
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C58

Hierarchical Test Pattern Generation and
Untestability Identification Techniques for

Synchronous Sequential Circuits

ANNA RANNASTE

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering
Chair of Computer Engineering and Diagnostics

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on October 25, 2010

Supervisor: Dr. Jaan Raik

Opponents: Dr. Erik Larsson, Linköping University, Sweden
Dr. Görschwin Fey, University of Bremen, Germany

Defence: November 25, 2010

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted before for any degree or examination.

/Anna Rannaste/

Copyright: Anna Rannaste, 2010

ISSN 1406-4731
ISBN 978-9949-23-041-9

INFORMAATIKA JA SÜSTEEMITEHNIKA C58

Hierarhilised testigenereerimise ja
mittetestitavuse identifitseerimise

meetodid sünkroonsetele
järjestikskeemidele

ANNA RANNASTE

To my parents

Abstract

Nowadays, digital electronic systems are widely adopted and they are rapidly
developing. Research on effective testing methods is needed in order to guarantee
the quality of digital systems. Current thesis addresses the hierarchical test pattern
generation issues. First, a novel constraint-based automated test pattern generator
for Register-Transfer Level (RTL) designs is presented. The tool combines test
path constraint activation with a constraint solver allowing test generation for hard
to test faults in sequential digital circuits. In addition, the problem of high-level
identification of an important subclass of faults: potentially testable initialization
faults is discussed.

The second contribution of this research are techniques for identification of
untestability for synchronous sequential circuits. Proving untestable faults is
important because it helps raising the confidence in the test quality, without this
proof test pattern generation would spend a lot of time trying to generate tests for
faults that cannot be detected. A novel method of identifying untestable stuck-at
faults in the RTL sequential circuits using model-checking is presented.
Additionally, a new method for proving sequential untestability based on test
generation constraints was developed.

Results obtained during the experimental studies presented in this thesis give a
possibility to find “weak” spots from existing sequential circuit test generation
approaches and to improve them in the future.

The thesis is based on selected scientific papers published in the proceedings of
several international conferences.

7

8

Annotatsioon

Tänapäeval on digitaalsed elektroonikasüsteemid laialt levinud ja nad arenevad
väga kiirelt. Selleks, et tõsta digitaalsüsteemide kvaliteeti, tuleb välja töötada
efektiivsemad testimismeetodid. Käesolevas dissertatsioonis uuritakse peamiselt
hierarhilist testvektorite genereerimist puudutavaid probleeme.

Töö esitab uue, kitsendustepõhise automatiseeritud testvektorite generaatori
registersiirde taseme skeemidele, mis ühendab endas testi kitsenduste formaalse
genereerimise ja lahendamise. Programm võimaldab testida nn. raskesti testitavaid
rikkeid. Lisaks uuritakse potentsiaalselt testitavate initsiaaliseerimisrikete
identifitseerimise probleeme kõrgtasemel.

Lisaks on uurimistöö eesmärk välja töötada meetodid mittetestitavate rikete
tuvastamiseks sünkroonsetes järjestikskeemides. Info mittetestitavate rikete kohta
aitab tõsta testide genereerimise kiirust ning suurendab kindlust testi kvaliteedi
suhtes. Loodi uudsed meetodid mittetestitavate rikete identifitseerimiseks
järjestikskeemides register-siirde tasemel, kasutades verifitseerimisest tuntud
mudeli-kontrolli meetodit ja kitsendustel põhinevat testigeneraatorit.

Saadud eksperimentaaltulemused annavad meile võimaluse määrata meetodite
nõrgad kohad ja täiustada neid tulevikus.

Dissertatsioon tugineb valitud teaduslikele artiklitele, mis on avaldatud
mitmetel rahvusvahelistel konverentsidel.

9

10

Acknowledgments

I have many people to thank for their direct or indirect contribution to this
research work.

First, I would like to thank my supervisor, Dr. Jaan Raik of Tallinn University
of Technology for leading me to this exciting and challenging topic. I am
especially grateful to him for guiding my efforts, motivating and consulting me
through my studies.

I am thankful to my other advisers, especially to Professor Raimund Ubar for
helping me to make the first steps in my research activity and for giving valuable
comments and remarks about this thesis.

Also I express my deep gratitude to Professor Hideo Fujiwara from Nara
Institute of Science and Technology for inspiring collaboration. I appreciate highly
the three academic papers published as a result of our scientific co-operation.

Special thanks to Dr. Margus Kruus, the head of Department of Computer
Engineering for giving me his support in critical situations, which enable my
research to achieve fruitful results.

Moreover, I would like to acknowledge the organizations that have supported
my Ph.D. studies: Tallinn University of Technology, European Commission FP6
research project VERTIGO, National Graduate School in Information and
Communication Technologies (IKTDK) and Estonian IT Foundation (EITSA).

Many thanks to all my colleagues and friends for their advice and enthusiastic
company.

Finally, I’d like to express my gratitude to my beloved husband Aavo for his
patience, care and support at every difficult moment.

I devote this thesis to my parents. Without their continuous support and love my
PhD studies would not have been possible.

Anna Rannaste,

Tallinn, 2010

11

12

Table of Contents

Chapter 1 Introduction...23
1.1 Motivation..24
1.2 Problem Formulation..25
1.3 Contributions..26
1.4 Thesis Organization..27

Chapter 2 Related works...31
Chapter 3 Preliminaries..37
 3.1 Digital Circuits...37

3.1.1 Combinational vs. Sequential Circuits..37
3.1.2 Asynchronous vs. Synchronous Circuits...38

3.2 Fault Models..39
3.2.1 The Stuck-at Fault Model ...39

3.3 Classification of Test Pattern Generation Methods 40
3.4 Register-Transfer Level View to Circuits...41

Chapter 4 Comparative Study of ATPG Methods..43
4.1 Case Study of ATPG Methods...43
4.2 Chapter Summary ..49

Chapter 5 Test Pattern Generation for Sequential Circuits..............................51
5.1 Constraint-Based Test Pattern Generation at the Register-Transfer Level....51

5.1.1 Concept of Path Activation Constraints..52
5.1.2 Deterministic Test Path Activation..54

5.1.2.1 Fault Effect Propagation ..56

13

5.1.2.2 Constraint Justification...57
5.1.3 Constraint Extraction Example..58
5.1.4 Solving the Test Path Constraints..62
5.1.5 Experimental Results..62

5.2 RT-Level Identification of Potentially Testable Initialization Faults............64
5.2.1 Basic Definitions...64
5.2.2 Experimental Analysis of Fault Classes..65
5.2.3 RTL Detection of Initialization Faults...66

5.2.3.1 Reset Faults..67
5.2.3.2 Control Part Faults...69
5.2.3.3. Loop-counter Faults..72

5.3 Chapter Summary...73
Chapter 6 Proving Untestable Faults in Sequential Circuits at RTL...............77

6.1 Untestable Fault Identification in Sequential Circuits Using
Model-Checking...77

6.1.1 Introduction...78
6.1.2 Motivation for Targeting Register Faults..78
6.1.3 Register-Transfer Level Architecture..78
6.1.4 Identifying Untestable Registers...82
6.1.5 Reducing Untestability Identification to Model-Checking..................83
6.1.6 Impact of Register Faults at the Gate-Level..85
6.1.7 Experimental Results..85

6.2 Untestability Identification Driven by RT-Level Constraints.......................87
6.2.1 Preliminaries...87

6.2.1.1 Assignment Decision Diagrams...87
6.2.1.2 Test Environment...88
6.2.1.3 Multi-valued Algebra for Test Propagation..............................89
6.2.1.4 The Concept of Test Path Constraints......................................90

6.2.2 Generating Test Environments Under Control and Data
Dependencies...91
6.2.3 Generating the Constraint-based Test Environment............................93
6.2.4 Constraint-Driven Deterministic ATPG..95
6.2.5 Experimental Results..96

6.3 Chapter Summary...100

14

Chapter 7
Conclusions ..103

7.1 Thesis Contribution..103
7.2 Author's Contribution..107
References...111

15

16

List of Publications

Test Pattern Generation for Sequential Circuits

 Taavi Viilukas, Jaan Raik, Maksim Jenihhin, Raimund Ubar, Anna Krivenko
(Rannaste). Constraint-based Test Pattern Generation at the Register-
Transfer Level, Proceedings of the 13th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS’10), pp. 352 – 357,
April 14–16, 2010, Vienna, Austria.

 Jaan Raik, Hideo Fujiwara, Anna Krivenko (Rannaste). RT-Level
Identification of Potentially Testable Initialization Faults. The Ninth IEEE
Workshop on RTL and High Level Testing (WRTLT’08), IEEE, pp. 667-672,
November 27-28, 2008, Sapporo, Japan.

 Jaan Raik, Anna Krivenko (Rannaste), Raimund Ubar. Comparative
Analysis of Sequential Circuit Test Generation Approaches.
Proceedings of the Baltic Electronic Conference (BEC’04), pp. 225-
228, Oct. 3-6, 2004 Tallinn, Estonia.

Proving Untestable Faults in Sequential Circuits at RTL
 Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste).

Untestable Fault Identification in Sequential Circuits Using Model-
Checking. The 17th Asian Test Symposium (ATS’08), IEEE, pp. 667-672,
November 24-27, 2008, Sapporo, Japan.

 Jaan Raik, Raimund Ubar, Anna Krivenko (Rannaste), Margus Kruus.
Hierarchical Identification of Untestable Faults in Sequential Circuits,
Proceedings of the 10th IEEE Euromicro Conference on Digital Systems
Design (DSD’07), IEEE Computer Society, pp. 668-671, 27-31 August,
2007, Lübeck, Germany.

 J. Raik, A. Krivenko (Rannaste), T. Viilukas, M. Jenihhin, R. Ubar, H.
Fujiwara. Constraint-Based Hierarchical Untestability Identification for
Synchronous Sequential Circuits, (submitted to the DATE'11
conference)

17

18

List of Abbreviations

ATPG Automated Test Pattern Generator

ADD Assignment Decision Diagram

ADN Assignment Decision Node

ALU Arithmetic Logic Units

BDD Binary Decision Diagram

DD Decision Diagram

FSM Finite State Machine

FU Functional Unit

GCD Greatest Common Divisor

HLDD High-Level Decision Diagrams

IEEE Institute of Electrical and Electronics Engineers

MUX Multiplexer

PI Primary Input

PO Primary Output

RTL Register Transfer Level

SSA Single stuck – at (fault)

TTCN-3 Testing and Test Control Notation Version 3

TUT Tallinn University of Technology

19

VHDL VHSIC (Very-High-Speed Integrated Circuit) Hardware
Description Language

UT University of Tartu

20

21

22

Chapter 1
INTRODUCTION

The basis of this thesis is formed of five research papers representing different
aspects of hierarchical test pattern generation issues and listed below:

Paper I: "Comparative Analysis of Sequential Circuit Test Generation
Approaches", Jaan Raik, Anna Krivenko (Rannaste), Raimund Ubar (BEC'04)

Paper II: "Constraint-based Test Pattern Generation at the Register-Transfer
Level", Taavi Viilukas, Jaan Raik, Maksim Jenihhin, Raimund Ubar, Anna
Krivenko (Rannaste) (DDECS'10)

Paper III: "RT-Level Identification of Potentially Testable Initialization Faults",
Jaan Raik, Hideo Fujiwara, Anna Krivenko (Rannaste) (WRTLT'08)

Paper IV: "Untestable Fault Identification in Sequential Circuits Using Model-
Checking", Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste)
(ATS'08).

Paper V: "Constraint-Based Hierarchical Untestability Identification for
Synchronous Sequential Circuits", J. Raik, A. Krivenko (Rannaste), T. Viilukas,
M. Jenihhin, R. Ubar, H. Fujiwara (submitted to the DATE'11 conference).

23

The main emphasis is put on untestability identification techniques for
synchronous sequential circuits. In addition, constraint-based hierarchical test
generation techniques are presented.

This introductory Chapter first presents the motivation for the work which is
followed by the formulation of the problem and the outline of main contributions.
In the last part of the Chapter the structure of the thesis is described.

1.1 Motivation

Nowadays, electronic systems are widely applicable and reliability is becoming
the main problem for these systems. Reliability of electronic systems is essential in
military, aerospace and nuclear industries, where failures may have catastrophic
consequences. Adequate testing of electronic products is required to guarantee a
certain level of reliability. However, it is hard task to test contemporary electronic
systems because the ever-increasing complexity. Therefore, developing new, more
efficient test methods is required [40].

Electronic circuits are divided into analog and digital ones. Majority of the
hardware in use today is based on digital circuits. In this work we consider digital
test only. By testing we understand not checking the correctness of the function of
the implemented circuit (functional verification), but checking for manufacturing
correctness. Testing and verification are different tasks with different goals.

Fault models are needed to model the actual physical defects. Fault coverage is
the fraction of modeled faults covered by a test. Nowadays, automated test pattern
generation (ATPG) is used to automatically obtain tests with high-fault coverage
for digital electronic circuits. Already for two decades, automated test pattern
generation for combinational circuits was considered as a solved problem.
However, almost all the digital devices produced nowadays belong to the class of
sequential circuits, containing feedback loops that make the test generation
problem extremely difficult [38].

Scannable registers are used to test complex electronic circuits. These
architectures are inserted to the circuits to make internal points of the circuit
controllable and observable by converting a sequential design into a pseudo-
combinational one. Full-scan design is easy to accomplish and it allows application
of the combinational ATPG resulting in a near-100-percent fault efficiency.
Scannable registers have a number of drawbacks including performance, routing
overhead and excessive amount of test data. There are three major shortcomings of
using scannable registers. First one, at–speed test is costly in scanned designs.

24

Errors that would appear only at full speed may escape the test. Second, scannable
registers increase the cost of the chip. Third, this method also causes targeting of
non-functional failure modes, which results in over-testing and yield loss [39].

In this work, we consider test generation problem without implementing scan
structures. Test generation can be carried out at different levels of design
abstraction. Usually each design abstraction level is represented by different types
of models. In this work, a hierarchical test pattern generation approach is
presented, where high-level (register-transfer level) and logic-level design
information is described by decision diagrams.

1.2 Problem Formulation

As it was mentioned above, the problem of automated test pattern generation for
combinational digital circuit was solved already by the end of 1980s, but optimal
decision for test pattern generation for sequential circuits is still not found. There
have been many different approaches to generating tests for structural faults in
sequential circuits proposed over the years [1-10], [20-24]. However, the problem
of test pattern generation for sequential circuits is a challenge that lacks an
acceptable solution despite of decades of research. The achieved fault coverages
are unsatisfactory and test generation times are long for more complex circuits.

Similar to test pattern generation, the problem of identifying untestable faults in
sequential synchronous circuits remains unsolved. Untestable fault is a fault for
which no test exists. Test generation for sequential synchronous designs is a time-
consuming task. Automated Test Pattern Generation (ATPG) tools spend a lot of
effort not only for deriving test vectors for testable faults but also for proving that
there exist no tests for the untestable faults. Because of this reason, the
identification of untestable faults has been an important aspect in speeding up the
sequential ATPG. The previously published works in untestability identification
operate at the logic-level and, thus, they do not scale with the increasing
complexity of modern designs [30-34]. Thus, it would be good if part of the
untestable faults could be identified at higher abstraction levels. Identification of
untestable faults allows raising the confidence in the ATPG efficiency.

The current thesis is focused on improving untestability identification
techniques of synchronous sequential circuits that is the one of the major issues in
the area of digital circuits testing.

In addition, this thesis also presents a register-transfer level test pattern
generation for non-scan sequential circuits containing feedback loops. A novel

25

constraint-based automated test pattern generator for Register-Transfer Level
designs is introduced. The tool combines test path constraint activation with a
constraint solver. First, a deterministic algorithm that extracts constraints for
activating test paths at RTL is applied. Subsequently, a constraint solving package
ECLiPSe is used for assembling the tests. We showed that experiments offers short
run times, increased fault coverage for hard-to-test designs with respect to earlier
approaches listed above.

Finally, a new method of RT-Level identification of potentially testable
initialization faults is considered.

In sequential Automated Test Pattern Generation (ATPG) based on a three-
valued algebra (0,1,X) a fault is said to be hard-detected if a fault effect (0/1 or 1/0)
appears at a primary output. However, not all the faults can be tested by such hard-
detection model. Many faults belonging to the class of initialization faults are
known to be covered only by resorting to potential detection (effect 0/X or 1/X).
Existing high-level fault models assume hard-detection and therefore are not
capable of handling the initialization faults.

It is obvious that any ATPG algorithm first attempts to generate hard-detection
tests. As a result, high-level algorithms spend test generation time also for those
faults that may only be detected potentially.

The next Sections detail the areas of my research and further reveal the
motivation beind it.

1.3 Contributions

The main contributions of this thesis are summarised as follows:

The current thesis introduces several techniques to perform hierarchical test
pattern generation and untestability identification for synchronous sequential
circuits.

• An overview of the comparative study of ATPG methods is proposed [I].
A comparative study of test pattern generation approaches based on three
tools: a genetic algorithm test generator GATEST, a deterministic logic-
level tool HITEC and a hierarchical tool DECIDER. The purpose of this
study was to find out, which fault types are covered by the tools
implementing completely different approaches.

26

• A novel constraint-based automated test pattern generator for Register-
Transfer Level (RTL) designs is introduced [II]. The tool combines test
path constraint activation with a constraint solver. First, a deterministic
algorithm that extracts constraints for activating test paths at RTL is
applied. Subsequently, a constraint solving package ECLiPSe [14] is used
for assembling the tests.

• This thesis also presents the problem of high-level identification of an
important subclass of faults, of potentially testable initialization faults [III].
Potentially detectable initialization faults form a large subset of all the
faults not testable by hard-detection [III]. Potentially testable fault
identification is applicable, both, for stuck-at and high-level fault models.

• An approach of identifying of untestable faults in sequential circuits is
considered [IV]. We propose using model-checking for detecting
untestable stuck-at faults at the Register-Transfer Level (RTL). In
particular, we present a method for formally generating PSL language
assertions for proving untestable stuck-at faults in sequential synchronous
designs.

• A novel method of register-transfer level untestability identification for
non-scan sequential circuits containing feedback loops is introduced [V].
First, an RTL test pattern generator Decider is applied in order to extract
test path extraction constraints. Then, a constraint-driven deterministic
logic-level automated test pattern generator is run providing hierarchical
test generation and testability proof in sequential circuits.

1.4 Thesis Organization

The presented thesis is organized in a form of overview of the research results
that have been published in five scientific papers. It is divided into seven main
Chapters. The thesis contains description of the investigated problem,
implementation discussions, examples and conclusions. The rest of the thesis is
organized as follows.

27

Chapter 2 provides an overview of related works in studying of untestability
identification techniques and test pattern generation for synchronous sequential
circuits.

Chapter 3 presents an overview of preliminaries and makes an introduction to
different aspects of digital circuit. In addition, describes a classification of test
pattern generation methods for sequential circuits and Register-transfer level view
to circuits.

Chapter 4 forms a background information required for discussion of the further
proposed approaches and gives an overview of the comparative study of ATPG
methods.

Chapter 5 starts with discussion of a novel constraint-based automated test
pattern generation at register-transfer level. Further, research of identification of
potentially testable initialization faults at the RT-Level is introduced.

Chapter 6 presents an overview of the research results based on the selected
publications. First, a new approach proposes applying model-checking for
detecting untestable stuck-at faults at the register-transfer level. Finally,
hierarchical untestability identification for non-scan sequential circuits containing
feedback loops is considered.

 Chapter 7 draws conclusions for this thesis and discusses possible directions
for future work.

28

29

30

Chapter 2
RELATED WORKS

Current Chapter summarises the scope and provides an overview of related
works.

At present, satisfactory methods for testing sequential circuits are missing.
Gate-level test pattern generation for sequential circuits is a challenge that lacks an
acceptable solution despite of decades of research. Therefore, the test community
has turned towards higher abstraction levels. In particular register-transfer level
(RTL) test generation has been regarded as a potential trade-off between functional
and low-level approaches as it provides design abstraction while still retaining
correspondence to the circuit structure.

A common industry practice is therefore to resort to full- or partial-scan design,
where scan paths are inserted into circuit flip-flops converting a sequential design
into a pseudo-combinational one. Full-scan design is easy to accomplish and it
allows application of the combinational ATPG resulting in a near-100 percent fault
efficiency. However, the scan path approach has a number of drawbacks including
performance and routing overhead, difficulty to achieve at-speed testing, excessive
amount of test data, and last but not least, yield loss because of over-testing.

A number of works have been proposed in order to tackle the problem of
untestability identification. Despite of all the efforts the problem still lacks a
breakthrough. At the gate-level, a number of deterministic test generation tools,
both academic [1, 2] and commercial, have been implemented. None of these
methods can efficiently handle sequential designs of even a couple of thousands of
gates. With the further growth of the circuit size fault coverages tend to drop while
run times increase rapidly.

31

Better performance has been obtained with simulation-based approaches. Here,
genetic algorithm based methods have been widely used [6, 7, 8]. Relatively
efficient results have been obtained by spectral methods [9]. However, the
simulation-based methods are fast for smaller circuits only and become ineffective
when the number of primary inputs and the sequential depth of the circuit
increases.

Many works on functional test generation have been published in the past [3, 4].
In this field, an efficient technique based on BDD manipulation of data domain
partitions has been proposed [5]. However, the fundamental shortcoming of the
approaches that rely on functional fault models is that they do not offer full
structural level fault coverage.

Hierarchical automatic test pattern generation (ATPG) has been a promising
alternative to tackle complex sequential circuits for already more than a decade. In
hierarchical RTL test generation, top-down and bottom-up strategies are known. In
the bottom-up approach [20], tests generated at the low-level will be later
assembled at the higher abstraction level. Such algorithms ignore the
incompleteness problem: constraints imposed by other modules and/or the network
structure may prevent test vectors from being assembled. Thus, while being fast,
this type of approach is not really applicable for sequential circuits with difficult to
test feedback loops. In the top-down approach [10], constraints are extracted at the
higher level as a goal to be considered when deriving tests for modules at the lower
level. This approach allows testing modules embedded deep into the RTL structure.
However, as modules are often tested through highly complex constraints, their
fault coverage may be compromised.

Early methods on bottom-up RTL testing relied on the assembly of module tests
and were applicable of the simplest systems only [20]. A more solid basis for the
bottom-up paradigm was laid by Ghosh in [21]. In their work, test environments
are generated for each functional module of a given functional RTL circuit
described in an assignment decision diagram (ADD) [22] using symbolic
justification/propagation rules using a nine-valued algebra. In this method, a test
sequence is then formed by substituting the corresponding test patterns into the test
environment. However, regardless of the existence of some test environments, the
proposed nine-valued algebra cannot always generate the test environments. To
overcome this drawback, Zhang et al. upgraded the nine-valued algebra to a ten-
valued algebra by taking the signal line value range into consideration. This
algebra is able to generate much more test environments [23]. In [24], Zhang’s
approach has been further improved by introducing additional propagation rules.

32

Lee and Patel introduced constraint-based test pattern generation for
microprocessors in [10]. [11] proposed a bottom-up approach based on a high-level
decision diagram (HLDD) engine and a commercial SICStus constraint solver. As
experiments show, the tool achieves lower fault coverage in comparison to a
commercial gate-level ATPG. In [12], a top-down approach called Decider was
introduced, which relied on random constraint solving. The method was later
combined with Extended Finite State Machine based engine Laerte++ from the
University of Verona, which resulted in a semi-formal setup [13]. Thus, hard-to-
test faults inside the modules were not targeted. In this thesis, a constraint solving
package ECLiPSe [14] has been incorporated into the Decider tool [II] providing a
deterministic hierarchical test pattern generation environment.

In sequential Automated Test Pattern Generation (ATPG) based on a three-
valued algebra (0, 1, X) a fault is said to be hard-detected if a fault effect (0/1 or
1/0) appears at a primary output. However, not all the faults can be tested by such
hard-detection model. Many faults belonging to the class of initialization faults are
known to be covered only by resorting to potential detection (effect 0/X or 1/X). It
is obvious that any ATPG algorithm first attempts to generate hard-detection tests.
This means wasting test generation time also for those faults that may only be
detected potentially.

 Experimental analysis presented in paper [III] points out that an important
subclass of faults, the potentially detectable initialization faults, form a large subset
of all the faults not testable by the hard-detection model. As a result of the
proposed approach the confidence level of sequential ATPG can be increased. As it
is pointed out in this thesis, the proposed potentially testable fault identification is
applicable, both, for stuck-at and high-level fault models.

Existing high-level fault models assume hard-detection and therefore are not
capable of handling the initialization faults. Thus, it would be desirable that the
high-level ATPG would have knowledge about the faults that cannot be tested by
the hard-detection model.

In their previous work [VI], the authors introduced a new subclass of untestable
faults, called register enable stuck-on faults. However, the paper did not propose
any formal method for identifying untestable register faults. Paper [IV] presents a
new method that is capable of identifying such type of untestable faults. Using
model-checking for detecting untestable stuck-at faults at the Register-Transfer
Level (RTL) is proposed. In particular, a method for formally generating PSL
language assertions for proving untestable stuck-at faults in sequential synchronous
designs is presented. As a result the fault efficiency was significantly increased but
still remained well below 100 per cent.

33

The common short-coming of all the earlier methods is that they do not annotate
RTL constraints back to gate-level untestable faults. Thus, the fault efficiency (i.e.
test coverage) reported by the approaches is often low, which decreases the test
engineers confidence to the test. We will show in the paper [V] , in many cases,
fault coverage obtained for the modules in RTL test generation decreases if path
activation constraints are being ignored.

34

35

36

Chapter 3
PRELIMINARIES

Digital circuits have become increasingly complex, with more transistors and
functionalities packed on a single chip of nearly the same physical size. Therefore
testing of that complex circuit has become a major problem technically and
economically.

3.1 Digital Circuits

A digital circuits can be defined (according to author Francis C. Wang “Digital
circuit testing“) generally as an interconnections of logic elements such as AND
gates, OR gates, INVERTORS, flip-flops, and registers. It must also be able to
process a set of discrete and finite-valued electrical signals.

Digital circuits may be classified as combinational or sequential.

3.1.1 Combinational vs. Sequential Circuits

In a combinational circuit, the present outputs depend only on present inputs
(subject to reaction times).

A sequential circuit (Figure 3.1) consist of a combinational part and memory
elements. There are also feedback loops in the circuit. The combinational part of
the circuit is modeled at the Boolean gate-level. Flip-flops are treated as ideal
memory elements, whose clock signal is not explicitly represented.

37

The two classes of circuits have different topologies.

Figure 3.1 An example of a sequential circuit

The first difference between combinational and sequential circuits is that the
combinational circuit does not contain memory elements. The second one is that a
test for a fault in a sequential circuit may consist of several vectors. A
combinational ATPG, on the other hand, is capable of generating always only a
single vector for a target fault.

Sequential digital circuits may be further classified as asynchronous or
synchronous.

3.1.2 Asynchronous vs. Synchronous Circuits

The outputs of a sequential circuit may be assembled into an ordered list called
the state vector, or simply the state.

In an asynchronous circuit, the state can change at any time in response to
changes in the inputs.

In a synchronous circuit, the state can change only at discrete times.

38

3.2 Fault Models

The selection of the fault model determines the efficiency of test generation and
the quality of tests. Physical defects represented by mathematical abstraction
mechanisms are called fault models. The terms defect, fault and error have
different and specific meaning. Defects are physical failures that occur during
manufacturing. The goal of test generation is to generate such input stimuli that all
(or possibly many) defects would manifest themselves as erroneous output
responses of the circuit. In general, there is no one-to-one correspondence between
faults and defects but the set of faults belonging to the model should represent the
defect combinations that are likely to occur in reality. The term error is related to
the behaviour of the circuit. Wrong output responses of circuits by defects are
referred to as errors.

Fault models can be classified according to their level of abstraction into
transistor level, logic level and high level (register – transfer and behavioral level)
ones. Logic level fault models are: different types of delay fault models (path delay
faults, gate delay faults) and the stuck – at fault model. The most simple and at the
same time the most popular logic level model is the single stuck – at (SSA) fault
model, which will be presented in the Subsection 3.2.1. Its main advantages are as
follows:

• it represents a large number of physical defects

• it is independent of technology

• many other fault models can be reduced to the SSA model.

3.2.1 The Stuck-at Fault Model

We assume that the circuit is modelled as an interconnected network of blocks
in the stuck-at fault model. At logic level these blocks are Boolean gates. A stuck-
at fault is assumed to affect only the interconnections between the gates. Each
connection can have stuck-at-0 and stuck-at-1 types of faults. A line with a stuck-
at-1 fault will always hold the logic value 1 irrespective of the correct logic output
of the gate driving it. Accordingly, a line with a stuck-at-0 fault will always hold
the logic value 0 irrespective of the correct logic output of the gate driving it.

Several stuck-at faults can be simultaneously presented in the circuit. A circuit
with n lines can have 3n-1 different stuck line combinations. Even a moderate value

39

of n will result in an enormous amount of multiple faults. Therefore, only single
stuck-at faults are modelled. An n-line circuit has 2n single stuck-at faults and all
the single stuck-at faults will also cover also most of the possible fault
combinations.

The properties of single stuck-at faults are [25]:

1. only one line is faulty

2. the fault can be at an input or output of a gate

3. the faulty line is permanently stuck to 0 (1)

3.3 Classification of Test Pattern Generation Methods

Test pattern generation methods can be classified (by definition of authors
Michel L. Bushnell and Vishwani D. Agrawal from the book “ Essentials of
Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits), [26] into
three categories:

Time-frame expansion. In this method a model of the circuit is created such that
tests can be generated by a combinational ATPG method. This procedure is very
efficient for circuits described at the Boolean gate-level. Its efficiency degrades
significantly with cyclic structure, multiple-clocks, or asynchronous circuitry.

Simulation-based methods. In these methods a fault simulator and a vector
generator are used to derive tests. In general, tests can be generated for any circuit
that can be simulated. Also, circuits modeled at other levels (register-transfer,
transistor, etc) can be treated.

RTL test generation: Test generation with a known initial state (based on
hierarchical test generation, which exploits the RTL and gate – level descriptions
of a circuit), symbolic test generation for microprocessors (based on symbolic test
generation for microprocessors), test generation with functional fault models (uses
functional fault models to speed up test generation) [27] and hierarchical test
generation method DECIDER (in this method top-down and bottom-up strategies
are known. hierarchical test generation is based on multi-level decision diagrams)
[15]. The last method of hierarchical test generation is considered in this work.

40

3.4 Register-Transfer Level View to Circuits

An RTL circuit consists of a datapath and a controller (Figure 3.2). The
datapath consists of a network of registers, functional units, multiplexers and
buses. The controller governs the data computation in the datapath by generating
appropriate load signals for the registers and select signals for the multiplexers and
arithmetic-logic units (ALUs).

 Figure 3.2 RT-level view of a digital circuit and

Here, the control part is a Finite State Machine (FSM) with a state register
(variable xS), next state logic and output logic. As input signals to the FSM are the
primary inputs of the design (variables xI), status bits originating from the datapath
(variables xN) and the previous value of the state variable xS. Outputs of the FSM
are the primary outputs of the design (variables xO), control signals (variables xC)
and current value of xS.

41

primary

inputs

 xI

Control part

D a t a p a t h

Circuit

primary

outputs

xO

next

state

logic

output

logic

state register xS

control signals xC

+

=

internal line xL

multiplexer register

xR

conditions xN

comparison

operations

etc.

Datapath

operations

next
state
logic

output
logic

 x
I xO

42

Chapter 4
COMPARATIVE STUDY OF

ATPG METHODS

Current Chapter presents background information on the topics related to
current research and gives an overview of the research results presented in Paper I.
The first paper is entitled „Comparative Analysis of Sequential Circuit Test
Generation Approaches“. The paper was written by J. Raik, R. Ubar and the
author of this thesis. It was presented at the Baltic Electronic Conference (BEC'04)
in Tallinn, Estonia, in October 2004.

The paper address a comparative study of test pattern generation approaches
based on three tools: a genetic algorithm test generator GATEST, a deterministic
logic-level tool HITEC and a hierarchical tool DECIDER. The purpose of this
study was to find out, which fault types are likely to be covered by different
approaches. Additional motivation for the work was to find guidelines for
improving the fault models implemented in the hierarchical test pattern generator
DECIDER, which is being developed at TUT.

4.1 Case Study of ATPG Methods

The major goal of this work is the comparative analysis of three test generators
for sequential circuits: the test generator GATEST based on the genetic algorithm
[19], deterministic generator HITEC [18] and hierarchical generator DECIDER
[15]. The first two are popular public domain programs from University of Illinois.

43

The latter is a software developed at Tallinn University of Technology. The
research consists of finding out the methods of test pattern generation which cover
faults in the circuits. At the same time the faults can be found out in various parts
of the circuit.

Table 4.1. shows the comparison of fault coverages and run times achieved by
each of the tools. From the table it can be seen that DECIDER (hierarchical ATPG)
is the most effective tool with. 88.9 % average fault cover and short run times,
followed by GATEST (genetic algorithms) with 87.9 % and HITEC (deterministic)
with 76.9 % coverage. The fault list sizes for the circuits are provided in the second
column of the Table.

Table 4.1 Comparison of sequential circuit test generation tools

Circuit Faults

HITEC GATEST DECIDER Total

F.C.,% Time,s F.C.,% Time, s F.C.,% Time, s F.C., %

Gcd 454 81,1 169,5 91,0 75 89,9 129,8 91,7

Sosq 1938 77,3 728,4 79,9 739 80,1 129,6 80,3

Mult8x8 2036 65,9 1243 69,2 821,6 74,7 93,7 74,8

Ellipf 5388 87,9 2090 94,7 6229 95,04 1258,9 95,06

Risc 6434 52,8 49020 96,0 2459 96,5 150,5 96,7

Diffeq 10008 96,2 13320 96,40 3000 97,09 453,7 97,20

Average F.C. 76,9 87,9 88.9 89.3

However, the goal is not to compare the absolute results of the tools, which has
been done in earlier works [15], but to find out, what regions of the circuit space
are covered by the tools implementing completely different approaches. Our study
reveals a number of facts previously not known about the capabilities of test tools.
For example, what we noticed is that although genetic algorithm based tool

44

performed well on the absolute scale, it contributed little if any new faults to the
two remaining tools. Also, the hierarchical test pattern generator achieves highest
results for five out of six benchmark circuits but it is still far from the combined
fault coverage of the three tools summed. The combined results are presented in
the last column of Table 4.1.

In current study we compared three test generators on six different sequential
circuit benchmarks. We examined the fault space covered by different generators in
order to determine the sets of overlapping between the tools. We also carried out a
more detailed analysis, identifying in which type of the circuit modules (functional
units, MUXs, registers, etc.) different ATPGs covered faults. The main goal was to
find out suggestions for improving the sequential test generation methods in the
future.

For the experiments the following benchmark circuits have been used: gcd is a
greatest common divisor circuit, mult8x8 is a 8-bit multiplier, diffeq is a circuit
implementing the differential equation calculation method, sosq implements sum
of squares, risc is an ALU-based microprocessor, ellipf is a DSP circuit
implementing an elliptical filter. Gcd, ellipf and diffeq belong to the HLSynth92
benchmark family [16] while the remaining three are from the VILAB set [17].
The characteristics of benchmark circuits are presented in the table 4.2.

Table 4.2 Characteristics of benchmark circuits

45

C
irc

ui
t

Fs
m

In
pu

ts
 o

f b
us

es

In
pu

ts
 o

f b
its

O
ut

pu
ts

 o
f b

us
es

O
ut

pu
ts

 o
f b

its

R
eg

is
te

rs

M
ul

tip
le

xe
rs

Fu
nc

tio
na

l u
ni

t

Te
st

ed
 fa

ul
ts

Diffeq 6 5 81 3 48 7 9 5 10008

Ellipf 28 9 130 8 113 17 7 3 5388

Gcd 8 2 9 1 4 3 4 3 454

Mult8x8 8 2 17 1 16 7 4 9 2036

Risc 4 5 26 1 16 8 4 4 6434

Sosq 5 1 9 2 32 7 2 6 1938

The experiments were run on a 366 MHz SUN UltraSPARC 60 server with 512
MB RAM under SOLARIS 2.8 operating system. We work with stuck-at faults.

Figures 4.1 and 4.2 give a more detailed look to the test results of Table 4.1.
Figure 4.1 shows overlappings of the faults covered by the three generators for the
six example circuits. Here, “hierarchical” denotes the ATPG DECIDER [15],
“genetic” stands for GATEST [19] and “deterministic” is for HITEC [18].

hierarchical genetic

deterministic

79.3 %

0 %

0 % 0.7 %

1.8% 0 %

9.9 %

GCD:

hierarchical genetic

deterministic

95.9 %

0.08 %

0 % 0.5 %

0.03 % 0.2 %

0.46 %

DIFFEQ:
hierarchical genetic

deterministic

87.7 %

0.02 %

0 % 0.19 %

0 % 0.13%

7.0 %

ELLIPF:

hierarchical genetic

deterministic

75.5 %

0.2 %

0 % 0.2 %

0 % 0 %

4.4 %

SOSQ:

hierarchical genetic

deterministic

52.7 %

0 %

0.06% 0.73%

0.15 % 0 %

43 %

RISC:

hierarchical genetic

deterministic

62.2 %

0.05 %

0.1 % 2.7 %

0 % 3.6 %

6.2 %

MULT8x8:

Figure 4.1 Portions of faults detected by hierarchical, genetic and deterministic
ATPGs

The most important observations we can make basing on Figure 4.1 are the
following:

46

1. While experiments in Table 4.1 indicate that DECIDER gives in most
cases the highest fault coverage, we can see that there are some unique
portions of faults covered by GATEST and HITEC.

In fact, the union of the sets of faults covered by the three test generators gives a
fault coverage that is in average 0.4 (!) per cent higher than the average fault cover
of DECIDER.

2. Table 4.1 also shows that GATEST performs well in terms of the absolute
fault coverage numbers. However, it fails to detect nearly any unique
faults.

If we look at Figure 4.1, it can be seen that the genetic tool GATEST does not
provide any new unique faults at all for four out of six benchmarks: gcd, sosq,
ellipf, diffeq. HITEC, whose fault coverage numbers are roughly 11 per cent lower
than GATEST’s, detects much higher number of unique faults.

This leads to a conclusion that there are many ‘hard-to-test’ random pattern
resistant faults that GATEST as a simulation-based method is not capable of
detecting. While deterministic methods are known to have difficulties with larger
sequential designs they could still provide useful addition in terms of detecting
hard-to-test faults.

Figure 4.2 presents the distribution of achieved fault coverages by module
types. Five different types are distinguished: functional unit, comparison operation,
MUX, register and control part FSM. ‘Total’ denotes the summed result for the
whole circuit. In the Figure, average values for the set of six circuits are shown.

One of the conclusions that can be made based on Figure 4.2 is that DECIDER
covers well the faults in functional units, comparison operators and MUXs. These
are the modules it explicitly tests (See the grey circles Figure 3.2!). However,
control part FSM is poorly covered by the hierarchical tool. This means that fault
models for testing control part could be useful improvement to the tool in the
future.

47

hierarchical genetic

deterministic

756 ‰

0.6 ‰

0.4 ‰ 8.3 ‰

3.2‰ 6.5 ‰

119 ‰

Total:

hierarchical genetic

deterministic

48 ‰

0.42 ‰

0.16‰ 0.16‰

3.0‰ 0.4 ‰

1.8 ‰

FSM:
hierarchical genetic

deterministic

178 ‰

0.08 ‰

0 ‰ 0.48‰

0.13‰ 1.4 ‰

8.1 ‰

Register:

hierarchical genetic

deterministic

450 ‰

0 ‰

0 ‰ 5.4‰

0‰ 2.0 ‰

82 ‰

Functional unit:

hierarchical genetic

deterministic

120 ‰

0 ‰

0.1‰ 1.5‰

0.07‰ 2.1 ‰

19.1‰

MUX:

hierarchical genetic

deterministic

21 ‰

0.07 ‰

0 ‰ 0.6‰

0 ‰ 0.07‰

6.7 ‰

Comparison:

Figure 4.2 Coverage of circuit regions for the three test generators

48

4.2 Chapter Summary

This Chapter has provided background information needed to understand basic
principles of high-level test generation.

The main contribution of the Chapter was to introduce a new method of
comparison of different test generation approaches based on three tools: a genetic
algorithm test generator GATEST [19], a deterministic logic-level tool HITEC [18]
and a hierarchical tool DECIDER [15]. The purpose of this study was to find out,
which fault types are likely to be covered by different approaches.

Experiments on a set of six sequential benchmark circuits lead to the following
conclusions:

• While genetic algorithm based tool performs well in terms of the absolute
fault coverage numbers, it fails to detect nearly any unique faults.

• Deterministic tool has difficulties with larger sequential designs but it is
capable of detecting a portion of hard-to-test faults.

• The union of the sets of faults covered by the three test generators has a
fault coverage that is in average 0.4 per cent higher than the fault cover of
the best tool in the comparison: DECIDER.

• DECIDER loses fault coverage mainly in the control part FSM.

The analysis carried out will be helpful for further development of the
hierarchical ATPG DECIDER. Moreover, the authors hope that the results
presented here could give valuable guidelines for the developers of future test
pattern generators in general.

49

50

Chapter 5
TEST PATTERN GENERATION FOR

SEQUENTIAL CIRCUITS

The theoretical contribution of this Chapter gives an overview of the research
results in generating test pattern for sequential circuits is presented in Papers II and
III. The research described in this Chapter embraces comparatively large area and
can be divided into two major parts:

a) In Section 5.1, the scope of the research is mainly focused on a novel
constraint-based automated test pattern generation at Register-Transfer Level [II].

b) In addition, in Section 5.2 we concentrate on research of identification of
Potentially Testable Initialization Faults at the RT-Level [III].

5.1 Constraint-Based Test Pattern Generation at the
Register-Transfer Level

The second paper is entitled “Constraint-based Test Pattern Generation at
the Register-Transfer Level” [II]. The authors of the paper were Taavi Viilukas,
Jaan Raik, Maksim Jenihhin, Raimund Ubar and the author of this thesis. The
paper was presented at the 13th IEEE International Symposium on Design and
Diagnostics of electronic circuits and Systems (DDECS'10) in Vienna, Austria in
Aprill 2010.

51

The paper introduces a novel constraint-based automated test pattern generator
for Register-Transfer Level (RTL) designs. The tool combines test path constraint
activation with a constraint solver. First, a deterministic algorithm that extracts
constraints for activating test paths at RTL is applied. Subsequently, a constraint
solving package ECLiPSe [14] is used for assembling the tests. Experiments on
ITC99 and HLSynth92/95 benchmarks show that the proposed deterministic
method offers short run times. In particular, it provides increased fault coverage for
hard-to-test designs with respect to earlier approaches.

5.1.1 Concept of Path Activation Constraints

The test generation approach proposed in current thesis contains two main
phases. During the first phase, high-level test path activation, an untested module is
selected and for this module propagation and justification is performed as
explained in Section 5.1.2. In addition, constraints for the test path are extracted.
The goal of the second phase is to satisfy the constraints by using a constraint
solver and to compile the test patterns by assigning the values obtained by the
constraint solver to the primary input signals (See Section 5.1.3).

The high-level test generation constraints considered in paper [II] are divided
into three categories. These are path activation constraints, transformation
constraints and propagation constraints. Path activation constraints correspond
to the logic conditions in the control flow graph that have to be satisfied in order to
perform propagation and value justification through the circuit. Transformation
constraints, in turn, reflect the value changes along the paths from the inputs of the
high-level Module Under Test (MUT) to the primary inputs of the whole circuit.
These constraints are needed in order to derive the local test patterns for the
module under test. Propagation constraints show how the value propagated from
the output of the MUT to a primary output is depending on the values of the signals
in the system. The main idea here is to guarantee that fault signals will not be
masked when propagated.

Let us explain the role of these constraints in test generation on an example test
path activation for a circuit module shown in Figure 5.1. In the Figure there are two
path activation constraints: true = f1(x1,x2) and false = f2(x2,x3). The first one is
necessary to propagate the value from the output of the module to the primary
output y3 of the circuit. The latter is required for justification of the first input (D1)
of the module under test. Both these constraints are extracted from the conditional
nodes traversed in the control flow graph of the circuit during high-level path
activation.

52

The figure also presents two transformation constraints. These constraints
are applied for computing the value of the corresponding module input
depending on the values of primary inputs of the circuit. Finally, there is a
propagation constraint, which states that the value propagated from the
module to the primary output y3 is dependent on the primary input x6. Thus,
in order to avoid fault masking the value of x6 must be chosen such that the
fault free and faulty values of Dout would differ. Note, that the subsets of the
primary input variables included into the different types of constraints may
overlap.

Fig. 5.1. An example of test generation constraints

In the following, the data structure and update operations of high-level test
generation constraints are defined.

53

Module
Under
Test

Circuit

Propagation
path

PIs POs
Path activation constraints

Transformation constraints

Conditions in
algorithm

graph false = f (x 2 ,x 3)

true = f (x 1 ,x 2)

D 1 = f (x 3 ,x 4)

D 2 = f (x 4 ,x 5)

D 1

D 2

x 1

x 2

x 3

x 4

x 5

y 1

y 2

y 3

y 4

x 6
Propagation constraints:

 f5(Dout,x6)≠ f5(Dout_faulty,x6)

D out

1

2

3

4

Definition 1: A condition C in the form S = g(x), where S is an integer, Boolean
or symbolic value, and g(x) is an expression on a subset of variables of the model
representing the system under test, is referred to as constraint.

In current approach, symbolic values that can be used for S in a constraint S =
g(x) are Di and Dout which correspond to the values of the i-th input and the output
of the current Module Under Test (MUT), respectively (See Figure 5.1).

Definition 2: Constraint S = g(x) is said to be justified if x ⊆ xI , where xI is the
set of primary inputs of the system. Otherwise, S = g(x) is an unjustified constraint
(See Section 3.4) .

If a constraint S = g(x) is unjustified then all the variables in the set xU ⊆ x that
are not input variables xI are said to be unjustified variables of the constraint.

Definition 3: Let xJ be the set of justified variables and xU be the set of
unjustified variables of a constraint S = g(xJ, xU).

The process, where each variable xU
i is substituted by expressions on model

variables x’i ⊆ x, is refered to as updating the constraint S = g(xJ, xU) and it creates
a new constraint S’ = g’(xJ, x’), where g’ can be regarded as a superposition of
functions on a set of variables in the system model representation. Section 5.1.3
presents an example of constraint update in test path activation.

Note, that justified constraints consist of operations on primary inputs xI and
constants xC (see Section 3.4). Furthermore, the exponential size complexity of the
constraints g(x) is avoided by uniting multiple occurrences of the same variable
(i.e. the literals) in the constraints at each time step into one single fanout variable.
Because of this, the size requirements for the constraints are linear with respect to
justification time-frames and they represent a small subset of the expanded time-
frame model of the circuit. Thus, the high-level test constraint extraction procedure
is scalable.

5.1.2 Deterministic Test Path Activation

The high-level symbolic path activation, proposed in current thesis is a
complete algorithm, i.e. if transparent paths for fault effect propagation and value
justification exist, they will be activated. The algorithm has been implemented as a
systematic search and therefore an inconsistency in any stage causes a backtrack
and a return to the last decision. The general test generation flow is presented in
Figure 5.2 [29] , [38].

54

Figure 5.2 The general flow of the hierarchical test generation algoritm

In the following the propagation and justification principles of the proposed RT
level ATPG are presented.

55

Perform fault manifestation for module

 END
No

Yes

Generate low level test for the module

Take another module from design

Propagate fault effect to a primary output

Perform constraint justification

Solve the path activation constraints

Exist
untried modules

 in design?

 BEGIN

5.1.2.1 Fault Effect Propagation
The purpose of the propagation procedure is to activate a state sequence that

propagates the fault effect from the output of the module under test to one of the
primary outputs of the design. In current approach, propagation along single path is
implemented. In order to keep track of the fault effect propagation a dedicated fault
effect pointer is used. During propagation, high-level test path activation
constraints are created. Fig. 5.3, presents the algorithm for fault effect propagation.
In the algorithm descriptions the term consistent FSM control vector is frequently
used. By this term we mean a control vector (row) in the control part’s FSM state
table whose control signal values are consistent with value assignments made for
control signals while propagating (activating) paths in the datapath.

Figure 5.3 Fault effect propagation algorithm

56

 /* Fault manifestation for module M */
Create constraints from all the module inputs input i(M)
Set fault effect pointer to node output(M)
/* Fault effect propagation * /
While fault pointer is not propagated to a primary output
Let a be the node pointed by fault effect pointer
Choose the most observable fanout branch of a
 Set contro l signals required to transport fault effect from the

fanout branch to the next fanout stem or register node b
 /* always only one such path exists! * /
Set fault effect pointer to b
If exists a consistent FSM control vector then
 Choose the most observable consistent contro l vector
 Create constraints of corresponding FSM input vector
 If b is a register then
 move to the next time-frame
 Endif
Else
 Backtrack
Endif
Endwhile

5.1.2.2 Constraint Justification
Subsequent to propagation, constraint justification starts. Justification moves

backward in time, starting from the clock-cycle, where propagation ended. During
this process existing constraints are updated and additional path activation
constraints are created. Finally, constraints solving procedure is applied to the
extracted constraints and module under test is fault simulated by constraint-driven,
local test data.

Nodes of the circuit, which correspond to primary inputs xI or constants xC are
called justified nodes. All other nodes are said to be unjustified. Constraints
containing unjustified nodes are referred to as unjustified constraints.

Justification step: first select previous state. Then update constraints according
to control vector of this control state.

Updating the test generation constraints is defined in Section 5.1.1 and shown in
more detail on an example presented in Section 5.1.3. Basically, updating a
constraint can be regarded as superposition of the unjustified nodes of the
constraint by new datapath nodes determined by paths activated in the datapath by
current control vector.

At each justification step, current justification objective is chosen. In the
proposed algorithm implementation the justification objective is to justify the
first unjustified node from the first unjustified constraint. The algorithm for
constraint justification is presented in Fig 5.4.

57

Figure 5.4 Constraint justification algorithm

5.1.3 Constraint Extraction Example

In the following, the test path activation algorithm and constraint extraction is
explained basing on the example of the Greatest Common Divisor (GCD).
Consider the GCD algorithm described at behavioral level in a pseudo hardware
description language:

A := IN1;

B := IN2;

while (A ≠ B)

if (A < B) then

58

 /* Constraint justification */
While exist unjustified constraints
If current time- frame is earlier than manifestation then
 Let current objective be to justify node b
 Choose the most controllable fanout, F.U. or register node a,

 which directly precedes b
 Set control signals activating path from a to b
 /* always only one such path exists! */

 If exists a consistent FSM control vector then
 Choose the most controllable consistent control vector
 Create constraints of corresponding FSM input vector
 If a is a register then
 move to the previous time- frame
 Endif
 Else
 Backtrack
Endif

Else
 Move to the previous time- frame
Endif
Update all active constraints
Endwhile
/* Solve constraints (See Section 5!) */

/* Solve constraints (Section 5.1.4) */

B := B – A;

else

A := A – B;

end if;

end while;

OUT := A;

Let us assume that subsequent to applying high-level synthesis to the algorithm
description we obtain the RTL architecture presented in Figure 5.5 This
architecture consists of a datapath of 3 Functional Units (FU), 2 registers and 4
multiplexers and a control part Finite State Machine (FSM) of four states. The
datapath architecture is depicted in Figure 5.5a and the control part is given as a
state table in Figure 5.5b, respectively.

a)

59

b)

Figure 5.5 RT-level architecture of the GCD circuit

Let us explain the test generation algorithm described in Section 5.1.2 by the
example of generating test paths for the module SUBTR.

Fault manifestation. Set all the variables to ‘don’t care’ values. Create
transformation constraints D0=mux3, D1=mux4. Set the fault effect pointer to
variable SUBTR, i.e. yD := SUBTR.

Fault effect propagation. Choose a datapath register that reads from the FU
SUBTR. There are two possible choices: reg_A and reg_B, respectively. Let us
select the first choice. Subsequently, we activate the path from SUBTR to reg_A,
which results in the following variable assignments: A_enable := 1, mux_12 := 1.

Next, we have to choose a consistent FSM control vector. The only vector
consistent with previous variable assignments is the one corresponding to row 7 in

60

R
ES

ET

LT N
EQ

pr
es

. s
ta

te ne
xt

st
at

e

A
_e

na
bl

e

B
_e

na
bl

e

m
ux

_1
2

m
ux

_3
4

1 X X X S0 1 1 0 X

0 X 1 S0 S1 0 0 X X

0 X 0 S0 S0 0 0 X X

0 1 X S1 S2 0 0 X X

0 0 X S1 S3 0 0 X X

0 X X S2 S0 0 1 1 1

0 X X S3 S0 1 0 1 0

the FSM state table (labeled by vector 0, X, X, S3, S0, 1, 0, 1, 0). Based on this
vector we obtain the following assignments: reset:=0, B_enable := 0, mux_34 := 0,
state := S3 (in current clock cycle), state := S0 (in the next clock cycle). We move
to the next clock cycle and set the fault effect pointer yD to reg_A (i.e. OUT).

We detect that the fault effect pointer points to a variable corresponding to a
primary output and thus have successfully completed the fault propagation process.

Constraints justification. As there were no path activation constraints created
during manifestation and propagation stages, we move backwards in terms of
clock-cycles until the clock-cycle of manifestation phase is reached. We select the
justification objective from the unjustified variables of the transformation
constraints (D0=mux3, D1=mux4). Let current objective be to justify variable
mux3. Due to the fact that we have already assigned mux_34 := 0 at current clock-
cycle during the propagation process, then we have no choice but backtracing
mux3 to reg_A. We update the constraints, obtaining D0= reg_A, D1= reg_B and
move to the preceding clock cycle.

Without focusing on further details, we continue executing the constraint
justification algorithm until the path presented in Figure 5.6 is activated as one of
possible high-level path solutions.

Figure 5.6 High level path activation example

In the Figure we have denoted the manifestation clock cycle by t, the i-th cycle
following t is denoted by t+i and i-th cycle preceding t is denoted by t-i,

61

t+1 t t - 1 t - 2 t - 3
S

0
S

3
S

1
S

0 X

out subtr

D =reg_b
2

D =
1

in1

D =
2

in2

f=(in1<in2)

t=(reg_a reg_b)≠ t=(in1 in2)≠

(reset=1)
* *D =reg_a

1

respectively. Below the clock-cycle information, the activated state sequence is
provided. Then we present graphically the processes of fault propagation and
extraction of transformation constraints. Decisions in the high-level path activation
are marked by stars (*) in the Figure. Extraction of path activation constraints is
depicted below the striped line. Here, t corresponds to Boolean value ‘true’ and f
corresponds to ‘false’. As shown in Figure 5.6 we have to apply the constraint
satisfaction process to the following set of constraints: in1 < in2 is false, in1 ≠ in2
is true.

Subsequent to testing the node with the first path, backtrack occurs and the
high-level path activation algorithm tries to find alternative path solutions.

5.1.4 Solving the Test Path Constraints

In the previous top-down test pattern generation algorithms by the authors [12,
13], random constraint solving was applied. In this research we have selected the
open source ECLiPSe constraint solver (ECLiPSe5.10_41) to solve the test path
constraints. ECLiPSe supports most of the common techniques used in solving
constraint problems. It includes constraint programming, mathematical
programming, local search and various combinations of the above. We have
embedded the solver into the C++ code of the ATPG and use the string-based
input.

As experiments presented in the following Section show the deterministic
constraint solving has definite advantages over the pseudo-random method.

5.1.5 Experimental Results

In order to evaluate the impact of the deterministic constraint solving
experiments on ITC99 and HLSynth92/95 benchmarks were carried out. By this
moment we have included the following three circuits into the analysis: b00, 604
and gcd because these circuits contain “equal to” comparison operators which are
hard to test by pseudorandom constraint solving.

Table 5.1 shows the comparison of the semi-formal approach DECIDER
presented in [12] and the proposed top-down tool. Comparison has been obtained
by fault simulating the test sets generated by both generators by a stuck-at fault
simulator for sequential circuits. The row ‘# faults’ of the Table shows the number
of stuck-at faults in the circuit. The row ‘# tested’ presents the number of tested
faults by [12] and the proposed approach. The row ‘cover., %’ lists the achieved

62

stuck-at fault coverages. ‘time, s’ stands for the ATPG run times in seconds.
Finally, the number of generated test vectors is reported in the row ‘# vect.’

Table 5.1 Comparison of semi-formal [12] and the proposed deterministic ATPG
methods*

* Note: Results in Table 5.1, Table 6.5 from Section 6.2.5 and Table 5.2 from Section
5.2.2 does not match because benchmarks were run with different synthesis tool using
different options.

It can be seen that the fault coverage improvement obtained by the deterministic
constraint solving setup ranges from 3 to 34 % for the tested examples. Note, that
while the fault coverages for the circuits are low, this is a usual case for the
sequential ATPG because of the large number of untestable faults.

63

b00 b04 gcd

[12] current [12] current [12] current

1328 1328 1488 1488 1658 1658 # faults

251 714 899 943 1443 1519 # tested

18.90 53.77 60.42 63.37 87.03 91.62 cover, %

0.0053 0.0044 0.002 0.011 2.72 0.02 time, s

534 874 574 572 4471 4756 # vect.

5.2 RT-Level Identification of Potentially Testable
Initialization Faults

The third paper that is called “RT-Level Identification of Potentially Testable
Initialization Faults” [III] addresses the problem of an important subclass of
faults, the potentially detectable initialization faults. The authors of the paper were
Jaan Raik, Hideo Fujiwara and the author of this thesis. It was presented at the
Ninth IEEE Workshop on RTL and High Level Testing (WRTLT' 08) in Sapporo,
Japan in November 2008.

The goal of paper was to propose high-level identification of potentially testable
initialization faults. Experiments presented in the paper show that potentially
detectable initialization faults form a large subset of all the faults not testable by
hard-detection. As a result of the proposed approach, both, the speed as well as the
confidence level of sequential ATPG can be increased.

In sequential Automated Test Pattern Generation (ATPG) based on a three-
valued algebra (0,1,X) a fault is said to be hard-detected if a fault effect (0/1 or 1/0)
appears at a primary output. However, not all the faults can be tested by such hard-
detection model. Many faults belonging to the class of initialization faults are
known to be covered only by resorting to potential detection (effect 0/X or 1/X).
Existing high-level fault models assume hard-detection and therefore are not
capable of handling the initialization faults. This means wasting test generation
time also for those faults that may only be detected potentially.

5.2.1 Basic Definitions

Sequential ATPG and fault simulation typically relies on the 3-valued logic
algebra 0, 1, and X, where X is an artificial logic value to represent the unknown or
don’t-care state.

Definition 1: A fault f is said to be hard-testable iff for this fault a fault effect
(0/1 or 1/0) can be propagated to a primary output.

Definition 2: A fault f is only potentially testable iff it is not hard-testable and
for this fault either 1/X (i.e., the fault-free value is 1 and the faulty value is
unknown X) or 0/X can be propagated to a primary output.

Let us denote the set of all stuck-at faults by A, the set of hard-testable faults by
D and the set of potentially testable faults by P. Relations between these three sets

64

is presented in Fig. 5.7. The goal of the method proposed in current thesis is to
increase the fault efficiency of high-level fault models by identifying potentially
testable faults from RTL. The area of faults identified by current method is
depicted by the dashed circle in the Figure.

Figure 5.7 Relations between fault classes

5.2.2 Experimental Analysis of Fault Classes

Table 5.2 presents the experimental analysis of four sequential designs. The
benchmarks were chosen from the HLSynth92 and HLSynth95 families and they
were synthesized to RT-level from behavioral VHDL descriptions using the high-
level synthesis tool SYNT from Synthesia. Subsequently, the RTL descriptions
were synthesized to logic-level by Synopsys Design Compiler. The circuits were
tested by two sequential ATPG tools: a simulation-based ATPG SBGEN [28] and a
hierarchical ATPG DECIDER [29].

In the Table, the rows have the following meaning. Row ‘total faults’ shows the
number of stuck-at faults in the circuit. Row ‘hard-detected’ gives the number of
faults that were covered according to the hard-detection model. Row ‘potential-
detect.’ presents the number of potentially detected faults covered by the sequential
ATPG tests. This result was obtained by running a sequential stuck-at fault
simulator. Row ‘uncontr./unobs.’ stands for the sum of uncontrollable and
unobservable faults. These are faults, which are caused by constant inputs and
unconnected gate outputs, respectively. This type of faults is very easy to identify
and they are reported by most commercial and academic fault simulators. Row
‘reg. untestable’ stands for a special class of register control faults, which can be
proved untestable from the RT-level as shown in [IV]. Row ‘other’ includes all the
remaining faults.

65

D
A

P PD

Table 5.2 Fault distribution in sequential designs

We can make the following conclusions based on the fault distribution shown in
Table 5.2. First, if we take into account the classes of uncontrollable/ unobservable,
register untestable and potentially detected initialization faults then the calculated
fault efficiency is high, ranging from 96.7 to nearly 100 per cent. However, since
traditional high-level ATPG is not capable of identifying the untestable and the
initialization faults the achieved confidence level in terms of fault efficiency would
be very low. The goal of the current research is to extend RTL ATPG by potential
detection capabilities in order to achieve higher fault efficiency.

5.2.3 RTL Detection of Initialization Faults

Potentially detectable initialization faults can be divided into three main groups:
reset faults, control part faults and loop-counter faults. High-level detection of
faults for all these groups will be discussed in more detail in this Section.

In order to present the RT-level initialization fault detection method let us
introduce some definitions.

66

Circuit GCD SOSQ MULT DIFFEQ

total faults 1760 2130 2242 10326

hard-detected 1569 1514 1417 9853

potential-detect. 16 181 117 14

uncontr./unobs. 98 275 505 320

reg. untestable 65 130 130 130

other 12 30 73 9

fault efficiency 99.32 98.59 96.74 99.91

Definition 3: Registers that are either directly or through some combinational
logic connected to primary outputs are refered to as the output registers of the
design.

Definition 4: Let the control part state, which is set by activating the global
reset signal be called reset state and the set of control signal assignments at this
state be called reset state control vector.

Also let us assume for the sake of simplicity that the global reset signal is active
high, i.e. reset=1 initializes the circuit state.

5.2.3.1 Reset Faults
First, consider the global reset signal. In order to potentially detect reset stuck-

at-1 (s-a-1) fault we propose the following condition :

Condition 1:

• Reset s-a-1 is potentially detectable if the control vector at the reset
state neither resets nor enables any of the output registers.

We need to check the presence or absence of register reset at all of the output
registers in order to make sure that the global reset s-a-1 fault does not belong into
the fault class D (See Section 5.2.1!). The condition also requires that the reset
state control vector disables all the output registers, i.e. their corresponding enable
signals are set to the value 0. This blocks the possibility to initialize any output
register and, thus, guarantees potential detectability of reset s-a-1 fault.

Consider the RTL architecture of the Greatest Common Divisor (GCD)
example shown in Figure 5.8. Fig. 5.8a presents the datapath, which contains only
one output register REG_2. The first row in the state table in Fig 5.8.b shows the
reset state control vector for the circuit. As it can be seen, REG_2 is not a
resettable register. So, first part of Condition 1 holds. Also the second part holds
because REG_2 is disabled in the reset state (Reg_2_Enable = 0). Thus, the fault
Reset s-a-1 is potentially detectable in the GCD circuit.

67

a)

b)

R
ES

ET

EQ
_1

_O
U

TP
U

T

LT
_1

_O
U

TP
U

T

Pr
es

en
t S

ta
te

N
ex

t S
ta

te

M
ux

_1
2_

A
dd

re
ss

M
ux

_3
4_

A
dd

re
ss

R
eg

_1
_E

na
bl

e

R
eg

_2
_E

na
bl

e

R
eg

_3
_E

na
bl

e

1 x x X S0 x x 0 0 0

0 x x S0 S1 x 0 1 1 0

0 0 x S1 S2 x x 0 0 0

...

Figure 5.8 a) Datapath and b) reset state control vector

68

IN_X

IN_Y
SUBTR_1

MUX2_4

MUX2_1

MUX2_2

REG_1

REG_2

MUX2_3

REG_3

EQ_1

U_LT_1 LT_1_OUT

EQ_1_OUT

RESULT

1

1 To control
part

Now let us introduce the condition for identifying the fault Reset s-a-0
potentially detectable from the RTL.With Reset s-a-0 fault the control state takes a
don’t-care value X. It means that any control vector is valid, except the reset state
one. If for each output register there exists such control vector, where it is disabled
then none of these registers can be controlled using the 3-valued algebra and the
value of output registers will also be X.

Condition 2:

• Reset s-a-0 is potentially detectable if for all the output registers there
exists a non-reset-state control vector where they are disabled.

For example, the third control vector of the FSM table in Figure 5.8b disables
the output register REG_2 at the same time when Reset=0. Since the value of the
state register is unknown we can conclude that the value of REG_2 must also be
unknown. Thus, the fault Reset s-a-0 is only potentially detectable in the GCD
example.

5.2.3.2 Control Part Faults
Similar to initialization faults at the global reset there may also be potentially

detectable faults in the signals of the control part FSM. For example, a stuck-at
fault at a single bit in the state register may prevent initialization of the output
register, etc. The RTL signals, where potentially detectable faults have to be
considered include:

− control signals (FSM outputs)

− state register bits

− status bits (FSM inputs)

Let us consider each of the three cases.

Control signals. Control signals enter from the control part into the datapath
and are partitioned to register enable signals and multiplexer address selects. The
values for these signals are determined by the current control state and primary
inputs of the design.

At the RT-level, it is possible to potentially detect s-a-0 faults at the enable
signals of the datapath registers by checking the following simple condition:

69

 Condition 3:

• Register enable signal s-a-0 is potentially detectable if the register is
not resettable.

In other words, enable signal s-a-0 faults at the non-resettable registers are
always (!) potentially detectable. This is due to the fact that disabling an output
register by setting its enable s-a-0 does not allow initialization of this register and,
thus, constantly holds the value X in it.

Stuck-at-1 faults at register enable signals are either hard-detectable or
untestable (See [IV, VI]).

State register bits. Stuck-at fault at the bits of the control part state register can
be identified untestable if the coding of the control part FSM is known. In that
case, a fault at a state register bit converts the fault-free FSM into a faulty one. In
the case it will introduce illegal states (i.e. state values not present in the fault-free
FSM) the fault cannot be detectable at the RTL. This is due to the fact that control
vectors for illegal states are unknown at the RT-level while they have determined
values at the logic-level. However, in the case if the faulty FSM introduces no
illegal states then the following condition can be applied:

Condition 4:

A state register bit s-a fault is potentially detectable if its corresponding faulty
FSM does include neither illegal states nor reachable states loading the output
registers.

Consider the example FSM shown in Fig. 5.9a. Bold circle denotes the reset
state, during two of the state transitions, its output register is loaded. Now let us see
the case when the least significant bit of the state register has the fault s-a-1. In that
case a faulty FSM presented in Fig. 5.9b will result. In this FSM the output register
cannot be loaded. Thus, the state register bit fault is only potentially detectable.
However, if the second bit of the state is s-a-1 (See Fig. 5.9c) then the faulty FSM
will include a faulty state „110” and we cannot show potential detectability of this
fault from the RT-level.

70

a)

Figure 5.9 a) A fault-free FSM, b) potentially detectable state bit fault, c) faulty FSM
containing illegal states

Status bits. The status bits enter from the datapath into the control part FSM.
These signals represent the results of comparison operations and they control the
selection of state transitions in the FSM. For example, the result of the comparison
‘reg < step’ is a status bit for the FSM in Fig. 5.9a.

Similar to state register bit faults, in case of stuck-at faults at status bits a faulty
FSM will result where some of the branches will be excluded. Also, some of the
legal states may become unreachable. However, illegal states can not result

71

101011

001

c)

b)

100011

010 101

001

000- / out_enable=1

reg ≥ step /-

reg < step /-

- / out_enable=1

011 110010 X

because of status bits faults. Otherwise the condition for potential detectability of
status bit faults is identical to Condition 4.

5.2.3.3. Loop-counter Faults
Loop-counters are blocks in RTL designs whose role is to implement fixed-

length loops of the algorithm realized by the circuit. Output of a loop counter is a
status bit (output of a comparison operator). Thus, identification of which loop-
counters contain potentially testable faults is exactly identical to proving the
potential testability for status bits.

72

5.3 Chapter Summary

The theoretical contribution of this Chapter in studying of a test pattern
generation for sequential circuit was presented in Papers: “Constraint-based Test
Pattern Generation at the Register-Transfer Level” [II] and “RT-Level
Identification of Potentially Testable Initialization Faults” [III].

The paper [II] introduced a novel constraint-based automated test pattern
generator for Register-Transfer Level (RTL) designs. The tool combines test path
constraint activation with a constraint solver.

 First, a deterministic algorithm that extracts constraints for activating test paths
at RTL is applied. Subsequently, a constraint solving package ECLiPSe is used for
assembling the tests. Experiments on ITC99 and HLSynth92/95 benchmarks show
that the proposed deterministic method offers very short run times. In particular, it
provides increased fault coverage which ranges from 3 to 34 % for the tested
examples with respect to earlier approaches.

While the fault coverages for the circuits are low, this is a usual case for the
sequential ATPG because of the large number of untestable faults. As a future
work we plan to integrate untestable fault analysis for sequential circuits (will be
considered in the Chapter 6 (e.g. [V]) into the constraint-based ATPG to improve
fault efficiency estimation.

The paper [III] presented a new method for high-level identification of
potentially testable initialization faults.

Existing high-level fault models assume hard-detection and therefore are not
capable of handling such initialization faults. Furthermore, three important classes
of initialization faults were identified in the thesis: reset faults, control part faults
and loop-counter faults. High-level methods for potential detection of faults of the
respective classes were proposed.

Experiments presented in this thesis show that potentially detectable
initialization faults form a large subset of all the faults not testable by hard-
detection. As a result of the proposed approach, both, the speed as well as the
confidence level of sequential ATPG in terms of higher fault efficiency can be
increased.

We plan to implement the potential fault detection method and include the
capabilities to an RTL test pattern generator.

73

In each direction of the research, new appreciable results were achieved. The
results were presented at international conferences.

74

75

76

Chapter 6
PROVING UNTESTABLE FAULTS IN

SEQUENTIAL CIRCUITS AT RTL

The theoretical contribution of the second part of this Chapter in identifying
untestable faults in sequential circuits is presented in Paper IV and in Paper V.

The Paper IV proposes a new approach of applying model-checking for
detecting untestable stuck-at faults at the register-transfer level. The Paper V
considers register-transfer level (RTL) test pattern generation for non-scan
sequential circuits containing feedback loops.

6.1 Untestable Fault Identification in Sequential Circuits
Using Model-Checking

The fourth paper titled “Untestable Fault Identification in Sequential
Circuits Using Model-Checking“. However, the intermediate steps of research
were published in Paper [VI] Hierarchical Identification of Untestable Faults in
Sequential Circuits. We have selected only Paper [IV] that contain the most
important achievements and continues to improve the technique proposed in Paper
[VI].

Two novelties are introduced: a new approach of applying model-checking for
detecting untestable stuck-at faults at the register-transfer level and a method of
generating PSL language assertions for proving untestable register stuck-on faults.

77

The authors of the paper were Jaan Raik, Hideo Fujiwara, Raimund Ubar and
the author of this thesis. The paper was presented at The Seventeenth Asian Test
Symposium (ATS' 08) in Sapporo, Japan in November 2008.

In their previous work [VI], authors introduced a new subclass of untestable
faults, called register input logic stuck-on faults and that it is possible to identify
such faults from the register-transfer level (RTL) description of the circuit. Authors
pointed out their relation to untestable gate-level stuck-at faults. Moreover,
experiments show that a large subset of faults not tested by sequential ATPG fall
into this category. However, the paper did not propose any formal method for
identifying untestable register faults. In the paper [IV] we present a new method
that is capable of identifying such type of untestable faults. We propose using
model-checking for detecting untestable stuck-at faults at the Register-Transfer
Level (RTL). In particular, we present a method for formally generating PSL
language assertions for proving untestable stuck-at faults in sequential synchronous
designs.

 Experiments show that the faults identified by the method form in fact a large
subset of all the untested stuck-at faults. An additional application of the method is
in high-level test synthesis, where testability of sequential designs can be improved
simultaneously with minimization of the circuit area.

6.1.1 Introduction

Test generation for sequential synchronous designs is a time-consuming task.
Automated Test Pattern Generation (ATPG) tools spend a lot of effort not only for
deriving test vectors for testable faults but also for proving that there exist no tests
for the untestable faults. Because of this reason, the identification of untestable
faults has been an important aspect in speeding up the sequential ATPG. The
methods proposed previously are based on performing static and dynamic
implications at the logic-level. Current thesis presents an approach that takes the
problem of identifying untestable faults one step further: to the higher abstraction
levels. We show that it is possible to very quickly find a large subset of all
untestable faults before handing the untestability identification over to classical,
logic-level methods.

6.1.2 Motivation for Targeting Register Faults

A special case of datapaths where register enable signals are redundant is a
pipeline. In pipelines data is transported during each clock-cycle and therefore the

78

registers should be constantly enabled. Enable signals in pipelines are normally
omitted and the registers are replaced by buffers consisting of D-flipflops.

However, there are other cases than pure pipelines, where the redundancy of
enable signals is much more difficult to identify. Consider for example the
Extended Finite State Machine (EFSM) representation of the Differential Equation
(diffeq) benchmark shown in Fig. 6.1 In this kind of EFSM description, the nodes
represent control states and the arrows represent transitions between the states.
Shown on the transitions are the enabling functions (on top of the line), i.e.
conditions that enable the state transition, and the update functions (below the line)
that correspond to datapath register assignments.

Figure 6.1 EFSM of the Diffeq benchmark

Let us focus on register ADG (in Fig. 6.1). It can be seen that this register reads
during transitions s1→s2, s2→s3, s3→s4. It can also be seen that ADG is in turn an
input for two other registers: BCF and Y (shown by grey background). The latter
read ADG only during transitions s2→s3, s3→s4, s4→s5. Now let us assume that the
enable signal of register ADG is permanently stuck on. In that case, ADG may read
faulty values except between the state transitions s1...s4 when it is also enabled in
the fault-free circuit. Note however that ADG is read always one transition later,
i.e. between s2...s5. Thus, only fault-free values can be read from ADG and the

79

ADG=UE*DZ,
BCF=DZ*ADG,
UE=UE-BCF

S
2

S
3

S
4

S
5

RESET = 1

―

S
0

S
1

―

ADG=UE*DZ
BCF=3*Z
Z=Z+DZ

Z >=PASA

 ―Z<PASA

―

ADG=3*Y
BCF=BCF*ADG

 ―
―

UE=UE-BCF
Y=Y+ADG

UE=in5, DZ=in2, Z=in4
PASA=in1, Y=in3

―

―

stuck-on fault of its enable signal is untestable. On the other hand, as an opposite
example, enable in register DZ is testable because DZ is read at s1→s2 but DZ
reads no value during one of the preceeding transitions: s5→s1.

The goal of this research is to introduce a formal technique for identifying such
kind of untestable stuck-at faults from the RT-level. The method presented in this
thesis not only allows untestable fault identification but it can also be implemented
in high-level test synthesis [35-37].

In the following, conditions that are sufficient for identifying untestable faults
in register enables are introduced. Later on we implement the untestable fault
analysis relying on standard model-checking tools. Finally, we carry out
experiments on RTL benchmarks in order to assess the relevance of register enable
faults among the untestable faults in sequential designs and evaluate the efficiency
of the proposed method in untestability identification.

6.1.3 Register-Transfer Level Architecture

Let us first consider the general architecture of register-transfer level (RTL)
circuits. In RTL descriptions the design is partitioned into a control part (FSM) and
a datapath part. The latter consists of registers R, multiplexers M and functional
units (FUs) F. The former includes a state register for preserving the control state sj

from the set of states S. The set of control signals C enter from the control part into
the datapath and are partitioned to register enable signals E and multiplexer address
selects A. The control signals C=E∪A are determined by the current control state
sj∈S. The status bits B enter from the datapath into the control part FSM. These
signals represent the results of comparison FUs and they facilitate the selection of
state transitions in the FSM.

When a behavioral or behavioral RTL circuit is synthesized into RTL then the
following two main steps are carried out by the high-level synthesis tool: 1)
allocation of time-steps for operations, 2) binding of operations and variables into
hardware resources: FUs, registers and multiplexers. Depending on the constraints
given to the synthesis tool it may try to bind several operations into the same FU or
a number of variables into the same register. At different time-steps registers obtain
values from different sources (other registers, FUs or primary inputs). Thus,
multiplexers to be controlled by the control part are created to select the correct
source at each moment.

The general case for RTL datapaths is thus, a mux-operation-mux-register form
(See example in Fig. 6.2). In other words, when moving from one register rsrc∈R to

80

register rdst we may pass through an FU f∈F whose inputs may be selected by
multiplexers Min⊂M and we may also need an additional multiplexer mout∈M to
allow the target register rdst read from different sources. Reading new data into
registers ri∈R is controlled by the control part FSM via register enable signals
ei∈E. Enable signals ei are activated (i.e. ei=1) only when the corresponding
registers ri perform a new read operation, otherwise the enable is deactivated
(ei=0). Register may also include a global reset input.

Selecting between different sources is controlled by the multiplexers mk∈M
whose address signals ak∈A enter from the control part. During these states when
register reads new data its multiplexer address value is specified to select the
correct source. At any other state the value of the mux address is normally
unspecified and this fact makes the untestability analysis of gate-level stuck-at
faults from the RT-level difficult. However, in the following Section we propose a
property, which allows identification of a large number of untestable faults without
knowing the exact logic implementation of the control part.

Figure 6.2 RTL datapath fragment

81

e

r

e
1

r
1

a
m1

m
1

...

...

=0

=1

e
2

r
2

...

a
m2

m
2

=0

=1

a
m3

m
3

=0

=1

e
3

r
3

e
4

r
4

...

...
...

...

f(r,r
2
)/

f(r
1
,r

2
)

6.1.4 Identifying Untestable Registers

In this Section, we present a property for proving untestable register
stuck-on faults implementing a commercial model-checking engine. The
analysis is carried out at the register transfer level, and the untestability of
control signals is formally calculated.

Let us introduce some preliminary definitions.

Definition 1: For any datapath register r the registers ri whose inputs are
reachable from r through combinational logic (multiplexers and FUs) are refered to
as the guarding registers of register r. For example, the guarding registers of
register r in Figure 6.2 are r3 and r4. Note, that with the presence of feedback loops
register r itself may belong to its guarding registers ri.

Definition 2: If the address signals ak of multiplexers mk are set to values that
activate a path between two datapath registers r1 and r2 we say that the path
activation condition between r1 and r2 holds and denote it by αr1,r2=1. Otherwise,
αr1,r2=0.

For example, in Figure 6.2 the path between registers r and r3 is selected only if
the mux address signals am1=0 and am2=1. Thus, αr,r3=am1·am2.

Definition 3: Let us refer to the set of states from where a control state sj∈S can
be reached within one clock-cycle as immediately preceding states of sj. Let us
denote immediately preceding states of sj by prev(sj).

Throughout this thesis we use the superscript notation to show at which state the
signal values will be considered. For example, the value of a datapath signal v at
the state sj is denoted by vsj.

Theorem 1: Let e be an enable signal controling a datapath register r, let sj,
j=1,...,n, n=|S| be the set of control states and ri, i=1,...,m be the set of guarding
registers for r.

If
)(

,
...1...1

jj

i

j sprevs
rr

s
i

minj
ee →⋅∀∀

==
α then the register enable signal e stuck-at-1

fault is untestable.

82

In other words, the sufficient condition for untestability of the fault e stuck-at-1
is that for all the states sj where a guarding register ri (enabled by ei) is reading
from r (enabled by e) all the immediatly preceding states of sj write values to r.

Proof: If a faulty value from register r is to be propagated to any observable
output then it has to be transported via one of the guarding registers ri. Any
guarding register ri can read the fault value only at those states sj where js

ie = 1.

Thus, at the states where js
ie = 0 the faulty value of r can not propagate.

Furthermore, if the enable signal ei of ri is activated then exactly one
activation condition αr*,ri , where r* is r or any other register that can be read
by ri, must be equal to 1 (See Section 6.1.3 for the definition of RTL
architecture!). It is clear that if r* is not r then the faulty value will not
propagate to ri at the current state sj. Thus, the prerequisite for fault propagation
to a guarding register ri at the state sj is ei·αr,ri=1.

However, if this prerequisite is fulfilled but the register r is enabled at all the
states prev(sj) then it will contain only the fault-free value at prev(sj). Thus, the
fault e stuck-at-one can not be tested. ■

Note, that the property for register untestability identification introduced in
Theorem 1 is only a sufficient condition for the register to be untestable. There
may exist untestable register enables that do not match this condition and therefore
the property is somewhat pessimistic. However, its main advantage lies in the ease
of computation by formal algorithms. Experimental analysis presented in Section
6.1.6 shows that in practice the method is well capable of proving untestability in
different sequential benchmarks. It is also important to stress that all register
enables identified by Theorem 1 are always stuck-at untestable at the logic-level.

6.1.5 Reducing Untestability Identification to Model-Checking
This Section will discuss the technical implementation of the RTL untestable

fault identification method in VHDL and PSL using Cadence IFV 05.50 model-
checker. We forwarded the condition from Theorem 1 to the model-checker. If the
model-checker formally proves that the condition always holds for a register r then
it can be concluded that the stuck-at-1 fault of its enable signal e is untestable.

The following VHDL code with embedded PSL constructs was generated and
included to the VHDL architecture description of the Design Under Test (DUT) for
untestability identification of register r:

83

PROPERTIES: if (ABV_ON) generate

begin

 write_event_<r> <= <ei·αr,ri> ;

read_event_buffer:

 process

 begin

 wait until clock'event and clock = '1' ;

 read_event_<r> <= <e> ;

 end process read_event_buffer ;

-- psl ASSERT_PSL_CHECK_<r> :

-- assert always write_event_<r> -> read_event_<r>

-- abort(reset);K

end generate PROPERTIES;

The VHDL signal write_event_<r> was introduced. The signal will be equal to
one when some guarding register reads from r. A dedicated VHDL process
read_event_buffer was introduced to detect the time-steps when fault-free values
are read to r during the previous clock-cycle. Note, that the value of
read_event_<r> is equal to e but there is a one cycle delay between two signals. It
has been introduced in order to simplify the PSL assertion
ASSERT_PSL_CHECK_<r> by allowing a combinational property (implication)
to be checked.

There are special cases of registers, which are guarded not only by other
datapath registers and thus, the signal write_event_<r> must be treated differently.
For registers that are inputs for FUs that generate status bits B the signal
write_event_<r> is assigned to value one during those states when B is read by the
control part for selecting between alternative state transitions. Moreover, for
registers connected to the primary outputs of DUT write_event_<r> must be
constantly tied to one.

84

6.1.6 Impact of Register Faults at the Gate-Level

Let us consider the impact of an untestable register enable stuck-on fault at the
gate-level. Fig. 6.3 presents a typical gate-level implementation of a single bit in a
datapath register. The arrows mark the untestable stuck-at faults in the register r
whose enable signal e is untestable. As it can be seen, an untestable register enable
causes four additional stuck-at signals to be untestable in a register implementing
and-or multiplexers. Thus a total number of untestable lines in a register with
untestable enable signal is 4n + 1 (Four faults per bit plus the fanout stem of the
enable e). In the case of 32-bit register the number of untestable stuck-at faults
caused by a register stuck-on fault is as high as 129. Experimental results presented
in the following Section show that a large subset of all the stuck-at faults not
covered by the sequential ATPG belong in fact into this particular class of faults.

Figure 6.3 Gate-level impact of untestable e ≡ 1

6.1.7 Experimental Results

In Table 6.1, untestable fault identification experiments on four sequential
designs are presented. The benchmarks were chosen from the HLSynth92 and
HLSynth95 families and they were synthesized to RT-level from behavioral VHDL
descriptions using the high-level synthesis tool SYNT from Synthesia.
Subsequently, the RTL descriptions were synthesized to logic-level by Synopsys

85

e

r
in

r
out

≡1

≡1

≡0,≡1

DFF

Design Compiler. The same tool was applied for estimating the circuit area
minimization by removal of untestable register enables.

Untestable fault identification was carried out with Cadence IFV model-
checker on a SUN Sun-blade 100 Workstation with single 500 MHz UltraSPARC-
IIe processor, 500 MB RAM, Solaris 2.9 OS. The circuits were tested by two
sequential ATPG tools: a simulation based ATPG SBGEN [28] and a hierarchical
ATPG DECIDER [29].

Table 6.1 Experimental results on identification of untestable faults

design # faults

tested

untest. # remain. F.C., % F.E., % CPU time

gcd 1662 1564 65 33 94.10 98.01 2 min 56 s

sosq 1996 1514 130 352 75.85 82.36 4 min 09 s

mult8x8 2093 1417 130 546 67.70 73.91 3 min 29 s

diffeq 10098 9853 130 115 97.57 98.86 11 min 38 s

The union of the faults covered by the two test generators was chosen as the
number of detected faults (column ‘# tested’) in Table 6.1. Column ‘# faults’
shows the total number of stuck-at faults in the circuits. Column ‘# untest.’ shows
the number of untestable register enable faults identified by the method proposed
in this thesis. Column “# remain.” shows the number of faults that were neither
tested nor identified untestable. Columns ‘F.C.’ and ‘F.E.’ present the achieved
fault coverage and fault efficiency (i.e. test coverage), respectively. Finally,
column ‘CPU time’ gives the CPU run times for the untestability identification.

As it can be seen from Table 6.1, a large number of untestable faults has been
identified by the method in a relatively short run time. Large amount of the faults
not tested in the given benchmark circuits fall into the category of untestable
register enable faults. An additional benefit of the approach is the increase in fault
efficiency. Identification of untestable faults allows raising the confidence in the
test coverage and in the efficiency of the ATPG.

86

6.2 Untestability Identification Driven by RT-Level
Constraints

The last paper titled “Constraint-Based Hierarchical Untestability
Identification for Synchronous Sequential Circuits“ [V]. The authors of the
paper were J. Raik, T. Viilukas, M. Jenihhin, R. Ubar, H. Fujiwara and the author
of this thesis. The paper was submitted to the DATE'11 conference.

The paper considers a novel register-transfer level (RTL) test pattern generation
for non-scan sequential circuits containing feedback loops. In addition, a
deterministic hierarchical automated test pattern generator (ATPG) which is guided
by RT-level constraints was developed. First, an RTL test pattern generator
Decider is applied in order to extract test path extraction constraints. Then, the
constraint-driven deterministic ATPG is run providing hierarchical test generation
and testability proof in sequential circuits.

We showed by experiments that the tool is capable of quickly proving a large
number of untestable faults obtaining near to 100 % fault efficiency.

In addition, our study shows that traditional, bottom-up test generation at RTL
is often too optimistic due to the fact that propagation constraints have been
ignored and capabilities to prove untestable faults have been missing. In this thesis
we consider top-down approach of test generation.

6.2.1 Preliminaries

6.2.1.1 Assignment Decision Diagrams
Assignment decision diagram (ADD) is an acyclic graph that consists of a set of

nodes that can be categorized into four types: read node, write node, operation
node and assignment decision node (ADN), and a set of edges which contain the
connectivity information between two nodes (Figure 6.4). A read node represents a
primary input port, a storage unit or a constant while a write node represents a
primary output port or a storage unit. An operation node expresses an arithmetic
operation unit or a logic operation unit while an ADN selects a value from a set of
values that are provided to it based on the conditions computed by the logic
operation units. If one of the condition inputs becomes true, the value of the
corresponding data input will be selected. Although ADD was essentially

87

introduced as an internal representation in the high-level synthesis process, it can
be used to describe a functional RTL circuit, the controller part and the data path
part of which are homogeneously represented.

Figure 6.4 Assignment Decision Diagram (ADD)

6.2.1.2 Test Environment
When a node N is under test, the testability of the node is guaranteed if (a) any

value can propagate from a read node corresponding to a primary input port to the
input of N, and (b) the value at the output of N can propagate to a write node
corresponding to a primary output port. The paths which allow (a) and (b) to occur
are called justification path and propagation path, respectively. Justification and
propagation can be done through symbolic processing that utilizes nine-valued
algebra. The series of symbols obtained from the symbolic processing that
activates justification and propagation paths is known as the test environment for
the node under test.

For a given node under test, its test sequence is generated by first extracting a
test pattern from the test set library and by substituting the test pattern for the test
environment. The test set library is obtained beforehand by first simply taking a
gate-level circuit whose functionality is the same as that of the node under test,

88

then generating the test patterns for all faults in the circuit using a combinational
ATPG algorithm.

6.2.1.3 Multi-valued Algebra for Test Propagation
The nine symbols of Ghosh’s nine-valued algebra, each of which can be

assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.

• C0(v): variable v can be set to 0.

• C1(v): variable v can be set to 1.

• Ca1(v): all bits of variable v can be set to 1’s.

• Cq(v): variable v can be set to a constant.

• Cz(v): variable v can be set to high impedance Z.

• Cs(v): state variable v can be set to a specific state.

• O(v): any fault effect at variable v can be observed.

• O’(v): fault effect of D’ can be observed for a single bit variable v.

To generate a test environment, first an objective has to be set. In order to
achieve the test environment objective, the test sequence for each ADD can be
generated through the following two phases using the justification/ propagation
rules defined in [23] and briefly explained in an example in Section 6.2.2:

Phase 1: Generate the test environment of the node under test.

Phase 2: Generate the test sequence of the node under test by substituting the
test patterns of the gate-level circuit corresponding to the node under test for the
test environment.

In many cases the propagation rules of the multi-valued algebra are unable to
generate test environment for a module even if test for this module exists.
Furthermore, the generated environment may decrease the fault coverage for the
module under test because the network constraints are not taken into account when
creating the local test set to be substituted into the environment.

89

6.2.1.4 The Concept of Test Path Constraints
The constraint-driven deterministic test generation approach proposed in current

thesis contains two main phases. During the first phase, constraints for setting up a
test path to test an RTL module are extracted. The second phase generates
deterministic tests to the low-level module taking into account the path constraints.
This guarantees high fault coverage for the module under test and also allows
keeping track of the untestable faults.

We apply RTL ATPG Decider [12] in order to extract the constraints for
accessing the Module Under Test (MUT). Decider activates as many sets of
constraints as there are test paths for that module in a bounded limit of clock-
cycles. In [II] formal satisfaction method for the test path activation constraints has
been included into the tool. However, the work in [II] does not consider the
problem of testing the modules in a deterministic manner at the low-level. The
purpose is to process the set of constraints in order to derive conditions for a
dedicated logic-level ATPG in proving untestability.

In order to extract the RTL constraints for MUT, a test path activation tool
Decider is applied. The high-level test generation constraints considered by
Decider are divided into three categories. These are path activation constraints,
transformation constraints and propagation constraints. Path activation constraints
correspond to the logic conditions in the control flow graph that have to be
satisfied in order to perform propagation and value justification through the circuit.
Transformation constraints, in turn, reflect the value changes along the paths from
the inputs of the high-level MUT to the primary inputs of the whole circuit. These
constraints are needed in order to derive the local test patterns for the module under
test. Propagation constraints show how the value propagated from the output of
the MUT to a primary output is depending on the values of the signals in the
system. The main idea here is to guarantee that fault effect will not be masked
when propagated.

Note, that the extracted constraints consist of operations on primary inputs and
constants. Furthermore, the exponential size complexity of the constraints is
avoided by uniting multiple occurrences of the same variable (i.e. the literals) in
the constraints at each time step into one single fanout variable. Because of this,
the size requirements for the constraints are linear with respect to justification
time-frames and they represent a small subset of the expanded time-frame model of
the circuit. Thus, the high-level test constraint extraction procedure is scalable in
terms of memory space requirements.

90

6.2.2 Generating Test Environments Under Control and Data
Dependencies

In this Section we describe the problem of setting up constraint-driven test
environments for RTL modules in the case of dependencies between data and
control signals. We present a motivating example explaining the shortcomings that
are common to the previous test environment generation approaches that ignore the
effect of test path constraints.

Consider as an example, a simplification of the ADD for the Greatest Common
Division (GCD) benchmark presented in Figure 6.5a. Without loss of generality in
this ADD the control state information has been removed in order to improve the
readability of the diagram.

Assume that our task is generating a test environment for the subtraction
module (MUT) in the Figure. It can be seen that the output value of MUT will be
propagated to the primary output OUT only if the first value input of the
corresponding assignment decision is 1. When we justify the symbols at the MUT
inputs according to the propagation rules presented in Section 6.2.1.3, then the
strict interpretation of these rules would lead into a contradiction. Assume the both
inputs of the MUT are set to Cg according to the rule in Figure 6.5. In order to
propagate the output value of the MUT the first control input of the ADN
preceding the OUT is set to C1. The justification rules for the equality operator “=”
require Cq from the IN1 and IN2 read nodes.
a)

91

− MUT:

OUT

= >

IN1 IN2

O

Cq
Cg

Cg
Cq

O

 ! !

C1

C0

Cg Cg

Cg Cg
Cq

Cq

b)

Figure 6.5 Test environment generation for GCD

That leads to conflict at the read nodes in the strict interpretation of the Ghosh’s
multi-value algebra for test propagation (please refer to Figure 6.5b). However, the
weak interpretation (also used in [24]) would still allow the following test
environment: IN1=Cg and IN2=Cg. Note, that in current situation the weak rules
are preferable since they at least allow testing part of the MUT while the strict rules
would not generate the test environment at all.

To summarize, the strict interpretation of Ghosh’s algebra lead to overly
pessimistic results because tests for some MUTs are aborted due to justification
conflicts. On the other hand, the weak interpretation is too optimistic and can also
lead to loss of fault coverage because some of the test patterns that are expected to
cover faults in the MUT do not propagate.

Consider the case where in a bottom-up scenario we have a deterministic test Tq

generated for the MUT reaching the maximum fault coverage Wq for the module.
Then, we use top-down approach and generate the test environment for the module
and substitute Tq into the test environment. Due to the test path constraints the
actual fault coverage that can be achieved for MUT inside the network is Wa,
which is generally lower than the fault coverage Wq. However, when we fault
simulate Tq substituted into the test environment in bottom-up approach, we obtain
a fault coverage Wr, where :

Wr ≤ Wa≤ Wq (1)

In other words, the bottom-up approach may lose some fault coverage with
respect to the top-down one because the set of the tests to choose from is restricted
to Tq. If the local test generation algorithm for MUT had had knowledge about the
test path constraints it would have generated a different test Td, whose fault
coverage would have been equal to Wa. Furthermore, the remaining faults inside

92

?

Cq Cg

Cg

Cq

resolves in the weak
interpretation

conflict in the strict
interpretation

Cg

MUT would have been proven untestable. Thus, a deterministic ATPG taking into
account the test path constraints is necessary in order to achieve maximum fault
coverage and also to prove untestability within sequential networks. Experiments
with the constraint-driven deterministic ATPG presented in Section 6.2.5 show that
the difference between the coverages Wr and Wa may be even as high as 8-14 per
cent of stuck-at coverage.

In the next Section we show how the test constraints can be efficiently included
into the test environment in order to allow high-fault coverage testing of the
modules and also to provide proof for sequentially untestable stuck-at faults.

 6.2.3 Generating the Constraint-based Test Environment

In this Section we explain extracting the test path constraints for a MUT. We
show how to compute the constraint-based test environment from the set of test
constraints.

Consider Figure 6.6, which gives the full set of constraints for the MUT from
the example of Figure 6.6. In other words, the MUT can only be tested using one of
the two test paths presented in Figure 6.6a and 6.6b. The two paths are identical
except for the fact that the primary inputs IN1, IN2 are swapped in them.

Figure 6.6. Full set of test path constraints for MUT

93

−
MUT:

OUT

>

IN2 IN1

=

 !

&

x
1 x

2

y

C
2
:

−
MUT:

OUT

>

IN1 IN2

=

 !

&

x
1 x

2

y

C
1
:

C
1,1

: C
1,2

: C
2,1

: C
2,2

:

a) b)

Note, that from the point of view of accessing the MUT these two environments
are equivalent. It is irrelevant which primary input is used in applying the test
patterns when representing the constraint-based test environment for proving
untestability. Therefore, we denote the value justified from the i-th input of MUT
by xk and the value propagated from the MUT output by y.

The constraints C1 and C2 both consist of two sub-constraints C1,1, C1,2 and C2,1,
C2,2, respectively. C1,1 (which is equivalent to C2,1) states that x1 must not be equal
to x2. C1,2 (equivalent to C2,2) states that x1 must be greater than x2. Since all the sub-
constraints within a constraint should hold simultaneously they be combined using
the conjunction operator. In turn, all the constraints are combined using the
disjunction operation because any one of the test paths may be used for accessing
the MUT. In general case for constraints Ci each consisting of sub-constraints Ci,j

the constraint-environment for proving sequential untestability is calculated using
the following formula:

 (2)

Subsequent to combining the test path constraints constraint minimization is
performed. For the example in Figure 6.6 we obtain:

.)()()()(2121212121 xxxxxxxxxx >=>∧≠∨>∧≠

Figure 6.7 shows the constraint-based environment resulting for testing the
MUT of the example presented in Figure 6.5. In the next Section we propose a
gate-level ATPG that relies on this kind of constraint-based environment to
perform hierarchical untestability identification and test pattern generation.

Figure 6.7 Constraint-based test environment the MUT

94

., ji
ii

C∧∨

−
MUT

>

Constraint

 x
1

 x
2

 y

6.2.4 Constraint-Driven Deterministic ATPG

As it was mentioned above, the proposed ATPG method consists of two steps.
First, the test constraints are extracted at RTL as explained in the previous Section.
As a second step, a constraint-driven deterministic ATPG is run as discussed here.
An example of a constraint-based environment was shown in Figure 6.7. The
constraint is converted to the gate-level by applying logic synthesis and the MUT is
instantiated from the design, in order to ensure that the gate-level structure tested
exactly matches the one of MUT embedded to the RTL network. Then a gate-level
ATPG is executed [28], which identifies sequentially untestable faults in the MUT.

Figure 6.8 presents the corresponding test flow. First, RTL ATPG is run in
order to derive high-level test path constraints. The constraints are minimized as
shown in the previous Section, translated into VHDL and synthesized to logic-level
using Synopsys Design Compiler.

Figure 6.8. Top-down constraint-based hierarchical ATPG flow

95

Decider:
RTL test path

activation

Synopsys DC:
Logic synthesis

RTL
network
(VHDL)

Modules
library

(VHDL)

Test path
constraints

(VHDL)

Test
environm.

(EDIF)

Constraint-driven
deterministic ATPG

Test
patterns

Fault
coverage

Untestable
faults

Test
environment
generation

Subsequently, the gate-level ATPG is run. As a result we obtain the list of
sequentially untestable faults in the MUT as well as test patterns for the whole
design. Experiments presented in the next Section show that the proposed
constraint-based method obtained 100 per cent fault efficiency for all the
considered modules at the same time when the symbolic approach proposed in [23]
is too optimistic, loosing 8-14 per cent of fault coverage in the modules.

6.2.5 Experimental Results

In order to evaluate the hierarchical untestability identification and test
generation method, experiments on HLSynth92 and HLSynth95 benchmarks were
run. In addition, to compare the solution with the traditional bottom-up approach
(e.g. [23]) and assess its fault efficiency, a detailed case-study was carried out.

Table 6.2 presents the characteristics of the example circuits used in test pattern
generation experiments. The following benchmarks were included to the test
experiment: a Greatest Common Divisor (GCD), an 8-bit multiplier (MULT8x8),
and a Differential Equation (DIFFEQ). In the Table, the number of single stuck-at
faults, the number of primary input and primary output bits, the number of
registers, multiplexers and functional units are reported, respectively.

Table 6.2 Benchmark characteristics

In Table 6.3, comparison of test generation results of three ATPG tools on the
hierarchical benchmark designs are presented. This comparison was carried out in
order to show the time needed for extracting the constraint-based environment as
explained in Section 6.2.3. The tools include a gate-level deterministic ATPG
Hitec [2], a genetic algorithm based Gatest [6], hierarchical ATPG Decider.

96

circuit # faults PI bits PO bits # reg. # mux # FU

gcd 472 33 16 3 4 3

mult8x8 2356 17 16 7 4 9

diffeq 10326 81 48 7 9 5

Columns ‘F.C., %’ give the single stuck-at fault coverages of the test patterns
generated. Columns ‘time, s’ stand for test generation run-times obtained on a
366MHz Sun UltraSparc60 server with 512MB RAM under Solaris 2.8 operating
system.

Table 6.3 Comparison of sequential ATPG

Table 6.4 shows experiments of the deterministic constraint-driven ATPG
developed in this thesis. The experiments present comparison of the proposed
method to the bottom-up paradigm [23]. For a reference, the modules were tested
by the ATPG in a stand-alone mode. As a result a test sequence Tq yielding 100 %
stuck-at fault coverage Wq was obtained. The proposed top-down constraint-driven
ATPG reached fault coverage Wa which was less than Wq because of the
constraints when accessing the module under test in the network. However, the
fault efficiency of the proposed approach was 100 % for all the modules.

When Tq was substituted to the test environment in a bottom-up manner then
fault coverage Wr was reached, which was always lower than Wa because some of
the tests were invalidated by sequential dependencies. In fact, Wr was considerably
lower (by 8-14 %) for all the four modules analyzed.

The test environment synthesis from VHDL to logic-level using Synopsys
Design Compiler remained almost constant and was around 5 to 10 s per module
while the deterministic constraint-based ATPG spent less than 0.02 s per module
under test. The synthesis and test experiments were carried out on a Sun-Fire-V250
station with 1.28 GHz sparcv9 processor under Solaris 2.9 OS.

97

circuit HITEC GATEST DECIDER

F.C., % time, s F.C., % time, s F.C., % time, s

gcd 81.1 169.5 91.0 75 89.9 129.8

mult8x8 65.9 1243 69.2 821.6 74.7 93.7

diffeq 96.2 13.320 96.40 3000 97.09 453.7

Table 6.4 Constraint-driven ATPG vs. bottom-up RTL test

Table 6.5 presents detailed statistics of the circuits analyzed. The Table lists the
total number of stuck-at faults in the whole circuit, the number of detected faults,
number of unobservable/uncontrolllable faults, the number of faults proven
sequentially untestable by the proposed constraint-based approach and finally the
number of all the remaining faults. The experiments show the efficiency of the
constraint-driven engine in untestability identification. Though the method covers
quickly untestable faults caused by sequential untestability in the considered
modules with 100 % fault efficiency, there remains a number of faults which are
still neither tested nor proven untestable. Some of these remaining faults can be
tested or proven untestable by traditional approaches at the logic-level.

98

Circuit gcd mult8x8 diffeq

Module SUB ADD2 ADD3 SUB2 MUX3 MUX4

Wq, % 100 100 100 100 100 100

Wa, % 95.74 86.64 55.88 85.33 75.00 75.00

Wr, % 85.11 72.49 47.06 74.07 64.71 64.71

ATPG, s 0.01 0.01 < 00.1 0.02 < 0.01 < 0.01

synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10

Table 6.5. Distribution of faults*

* Note: Table 6.5 and Table 5.2 from Section 5.2.2 does not match because some of
benchmarks were synthesized by different conditions.

99

gcd mult8x8 diffeq

total faults 472 2356 10326

detected faults (hard/potentially
detected + reg. untestable) 439 1737 9867

unobs./uncontr. 28 195 252

untest. w constr. 4 156 68

remaining 1 268 139

6.3 Chapter Summary

In this Chapter the overview of the research results published in Papers:
“Untestable Fault Identification in Sequential Circuits Using Model-
Checking“ [IV] and in “Constraint-Based Hierarchical Untestability
Identification for Synchronous Sequential Circuits“ [V]. The overview has been
presented together with the overall experimental results.

This Chapter describes the research that contrbutes mainly to the study of a an
Untestable Faults in Sequential Circuits at RTL Level tehniques.

The first contribution is Untestable Fault Identification in Sequential Circuits
Using Model-Checking and proposes a new approach of quick identification of
untestable logic-level stuck-at faults from the register transfer level. The novelty of
the approach lies in using an existing commercial model-checking tool for the
untestability analysis. In particular, a technique for formally generating PSL
language assertions for proving untestable stuck-at faults in sequential synchronous
designs was developed. Experiments on well-known sequential benchmarks
showed that as much as 20-60 per cent of faults not detected by sequential ATPG
were identified untestable in a short run time by the approach.

The proposed untestable fault identification may also be implemented in high-
level test synthesis. It was shown that by removing the redundant enable signals in
average 5 per cent of the circuit area could be saved. An additional effect of the
identification of untestable register enable faults lies in reducing yield loss.

The second one considers a new method and tool for register-transfer level
(RTL) test pattern generation for non-scan sequential circuits containing feedback
loops. A deterministic hierarchical automated test pattern generator (ATPG) guided
by RT-level constraints is proposed. First, an RTL test pattern generator Decider is
applied in order to extract test path extraction constraints. Then, the constraint-
driven deterministic ATPG is run providing hierarchical test generation and
testability proof in sequential circuits.

In addition, our study shows that traditional test generation at RTL based on
symbolic test environment generation is too optimistic due to the fact that
constraints in accessing the modules under test have been ignored. Experiments
showed that bottom-up strategies caused a decrease of stuck-at fault coverage up to
the range of 8-14 % in the modules tested. This short-coming was overcome by the

100

proposed constraint-based method which obtained 100 per cent fault efficiency for
all the modules considered.

To the best of our knowing this is the first method that can prove sequential
untestability starting from the RTL.

In each direction of the research, new appreciable results were achieved. The
resuls were also presented at conferences.

101

102

Chapter 7
 CONCLUSIONS

This thesis has presented several techniques to perform hierarchical test pattern
generation and untestability identification for synchronous sequential circuits that
is the one of the major issues in the area of digital circuits testing.

In this Chapter the main contributions of the work are outlined and points out
open problems and the perspectives for future research. In addition, the
contribution list in research done by the author of this thesis is added.

7.1 Thesis Contribution

The main contributions of the presented work are summarized below.

Test Pattern Generation for Sequential Circuits

• An overview of the comparative study of ATPG methods has been
proposed [I]. A comparative study of test pattern generation approaches
based on three tools: a genetic algorithm test generator GATEST [19], a
deterministic logic-level tool HITEC [18] and a hierarchical tool
DECIDER [15]. The purpose of this study was to find out, which fault
types are covered by the tools implementing completely different
approaches.

103

Experiments on a set of six sequential benchmark circuits lead to the following
conclusions:

While genetic algorithm based tool performs well in terms of the absolute fault
coverage numbers, it fails to detect nearly any unique faults.

Deterministic tool has difficulties with larger sequential designs but it is capable of
detecting a portion of hard-to-test faults.

The union of the sets of faults covered by the three test generators has a fault
coverage that is in average 0.4 per cent higher than the fault cover of the best tool
in the comparison: DECIDER.

DECIDER loses fault coverage mainly in the control part FSM.

The analysis carried out was and will be helpful for further development of the
hierarchical ATPG DECIDER. Moreover, the authors hope that the results
presented here could give valuable guidelines for the developers of future test
pattern generators in general.

• A novel constraint-based automated test pattern generator for Register-
Transfer Level (RTL) designs has been introduced [II]. The tool combines
test path constraint activation with a constraint solver. First, a deterministic
algorithm that extracts constraints for activating test paths at RTL is
applied. Subsequently, a constraint solving package ECLiPSe [14] is used
for assembling the tests.

Experiments on ITC99 and HLSynth92/95 benchmarks showed that the proposed
deterministic method offers short run times. In particular, it provides increased
fault coverage for hard-to-test designs with respect to earlier approaches.

While the fault coverages for the circuits are low, this is a usual case for the
sequential ATPG because of the large number of untestable faults. As a future
work we plan to integrate untestable fault analysis for sequential circuits presented
in this thesis into the constraint-based ATPG to improve fault efficiency
estimation.

• This thesis also presented the problem of high-level identification of an
important subclass of faults, of potentially testable initialization faults
[III]. Existing high-level fault models assume hard-detection and therefore are
not capable of handling such initialization faults.

104

Experiments showed that potentially detectable initialization faults form a large
subset of all the faults not testable by hard-detection. As a result of the proposed
approach, both, the speed as well as the confidence level of sequential ATPG can
be increased. We plan to implement the potential fault detection method and
include the capabilities to an RTL test pattern generator.

Proving Untestable Faults in Sequential Circuits at RTL

• An approach of identifying of untestable faults in sequential circuits has
been considered [IV] . We proposed using model-checking for detecting
untestable stuck-at faults at the Register-Transfer Level (RTL). In
particular, we presented a method for formally generating PSL language
assertions for proving untestable stuck-at faults in sequential synchronous
designs.

Experiments showed that the faults identified by the method form in fact a large
subset of all the untested stuck-at faults. It was shown that by removing the
redundant enable signals in average 5 per cent of the circuit area could be saved.
An additional effect of the identification of untestable register enable faults lies in
reducing yield loss.

• A novel method of register-transfer level (RTL) test pattern generation for
non-scan sequential circuits containing feedback loops has been introduced
[V]. In addition, a deterministic hierarchical automated test pattern
generator (ATPG) which is guided by RT-level constraints was developed.
First, an RTL test pattern generator Decider is applied in order to extract
test path extraction constraints. Then, the constraint-driven deterministic
ATPG is run providing hierarchical test generation and testability proof in
sequential circuits.

The proposed method is capable of quickly proving a large number of untestable
faults obtaining near to 100 % fault efficiency. In addition, our study showed that
traditional test generation at RTL is often too optimistic due to the fact that
propagation constraints have been ignored and capabilities to prove untestable
faults have been missing. Experiments showed that bottom-up strategies may cause
a decrease of stuck-at fault coverage up to the range of 8-14 % in the modules
under test. To the best of our knowing this is the first method that can prove
sequential untestability starting from the RTL.

105

In conclusion, numerous challenging problems and open issues pave the road
towards test generation for sequential circuits, but we believe that this remains the
primary research direction for the next few years.

106

7.2 Author's Contribution

This Subsection provides the contribution list in research done by the author of
this thesis.

The author of this thesis was involved in all stages of the research: studying
problems, preparation, development, testing and presenting the research results.

Paper I „Comparative Analysis of Sequential Circuit Test Generation
Approaches“ deals with a comparative study of test pattern generation approaches
based on three tools: a genetic algorithm test generator GATEST, a deterministic
logic-level tool HITEC and a hierarchical tool DECIDER.

The author of this thesis was responsible for performing the experimental
analysis based on comparative study of test pattern generation approaches using
three test generation tools and studying which fault types are likely to be covered
by different approaches.

In addition, obtained results were included to author's Bachelor work:

2004, Comparative Analysis of Sequential Circuit Test Generation
Approaches, B.Sc., supervisor Dr. Jaan Raik, Tallinn University of
Technology, Faculty of Information Technology

Paper II „Constraint-based Test Pattern Generation at the Register-Transfer
Level” introduces a novel constraint-based automated test pattern generator for
Register-Transfer Level (RTL) designs. The tool combines test path constraint
activation with a constraint solver. First, a deterministic algorithm that extracts
constraints for activating test paths at RTL is applied. Subsequently, a constraint
solving package ECLiPSe [14] is used for assembling the tests.

Additional motivation for the work in Paper I was to find guidelines for
improving the fault models implemented in the hierarchical test pattern generator
DECIDER, which is being developed at TUT. Based on received results a Master
of Science work was defended by the author:

107

2005, Experimental analysis of hierarhical test generator DECIDER,
M.Sc., supervisor Dr. Jaan Raik, Tallinn University of Technology,
Faculty of Information Technology

This was the motivation for the future research that was presented in Paper II.

The author of the thesis was responsible of performing experimental analysis
using deterministic method.

In Paper III „RT-Level Identification of Potentially Testable Initialization
Faults” the idea is to introduce the problem of an important subclass of faults, the
potentially detectable initialization faults.

The author of this thesis studied the problem of identification of potentially
testable initialization faults and presented the proposed method at the workshop:

The Ninth IEEE Workshop on RTL and High Level Testing (WRTLT’08),
IEEE, pp. 667-672, November 27-28, 2008, Sapporo, Japan.

A new approach of applying model-checking for detecting untestable stuck-at
faults at the register-transfer level is introduced in Paper IV. In particular, we
presented a method for formally generating PSL language assertions for proving
untestable stuck-at faults in sequential synchronous designs.

The contributions of the author of the thesis are performing the experimental
research and analysis of identification of Untestable Faults in Sequential Circuits
using model-checking. The intermediate steps of research were published in Paper
VI “Hierarchical Identification of Untestable Faults in Sequential Circuits”. Paper
IV contains the most important achievements and continues to improve the
technique proposed.

In addition, the results of the proposed research were presented by the author at
the conference:

The 17th Asian Test Symposium (ATS’08), IEEE, pp. 667-672,
November 24-27, 2008, Sapporo, Japan.

108

The Paper V „Constraint-Based Hierarchical Untestability Identification for
Synchronous Sequential Circuits“ considers register-transfer level (RTL) test
pattern generation for non-scan sequential circuits containing feedback loops.

The contribution of the author of this thesis was to study the problem of Untestability
Identification for Synchronous Sequential Circuits more deeper proceed from Paper IV
and VI.

The author was developing a new method of register-transfer level (RTL) test pattern
generation for non-scan sequential circuits containing feedback loops, performing
experimental analysis using the deterministic hierarchical automated test pattern
generator (ATPG) which is guided by RT-level constraints.

 In this research we went to one step further by identifying from experiments
that the tool is capable of quickly proving a large number of untestable faults
obtaining near to 100 % fault efficiency.

109

110

References

Co-authored papers:

[I] J. Raik, A. Krivenko (Rannaste), R. Ubar. Comparative Analysis of
Sequential Circuit Test Generation Approaches. Proc. of the Baltic
Electronic Conference, pp. 225-228, Tallinn, Estonia, Oct. 3-6, 2004.

[II] Taavi Viilukas, Jaan Raik, Maksim Jenihhin, Raimund Ubar, Anna Krivenko
(Rannaste) "Constraint-based Test Pattern Generation at the Register-Transfer
Level", Proceedings of the 13th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS’10), April 14–16, 2010, Vienna, pp.
352 – 357.

[III] Jaan Raik, Hideo Fujiwara, Anna Krivenko (Rannaste). RT-Level Identification
of Potentially Testable Initialization Faults. The Ninth IEEE Workshop on RTL
and High Level Testing (WRTLT 2008), IEEE, pp. 667-672, November 27-28,
2008, Sapporo, Japan.

[IV] Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste).
Untestable Fault Identification in Sequential Circuits Using Model-Checking. The
17th Asian Test Symposium (ATS’08), IEEE, pp. 667-672, November 24-27,
2008, Sapporo, Japan.

111

[V] J. Raik, A. Krivenko (Rannaste), T. Viilukas, M. Jenihhin, R. Ubar, H. Fujiwara.
Constraint-Based Hierarchical Untestability Identification for Synchronous
Sequential Circuits, (submitted to the DATE'11 conference)

[VI] Jaan Raik, Raimund Ubar, Anna Krivenko (Rannaste), Margus Kruus.
Hierarchical Identification of Untestable Faults in Sequential Circuits,
Proceedings of the 10th IEEE Euromicro Conference on Digital Systems Design
(DSD’07), IEEE Computer Society, pp. 668-671, 27-31 August, 2007, Lübeck,
Germany.

Other References :

[1] H.-K.T Ma, S. Devadas, A.R. Newton, A. Sangiovanni-Vincentelli, “Test
generation for sequential circuits”, IEEE Trans. on CAD, Vol. 7, No. 10 pp. 1081-
1093, Oct. 1988.

[2] T. M. Niermann, J. H. Patel, "HITEC: A test generation package for sequential
circuits", Proc. European Conf. Design Automation (EDAC), pp.214-218, 1991.

[3] D. Brahme, J. A. Abraham, "Functional Testing of Micro-processors", IEEE Trans.
Comput., vol. C-33, 1984.

[4] A. Gupta, J. R. Armstrong, "Functional fault modeling", 30th ACM/IEEE DAC, pp.
720-726, 1985.

[5] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Generation for Behavioral VHDL
Models,” Int. Test Conf., pp. 587-596, 1998.

[6] E. M. Rudnick, et al. "Sequential circuit test generation in a genetic algorithm
framework", Proc. DAC, pp. 698-704, 1994.

[7] . Corno, P. Prinetto, et al., "GATTO: A genetic algorithm for automatic test pattern
generation for large synchronous sequential circuits", IEEE Trans. CAD, pp.991-
1000, Aug. 1996.

[8] M. S. Hiao, E. M. Rudnick, J. H. Patel, "Sequential circuit test generation using
dynamic state traversal", Proc. European Design and Test Conf., pp. 22-28, 1997.

[9] A. Giani, et al., “Efficient Spectral Techniques for Sequential ATPG,” Proc. IEEE
DATE Conf., March 2001, pp. 204-208.

[10] J. Lee, J.H. Patel, "Architectural level test generation for microprocessors",
IEEE Trans. CAD, pp.1288-1300, Oct. 1994

112

[11] G. Jervan et al., "High-Level and Hierarchical Test Sequence Generation",
IEEE HLDVT, Cannes, 2002.

[12] J. Raik, R. Ubar, "Fast test pattern generation for sequential circuits using
decision diagram representations", JETTA, Kluwer, 16(3), 2000.

[13] G. Di Guglielmo et al., "On the Combined Use of HLDDs and EFSMs for
Functional ATPG", East-West Design & Test Symposium, Yerevan, 2007.

[14] The ECLiPSe Constraint Programming System http://eclipse-clp.org/
[15] J. Raik, R. Ubar, “Targeting Conditional Operations in Sequential Test Pattern

Generation”, European Test Symposium, 2004.
[16] HLSynth92 benchmark directory at URL: http:

//www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth92/
[17] E. Gramatova, et al., “FUTEG Benchmarks,” Technical Report

COPERNICUS JEP 9624 FUTEG No9/1995.
[18] T. M. Niermann, J. H. Patel, "HITEC: A test generation package for sequential

circuits", Proc. European Conf. Design Automation (EDAC), pp.214-218,
1991.

[19] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann, "Sequential
circuit test generation in a genetic algorithm framework", Proc. DAC, pp. 698-
704, 1994.

[20] B. T. Murray, J. P. Hayes, "Hierarchical test generation using precomputed
tests for modules", Proc. ITC, pp.221-229, 1988.

[21] I. Ghosh, M. Fujita, “Automatic Test Pattern Generation for Functional RTL
Circuits Using Assignment Decision Diagrams”, DAC, pp. 43-48, 2000.

[22] V. Chayakul, D. D. Gajski, L. Ramachandran, “High-Level Transformations
for Minimizing Syntactic Variances”, DAC, pp. 413-418, June 1993.

[23] L. Zhang, I. Ghosh, M. Hsiao, “Efficient Sequential ATPG for Functional
RTL Circuits”, Int. Test Conf., pp.290-298, 2003.

[24] H. Fujiwara, C. Y. Ooi, Y. Shimizu, "Enhancement of Test Environment
Generation for Assignment Decision Diagrams", WRTLT, 2008.

[25] K. C. Y. Mei, “Bridging and stuck-at faults”, IEEE Trans. Comput., vol. C-23,
no 7, pp. 720-727, July 1974

[26] L. Bushnell, A. Agrawal, “Essentials of Electronic Testing for Digital Memory
& Mixed – Signal VLSI Circuits”, Kluwer academic publishers, Boston /
Dordrecht / London, 2000

113

http://eclipse-clp.org/

[27] Niraj Iha and Sandeep Gupta, “Testing of digital systems” Cambridge :
Cambridge University Press, c2003

[28] Turbo Tester test tools, URL: http://www.pld.ttu.ee/tt/

[29] J. Raik, R. Ubar, T. Viilukas, M. Jenihhin. Mixed Hierarchical-Functional
Fault Models for Targeting Sequential Cores. J. of Systems Architecture,
Elsevier, 2008.

[30] V. D. Agrawal and S. T. Chakradhar, “Combinational ATPG theorems for
identifying untestable faults in sequential circuits,” IEEE Trans Comput.-Aided Des.
Integr. Circuits Syst., vol. 14, no. 9, pp. 1155–1160, Sep. 1995.

[31] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying sequential redundancies
without search,” in Proc. 33rd Annu. Conf. DAC, LasVegas, NV, Jun. 1996, pp.
457–462.

[32] Q. Peng, M. Abramovici, and J. Savir, “MUST:Multiple stem analysis for
identifying sequential untestable faults,” in Proc. Int. Test Conf., Atlantic City, NJ,
Oct. 2000, pp. 839–846.

[33] D. E. Long, M. A. Iyer, and M. Abramovici, “FILL and FUNI: Algorithms to
identify illegal states and sequentially untestable faults,” ACM Transact. Des.
Automat. Electron. Syst., vol. 5, no. 3, pp. 631–657, Jul. 2000.

[34] H.-C. Liang, C. L. Lee, and E. J. Chen, “Identifying untestable faults in sequential
circuits,” IEEE Des. Test. Comput., vol. 12, no. 3, pp. 14–23, Sep. 1995.

[35] Michiko Inoue, Takeshi Higashimura, Kenji Noda, Toshimitsu Masuzawa, Hideo
Fujiwara: A High-Level Synthesis Method for Weakly Testable Data Paths. Asian
Test Symposium 1998: 40-45

[36] Marie-Lise Flottes, R. Pires, Bruno Rouzeyre: Alleviating DFT Cost Using
Testability Driven HLS. Asian Test Symposium 1998: 46-51

[37] M.L. Flottes, R. Pires, and B. Rouzeyre, “Analyzing Testability from Behavioral to
RT Level”, in Proc. European Design & Test Conf., 1997, pp. 159–165.

[38] J. Raik, “Hierarchical Test Generation for Digital Circuits Represented by Decision
Diagrams”, TUT press, 2001

[39] Maxwell, P. Et al., Comparing functional and structural tests, ITC 2000. 3-5
Oct. 2000 Page(s):400 – 407.

[40] A. Krivenko, “Experimental analysis of hierarchical test generator DECIDER”,
Master thesis, TUT , 2005

114

http://www.pld.ttu.ee/tt/

115

116

Curriculum Vitae
in English

Personal data

Name Anna Rannaste (Krivenko)
Date and place 05.04.1981, ESTONIA
of birth
Citizenship Estonian

Contact information

Address Raja 15, Tallinn 12618, ESTONIA
Phone +372 51 80673
E-mail anna.rannaste@gmail.com

Education

2010 – Entered MBA studies in Euroakademie, Master of
Business Administration

2005 – Entered PhD studies in Tallinn University of Technology,
Computer Engineering

117

mailto:anna.rannaste@gmail.com

2004 – 2006 Engineering Educator, TUT, UT
2004 – 2005 M.Sc. in Computer Engineering, TUT
1999 – 2004 B.Sc. in Computer Engineering, TUT

Professional employment

2009 – Elvior OÜ, Software Engineer,
Reading the training course „TTCN-3 Testing Language“
at TUT. Subject: „Software automated testing“

2007 – 2009 CODA Eesti OÜ, Software Engineer
2005 – 2007 Ixonos OÜ, Test Team Coordinator, Group Manager

Language

Estonian Good

English Good

Russian Native

German Average

Defended theses

2005, Experimental analysis of hierarhical test generator DECIDER,
M.Sc., supervisor Dr. Jaan Raik, Tallinn University of Technology,
Faculty of Information Technology

2004, Comparative Analysis of Sequential Circuit Test Generation
Approaches, B.Sc., supervisor Dr. Jaan Raik, Tallinn University of
Technology, Faculty of Information Technology

118

Honours & Awards

“ICT Doctoral School“ scholarship for PhD students, 2009

"Tiger University" grant for ICT PhD students, Estonian Information
Technology Foundation (EITSA), 2008

"DAAD Sprachkursen" grant for High School German Language Course,
 2004

Research interests

Natural Sciences and Engineering, Computer Sciences: High-level Test
Pattern Generation for Synchronous Sequential Circuits

Scientific work

Papers

1. Jaan Raik, Anna Krivenko (Rannaste), Raimund Ubar. Comparative Analysis
of Sequential Circuit Test Generation Approaches. Proceedings of the Baltic
Electronic Conference (BEC’04), pp. 225-228, Oct. 3-6, 2004 Tallinn, Estonia.

2. Jaan Raik, Raimund Ubar, Anna Krivenko (Rannaste), Margus Kruus.
Hierarchical Identification of Untestable Faults in Sequential Circuits,
Proceedings of the 10th IEEE Euromicro Conference on Digital Systems
Design (DSD’07), IEEE Computer Society, pp. 668-671, 27-31 August, 2007,
Lübeck, Germany.

3. Jaan Raik, Hideo Fujiwara, Anna Krivenko (Rannaste). RT-Level
Identification of Potentially Testable Initialization Faults. The Ninth IEEE
Workshop on RTL and High Level Testing (WRTLT’08), IEEE, pp. 667-672,
November 27-28, 2008, Sapporo, Japan.

4. Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste).
Untestable Fault Identification in Sequential Circuits Using Model-Checking.
The 17th Asian Test Symposium (ATS’08), IEEE, pp. 667-672, November 24-
27, 2008, Sapporo, Japan.

119

5. Taavi Viilukas, Jaan Raik, Maksim Jenihhin, Raimund Ubar, Anna Krivenko
(Rannaste). Constraint-based Test Pattern Generation at the Register-Transfer
Level, Proceedings of the 13th IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS’10), pp. 352 – 357, April 14–16,
2010, Vienna, Austria.

6. J. Raik, A. Krivenko (Rannaste), T. Viilukas, M. Jenihhin, R. Ubar, H.
Fujiwara. Constraint-Based Hierarchical Untestability Identification for
Synchronous Sequential Circuits, (submitted to the DATE'11 conference).

Conference presentations

Jaan Raik, Hideo Fujiwara, Anna Krivenko (Rannaste). RT-Level
Identification of Potentially Testable Initialization Faults. The Ninth IEEE
Workshop on RTL and High Level Testing (WRTLT’08), November 27-28,
2008, Sapporo, Japan.

Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste).
Untestable Fault Identification in Sequential Circuits Using Model-Checking.
The 17th Asian Test Symposium (ATS’08), November 24-27, 2008, Sapporo,
Japan.

Projects

1. Design and Test of Digital Systems (SF0142508s03).

2. Design of Reliable Embedded Systems (SF0140041s08).

3. Digital System Verification and Test Using High-Level Decision Diagrams
(ETF7068).

4. Hardware Functional Verification and Debug (ETF8478).

5. Self-Testing Digital Systems (ETF5910).

120

Elulookirjeldus

Isikuandmed

Nimi Anna Rannaste (Krivenko)
Sünniaeg ja 05.04.1981, EESTI
–koht
Kodakondsus Eesti

Kontaktandmed

Aadress Raja 15, Tallinn 12618, EESTI
Telefon +372 5180673
E-post anna.rannaste@gmail.com

Hariduskäik

2010 – ... Magistrant, Ärijuhtimine (MBA), Euroülikool
2005 – ... Doktorant, Arvutitehnika Instituut, Tallinna

Tehnikaülikool
2004 – 2006 Tehnikaõpetaja, Tartu Ülikooli ja Tallinna

Tehnikaülikooli koostöö
2004 – 2005 Tehnikateaduste magister, Arvuti- ja Süsteemitehnika

eriala, Tallinna Tehnikaülikool
121

1999 – 2004 Tehnikateaduste bakalaureus, Arvuti- ja Süsteemitehnika
eriala, Tallinna Tehnikaülikool

Teenistuskäik

2009 – Elvior OÜ, tarkvarainsener,
Lugesin kursust „TTCN-3 Testimis keel“
TTÜ. Aine: „Tarkvara automatiseeritud testimine“

2007 – 2009 CODA Eesti OÜ , tarkvarainsener
2005 – 2007 Ixonos OÜ, testimismeeskonna koordinaator, grupijuht

Keelteoskus

Eesti keel Hea

Inglise keel Hea

Vene keel Emakeel

Saksa keel Keskmine

Kaitstud lõputööd

2005, Hierarhilise test generaatori DECIDER eksperimenaalne analüüs,
M.Sc., juhendaja Dr. Jaan Raik, Tallinna Tehnikaülikool, Infotehnoloogia
teaduskond

2004, Järjestikskeemide testigeneraatorite võrdlev analüüs., B.Sc.,
juhendaja Dr. Jaan Raik, Tallinna Tehnikaülikool, Infotehnoloogia
teaduskond

Teaduspreemiad ja tunnustused

IKT doktorikooli stipendium doktorantidele, 2009

 "Tiigriülikooli" stipendium IKT doktorantidele (EITSA), 2008.a
122

 DAAD saksa keele kursuse stipendium, 2004.a

Teadustöö põhisuunad

Loodusteadused ja tehnika, Arvutiteadused (Registersiirde taseme
järjestikskeemide automatiseeritud testvektorite generatsioon)

Teadustegevus

Projektid

1. Digitaalsüsteemide disain ja test (SF0142508s03).

2. Isetestivad digitaalsüsteemid (ETF5910).

3. Kõrgtaseme otsustusdiagrammidel põhinevad digitaalsüsteemide
verifitseerimis- ja testimismeetodid (ETF7068).

4. Riistvara funktsionaalne verifitseerimine ja silumine (ETF8478).

5. Töökindlate sardsüsteemide disain (SF0140041s08).

Teadusartiklite, konverentsiettekannete loetelu on toodud ingliskeelses
elulookirjelduses.

123

