

FIFO – First In, First Out

FSK – Frequency-Shift Keying

GCC – GNU Compiler Collection

GUI – Graphical User Interface

HTTP – Hypertext Transfer Protocol

I/O – Input/Output

I²C – Inter-Integrated Circuit

10

IC – Integrated Circuit

IDE – Integrated Development Environment

IPv6 – Internet Protocol version 6

ISM – Industrial, Scientific, Medical

JTAG – Joint Test Action Group

LCD – Liquid-Crystal Display

LIN – Local Interconnect Network

LoS – Line-of-Sight

LQI – Link Quality Indicator

MIPS – Million Instructions per Second

MOTE – sensor mote/node

MSK – Minimum-Shift Keying

NFC – Near Field Communication

OOK – On-Off Keying

OS – Operating System

PCB – Printed Circuit Board

PWM – Pulse Width Modulation

RAM – Random Access Memory

RISC – Reduced Instruction Set Computing

ROM – Read-Only Memory

RSSI – Received Signal Strength Indicator

RTC – Real-time clock

SCI – Serial Communication Interface

SHM – Structural Health Monitoring

SoC – System on Chip

SPI – Serial Peripheral Interface

SRAM – Static Random-Access Memory

11

TCP/IP – Transmission Control Protocol/Internet Protocol

UART – Universal Asynchronous Receiver/Transmitter

UDP – User Datagram Protocol

ULP – Ultra Low Power

USB – Universal Serial Bus

WLAN – Wireless Local Area Network

12

1 Introduction

An Archimedes funded project AR 12139 “Smart Composites – Design and
Manufacturing” at the Tallinn University of Technology was led by then post-
graduate Henrik Herranen for his doctoral studies in the mechanical engineering
field. The goal of the group was to develop and research algorithms and devices
for monitoring the health of the composite materials. This includes everything
from determining material properties (like natural frequencies) to researching
different sensing elements and exploring technologies to electronics packaging
materials. One of the sub-topics of the project is exploring different possibilities
to do the structural health monitoring using the current state of the art
electronic devices. The functionality in the very scope of this is the wireless data
transmission using low power digital transceivers. Among many researched
platforms is the Texas Instruments MSP430. Input for this work is the
requirements of the sensor node stated by the work of the structural mechanics
in the project. The output of the work is the assessment of the MSP430 platform
in the context of the requirements.

1.1 Motivation

The benefits of the SHM systems are remarkable. They provide less costs with
enhanced performance and structural overview of the objects. Developing such
systems is beneficial to the research of the smart materials too, since the size of
the devices nowadays will approach the limit where they could be embedded
into the structure of the material. Continuing miniaturization is needed to
overcome the problems which hamper the successful adoption of wireless SHM
systems. Minimizing the size reduces the power consumption, decreases the
footprint and therefore enables more functionality on the area. Increasing the
functionality, which most probably could be signal processing and therefore
computing power would enable one to run algorithms locally, which means less
wireless data transmission.

With wireless sensing technology still in its infancy, much work remains for
bringing this promising technology to widespread use. In particular, more
research studies are needed on challenging issues such as power consumption,
time synchronization, multi-scale network topologies, decentralized data
processing within large-scale networks, and formulation of power-efficient data
driven usage strategies. [1] With the latest semiconductor technology the
embedment of the radio circuitry into the same housing as the MCU is possible.
The low power digital radios have become good enough so that it satisfies the
requirements for low overhead data communication (up to 50 kbps) that is
needed for home automation and security systems. Higher frequencies enable
more throughput, while decreasing energy efficiency and range. At the same time
lower frequencies will increase the range and therefore making radio link more
robust and immune to scattering and attenuation. But with lower frequencies the
size of the antenna increases too, which means increased footprint, which is not

13

wanted. So the fine balance between data rate, range and power consumption
must be determined with the current state of art devices.

The development process of this work focuses on wireless data transmission
using relatively new technology of sub 1GHz transceivers. The Texas
Instruments ultra-low power MSP430 MCU family with integrated transceiver
CC430 series is taken into the focus. The CC430 RISC microcontrollers do not
have the native support to execute instructions and arithmetics specific to signal
processing (floating point calculations). Computing machines able to do that (like
DSPs) are too power hungry and usually lack wireless communication which
render them unusable. The mash up designs where different requirements are
fulfilled with different functional parts (computing MCU, separate ADC,
transceiver module) might have great performance, but the increased size and
power consumption render them unusable. Thus this platform is one of the
candidates for SHM applications, providing building links – wireless data
transmission, low power and on board peripherals.

The process of this work lasted more than a year. During this time author
learned the MSP430 platform thoroughly and did detailed research on CC430
radio. The output software was not the only design the author worked on during
the research, but because of the strategic decisions, based on time and volume
constraints, the Chronos based approach was chosen and presented in this work.

1.2 Objectives

The work aims to put on test the following goals using MSP430 radio devices:
 Data rate of 100 kbps or more per one node
 Live transmission of sensor measurements
 Network of multiple sensor devices
 Configurability from the PC
 Months of operating time on the dedicated power source
 Small size

There are many problems needed to be resolved to achieve these goals. First
must be determined that if the technology have the capacity to support these
requirements. Main concern is the wireless radio interface and its capabilities. If
one needs to increase the data rate, it must take into account decreased
sensitivity and therefore increased error rate. Increased transmission means
increased duty cycle, which will result in increased energy consumption and
higher noise level in the spectrum of the channel. Additional will fill the
spectrum with the noise even more, the shared timeframes for transmission
must be taken account. The sensor measurements must be sampled and
processed as asynchronously as possible to use the resources effectively and use
computing power on network related tasks. Also some buffering is needed to be
done, since immediate transmission cannot be guaranteed. Size is most directly
related to the frequency and sensor interfaces. The lower the frequency the
bigger the size of the antenna.

14

In the end major part of the problems are associated with the wireless data
transmission. Alleviating the problems and enabling more efficient operation of
the radio is the key point to achieve the objectives.

1.3 Outline

Chapter 2 (Overview of the technology) first describes different wireless SHM
systems. The studies covered are chosen so that different approaches to the
problems are included, giving a spectrum of possible solutions. Then analyzes
the transceiver products by different semiconductor manufacturers. The state of
the art review covers the IC devices and their properties, the ecosystem,
documentation and the overall ease of development of the products of certain
platforms.

Chapter 3 (Development of MSP430 sensor network) contains the
information of the development of the prototype of this work. Gives the
description of different tools, hardware and software used to develop the
wireless sensor node. Thorough details of the process of the development of
CC430 transceiver modules is included. Then the work is summed up by
evaluating the properties of the system. Several tests on the proposed sensor
network setup is performed. Evaluated properties include energy consumption,
range, data rate and performance.

Chapter 4 (Conclusions and future work) gives a final assessment of the
MSP430 platform. Proposes the enhancements of the system and lists the
architectural pitfalls that should be completely changed in order to enhance the
performance.

15

2 Overview of the technology

List of state of the art of structural health monitoring applications and
transceiver devices give a starting point of the technological capabilities.
Different properties impact the functionality and usability of the designs. The
influence of size, power consumption and wireless data transmission are taken
into focus. The chapters conclude the review with the detailed properties of the
chip and prototype systems’ designs.

2.1 Prototype SHM systems

Good example of progress of SHM systems are developed prototypes during
academic researches. Designs have considered the latest state of the art devices
of that time. Methods and network logic retain the high level of experimentation
and innovation. This results in various systems having totally different setup and
working principles. The elaborated works are covering the whole spectrum of
problems of SHM systems. Applications need to take into account multiple
aspects: size, environment conditions, mobility, power consumption, sensor
interfaces, sensor placement on the object, etc. Covering such a wide variety of
requirements is nearly impossible even with the present technology. Although
continuing progress in the chip technologies implicitly support sensor network
solutions to be developed using low cost and low power microcontrollers.

This review is not an exhaustive list of implementations, but more a quick
overview of different solutions during the timeframe of approximately 10 years.
The oldest work analyzed is from around 1995 and the latest is from 2008. The
focus is on the data transmission as this is the object of research of this work. So
finally one should have a firm overview of the evolution of wireless sensor
solutions. [1, 2]

2.1.1 RQEM

Remotely-Queried Embedded Microsensors Program is funded by the US Office
of Naval Research. Its mission is to develop sensornodes, which can be
embedded into the vessels and planes firsthand, so that they could be used
monitoring cracks and deformations.

RQEM mote is a tiny sensornode (under 1 inch2), which has strain sensors,
transponder and radio antenna coil for powering the device and
transmitting/receiving data. They can be used to monitor solid structures by
placing the reader close to nodes. Reader transmitted energy powers up the
node and then transmits back the data from sensors along with the node ID.
Basically it makes the node act like a passive RFID tag, with the extra of sensor
measuring circuitry. During the time when reader reads the data from the node,
it is powered up and gets all its energy from that, thus it is active only when read.
Transponder uses half of the frequency of reader, which makes the transmitting
frequency 64/128 kHz respectively.

16

For measuring strain special rosette of micromachined curved-beam capacitive
strain sensors are used. So-called microsensor also incorporates a temperature
sensor. They were developed to replace fiber optic embedded sensors. The
microsensors must be extremely low power and small size. This is important
because the sensor device is only powered when the reader is close and it must
be able to measure sensors and send back the data with the power it obtains
from the emitted energy of the reader. Also keeping sensors extremely small can
help to reduce power consumption. Besides the power consumption the size is
important to make it fit into the structure without causing it to crack or change
its properties (total size area of under 1 square inch and thickness of maximum
of 1 composite layer or 0.005"). Developing a sensor satisfying these
requirements was the main goal of the project. Combined with a small
electronics (or small list of requirements for electronics), these properties make
RQEM suitable to be embedded into the composite structures for the lifetime of
the structure. [3]

The size and robustness definitely make this design a considerable approach.
With the widespread adaptation of NFC standard lately, this design could be
modernized and successfully used. However it would have only small range of
applications where it could be used successfully (most likely static objects). But
the price, size and the energy consumption make this one of the standout
designs.

17

Figure 1: RQEM prototype along with the test circuitry on a common PCB [3]

2.1.2 WiMMS

Wireless Modular Monitoring System (WiMMS) is a great example how the early
developments of wireless SHM systems were done. Through the multiple
iterations of research the initial platform, which was developed by the 1997,
evolved step by step into a sophisticated and feature rich low power SHM system
by the 2004. [4, 5] The prototype evolution phase covers main problems take
into the focus of this work – data rate, power consumption, synchronization.

2.1.2.1 Initial prototype – 1997

First iteration was done by E. G. Straserand and A. S. Kiremidjian at Stanford
University. Their main goal was to have a wireless sensor unit, which could
alleviate or totally eliminate the problems of the conventional cabled SHM
systems. Problems as large installation time, cable breaking and corrosion, large
distances between instrumentations points and therefore difficult routing could
all be alleviated with a wireless system. [4]

Best components of that time (1995) were carefully chosen to fulfil the
requirements. The core of the system is a Motorola 68HC11 MCU, which enables
developing the software in higher level language C (good for abstraction of the
modules, especially communicating part – reuse of the code), exposes
peripherals (SPI, SCI) to connect with other components like RF modems and has

18

multiple power saving modes. At the same time it packs enough memory (64K
address space) to buffer the ADC measurements and parse the network packets.
Communication part of the module was chosen to meet the requirements of the
low power and noise immunity. The Proxim Proxlink MSU2 module is used for
the data communication. It operates in the 902-928 MHz band allocated for ISM
systems. It utilizes the DSSS modulation which enables high immunity to noise
and interference and enables radio waves to penetrate reasonably well through
the civil engineering materials. The maximum data rate of the module is 19.2
Kbps with the line of sight range up to 300 meters. It consumes about 700 mW of
energy while transmitting and receiving, but consumes only 5 mW in standby.
Another, complementing, RF module was also added to the unit for the
synchronization purposes. The Radiometrix’s TXM-418-F-5 transmitter and its
compliment, the SILRX-418-F receiver, were added to the design of the base
station and sensor unit respectively. They operate at 418 MHz and support a
data rate up to 10 Kbps. Sensor units have a receiver which are listening to the
synchronization pulse. Synchronization sequence is passed to the 68HC11 which
time calibrates the internal structures for periodic monitoring.

Tests showed that the WiMMS system was able to send and receive commands
and sensor data. The modular units were installed fast and did manage to
alleviate or remove the problems of the cabling. The project fulfilled most of the
requirements especially modularity and fast installing time. Only the accuracy of
the measurements and the operating time were the only issues which were not
solved.

Figure 2: First WiMMS prototype functional schematic [4]

2.1.2.2 MCU improvement – 2001

An Atmel AVR 8-bit microcontroller with a RISC architecture was a replacement
to the Motorola’s 68HC11. Like the predecessor it is designed to support higher
level languages like C. It packs a lot of functionality to the silicon like internal
oscillators, serial communication, timers, PWM modulators and up to 4 full 8-bit
I/O ports. AVR architecture supports high code density and most of the

19

instructions are executed with one cycle, which means high MIPS and therefore
efficient use of power resources without sacrificing the computational power.
These properties enabled the SHM algorithms to be moved from the base station
PC to the sensor unit itself, which is one of the main features and enhancements
of the prototype. [6, 7]

Figure 3: Second WiMMS prototype functional schematic [6]

2.1.2.3 Redesign of the radio and computing techniques – 2004

This prototype was built to explicitly address the problems and bottlenecks of
the previous specimens. First another MCU was added to the design in order to
have more computation power for the accelerometer’s signal processing
algorithms, which includes floating point arithmetic. For that purpose a true 32-
bit Motorola MPC555 processor with PowerPC architecture was chosen. It
features 448 Kbyte flash ROM and 26 Kbytes of RAM, which can serve the data
buffer for the measurements and fast execution of the code of computational
algorithms. Another performance tweak is a completely different modem. A
Proxim RangeLAN2 modem uses FHSS technique which enables bigger data rate
(1.6 Mbps), more reliable communication link and up to 350 meters LoS range. It
operates on 2.4 GHz unregulated FCC ISM band. [5]

Figure 4: Third WiMMS prototype functional schematic [5]

20

2.1.2.4 Conclusion

The WiMMS prototypes showcased different technologies and approaches to the
sensor applications. The fine balance between local data processing and
distributed computation was tested. One of the interesting solution was the
synchronization of the nodes, where different radio interface and protocol was
used. Besides the promising ideas for distributed data computing and
synchronization, the solutions are not usable in the context of today.

2.1.3 RIMS

Goal of the project was to develop a small sensor node utilizing as much as
possible latest state of art (2003) of microcontroller and wireless technology.
Main objects were bridges where monitoring acceleration sensor data the faulty
conditions in the structures would be determined and accidents would be
avoided.

There are three essential parts of the system: H8/4069F MCU by Renesas, analog
piezo resistance type accelerometer MA-3 by Microstone and RTL-8019AS
wireless Ethernet module by Realtek. Extraordinary is the TCP/IP protocol stack
support by the device. The aim for the widely used WLAN support was the
simplicity of adaptation (due to the integrated chip), widely spread usage and
high bandwidth. That enables anyone with the compatible device to monitor the
data via web browser utilizing HTTP. In turn the data is processed
asynchronously by the H8 MCU while the measurements are active. In order to
achieve that ring buffer is used to store the results temporarily. That is external
2MB memory connected via DRAM interface of the processor. This decreases the
data needed to be sent wirelessly. Data sent to the client device is in the form of
histogram for a certain time period calculated by the H8 MCU.

One issue with the system is its power consumption. In the testing batteries were
used. But those could power the system only for up to a month, depending on the
amount of data exchanged. Suggested solution is to use different power source -
either generating one or one with the bigger capacity. [8]

The RIMS prototype network provides the best usability and control from the
standpoint of the user. The WLAN support with the powerful hardware design
could enable to use these devices at a large scale objects like big buildings or
bridges. The rate of the efficiency, due to the multiple chip design and external
components and therefore requirement of mains power, render it unusable at
small scale sensor networks.

21

Figure 5: RIMS device in the box [8]

2.1.4 Reconfigurable 6LoWPAN based sensor network

One of the latest projects published (2009), which successfully can monitor and
determine the faulty conditions of the structure. In the prototype tests it was
used to monitor bridge like conditions, but with having humidity and
temperature sensor additional to acceleration one, it can be used for other
purposes as well.

It uses the Sensinode U100 Micro.2420 platform. [9] Since the hardware
manufacturer is a developer of the 6LoWPAN software for the embedded
devices, the wireless protocol is 6LoWPAN, which distinguishes it from most of
the other projects. Although the future might seem promising for the IPv6
networks for embedded systems, in reality there is still much progress left to do.
TCP/IP based networks require a lot more memory and processing power than
other more lightweight protocols like Bluetooth LE for example. Also the library
is not that mature yet to support all the functionality needed for sensor networks
like sleeping nodes. That means the IPv6 networking is up and functional, some
embedded systems specifics cannot be supported (routing protocols,
synchronization of clocks). So the reduction of the functionality is done. The
setup uses simple star topology with preconfigured unique addresses where
sensor nodes are all having common sink node.

Micro.2420 node consists of MSP430 MCU and separate CC2420 radio
transceiver. They are connected via SPI. The IEEE 802.15.4 compatible CC2420
radio is operating on 2.4 GHz. On top of it with the conjunction of MSP430 MCU
the 6LoWPAN logic is implemented. Data is transmitted via UDP channels.
Although UDP does not contain logic for packet transmission errors, the aid for
that is implemented on packet level, where 3 bytes before each measurement
contains 1 byte for data type, and 2 bytes for measurement sequence number,
where final corrections are being made at the sink node. Sensor node also
incorporates 500 KB flash where the measurements are stored.

22

The core of the sink node is the same Micro.2420 device. The sink node is
connected to a PC via UART bridge. Through the PC one can configure the
network. Fine tune options include the possibility to choose which node is
sending the info, what is the sampling period and frequency (up to 1 kHz),
accelerometer sensitivity (±2g or ±6g) and axis. On the PC, MATLAB software
receives the measurements, reorders them, processes and visualizes them on the
time chart. One of the biggest constraints of the system is the UART link between
the PC and the sink node (due to the extra overhead from sink, not the actual
sensor data itself). The application data transmission rate up to 6 kbps can be
achieved (not including the TCP/IP overhead). [10]

The integration of 6LoWPAN is the future approach for many low power
wireless solutions. This prototype is the most modern and the closest to suitable
solution for sensor networks. As with the other designs the energy consumption
problems are still present, but the functionality included with the IP protocol is
endless.

Figure 6: A reconfigurable 6LoWPAN wireless sensor node [11]

23

2.1.5 Mobile agent SHM network

Completely different to the other covered sensor node designs, this exact sensor
network design aims for high computing power sensor nodes that are able to
update the tasks and damage detection algorithms and finally be able to update
the software it runs. It has 3 different boards which are doing different tasks.
Main board is a Gumstix miniature embedded computer, an Intel based platform.
It has an Intel PXA 225 processor with 64 MB RAM and 16 MB Flash memory.
With 400 MHz frequency, it runs Linux OS on which the damage detection
algorithms, which require FFT, are being run. The wireless communication board
is connected via parallel port to the Gumstix computer and is responsible for
WLAN communication. At the core it has an Atmega 128L CPU, which
communicates with the Gumstix board, handles communication with sensor
interfaces and measured data. It uses SPI and I²C interfaces to communicate with
different sensors, actuators, A/D interfaces and low power ZigBee
communication module.

Due to the fact, that the Gumstix board runs a complete Linux OS, a lot of the
focus was put on the software the system runs. Many open source libraries were
used in the system like Ch (C/C++ interpreter), CLAPACK (mathematics library)
and Numerical Recipes in C (mathematics library). [12] These packages enable to
do SHM analyses and port the functionalities and software from other
environments (e.g. MATLAB) to the Gumstix board. Besides these the most
important functionality is done with the Mobile-C mobile agent platform. This
library supports portable and secure execution of mobile agents which are
C/C++ scripts. [13] Having mobile scripts being handled between the nodes, this
enables the sensor network to become dynamically programmable and taskable.
Software is layered between the two boards. The Gumstix runs all the high level
data processing algorithms, Mobile-C and wireless communication logic. The
sensor acquisition boards runs the low level tasks like sensors’ data acquisition,
power management, and ZigBee radio module. [12]

From the hardware standpoint the design does not provide much value. The
problems with energy consumption is not solved. Also Zigbee based network is
not future proof and powerful. However the idea of mobile agents, which carry
embedded code, could be a technique of solving the problems of data processing
and movement and network configurability. Author of the work believes that the
C/C++ scripts should be replaced by some interpreted language like Javascript or
Python. When compared with the IP network based solutions like the
Micro.2420 based 6LoWPAN implementation (see Section 2.1.4), the power of
mobile scripts could be used more effectively.

2.1.6 Summary and comparisons

Different research work of SHM systems were presented. Designs varied from
energy harvesting to steady battery powered devices. Different radio protocols
can be seen to be applied for the wireless data transmission and the trend shows
that TCP/IP based networks are steadily applied on the embedded platforms.

24

Almost all the prototypes failed one basic requirement – power consumption.
This indicates that there are no suitable methods and technology for wireless
data transmission to enable ultra-low power energy consumption or enable very
high data rates which would decrease the time where the radio circuit needs to
be active.

The fine balance between the responsiveness with the data latency and power
consumption is an aspect that was tried to be solved by the different systems.
When one has a high responsive system, like the mobile agent SHM network
(Section 2.1.5), that in turn means higher power consumption than less
responsive poll based systems, like RQEM (Section 2.1.1). Low latency can be
also connected to the configurability, since configuration changes require link
with the low lag factor, to apply the settings.

With the current technology, the results are telling one thing – more
sophisticated system equals exponentially higher energy consumption. All this
leads to the fact that the radio part of the system is the most cumbersome and
power hungry. Also it can be a bottle neck for the data transmission of the whole
network. But the efficient usage of bandwidth and radio technology must be
desired in order to have a usable sensor network design.

25

 Size Wireless
protocol

Data
rate

Power consumption
(sleep/idle/Rx/Tx)

Power source Up time Sensors Features

RQEM < 1 inch2 Trovan
RFID

<
64Kbp
s

active only when
reader emanates the
electromagnetic wave
energy

Electromagnet
ic wave

powered
only
when
read

micromachine
d strain
sensors,
temperature

size,
robustness

Reconfigurabl
e 6LoWPAN
sensor node

88mm x
64mm x
35mm

6LoWPAN 6 Kbps <1mA/x/25 mA/35
mA

2 x AAA x Humidity,
temperature,
xyz
acceleration,

Configurability
from PC

RIMS 300mm
m x
60mm x
80mm

WLAN > 1
Mbps

x Battery pack
with unknown
type

~ 1
month

3 axis
acceleration

Direct
connection
from any Wi-Fi
enabled device

WiMMS 1st 100mm
x 13mm
x
190mm

PPX
(Proxim
Packet
Exchange)
+ Custom

19.2
Kbps

5mA/> 50mA
/>225mA/>225mA

18 x AA
batteries

11 hours 2 axis
acceleration

Measurements
synchronizatio
n

26

applicatio
n data

WiMMS 2nd 130mm
x
100mm
x 25mm

PPX +
custom
applicatio
n data

19.2
Kbps

x 9V alkaline
battery

x 2 axis
acceleration

SHM
algorithms
processed by
sensor node

WiMMS 3rd 100mm
x
100mm
x 25mm

PPX +
MCP
(Modem
control
packet) +
applicatio
n data

1.6
Mbps

110mA/220mA/320
mA

5 x AA Up to 30
hours

2 axis
acceleration

Separate MCU
for
computation
intensive tasks

Mobile agent
sense node

100mm
x 60mm
x 17mm

Zigbee 250
kbps

x mains not
applicabl
e

3-axis
acceleration,
strain gauge,
humidity,
temperature,
PZT sensor
actuator

Dynamic
change of SHM
algorithms,
Linux OS

Table 1: Comparison of different SHM systems

27

2.2 Low power transceiver devices

This section discusses different manufacturers and their off the shelf integrated
circuits supporting wireless data transmission. All the producers that are
mentioned here can be considered as a design candidates for one’s wireless
sensor network. Different aspects are described that apply for the wireless
sensor nodes’ design. Different specimens and evaluation kits and other tools
which help to develop on the devices of the platform are also discussed.

When common embedded design issues are put aside one can start to digest
through the questions like power consumption and radio. [14] The key to
resolving the problem is the whole dynamic functionality of the SoC. Questions
like variety of configurations (I/O, clock system), mechanisms that support
energy efficiency (DMA, different ADC modes, interrupt mechanisms, sleep
modes) [15], analog digital interface characteristics (resolution, samples per
second) and size (the SHM applications often require the sensor node to deeply
embedded into the structure without causing the structural grid to alter much).
[16] Depending on the application the sensor devices need to operate on a
dedicated power source from weeks up to couple of years. The specification of
regular microcontroller sometimes can state that many years of operation can be
achieved, but one must note that the radio must be added into the power
consumption calculations too. Since there is no common way to universally
benchmark the energy efficiency of the microcontrollers right now [17, 18] one
must either benchmark or rely on the information that is written in the
datasheet. For example one of the main standpoints are the sleep and idle state
ratios, how much current is drawn in each state, how fast the circuit can switch
from one state to another. [19] The same apply on different modules in the MCU
architecture. The studies clearly indicate that most of the energy is spent on the
radio. [20, 21]

Product lines of ISM bands compatible transducers are described shortly.
Specifically important is the conformance to the IEEE 802.15.4 standard which is
the basis for 6LoWPAN and ZigBee standards. The ubiquitous IEEE 802.11 based
(WLAN, Bluetooth) protocols are not elaborated, because of the higher power
consumption and computing power needed. The IEEE 802.15.4 standard
specifies physical layer and media access control for low-rate wireless personal
area networks. [22] That includes regulations about modulation techniques,
frequency bands, duty cycle, output power, etc. Closely related with the standard
are the unlicensed ISM frequency bands. These are free to use publicly available
frequency bands that are allocated to be used for industrial, medical and
scientific (ISM) purpose, but virtually can be used for anything except the
telecommunications. There are different regulations applied by the International
Telecommunication Union (ITU) at the different regions of the world. 2.4GHz is
available worldwide and in the region of the current work, Europe, the 868 MHz
and 434 MHz bands can be used. [23] Using devices compatible to ITU
regulations can save a lot of extra work. First one do not need to deal with the
certifications. Using widely available band results in bigger choice of the
transceivers that can be bought directly off the shelf. Last, when the widely

28

available technology is used, the improvements and compatible technology can
be developed by other parties as well. Thus the radio devices and producers
described have SoC capable of working in one of the previously mentioned
frequency bands. The focus is shifted more on towards the sub 1 GHz band. In
general 2.4 GHz band can be a better choice because of the higher data rates and
faster transmission times [24], but due to the higher noise in those channels, the
868 MHz band can be more robust. [25] The noise free environment and lower
frequency can increase communication reliability and provide longer
transmission ranges. [26, 27] However analyzing both in conjunction gives a
better picture of the manufacturer’s catalog, future improvements and
technological capabilities. In the final comparison table only devices able to
operate on 868 MHz band are listed.

Most of the manufacturers have not designed a completely new radio MCU
architecture for SoC transceiver, but rather have embedded and expanded the
functionalities of the radio transceiver to already mature architecture (TI
MSP430, Freescale HCS08). This way it preserves the familiarity with the series
of microcontrollers for the developers and enables the code reuse. Some of the
designs use the approach where the transceiver module is externally interfaced
via I/O (usually via SPI) to MCU. In general the embedded approach is more
suitable for low power wireless sensor networks. Packing all the functionality
into one chip package extends battery life and transmission range, delivers more
robust performance (in the presence of interference) and minimizes the use of
external components. [28]

2.2.1 Microchip

One of the most known MCU among the hobbyists and professionals is the
Microchip’s PIC series. Microchip has wide range of different radio receivers and
transmitters for different frequency bands including 802.15.4 compatible
devices. Some of them are PIC based and some of them are plain radio modules.
They have 5 different modules for 2.4 GHz and 4 modules plus 7 MCUs for sub
1GHz frequency bands. Disadvantage of the Microchip product line is the lack of
true transceivers. The only true transceivers are the radio modules which are not
programmable and must be controlled externally. PIC based radio MCUs have
only transmitting capability and they support only sub 1 GHz bands. On the
positive note, Microchip have developed libraries for developing wireless
network applications on their products. They have fully supported ZigBee RF4CE
and Pro/Smart Energy profile library stacks. Additionally they have developed
proprietary protocol called MiWi, which is intended to ease the development of
wireless applications and portability of the code across the different Microchip
devices. The MiWi supports different topologies and different types of network
devices. It has dedicated development environment with fully integrated tools.
Developing is supported by multiple development kits with preprogrammed
modules ready to go right out of the box. Debugging the over the air
communication can be done with the ZENA wireless USB adapters. Because of
the lack of true transceiver microcontroller and therefore increased small form
factor and power consumption, the author of this work do not seem much value
including Microchip’s microcontrollers to one’s wireless sensor node design.

29

Information from the main and subpages of Microchip’s personal area networks
product page. [29]

2.2.2 Nordic Semiconductor

Nordic Semiconductor is focused only on low power wireless integrated circuits
which operate on ISM bands. Technologies they are most focused on appears to
be protocols operating on 2.4 GHz like Bluetooth Smart or ANT+.In total they
have 4 different series (2 for each protocol) plus 3 series for universal 2.4 GHz
solutions. This makes a total of 16 different chips with different configurations.
They also provide sub 1GHz products, though the variety is tiny. Only one
transceiver module and one complete SoC with integrated transceiver (appears
in the table) which has the aforementioned module embedded to the 8051 core.
For the developers they have dedicated forum on the homepage, a lot of different
evaluation kits covering all the wireless products, white papers on technical
topics and recommended design schematics and guidelines. Software
development can be done with any toolchain that supports 8051 architecture.
Example software and binaries are built using the KEIL toolchain. From the
mainstream toolchains IAR also supports Nordic Semiconductor devices, with
complete toolchain and header files. Overall the approach and product
development of the Nordic Semiconductor microcontrollers is promising. They
focus on specific needs of the product by producing the controller in multiple
configurations. In their 2.4 GHz series they have controllers with ARM core. If the
sub 1 GHz portfolio can progress to where their 2.4 GHz devices are, then their
devices are comparable to the competitors’.

Information from the main and subpages of Nordic Semiconductor’s ultra low
power wireless solutions page. [30]

2.2.3 STMicroelectronics

STMicroelectronics has only one true SoC transceiver. It is ARM based IEEE
802.15.4 compatible transceiver working on the 2.4 GHz band. But they have a
lot of experience with ARM based MCUs and they are producing much more than
just microcontrollers. The wide catalog in electronic parts and diverse set of
transceiver modules can contribute to a sub 1 GHz ready radio SoC. Specialized
products for low power WLAN, Bluetooth and other ISM frequencies are
available. The SPIRIT1 module has 4 selectable frequency ranges, multiple
modulation options, and very high sensitivity and power efficiency. It is also
compatible with the Wireless M-BUS standard. For the current development
there are more than 10 evaluation boards (including SPIRIT1) to start getting
familiar with the STMicroelectronics sub 1 GHz portfolio. Since their MCUs are
based on (and therefore controller of the transceiver module’s evaluation
boards) ARM, there are plenty of toolchains, starting from the free GCC to paid
licensed IAR. STMicroelectronics has some aid software for the developers to
calculate the energy consumption and debug the wireless data links. This
includes also tutorials, application notes and reference design. Their portfolio is
thin and while heavily implementing ARM design, it is reasonable to reach out to
other producers, who also have integrated radio IC and ARM core on one chip,
but have broader list of devices to choose from.

30

Information from the main and subpages of STMicroelectronics’ low-power RF
solutions page. [31]

2.2.4 NXP Semiconductors

Portfolio boasts assets specialized on wireless networks. That includes products
from aerospace to automotive radio link solutions, but also the ISM unlicensed
band products. When talking about the spectrum in focus - the ISM wireless
modules and microcontrollers - are made with a high specialization on 802.15.4
based protocols, that includes special packet features for different protocols and
sleeping modes. For that purpose proprietary 6LoWPAN based JenNet-IP library,
RF4CE and different Zigbee protocol stacks have been developed. For 2.4 GHz 3
different chips with 32-bit RISC architecture (JN516x series) and 8 transceiver
modules are in catalog. For lower frequency ISM bands only one transceiver
module (OL2381, listed in the Table 2) is present. This is traditional SPI
controlled module with FSK and ASK modulations. It has relatively good
sensitivity, but the maximum data rate is meagre and therefore the current
consumption is high. Fortunately the products are backed by demo kits. The
OL2381 has a throrough demo kit with multiple functions and GUI for the PC,
which enables to configure the device in detail and trigger the data transmission.
Overall there are plethora of developer tools for NXP products, even the Android
and iPhone platforms have an app where one can calculate the RF parameters for
the devices. The developer tools are mostly free, that includes the wireless
toolset (IDE, compiler, programmer) for JN516x series. Drawback is the price of
the evaluation kits. For example JN516x demo kit costs over 1000 USD (quote
from Digikey). Adding the fact that the products are having proprietary design
(JN516x custom core), toolchain and evaluation kits therefore small community,
the start of the development can be cumbersome, which renders the platform
not suitable for the initial development of sensor networks. [32, 33, 34]

2.2.5 Freescale

Freescale is another high profile electronics manufacturer presenting wide array
of products in their catalog. Having various 2.4GHz modules and
microcontrollers with either HCS08 or different flavors of ARM core, they do not
have smaller choice under 1 GHz band products. Besides 3 either only
transmitting or receiving modules they have two true SoC transceiver families
based on different cores. The first device, MC12311 with HCS08 (listed in the
Table 2), has the radio with the same parameters as the Kinetis KW0x family
devices which are based on ARM core. The Kinetis series has more features and
32-bit architecture, while the Motorola’s 68HC05 compatible core do not pack
such features, but for small applications that can lead to smaller power
consumption. Aforementioned MCUs are backed by the evaluation kits with the
price from 79 to 149 American dollars. Wireless libraries for under 1GHz
applications are two. The AMIHO Technology developed Wireless M-BUS library
can be used out of the box for one’s M-BUS product. For other type of protocol
implementations Freescale provides SMAC (Simple Media Access Controller)
stack which is available as C source files. This supports all their radio modules
and enables to do the low level routines and configuration, without having any
protocol specific packet layer. Can be used as an underlying library for ones

31

protocol stack. Development tools for HCS08 platform are developed by open
source communities and also commercial providers like IAR Systems, Cosmic
Software, P&E Microcomputer Systems and many others. [35] Also Freescale
itself is providing a CodeWarrior based development studio. Plenty of tools and
documentation is available on home site. With a wide range of portfolio for
different technologies the co-operating partners can be easily found on the same
place as their own tools and documentation. Software like BeeKit, PopNet, VLAB
that can greatly reduce the time of development, can be easily accessed. For the
development of new devices for under 1GHz. Freescale products can be strongly
recommended, because the parameters of the radio devices are more flexible
and powerful than the competitors’ (except Silicon Labs’ Si10xx series – refer to
the Table 2). Only drawback can be the availability of more sophisticated and
protocol specific libraries, which might increase the development time for the
first prototype. [36, 37]

2.2.6 Silicon Labs

In total Silicon Labs offer 6 families of highly integrated SoC devices. Products
cover the 2.4 GHz band and the spectrum up to 1 GHz. Some of them are 8051
and some are ARM based. 8051 based devices have so called EZRadioPRO (as is
the case with the Si1080 listed in the Table 2) transceiver, which is Silicon Labs’
developed high RF performance transceiver family. Their focus with their
products is energy consumption and radio module efficiency. They claim the
industry’s lowest consumption in active and sleep mode. Combined with the RF
performance, the Si1080 is easily the MCU with the best characteristics among
those listed in the Table 2. Starting developing on the platform is made very easy.
All the transceiver modules and MCUs come with a specialized development kit
(price ranging from 300 – 800 USD). Boards come with a simple software demo,
where one can do basic things: settings, data transmission, etc. Silicon Labs IDE
is the officially supported environment for all the Silicon labs’ microcontrollers.
Separate Keil compiler kit must be bought, which is listed on the webpage along
the IDE. Overall info for development is easily accessed with one click on one
root webpage. [38] Developer aid software includes among many a Simplicity
Studio (MCU tools, documentation, code libraries, etc.), EZRadio (toolset to
create and deploy wireless applications), Clock software (clock customization
and calculation of various parameters) and many more. Only ZigBee library stack
is provided via Ember ZigBee software, which includes debugging and other
features. Other examples and libraries about radio can be accessed via Simplicity
Studio. The ease of finding the resources, the high performance radio and the
separate energy efficient ARM processor line (probability for the future products
having integrated the ARM core) means that the Silicon Labs’ products cannot be
ablated from the list of potential platforms to be used to develop one’s wireless
product.

Where not cited, the information is from the main page and subpages of Silicon
Labs’ microcontroller page. [39]

32

2.2.7 Atmel

Atmel provides a lot of products for the 2.4 GHz band, either with AVR or ARM
CPU core. Unfortunately there are only one product for under 1 GHz band and it
is plain transceiver module. Different with the other manufacturers is the full
compatibility to 802.15.4 specification, which means that it supports spread
spectrum modulation techniques specified for ZigBee and 6LoWPAN. That
means no FSK, ASK or OOK modulations are integrated into chip. The purpose of
this is just to concentrate on the mainstream consumer electronic appliances,
because this technology is most produced. Like Microchip’s PIC, Atmel’s AVR
microcontrollers are widely know. With one of the biggest community, finding
information for development is not a problem. Atmel has developed their own
development envrionment called AVR Studio, which is one of the easiet to use
toolset on the market and it is completely free. Toolchain is based on open
source GNU GCC software. Filled with a lot of plugins/software in and out of the
IDE, will render the development process to be one of the smoothest and fastest.
Starting Atmel RF development is fast by using their ZigBit modules. Modules
have complete certified RF design on a ready made PCB which makes them easy
to integrate into one’s application. They are based on the available products in
the portfolio so one can take them as a demo boards for radio transceiver
controllers or use ZigBit evaluation kits where the whole system is implemented.
They come in different flavours and packages including the convenient USB
dongles. To complement the ease of the development, Atmel has made available
multiple radio networking stacks. The simplest and smallest is Lightweight Mesh
which provides the most basic functionality to access the radio hardware and to
develop proprietary porotocols on top of it. They provide full 802.15.4 MAC
library, which is the base for ZigBee and 6LoWPAN implementations. On top of it
are built ZigBee RF4CE and ZigBee Pro (called BitCloud) stacks, which are also
available for free to download on the website. The ease of development and the
size of the community definetly make the Atmel products one of the best to start
developing wireless sensor networks. Right now they are heavily relied on 2.4
GHz, spread spectrum, so making a simple sub 1 GHz solution is not possible
currently.

Information from the main page and subpages of Atmel’s 802.15.4
microcontrollers page. [40]

2.2.8 Texas Instruments

Texas Instruments is producing one of the biggest portfolio of electronic devices
in the industry. That includes high end computer processors, digital signal
processors and microcontrollers. For sensor applications they have dedicated
microcontroller family with 16-bit RISC architecture called MSP430, which is
focused on ultra low power applications while providing low cost. Besides the
dedicated computing, they have 10 different modules of CC (stands for Chipcon)
series transceivers, where some are based on 8051 core. [41] Former Chipcon
which was acquired by Texas Instruments in 2005 [42] gave the knowledge and
integrated circuit designs that made possible to include SoC transceivers in their
catalog. Besides the 8051 based transceivers, they have CC430 family of
transceivers. CC430 series is a fusion of MSP430 microcontroller and Chipcon

33

radio transceiver circuit. Therefore Texas Instruments provides two different
series of transceivers with full capabilities of modern MCU, both of them are
having principally the same transceiver core, where the CC series have more
different configuration devices (sub 1GHz and 2.4 GHz), while CC430 family
devices all have sub 1GHz Chipcon transceiver core..

The series in the focus of this work is the CC430 family. It packs the features of
the modern and low power MSP430 architecture. The radio core present on all
the CC430 family microcontrollers is principally the same as in the Chipcon
CC1101 MCU, with the minor modifications because of the nature of the
embedment into the different architecture. [43] Since CC1101 is designed to
operate only on frequencies under 1 GHz, there are no 2.4 GHz devices for
MSP430 based transceivers. If one needs more different configurations for the
radio, the CC series covers all the frequencies and requirements of IEEE 802.15.4
for the modulation schemes and frequencies. So if one requires a broader grip for
the application portfolio, the 8051 based Chipcon transceivers should be used.

Since the CC430 and CC series are connected closely, there are plenty of tools
helping to start the development. Documents about radio communications which
are dedicated to Chipcon microcontrollers do also apply for the CC430 family.
The same applies to the development kits and other hardware tools. This makes
the ecosystem quite powerful, where the migration from one family to another is
quite painless. There are multiple development kits based on both families. The
radio antenna reference circuit designs are available for all the devices. Only
difference that exist between the two (besides the fundamental CPU
architecture) is the flash programmers and development environments. The
Texas Instruments developed CCS (see Section 3.1.1.2) do not support 8051
architecture, while IAR Systems workbench can be used for both. Different
libraries like Z-Stack for ZigBee, SimpliciTI (see section 3.1.5), Wireless M-Bus
and Bluetooth are supplied with the product portfolio with the examples and
development kits. Code samples with the low level initialization and interfacing
of the radio in different architectures and external SPI connection is provided.

Due to the large range of development articles aimed directly to help to start the
development with different products and different documents where one can
find useful information for one’s product design and development tools, the
Texas Instruments radio MCU platforms coax to develop on this platform.

34

2.2.9 Table of summary

 Frequency range (MHz) Modulati
on

Sensitivi
ty (dBm)

Maximu
m TX
power
(dBm)

Maximu
m data
rate
(kbps)

Power
consumption –
RX/TX(at max
output
power)/sleeps

Pric
e
(USD
)

CPU
core

Microchip
MRF49XA*

433/868/915 FSK -110 7 256 11mA/15mA/0.3µA 1.79 x

Nordic
Semiconductor
nRF9E5

433/868/915 GFSK -100 10 100 12.5mA/30mA/2.5
µA

2.66 8051

STMicroelectron
ics SPIRIT1*

150-174/300-348/387-
470/779-956

FSK, GFSK,
MSK,
GMSK,
OOK, ASK

-118 16 500 9.8mA/49.3mA/0.8
5µA

2.15 x

NXP
Semiconductors
OL2381*

315/434/868/915 ASK, FSK,
GFSK

-118 10 112 16.5mA/22mA/0.5
µA

2.38 x

35

Freescale
MC12311

315/433/470/868/915/928
/955

FSK, GFSK,
MSK,
GMSK,
OOK

-120 17 300 16mA/95mA/0.1µA 3.9 HCS08

Silicon Labs
Si1080

142-1050 OOK, FSK,
GFSK

-126 20 512 13mA/85mA/0.05µ
A

3.58 8051

Atmel
AT86RF212B*

769-935 DSSS,
BPSK, O-
QPSK,

-110 10 1000 9.2mA/28mA/0.2µ
A

3.16 x

Texas
Instruments
CC430F5137

300-348/389-464/779-928 ASK, FSK,
GFSK,
MSK, OOK

-117 12 500 18.5mA/36mA/1µA 3.65 MSP43
0

Table 2: Comparison of different 868 MHz transceivers

* Not a complete SoC, must be interfaced to external MCU.
Prices were recorded at May 10th 2014. Quotes from www.digikey.com web-shop with the cheapest items packaging type where applicable
and at the bulk price of 1000 pieces.

Detailed products’ information from the following references: [44, 45, 46, 47, 48, 49, 50, 51].

The void of the embedded 868 MHz transceivers on the market is eminent. Still most of the focus is put on the 2.4 GHz band devices and
therefore the devices for sub-1GHz bands are the minority. With the ITU regulations and more wide adaptation of those frequencies in
different countries will have an effect on sensor networks.

http://www.digikey.com/

36

Author believes that the most future proof products will be the ARM core integrated transceivers. With the powerful and continuously
developing architecture and a true 32-bit design introduces a powerful computing capabilities, while providing the small energy
consumption. The best products at that field are the Freescale and Silicon Labs products, but right now only 2.4 GHz is supported.
However Texas Instruments with the low power, feature rich MSP430 platform and a true transceivers for the sub-1GHz bands seem to
be the best choice on the market right now. With the addition of rich set of documents and development aid, the platform used also in
this work, is strongly suggested by the author.

37

3 Sensor network development on MSP430

This project was limited by the time and volume constraints, so the aim was to
reuse as much code as possible from the libraries, code snippets, kits, etc. By
doing this it enabled to concentrate more on the essence of the work – the
wireless data transmission – and how to make existing functionality better, but
not thinking how to create one. During the development different set of
hardware and software tools were extensively used. The most important ones
and integral for the successful development of MSP430 based sensor network
devices are described in this chapter. The functionality, price, adaptability is
discussed. The assessment of the practice of using these tools is given.

In order to assay the developed wireless network performance and reliability,
different types of tests were conducted. Tests contained many different
scenarios and for that purpose, software was developed. The summary of the
results tell if the goals were achieved and what are the main improving areas.
Also they showcase the physical limits of the hardware and software.

3.1 Development

First concept used different microcontroller and development kit for the sensor
node (MSP430–EXP430FR5739 board [52]). Since the initial design (wired
communication from sensor nodes to radio concentrator node) finally grew into
very complicated and fragile, the plan was dropped. Finally the transceiver node,
which was the radio concentrator intially, was chosen to do also simple sensing
functionality. It perfectly suited for the development ideology as well, since
existing libraries and code examples were also present. The mock sensor
development was finally done on Olimex MSP430 RF development board (see
Section 3.1.2.1). It has the CC430F5137 MCU mounted which is mostly back-
compatible with the Chronos development kit’s (see Section 3.1.2.2)
CC430F6137 (only large difference being the LCD_B module availability). Based
on this, porting the software from one MCU to another was relatively easy task.
This was also possible because of the the hardware schematics, where there
were no major differences between the two. This enabled to run same code on
both of the kits with no modifications.

3.1.1 Development environments

There are 2 widely known and officially supported development environments
for MSP430 platform: IAR Embedded Workbench (developed by IAR Systems)
and Code Composer Studio (developed by Texas Instruments). This is not an
exhaustive list of existing solutions since there are other options as well like
Crossworks by Rowley Associates, Energia an open source development
environment initiated by Robert Wessels, Imagecraft by Imagecraft Inc.,
Quadravox by Quadravox Inc., and command line GCC toolchain called MSPGCC
(open software, part of the GNU Tools). But those tools are either obsolete or not
supported by Texas Instruments software, drivers and reference papers. So IAR

38

workbench (from now the acronym IAR EW is used) and Code Composer Studio
(from now the acronym CCS is used) are the only options which are being
supported and will be supported in the future also. Both IDEs were used and
evaluated throughout this project.

3.1.1.1 IAR Embedded Workbench

Prior to this work, the author of this paper have been mostly using IAR EW for
embedded development (although not for MSP430 toolchain). So in the first
prototype design development (MSP430FR5739 + CC430F5137) the IAR EW
version 5.5 was used. The free code size limited version was used, because no
license was available for the university work group. Second the code to be
developed was thin enough not to break code size limit (1.5KB). Evaluation
mode did not prohibit any features which were needed for the development
anyway.

Three projects were setup and maintained inside one workspace in the IAR. Each
project resembled different node in the architecture (sensor node on
MSP430FR5739, radio concentrator for the sensor nodes on CC430F5137 and
access point for PC also on CC430F5137). This was the basic setup of the usage of
the IDE. Every project can be set up using different settings and also common
settings can be made. For example libraries for radio, FIFO buffers, common
typedefs and protocol specific C-files were shared by the projects. Environment
automatically handles the compiling of files even when the files are from
different locations on the hard disk. Grouping them together under the project
tree is enough. Groups are shown as folders in the graphical interface.

Compiler and linker settings can be easily set in the graphical interface under the
project options. This includes choice of language and dialect (different C and C++
standards are supported), preprocessor and linker definitions, pre-build, post-
build commands, debugging and debugger settings, binary file format, etc. The
toolchain already includes linker and header files for different MCUs. Also the
runtime standard C/C++ libraries are present with flexible configuration options
(printf(), malloc(), etc.). One of the biggest advantages using IAR is its
intrinsic headers library, which can be used effectively to reduce the size of the
code and make it more readable. [53]

When the functional part of the toolchain is concerned, the IAR produces
efficient code and features powerful debugging tools. [54, 55, 56] MSP430
toolchain linker, debugger and compiler are completely proprietarily developed
and maintained. However when this project is concerned, the author cannot see
any superiority of the IAR proprietary compiling algorithms and debugging
features.

When esthetics are concerned, largely different is the graphical interface. It is
solely developed by IAR Systems. It is not based on any other known IDE
framework. It follows rather minimalistic approach, with simple menus and
icons. Old school Windows 98/XP like design. While this is a great approach for
firmware programmers, the lack of functionality is concerning. For example the
auto completion, syntax style, text and icon hovering is not working well if at all.

39

Syntax style is very basic and not giving intuitive feel of the code quickly. Since it
is proprietary software the plugin ecosystem is also missing so there are no tools
or they are hard to be found. Also it appears that it does not support Windows 8
well, as it was the OS used by the author. The text editor area automatically
zoomed out the text too much. There were other inconsistency with the UI as
well like overlapping panels, hidden buttons, etc.

For the price schemas there are multiple flexible options. From USB dongle
limited versions to floating licenses based on the local or global network. In turn
the application pricing schema is split by the functionality provided between
different versions – standard, limited and baseline.

Figure 7: Snapshot of the IAR EW IDE

3.1.1.2 Code Composer Studio

CCS version 5.5 was a new experience for the author of this work. Previously
older version (version 4) of CCS has been used. So there were still a lot of
familiarity, because since version 4 CCS is based on widespread Eclipse IDE.
Fully supported version of the toolchain was used, because licensing server with
100 floating licenses was set up (thanks to the Texas Instruments European
University Program) at the University. This was also required, since Chronos
projects’ compiled code would have not fit into the limits.

40

Chronos development software (see 3.1.3) projects were used right from the
start of CCS experience. Workspace consisted of Chronos watch and USB access
point projects. Configuring project’s settings, pre-build, post-build and linker
actions can be made in the graphical interface. Different menus, buttons and
views can be completely customized as in any other Eclipse based IDE, which
makes the graphical interface very comfort and easy to use. CCS adds new views
like debugger windows (register, memory, variable watch windows), GRACE tool
and ULP advisor windows.

The toolchain is based on GNU tools, therefore the POSIX environment is being
used to invoke commands. Compiler supports wide variety of settings from GNU
compiler language extensions as well. Developers who are familiar with the
development with the GCC and make system, the adoption of CCS is seamless.
IDE automatically manages makefiles and include paths, so the files included in
the project and grouped into the folders do not need extra declarations and
include paths. Linker and MCU specific header files are already included with the
install of the toolchain. Same account true for the standard C/C++ runtime
libraries.

Only hassle during the development was the support of some
debugger/programmer drivers. For example Olimex-JTAG-Tiny-V2 programmer,
which was used in the development, drivers for CCS version 5 were not officially
supported. This is due to the fact that some subsystems of CCS has been changed
between the major versions, so the 3rd party tool providers have not managed to
keep up with the changes. But this problem is leveraged thanks to the CCS
features like automatic firmware updating and drivers’ updates of the
programmer/debugger, like was the scenario with this case.

Licensing system is rich. From node locked single user to various amount of
floating licenses. Licensing is based on the subscription where annual fees are
applied. This means that every year subscription must be renewed. At the same
time users are guaranteed to get all the updates and new versions with no extra
cost. No functionality based cost scheme is applied. All the features of CCS are
available with the subscription. This includes various DSP related features (like
C6EZFlo, Image Analyzer), Android/Linux debugging even if you develop for only
platform which do not use these features. Subscription includes all the Texas
Instruments architectures so one can develop from ULP to DSP devices. Texas
Instruments have developed even more features like GRACE (a visual peripheral
configuration generator) and System Analyzer (analyzes and visualizes internals
of the MCU like CPU load and memory usage) which makes it more powerful
than the IAR EW and the cost of the toolchain is somewhat more flexible and less
burdening than the IAR Systems provide.

41

Figure 8: Snapshot of the CCS IDE

3.1.1.3 Conclusion

Finally CCS was used throughout of the work that is presented here. Code
Compose Studio provides IDE that is more functional and less erroneous, the
support is more future proof and the Eclipse ecosystem provides many plugins
and enhancements. Lately Texas Instruments have put more focus on supporting
CCS than they do with IAR EW. Although the proprietary compiler of IAR
Systems can generate more efficient code, the difference is dismal in the context
of sensor network applications on MSP430.

 IAR Embedded
Workbench

Code Composer Studio

Supported OS Windows (XP, Vista, 7, 8) Windows (XP, 7, 8),
Linux

Cheapest license ~1200 USD (baseline
package)

445 USD (node locked,
single user, annual)

Trial version
constraints

30 day evaluation or 4KB
code size limit

30 day evaluation (can
be extended) or 16 KB
code size limit

Requirements for host
machine

1GB RAM, 2GB disk
space, at least Windows
XP

1GB RAM, 300MB disk
space at least

42

Languages supported Assembly, C, C++ Assembly, C, C++

C standards supported C89, C99, Embedded C++ C89, C99, C++03

Features Librarian, Texas
Instruments ULP
advisor, C-Spy debugger,
MISRA C, RTOS support

Librarian, GRACE, Texas
Instruments ULP
advisor, SYS/BIOS real-
time OS, Linux/Android
Debug, C6EZFlo, System
Analyzer, Image
Analyzer, Scripting,
Optimizer assistant

Table 3: Comparison of IAR and CCS development environments [53, 57, 58, 59, 60, 61, 62]

* Quote for the IAR toolchain price was received via email.

3.1.2 Wireless development kits

There were 2 development boards used throughout this work to test and run the
solution developed. The basic differences were the size and the amount of
included tools. While Olimex product is made to supply the user with a
hardware, the Chronos kit and all its contents are made to showcase the
capabilities of Texas Instruments low power solutions.

3.1.2.1 Olimex MSP430-CCRF

The board has been designed to jump start the development of CC430 radio
devices. The development kit package includes one fully assembled PCB. The
circuitry on the board includes voltage regulator with wide range input voltage
(3-12V), external 32768 Hz and 26 MHz quartz crystal, JTAG connector, button,
LED, I/O pin holes and antenna circuitry interface. The core of the system is
CC430F5137 transceiver MCU. The size of the board is 78.49mm x 39.12mm x
1.00mm.The kit includes minimal amount of software examples for the CC430
family transceivers.

The simplicity and the size of the board is perfect for the development. One can
easily access pins, while keeping the size of the board minimal. The I/O pin
layout design with the Chronos kit watch (see next chapter) is compatible, which
enables one to run the same code on both of the kits without any pragma
switches at the code level. Only drawback of the kit is the need to purchase the
programmer separately. For the development of this work the Olimex’s MSP430-
JYAG-TINY-V2 programmer was used. [63]

43

Figure 9: Olimex MSP430-CCRF development board [63]

3.1.2.2 eZ430-Chronos

Kit includes (Chronos WHITE):

 1x eZ430-Chronos module with wristwatch housing
 1x eZ430-RF USB debugging interface
 1x MSP430F5509 + CC1101 USB RF access point
 1x 4-pin solder-on debug connector for the USB RF access point

There are 2 different versions of this kit. In this work the "WHITE" version is
used. Probably this kit has the best price to value ratio in the market (58 USD).
Included devices provide full support for development and testing of the whole
sensor network. Especially fancy is the sensor node, which by default is
embedded in the wristwatch housing and the whole set is a complete
wristwatch. The watch node incorporates touch and acceleration sensors
manufactured by Bosch. Adding to that the example software is thorough, with
multiple modes and the LCD screen on the watch much operations can be easily
done with the stock software.

Out of the box settings already enable one to experiment a lot. User interface for
the controlling (Chronos Control Center) end of the application is also powerful.

44

Support for all of the functionality can be done with the GUI application. Besides
sensor data readings one can use the application to send commands to the PC.
The support for keystrokes and mouse movement is already built in to the
application. From the tabs on Chronos Control Center one can choose different
modes of functionality: live acceleration data, PC control via watch, time
synchronization, temperature and altitude logging and wireless firmware
update. With another utility for PC – Chronos Datalogger – one can log the
different sensor readings, over the long period of time.

Modifying the Chronos watch hardware is somewhat complicated due to the
relatively tiny PCB. Available I/O is mostly occupied by the LCD. But the small
size does not limit the kit to be able to operate at the low frequencies. All 3
different regions are represented: 433, 868 and 915MHz range. The example
software can be downloaded and used as a basis for one’s project. All parts of the
software is left without obfuscation, so one can use it as a powerful application to
modify it to ones needs.

This kit is the most suitable for the introduction of MSP430 RF devices. Other
devices included (debugger/programmer, RF USB dongle) can be easily used for
other MSP430 related projects as well, because they are compatible also with
other MSP430 devices. Same for software, which is a great source of portable
code for MSP430 RF devices. Software can be downloaded for the radio modules
as well for PC applications. [64]

Figure 10: eZ430-Chronos kit devices – watch, programmer, access point

45

3.1.3 Texas Instruments Chronos software

The software library which was taken as a reference for the current work is a
Texas Instruments Chronos wireless development system. It comes as
supporting software package for the development kit of physical devices
consisted of watch, access point and debugger/programmer (see Section 3.1.2.2).
Besides the tools on PC to invoke commands and receive data on the devices it
includes all the sources for the firmware of the devices and the graphical
interface. Thus making it a perfect reference platform for a custom MSP430 radio
design, enabling one to develop an application from top to bottom.

Software libraries used in this work are a Code Compose Studio projects for
Chronos watch and USB access point. Firmwares for both of the devices are
modified a lot since the logic includes a lot of Chronos application specific code.
That means the communication layer and main logic flow is heavily modified for
the Chronos watch features. If one wants to develop clean code (e.g. only code
that is related to one’s application) a lot of the Chronos specific code must be
deleted and redesigned. That is valid for the project settings also. Nevertheless
this approach is less time consuming than developing from the scratch.

Common layer for both of the projects is SimpliciTI radio library (Section 3.1.5).
Since both of the radios, in order to communicate, must use the same parameters
and protocol design. The same is valid for the Bluerobin radio module. Although
just about anything else is different between two projects, since one is battery
operated end device and the other one is USB connected radio access point.

3.1.3.1 Chronos watch software

Software modules are grouped into folders which makes the project easy to
manage. Basic modules are SimpliciTI library for radio, driver modules (SPI, I²C)
for the logic of the on board peripheral modules (acceleration, pressure), logic
module for the application menus (state variables, handling the shutdown states
of the driver modules) and Bluerobin radio protocol specifics.

The top logic of the project is contained in the main.c file in the project root
folder. Reading the code inside one can get a quick overview of the firmware, its
states, modules and global variables. The main() function can be easily
modified to meet the requirements of one’s application.

As can be seen from the main logic, the essence of the application is quite thin.
Application and peripherals specific initialization logic is implemented and no
further modifications and conditional switching is not needed. The program
continuous cycle is simple too. When the device has run the specific logic of one
of the application features, the user interface (the LCD display on watch) is
updated and the device goes back to low power mode. Waking up the device is
done by the timers or buttons.

When the code gets analyzed and tested deeper the shortcomings arise in the
context of this work. First, the dedicated timer is assigned to any of the actions
including wireless data transmission, which means that it cannot be used for

46

surveying some physical phenomenon over long period of time. It is present to
limit the energy consumption when there is unintended triggering of the
sequence. Second the frequency of the data packets is too sparse. Cause of this is
the relatively heavy logic associated with the program flow of transmission and
synchronous measurements of the sensor data. Last issue connected to the
wireless data transmission is the link validation check. When the link has been
first established, there will be a sequence of data packets transmitted, even when
the addressee is not present anymore.

The benefits of the software stack is associated with the working wireless library
and utilities for the CC430 modules. The integration of the SimpliciTI library,
means that there is no need to supply and modify the library to one’s project. A
thin layer of board support package has been set up which supplies simple
functionality to the library like I/O, timers, buttons etc. The MCU specific register
related defines has been set up, so one do not have to adapt the library to the
current radio chip. The utilities can be everything related to functionality like
timers, LED lights, interrupts, sleep routines that can be reused as original or
modified forms in one’s application.

Figure 11: Chronos watch software flow [64]

47

3.1.3.2 Chronos access point software

The access point is essentially a driver for the backend, which in the context of
Chronos application is a PC. It has two distinct components: USB logic and
Chronos SimpliciTI radio network logic. Each part is being run asynchronously
as much as possible where the Chronos SimpliciTI radio network logic is the
application main flow. USB part is running mostly interrupt based since it has to
move the data buffers from one end to another. The main principal moving
information between the PC and the access point is command – data response
logic. With every command and data transfer the PC must issue a command with
length byte plus data, which will then trigger a response from access point. For
example if wireless data is needed to be moved, the PC must first issue
corresponding command to access point, which will transfer the data if available.

When command is invoked by the PC, first it gets decoded in the access point. If it
is SimpliciTI specific, it is getting relayed to the corresponding wireless task. The
PC does not have to handle the SimpliciTI logic, the wireless application specifics
is implemented in the access point. The data, commands and modes of
functionality of SimpliciTI application are all handled in the access point.

With the poll-receive logic with PC and thick layer of SimpliciTI logic for the
access point link, the firmware is relatively slow. For example larger and more
frequent data packets from the end device are getting lost, as was experienced
during the tests. In the context of this work more data is needed to be put
through, so the present logic must be changed. Another drawback is the support
of the connection of one device only. This could be increased as it is supported by
the SimpliciTI stack.

Figure 12: Data movement between the devices of Chronos development kit

48

3.1.4 CC1101 Chipcon radio transceiver

Besides the basic properties like the frequency ranges and supported
modulation schemes that was covered in Section 2.2, more information is given
about the internals of the transceiver. Features like packet handling, sensitivity
and power consumption are described.

3.1.4.1 Differences between versions

CC1101 radio is an upgrade from CC1100, which is not recommended for new
designs anymore. While they remained compatible in code and register settings
level, there were some fine tune enhancements. Main upgrades over the old
version included the received signal attenuation option, receiving circuitry ADC
settings retention, better noise immunity and more frequency bands. [65] Other
than that the chips are interchangeable and can communicate to each other.

The differences between CC430 and the original CC1101 are also minor. Most of
the changes are due to the fact that it is embedded into the MSP430. For example
some signals are mapped differently (GDOx multiplexing) and the core can
execute commands while in sleep state. Main differences that can be taken into
consideration are the void of the forward error correction and interleaving and
everything related to the states. Other than that no changes to the design that
could affect the performance or command strobes execution. [43]

3.1.4.2 Design and features

Since the radio is designed focusing on proprietary solutions, it is not compatible
with any of the major protocols under the IEEE 802.15.4 umbrella. Although the
802.15.4g standard have amendments, which included FSK modulation
(supported by the circuitry) and more sub 1 GHz frequency bands. [66] But in
practice the FSK modulation is not supported in PHY/MAC layer by any major
protocols like ZigBee or 6LoWPAN. The FSK modulation can be used for Wireless
M-Bus protocol for example.

The functionality has special features to support one’s protocol design. For
example hardware supported general packet format design that enables the
application to optionally configure length and address bytes which are then
automatically added and checked by hardware with each packet. For a robust
performance and valid data, the CRC can be automatically added and checked
also. All these fields can be used to do the automatic filtering of packets to speed
up the packet processing. The packet length filtering is more varied. One can
choose between fixed length, variable length or infinite length mode. Variable
length mode enables to discard the packets which are not having preconfigured
size. Receive and transmit buffers are 64 bytes in size, which are reserved only
for application’s data. Exception is when the receive buffer is configured to
contain RSSI and LQI plus FCS bytes. Preamble and sync bits can be configured to
have determined length and value. These mechanisms can contribute to the
packet filtering and more reliable performance of radio link by enabling settling
time for the receiving circuitry to detect the info bits correctly.

49

Figure 13: The packet format of the CC1101 radio [43]

Chip has multiple energy and pass rate efficiency mechanisms. The simplest form
of this is the CCA, the condition which must be satisfied before the radio will
enter the transmit state. This helps to keep the noise low on the channel by not
enabling to talk while there is some other transmission active at the same time.
Whitening is a technique which applies some determined loops of code on the
data. This can be used for encryption and data link reliability purposes. At the
technical point of view it keeps the output bandwidth power distribution
smooth. Using the chips applied on data, keeps it more random, since data can
contain long sequence of zeroes and ones, this will decrease the error rate.
Another technique that is for example applied on Bluetooth communication
links, is the frequency hopping. When switching the frequency, the recalibration
and settling delays must be taken into account. This is supported in the
hardware where there is special registers to specify channel number and
channel spacing.

Operation modes and sequence of states are programmable. That means that one
can choose what happens after receiving or transmitting data or when the radio
is woken up. Different timers are supported for the non-deterministic events.
Receiver timeout and wake up on radio timers automatically change the state of
the radio either to sleep or vice versa. All contributing to the energy efficiency
and bigger data rate. There are four defined states: transmit, fast transmit on
(initialized and ready to transmit, goes to transmit when data is supplied to FIFO
buffer), receive, idle and sleep.

Finally the power amplifier, which greatly can reduce the power consumption
and enhance the transmission range. At the runtime the radio can use 8 pre-
determined values, which are described in the device PATABLE. The table is used
automatically by the core for some modulation shaping techniques like ASK or
OOK. The constants used to achieve certain output power at defined frequency
are different and can be calculated from the datasheet. [51] Range of values for
the output are from -30 to +13dBm. [51, 67, 68]

3.1.4.3 Programming model

Since Chipcon based radio cores are used in many different configurations in
different designs (Section 3.1.2.1, Section 3.1.2.2 and Section 3.1.6.2) there are
different ways to do the radio controlling and programming. Radio registers are
like the microcontroller registers where everything system specific (from signals
to threshold values to constants) can be controlled, read and configured. When
one uses the SoC variant of the CC series microcontroller (like CC2530 or
CC1010), one can access the registers in their code like every other register in

50

the microcontroller memory. In the case of CC1101 the radio registers must be
accessed externally. When used as a separate transceiver module the SPI
interface is used and inside the CC430 the RF1A interface is used. Nevertheless
same principals apply to both of the controlling modes. The RF1A interface is a
collection of MSP430 internal registers that is used to interface the CC1101 radio
core. RF1A interface can be used to control everything from data transfer, status
feedback to interrupt vectors. The write byte/word, read byte/word approach is
used for both the SPI and RF1A approach. There are different instructions
defined that can be invoked via interface to set the state, read data or configure
the registers. That means registers in the radio cannot be directly accessed. Some
complexity is added with the interface models, where additional errors can be
introduced. Nevertheless the interface model enables thoroughly to configure
and control the radio core without any notable latency.

3.1.4.4 Detailed characteristics

Parameters based on the CC430 integrated core [51]:

 Supply voltage 2.0-3.6 V
 Programmable data rate from 0.6 kbps (26 kbps for MSK) to 500 kbps

(MSK and 2-FSK) or 250 kbps (2-GFSK, OOK, ASK)
 RF crystal tolerance ± 40 ppm
 Sleep mode current consumption 100 µA, idle state 1.7 mA
 Receive current consumption 16 mA @ 250 kbps 868 MHz with -100 dBm

input
 Transmit current consumption from 18mA to 36mA @ 868 MHz with

output from -6 dBm to +11 dBm
 Receiver sensitivity -90 dBm @ 250 kbps 868 MHz, 2-GFSK modulation

3.1.5 SimpliciTI library

SimpliciTI is a wireless proprietary protocol aimed to be easy to use, lightweight
and portable across the Texas Instruments’ different transceiver controllers. It is
targeted to CC and CC430 family of microcontrollers and can be ran on MSP430
microcontrollers too. Since it is not designed to be conforming to any other
standard or protocol, it can be used by utilizing lightweight SimpliciTI API, to
implement one’s proprietary radio network and protocol on top of the stack.
Source code is free to use and redistribute. Library can be downloaded in many
configurations, since it explicitly does support different development kits and
reference designs by Texas Instruments.

3.1.5.1 Architecture

The architecture consists of 3 different layers. The data link/physical layer also
named as MRFI (minimal RF interface) contains everything specific to low level
radio registers and radio hardware management. Second layer, network layer,
deals with the logic of the SimpliciTI protocol, being the intermediate layer
between the application and low level radio interface. The most abstract layer,
the application layer, exhibits very basic up to 10 command API which can be
used from the user’s application to manage the wireless data transmission. One

51

can also build up its application using only network layer (as was done partly in
the current work), this means that the ports, addresses and contexts related to
programming model must be manually set up. [69]

The 10 APIs with the quick explanation are as following [70, 71]:

 SMPL_Init() – initialize SimpliciTI stack.

 SMPL_Link() – initiate linking sequence with the devices that are
listening.

 SMPL_LinkListen() – same as the previous, but will block until the
ACK has been received.

 SMPL_Send() – transmit array of data.

 SMPL_SendOpt() – transmit array of data, with some predefined
options like automatic ACK.

 SMPL_Receive() – receive the payload from the oldest frame in the
buffer.

 SMPL_Ioctl() – enables to configure the network layer (radio mode
and properties, address, link tokens).

 SMPL_Ping() – ping the device.

 SMPL_Unlink() – removes the link from the connections table.

 SMPL_Commission() – modify and access the connection table and
different port assignments.

3.1.5.1.1 MRFI

Relatively thin layer, where all the CC radio core specifics are being implemented
and defined. The most direct connection one usually have with this layer is the
settings file generation. Settings are described in a C header file where the values
of the registers are defined with the following pattern.

#define SMARTRF_SETTING_{REGISTER_NAME} {NUMERICAL_VALUE}

Values are read during the compile time by the preprocesser and placed into the
array, which is used to set up the radio core when the MCU starts. The settings
can be generated using the Texas Instruments’ Smart RF Studio (see Section
3.1.6.3). The generated file simply can be placed into “smartrf” folder inside the
“mrfi” layer folder tree.

There are total of 17 APIs which are exhibited in the mrfi.h header file. These
include managing and reading the radio core state, transmit power, receive and
transmit FIFO buffers and different features like address filtering.

One can easily use this layer as a software reference for its own Chipcon based
radio core software implementation. Coupled with the Texas Instruments
developer aid software, implementing only this layer is enough to send and
receive data from point to point connections.

52

3.1.5.1.2 Protocol

Protocol part of the stack is more or less implemented in the network layer and
partly in the application layer too (when hardware specific preamble,
synchronization sequence and FCS is excluded). Data packets are relatively
simple and with low overhead. Depending on the packet the SimpliciTI packet
data overhead can take up to 12 bytes. That includes length byte, destination and
source addresses (both 4 bytes), port and device info byte plus transaction ID
byte. More overhead could be present depending on the exact radio core, but
usually consists of atleast RSSI, LQI with FCS check bytes. Packet size in total is
defined by the radio core fifo buffer sizes. In the case of CC1101 used in this
work, the buffer can allocate 64 bytes. When the SimpliciTI overhead and frame
info is subtracted, the maximum payload length of 50 bytes can be sent by the
application. The maximum application payload varies but can be up to 52 or 113
(for example CC2420 [72]) bytes.

In the protocol headers, the basic functionality is utilized. The length byte
indicates the length of the total packet including length byte itself. The port byte,
indicates to which port the frame should go to (ping, link, join, user application,
etc.). Two most significant bits specify encryption and forwarding options. The
address bytes specify the source device and destination, based on which the
received frame can be discarded, forwarded or saved. Device info specifies the
device type, frame acknowledgment response or request status, receiving state,
and frame hop count. Transaction ID byte is an incrementable indicator showing
the sequence of the frame. An example flow of packets can be seen in the
appendix A.

3.1.5.2 Configuration

Library features two simple configuration files, which can be easily edited to
achieve the desired configuration. Configuration files can be found in the
„Applications/configuration“ folder in the library folder tree. The
„smpl_nwk_config.dat“ has all the definitions for the network, this must be
ecquivalent on all of the devices across the network. One can set up the
encryption, link and join tokens, maximum payload size and many more
fundamental properties of the network. This configuration file do not change
based on the device type. The „smpl_config.dat“ file is specific to a device type.
Properties like device type, device address, input and output frame queue sizes
and number of maximum connections are specified. This file most directly affects
the memory usage and performane of the device. There can be 3 different types
for SimpliciTI based networks: end device, access point and router. The
configuration should be more lightweight on memory for end devices, while
other device types should have reasonable size queue buffers and connection
tables.

3.1.6 Tools

Hardware and software tools were extensively used throughout the
development process. RF tools provided information that would have not been
obtained any other way. All the articles (except one software tool) are Texas

53

Instruments products, designed to complement the development process of their
low power radios.

3.1.6.1 CC1111 USB evaluation module kit

USB sniffer was used in conjunction with the SmartRF packet sniffer (see section
3.1.6.2) software. It is a simple to use device, which is controlled by the sniffing
software. It contains CC1111 SoC, with the radio similar to CC1101, making it
compatible (with slightly different register setup values) to communicate and
receive packets. It can capture SimpliciTI and other proprietary format data that
is compatible to the radio. . The 8051 based MCU contains radio and USB logic
which is based on the libraries that are available and free to download. It serves
the purpose of reference design and software demonstrator of how to use
CC1111 based SoC devices. [73]

Figure 14: CC1111 USB sniffer device [73]

3.1.6.2 SmartRF Protocol Packet Sniffer

It is a Texas Instruments software to support the sniffering of the wireless data
links. Supports multiple protocols and devices. From Bluetooth to ZigBee to
proprietary format protocols (including SimpliciTI) can be parsed and visualized
in the GUI. It has an extensive list of supported devices and development kits
(over 10) that can be interfaced with the tool. The radio interface settings for the
device can be loaded inside the tool, which means no reprogramming is needed
for the device to start to capture radio traffic with different parameters.

The user interface enables to select different filters for the packets to be
displayed and select the packet fields to be visible or hidden. Addresses of the
devices are automatically recorded and included in the address book, where one

54

can convienently filter devices. Interface has also the timeline where all the
traffic is visualized in sequence per device activity. Captured data can be saved to
binary format “.psd” file. Tool enables to load the data from the file also. PC
application enables to forward all the data via sockets to UDP ports, so it can be
highly customized and integrated to one’s application. The example output of the
wireless data is exhibited in the screenshot in the Appendix A. [74]

3.1.6.2.1 SmartRF Packet Sniffer binary parser

The large amounts of recorded data by the packet sniffer needed to be processed.
Since the packet sniffer can save the recorded data only to a proprietary binary
format the parser was developed. Parser reads the binary psd extension file and
translates the data to a CSV file. It is written in C++ as a Visual Studio 2013
project, but the C++ standard library is heavily used and therefore should be able
to be compiled with every standard toolchain.

The SimpliciTI packet binary format saved by the SmartRF packet sniffer
contains length of 271 byte records. The record includes utility headers like
timestamp and packet number as well a captured packet. The data that do not fill
the entire 271 byte unit, is left empty, therefore the file size is packets captured
times 271 bytes. An example of the parsing logic of the tool is included in the
Appendix C.

3.1.6.3 SmartRF Studio

SmartRF studio is a graphical tool to support the development of the Texas
Instruments low power radio devices. It can be used to evaluate the radio
devices and generate register settings. The generated settings can be
immediately tested on the connected devices – the radio link can be analyzed in
detail. Tool supports more than 30 Texas Instruments radio devices, including
the CC430 family. [75] Evaluation is supported with the features like packet
handling and command strobe panel. That enables one to analyze and create
custom packets. Also to invoke command inside the SoC devices.

In this work it was used to generate register settings for the following devices:
CC430F5137, CC430F6137, CC1111, CC1101. The tool was used in „expert
mode“, where one can specify each register settings and radio link main
properties like channel spacing and deviation frequency. An example snapshot of
the register settings window and export can be seen in appendix D. The exported
settings can have different formats. For one’s software project the C header can
be exported, for packet sniffer the „prs“ extension and multiple versions of XML
formats.

3.1.7 Software improvements

The development of more high performance sensor network required
fundamental changes in the software of access point and end device. While the
Chronos library projects were a great starting point, they were tightly bound to
the example development kits and the features exhibited. For example one can’t
use the main transmit procedure of SimpliciTI (simpliciti_main_tx()) to

55

send data at very high rates, because it includes the sampling of acceleration and
other application level logic that renders the sequence slow. Same can be said for
the access point, where the poll-response logic just did not stand up to the high
frequency polling. While the USB is fast and can have high data rates, the
encapsulation of small packets introduce big overhead and lag of the bus. The
task of the software improvements is to find the bottlenecks and make the
platform usable as a generic SHM library.

3.1.7.1 Sensor node

Restructuring needed a removal of the Chronos application logic flow first.
Initialization and setup of the application specific modules (stopwatch, Bluerobin
wireless stack, calorie counter, etc.) were removed. When the overhead of the
special functionality was removed, the wireless data transfer routines had to be
modified. Most of the work was spent on fine tuning the wireless data
transmission, packet format, timestamp generation and link robustness, the
problems described in Section 3.1.3.1 The requirements of the node is to have
high data rate (penetrate radio limits), packets acknowledgment functionality,
supported features for testing and easily modifiable software.

First the most minimalistic and economical sequence of commands needed to be
found. Since the SimpliciTI APIs are synchronous, keeping the logic as small as
possible enables to increase the transmission rate. Overall the additional
functionality is not needed anyway and when SHM application is built upon the
developed software it must be done easy and fast. The following snippet of code
is used to send data in the developed software.

void joinNetworkAndSendData()

{

 open_radio();

if (simpliciti_link())

{

 // Get radio ready. Wakes up in IDLE state.

 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, 0);

setFlag(simpliciti_flag, SIMPLICITI_TRIGGER_SEND_DATA);

SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXIDLE, 0);

 simpliciti_main_tx_only();

 clearFlag(simpliciti_flag, SIMPLICITI_TRIGGER_SEND_DATA);

 }

SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0);

sInit_done = 0;

close_radio();

}

The procedure joinNetworkAndSendData() can be called anytime and
anywhere in the code. It powers up the radio core (open_radio()), joins the

network (simpliciti_link()) and then using the SimpliciTI APIs (see

56

Section 3.1.5.1) triggers the data transmission. All the procedures called are
default APIs of the Chronos or SimpliciTI stack, except the
simpliciti_main_tx_only() which is modified according to this work
requirements. One can easily insert the application specific functionality into this
procedure or call it every time when the data is needed to be transmitted
(increases overhead). For example in the case of demo application and tests,
there is modified simpliciti_main_sync() before the transmit procedure,
to get the synchronization timestamp from the access point.

For the robustness of the link the mechanisms provided by SimpliciTI APIs can
be used. There are two different approaches: automatic acknowledgment and
user application acknowledgment or replay.

The SMPL_SendOpt() API has the acknowledgment option
(SMPL_TXOPTION_ACKREQ flag) as one of the argument. When the option is
specified the automatic ACK flag is set in the packet header, which informs the
receiver to send the confirmation. It provides the lowest overhead in the code,
seamlessly returning status code with the procedure. However, when tested, it
resulted that not all the ACK responses could not be determined by the stack.
When analyzed, the logic is implemented so that between the transmission and
ACK receiving the no-operation wait is invoked. When there is not the packet
received within the wait duration, the confirmation is discarded. For alleviation
one could increase wait time, but that will increase the total synchronous
operation time, which in turn decreases the data throughput. With simple
applications this approach is recommended, for more sophisticated
requirements custom acknowledgment logic should be implemented. The user
application can use the SMPL_SendOpt() and SMPL_Receive() APIs for the
confirmation or use embedded logic inside the packet. With the latter approach
there is more specialized functionality depending on the application and can
increase the reliability while not hampering the throughput.

One of the tasks which was not directly connected to the radio network, but
needed to be used as the transmission data, is the timestamp. Timestamp is the
essential data in the sensor measurements. The MSP430 platform features RTC
module, which asynchronously can count the time, without requiring direct
processing power and can function in various low power modes. The drawback
however is the second resolution which is not satisfactory for the high sample
rate measurements. At least a millisecond resolution timestamp is needed, which
would enable sample rates up to 1 kHz. The MCU Timer_A was utilized for that
purpose. A capture-compare mode is used where the interrupt is generated
approximately after each millisecond. The input frequency for the timer is the
output of external low power 32768 Hz (±20ppm) quartz crystal. The base
counter is the Unix time_t data type, which is synced from the access point. The
32-bit universal time structure and 16-bit millisecond is sent with the packets in
the test and demo modes. The following code demonstrates how the timestamp
is counted.

void timestampTick()

{

 if (++s_timestamp.milliseconds >= 1000)

57

 {

 s_timestamp.seconds++;

 s_timestamp.milliseconds = 0;

 millisecondCorrectionCounter = 1;

TA0CCR1 += 50;

return;

}

if (millisecondCorrectionCounter++ >= 4)

{

 millisecondCorrectionCounter = 1;

 TA0CCR1 += 32;

}

else

{

 TA0CCR1 += 33;

}

}

The main problems with the stock Chronos application software got resolved
while the Chronos functionality and project remain usable. The software can be
run on all the CC430 family devices as the development used both Chronos
watch (CC430F6137) and Olimex CCRF development kits (CC430F5137). The
modified application gives a great basis for the wireless network application. It is
used for the tests and demo of this work since it is easily expandable. The
diversity of different setup applications can be seen in the Appendix F where the
project’s Git source control tree is visualized.

3.1.7.2 Access point

Besides the SimpliciTI library, that is included in the end device as well and is
more or less the same, access point software runs USB stack too, which adds
burden to the hardware. The software is being run on MSP430F5509 and the
CC1101 radio transceiver is interfaced via SPI. The shortcomings exist at both
functional libraries. The software modifications add the support for multiple
devices in the wireless network, higher wireless data rate and faster data rates
on USB communication.

The poll-receive logic got eliminated from the data transfer flow. The bottleneck
already existed with the low data rate radio settings and needed to be changed.
Data transfer was slow because, the access point needed to decode the message,
forward it to the radio module, which supplied data and then the replay could be
sent back. Also when there were packets that did not got polled from PC, the data
would have been lost. Another drawback of the logic was the poll packet format,
where the length byte should have been determined before the data packet was
to be received, which in the context of this application is impossible. The flow got
redesigned. When the data is received in the SimpliciTI module it is
automatically appended to the USB buffers and sent to PC. So the burden of
handling data could be switched to operating system COM port buffers. This
approach reduced the overhead in the accompanying PC tool as well. The
software can simply read the OS COM buffers at the time it is suitable for the

58

code flow. With the OS buffers big enough for storing serial port data, there is
automatic buffering of data by the platform too.

The connection support for more than one end device got implemented. For that
purpose a SimpliciTI device specific configuration file „smpl_config.dat“ was
modified. The preprocessor definition NUM_CONNECTIONS specifies the
maximum number of supported devices. In order to support features in the
library runtime configurations the application logic needed to be changed too.
The link id table needed to be set up and integrated into the application flow,
where there should be divided processing window for each linked device.

Finally the timestamp synchronization process was implemented. The
timestamp is supplied with the SimpliciTI start command. When one starts the
end devices before the access point, that means the sensor nodes are sending
join frames before the join window is opened in the access point, one could get
synchronization error of 1 second (because end devices are sending join frames
one per second). The opening of the join window in the access point will
immediately trigger the linking frames to be exchanged between entities and
synchronization error therefore is limited by the end device polling rate. No
resynchronization of the timestamp was implemented.

The access point got the support of multiple end devices, fast wireless data
relaying functionality and for the testing and demo utilities a timestamp
synchronization flow. For the tests the access point software was again modified
to encapsulate frame receiving information with the packet sent to the PC.

3.1.7.3 Access point control tool

To control the access point and receive data, a command line tool was written in
C++. A Visual Studio 2013 project was set up with along the packet sniffer parser
(Section 3.1.6.2.1). Goal for the tool is to have a lightweight client for the access
point, which could be easily modified for different tasks.

Tool essentially consists of 1 module, where the communication with the access
point is realized and the packets from the COM port are being read and sent. For
the low level COM handle drivers the BM_Comm.c and BM_Comm.h source files
are used, which are from the Chronos kit PC tools application. The tool opens the
serial port, specified by the supplied numerical value on command line. Then
sends the SimpliciTI start command to the access point and then starts to parse
the received data. The tool has different versions depending on the output data
format, but common output format is the CSV format. The parsing and the
communication with the command line are running in two parallel threads in
order to keep the tool responsive and fast.

The source code for the tool along with packet sniffer parser can be seen at the
following link: https://github.com/svenKautlenbach/SmartRF-SimpliciTI-
Chronos-PC-suite. For a snippet of the parsing logic see Appendix G.

https://github.com/svenKautlenbach/SmartRF-SimpliciTI-Chronos-PC-suite
https://github.com/svenKautlenbach/SmartRF-SimpliciTI-Chronos-PC-suite

59

3.1.8 Radio network

When the prototype system design was being discussed there were different
configuration and setups discussed for the whole network data exchange. First
ideas were concentrated on pure power consumption point of view. The idea
was not to have the radio transceiver on every node. The data was designed to be
transferred first over the common wired network to the concentrator. Aim was
to have LIN like network where only one wire would have been needed for the
data transmission between the sensing node and the transceiver master node.
MSP430 peripherals also supported it, thanks to the various UART settings. Each
micro network would have had one master transmitter node. The concentrator
would have had the energy source with a capacity large enough to power the
sensing nodes. This design had one big advantage – low power consumption. The
power of radio transceiver would have been completely eliminated on the
sensing nodes. Charging the nodes would have been more compact either, since
only one device for each micro network would have had the need to be charged.
Also there would have been some size reduction of the nodes, since the radio
part with the PCB antenna would have been eliminated. Also there would have
been downsides as well. Wires in the composites must be small enough to not to
alter the properties of the composite itself. Also it would have added extra
complexity in the production of the material and a new approach would have
been needed to be developed. Network specific problems also raised.
Synchronizing the measurements all over the wired network until they arrive to
the end point via the concentrator would have added overhead. The concept was
initially tested by the author of this work, but did not succeed due to the
complicated and distributed data management.

Finally the wired nodes were cut from the network and the transceiver nodes
were chosen to form the network. It was supported by the Chronos libraries. The
limitations of the library was needed to be overcome though. The data rate
settings for the network provided maximum data of around 70 kbps, although
the hardware enabled more. Essentially the network was consisting of only 2
devices, making it a point to point between access point and one end device. The
changes were needed on the radio hardware settings level and the SimpliciTI
radio protocol level too.

60

Figure 15: Complete set of devices used throughout development – access point, packet sniffer (upper row),
Olimex boards with Chronos watch module in between (bottom row)

3.1.8.1 SimpliciTI design

The network is a simple collection of point-to-point connections – star network.
The master of the network is a single access point and the end devices are all
linked to it. Essentially SimpliciTI stack supports router devices and mesh
network configuration, but this practice was not tested or supported in this
work.

61

Important defined values in the SimpliciTI network configuration file:

 MAX_APP_PAYLOAD=50
 MAX_NWK_PAYLOAD=9
 APP_AUTO_ACK
 EXTENDED_API
 MAX_HOPS_FROM_AP=1

Important defines in the access point specific configuration file:

 NUM_CONNECTIONS=8
 ACCESS_POINT
 AP_IS_DATA_HUB
 STARTUP_JOINCONTEXT_ON

Important values for end device specific configuration file:

 END_DEVICE
 NUM_CONNECTIONS=1

The summary based on these defines tell that the maximum user application
payload length can be 50 bytes, which is the maximum for this type of radio. The
extended features of the SimpliciTI library can be used, like auto
acknowledgment, which is used in the tests. The hops and connection count on
end device hint that there is point to point connections. The data hub definition
along with the startup join context will make the access point automatically
listen for a new join frames from other end devices.

3.1.8.2 Register settings

To support the high data transfer the new radio register settings were generated.
Essential change is the data rate, along with the channel spacing and deviation
parameters. The modulation scheme was unchanged, although there could be
higher data rates with other modulations schemes like MSK. The use of the
Gaussian filtered FSK modulation is used because of the lower noise in the
channel and conformance to the IEEE 802.15.4 g standard. The settings were
exported as a C header file and put into the software project, where the values
could be included in the compile time.

62

Figure 16: CC430 radio register settings

63

3.2 Evaluation of wireless nodes

Infrastructure used for the tests included a Windows 8.1 equipped laptop,
Chronos access point (Section 3.1.2.2), Texas Instruments’ CC1111 USB
evaluation module kit (Section 3.1.6.1), Olimex MSP430-CCRF development
boards (Section 3.1.2.1) and battery pack to power the sensor devices (see
Appendix B).

For the tests the access point firmware was modified to meet the requirements
of data analysis format. Therefore the access point parsing tool (Section 3.1.7.3)
was modified too. Same is true for packet sniffer parsing tool (Section
3.1.6.2.1).CSV files generated by those tools were later imported to Microsoft
Excel where they could be analyzed. The firmware of the end device was
modified according to the test, but the common changes were the inclusion of
timestamp and packet counter in the packet data.

The quantity like tests were carried through in the controlled conditions, which
means no signal blocking and scattering objects between the end device and the
access point and near proximity were present to influence the results.

3.2.1 Data rate tests

The goal for the data rate tests was to penetrate the limits of the radio hardware
in conjunction with the Chronos and SimpliciTI software. The results of the tests
give approximate limits of the developed network. Data would help to answer
questions like “What are the real data rate limits?”, “Where do the bottlenecks
exist?” and “What can be done to alleviate or eliminate the problems?”. Finally
the statistical figures can be constructed and analyzed, based on the test results.

Devices are situated so that sensor devices are about 55 centimeters apart each
other. The sniffer and access point are connected to common USB hub device,
which is connected via cable to a laptop. They are situated between end devices
(see Appendix A).

Software running in end devices is modified specifically for the tests, but no
library specific parts are altered. Just the application flow and data packet
specifics. Data packets have structure that all the important information could be
analyzed with the tests. Data needs to contain information about the packets’
sequence number and the time at the end device at the time of sending.
Additional information is encapsulated by the access point to have more
sophisticated statistics per link. The data that is counted here is the actual
application payload (application useful data), without any of the SimpliciTI
overhead and radio hardware specific bytes, which makes a total of maximum of
50 bytes per packet (section 3.1.5).

64

timestamp
(time_t)

milliseconds packet index random data

4 bytes 2 bytes 4 bytes 40 bytes

Figure 17: End device packet structure for the tests

link ID packet counter RSSI LQI FCS sensor node packet

1 byte 2 bytes 1 byte 7 bits 1 bit 50 bytes

Figure 18: Access point packet structure for the tests

3.2.1.1 Maximum payload without ACK

There were more than 10 test runs, each with 10000 packets sent from the end
device. The idea was to burst out data at the maximum rate, without intervening
the software flow with other tasks.

 Average value Delta

RSSI (dBm) -44.55 0.76

LQI 49.14 0.06

Pass rate 96.99% 8.49

Average bit rate (kbps) 105.55 4.31

Absolute maximum
during 1 second period
(kbps)

135.1 17.2

Table 4: Data rate test without acknowledgment

3.2.1.2 Maximum payload with ACK

Test setup is identical to the previous test, with the exception of the ACK frame
response usage. As can be seen there are no losses, all the packets were received.
At the same time can be seen that the throughput has reduced.

65

 Average value Delta

RSSI (dBm) -52.8 14.12

LQI 49.0 0.19

Pass rate 100% 0

Average bit rate (kbps) 50.75 38.4

Absolute maximum
during 1 second period
(kbps)

74.4 8.8

Table 5: Data rate test with the acknowledgment

3.2.2 Line of sight tests

The transmission range test can determine many parameters of the devices. First
the actual distance that could be covered with the radio link. Second the chip
capabilities can be determined. The sensitivity limit, which is one of the key
parameters for transceivers, is put to the test. The limit of sensitivity level is the
threshold where the data transmission errors start to occur.

The receive statistics were analyzed approximately after each 10 meters.
According to the Olimex development board datasheet, range up to 85 meters
could be achieved with the 250 kbps data rate at 868MHz. [63] The maximum
range that finally was put to test was 100 meters, where still some packets could
be captured. The sensitivity limit of -90 dBm was determined. This is the level
where more than 95% of the packets were not received correctly. The datasheet
[51] states -100dBm sensitivity, which could be true, but probably with very
high error rate and practically not usable radio link. Since near the sensitivity
limit the transmission error is fluctuating a lot, the exact ratio between distance
and the packet loss cannot be determined. During the tests at 40 meters away
from the transmitter 100% of packets could be recorded, farther away errors
started to occur. The error rate between 60 – 90 meters was very volatile and the
exact loss ratio was hard to determine. Thus only true metrics that can be
associated with the data range and link error rate is the sensitivity limit. This can
be different with different speed and register settings. Also this is heavily
dependent on the environment. Tests were carried at the outside conditions on
the flat field, with no major agitators.

3.2.3 Energy consumption tests

The supply voltage supplied to the circuitry is 3.3V due to the voltage regulator
present on the development board. The current consumed by the circuitry was

66

measured using the low ohm resistor (3 ohms) in series with the supply line. The
voltage drop on the element was measured with an oscilloscope.

3.2.3.1 Transmit

Current is measured while the device is on the burst transmit mode, like in the
data transmission tests (Section 3.2.1). Sending the maximum packet length of
50 bytes ensures the high duty cycle and correct mean peak values in the current
consumption readings. The values of 20.13 to 24.13 mA was measured with the
output power ranging from -6dBm to 0dBm.

Figure 19: Measurement of the transmission current consumption

3.2.3.2 Receive

In this test the device is in the receive mode while second device is sending burst
of data packets. Test setup is the same when measuring current consumption in
transmit test, except the device is in the opposite mode.

The values measured were rather static. A rough 17 mA current consumption
was recorded at around -40dBm sensitivity.

3.2.3.3 Idle

The device has been initialized and has done the same start up procedures as in
the usual working condition. The current consumption is measured when the
program is cycling in an endless loop while incrementing integer. Two
measurements are done. First measurement without the radio core being shut

67

down (in the idle mode) results in current consumption of 4.58mA. When the
radio core is completely shut down the 2.87mA reading is obtained. This
indicates that shutting down the radio core while not transmitting or receiving
data can save around 1.80 mA.

3.2.3.4 Sleep

In this test, the peripherals and clock system is initialized as in other applications
of this work. The MCU is put to sleep, while the radio core is powered down. The
sleep mode LPM3 is activated. A reading 4.2µA was obtained.

3.2.3.5 Results

Current consumption comparison between the experimental tests and
datasheets at 3.3V supply.

 Transmit (0
dBm)

Receive
(near -40
dBm)

Idle / Idle with
radio off

MCU sleep
(LPM3)

Tests 24.13 mA 17.06 mA 4.58mA/2.87mA 4.2uA

Datasheet 18 mA 15mA x 2.2uA

Table 6: Current consumption

On the datasheet row the data is the combined information from Olimex datasheet
[63] and the CC430 family datasheet [51]. One must note that datasheets are
referring to typical average values, so the comparison is not absolute.

3.2.4 Demo application

For the graspable results of this work and a working live example, the demo
application was designed. It is based on the same radio parameters and Chronos
library modifications as already explained in previous chapters. Minor
modifications were done on the packet parsing logic of the PC access point tool
and on the end device itself to include the sensor measurements and data
capsuling into a packet.

The sensor data objects were added to the payload. Sensor measurement objects
are containing as less overhead as possible. One sample of physical phenomenon
object size is 3 bytes, where the first byte marks the type plus 2 bytes for the
calculated value. The type byte is an ASCII char, which is chosen to represent the
first letter of the name of the sensor type. Since all the physical values measured
can be fit into 16 bits variable, 2 bytes are allocated for the converted value.

68

Sensor data object.

type measurement data

1 byte 2 bytes

Figure 20: Sensor data object structure

Where type can have the following values:

 ‘x’ – accelerometer x-axis
 ‘y’ – accelerometer y-axis
 ‘z’ – accelerometer z-axis
 ‘b’ – battery/operating voltage
 ‘t’ – temperature

Complete packet format used in the demo, sent by the end device.

timestamp
(time_t)

milliseconds packet
counter

sensor data objects

4 bytes 2 bytes 4 bytes n x 3 bytes

Figure 21: Packet structure of the end device in the demo application

The output of the demo can be seen on the command line where the last values
of all of the nodes connected are printed. Additionally the tool logs all the
received packets to a CSV file.

The demo also exhibits the compatibility of the code between the CC430 family
transceivers, where the same firmware is run on Chronos watch device and
Olimex development board (Section 3.1.2). Both of the devices can be linked to
the access point without any difference at the sequence of operation.

3.2.5 Results

With the results that are moderately worse than specified by the datasheets, the
combination of software and hardware shortfall can be implicated. However in
real life scenario the measured values are not awful either. Datasheets state the
laboratory results, while the real life data that was recorded by the tests had the
burden of software, timers and probably not the most fine-tuned power settings.

The wireless data link results indicate that the software performance probably is
the bottleneck for the data rate. The period of roughly 3.4 milliseconds was
measured of one SMPL_Send() call which results about 295 calls in one second.
Now when the packet length is 50 bytes, the theoretical maximum rate of 117

69

kbps is achieved. That means the test results actually showed that with the
average of 105 kbps indeed the close maximum rate was achieved. The
maximum rate of 135 kbps in one second frame was recorded, which shows the
data rate that can be achieved with the perfect conditions. The volatility of the
data rate and also the SMPL_Send() duration is present. That is the result of
the CCA mechanism which is measuring the noise in the channel and therefore is
controlled by the environmental conditions. Now when the SimpliciTI overhead
is added to the payload calculations too, which makes 64 bytes per packet, the
average data rate of 150 kbps is the true value of the link. So 150 kbps out of the
datasheet stated 256 kbps is pretty good result, because there are more hidden
payload by the radio packet format and the radio driver used by SimpliciTI is not
the most efficient. Details of enhancements will be covered in the next chapter.

Another rather positive outcome was the packet error rate of the transmission
without the ACK mechanism. A roughly 97% pass rate is a very good result when
the transmission was simply bursting out data. Although with the packet sniffer,
all packets were captured successfully. Which simply indicates the burden of the
software overhead for the access point, since the two devices were equally close
to the transmitter. If one closely follows the sensitivity limits, the use of
acknowledgment do not add extra value in the network because it simply
decreases the data rate too much.

Another implication of the tests showed that when multiple devices are trying to
transmit on the same channel the real throughput in the channel do not increase.
So the data rate results should roughly be divided with the number of devices on
the channel. Another issue that would be added with the multiple devices is the
scheduling, which will decrease the throughput even more.

The current consumption tests showed that for large scale data transmission the
solution is not sustainable. During one transmission period of 3.4 ms the current
consumption is roughly 24mA. When the two standard AAA batteries, which
could be used to power the device, are taken into account around 1000mAH
capacity could be reached. With a power source like that one could roughly
transmit continously 40 hours. With a scheduling algorithm this could be of
course increased dramatically. When the amount of data is calculated the
1000mAH capacity source could be used to transmit around 1.9MB worth of
data. With this energy consumption the solution is suitable for only infrequent
monitoring of objects.

The demo application however showed that for low rate monitoring
applications, even up to three devices could be successfully used in one common
network. The devices do not appear to have any major problems of connecting
and receiving data.

70

4 Summary and future work

The Chronos development kit based solution got largely upgraded network
physical layer. On top of it new layer functionality was developed. With the radio
devices the accompanying PC tools and access point software was enhanced too.

Author of this work reached a conclusion where it was found that with the usage
of SimpliciTI library that is the essence of the network implementation, near
limit performance was showcased. Following guidelines are the blueprints that
the author suggests to follow for the future enhancements of similar work:

1) Access point logic should run in the PC. The dongle hardware should feed
all the radio data directly to the PC. This way there will be much more
processing power to do the network related task. At the same time
dedicated hardware can effectively deal with the radio network only. This
approach also gives better modularity and dynamics of the solution.

2) While SimpliciTI library is a great for custom sensor network solutions,
because of the low overhead, it was designed having a low throughput
networks in mind like home automation. The library already incorporates
drivers for Chipcon radio family. On top of the “mrfi” layer new
implementation should be written, which would use the resources more
efficiently.

3) The radio chip FIFO buffers should be used in a different way, utilizing
“infinite length” packet format. The support at the architectural level for
that is present. The SimpliciTI simply fills the buffer then waits when all
the data is sent and then going through the initialization procedures fills it
again. With infinite packet length format the buffers will be filled
whenever there is free slot in the memory. This is interrupt based and
efficient.

4) MSK and GFSK modulation schemes comparison research. The CC430
family RF circuitry does not support the Gaussian filtered MSK
modulation, which makes the use of MSK to pollute the spectrum with
higher level of noise. The approach where the frequency agility is used
with the MSK could be researched. Since MSK modulation is stated to
double the data rate, the research comparing the data rates achieved with
multiple device network using cleaner spectrum GFSK versus MSK could
be done.

71

5 Acknowledgments

I am extremely thankful for all the people who did contribute in any form or
level. My colleagues at Axinom, who managed to allocate me the vacation to
finish the studies and cope with the reduced input to important projects. Directly
influenced my progress the people who were participating at the “Smart
Composite” working group at the university – thank you for your patience and
tolerant attitude towards my delays and “could not find time” project updates.
You all shared a lot of knowledge.

Instrumental to the whole process were the programs which funded the
research. Archimedes funded project AR 12139 “Smart Composites – Design and
Manufacturing” enabled to group all these awesome people and work together.
Texas Instruments “European University Program” enabled to use full featured
development tools for MSP430 platform for free, anywhere, anytime.

Thanks to the guy, who has chosen to be anonymous, with whom I had an
opportunity to work side by side when I was doing laboratory work at the
university. Thanks for the educational chats and thorough help whenever
needed. Henrik Herranen, who was the leader of Smart Composite working
group, always kept up the energy and through his efforts everything was moving
all the time. Finally my supervisor Olev, who directly gave input of any form –
development devices, code and experimentation results. Thanks for allocating
the time and sharing the great ideas about the thesis content!

72

6 References

[1] J. P. Lynch and K. J. Loh, “A Summary Review of Wireless Sensors and
Sensor Networks for Structural Health Monitoring”, The Shock and
Vibration Digest, Vol. 38, No. 2, (2006)

[2] G.-D. Zhou and T.-H. Yi, “Recent Developments on Wireless Sensor
Networks Technology for Bridge Health Monitoring”, Mathematical
Problems in Engineering Volume 2013, Article ID 947867, (2013)

[3] D. Krantz, J. Belk, P.J. Biermann, J. Dubow, L.W. Gause, R. Harjani, S.
Mantell, D. Polla, P. Troyk, “Project Update: Applied Research on
Remotely-Queried Embedded Microsensor”, Proc. SPIE 3673, Smart
Structures and Materials 1999: Smart Electronics and MEMS, 157, (1999)

[4] E.G. Straser, A.S. Kiremidjan, “A modular, wireless damage monitoring
system for structures.”, (1998)

[5] J.P. Lynch, K.H. Law, A.S. Kiremidjian, E. Carryer, “Design and performance
validation of a wireless sensing unit for structural monitoring
applications”, Structural Engineering and Mechanics, Vol. 17, No. 3-4,
(2004)

[6] J. P. Lynch, K. H. Law, A. S. Kiremidjian, T. W. Kenny, E. Carryer and A.
Partridge, “The Design of a Wireless Sensing Unit for Structural Health
Monitoring”, (2001)

[7] J. P. Lynch, K. H. Law, A. S. Kiremidjian, T. Kenny and E. Carryer, “A
wireless modular monitoring system for civil structures”, (2002)

[8] S. Aoki, Y. Fujino, M. Abe, “Intelligent bridge maintenance system using
MEMS and network technology”, Smart Structures and Materials 2003:
Smart Systems and Nondestructive Evaluation for Civil Infrastructures,
Shih-Chi Liu, Editor, Proceedings of SPIE Vol. 5057, (2003)

[9] Micro.2420 U100 Datasheet (2007, visited 03.04.2014).
http://www.ee.oulu.fi/~ikram/microseries/sensinode-

datasheet-U100R2-20070923.pdf
[10] M. Bocca, E. I. Cosar, J. Salminen, L. M. Eriksson, “A Reconfigurable

Wireless Sensor Network for Structural Health Monitoring”, 4th
International Conference on Structural Health Monitoring of Intelligent
Infrastructure (SHMII-4), (2009)

[11] E. I. Cosar, “A Wireless Toolkit for Monitoring Applications”,
Master’s thesis, Helsinki University of Technology (2009)

[12] S. G. Taylor, K. M. Farinholt, E. B. Flynn, E. Figueiredo, D. L.
Mascarenas, E. A. Moro, G. Park, M. D. Todd, C. R. Farrar, “A Mobile-Agent
Based Wireless Sensing Network for Structural Monitoring Applications”,
(2009)

[13] A Multi-Agent Platform for Mobile C/C++ Agents (visited
02.05.2014). http://www.mobilec.org/overview.php

[14] D. Maurer and A. Descombes, “Selecting an embedded MCU: How
to avoid evaluation trap?”, (visited 02.03.2014). http://www.design-
reuse.com/articles/22878/embedded-mcu-selection.html

[15] J. Borgeson, S. Schauer, H. Diewald, “Benchmarking MCU power
consumption for ultra-low-power applications”, (2012, visited

73

21.03.2014).
http://www.ti.com/lit/wp/slay023/slay023.pdf

[16] Y. Wang and K. H. Law, “Wireless Sensor Networks in Smart
Structural Technologies”, (visited 18.03.2014).
http://eil.stanford.edu/publications/yang_wang/InTec

h_Wireless_Sensing_Control.pdf
[17] “ARM, Renesas,TI join move for low power MCU benchmark”,

(visited 11.03.2014).
http://www.electronicsweekly.com/news/components/mic

roprocessors-and-dsps/arm-renesasti-join-move-for-

low-power-mcu-benchmark-2013-02/
[18] “ULPBench™ Benchmark Software”, (visited 11.03.2014).

http://www.eembc.org/benchmark/ulp_sl.php
[19] “Accurate power consumption estimation for low power MCUs”,

TA0342 Technical Article, 018552 Rev 1, (2011, visited 11.03.2014).
http://www.digikey.com/web%20export/supplier%20conte

nt/stmicroelectronics_497/mkt/stm32/DM00024152.pdf?r

edirected=1
[20] H. Diewald, “Low-power MCU benchmarking: what datasheets

don’t tell you”, (2013, visited 12.03.2014).
http://www.embedded.com/design/power-

optimization/4421443/1/Low-power-MCU-benchmarking--

what-datasheets-don-t-tell-you
[21] R. Kale, N. Singh, H. Alasti, A. Nasipuri, R. Cox, J. M. Conrad, L. V.d.

Zel, B. Rodriguez, R. McKosky and J. Graziano, “Design and
Implementation of a Wireless Node for Advanced Sensor Processing and
Network Integration”, IEEE (2010)

[22] “IEEE 802.15.4”, Wikipedia, (visited 05.05.2014).
http://en.wikipedia.org/wiki/IEEE_802.15.4

[23] M. Loy, R. Karingattil, L. Williams, “ISM-Band and Short Range
Device Regulatory Compliance Overview”, Application Report, SWRA048,
(2005, visited 13.03.2014).
http://www.ti.com/lit/an/swra048/swra048.pdf

[24] T.-H. Lee, H.-S. Chiang, L.-H. Chang, M.-C. Hsieh, “Performance
Analysis of IEEE 802.15.4 868MHz, 915MHz and 2.4GHz Physical Schemes
in 6LoWPAN”

[25] M. Woehrle, M. Bor, K. Langendoen, “868 MHz: a noiseless
environment, but no free lunch for protocol design”

[26] “Free-space path loss”, Wikipedia, (visited 01.05.2014).
http://en.wikipedia.org/wiki/Free-space_path_loss

[27] “Designer’s Guide to LPRF”, TI Low Power RF, (2010, visited
23.04.2014).
http://www.ti.com/lit/sg/slya020a/slya020a.pdf

[28] “RF Transceivers”, (visited 25.04.2014).
http://www.semtech.com/wireless-rf/rf-transceivers/

[29] “Personal Area Networks”, (visited 25.04.2014).
http://www.microchip.com/pagehandler/en-

us/technology/personalareanetworks/home.html
[30] „Ultra low power wireless solutions“, (visited 25.04.2014).

http://www.nordicsemi.com/eng/Products

74

[31] „Low-Power RF Solutions“, (visited 25.04.2014).
http://www.st.com/web/en/catalog/sense_power/FM1968/

CL1976
[32] „32-bit MCU and IEEE802.15.4 transceiver for low-power wireless

networks“, (visited 25.04.2014).
http://www.nxp.com/products/rf/wireless_microcontrol

lers/#overview
[33] „Application and design manual for High Performance RF products“,

NXP Semiconductors RF Manual 17th edition, (2013, visited 25.04.2014).
http://www.nxp.com/documents/selection_guide/7501742

8.pdf
[34] „JN516x Wireless Microcontrollers“, (visited 25.04.2014).

http://www.nxp.com/techzones/wireless-

connectivity/jn51xx/jn516x.html

[35] „HCS08 8-Bit Processor“, (visited 25.04.2014). http://www.ip-
extreme.com/IP/hcs08.shtml

[36] „Transceivers and Wireless MCUs“, (visited 25.04.2014).
http://www.freescale.com/webapp/sps/site/taxonomy.js

p?nodeId=0106B9837F
[37] „Sub-1 GHz Wireless“, (visited 25.04.2014).

http://www.freescale.com/webapp/sps/site/application

.jsp?code=APL1GHZWRLSS
[38] „Wireless Development Tools“, (visited 27.04.2014).

http://www.silabs.com/products/wireless/Pages/Develo

pmentTools.aspx
[39] „Wireless Microcontrollers (MCUs)“, (visited 27.04.2014).

http://www.silabs.com/products/wireless/wirelessmcu/

Pages/default.aspx
[40] „802.15.4 Microcontrollers“, (visited 27.04.2014).

http://www.atmel.com/products/wireless/802154-

microcontrollers/transceivers.aspx
[41] „Broadband RF/IF“, (visited 27.04.2014).

http://www.ti.com/analog/docs/enggresdetail.tsp?fami

lyId=367&genContentId=3573
[42] „TI Completes Acquisition of Chipcon“, Investor Relations, (visited

27.04.2014).
http://www.ti.com/corp/docs/investor/compinfo/PRarch

ive/sc06014.shtml
[43] „CC430 Family User Guide“, SLAU259E, (2013, visited 12.02.2014).

http://www.ti.com/general/docs/lit/getliterature.tsp

?baseLiteratureNumber=SLAU259
[44] nRF9E5, Multiband Sub 1-GHz RF System-on-Chip, (visited

28.04.2014). http://www.nordicsemi.com/eng/Products/Sub-
1-GHz-RF/nRF9E5

[45] SPIRIT 1, Low data rate, low power sub-1GHz transceiver, datasheet,
(2013, visited 28.04.2014). http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data

sheet/DM00047607.pdf

75

[46] OL2381, Highly integrated single-chip sub 1 GHz transceiver,
product datasheet, (2011, visited 28.04.2014).
http://www.nxp.com/documents/data_sheet/OL2381.pdf

[47] MC12311 Highly-integrated, cost-effective single-package solution
for the sub-1 GHz, Wireless MBUS Standard, (2011, visited 28.04.2014).
http://cache.freescale.com/files/rf_if/doc/data_shee

t/MC12311.pdf
[48] Si106x/108x, Ultra-Low Power MCU with Integrated High-

Performance Sub-1 GHz Transceiver, (visited 07.05.2014).
http://www.silabs.com/Support%20Documents/TechnicalD

ocs/Si106x-8x.pdf
[49] Silicon Labs MCU Selector Guide, (2014, visited 07.05.2014).

http://www.silabs.com/Marcom%20Documents/Resources/m

cu-selector-guide.pdf
[50] AT86RF212B, Low Power, 700/800/900MHz Transceiver for ZigBee,

IEEE 802.15.4, 6LoWPAN, and ISM Applications, (2013, visited
07.05.2014). http://www.atmel.com/images/Atmel-42002-

MCU_Wireless-AT86RF212B_Datasheet.pdf
[51] MSP430™ SoC With RF Core, (visited 03.03.2014).

http://www.ti.com/lit/ds/symlink/cc430f5137.pdf
[52] “MSP-EXP430FR5739 FRAM Experimenter Board”, User’s Guide,

SLAU343B, (2012, visited 15.11.2013).
http://www.ti.com/lit/ug/slau343b/slau343b.pdf

[53] IAR C/C++ Compiler, Reference Guide for Texas Instruments’ MSP430
Microcontroller family, (visited 15.03.2014).
ftp://ftp.iar.se/WWWfiles/msp430/webic/doc/EW430_Com

pilerReference.pdf
[54] “Is GCC a ‘good’ compiler?”, Nigel Jones, (2010, visited 15.03.2014).

http://embeddedgurus.com/stack-overflow/2010/02/is-

gcc-a-good-compiler/
[55] “Debugging using the IAR C-SPY Debugger”, IAR Systems, (visited

17.03.2014).
http://supp.iar.com/FilesPublic/UPDINFO/005832/arm/d

oc/infocenter/tutor_debugging.ENU.html
[56] “IAR Systems ups performance for the ultra-low-power MSP430

microcontrollers from Texas Instruments”, Product News, (2013, visited
16.03.2014).
http://www.iar.com/Documents/pdf/prm/en/1483462.pdf

[57] Code Composer Studio (CCS) Integrated Development Environment
(IDE), (visited 16.04.2014). http://www.ti.com/tool/ccstudio

[58] Download CCS, Texas Instruments Wiki, (visited 26.01.2014).
http://processors.wiki.ti.com/index.php/Download_CCS

[59] “IAR Embedded Workbench for TI MSP430”, INTEGRATED
DEVELOPMENT ENVIRONMENT AND OPTIMIZING C/C++ COMPILER FOR
MSP430, (visited 15.03.2014).
http://www.iar.com/Products/IAR-Embedded-

Workbench/TI-MSP430/
[60] System requirements, (17.03.2014).

http://www.iar.com/Products/IAR-Embedded-

Workbench/Technology/System-requirements/

76

[61] System Requirements, Texas Instruments Wiki, (visited 17.03.2014).
http://processors.wiki.ti.com/index.php/System_Requi

rements
[62] MSP430 Optimizing C/C++ Compiler v 4.3, User's Guide, SLAU132I,

(2013, visited 05.03.2014).
http://www.ti.com/lit/ug/slau132h/slau132h.pdf

[63] “MSP430-CCRF development board”, User’s Manual, (2013, visited
25.09. 2013).
https://www.olimex.com/Products/MSP430/Starter/MSP43

0-CCRF/resources/MSP430-CCRF.pdf
[64] eZ430-Chronos Development Tool User's Guide, SLAU292F, (2013,

visited 19.02.2014).
http://www.ti.com/lit/ug/slau292f/slau292f.pdf

[65] „Upgrade from CC1100 to CC1101“, Design Note DN009, SWRA145A,
E. Simensen, (visited 17.05.2014) .
http://www.ti.com/lit/an/swra145a/swra145a.pdf

[66] K. S. Panchal, “IMPLEMENTING PHYSICAL LAYER (PHY) OF IEEE
802.15.4G STANDARD WITH DIRECT SEQUENCE SPREAD SPECTRUM
(DSSS) USING OFFSET QUADRATURE PHASE SHIFT KEYING (O-QPSK)”,
Master thesis, San Diego State University. (2012, visited 11.05.2014)

[67] “CC430 Vs CC1101”,Texas Instruments, PowerPoint presentation,
(visited 10.05.2014).
http://www.dowellcn.com/uploadfile/CC430%20Vs%20CC11

01.pdf
[68] “Low-Power Sub-1 GHz RF Transceiver”, SWRS061l, Texas

Instruments, (visited 10.05.2014)
.http://www.ti.com/lit/ds/swrs061i/swrs061i.pdf

[69] „Introduction to SimpliciTI“, PowerPoint presentation, (visited
04.05.2014).
http://www.ti.com/lit/ml/swru130b/swru130b.pdf

[70] L. Friedman, SimpliciTI: Simple Modular RF Network Developers
Notes, version 1.10, (2007)

[71] SimpliciTI Compliant Protocol Stack, (visited 27.03.2014).
http://www.ti.com/tool/simpliciti

[72] CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,
Preliminary Datasheet, (2004, visited 18.04.2014) .
https://inst.eecs.berkeley.edu/~cs150/Documents/CC24

20.pdf
[73] „CC1111 USB Evaluation Module Kit 868/915 MHz“, (visited

05.03.2014). http://www.ti.com/tool/cc1111emk868-915]
[74] “SmartRF Protocol Packet Sniffer”, (visited 02.03.2014).

http://www.ti.com/tool/packet-sniffer
[75] „SmartRF Studio“, (visited 04.05.2014).

http://www.ti.com/tool/smartrftm-studio

77

7 MSP430 platformil baseeruv sensorvõrk

Materjalide struktuuri muutuste jälgimine on üha kasvav trend, mis areneb
suuresti tänu pooljuhttehnoloogiate täienemisele. Meetodid on samuti arenguga
kaasas käinud ning tänaseks on välja jõutud juhtmevabade sensorlahendusteni.
Sensorsõlmed on võimelised täitma suuremal või vähemal määral kõiki vajalikke
funktsioone – sensorite sampeldamine, andmete töötlemine, kommunikatsioon.

Aspekt, mis piirab funktsionaalsust on voolutarve. See probleem on eriti teravalt
esile kerkinud juhtmevabade lahendustega, kus raadiolainete vastuvõtt ja
saatmine tekitab kordades suurema energiatarbe võrreldes tavaolekuga. Peale
selle kujutab raadiolüli endast ka pudelikaela, kus ühes kanalis saab korraga
andmeid edastada üks seade. Samuti on piiratud läbilaskevõime. Sellest
hoolimata on selliste seadmete uurimine populaarne uurimisvaldkond.
Juhtmevabad sensorid võimaldavad väiksemaid seadmeid, paremat
vastupidavust keskkonnatingimustele, modulaarsemat ja paindlikumat
arhitektuuri ja seda kõike odavamalt kui juhtmega lahenduste puhul.

Käesolev töö uuris MSP430 platformil baseeruvat lahendust, kus võeti aluseks
Texas Instrumentsi Chronose arendusplatvorm. Eksisteerivat lahendust
täiendati ja mugandati vastavalt uurimitöö ülesannetele. Testid näitasid
rahuldavaid tulemusi, milel põhjal jõuti järeldusele, et väiksemamahuliste
andmete juures on süsteem kasutatav, kus ülempiiri seab voolutarve.

78

8 Appendices

Appendix A Radio link data rate test bed

79

Appendix B SmartRF Packet Sniffer records of the SimpliciTI traffic

80

Appendix C SmartRF Packet Sniffer „.psd“ file parser logic

struct packetData
{
 std::string destinationAddress;
 std::string sourceAddress;
 uint8_t port;
 uint8_t transactionId;
 std::string dataHex;
 int8_t rssi;
 uint8_t lqi;
 bool fcsOk;
};

static struct packetData parsePsd(const std::vector<uint8_t>& packetBinary)
{
 struct packetData packet = {};

 size_t dataLength = packetBinary.at(15);
 packet.destinationAddress = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 16, packetBinary.begin() + 20));
 packet.sourceAddress = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 20, packetBinary.begin() + 24));
 packet.port = packetBinary.at(24);
 packet.transactionId = packetBinary.at(26);
 packet.dataHex = "EMPTY";

 size_t applicationDataLength = dataLength - 11;
 if (applicationDataLength > 0 && applicationDataLength <= 50)
 {
 packet.dataHex = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 27, packetBinary.begin() + (27 + (dataLength -
11))));
 }

 // When there are erroneous packets logged.
 if (applicationDataLength > 50)
 {

81

 packet.fcsOk = false;
 return packet;
 }

 int8_t rawRssi = static_cast<int8_t>(packetBinary.at(27 + applicationDataLength));
 int16_t calculatedRssi = (rawRssi >= 128 ? ((rawRssi - 256) / 2 - 72) : (rawRssi / 2 - 72));
 packet.rssi = (calculatedRssi < -128 ? -128 : calculatedRssi);
 packet.fcsOk = ((packetBinary.at(27 + applicationDataLength + 1) & 0x80) > 0 ? true : false);
 packet.lqi = packetBinary.at(27 + applicationDataLength + 1) & 0x7F;

 return packet;

}

82

Appendix D Snapshot of the SmartRF Studio tool

83

Appendix E Hyperlink to all the contents of the work

https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&u
sp=sharing

Appendix F Git snapshots of the access point and the end device software
development history

https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&usp=sharing
https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&usp=sharing

84

Appendix G Access point command line tool’s packet parsing logic

void SimpliciTi::parseAndLogPackets()
{
 readData(false, 50);

 while (m_comDataBuffer.size() > 0)
 {
 // We do not know the new packet length and we must have atleast the complete header.
 if (m_currentPacketSize == 0)
 {
 // Not enough data to find the header though.
 if (m_comDataBuffer.size() < USB_PACKET_HEADER_LENGTH)
 {
 return;
 }

 // Searching for 0xFF, 0x06.
 auto newPacketBeginning = std::search(m_comDataBuffer.begin(), m_comDataBuffer.end(),
usbPacketStartSequence.begin(), usbPacketStartSequence.end());

 // Complete packet header not found.
 if (newPacketBeginning + USB_PACKET_LENGTH_BYTE_INDEX >= m_comDataBuffer.end())
 {
 std::cout << "Packet start not found, discarding " << m_comDataBuffer.size() << " bytes" << std::endl;
 m_comDataBuffer.erase(m_comDataBuffer.begin(), m_comDataBuffer.end());

 return;
 }

 // If this is somehow still zero, then next time new packet will be searched for anyway.
 m_currentPacketSize = *(newPacketBeginning + USB_PACKET_LENGTH_BYTE_INDEX) - USB_PACKET_HEADER_LENGTH;

 if (((newPacketBeginning + USB_PACKET_HEADER_LENGTH) - m_comDataBuffer.begin()) > USB_PACKET_HEADER_LENGTH)

85

 std::cout << "New packet header found, but discarding more bytes (" << (newPacketBeginning +
USB_PACKET_HEADER_LENGTH) - m_comDataBuffer.begin()
 << ")." << std::endl;

 // Erase all the not useful data and the header so later we could just cut the usable data out.
 m_comDataBuffer.erase(m_comDataBuffer.begin(), newPacketBeginning + USB_PACKET_HEADER_LENGTH);
 }

 if (m_comDataBuffer.size() < m_currentPacketSize)
 {
 return;
 }

 // Lets extract the packet data out.
 m_fileLogCallback(std::vector<uint8_t>(m_comDataBuffer.begin(), m_comDataBuffer.begin() + m_currentPacketSize));
 s_packetsReceived++;

 m_comDataBuffer.erase(m_comDataBuffer.begin(), m_comDataBuffer.begin() + m_currentPacketSize);

 m_currentPacketSize = 0;
 }

}

