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Abstract 

Structural health monitoring has been the extensive research topic for years. 
Solutions are mostly applied to the civil engineering constructions, where the 
monitoring could avoid accidents, caused by the malfunction and cracking of the 
structures. With the rapidly developing semiconductor technologies the 
researches have started to design and evaluate wireless monitoring nodes. The 
advantages of wireless sensing nodes over wired ones are disparate. Using 
wireless data communication enables more mobility, less dependability on 
environment, faster installation times, less costs, more expandability and in 
general more dynamic system. The small size associated with the wireless nodes 
mean that they could also be integrated into the materials. 

The problems with the energy consumption, wireless link data throughput and 
latency are the main issues halting the widespread adaptation of these systems. 
Alleviating the cons of wireless systems are in focus of the research topics. 
Therefore testing new semiconductor devices and designs is needed. This work 
gives condensed overview of different wireless sensor designs covering different 
approaches to the problems. The state of the art of transceiver devices of 
different manufacturers and their portfolio is given.  

Finally the Texas Instruments MSP430 platform is taken into the focus of this 
work. The CC430 family of transceiver microcontrollers is evaluated. The Texas 
Instruments SimpliciTI wireless network library, which is part of Chronos 
development kit, is modified and adapted for the requirements set in the work. 
The work grades the performance of the system, measures the basic properties 
and proposes solutions to overcome the shortcomings and the problems of the 
system. 

The work was conducted as a part of the Archimedes project AR 12139 “Smart 
Composites – Design and Manufacturing”. 
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1 Introduction 

An Archimedes funded project AR 12139 “Smart Composites – Design and 
Manufacturing” at the Tallinn University of Technology was led by then post-
graduate Henrik Herranen for his doctoral studies in the mechanical engineering 
field. The goal of the group was to develop and research algorithms and devices 
for monitoring the health of the composite materials. This includes everything 
from determining material properties (like natural frequencies) to researching 
different sensing elements and exploring technologies to electronics packaging 
materials. One of the sub-topics of the project is exploring different possibilities 
to do the structural health monitoring using the current state of the art 
electronic devices. The functionality in the very scope of this is the wireless data 
transmission using low power digital transceivers. Among many researched 
platforms is the Texas Instruments MSP430. Input for this work is the 
requirements of the sensor node stated by the work of the structural mechanics 
in the project. The output of the work is the assessment of the MSP430 platform 
in the context of the requirements. 

1.1 Motivation 

The benefits of the SHM systems are remarkable. They provide less costs with 
enhanced performance and structural overview of the objects. Developing such 
systems is beneficial to the research of the smart materials too, since the size of 
the devices nowadays will approach the limit where they could be embedded 
into the structure of the material. Continuing miniaturization is needed to 
overcome the problems which hamper the successful adoption of wireless SHM 
systems. Minimizing the size reduces the power consumption, decreases the 
footprint and therefore enables more functionality on the area. Increasing the 
functionality, which most probably could be signal processing and therefore 
computing power would enable one to run algorithms locally, which means less 
wireless data transmission. 

With wireless sensing technology still in its infancy, much work remains for 
bringing this promising technology to widespread use. In particular, more 
research studies are needed on challenging issues such as power consumption, 
time synchronization, multi-scale network topologies, decentralized data 
processing within large-scale networks, and formulation of power-efficient data 
driven usage strategies. [1] With the latest semiconductor technology the 
embedment of the radio circuitry into the same housing as the MCU is possible. 
The low power digital radios have become good enough so that it satisfies the 
requirements for low overhead data communication (up to 50 kbps) that is 
needed for home automation and security systems. Higher frequencies enable 
more throughput, while decreasing energy efficiency and range. At the same time 
lower frequencies will increase the range and therefore making radio link more 
robust and immune to scattering and attenuation. But with lower frequencies the 
size of the antenna increases too, which means increased footprint, which is not 
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wanted. So the fine balance between data rate, range and power consumption 
must be determined with the current state of art devices. 

The development process of this work focuses on wireless data transmission 
using relatively new technology of sub 1GHz transceivers. The Texas 
Instruments ultra-low power MSP430 MCU family with integrated transceiver 
CC430 series is taken into the focus. The CC430 RISC microcontrollers do not 
have the native support to execute instructions and arithmetics specific to signal 
processing (floating point calculations). Computing machines able to do that (like 
DSPs) are too power hungry and usually lack wireless communication which 
render them unusable. The mash up designs where different requirements are 
fulfilled with different functional parts (computing MCU, separate ADC, 
transceiver module) might have great performance, but the increased size and 
power consumption render them unusable. Thus this platform is one of the 
candidates for SHM applications, providing building links – wireless data 
transmission, low power and on board peripherals. 

The process of this work lasted more than a year. During this time author 
learned the MSP430 platform thoroughly and did detailed research on CC430 
radio. The output software was not the only design the author worked on during 
the research, but because of the strategic decisions, based on time and volume 
constraints, the Chronos based approach was chosen and presented in this work. 

1.2 Objectives 

The work aims to put on test the following goals using MSP430 radio devices: 
 Data rate of 100 kbps or more per one node 
 Live transmission of sensor measurements 
 Network of multiple sensor devices 
 Configurability from the PC 
 Months of operating time on the dedicated power source 
 Small size 

There are many problems needed to be resolved to achieve these goals. First 
must be determined that if the technology have the capacity to support these 
requirements. Main concern is the wireless radio interface and its capabilities. If 
one needs to increase the data rate, it must take into account decreased 
sensitivity and therefore increased error rate. Increased transmission means 
increased duty cycle, which will result in increased energy consumption and 
higher noise level in the spectrum of the channel. Additional will fill the 
spectrum with the noise even more, the shared timeframes for transmission 
must be taken account. The sensor measurements must be sampled and 
processed as asynchronously as possible to use the resources effectively and use 
computing power on network related tasks. Also some buffering is needed to be 
done, since immediate transmission cannot be guaranteed. Size is most directly 
related to the frequency and sensor interfaces. The lower the frequency the 
bigger the size of the antenna. 
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In the end major part of the problems are associated with the wireless data 
transmission. Alleviating the problems and enabling more efficient operation of 
the radio is the key point to achieve the objectives. 

1.3 Outline 

Chapter 2 (Overview of the technology) first describes different wireless SHM 
systems. The studies covered are chosen so that different approaches to the 
problems are included, giving a spectrum of possible solutions. Then analyzes 
the transceiver products by different semiconductor manufacturers. The state of 
the art review covers the IC devices and their properties, the ecosystem, 
documentation and the overall ease of development of the products of certain 
platforms. 

Chapter 3 (Development of MSP430 sensor network) contains the 
information of the development of the prototype of this work. Gives the 
description of different tools, hardware and software used to develop the 
wireless sensor node. Thorough details of the process of the development of 
CC430 transceiver modules is included. Then the work is summed up by 
evaluating the properties of the system. Several tests on the proposed sensor 
network setup is performed. Evaluated properties include energy consumption, 
range, data rate and performance. 

Chapter 4 (Conclusions and future work) gives a final assessment of the 
MSP430 platform. Proposes the enhancements of the system and lists the 
architectural pitfalls that should be completely changed in order to enhance the 
performance. 
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2 Overview of the technology 

List of state of the art of structural health monitoring applications and 
transceiver devices give a starting point of the technological capabilities. 
Different properties impact the functionality and usability of the designs. The 
influence of size, power consumption and wireless data transmission are taken 
into focus. The chapters conclude the review with the detailed properties of the 
chip and prototype systems’ designs. 

2.1 Prototype SHM systems 

Good example of progress of SHM systems are developed prototypes during 
academic researches. Designs have considered the latest state of the art devices 
of that time. Methods and network logic retain the high level of experimentation 
and innovation. This results in various systems having totally different setup and 
working principles. The elaborated works are covering the whole spectrum of 
problems of SHM systems. Applications need to take into account multiple 
aspects: size, environment conditions, mobility, power consumption, sensor 
interfaces, sensor placement on the object, etc. Covering such a wide variety of 
requirements is nearly impossible even with the present technology. Although 
continuing progress in the chip technologies implicitly support sensor network 
solutions to be developed using low cost and low power microcontrollers. 

This review is not an exhaustive list of implementations, but more a quick 
overview of different solutions during the timeframe of approximately 10 years. 
The oldest work analyzed is from around 1995 and the latest is from 2008. The 
focus is on the data transmission as this is the object of research of this work. So 
finally one should have a firm overview of the evolution of wireless sensor 
solutions. [1, 2] 

2.1.1 RQEM  

Remotely-Queried Embedded Microsensors Program is funded by the US Office 
of Naval Research. Its mission is to develop sensornodes, which can be 
embedded into the vessels and planes firsthand, so that they could be used 
monitoring cracks and deformations.  

RQEM mote is a tiny sensornode (under 1 inch2), which has strain sensors, 
transponder and radio antenna coil for powering the device and 
transmitting/receiving data. They can be used to monitor solid structures by 
placing the reader close to nodes. Reader transmitted energy powers up the 
node and then transmits back the data from sensors along with the node ID. 
Basically it makes the node act like a passive RFID tag, with the extra of sensor 
measuring circuitry. During the time when reader reads the data from the node, 
it is powered up and gets all its energy from that, thus it is active only when read. 
Transponder uses half of the frequency of reader, which makes the transmitting 
frequency 64/128 kHz respectively. 
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For measuring strain special rosette of micromachined curved-beam capacitive 
strain sensors are used. So-called microsensor also incorporates a temperature 
sensor. They were developed to replace fiber optic embedded sensors. The 
microsensors must be extremely low power and small size. This is important 
because the sensor device is only powered when the reader is close and it must 
be able to measure sensors and send back the data with the power it obtains 
from the emitted energy of the reader. Also keeping sensors extremely small can 
help to reduce power consumption. Besides the power consumption the size is 
important to make it fit into the structure without causing it to crack or change 
its properties (total size area of under 1 square inch and thickness of maximum 
of 1 composite layer or 0.005"). Developing a sensor satisfying these 
requirements was the main goal of the project. Combined with a small 
electronics (or small list of requirements for electronics), these properties make 
RQEM suitable to be embedded into the composite structures for the lifetime of 
the structure. [3] 

The size and robustness definitely make this design a considerable approach. 
With the widespread adaptation of NFC standard lately, this design could be 
modernized and successfully used. However it would have only small range of 
applications where it could be used successfully (most likely static objects). But 
the price, size and the energy consumption make this one of the standout 
designs. 



17 
 

 

Figure 1: RQEM prototype along with the test circuitry on a common PCB [3] 

2.1.2 WiMMS 

Wireless Modular Monitoring System (WiMMS) is a great example how the early 
developments of wireless SHM systems were done. Through the multiple 
iterations of research the initial platform, which was developed by the 1997, 
evolved step by step into a sophisticated and feature rich low power SHM system 
by the 2004. [4, 5] The prototype evolution phase covers main problems take 
into the focus of this work – data rate, power consumption, synchronization. 

2.1.2.1 Initial prototype – 1997 

First iteration was done by E. G. Straserand and A. S. Kiremidjian at Stanford 
University. Their main goal was to have a wireless sensor unit, which could 
alleviate or totally eliminate the problems of the conventional cabled SHM 
systems. Problems as large installation time, cable breaking and corrosion, large 
distances between instrumentations points and therefore difficult routing could 
all be alleviated with a wireless system. [4] 

Best components of that time (1995) were carefully chosen to fulfil the 
requirements. The core of the system is a Motorola 68HC11 MCU, which enables 
developing the software in higher level language C (good for abstraction of the 
modules, especially communicating part – reuse of the code), exposes 
peripherals (SPI, SCI) to connect with other components like RF modems and has 
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multiple power saving modes. At the same time it packs enough memory (64K 
address space) to buffer the ADC measurements and parse the network packets. 
Communication part of the module was chosen to meet the requirements of the 
low power and noise immunity. The Proxim Proxlink MSU2 module is used for 
the data communication. It operates in the 902-928 MHz band allocated for ISM 
systems. It utilizes the DSSS modulation which enables high immunity to noise 
and interference and enables radio waves to penetrate reasonably well through 
the civil engineering materials. The maximum data rate of the module is 19.2 
Kbps with the line of sight range up to 300 meters. It consumes about 700 mW of 
energy while transmitting and receiving, but consumes only 5 mW in standby. 
Another, complementing, RF module was also added to the unit for the 
synchronization purposes. The Radiometrix’s TXM-418-F-5 transmitter and its 
compliment, the SILRX-418-F receiver, were added to the design of the base 
station and sensor unit respectively. They operate at 418 MHz and support a 
data rate up to 10 Kbps. Sensor units have a receiver which are listening to the 
synchronization pulse. Synchronization sequence is passed to the 68HC11 which 
time calibrates the internal structures for periodic monitoring.  

Tests showed that the WiMMS system was able to send and receive commands 
and sensor data. The modular units were installed fast and did manage to 
alleviate or remove the problems of the cabling. The project fulfilled most of the 
requirements especially modularity and fast installing time. Only the accuracy of 
the measurements and the operating time were the only issues which were not 
solved. 

 

Figure 2: First WiMMS prototype functional schematic [4] 

2.1.2.2 MCU improvement – 2001 

An Atmel AVR 8-bit microcontroller with a RISC architecture was a replacement 
to the Motorola’s 68HC11. Like the predecessor it is designed to support higher 
level languages like C. It packs a lot of functionality to the silicon like internal 
oscillators, serial communication, timers, PWM modulators and up to 4 full 8-bit 
I/O ports. AVR architecture supports high code density and most of the 
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instructions are executed with one cycle, which means high MIPS and therefore 
efficient use of power resources without sacrificing the computational power. 
These properties enabled the SHM algorithms to be moved from the base station 
PC to the sensor unit itself, which is one of the main features and enhancements 
of the prototype. [6, 7] 

 

Figure 3: Second WiMMS prototype functional schematic [6] 

2.1.2.3 Redesign of the radio and computing techniques – 2004 

This prototype was built to explicitly address the problems and bottlenecks of 
the previous specimens. First another MCU was added to the design in order to 
have more computation power for the accelerometer’s signal processing 
algorithms, which includes floating point arithmetic. For that purpose a true 32-
bit Motorola MPC555 processor with PowerPC architecture was chosen. It 
features 448 Kbyte flash ROM and 26 Kbytes of RAM, which can serve the data 
buffer for the measurements and fast execution of the code of computational 
algorithms. Another performance tweak is a completely different modem. A 
Proxim RangeLAN2 modem uses FHSS technique which enables bigger data rate 
(1.6 Mbps), more reliable communication link and up to 350 meters LoS range. It 
operates on 2.4 GHz unregulated FCC ISM band. [5] 

 

Figure 4: Third WiMMS prototype functional schematic [5] 
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2.1.2.4 Conclusion 

The WiMMS prototypes showcased different technologies and approaches to the 
sensor applications. The fine balance between local data processing and 
distributed computation was tested. One of the interesting solution was the 
synchronization of the nodes, where different radio interface and protocol was 
used. Besides the promising ideas for distributed data computing and 
synchronization, the solutions are not usable in the context of today. 

2.1.3 RIMS 

Goal of the project was to develop a small sensor node utilizing as much as 
possible latest state of art (2003) of microcontroller and wireless technology. 
Main objects were bridges where monitoring acceleration sensor data the faulty 
conditions in the structures would be determined and accidents would be 
avoided. 

There are three essential parts of the system: H8/4069F MCU by Renesas, analog 
piezo resistance type accelerometer MA-3 by Microstone and RTL-8019AS 
wireless Ethernet module by Realtek. Extraordinary is the TCP/IP protocol stack 
support by the device. The aim for the widely used WLAN support was the 
simplicity of adaptation (due to the integrated chip), widely spread usage and 
high bandwidth. That enables anyone with the compatible device to monitor the 
data via web browser utilizing HTTP. In turn the data is processed 
asynchronously by the H8 MCU while the measurements are active. In order to 
achieve that ring buffer is used to store the results temporarily. That is external 
2MB memory connected via DRAM interface of the processor. This decreases the 
data needed to be sent wirelessly. Data sent to the client device is in the form of 
histogram for a certain time period calculated by the H8 MCU. 

One issue with the system is its power consumption. In the testing batteries were 
used. But those could power the system only for up to a month, depending on the 
amount of data exchanged. Suggested solution is to use different power source - 
either generating one or one with the bigger capacity. [8] 

The RIMS prototype network provides the best usability and control from the 
standpoint of the user. The WLAN support with the powerful hardware design 
could enable to use these devices at a large scale objects like big buildings or 
bridges. The rate of the efficiency, due to the multiple chip design and external 
components and therefore requirement of mains power, render it unusable at 
small scale sensor networks. 
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Figure 5: RIMS device in the box [8] 

2.1.4 Reconfigurable 6LoWPAN based sensor network 

One of the latest projects published (2009), which successfully can monitor and 
determine the faulty conditions of the structure. In the prototype tests it was 
used to monitor bridge like conditions, but with having humidity and 
temperature sensor additional to acceleration one, it can be used for other 
purposes as well.  

It uses the Sensinode U100 Micro.2420 platform. [9] Since the hardware 
manufacturer is a developer of the 6LoWPAN software for the embedded 
devices, the wireless protocol is 6LoWPAN, which distinguishes it from most of 
the other projects. Although the future might seem promising for the IPv6 
networks for embedded systems, in reality there is still much progress left to do. 
TCP/IP based networks require a lot more memory and processing power than 
other more lightweight protocols like Bluetooth LE for example. Also the library 
is not that mature yet to support all the functionality needed for sensor networks 
like sleeping nodes. That means the IPv6 networking is up and functional, some 
embedded systems specifics cannot be supported (routing protocols, 
synchronization of clocks). So the reduction of the functionality is done. The 
setup uses simple star topology with preconfigured unique addresses where 
sensor nodes are all having common sink node. 

Micro.2420 node consists of MSP430 MCU and separate CC2420 radio 
transceiver. They are connected via SPI. The IEEE 802.15.4 compatible CC2420 
radio is operating on 2.4 GHz. On top of it with the conjunction of MSP430 MCU 
the 6LoWPAN logic is implemented. Data is transmitted via UDP channels. 
Although UDP does not contain logic for packet transmission errors, the aid for 
that is implemented on packet level, where 3 bytes before each measurement 
contains 1 byte for data type, and 2 bytes for measurement sequence number, 
where final corrections are being made at the sink node. Sensor node also 
incorporates 500 KB flash where the measurements are stored. 
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The core of the sink node is the same Micro.2420 device. The sink node is 
connected to a PC via UART bridge. Through the PC one can configure the 
network. Fine tune options include the possibility to choose which node is 
sending the info, what is the sampling period and frequency (up to 1 kHz), 
accelerometer sensitivity (±2g or ±6g) and axis. On the PC, MATLAB software 
receives the measurements, reorders them, processes and visualizes them on the 
time chart. One of the biggest constraints of the system is the UART link between 
the PC and the sink node (due to the extra overhead from sink, not the actual 
sensor data itself). The application data transmission rate up to 6 kbps can be 
achieved (not including the TCP/IP overhead). [10] 

The integration of 6LoWPAN is the future approach for many low power 
wireless solutions. This prototype is the most modern and the closest to suitable 
solution for sensor networks. As with the other designs the energy consumption 
problems are still present, but the functionality included with the IP protocol is 
endless. 

 

Figure 6: A reconfigurable 6LoWPAN wireless sensor node [11] 
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2.1.5 Mobile agent SHM network 

Completely different to the other covered sensor node designs, this exact sensor 
network design aims for high computing power sensor nodes that are able to 
update the tasks and damage detection algorithms and finally be able to update 
the software it runs. It has 3 different boards which are doing different tasks. 
Main board is a Gumstix miniature embedded computer, an Intel based platform. 
It has an Intel PXA 225 processor with 64 MB RAM and 16 MB Flash memory. 
With 400 MHz frequency, it runs Linux OS on which the damage detection 
algorithms, which require FFT, are being run. The wireless communication board 
is connected via parallel port to the Gumstix computer and is responsible for 
WLAN communication. At the core it has an Atmega 128L CPU, which 
communicates with the Gumstix board, handles communication with sensor 
interfaces and measured data. It uses SPI and I²C interfaces to communicate with 
different sensors, actuators, A/D interfaces and low power ZigBee 
communication module. 

Due to the fact, that the Gumstix board runs a complete Linux OS, a lot of the 
focus was put on the software the system runs. Many open source libraries were 
used in the system like Ch (C/C++ interpreter), CLAPACK (mathematics library) 
and Numerical Recipes in C (mathematics library). [12] These packages enable to 
do SHM analyses and port the functionalities and software from other 
environments (e.g. MATLAB) to the Gumstix board. Besides these the most 
important functionality is done with the Mobile-C mobile agent platform. This 
library supports portable and secure execution of mobile agents which are 
C/C++ scripts. [13] Having mobile scripts being handled between the nodes, this 
enables the sensor network to become dynamically programmable and taskable. 
Software is layered between the two boards. The Gumstix runs all the high level 
data processing algorithms, Mobile-C and wireless communication logic. The 
sensor acquisition boards runs the low level tasks like sensors’ data acquisition, 
power management, and ZigBee radio module. [12] 

From the hardware standpoint the design does not provide much value. The 
problems with energy consumption is not solved. Also Zigbee based network is 
not future proof and powerful. However the idea of mobile agents, which carry 
embedded code, could be a technique of solving the problems of data processing 
and movement and network configurability. Author of the work believes that the 
C/C++ scripts should be replaced by some interpreted language like Javascript or 
Python. When compared with the IP network based solutions like the 
Micro.2420 based 6LoWPAN implementation (see Section 2.1.4), the power of 
mobile scripts could be used more effectively. 

2.1.6 Summary and comparisons 

Different research work of SHM systems were presented. Designs varied from 
energy harvesting to steady battery powered devices. Different radio protocols 
can be seen to be applied for the wireless data transmission and the trend shows 
that TCP/IP based networks are steadily applied on the embedded platforms. 
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Almost all the prototypes failed one basic requirement – power consumption. 
This indicates that there are no suitable methods and technology for wireless 
data transmission to enable ultra-low power energy consumption or enable very 
high data rates which would decrease the time where the radio circuit needs to 
be active.  

The fine balance between the responsiveness with the data latency and power 
consumption is an aspect that was tried to be solved by the different systems. 
When one has a high responsive system, like the mobile agent SHM network 
(Section 2.1.5), that in turn means higher power consumption than less 
responsive poll based systems, like RQEM (Section 2.1.1). Low latency can be 
also connected to the configurability, since configuration changes require link 
with the low lag factor, to apply the settings. 

With the current technology, the results are telling one thing – more 
sophisticated system equals exponentially higher energy consumption. All this 
leads to the fact that the radio part of the system is the most cumbersome and 
power hungry. Also it can be a bottle neck for the data transmission of the whole 
network. But the efficient usage of bandwidth and radio technology must be 
desired in order to have a usable sensor network design. 
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 Size Wireless 
protocol 

Data 
rate 

Power consumption 
(sleep/idle/Rx/Tx) 

Power source Up time Sensors Features 

RQEM < 1 inch2 Trovan 
RFID 

< 
64Kbp
s 

active only when 
reader emanates the 
electromagnetic wave 
energy 

Electromagnet
ic wave 

powered 
only 
when 
read 

micromachine
d strain 
sensors, 
temperature 

size, 
robustness 

Reconfigurabl
e 6LoWPAN 
sensor node 

88mm x 
64mm x 
35mm 

6LoWPAN 6 Kbps <1mA/x/25 mA/35 
mA 

2 x AAA x Humidity, 
temperature, 
xyz 
acceleration,  

Configurability 
from PC 

RIMS 300mm
m x 
60mm x 
80mm 

WLAN > 1 
Mbps 

x Battery pack 
with unknown 
type 

~ 1 
month 

3 axis 
acceleration 

Direct 
connection 
from any Wi-Fi 
enabled device 

WiMMS 1st 100mm 
x 13mm 
x 
190mm 

PPX 
(Proxim 
Packet 
Exchange) 
+ Custom 

19.2 
Kbps 

5mA/> 50mA 
/>225mA/>225mA 

18 x AA 
batteries 

11 hours 2 axis 
acceleration 

Measurements 
synchronizatio
n 



26 
 

applicatio
n data 

WiMMS 2nd 130mm 
x 
100mm 
x 25mm 

PPX + 
custom 
applicatio
n data  

19.2 
Kbps 

x 9V alkaline 
battery 

x 2 axis 
acceleration 

SHM 
algorithms 
processed by 
sensor node 

WiMMS 3rd 100mm 
x 
100mm 
x 25mm 

PPX + 
MCP 
(Modem 
control 
packet) + 
applicatio
n data  

1.6 
Mbps 

110mA/220mA/320
mA 

5 x AA Up to 30 
hours  

2 axis 
acceleration 

Separate MCU 
for 
computation 
intensive tasks 

Mobile agent 
sense node 

100mm 
x 60mm 
x 17mm 

Zigbee 250 
kbps 

x mains not 
applicabl
e 

3-axis 
acceleration, 
strain gauge, 
humidity, 
temperature, 
PZT sensor 
actuator 

Dynamic 
change of SHM 
algorithms, 
Linux OS 

Table 1: Comparison of different SHM systems 
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2.2 Low power transceiver devices 

This section discusses different manufacturers and their off the shelf integrated 
circuits supporting wireless data transmission. All the producers that are 
mentioned here can be considered as a design candidates for one’s wireless 
sensor network. Different aspects are described that apply for the wireless 
sensor nodes’ design. Different specimens and evaluation kits and other tools 
which help to develop on the devices of the platform are also discussed. 

When common embedded design issues are put aside one can start to digest 
through the questions like power consumption and radio. [14] The key to 
resolving the problem is the whole dynamic functionality of the SoC. Questions 
like variety of configurations (I/O, clock system), mechanisms that support 
energy efficiency (DMA, different ADC modes, interrupt mechanisms, sleep 
modes) [15], analog digital interface characteristics (resolution, samples per 
second) and size (the SHM applications often require the sensor node to deeply 
embedded into the structure without causing the structural grid to alter much). 
[16] Depending on the application the sensor devices need to operate on a 
dedicated power source from weeks up to couple of years. The specification of 
regular microcontroller sometimes can state that many years of operation can be 
achieved, but one must note that the radio must be added into the power 
consumption calculations too. Since there is no common way to universally 
benchmark the energy efficiency of the microcontrollers right now [17, 18] one 
must either benchmark or rely on the information that is written in the 
datasheet. For example one of the main standpoints are the sleep and idle state 
ratios, how much current is drawn in each state, how fast the circuit can switch 
from one state to another. [19] The same apply on different modules in the MCU 
architecture. The studies clearly indicate that most of the energy is spent on the 
radio. [20, 21] 

Product lines of ISM bands compatible transducers are described shortly. 
Specifically important is the conformance to the IEEE 802.15.4 standard which is 
the basis for 6LoWPAN and ZigBee standards. The ubiquitous IEEE 802.11 based 
(WLAN, Bluetooth) protocols are not elaborated, because of the higher power 
consumption and computing power needed. The IEEE 802.15.4 standard 
specifies physical layer and media access control for low-rate wireless personal 
area networks. [22] That includes regulations about modulation techniques, 
frequency bands, duty cycle, output power, etc. Closely related with the standard 
are the unlicensed ISM frequency bands. These are free to use publicly available 
frequency bands that are allocated to be used for industrial, medical and 
scientific (ISM) purpose, but virtually can be used for anything except the 
telecommunications. There are different regulations applied by the International 
Telecommunication Union (ITU) at the different regions of the world. 2.4GHz is 
available worldwide and in the region of the current work, Europe, the 868 MHz 
and 434 MHz bands can be used. [23] Using devices compatible to ITU 
regulations can save a lot of extra work. First one do not need to deal with the 
certifications. Using widely available band results in bigger choice of the 
transceivers that can be bought directly off the shelf. Last, when the widely 
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available technology is used, the improvements and compatible technology can 
be developed by other parties as well. Thus the radio devices and producers 
described have SoC capable of working in one of the previously mentioned 
frequency bands. The focus is shifted more on towards the sub 1 GHz band. In 
general 2.4 GHz band can be a better choice because of the higher data rates and 
faster transmission times [24], but due to the higher noise in those channels, the 
868 MHz band can be more robust. [25] The noise free environment and lower 
frequency can increase communication reliability and provide longer 
transmission ranges. [26, 27] However analyzing both in conjunction gives a 
better picture of the manufacturer’s catalog, future improvements and 
technological capabilities. In the final comparison table only devices able to 
operate on 868 MHz band are listed. 

Most of the manufacturers have not designed a completely new radio MCU 
architecture for SoC transceiver, but rather have embedded and expanded the 
functionalities of the radio transceiver to already mature architecture (TI 
MSP430, Freescale HCS08). This way it preserves the familiarity with the series 
of microcontrollers for the developers and enables the code reuse. Some of the 
designs use the approach where the transceiver module is externally interfaced 
via I/O (usually via SPI) to MCU. In general the embedded approach is more 
suitable for low power wireless sensor networks. Packing all the functionality 
into one chip package extends battery life and transmission range, delivers more 
robust performance (in the presence of interference) and minimizes the use of 
external components. [28] 

2.2.1 Microchip 

One of the most known MCU among the hobbyists and professionals is the 
Microchip’s PIC series. Microchip has wide range of different radio receivers and 
transmitters for different frequency bands including 802.15.4 compatible 
devices. Some of them are PIC based and some of them are plain radio modules. 
They have 5 different modules for 2.4 GHz and 4 modules plus 7 MCUs for sub 
1GHz frequency bands. Disadvantage of the Microchip product line is the lack of 
true transceivers. The only true transceivers are the radio modules which are not 
programmable and must be controlled externally. PIC based radio MCUs have 
only transmitting capability and they support only sub 1 GHz bands. On the 
positive note, Microchip have developed libraries for developing wireless 
network applications on their products. They have fully supported ZigBee RF4CE 
and Pro/Smart Energy profile library stacks. Additionally they have developed 
proprietary protocol called MiWi, which is intended to ease the development of 
wireless applications and portability of the code across the different Microchip 
devices. The MiWi supports different topologies and different types of network 
devices. It has dedicated development environment with fully integrated tools. 
Developing is supported by multiple development kits with preprogrammed 
modules ready to go right out of the box. Debugging the over the air 
communication can be done with the ZENA wireless USB adapters. Because of 
the lack of true transceiver microcontroller and therefore increased small form 
factor and power consumption, the author of this work do not seem much value 
including Microchip’s microcontrollers to one’s wireless sensor node design. 
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Information from the main and subpages of Microchip’s personal area networks 
product page. [29] 

2.2.2 Nordic Semiconductor 

Nordic Semiconductor is focused only on low power wireless integrated circuits 
which operate on ISM bands. Technologies they are most focused on appears to 
be protocols operating on 2.4 GHz like Bluetooth Smart or ANT+.In total they 
have 4 different series (2 for each protocol) plus 3 series for universal 2.4 GHz 
solutions. This makes a total of 16 different chips with different configurations. 
They also provide sub 1GHz products, though the variety is tiny. Only one 
transceiver module and one complete SoC with integrated transceiver (appears 
in the table) which has the aforementioned module embedded to the 8051 core. 
For the developers they have dedicated forum on the homepage, a lot of different 
evaluation kits covering all the wireless products, white papers on technical 
topics and recommended design schematics and guidelines. Software 
development can be done with any toolchain that supports 8051 architecture. 
Example software and binaries are built using the KEIL toolchain. From the 
mainstream toolchains IAR also supports Nordic Semiconductor devices, with 
complete toolchain and header files. Overall the approach and product 
development of the Nordic Semiconductor microcontrollers is promising. They 
focus on specific needs of the product by producing the controller in multiple 
configurations. In their 2.4 GHz series they have controllers with ARM core. If the 
sub 1 GHz portfolio can progress to where their 2.4 GHz devices are, then their 
devices are comparable to the competitors’. 

Information from the main and subpages of Nordic Semiconductor’s ultra low 
power wireless solutions page. [30] 

2.2.3 STMicroelectronics 

STMicroelectronics has only one true SoC transceiver. It is ARM based IEEE 
802.15.4 compatible transceiver working on the 2.4 GHz band. But they have a 
lot of experience with ARM based MCUs and they are producing much more than 
just microcontrollers. The wide catalog in electronic parts and diverse set of 
transceiver modules can contribute to a sub 1 GHz ready radio SoC. Specialized 
products for low power WLAN, Bluetooth and other ISM frequencies are 
available. The SPIRIT1 module has 4 selectable frequency ranges, multiple 
modulation options, and very high sensitivity and power efficiency. It is also 
compatible with the Wireless M-BUS standard. For the current development 
there are more than 10 evaluation boards (including SPIRIT1) to start getting 
familiar with the STMicroelectronics sub 1 GHz portfolio. Since their MCUs are 
based on (and therefore controller of the transceiver module’s evaluation 
boards) ARM, there are plenty of toolchains, starting from the free GCC to paid 
licensed IAR. STMicroelectronics has some aid software for the developers to 
calculate the energy consumption and debug the wireless data links. This 
includes also tutorials, application notes and reference design. Their portfolio is 
thin and while heavily implementing ARM design, it is reasonable to reach out to 
other producers, who also have integrated radio IC and ARM core on one chip, 
but have broader list of devices to choose from. 
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Information from the main and subpages of STMicroelectronics’ low-power RF 
solutions page. [31] 

2.2.4 NXP Semiconductors 

Portfolio boasts assets specialized on wireless networks. That includes products 
from aerospace to automotive radio link solutions, but also the ISM unlicensed 
band products. When talking about the spectrum in focus - the ISM wireless 
modules and microcontrollers - are made with a high specialization on 802.15.4 
based protocols, that includes special packet features for different protocols and 
sleeping modes. For that purpose proprietary 6LoWPAN based JenNet-IP library, 
RF4CE and different Zigbee protocol stacks have been developed. For 2.4 GHz 3 
different chips with 32-bit RISC architecture (JN516x series) and 8 transceiver 
modules are in catalog. For lower frequency ISM bands only one transceiver 
module (OL2381, listed in the Table 2) is present. This is traditional SPI 
controlled module with FSK and ASK modulations. It has relatively good 
sensitivity, but the maximum data rate is meagre and therefore the current 
consumption is high. Fortunately the products are backed by demo kits. The 
OL2381 has a throrough demo kit with multiple functions and GUI for the PC, 
which enables to configure the device in detail and trigger the data transmission. 
Overall there are plethora of developer tools for NXP products, even the Android 
and iPhone platforms have an app where one can calculate the RF parameters for 
the devices. The developer tools are mostly free, that includes the wireless 
toolset (IDE, compiler, programmer) for JN516x series. Drawback is the price of 
the evaluation kits. For example JN516x demo kit costs over 1000 USD (quote 
from Digikey). Adding the fact that the products are having proprietary design 
(JN516x custom core), toolchain and evaluation kits therefore small community, 
the start of the development can be cumbersome, which renders the platform 
not suitable for the initial development of sensor networks. [32, 33, 34] 

2.2.5 Freescale 

Freescale is another high profile electronics manufacturer presenting wide array 
of products in their catalog. Having various 2.4GHz modules and 
microcontrollers with either HCS08 or different flavors of ARM core, they do not 
have smaller choice under 1 GHz band products. Besides 3 either only 
transmitting or receiving modules they have two true SoC transceiver families 
based on different cores. The first device, MC12311 with HCS08 (listed in the 
Table 2), has the radio with the same parameters as the Kinetis KW0x family 
devices which are based on ARM core. The Kinetis series has more features and 
32-bit architecture, while the Motorola’s 68HC05 compatible core do not pack 
such features, but for small applications that can lead to smaller power 
consumption. Aforementioned MCUs are backed by the evaluation kits with the 
price from 79 to 149 American dollars. Wireless libraries for under 1GHz 
applications are two. The AMIHO Technology developed Wireless M-BUS library 
can be used out of the box for one’s M-BUS product. For other type of protocol 
implementations Freescale provides SMAC (Simple Media Access Controller) 
stack which is available as C source files. This supports all their radio modules 
and enables to do the low level routines and configuration, without having any 
protocol specific packet layer. Can be used as an underlying library for ones 
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protocol stack. Development tools for HCS08 platform are developed by open 
source communities and also commercial providers like IAR Systems, Cosmic 
Software, P&E Microcomputer Systems and many others. [35] Also Freescale 
itself is providing a CodeWarrior based development studio. Plenty of tools and 
documentation is available on home site. With a wide range of portfolio for 
different technologies the co-operating partners can be easily found on the same 
place as their own tools and documentation. Software like BeeKit, PopNet, VLAB 
that can greatly reduce the time of development, can be easily accessed. For the 
development of new devices for under 1GHz. Freescale products can be strongly 
recommended, because the parameters of the radio devices are more flexible 
and powerful than the competitors’ (except Silicon Labs’ Si10xx series – refer to 
the Table 2). Only drawback can be the availability of more sophisticated and 
protocol specific libraries, which might increase the development time for the 
first prototype. [36, 37] 

2.2.6 Silicon Labs 

In total Silicon Labs offer 6 families of highly integrated SoC devices. Products 
cover the 2.4 GHz band and the spectrum up to 1 GHz. Some of them are 8051 
and some are ARM based. 8051 based devices have so called EZRadioPRO (as is 
the case with the Si1080 listed in the Table 2) transceiver, which is Silicon Labs’ 
developed high RF performance transceiver family. Their focus with their 
products is energy consumption and radio module efficiency. They claim the 
industry’s lowest consumption in active and sleep mode. Combined with the RF 
performance, the Si1080 is easily the MCU with the best characteristics among 
those listed in the Table 2. Starting developing on the platform is made very easy. 
All the transceiver modules and MCUs come with a specialized development kit 
(price ranging from 300 – 800 USD). Boards come with a simple software demo, 
where one can do basic things: settings, data transmission, etc. Silicon Labs IDE 
is the officially supported environment for all the Silicon labs’ microcontrollers. 
Separate Keil compiler kit must be bought, which is listed on the webpage along 
the IDE. Overall info for development is easily accessed with one click on one 
root webpage. [38] Developer aid software includes among many a Simplicity 
Studio (MCU tools, documentation, code libraries, etc.), EZRadio (toolset to 
create and deploy wireless applications), Clock software (clock customization 
and calculation of various parameters) and many more. Only ZigBee library stack 
is provided via Ember ZigBee software, which includes debugging and other 
features. Other examples and libraries about radio can be accessed via Simplicity 
Studio. The ease of finding the resources, the high performance radio and the 
separate energy efficient ARM processor line (probability for the future products 
having integrated the ARM core) means that the Silicon Labs’ products cannot be 
ablated from the list of potential platforms to be used to develop one’s wireless 
product. 

Where not cited, the information is from the main page and subpages of Silicon 
Labs’ microcontroller page. [39] 
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2.2.7 Atmel 

Atmel provides a lot of products for the 2.4 GHz band, either with AVR or ARM 
CPU core. Unfortunately there are only one product for under 1 GHz band and it 
is plain transceiver module. Different with the other manufacturers is the full 
compatibility to 802.15.4 specification, which means that it supports spread 
spectrum modulation techniques specified for ZigBee and 6LoWPAN. That 
means no FSK, ASK or OOK modulations are integrated into chip. The purpose of 
this is just to concentrate on the mainstream consumer electronic appliances, 
because this technology is most produced. Like Microchip’s PIC, Atmel’s AVR 
microcontrollers are widely know. With one of the biggest community, finding 
information for development is not a problem. Atmel has developed their own 
development envrionment called AVR Studio, which is one of the easiet to use 
toolset on the market and it is completely free. Toolchain is based on open 
source GNU GCC software. Filled with a lot of plugins/software in and out of the 
IDE, will render the development process to be one of the smoothest and fastest. 
Starting Atmel RF development is fast by using their ZigBit modules. Modules 
have complete certified RF design on a ready made PCB which makes them easy 
to integrate into one’s application. They are based on the available products in 
the portfolio so one can take them as a demo boards for radio transceiver 
controllers or use ZigBit evaluation kits where the whole system is implemented. 
They come in different flavours and packages including the convenient USB 
dongles. To complement the ease of the development, Atmel has made available 
multiple radio networking stacks. The simplest and smallest is Lightweight Mesh 
which provides the most basic functionality to access the radio hardware and to 
develop proprietary porotocols on top of it. They provide full 802.15.4 MAC 
library, which is the base for ZigBee and 6LoWPAN implementations. On top of it 
are built ZigBee RF4CE and ZigBee Pro (called BitCloud) stacks, which are also 
available for free to download on the website. The ease of development and the 
size of the community definetly make the Atmel products one of the best to start 
developing wireless sensor networks. Right now they are heavily relied on 2.4 
GHz, spread spectrum, so making a simple sub 1 GHz solution is not possible 
currently. 

Information from the main page and subpages of Atmel’s 802.15.4 
microcontrollers page. [40] 

2.2.8 Texas Instruments 

Texas Instruments is producing one of the biggest portfolio of electronic devices 
in the industry. That includes high end computer processors, digital signal 
processors and microcontrollers. For sensor applications they have dedicated 
microcontroller family with 16-bit RISC architecture called MSP430, which is 
focused on ultra low power applications while providing low cost. Besides the 
dedicated computing, they have 10 different modules of CC (stands for Chipcon) 
series transceivers, where some are based on 8051 core. [41] Former Chipcon 
which was acquired by Texas Instruments in 2005 [42] gave the knowledge and 
integrated circuit designs that made possible to include SoC transceivers in their 
catalog. Besides the 8051 based transceivers, they have CC430 family of 
transceivers. CC430 series is a fusion of MSP430 microcontroller and Chipcon 



33 
 

radio transceiver circuit. Therefore Texas Instruments provides two different 
series of transceivers with full capabilities of modern MCU, both of them are 
having principally the same transceiver core, where the CC series have more 
different configuration devices (sub 1GHz and 2.4 GHz), while CC430 family 
devices all have sub 1GHz Chipcon transceiver core.. 

The series in the focus of this work is the CC430 family. It packs the features of 
the modern and low power MSP430 architecture. The radio core present on all 
the CC430 family microcontrollers is principally the same as in the Chipcon 
CC1101 MCU, with the minor modifications because of the nature of the 
embedment into the different architecture. [43] Since CC1101 is designed to 
operate only on frequencies under 1 GHz, there are no 2.4 GHz devices for 
MSP430 based transceivers. If one needs more different configurations for the 
radio, the CC series covers all the frequencies and requirements of IEEE 802.15.4 
for the modulation schemes and frequencies. So if one requires a broader grip for 
the application portfolio, the 8051 based Chipcon transceivers should be used. 

Since the CC430 and CC series are connected closely, there are plenty of tools 
helping to start the development. Documents about radio communications which 
are dedicated to Chipcon microcontrollers do also apply for the CC430 family. 
The same applies to the development kits and other hardware tools. This makes 
the ecosystem quite powerful, where the migration from one family to another is 
quite painless. There are multiple development kits based on both families. The 
radio antenna reference circuit designs are available for all the devices. Only 
difference that exist between the two (besides the fundamental CPU 
architecture) is the flash programmers and development environments. The 
Texas Instruments developed CCS (see Section 3.1.1.2) do not support 8051 
architecture, while IAR Systems workbench can be used for both. Different 
libraries like Z-Stack for ZigBee, SimpliciTI (see section 3.1.5), Wireless M-Bus 
and Bluetooth are supplied with the product portfolio with the examples and 
development kits. Code samples  with the low level initialization and interfacing 
of the radio in different architectures and external SPI connection is provided. 

Due to the large range of development articles aimed directly to help to start the 
development with different products and different documents where one can 
find useful information for one’s product design and development tools, the 
Texas Instruments radio MCU platforms coax to develop on this platform. 

 



 

34 
 

2.2.9 Table of summary 

 Frequency range (MHz) Modulati
on 

Sensitivi
ty (dBm) 

Maximu
m TX 
power 
(dBm) 

Maximu
m data 
rate 
(kbps) 

Power 
consumption – 
RX/TX(at max 
output 
power)/sleeps 

Pric
e 
(USD
) 

CPU 
core 

Microchip 
MRF49XA* 

433/868/915 FSK -110 7 256 11mA/15mA/0.3µA 1.79  x 

Nordic 
Semiconductor 
nRF9E5 

433/868/915 GFSK -100 10 100 12.5mA/30mA/2.5
µA 

2.66 8051 

STMicroelectron
ics SPIRIT1* 

150-174/300-348/387-
470/779-956 

FSK, GFSK, 
MSK, 
GMSK, 
OOK, ASK 

-118 16 500 9.8mA/49.3mA/0.8
5µA 

2.15 x 

NXP 
Semiconductors 
OL2381* 

315/434/868/915 ASK, FSK, 
GFSK 

-118 10 112 16.5mA/22mA/0.5
µA 

2.38 x 
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Freescale 
MC12311 

315/433/470/868/915/928
/955 

FSK, GFSK, 
MSK, 
GMSK, 
OOK 

-120 17 300 16mA/95mA/0.1µA 3.9 HCS08 

Silicon Labs 
Si1080 

142-1050 OOK, FSK, 
GFSK 

-126 20 512 13mA/85mA/0.05µ
A 

3.58 8051 

Atmel 
AT86RF212B* 

769-935 DSSS, 
BPSK, O-
QPSK,  

-110 10 1000 9.2mA/28mA/0.2µ
A 

3.16 x 

Texas 
Instruments 
CC430F5137  

300-348/389-464/779-928 ASK, FSK, 
GFSK, 
MSK, OOK 

-117 12 500 18.5mA/36mA/1µA 3.65 MSP43
0 

Table 2: Comparison of different 868 MHz transceivers 

* Not a complete SoC, must be interfaced to external MCU. 
Prices were recorded at May 10th 2014. Quotes from www.digikey.com web-shop with the cheapest items packaging type where applicable 
and at the bulk price of 1000 pieces. 

Detailed products’ information from the following references: [44, 45, 46, 47, 48, 49, 50, 51]. 

The void of the embedded 868 MHz transceivers on the market is eminent. Still most of the focus is put on the 2.4 GHz band devices and 
therefore the devices for sub-1GHz bands are the minority. With the ITU regulations and more wide adaptation of those frequencies in 
different countries will have an effect on sensor networks. 

http://www.digikey.com/
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Author believes that the most future proof products will be the ARM core integrated transceivers. With the powerful and continuously 
developing architecture and a true 32-bit design introduces a powerful computing capabilities, while providing the small energy 
consumption. The best products at that field are the Freescale and Silicon Labs products, but right now only 2.4 GHz is supported. 
However Texas Instruments with the low power, feature rich MSP430 platform and a true transceivers for the sub-1GHz bands seem to 
be the best choice on the market right now. With the addition of rich set of documents and development aid, the platform used also in 
this work, is strongly suggested by the author. 

 



 

37 
 

3 Sensor network development on MSP430 

This project was limited by the time and volume constraints, so the aim was to 
reuse as much code as possible from the libraries, code snippets, kits, etc. By 
doing this it enabled to concentrate more on the essence of the work – the 
wireless data transmission – and how to make existing functionality better, but 
not thinking how to create one. During the development different set of 
hardware and software tools were extensively used. The most important ones 
and integral for the successful development of MSP430 based sensor network 
devices are described in this chapter. The functionality, price, adaptability is 
discussed. The assessment of the practice of using these tools is given. 

In order to assay the developed wireless network performance and reliability, 
different types of tests were conducted. Tests contained many different 
scenarios and for that purpose, software was developed. The summary of the 
results tell if the goals were achieved and what are the main improving areas. 
Also they showcase the physical limits of the hardware and software. 

3.1 Development 

First concept used different microcontroller and development kit for the sensor 
node (MSP430–EXP430FR5739 board [52]). Since the initial design (wired 
communication from sensor nodes to radio concentrator node) finally grew into 
very complicated and fragile, the plan was dropped. Finally the transceiver node, 
which was the radio concentrator intially, was chosen to do also simple sensing 
functionality. It perfectly suited for the development ideology as well, since 
existing libraries and code examples were also present. The mock sensor 
development was finally done on Olimex MSP430 RF development board (see 
Section 3.1.2.1). It has the CC430F5137 MCU mounted which is mostly back-
compatible with the Chronos development kit’s (see Section 3.1.2.2) 
CC430F6137 (only large difference being the LCD_B module availability). Based 
on this, porting the software from one MCU to another was relatively easy task. 
This was also possible because of the the hardware schematics, where there 
were no major differences between the two. This enabled to run same code on 
both of the kits with no modifications. 

3.1.1 Development environments 

There are 2 widely known and officially supported development environments 
for MSP430 platform: IAR Embedded Workbench (developed by IAR Systems) 
and Code Composer Studio (developed by Texas Instruments). This is not an 
exhaustive list of existing solutions since there are other options as well like 
Crossworks by Rowley Associates, Energia an open source development 
environment initiated by Robert Wessels, Imagecraft by Imagecraft Inc., 
Quadravox by Quadravox Inc., and command line GCC toolchain called MSPGCC 
(open software, part of the GNU Tools). But those tools are either obsolete or not 
supported by Texas Instruments software, drivers and reference papers. So IAR 
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workbench (from now the acronym IAR EW is used) and Code Composer Studio 
(from now the acronym CCS is used) are the only options which are being 
supported and will be supported in the future also. Both IDEs were used and 
evaluated throughout this project. 

3.1.1.1 IAR Embedded Workbench 

Prior to this work, the author of this paper have been mostly using IAR EW for 
embedded development (although not for MSP430 toolchain). So in the first 
prototype design development (MSP430FR5739 + CC430F5137) the IAR EW 
version 5.5 was used. The free code size limited version was used, because no 
license was available for the university work group. Second the code to be 
developed was thin enough not to break code size limit (1.5KB). Evaluation 
mode did not prohibit any features which were needed for the development 
anyway. 

Three projects were setup and maintained inside one workspace in the IAR. Each 
project resembled different node in the architecture (sensor node on 
MSP430FR5739, radio concentrator for the sensor nodes on CC430F5137 and 
access point for PC also on CC430F5137). This was the basic setup of the usage of 
the IDE. Every project can be set up using different settings and also common 
settings can be made. For example libraries for radio, FIFO buffers, common 
typedefs and protocol specific C-files were shared by the projects. Environment 
automatically handles the compiling of files even when the files are from 
different locations on the hard disk. Grouping them together under the project 
tree is enough. Groups are shown as folders in the graphical interface. 

Compiler and linker settings can be easily set in the graphical interface under the 
project options. This includes choice of language and dialect (different C and C++ 
standards are supported), preprocessor and linker definitions, pre-build, post-
build commands, debugging and debugger settings, binary file format, etc. The 
toolchain already includes linker and header files for different MCUs. Also the 
runtime standard C/C++ libraries are present with flexible configuration options 
(printf(), malloc(), etc.). One of the biggest advantages using IAR is its 
intrinsic headers library, which can be used effectively to reduce the size of the 
code and make it more readable. [53] 

When the functional part of the toolchain is concerned, the IAR produces 
efficient code and features powerful debugging tools. [54, 55, 56] MSP430 
toolchain linker, debugger and compiler are completely proprietarily developed 
and maintained. However when this project is concerned, the author cannot see 
any superiority of the IAR proprietary compiling algorithms and debugging 
features. 

When esthetics are concerned, largely different is the graphical interface. It is 
solely developed by IAR Systems. It is not based on any other known IDE 
framework. It follows rather minimalistic approach, with simple menus and 
icons. Old school Windows 98/XP like design. While this is a great approach for 
firmware programmers, the lack of functionality is concerning. For example the 
auto completion, syntax style, text and icon hovering is not working well if at all. 
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Syntax style is very basic and not giving intuitive feel of the code quickly. Since it 
is proprietary software the plugin ecosystem is also missing so there are no tools 
or they are hard to be found. Also it appears that it does not support Windows 8 
well, as it was the OS used by the author. The text editor area automatically 
zoomed out the text too much. There were other inconsistency with the UI as 
well like overlapping panels, hidden buttons, etc. 

For the price schemas there are multiple flexible options. From USB dongle 
limited versions to floating licenses based on the local or global network. In turn 
the application pricing schema is split by the functionality provided between 
different versions – standard, limited and baseline. 

 

Figure 7: Snapshot of the IAR EW IDE 

3.1.1.2 Code Composer Studio 

CCS version 5.5 was a new experience for the author of this work. Previously 
older version (version 4) of CCS has been used. So there were still a lot of 
familiarity, because since version 4 CCS is based on widespread Eclipse IDE. 
Fully supported version of the toolchain was used, because licensing server with 
100 floating licenses was set up (thanks to the Texas Instruments European 
University Program) at the University. This was also required, since Chronos 
projects’ compiled code would have not fit into the limits.  
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Chronos development software (see 3.1.3) projects were used right from the 
start of CCS experience. Workspace consisted of Chronos watch and USB access 
point projects. Configuring project’s settings, pre-build, post-build and linker 
actions can be made in the graphical interface. Different menus, buttons and 
views can be completely customized as in any other Eclipse based IDE, which 
makes the graphical interface very comfort and easy to use. CCS adds new views 
like debugger windows (register, memory, variable watch windows), GRACE tool 
and ULP advisor windows. 

The toolchain is based on GNU tools, therefore the POSIX environment is being 
used to invoke commands. Compiler supports wide variety of settings from GNU 
compiler language extensions as well. Developers who are familiar with the 
development with the GCC and make system, the adoption of CCS is seamless. 
IDE automatically manages makefiles and include paths, so the files included in 
the project and grouped into the folders do not need extra declarations and 
include paths. Linker and MCU specific header files are already included with the 
install of the toolchain. Same account true for the standard C/C++ runtime 
libraries. 

Only hassle during the development was the support of some 
debugger/programmer drivers. For example Olimex-JTAG-Tiny-V2 programmer, 
which was used in the development, drivers for CCS version 5 were not officially 
supported. This is due to the fact that some subsystems of CCS has been changed 
between the major versions, so the 3rd party tool providers have not managed to 
keep up with the changes. But this problem is leveraged thanks to the CCS 
features like automatic firmware updating and drivers’ updates of the 
programmer/debugger, like was the scenario with this case. 

Licensing system is rich. From node locked single user to various amount of 
floating licenses. Licensing is based on the subscription where annual fees are 
applied. This means that every year subscription must be renewed. At the same 
time users are guaranteed to get all the updates and new versions with no extra 
cost. No functionality based cost scheme is applied. All the features of CCS are 
available with the subscription. This includes various DSP related features (like 
C6EZFlo, Image Analyzer), Android/Linux debugging even if you develop for only 
platform which do not use these features. Subscription includes all the Texas 
Instruments architectures so one can develop from ULP to DSP devices. Texas 
Instruments have developed even more features like GRACE (a visual peripheral 
configuration generator) and System Analyzer (analyzes and visualizes internals 
of the MCU like CPU load and memory usage) which makes it more powerful 
than the IAR EW and the cost of the toolchain is somewhat more flexible and less 
burdening than the IAR Systems provide. 
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Figure 8: Snapshot of the CCS IDE 

3.1.1.3 Conclusion 

Finally CCS was used throughout of the work that is presented here. Code 
Compose Studio provides IDE that is more functional and less erroneous, the 
support is more future proof and the Eclipse ecosystem provides many plugins 
and enhancements. Lately Texas Instruments have put more focus on supporting 
CCS than they do with IAR EW. Although the proprietary compiler of IAR 
Systems can generate more efficient code, the difference is dismal in the context 
of sensor network applications on MSP430. 

 IAR Embedded 
Workbench 

Code Composer Studio 

Supported OS Windows (XP, Vista, 7, 8) Windows (XP, 7, 8), 
Linux  

Cheapest license ~1200 USD (baseline 
package) 

445 USD (node locked, 
single user, annual) 

Trial version 
constraints 

30 day evaluation or 4KB 
code size limit 

30 day evaluation (can 
be extended) or 16 KB 
code size limit 

Requirements for host 
machine 

1GB RAM, 2GB disk 
space, at least Windows 
XP 

1GB RAM, 300MB disk 
space at least 
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Languages supported Assembly, C, C++ Assembly, C, C++ 

C standards supported C89, C99, Embedded C++ C89, C99, C++03 

Features Librarian, Texas 
Instruments ULP 
advisor, C-Spy debugger, 
MISRA C, RTOS support 

Librarian, GRACE, Texas 
Instruments ULP 
advisor, SYS/BIOS real-
time OS, Linux/Android 
Debug, C6EZFlo, System 
Analyzer, Image 
Analyzer, Scripting, 
Optimizer assistant 

Table 3: Comparison of IAR and CCS development environments [53, 57, 58, 59, 60, 61, 62] 

* Quote for the IAR toolchain price was received via email. 

3.1.2 Wireless development kits 

There were 2 development boards used throughout this work to test and run the 
solution developed. The basic differences were the size and the amount of 
included tools. While Olimex product is made to supply the user with a 
hardware, the Chronos kit and all its contents are made to showcase the 
capabilities of Texas Instruments low power solutions. 

3.1.2.1 Olimex MSP430-CCRF 

The board has been designed to jump start the development of CC430 radio 
devices. The development kit package includes one fully assembled PCB. The 
circuitry on the board includes voltage regulator with wide range input voltage 
(3-12V), external 32768 Hz and 26 MHz quartz crystal, JTAG connector, button, 
LED, I/O pin holes and antenna circuitry interface. The core of the system is 
CC430F5137 transceiver MCU. The size of the board is 78.49mm x 39.12mm x 
1.00mm.The kit includes minimal amount of software examples for the CC430 
family transceivers. 

The simplicity and the size of the board is perfect for the development. One can 
easily access pins, while keeping the size of the board minimal. The I/O pin 
layout design with the Chronos kit watch (see next chapter) is compatible, which 
enables one to run the same code on both of the kits without any pragma 
switches at the code level. Only drawback of the kit is the need to purchase the 
programmer separately. For the development of this work the Olimex’s MSP430-
JYAG-TINY-V2 programmer was used. [63] 



43 
 

 

Figure 9: Olimex MSP430-CCRF development board [63] 

3.1.2.2 eZ430-Chronos 

Kit includes (Chronos WHITE): 

 1x eZ430-Chronos module with wristwatch housing 
 1x eZ430-RF USB debugging interface 
 1x MSP430F5509 + CC1101 USB RF access point 
 1x 4-pin solder-on debug connector for the USB RF access point 

There are 2 different versions of this kit. In this work the "WHITE" version is 
used. Probably this kit has the best price to value ratio in the market (58 USD). 
Included devices provide full support for development and testing of the whole 
sensor network. Especially fancy is the sensor node, which by default is 
embedded in the wristwatch housing and the whole set is a complete 
wristwatch. The watch node incorporates touch and acceleration sensors 
manufactured by Bosch. Adding to that the example software is thorough, with 
multiple modes and the LCD screen on the watch much operations can be easily 
done with the stock software. 

Out of the box settings already enable one to experiment a lot. User interface for 
the controlling (Chronos Control Center) end of the application is also powerful. 



44 
 

Support for all of the functionality can be done with the GUI application. Besides 
sensor data readings one can use the application to send commands to the PC. 
The support for keystrokes and mouse movement is already built in to the 
application. From the tabs on Chronos Control Center one can choose different 
modes of functionality: live acceleration data, PC control via watch, time 
synchronization, temperature and altitude logging and wireless firmware 
update. With another utility for PC – Chronos Datalogger – one can log the 
different sensor readings, over the long period of time. 

Modifying the Chronos watch hardware is somewhat complicated due to the 
relatively tiny PCB. Available I/O is mostly occupied by the LCD. But the small 
size does not limit the kit to be able to operate at the low frequencies. All 3 
different regions are represented: 433, 868 and 915MHz range. The example 
software can be downloaded and used as a basis for one’s project. All parts of the 
software is left without obfuscation, so one can use it as a powerful application to 
modify it to ones needs. 

This kit is the most suitable for the introduction of MSP430 RF devices. Other 
devices included (debugger/programmer, RF USB dongle) can be easily used for 
other MSP430 related projects as well, because they are compatible also with 
other MSP430 devices. Same for software, which is a great source of portable 
code for MSP430 RF devices. Software can be downloaded for the radio modules 
as well for PC applications. [64] 

 

Figure 10: eZ430-Chronos kit devices – watch, programmer, access point 
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3.1.3 Texas Instruments Chronos software 

The software library which was taken as a reference for the current work is a 
Texas Instruments Chronos wireless development system. It comes as 
supporting software package for the development kit of physical devices 
consisted of watch, access point and debugger/programmer (see Section 3.1.2.2). 
Besides the tools on PC to invoke commands and receive data on the devices it 
includes all the sources for the firmware of the devices and the graphical 
interface. Thus making it a perfect reference platform for a custom MSP430 radio 
design, enabling one to develop an application from top to bottom. 

Software libraries used in this work are a Code Compose Studio projects for 
Chronos watch and USB access point. Firmwares for both of the devices are 
modified a lot since the logic includes a lot of Chronos application specific code. 
That means the communication layer and main logic flow is heavily modified for 
the Chronos watch features. If one wants to develop clean code (e.g. only code 
that is related to one’s application) a lot of the Chronos specific code must be 
deleted and redesigned. That is valid for the project settings also. Nevertheless 
this approach is less time consuming than developing from the scratch. 

Common layer for both of the projects is SimpliciTI radio library (Section 3.1.5). 
Since both of the radios, in order to communicate, must use the same parameters 
and protocol design. The same is valid for the Bluerobin radio module. Although 
just about anything else is different between two projects, since one is battery 
operated end device and the other one is USB connected radio access point. 

3.1.3.1 Chronos watch software 

Software modules are grouped into folders which makes the project easy to 
manage. Basic modules are SimpliciTI library for radio, driver modules (SPI, I²C) 
for the logic of the on board peripheral modules (acceleration, pressure), logic 
module for the application menus (state variables, handling the shutdown states 
of the driver modules) and Bluerobin radio protocol specifics. 

The top logic of the project is contained in the main.c file in the project root 
folder. Reading the code inside one can get a quick overview of the firmware, its 
states, modules and global variables. The main() function can be easily 
modified to meet the requirements of one’s application. 

As can be seen from the main logic, the essence of the application is quite thin. 
Application and peripherals specific initialization logic is implemented and no 
further modifications and conditional switching is not needed. The program 
continuous cycle is simple too. When the device has run the specific logic of one 
of the application features, the user interface (the LCD display on watch) is 
updated and the device goes back to low power mode. Waking up the device is 
done by the timers or buttons. 

When the code gets analyzed and tested deeper the shortcomings arise in the 
context of this work. First, the dedicated timer is assigned to any of the actions 
including wireless data transmission, which means that it cannot be used for 
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surveying some physical phenomenon over long period of time. It is present to 
limit the energy consumption when there is unintended triggering of the 
sequence. Second the frequency of the data packets is too sparse. Cause of this is 
the relatively heavy logic associated with the program flow of transmission and 
synchronous measurements of the sensor data. Last issue connected to the 
wireless data transmission is the link validation check. When the link has been 
first established, there will be a sequence of data packets transmitted, even when 
the addressee is not present anymore. 

The benefits of the software stack is associated with the working wireless library 
and utilities for the CC430 modules. The integration of the SimpliciTI library, 
means that there is no need to supply and modify the library to one’s project. A 
thin layer of board support package has been set up which supplies simple 
functionality to the library like I/O, timers, buttons etc. The MCU specific register 
related defines has been set up, so one do not have to adapt the library to the 
current radio chip. The utilities can be everything related to functionality like 
timers, LED lights, interrupts, sleep routines that can be reused as original or 
modified forms in one’s application. 

 

Figure 11: Chronos watch software flow [64] 
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3.1.3.2 Chronos access point software 

The access point is essentially a driver for the backend, which in the context of 
Chronos application is a PC. It has two distinct components: USB logic and 
Chronos SimpliciTI radio network logic. Each part is being run asynchronously 
as much as possible where the Chronos SimpliciTI radio network logic is the 
application main flow. USB part is running mostly interrupt based since it has to 
move the data buffers from one end to another. The main principal moving 
information between the PC and the access point is command – data response 
logic. With every command and data transfer the PC must issue a command with 
length byte plus data, which will then trigger a response from access point. For 
example if wireless data is needed to be moved, the PC must first issue 
corresponding command to access point, which will transfer the data if available.  

When command is invoked by the PC, first it gets decoded in the access point. If it 
is SimpliciTI specific, it is getting relayed to the corresponding wireless task. The 
PC does not have to handle the SimpliciTI logic, the wireless application specifics 
is implemented in the access point. The data, commands and modes of 
functionality of SimpliciTI application are all handled in the access point. 

With the poll-receive logic with PC and thick layer of SimpliciTI logic for the 
access point link, the firmware is relatively slow. For example larger and more 
frequent data packets from the end device are getting lost, as was experienced 
during the tests. In the context of this work more data is needed to be put 
through, so the present logic must be changed. Another drawback is the support 
of the connection of one device only. This could be increased as it is supported by 
the SimpliciTI stack. 

 

Figure 12: Data movement between the devices of Chronos development kit 
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3.1.4 CC1101 Chipcon radio transceiver 

Besides the basic properties like the frequency ranges and supported 
modulation schemes that was covered in Section 2.2, more information is given 
about the internals of the transceiver. Features like packet handling, sensitivity 
and power consumption are described. 

3.1.4.1 Differences between versions 

CC1101 radio is an upgrade from CC1100, which is not recommended for new 
designs anymore. While they remained compatible in code and register settings 
level, there were some fine tune enhancements. Main upgrades over the old 
version included the received signal attenuation option, receiving circuitry ADC 
settings retention, better noise immunity and more frequency bands. [65] Other 
than that the chips are interchangeable and can communicate to each other. 

The differences between CC430 and the original CC1101 are also minor. Most of 
the changes are due to the fact that it is embedded into the MSP430. For example 
some signals are mapped differently (GDOx multiplexing) and the core can 
execute commands while in sleep state. Main differences that can be taken into 
consideration are the void of the forward error correction and interleaving and 
everything related to the states. Other than that no changes to the design that 
could affect the performance or command strobes execution. [43] 

3.1.4.2 Design and features 

Since the radio is designed focusing on proprietary solutions, it is not compatible 
with any of the major protocols under the IEEE 802.15.4 umbrella. Although the 
802.15.4g standard have amendments, which included FSK modulation 
(supported by the circuitry) and more sub 1 GHz frequency bands. [66] But in 
practice the FSK modulation is not supported in PHY/MAC layer by any major 
protocols like ZigBee or 6LoWPAN. The FSK modulation can be used for Wireless 
M-Bus protocol for example. 

The functionality has special features to support one’s protocol design. For 
example hardware supported general packet format design that enables the 
application to optionally configure length and address bytes which are then 
automatically added and checked by hardware with each packet. For a robust 
performance and valid data, the CRC can be automatically added and checked 
also. All these fields can be used to do the automatic filtering of packets to speed 
up the packet processing. The packet length filtering is more varied. One can 
choose between fixed length, variable length or infinite length mode. Variable 
length mode enables to discard the packets which are not having preconfigured 
size. Receive and transmit buffers are 64 bytes in size, which are reserved only 
for application’s data. Exception is when the receive buffer is configured to 
contain RSSI and LQI plus FCS bytes. Preamble and sync bits can be configured to 
have determined length and value. These mechanisms can contribute to the 
packet filtering and more reliable performance of radio link by enabling settling 
time for the receiving circuitry to detect the info bits correctly. 
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Figure 13: The packet format of the CC1101 radio [43] 

Chip has multiple energy and pass rate efficiency mechanisms. The simplest form 
of this is the CCA, the condition which must be satisfied before the radio will 
enter the transmit state. This helps to keep the noise low on the channel by not 
enabling to talk while there is some other transmission active at the same time. 
Whitening is a technique which applies some determined loops of code on the 
data. This can be used for encryption and data link reliability purposes. At the 
technical point of view it keeps the output bandwidth power distribution 
smooth. Using the chips applied on data, keeps it more random, since data can 
contain long sequence of zeroes and ones, this will decrease the error rate. 
Another technique that is for example applied on Bluetooth communication 
links, is the frequency hopping. When switching the frequency, the recalibration 
and settling delays must be taken into account. This is supported in the 
hardware where there is special registers to specify channel number and 
channel spacing. 

Operation modes and sequence of states are programmable. That means that one 
can choose what happens after receiving or transmitting data or when the radio 
is woken up. Different timers are supported for the non-deterministic events. 
Receiver timeout and wake up on radio timers automatically change the state of 
the radio either to sleep or vice versa. All contributing to the energy efficiency 
and bigger data rate. There are four defined states: transmit, fast transmit on 
(initialized and ready to transmit, goes to transmit when data is supplied to FIFO 
buffer), receive, idle and sleep. 

Finally the power amplifier, which greatly can reduce the power consumption 
and enhance the transmission range. At the runtime the radio can use 8 pre-
determined values, which are described in the device PATABLE. The table is used 
automatically by the core for some modulation shaping techniques like ASK or 
OOK. The constants used to achieve certain output power at defined frequency 
are different and can be calculated from the datasheet. [51] Range of values for 
the output are from -30 to +13dBm. [51, 67, 68] 

3.1.4.3 Programming model 

Since Chipcon based radio cores are used in many different configurations in 
different designs (Section 3.1.2.1, Section 3.1.2.2 and Section 3.1.6.2) there are 
different ways to do the radio controlling and programming. Radio registers are 
like the microcontroller registers where everything system specific (from signals 
to threshold values to constants) can be controlled, read and configured. When 
one uses the SoC variant of the CC series microcontroller (like CC2530 or 
CC1010), one can access the registers in their code like every other register in 
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the microcontroller memory. In the case of CC1101 the radio registers must be 
accessed externally. When used as a separate transceiver module the SPI 
interface is used and inside the CC430 the RF1A interface is used. Nevertheless 
same principals apply to both of the controlling modes. The RF1A interface is a 
collection of MSP430 internal registers that is used to interface the CC1101 radio 
core. RF1A interface can be used to control everything from data transfer, status 
feedback to interrupt vectors. The write byte/word, read byte/word approach is 
used for both the SPI and RF1A approach. There are different instructions 
defined that can be invoked via interface to set the state, read data or configure 
the registers. That means registers in the radio cannot be directly accessed. Some 
complexity is added with the interface models, where additional errors can be 
introduced. Nevertheless the interface model enables thoroughly to configure 
and control the radio core without any notable latency. 

3.1.4.4 Detailed characteristics 

Parameters based on the CC430 integrated core [51]: 

 Supply voltage 2.0-3.6 V 
 Programmable data rate from 0.6 kbps (26 kbps for MSK) to 500 kbps 

(MSK and 2-FSK) or 250 kbps (2-GFSK, OOK, ASK) 
 RF crystal tolerance ± 40 ppm 
 Sleep mode current consumption 100 µA, idle state 1.7 mA 
 Receive current consumption 16 mA @ 250 kbps 868 MHz with -100 dBm 

input 
 Transmit current consumption from 18mA to 36mA @ 868 MHz with 

output from -6 dBm to +11 dBm 
 Receiver sensitivity -90 dBm @ 250 kbps 868 MHz, 2-GFSK modulation 

3.1.5 SimpliciTI library 

SimpliciTI is a wireless proprietary protocol aimed to be easy to use, lightweight 
and portable across the Texas Instruments’ different transceiver controllers. It is 
targeted to CC and CC430 family of microcontrollers and can be ran on MSP430 
microcontrollers too. Since it is not designed to be conforming to any other 
standard or protocol, it can be used by utilizing lightweight SimpliciTI API, to 
implement one’s proprietary radio network and protocol on top of the stack. 
Source code is free to use and redistribute. Library can be downloaded in many 
configurations, since it explicitly does support different development kits and 
reference designs by Texas Instruments.  

3.1.5.1 Architecture 

The architecture consists of 3 different layers. The data link/physical layer also 
named as MRFI (minimal RF interface) contains everything specific to low level 
radio registers and radio hardware management. Second layer, network layer, 
deals with the logic of the SimpliciTI protocol, being the intermediate layer 
between the application and low level radio interface. The most abstract layer, 
the application layer, exhibits very basic up to 10 command API which can be 
used from the user’s application to manage the wireless data transmission. One 
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can also build up its application using only network layer (as was done partly in 
the current work), this means that the ports, addresses and contexts related to 
programming model must be manually set up. [69] 

The 10 APIs with the quick explanation are as following [70, 71]: 

 SMPL_Init() – initialize SimpliciTI stack. 

 SMPL_Link() – initiate linking sequence with the devices that are 
listening. 

 SMPL_LinkListen() – same as the previous, but will block until the 
ACK has been received. 

 SMPL_Send() – transmit array of data. 

 SMPL_SendOpt() – transmit array of data, with some predefined 
options like automatic ACK. 

 SMPL_Receive() – receive the payload from the oldest frame in the 
buffer. 

 SMPL_Ioctl() – enables to configure the network layer (radio mode 
and properties, address, link tokens). 

 SMPL_Ping() – ping the device. 

 SMPL_Unlink() – removes the link from the connections table. 

 SMPL_Commission() – modify and access the connection table and 
different port assignments. 

3.1.5.1.1 MRFI 

Relatively thin layer, where all the CC radio core specifics are being implemented 
and defined. The most direct connection one usually have with this layer is the 
settings file generation. Settings are described in a C header file where the values 
of the registers are defined with the following pattern. 

#define SMARTRF_SETTING_{REGISTER_NAME} {NUMERICAL_VALUE} 

Values are read during the compile time by the preprocesser and placed into the 
array, which is used to set up the radio core when the MCU starts. The settings 
can be generated using the Texas Instruments’ Smart RF Studio (see Section 
3.1.6.3). The generated file simply can be placed into “smartrf” folder inside the 
“mrfi” layer folder tree. 

There are total of 17 APIs which are exhibited in the mrfi.h header file. These 
include managing and reading the radio core state, transmit power, receive and 
transmit FIFO buffers and different features like address filtering. 

One can easily use this layer as a software reference for its own Chipcon based 
radio core software implementation. Coupled with the Texas Instruments 
developer aid software, implementing only this layer is enough to send and 
receive data from point to point connections. 
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3.1.5.1.2 Protocol 

Protocol part of the stack is more or less implemented in the network layer and 
partly in the application layer too (when hardware specific preamble, 
synchronization sequence and FCS is excluded). Data packets are relatively 
simple and with low overhead. Depending on the packet the SimpliciTI packet 
data overhead can take up to 12 bytes. That includes length byte, destination and 
source addresses (both 4 bytes), port and device info byte plus transaction ID 
byte. More overhead could be present depending on the exact radio core, but 
usually consists of atleast RSSI, LQI with FCS check bytes. Packet size in total is 
defined by the radio core fifo buffer sizes. In the case of CC1101 used in this 
work, the buffer can allocate 64 bytes. When the SimpliciTI overhead and frame 
info is subtracted, the maximum payload length of 50 bytes can be sent by the 
application. The maximum application payload varies but can be up to 52 or 113 
(for example CC2420 [72]) bytes. 

In the protocol headers, the basic functionality is utilized. The length byte 
indicates the length of the total packet including length byte itself. The port byte, 
indicates to which port the frame should go to (ping, link, join, user application, 
etc.). Two most significant bits specify encryption and forwarding options. The 
address bytes specify the source device and destination, based on which the 
received frame can be discarded, forwarded or saved. Device info specifies the 
device type, frame acknowledgment response or request status, receiving state, 
and frame hop count. Transaction ID byte is an incrementable indicator showing 
the sequence of the frame. An example flow of packets can be seen in the 
appendix A. 

3.1.5.2 Configuration 

Library features two simple configuration files, which can be easily edited to 
achieve the desired configuration. Configuration files can be found in the 
„Applications/configuration“ folder in the library folder tree. The 
„smpl_nwk_config.dat“ has all the definitions for the network, this must be 
ecquivalent on all of the devices across the network. One can set up the 
encryption, link and join tokens, maximum payload size and many more 
fundamental properties of the network. This configuration file do not change 
based on the device type. The „smpl_config.dat“ file is specific to a device type. 
Properties like device type, device address, input and output frame queue sizes 
and number of maximum connections are specified. This file most directly affects 
the memory usage and performane of the device. There can be 3 different types 
for SimpliciTI based networks: end device, access point and router. The 
configuration should be more lightweight on memory for end devices, while 
other device types should have reasonable size queue buffers and connection 
tables. 

3.1.6 Tools 

Hardware and software tools were extensively used throughout the 
development process. RF tools provided information that would have not been 
obtained any other way. All the articles (except one software tool) are Texas 
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Instruments products, designed to complement the development process of their 
low power radios. 

3.1.6.1 CC1111 USB evaluation module kit 

USB sniffer was used in conjunction with the SmartRF packet sniffer (see section 
3.1.6.2) software. It is a simple to use device, which is controlled by the sniffing 
software. It contains CC1111 SoC, with the radio similar to CC1101, making it 
compatible (with slightly different register setup values) to communicate and 
receive packets. It can capture SimpliciTI and other proprietary format data that 
is compatible to the radio. . The 8051 based MCU contains radio and USB logic 
which is based on the libraries that are available and free to download. It serves 
the purpose of reference design and software demonstrator of how to use 
CC1111 based SoC devices. [73] 

 

Figure 14: CC1111 USB sniffer device [73] 

3.1.6.2 SmartRF Protocol Packet Sniffer 

It is a Texas Instruments software to support the sniffering of the wireless data 
links. Supports multiple protocols and devices. From Bluetooth to ZigBee to 
proprietary format protocols (including SimpliciTI) can be parsed and visualized 
in the GUI. It has an extensive list of supported devices and development kits 
(over 10) that can be interfaced with the tool. The radio interface settings for the 
device can be loaded inside the tool, which means no reprogramming is needed 
for the device to start to capture radio traffic with different parameters. 

The user interface enables to select different filters for the packets to be 
displayed and select the packet fields to be visible or hidden. Addresses of the 
devices are automatically recorded and included in the address book, where one 
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can convienently filter devices. Interface has also the timeline where all the 
traffic is visualized in sequence per device activity. Captured data can be saved to 
binary format “.psd” file. Tool enables to load the data from the file also. PC 
application enables to forward all the data via sockets to UDP ports, so it can be 
highly customized and integrated to one’s application. The example output of the 
wireless data is exhibited in the screenshot in the Appendix A. [74] 

3.1.6.2.1 SmartRF Packet Sniffer binary parser 

The large amounts of recorded data by the packet sniffer needed to be processed. 
Since the packet sniffer can save the recorded data only to a proprietary binary 
format the parser was developed. Parser reads the binary psd extension file and 
translates the data to a CSV file. It is written in C++ as a Visual Studio 2013 
project, but the C++ standard library is heavily used and therefore should be able 
to be compiled with every standard toolchain. 

The SimpliciTI packet binary format saved by the SmartRF packet sniffer 
contains length of 271 byte records. The record includes utility headers like 
timestamp and packet number as well a captured packet. The data that do not fill 
the entire 271 byte unit, is left empty, therefore the file size is packets captured 
times 271 bytes. An example of the parsing logic of the tool is included in the 
Appendix C. 

3.1.6.3 SmartRF Studio 

SmartRF studio is a graphical tool to support the development of the Texas 
Instruments low power radio devices. It can be used to evaluate the radio 
devices and generate register settings. The generated settings can be 
immediately tested on the connected devices – the radio link can be analyzed in 
detail. Tool supports more than 30 Texas Instruments radio devices, including 
the CC430 family. [75] Evaluation is supported with the features like packet 
handling and command strobe panel. That enables one to analyze and create 
custom packets. Also to invoke command inside the SoC devices. 

In this work it was used to generate register settings for the following devices: 
CC430F5137, CC430F6137, CC1111, CC1101. The tool was used in „expert 
mode“, where one can specify each register settings and radio link main 
properties like channel spacing and deviation frequency. An example snapshot of 
the register settings window and export can be seen in appendix D. The exported 
settings can have different formats. For one’s software project the C header can 
be exported, for packet sniffer the „prs“ extension and multiple versions of XML 
formats.  

3.1.7 Software improvements 

The development of more high performance sensor network required 
fundamental changes in the software of access point and end device. While the 
Chronos library projects were a great starting point, they were tightly bound to 
the example development kits and the features exhibited. For example one can’t 
use the main transmit procedure of SimpliciTI (simpliciti_main_tx()) to 
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send data at very high rates, because it includes the sampling of acceleration and 
other application level logic that renders the sequence slow. Same can be said for 
the access point, where the poll-response logic just did not stand up to the high 
frequency polling. While the USB is fast and can have high data rates, the 
encapsulation of small packets introduce big overhead and lag of the bus. The 
task of the software improvements is to find the bottlenecks and make the 
platform usable as a generic SHM library. 

3.1.7.1 Sensor node 

Restructuring needed a removal of the Chronos application logic flow first. 
Initialization and setup of the application specific modules (stopwatch, Bluerobin 
wireless stack, calorie counter, etc.) were removed. When the overhead of the 
special functionality was removed, the wireless data transfer routines had to be 
modified. Most of the work was spent on fine tuning the wireless data 
transmission, packet format, timestamp generation and link robustness, the 
problems described in Section 3.1.3.1 The requirements of the node is to have 
high data rate (penetrate radio limits), packets acknowledgment functionality, 
supported features for testing and easily modifiable software. 

First the most minimalistic and economical sequence of commands needed to be 
found. Since the SimpliciTI APIs are synchronous, keeping the logic as small as 
possible enables to increase the transmission rate. Overall the additional 
functionality is not needed anyway and when SHM application is built upon the 
developed software it must be done easy and fast. The following snippet of code 
is used to send data in the developed software. 

void joinNetworkAndSendData() 

{ 

 open_radio(); 

if (simpliciti_link()) 

{ 

      // Get radio ready. Wakes up in IDLE state. 

      SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, 0); 

setFlag(simpliciti_flag, SIMPLICITI_TRIGGER_SEND_DATA); 

SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXIDLE, 0); 

  simpliciti_main_tx_only(); 

  clearFlag(simpliciti_flag, SIMPLICITI_TRIGGER_SEND_DATA); 

      } 

SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0); 

sInit_done = 0; 

close_radio(); 

} 

The procedure joinNetworkAndSendData() can be called anytime and 
anywhere in the code. It powers up the radio core (open_radio()), joins the 

network (simpliciti_link()) and then using the SimpliciTI APIs (see 
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Section 3.1.5.1) triggers the data transmission. All the procedures called are 
default APIs of the Chronos or SimpliciTI stack, except the 
simpliciti_main_tx_only() which is modified according to this work 
requirements. One can easily insert the application specific functionality into this 
procedure or call it every time when the data is needed to be transmitted 
(increases overhead). For example in the case of demo application and tests, 
there is modified simpliciti_main_sync() before the transmit procedure, 
to get the synchronization timestamp from the access point. 

For the robustness of the link the mechanisms provided by SimpliciTI APIs can 
be used. There are two different approaches: automatic acknowledgment and 
user application acknowledgment or replay. 

The SMPL_SendOpt() API has the acknowledgment option 
(SMPL_TXOPTION_ACKREQ flag) as one of the argument. When the option is 
specified the automatic ACK flag is set in the packet header, which informs the 
receiver to send the confirmation. It provides the lowest overhead in the code, 
seamlessly returning status code with the procedure. However, when tested, it 
resulted that not all the ACK responses could not be determined by the stack. 
When analyzed, the logic is implemented so that between the transmission and 
ACK receiving the no-operation wait is invoked. When there is not the packet 
received within the wait duration, the confirmation is discarded. For alleviation 
one could increase wait time, but that will increase the total synchronous 
operation time, which in turn decreases the data throughput. With simple 
applications this approach is recommended, for more sophisticated 
requirements custom acknowledgment logic should be implemented. The user 
application can use the SMPL_SendOpt() and SMPL_Receive() APIs for the 
confirmation or use embedded logic inside the packet. With the latter approach 
there is more specialized functionality depending on the application and can 
increase the reliability while not hampering the throughput. 

One of the tasks which was not directly connected to the radio network, but 
needed to be used as the transmission data, is the timestamp. Timestamp is the 
essential data in the sensor measurements. The MSP430 platform features RTC 
module, which asynchronously can count the time, without requiring direct 
processing power and can function in various low power modes. The drawback 
however is the second resolution which is not satisfactory for the high sample 
rate measurements. At least a millisecond resolution timestamp is needed, which 
would enable sample rates up to 1 kHz. The MCU Timer_A was utilized for that 
purpose. A capture-compare mode is used where the interrupt is generated 
approximately after each millisecond. The input frequency for the timer is the 
output of external low power 32768 Hz (±20ppm) quartz crystal. The base 
counter is the Unix time_t data type, which is synced from the access point. The 
32-bit universal time structure and 16-bit millisecond is sent with the packets in 
the test and demo modes. The following code demonstrates how the timestamp 
is counted. 

void timestampTick() 

{ 

     if (++s_timestamp.milliseconds >= 1000) 
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     { 

          s_timestamp.seconds++; 

          s_timestamp.milliseconds = 0; 

          millisecondCorrectionCounter = 1; 

TA0CCR1 += 50; 

return; 

} 

if (millisecondCorrectionCounter++ >= 4) 

{ 

     millisecondCorrectionCounter = 1; 

     TA0CCR1 += 32; 

} 

else 

{ 

     TA0CCR1 += 33; 

} 

} 

The main problems with the stock Chronos application software got resolved 
while the Chronos functionality and project remain usable. The software can be 
run on all the CC430 family devices as the development used both Chronos 
watch (CC430F6137) and Olimex CCRF development kits (CC430F5137). The 
modified application gives a great basis for the wireless network application. It is 
used for the tests and demo of this work since it is easily expandable. The 
diversity of different setup applications can be seen in the Appendix F where the 
project’s Git source control tree is visualized. 

3.1.7.2 Access point 

Besides the SimpliciTI library, that is included in the end device as well and is 
more or less the same, access point software runs USB stack too, which adds 
burden to the hardware. The software is being run on MSP430F5509 and the 
CC1101 radio transceiver is interfaced via SPI. The shortcomings exist at both 
functional libraries. The software modifications add the support for multiple 
devices in the wireless network, higher wireless data rate and faster data rates 
on USB communication. 

The poll-receive logic got eliminated from the data transfer flow. The bottleneck 
already existed with the low data rate radio settings and needed to be changed. 
Data transfer was slow because, the access point needed to decode the message, 
forward it to the radio module, which supplied data and then the replay could be 
sent back. Also when there were packets that did not got polled from PC, the data 
would have been lost. Another drawback of the logic was the poll packet format, 
where the length byte should have been determined before the data packet was 
to be received, which in the context of this application is impossible. The flow got 
redesigned. When the data is received in the SimpliciTI module it is 
automatically appended to the USB buffers and sent to PC. So the burden of 
handling data could be switched to operating system COM port buffers. This 
approach reduced the overhead in the accompanying PC tool as well. The 
software can simply read the OS COM buffers at the time it is suitable for the 
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code flow. With the OS buffers big enough for storing serial port data, there is 
automatic buffering of data by the platform too. 

The connection support for more than one end device got implemented. For that 
purpose a SimpliciTI device specific configuration file „smpl_config.dat“ was 
modified. The preprocessor definition NUM_CONNECTIONS specifies the 
maximum number of supported devices. In order to support features in the 
library runtime configurations the application logic needed to be changed too. 
The link id table needed to be set up and integrated into the application flow, 
where there should be divided processing window for each linked device.  

Finally the timestamp synchronization process was implemented. The 
timestamp is supplied with the SimpliciTI start command. When one starts the 
end devices before the access point, that means the sensor nodes are sending 
join frames before the join window is opened in the access point, one could get 
synchronization error of 1 second (because end devices are sending join frames 
one per second). The opening of the join window in the access point will 
immediately trigger the linking frames to be exchanged between entities and 
synchronization error therefore is limited by the end device polling rate. No 
resynchronization of the timestamp was implemented. 

The access point got the support of multiple end devices, fast wireless data 
relaying functionality and for the testing and demo utilities a timestamp 
synchronization flow. For the tests the access point software was again modified 
to encapsulate frame receiving information with the packet sent to the PC. 

3.1.7.3 Access point control tool 

To control the access point and receive data, a command line tool was written in 
C++. A Visual Studio 2013 project was set up with along the packet sniffer parser 
(Section 3.1.6.2.1). Goal for the tool is to have a lightweight client for the access 
point, which could be easily modified for different tasks. 

Tool essentially consists of 1 module, where the communication with the access 
point is realized and the packets from the COM port are being read and sent. For 
the low level COM handle drivers the BM_Comm.c and BM_Comm.h source files 
are used, which are from the Chronos kit PC tools application. The tool opens the 
serial port, specified by the supplied numerical value on command line. Then 
sends the SimpliciTI start command to the access point and then starts to parse 
the received data. The tool has different versions depending on the output data 
format, but common output format is the CSV format. The parsing and the 
communication with the command line are running in two parallel threads in 
order to keep the tool responsive and fast.  

The source code for the tool along with packet sniffer parser can be seen at the 
following link: https://github.com/svenKautlenbach/SmartRF-SimpliciTI-
Chronos-PC-suite. For a snippet of the parsing logic see Appendix G. 

https://github.com/svenKautlenbach/SmartRF-SimpliciTI-Chronos-PC-suite
https://github.com/svenKautlenbach/SmartRF-SimpliciTI-Chronos-PC-suite
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3.1.8 Radio network 

When the prototype system design was being discussed there were different 
configuration and setups discussed for the whole network data exchange. First 
ideas were concentrated on pure power consumption point of view. The idea 
was not to have the radio transceiver on every node. The data was designed to be 
transferred first over the common wired network to the concentrator. Aim was 
to have LIN like network where only one wire would have been needed for the 
data transmission between the sensing node and the transceiver master node. 
MSP430 peripherals also supported it, thanks to the various UART settings. Each 
micro network would have had one master transmitter node. The concentrator 
would have had the energy source with a capacity large enough to power the 
sensing nodes. This design had one big advantage – low power consumption. The 
power of radio transceiver would have been completely eliminated on the 
sensing nodes. Charging the nodes would have been more compact either, since 
only one device for each micro network would have had the need to be charged. 
Also there would have been some size reduction of the nodes, since the radio 
part with the PCB antenna would have been eliminated. Also there would have 
been downsides as well. Wires in the composites must be small enough to not to 
alter the properties of the composite itself. Also it would have added extra 
complexity in the production of the material and a new approach would have 
been needed to be developed. Network specific problems also raised. 
Synchronizing the measurements all over the wired network until they arrive to 
the end point via the concentrator would have added overhead. The concept was 
initially tested by the author of this work, but did not succeed due to the 
complicated and distributed data management. 

Finally the wired nodes were cut from the network and the transceiver nodes 
were chosen to form the network. It was supported by the Chronos libraries. The 
limitations of the library was needed to be overcome though. The data rate 
settings for the network provided maximum data of around 70 kbps, although 
the hardware enabled more. Essentially the network was consisting of only 2 
devices, making it a point to point between access point and one end device. The 
changes were needed on the radio hardware settings level and the SimpliciTI 
radio protocol level too. 
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Figure 15: Complete set of devices used throughout development – access point, packet sniffer (upper row), 
Olimex boards with Chronos watch module in between (bottom row) 

3.1.8.1 SimpliciTI design 

The network is a simple collection of point-to-point connections – star network. 
The master of the network is a single access point and the end devices are all 
linked to it. Essentially SimpliciTI stack supports router devices and mesh 
network configuration, but this practice was not tested or supported in this 
work. 
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Important defined values in the SimpliciTI network configuration file: 

 MAX_APP_PAYLOAD=50 
 MAX_NWK_PAYLOAD=9 
 APP_AUTO_ACK 
 EXTENDED_API 
 MAX_HOPS_FROM_AP=1 

Important defines in the access point specific configuration file: 

 NUM_CONNECTIONS=8 
 ACCESS_POINT 
 AP_IS_DATA_HUB 
 STARTUP_JOINCONTEXT_ON 

Important values for end device specific configuration file: 

 END_DEVICE 
 NUM_CONNECTIONS=1 

The summary based on these defines tell that the maximum user application 
payload length can be 50 bytes, which is the maximum for this type of radio. The 
extended features of the SimpliciTI library can be used, like auto 
acknowledgment, which is used in the tests. The hops and connection count on 
end device hint that there is point to point connections. The data hub definition 
along with the startup join context will make the access point automatically 
listen for a new join frames from other end devices. 

3.1.8.2 Register settings 

To support the high data transfer the new radio register settings were generated. 
Essential change is the data rate, along with the channel spacing and deviation 
parameters. The modulation scheme was unchanged, although there could be 
higher data rates with other modulations schemes like MSK. The use of the 
Gaussian filtered FSK modulation is used because of the lower noise in the 
channel and conformance to the IEEE 802.15.4 g standard. The settings were 
exported as a C header file and put into the software project, where the values 
could be included in the compile time. 
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Figure 16: CC430 radio register settings 
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3.2 Evaluation of wireless nodes 

Infrastructure used for the tests included a Windows 8.1 equipped laptop, 
Chronos access point (Section 3.1.2.2), Texas Instruments’ CC1111 USB 
evaluation module kit (Section 3.1.6.1), Olimex MSP430-CCRF development 
boards (Section 3.1.2.1) and battery pack to power the sensor devices (see 
Appendix B). 

For the tests the access point firmware was modified to meet the requirements 
of data analysis format. Therefore the access point parsing tool (Section 3.1.7.3) 
was modified too. Same is true for packet sniffer parsing tool (Section 
3.1.6.2.1).CSV files generated by those tools were later imported to Microsoft 
Excel where they could be analyzed. The firmware of the end device was 
modified according to the test, but the common changes were the inclusion of 
timestamp and packet counter in the packet data.  

The quantity like tests were carried through in the controlled conditions, which 
means no signal blocking and scattering objects between the end device and the 
access point and near proximity were present to influence the results. 

3.2.1 Data rate tests 

The goal for the data rate tests was to penetrate the limits of the radio hardware 
in conjunction with the Chronos and SimpliciTI software. The results of the tests 
give approximate limits of the developed network. Data would help to answer 
questions like “What are the real data rate limits?”, “Where do the bottlenecks 
exist?” and “What can be done to alleviate or eliminate the problems?”. Finally 
the statistical figures can be constructed and analyzed, based on the test results. 

Devices are situated so that sensor devices are about 55 centimeters apart each 
other. The sniffer and access point are connected to common USB hub device, 
which is connected via cable to a laptop. They are situated between end devices 
(see Appendix A). 

Software running in end devices is modified specifically for the tests, but no 
library specific parts are altered. Just the application flow and data packet 
specifics. Data packets have structure that all the important information could be 
analyzed with the tests. Data needs to contain information about the packets’ 
sequence number and the time at the end device at the time of sending. 
Additional information is encapsulated by the access point to have more 
sophisticated statistics per link. The data that is counted here is the actual 
application payload (application useful data), without any of the SimpliciTI 
overhead and radio hardware specific bytes, which makes a total of maximum of 
50 bytes per packet (section 3.1.5). 
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timestamp 
(time_t) 

milliseconds packet index random data 

4 bytes 2 bytes 4 bytes 40 bytes 

Figure 17: End device packet structure for the tests 

link ID packet counter RSSI LQI FCS sensor node packet 

1 byte 2 bytes 1 byte 7 bits 1 bit 50 bytes 

Figure 18: Access point packet structure for the tests 

3.2.1.1 Maximum payload without ACK 

There were more than 10 test runs, each with 10000 packets sent from the end 
device. The idea was to burst out data at the maximum rate, without intervening 
the software flow with other tasks.  

 Average value Delta 

RSSI (dBm) -44.55 0.76 

LQI 49.14 0.06 

Pass rate 96.99% 8.49 

Average bit rate (kbps) 105.55 4.31 

Absolute maximum 
during 1 second period 
(kbps) 

135.1 17.2 

Table 4: Data rate test without acknowledgment 

3.2.1.2 Maximum payload with ACK 

Test setup is identical to the previous test, with the exception of the ACK frame 
response usage. As can be seen there are no losses, all the packets were received. 
At the same time can be seen that the throughput has reduced. 
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 Average value Delta 

RSSI (dBm) -52.8 14.12 

LQI 49.0 0.19 

Pass rate 100% 0 

Average bit rate (kbps) 50.75 38.4 

Absolute maximum 
during 1 second period 
(kbps) 

74.4 8.8 

Table 5: Data rate test with the acknowledgment 

3.2.2 Line of sight tests 

The transmission range test can determine many parameters of the devices. First 
the actual distance that could be covered with the radio link. Second the chip 
capabilities can be determined. The sensitivity limit, which is one of the key 
parameters for transceivers, is put to the test. The limit of sensitivity level is the 
threshold where the data transmission errors start to occur. 

The receive statistics were analyzed approximately after each 10 meters. 
According to the Olimex development board datasheet, range up to 85 meters 
could be achieved with the 250 kbps data rate at 868MHz. [63] The maximum 
range that finally was put to test was 100 meters, where still some packets could 
be captured. The sensitivity limit of -90 dBm was determined. This is the level 
where more than 95% of the packets were not received correctly. The datasheet 
[51] states -100dBm sensitivity, which could be true, but probably with very 
high error rate and practically not usable radio link. Since near the sensitivity 
limit the transmission error is fluctuating a lot, the exact ratio between distance 
and the packet loss cannot be determined. During the tests at 40 meters away 
from the transmitter 100% of packets could be recorded, farther away errors 
started to occur. The error rate between 60 – 90 meters was very volatile and the 
exact loss ratio was hard to determine. Thus only true metrics that can be 
associated with the data range and link error rate is the sensitivity limit. This can 
be different with different speed and register settings. Also this is heavily 
dependent on the environment. Tests were carried at the outside conditions on 
the flat field, with no major agitators. 

3.2.3 Energy consumption tests 

The supply voltage supplied to the circuitry is 3.3V due to the voltage regulator 
present on the development board. The current consumed by the circuitry was 
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measured using the low ohm resistor (3 ohms) in series with the supply line. The 
voltage drop on the element was measured with an oscilloscope. 

3.2.3.1 Transmit 

Current is measured while the device is on the burst transmit mode, like in the 
data transmission tests (Section 3.2.1). Sending the maximum packet length of 
50 bytes ensures the high duty cycle and correct mean peak values in the current 
consumption readings. The values of 20.13 to 24.13 mA was measured with the 
output power ranging from -6dBm to 0dBm. 

 

Figure 19: Measurement of the transmission current consumption 

3.2.3.2 Receive 

In this test the device is in the receive mode while second device is sending burst 
of data packets. Test setup is the same when measuring current consumption in 
transmit test, except the device is in the opposite mode. 

The values measured were rather static. A rough 17 mA current consumption 
was recorded at around -40dBm sensitivity.  

3.2.3.3 Idle 

The device has been initialized and has done the same start up procedures as in 
the usual working condition. The current consumption is measured when the 
program is cycling in an endless loop while incrementing integer. Two 
measurements are done. First measurement without the radio core being shut 
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down (in the idle mode) results in current consumption of 4.58mA. When the 
radio core is completely shut down the 2.87mA reading is obtained. This 
indicates that shutting down the radio core while not transmitting or receiving 
data can save around 1.80 mA. 

3.2.3.4 Sleep 

In this test, the peripherals and clock system is initialized as in other applications 
of this work. The MCU is put to sleep, while the radio core is powered down. The 
sleep mode LPM3 is activated. A reading 4.2µA was obtained. 

3.2.3.5 Results 

Current consumption comparison between the experimental tests and 
datasheets at 3.3V supply. 

 Transmit (0 
dBm) 

Receive 
(near -40 
dBm) 

Idle / Idle with 
radio off 

MCU sleep 
(LPM3) 

Tests 24.13 mA 17.06 mA 4.58mA/2.87mA 4.2uA 

Datasheet 18 mA 15mA x 2.2uA 

Table 6: Current consumption 

On the datasheet row the data is the combined information from Olimex datasheet 
[63] and the CC430 family datasheet [51]. One must note that datasheets are 
referring to typical average values, so the comparison is not absolute. 

3.2.4 Demo application 

For the graspable results of this work and a working live example, the demo 
application was designed. It is based on the same radio parameters and Chronos 
library modifications as already explained in previous chapters. Minor 
modifications were done on the packet parsing logic of the PC access point tool 
and on the end device itself to include the sensor measurements and data 
capsuling into a packet. 

The sensor data objects were added to the payload. Sensor measurement objects 
are containing as less overhead as possible. One sample of physical phenomenon 
object size is 3 bytes, where the first byte marks the type plus 2 bytes for the 
calculated value. The type byte is an ASCII char, which is chosen to represent the 
first letter of the name of the sensor type. Since all the physical values measured 
can be fit into 16 bits variable, 2 bytes are allocated for the converted value. 
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Sensor data object. 

type measurement data 

1 byte 2 bytes 

Figure 20: Sensor data object structure 

Where type can have the following values: 

 ‘x’ – accelerometer x-axis 
 ‘y’ – accelerometer y-axis 
 ‘z’ – accelerometer z-axis 
 ‘b’ – battery/operating voltage 
 ‘t’ – temperature 

Complete packet format used in the demo, sent by the end device. 

timestamp 
(time_t) 

milliseconds packet 
counter 

sensor data objects 

4 bytes 2 bytes 4 bytes n x 3 bytes 

Figure 21: Packet structure of the end device in the demo application 

The output of the demo can be seen on the command line where the last values 
of all of the nodes connected are printed. Additionally the tool logs all the 
received packets to a CSV file. 

The demo also exhibits the compatibility of the code between the CC430 family 
transceivers, where the same firmware is run on Chronos watch device and 
Olimex development board (Section 3.1.2). Both of the devices can be linked to 
the access point without any difference at the sequence of operation. 

3.2.5 Results 

With the results that are moderately worse than specified by the datasheets, the 
combination of software and hardware shortfall can be implicated. However in 
real life scenario the measured values are not awful either. Datasheets state the 
laboratory results, while the real life data that was recorded by the tests had the 
burden of software, timers and probably not the most fine-tuned power settings.  

The wireless data link results indicate that the software performance probably is 
the bottleneck for the data rate. The period of roughly 3.4 milliseconds was 
measured of one SMPL_Send() call which results about 295 calls in one second. 
Now when the packet length is 50 bytes, the theoretical maximum rate of 117 
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kbps is achieved. That means the test results actually showed that with the 
average of 105 kbps indeed the close maximum rate was achieved. The 
maximum rate of 135 kbps in one second frame was recorded, which shows the 
data rate that can be achieved with the perfect conditions. The volatility of the 
data rate and also the SMPL_Send() duration is present. That is the result of 
the CCA mechanism which is measuring the noise in the channel and therefore is 
controlled by the environmental conditions. Now when the SimpliciTI overhead 
is added to the payload calculations too, which makes 64 bytes per packet, the 
average data rate of 150 kbps is the true value of the link. So 150 kbps out of the 
datasheet stated 256 kbps is pretty good result, because there are more hidden 
payload by the radio packet format and the radio driver used by SimpliciTI is not 
the most efficient. Details of enhancements will be covered in the next chapter. 

Another rather positive outcome was the packet error rate of the transmission 
without the ACK mechanism. A roughly 97% pass rate is a very good result when 
the transmission was simply bursting out data. Although with the packet sniffer, 
all packets were captured successfully. Which simply indicates the burden of the 
software overhead for the access point, since the two devices were equally close 
to the transmitter. If one closely follows the sensitivity limits, the use of 
acknowledgment do not add extra value in the network because it simply 
decreases the data rate too much. 

Another implication of the tests showed that when multiple devices are trying to 
transmit on the same channel the real throughput in the channel do not increase. 
So the data rate results should roughly be divided with the number of devices on 
the channel. Another issue that would be added with the multiple devices is the 
scheduling, which will decrease the throughput even more. 

The current consumption tests showed that for large scale data transmission the 
solution is not sustainable. During one transmission period of 3.4 ms the current 
consumption is roughly 24mA. When the two standard AAA batteries, which 
could be used to power the device, are taken into account around 1000mAH 
capacity could be reached. With a power source like that one could roughly 
transmit continously 40 hours. With a scheduling algorithm this could be of 
course increased dramatically. When the amount of data is calculated the 
1000mAH capacity source could be used to transmit around 1.9MB worth of 
data. With this energy consumption the solution is suitable for only infrequent 
monitoring of objects. 

The demo application however showed that for low rate monitoring 
applications, even up to three devices could be successfully used in one common 
network. The devices do not appear to have any major problems of connecting 
and receiving data. 
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4 Summary and future work 

The Chronos development kit based solution got largely upgraded network 
physical layer. On top of it new layer functionality was developed. With the radio 
devices the accompanying PC tools and access point software was enhanced too. 

Author of this work reached a conclusion where it was found that with the usage 
of SimpliciTI library that is the essence of the network implementation, near 
limit performance was showcased. Following guidelines are the blueprints that 
the author suggests to follow for the future enhancements of similar work: 

1) Access point logic should run in the PC. The dongle hardware should feed 
all the radio data directly to the PC. This way there will be much more 
processing power to do the network related task. At the same time 
dedicated hardware can effectively deal with the radio network only. This 
approach also gives better modularity and dynamics of the solution. 

2) While SimpliciTI library is a great for custom sensor network solutions, 
because of the low overhead, it was designed having a low throughput 
networks in mind like home automation. The library already incorporates 
drivers for Chipcon radio family. On top of the “mrfi” layer new 
implementation should be written, which would use the resources more 
efficiently. 

3) The radio chip FIFO buffers should be used in a different way, utilizing 
“infinite length” packet format. The support at the architectural level for 
that is present. The SimpliciTI simply fills the buffer then waits when all 
the data is sent and then going through the initialization procedures fills it 
again. With infinite packet length format the buffers will be filled 
whenever there is free slot in the memory. This is interrupt based and 
efficient. 

4) MSK and GFSK modulation schemes comparison research. The CC430 
family RF circuitry does not support the Gaussian filtered MSK 
modulation, which makes the use of MSK to pollute the spectrum with 
higher level of noise. The approach where the frequency agility is used 
with the MSK could be researched. Since MSK modulation is stated to 
double the data rate, the research comparing the data rates achieved with 
multiple device network using cleaner spectrum GFSK versus MSK could 
be done. 
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7 MSP430 platformil baseeruv sensorvõrk 

Materjalide struktuuri muutuste jälgimine on üha kasvav trend, mis areneb 
suuresti tänu pooljuhttehnoloogiate täienemisele. Meetodid on samuti arenguga 
kaasas käinud ning tänaseks on välja jõutud juhtmevabade sensorlahendusteni. 
Sensorsõlmed on võimelised täitma suuremal või vähemal määral kõiki vajalikke 
funktsioone – sensorite sampeldamine, andmete töötlemine, kommunikatsioon.  

Aspekt, mis piirab funktsionaalsust on voolutarve. See probleem on eriti teravalt 
esile kerkinud juhtmevabade lahendustega, kus raadiolainete vastuvõtt ja 
saatmine tekitab kordades suurema energiatarbe võrreldes tavaolekuga. Peale 
selle kujutab raadiolüli endast ka pudelikaela, kus ühes kanalis saab korraga 
andmeid edastada üks seade. Samuti on piiratud läbilaskevõime. Sellest 
hoolimata on selliste seadmete uurimine populaarne uurimisvaldkond. 
Juhtmevabad sensorid võimaldavad väiksemaid seadmeid, paremat 
vastupidavust keskkonnatingimustele, modulaarsemat ja paindlikumat 
arhitektuuri ja seda kõike odavamalt kui juhtmega lahenduste puhul. 

Käesolev töö uuris MSP430 platformil baseeruvat lahendust, kus võeti aluseks 
Texas Instrumentsi Chronose arendusplatvorm. Eksisteerivat lahendust 
täiendati ja mugandati vastavalt uurimitöö ülesannetele. Testid näitasid 
rahuldavaid tulemusi, milel põhjal jõuti järeldusele, et väiksemamahuliste 
andmete juures on süsteem kasutatav, kus ülempiiri seab voolutarve. 
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8 Appendices 

Appendix A Radio link data rate test bed 
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Appendix B SmartRF Packet Sniffer records of the SimpliciTI traffic 
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Appendix C SmartRF Packet Sniffer „.psd“ file parser logic 

struct packetData 
{ 
 std::string destinationAddress; 
 std::string sourceAddress; 
 uint8_t port; 
 uint8_t transactionId; 
 std::string dataHex; 
 int8_t rssi; 
 uint8_t lqi; 
 bool fcsOk; 
}; 
 
static struct packetData parsePsd(const std::vector<uint8_t>& packetBinary) 
{ 
 struct packetData packet = {}; 
 
 size_t dataLength = packetBinary.at(15); 
 packet.destinationAddress = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 16, packetBinary.begin() + 20)); 
 packet.sourceAddress = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 20, packetBinary.begin() + 24)); 
 packet.port = packetBinary.at(24); 
 packet.transactionId = packetBinary.at(26); 
 packet.dataHex = "EMPTY"; 
 
 size_t applicationDataLength = dataLength - 11; 
 if (applicationDataLength > 0 && applicationDataLength <= 50) 
 { 
  packet.dataHex = bufferToHex(std::vector<uint8_t>(packetBinary.begin() + 27, packetBinary.begin() + (27 + (dataLength - 
11)))); 
 } 
  
 // When there are erroneous packets logged. 
 if (applicationDataLength > 50) 
 { 
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  packet.fcsOk = false; 
  return packet; 
 } 
 
 int8_t rawRssi = static_cast<int8_t>(packetBinary.at(27 + applicationDataLength)); 
 int16_t calculatedRssi = (rawRssi >= 128 ? ((rawRssi - 256) / 2 - 72) : (rawRssi / 2 - 72)); 
 packet.rssi = (calculatedRssi < -128 ? -128 : calculatedRssi); 
 packet.fcsOk = ((packetBinary.at(27 + applicationDataLength + 1) & 0x80) > 0 ? true : false); 
 packet.lqi = packetBinary.at(27 + applicationDataLength + 1) & 0x7F; 
 
 return packet; 

} 
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Appendix D Snapshot of the SmartRF Studio tool 
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Appendix E Hyperlink to all the contents of the work 

https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&u
sp=sharing 

Appendix F Git snapshots of the access point and the end device software 
development history 

 

 

 

https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&usp=sharing
https://drive.google.com/folderview?id=0ByzSpgDwHSL7dUNEZ0Jja2RLVXM&usp=sharing
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Appendix G Access point command line tool’s packet parsing logic 

void SimpliciTi::parseAndLogPackets() 
{ 
 readData(false, 50); 
 
 while (m_comDataBuffer.size() > 0) 
 { 
  // We do not know the new packet length and we must have atleast the complete header. 
  if (m_currentPacketSize == 0) 
  { 
   // Not enough data to find the header though. 
   if (m_comDataBuffer.size() < USB_PACKET_HEADER_LENGTH) 
   { 
    return; 
   } 
 
   // Searching for 0xFF, 0x06. 
   auto newPacketBeginning = std::search(m_comDataBuffer.begin(), m_comDataBuffer.end(), 
usbPacketStartSequence.begin(), usbPacketStartSequence.end()); 
 
   // Complete packet header not found. 
   if (newPacketBeginning + USB_PACKET_LENGTH_BYTE_INDEX >= m_comDataBuffer.end()) 
   { 
    std::cout << "Packet start not found, discarding " << m_comDataBuffer.size() << " bytes" << std::endl; 
    m_comDataBuffer.erase(m_comDataBuffer.begin(), m_comDataBuffer.end()); 
 
    return; 
   } 
 
   // If this is somehow still zero, then next time new packet will be searched for anyway. 
   m_currentPacketSize = *(newPacketBeginning + USB_PACKET_LENGTH_BYTE_INDEX) - USB_PACKET_HEADER_LENGTH; 
 
   if (((newPacketBeginning + USB_PACKET_HEADER_LENGTH) - m_comDataBuffer.begin()) > USB_PACKET_HEADER_LENGTH) 
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    std::cout << "New packet header found, but discarding more bytes (" << (newPacketBeginning + 
USB_PACKET_HEADER_LENGTH) - m_comDataBuffer.begin() 
    << ")." << std::endl; 
 
   // Erase all the not useful data and the header so later we could just cut the usable data out. 
   m_comDataBuffer.erase(m_comDataBuffer.begin(), newPacketBeginning + USB_PACKET_HEADER_LENGTH); 
  } 
 
  if (m_comDataBuffer.size() < m_currentPacketSize) 
  { 
   return; 
  } 
 
  // Lets extract the packet data out. 
  m_fileLogCallback(std::vector<uint8_t>(m_comDataBuffer.begin(), m_comDataBuffer.begin() + m_currentPacketSize)); 
  s_packetsReceived++; 
 
  m_comDataBuffer.erase(m_comDataBuffer.begin(), m_comDataBuffer.begin() + m_currentPacketSize); 
 
  m_currentPacketSize = 0; 
 } 

} 

 


