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Abstract

Nowadays, digital electronic systems are widely adopted and they are rapidly 
developing. Research on effective testing methods is needed in order to guarantee 
the  quality of digital systems. Current thesis addresses the hierarchical test pattern 
generation issues. First, a novel constraint-based automated test pattern generator 
for  Register-Transfer  Level  (RTL) designs is  presented.  The tool  combines test 
path constraint activation with a constraint solver allowing test generation for hard 
to test faults in sequential digital circuits. In addition,  the problem of high-level 
identification of an important subclass of faults: potentially testable initialization 
faults is discussed. 

The second  contribution of  this  research are  techniques  for identification of 
untestability  for  synchronous  sequential  circuits.  Proving  untestable  faults  is 
important because it helps raising the confidence in the test quality, without this 
proof test pattern generation would spend a lot of time trying to generate tests for 
faults that cannot be detected. A novel method of  identifying  untestable stuck-at 
faults  in  the  RTL  sequential  circuits  using  model-checking  is  presented. 
Additionally, a  new  method  for  proving  sequential  untestability  based  on  test 
generation constraints was developed. 

Results obtained during the experimental studies presented in this thesis give a 
possibility to  find “weak” spots  from existing sequential  circuit  test  generation 
approaches and to improve them in the future.  

The thesis is based on selected scientific papers published in the proceedings of 
several international conferences. 
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Annotatsioon

Tänapäeval on digitaalsed elektroonikasüsteemid laialt levinud ja nad arenevad 
väga  kiirelt.  Selleks,  et  tõsta  digitaalsüsteemide  kvaliteeti,  tuleb  välja  töötada 
efektiivsemad  testimismeetodid.  Käesolevas  dissertatsioonis  uuritakse  peamiselt 
hierarhilist testvektorite genereerimist puudutavaid probleeme.

Töö  esitab  uue,  kitsendustepõhise  automatiseeritud  testvektorite  generaatori 
registersiirde taseme skeemidele,  mis  ühendab endas  testi  kitsenduste formaalse 
genereerimise ja lahendamise. Programm võimaldab testida nn. raskesti testitavaid 
rikkeid.  Lisaks  uuritakse  potentsiaalselt  testitavate  initsiaaliseerimisrikete 
identifitseerimise probleeme kõrgtasemel.

Lisaks on uurimistöö eesmärk välja töötada meetodid mittetestitavate  rikete 
tuvastamiseks sünkroonsetes järjestikskeemides. Info mittetestitavate rikete kohta 
aitab  tõsta  testide  genereerimise  kiirust  ning suurendab kindlust  testi  kvaliteedi 
suhtes.  Loodi  uudsed  meetodid  mittetestitavate  rikete  identifitseerimiseks 
järjestikskeemides  register-siirde  tasemel,  kasutades  verifitseerimisest  tuntud 
mudeli-kontrolli meetodit ja kitsendustel põhinevat testigeneraatorit.

Saadud eksperimentaaltulemused annavad meile võimaluse määrata meetodite 
nõrgad kohad ja täiustada neid tulevikus.

Dissertatsioon  tugineb  valitud  teaduslikele  artiklitele,  mis  on  avaldatud 
mitmetel rahvusvahelistel konverentsidel.
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Chapter 1 
INTRODUCTION

The basis of this thesis is formed of five research papers representing different 
aspects of hierarchical test pattern generation issues and listed below:

Paper  I: "Comparative  Analysis  of  Sequential  Circuit  Test  Generation 
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Paper  II:  "Constraint-based  Test  Pattern  Generation  at  the  Register-Transfer 
Level",  Taavi  Viilukas,  Jaan  Raik,  Maksim  Jenihhin,  Raimund  Ubar,  Anna 
Krivenko (Rannaste) (DDECS'10)

Paper III:  "RT-Level Identification of Potentially Testable Initialization Faults", 
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Paper IV:  "Untestable Fault Identification in Sequential Circuits Using Model-
Checking", Jaan Raik, Hideo Fujiwara, Raimund Ubar, Anna Krivenko (Rannaste) 
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Paper  V:  "Constraint-Based  Hierarchical  Untestability  Identification  for 
Synchronous Sequential Circuits", J. Raik, A. Krivenko (Rannaste), T. Viilukas, 
M. Jenihhin, R. Ubar, H. Fujiwara (submitted to the DATE'11 conference).
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The  main  emphasis  is  put  on  untestability  identification  techniques  for 
synchronous  sequential  circuits.  In  addition,  constraint-based  hierarchical  test 
generation techniques are presented. 

This introductory Chapter first presents the motivation for the work which is 
followed by the formulation of the problem and the outline of main contributions. 
In the last part of the Chapter the structure of the thesis is described.

1.1 Motivation

Nowadays, electronic systems are widely applicable and reliability is becoming 
the main problem for these systems. Reliability of electronic systems is essential in 
military,  aerospace and nuclear industries,  where failures may have catastrophic 
consequences. Adequate testing of electronic products is required to guarantee a 
certain level of reliability. However, it is hard task to test contemporary electronic 
systems because the ever-increasing complexity. Therefore, developing new, more 
efficient test methods is required [40]. 

Electronic  circuits  are  divided  into analog and digital  ones.  Majority of  the 
hardware in use today is based on digital circuits. In this work we consider digital 
test only.  By testing we understand not checking the correctness of the function of 
the implemented circuit (functional verification), but checking for manufacturing 
correctness. Testing and verification are different tasks with different goals.

Fault models are needed to model the actual physical defects. Fault coverage is 
the fraction of modeled faults covered by a test. Nowadays, automated test pattern 
generation (ATPG) is used to automatically obtain tests with high-fault coverage 
for  digital  electronic  circuits.  Already for  two decades,  automated  test  pattern 
generation for  combinational  circuits was  considered  as  a  solved  problem. 
However, almost all the digital devices produced nowadays belong to the class of 
sequential  circuits,  containing  feedback  loops  that  make  the  test  generation 
problem extremely difficult [38].

Scannable  registers  are  used  to  test  complex  electronic  circuits.  These 
architectures  are  inserted  to  the  circuits  to  make  internal  points  of  the  circuit 
controllable  and  observable  by  converting  a  sequential  design  into  a  pseudo-
combinational one. Full-scan design is easy to accomplish and it allows application 
of  the  combinational  ATPG  resulting  in  a  near-100-percent  fault  efficiency. 
Scannable registers have a number of drawbacks including performance, routing 
overhead and excessive amount of test data. There are three major shortcomings of 
using scannable  registers.  First  one,  at–speed test  is  costly in  scanned designs. 
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Errors that would appear only at full speed may escape the test. Second, scannable 
registers increase the cost of the chip. Third, this method also causes targeting of 
non-functional failure modes, which results in over-testing and yield loss [39].

In this work, we consider test generation problem without implementing scan 
structures.  Test  generation  can  be  carried  out  at  different  levels  of  design 
abstraction. Usually each design abstraction level is represented by different types 
of  models.  In  this  work,  a  hierarchical  test  pattern  generation  approach  is 
presented,  where  high-level  (register-transfer  level)  and  logic-level  design 
information is described by decision diagrams.

1.2 Problem Formulation

As it was mentioned above, the problem of automated test pattern generation for 
combinational digital circuit was solved already by the end of 1980s, but optimal 
decision for test pattern generation for sequential circuits is still not found. There 
have been many different  approaches to generating tests  for  structural  faults  in 
sequential circuits proposed over the years [1-10], [20-24]. However, the problem 
of  test  pattern  generation  for  sequential  circuits  is  a  challenge  that  lacks  an 
acceptable solution despite of decades of research. The achieved fault coverages 
are unsatisfactory and test generation times are long for more complex circuits. 

Similar to test pattern generation, the problem of identifying untestable faults in 
sequential synchronous circuits remains unsolved.  Untestable fault is a fault  for 
which no test exists. Test generation for sequential synchronous designs is a time-
consuming task. Automated Test Pattern Generation (ATPG) tools spend a lot of 
effort not only for deriving test vectors for testable faults but also for proving that 
there  exist  no  tests  for  the  untestable  faults.  Because  of  this  reason,  the 
identification of untestable faults has been an important aspect in speeding up the 
sequential  ATPG. The previously published works in untestability identification 
operate  at  the  logic-level  and,  thus,  they  do  not  scale  with  the  increasing 
complexity  of  modern  designs  [30-34].  Thus,  it  would  be  good  if  part  of  the 
untestable faults could be identified at higher abstraction levels.  Identification of 
untestable faults allows raising the confidence in the ATPG efficiency. 

The  current  thesis  is  focused  on  improving  untestability  identification 
techniques of synchronous sequential circuits that is the one of the major issues in 
the area of digital circuits testing. 

In  addition,  this  thesis  also  presents  a  register-transfer  level  test  pattern 
generation  for  non-scan  sequential  circuits  containing  feedback  loops.  A  novel 
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constraint-based  automated  test  pattern  generator  for  Register-Transfer  Level 
designs  is  introduced.  The tool  combines  test  path constraint  activation with  a 
constraint  solver.  First,  a  deterministic  algorithm  that  extracts  constraints  for 
activating test paths at RTL is applied. Subsequently, a constraint solving package 
ECLiPSe is used for assembling the tests. We showed that experiments offers short 
run times, increased fault coverage for hard-to-test designs with respect to earlier 
approaches listed above. 

Finally,  a  new  method  of  RT-Level  identification  of  potentially  testable 
initialization faults is considered. 

In  sequential  Automated  Test  Pattern Generation (ATPG) based on a three-
valued algebra (0,1,X) a fault is said to be hard-detected if a fault effect (0/1 or 1/0) 
appears at a primary output. However, not all the faults can be tested by such hard-
detection  model.  Many faults  belonging  to  the  class  of  initialization  faults  are 
known to be covered only by resorting to potential detection (effect 0/X or 1/X). 
Existing  high-level  fault  models  assume  hard-detection  and  therefore  are  not 
capable of handling the initialization faults.

It is obvious that any ATPG algorithm first attempts to generate hard-detection 
tests.  As a result, high-level algorithms spend test generation time also for those 
faults that may only be detected potentially. 

The  next  Sections  detail  the  areas  of  my  research  and  further  reveal  the 
motivation beind it.

1.3 Contributions

The main contributions of this thesis are summarised as follows:

The  current  thesis  introduces  several  techniques  to  perform  hierarchical  test 
pattern  generation  and  untestability  identification  for  synchronous  sequential 
circuits. 

• An overview of the comparative study of ATPG methods is proposed [I]. 
A comparative study of test pattern generation approaches based on three 
tools: a genetic algorithm test generator GATEST, a deterministic logic-
level tool HITEC and a hierarchical tool DECIDER. The purpose of this 
study  was  to  find  out,  which  fault  types  are  covered  by  the  tools 
implementing completely different approaches. 
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• A  novel  constraint-based  automated  test  pattern  generator  for  Register-
Transfer Level (RTL) designs  is introduced [II].  The tool combines test 
path constraint  activation with a constraint  solver.  First,  a  deterministic 
algorithm  that  extracts  constraints  for  activating  test  paths  at  RTL  is 
applied. Subsequently, a constraint solving package ECLiPSe [14] is used 
for assembling the tests. 

• This  thesis  also  presents  the  problem of  high-level  identification  of  an 
important subclass of faults, of potentially testable initialization faults [III]. 
Potentially  detectable  initialization  faults  form a  large  subset  of  all  the 
faults  not  testable  by  hard-detection  [III].  Potentially  testable  fault 
identification is applicable, both, for stuck-at and high-level fault models.

• An approach of  identifying of untestable faults in sequential circuits is 
considered  [IV].  We  propose  using  model-checking  for  detecting 
untestable  stuck-at  faults  at  the  Register-Transfer  Level  (RTL).  In 
particular,  we  present  a  method  for  formally  generating  PSL  language 
assertions for proving untestable stuck-at faults in sequential synchronous 
designs. 

• A novel  method  of register-transfer  level  untestability  identification for 
non-scan sequential circuits containing feedback loops  is introduced [V]. 
First, an RTL test pattern generator Decider is applied in order to extract 
test  path  extraction  constraints.  Then,  a  constraint-driven  deterministic 
logic-level automated test pattern generator is run providing hierarchical 
test generation and testability proof in sequential circuits. 

1.4 Thesis Organization

The presented thesis is organized in a form of overview of the research results 
that have been published  in  five  scientific papers.  It  is divided into  seven main 
Chapters.  The  thesis  contains  description  of  the  investigated  problem, 
implementation discussions, examples and conclusions. The rest of the thesis is 
organized as follows.
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Chapter 2  provides an overview of related works  in studying of  untestability 
identification  techniques  and  test  pattern  generation  for  synchronous  sequential 
circuits. 

Chapter 3 presents an overview of preliminaries and makes an introduction to 
different  aspects of  digital  circuit.  In addition,  describes  a  classification of test 
pattern generation methods for sequential circuits and Register-transfer level view 
to circuits.

Chapter 4 forms a background information required for discussion of the further 
proposed approaches  and gives an overview of the  comparative study of ATPG 
methods.

Chapter  5  starts  with  discussion  of  a  novel  constraint-based  automated  test 
pattern generation at register-transfer level.  Further,  research of  identification of 
potentially testable initialization faults at the RT-Level is introduced.

Chapter 6 presents an overview of the research results based on the selected 
publications.  First,  a  new  approach  proposes  applying  model-checking  for 
detecting  untestable  stuck-at  faults  at  the  register-transfer  level.  Finally, 
hierarchical untestability identification for non-scan sequential circuits containing 
feedback loops is considered.

 Chapter 7 draws conclusions for this thesis and discusses possible directions 
for future work. 
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Chapter 2
RELATED WORKS

Current  Chapter  summarises  the  scope and  provides  an  overview of  related 
works. 

At  present,  satisfactory  methods  for  testing  sequential  circuits  are  missing. 
Gate-level test pattern generation for sequential circuits is a challenge that lacks an 
acceptable solution despite of decades of research. Therefore, the test community 
has turned towards higher abstraction levels.  In particular  register-transfer  level 
(RTL) test generation has been regarded as a potential trade-off between functional 
and  low-level  approaches  as  it  provides  design  abstraction  while  still  retaining 
correspondence to the circuit structure.

A common industry practice is therefore to resort to full- or partial-scan design, 
where scan paths are inserted into circuit flip-flops converting a sequential design 
into a pseudo-combinational  one.  Full-scan design is  easy to accomplish and it 
allows application of the combinational ATPG resulting in a near-100 percent fault 
efficiency. However, the scan path approach has a number of drawbacks including 
performance and routing overhead, difficulty to achieve at-speed testing, excessive 
amount of test data, and last but not least, yield loss because of over-testing.

A number  of  works  have  been  proposed  in  order  to  tackle  the  problem of 
untestability  identification.  Despite  of  all  the  efforts  the  problem  still  lacks  a 
breakthrough. At the gate-level,  a number of deterministic test  generation tools, 
both  academic  [1,  2]  and  commercial,  have  been  implemented.  None  of  these 
methods can efficiently handle sequential designs of even a couple of thousands of 
gates. With the further growth of the circuit size fault coverages tend to drop while 
run times increase rapidly. 
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Better performance has been obtained with simulation-based approaches. Here, 
genetic  algorithm  based  methods  have  been  widely  used  [6,  7,  8].  Relatively 
efficient  results  have  been  obtained  by  spectral  methods  [9]. However,  the 
simulation-based methods are fast for smaller circuits only and become ineffective 
when  the  number  of  primary  inputs  and  the  sequential  depth  of  the  circuit 
increases. 

Many works on functional test generation have been published in the past [3, 4]. 
In this field, an efficient technique based on BDD manipulation of data domain 
partitions has been proposed [5].  However, the fundamental  shortcoming of the 
approaches  that  rely  on  functional  fault  models  is  that  they  do  not  offer  full 
structural level fault coverage.

Hierarchical  automatic  test  pattern generation (ATPG) has been a promising 
alternative to tackle complex sequential circuits for already more than a decade. In 
hierarchical RTL test generation, top-down and bottom-up strategies are known. In 
the  bottom-up  approach  [20],  tests  generated  at  the  low-level  will  be  later 
assembled  at  the  higher  abstraction  level.  Such  algorithms  ignore  the 
incompleteness problem: constraints imposed by other modules and/or the network 
structure may prevent test vectors from being assembled.  Thus, while being fast, 
this type of approach is not really applicable for sequential circuits with difficult to 
test feedback loops. In the top-down approach [10], constraints are extracted at the 
higher level as a goal to be considered when deriving tests for modules at the lower 
level. This approach allows testing modules embedded deep into the RTL structure. 
However, as modules are often tested through highly complex constraints,  their 
fault coverage may be compromised.

Early methods on bottom-up RTL testing relied on the assembly of module tests 
and were applicable of the simplest systems only [20]. A more solid basis for the 
bottom-up paradigm was laid by Ghosh in [21]. In their work, test environments 
are  generated  for  each  functional  module  of  a  given  functional  RTL  circuit 
described  in  an  assignment  decision  diagram  (ADD)  [22]  using  symbolic 
justification/propagation rules using a nine-valued algebra. In this method, a test 
sequence is then formed by substituting the corresponding test patterns into the test 
environment. However, regardless of the existence of some test environments, the 
proposed nine-valued algebra cannot  always  generate the test  environments.  To 
overcome this drawback, Zhang et al. upgraded the nine-valued algebra to a ten-
valued  algebra  by  taking  the  signal  line  value  range  into  consideration.  This 
algebra is able to generate much more test  environments [23]. In [24], Zhang’s 
approach has been further improved by introducing additional propagation rules.
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Lee  and  Patel  introduced  constraint-based  test  pattern  generation  for 
microprocessors in [10]. [11] proposed a bottom-up approach based on a high-level 
decision diagram (HLDD) engine and a commercial SICStus constraint solver. As 
experiments  show,  the  tool  achieves  lower  fault  coverage  in  comparison  to  a 
commercial  gate-level ATPG. In [12],  a top-down approach called Decider was 
introduced,  which  relied  on  random constraint  solving.  The  method  was  later 
combined with Extended Finite State Machine based engine Laerte++ from the 
University of Verona, which resulted in a semi-formal setup [13]. Thus, hard-to-
test faults inside the modules were not targeted. In this thesis, a constraint solving 
package ECLiPSe [14] has been incorporated into the Decider tool [II] providing a 
deterministic hierarchical test pattern generation environment.

In  sequential  Automated  Test  Pattern Generation (ATPG) based on a  three-
valued algebra (0, 1, X) a fault is said to be hard-detected if a fault effect (0/1 or 
1/0) appears at a primary output. However, not all the faults can be tested by such 
hard-detection model. Many faults belonging to the class of initialization faults are 
known to be covered only by resorting to potential detection (effect 0/X or 1/X). It 
is obvious that any ATPG algorithm first attempts to generate hard-detection tests. 
This means wasting test  generation time also for those faults  that  may only be 
detected potentially. 

 Experimental  analysis  presented in  paper  [III]  points  out  that  an important 
subclass of faults, the potentially detectable initialization faults, form a large subset 
of  all  the  faults  not  testable  by  the  hard-detection  model.  As  a  result  of  the 
proposed approach the confidence level of sequential ATPG can be increased. As it 
is pointed out in this thesis, the proposed potentially testable fault identification is 
applicable, both, for stuck-at and high-level fault models.

Existing high-level fault  models  assume hard-detection and therefore are not 
capable of handling the initialization faults. Thus, it would be desirable that the 
high-level ATPG would have knowledge about the faults that cannot be tested by 
the hard-detection model. 

In their previous work [VI], the authors introduced a new subclass of untestable 
faults, called register enable stuck-on faults. However, the paper did not propose 
any formal method for identifying untestable register faults. Paper [IV] presents a 
new method that is capable of  identifying such type of untestable faults.  Using 
model-checking  for  detecting  untestable  stuck-at  faults  at  the  Register-Transfer 
Level  (RTL)  is  proposed.  In  particular,  a  method  for  formally  generating  PSL 
language assertions for proving untestable stuck-at faults in sequential synchronous 
designs is presented. As a result the fault efficiency was significantly increased but 
still remained well below 100 per cent.
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The common short-coming of all the earlier methods is that they do not annotate 
RTL constraints back to gate-level untestable faults. Thus, the fault efficiency (i.e. 
test coverage) reported by the approaches is often low, which decreases the test 
engineers confidence to the test. We will show in the paper [V]  , in many cases, 
fault coverage obtained for the modules in RTL test generation decreases if path 
activation constraints are being ignored. 
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Chapter 3 
PRELIMINARIES

Digital circuits have become increasingly complex, with more transistors and 
functionalities packed on a single chip of nearly the same physical size. Therefore 
testing  of  that  complex  circuit  has  become  a  major  problem  technically  and 
economically.

3.1 Digital Circuits

A digital circuits can be defined (according to author Francis C. Wang “Digital 
circuit testing“) generally as an interconnections of logic elements such as AND 
gates, OR gates, INVERTORS, flip-flops, and registers.  It must  also be able to 
process a set of discrete and finite-valued electrical signals. 

Digital circuits may be classified as combinational or sequential.

3.1.1 Combinational vs. Sequential Circuits

In a combinational circuit, the present outputs depend only on present inputs 
(subject to reaction times).

A sequential circuit (Figure 3.1) consist of a combinational part and memory 
elements. There are also feedback loops in the circuit. The combinational part of 
the  circuit  is  modeled  at  the  Boolean gate-level.  Flip-flops  are  treated as  ideal 
memory elements, whose clock signal is not explicitly represented. 
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The two classes of circuits have different topologies. 

                  

Figure 3.1 An example of a sequential circuit

The first difference between combinational and sequential circuits is that  the 
combinational circuit does not contain memory elements. The second one is that a 
test  for  a  fault  in  a  sequential  circuit  may  consist  of  several  vectors.  A 
combinational ATPG, on the other hand, is capable of generating always only a 
single vector for a target fault.

Sequential  digital  circuits  may  be  further  classified  as  asynchronous  or 
synchronous.

3.1.2 Asynchronous vs. Synchronous Circuits

The outputs of a sequential circuit may be assembled into an ordered list called 
the state vector, or simply the state.

In  an asynchronous  circuit,  the  state  can change at  any time  in  response to 
changes in the inputs.

In a synchronous circuit, the state can change only at discrete times.
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3.2 Fault Models

The selection of the fault model determines the efficiency of test generation and 
the  quality  of  tests.  Physical  defects  represented  by  mathematical  abstraction 
mechanisms  are  called  fault  models.  The  terms  defect,  fault  and  error have 
different  and  specific  meaning.  Defects are  physical  failures  that  occur  during 
manufacturing. The goal of test generation is to generate such input stimuli that all 
(or  possibly  many)  defects  would  manifest  themselves  as  erroneous  output 
responses of the circuit. In general, there is no one-to-one correspondence between 
faults and defects but the set of faults belonging to the model should represent the 
defect combinations that are likely to occur in reality. The term error is related to 
the behaviour of  the circuit.  Wrong output  responses of  circuits  by defects are 
referred to as errors.

Fault  models  can  be  classified  according  to  their  level  of  abstraction  into 
transistor level, logic level and high level (register – transfer and behavioral level) 
ones. Logic level fault models are: different types of delay fault models (path delay 
faults, gate delay faults) and the stuck – at fault model. The most simple and at the 
same time the most popular logic level model is the single stuck – at (SSA) fault 
model, which will be presented in the Subsection 3.2.1. Its main advantages are as 
follows:

• it represents a large number of physical defects

• it is independent of technology

• many other fault models can be reduced to the SSA model.

3.2.1 The Stuck-at Fault Model 

We assume that the circuit is modelled as an interconnected network of blocks 
in the stuck-at fault model. At logic level these blocks are Boolean gates. A stuck-
at  fault  is  assumed to  affect  only the  interconnections between the gates.  Each 
connection can have stuck-at-0 and stuck-at-1 types of faults. A line with a stuck-
at-1 fault will always hold the logic value 1 irrespective of the correct logic output 
of the gate driving it. Accordingly, a line with a stuck-at-0 fault will always hold 
the logic value 0 irrespective of the correct logic output of the gate driving it.

Several stuck-at faults can be simultaneously presented in the circuit. A circuit 
with n lines can have 3n-1 different stuck line combinations. Even a moderate value 
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of n will result in an enormous amount of multiple faults. Therefore, only single 
stuck-at faults are modelled. An n-line circuit has 2n single stuck-at faults and all 
the  single  stuck-at  faults  will  also  cover  also  most  of  the  possible  fault 
combinations.

The properties of  single stuck-at faults are [25]:

1. only one line is faulty

2. the fault can be at an input or output of a gate

3. the faulty line is permanently stuck to 0 (1)

3.3 Classification of Test Pattern Generation Methods 

Test  pattern  generation  methods  can  be  classified  (by  definition  of  authors 
Michel  L.  Bushnell  and  Vishwani  D.  Agrawal  from the  book  “  Essentials  of 
Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits), [26] into 
three categories:

Time-frame expansion. In this method a model of the circuit is created such that 
tests can be generated by a combinational ATPG method. This procedure is very 
efficient for circuits described at the Boolean gate-level.  Its efficiency degrades 
significantly with cyclic structure, multiple-clocks, or asynchronous circuitry.

Simulation-based  methods.  In  these  methods  a  fault  simulator  and  a  vector 
generator are used to derive tests. In general, tests can be generated for any circuit 
that  can  be  simulated.  Also,  circuits  modeled  at  other  levels  (register-transfer, 
transistor, etc) can be treated.

RTL  test  generation: Test  generation  with  a  known  initial  state  (based  on 
hierarchical test generation, which exploits the RTL and gate – level descriptions 
of  a circuit),  symbolic test generation for microprocessors (based on symbolic  test 
generation for microprocessors), test generation with functional fault models (uses 
functional  fault  models  to  speed  up  test  generation) [27] and  hierarchical  test 
generation method DECIDER (in this method top-down and bottom-up strategies 
are known. hierarchical test generation is based on multi-level decision diagrams) 
[15]. The last method of hierarchical test generation is considered in this work.
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3.4 Register-Transfer Level View to Circuits

An  RTL  circuit  consists  of  a  datapath  and  a  controller  (Figure  3.2).  The 
datapath consists of a network of registers, functional units, multiplexers and 
buses. The controller governs the data computation in the datapath by generating 
appropriate load signals for the registers and select signals for the multiplexers and 
arithmetic-logic units (ALUs). 

       Figure 3.2 RT-level view of a digital circuit and 

Here,  the  control  part  is  a  Finite State  Machine (FSM) with a  state  register 
(variable xS), next state logic and output logic. As input signals to the FSM are the 
primary inputs of the design (variables xI), status bits originating from the datapath 
(variables xN) and the previous value of the state variable xS. Outputs of the FSM 
are the primary outputs of the design (variables xO), control signals (variables xC) 
and current value of xS. 
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Chapter 4 
COMPARATIVE STUDY OF 

ATPG METHODS

Current  Chapter  presents  background  information  on  the  topics  related  to 
current research and gives an overview of the research results presented in Paper I. 
The first  paper  is  entitled „Comparative Analysis  of  Sequential  Circuit  Test 
Generation Approaches“.  The paper was written by J. Raik,   R. Ubar  and the 
author of this thesis. It was presented at the Baltic Electronic Conference (BEC'04) 
in Tallinn, Estonia, in October 2004. 

The paper address a comparative study of test  pattern generation approaches 
based on three tools: a genetic algorithm test generator GATEST, a deterministic 
logic-level  tool  HITEC and a hierarchical  tool  DECIDER.  The purpose of  this 
study was  to  find  out,  which  fault  types  are  likely to  be  covered  by different 
approaches.  Additional  motivation  for  the  work  was  to  find  guidelines  for 
improving the fault models implemented in the hierarchical test pattern generator 
DECIDER, which is being developed at TUT.

4.1 Case Study of ATPG Methods

The major goal of this work is the comparative analysis of three test generators 
for sequential circuits: the test generator GATEST based on the genetic algorithm 
[19],  deterministic generator  HITEC [18]  and hierarchical  generator  DECIDER 
[15].  The first two are popular public domain programs from University of Illinois. 

43



The  latter  is  a  software  developed  at  Tallinn  University  of  Technology. The 
research consists of finding out the methods of test pattern generation which cover 
faults in the circuits. At the same time the faults can be found out in various parts 
of the circuit. 

Table 4.1. shows the comparison of fault coverages and run times achieved by 
each of the tools. From the table it can be seen that DECIDER (hierarchical ATPG) 
is the most effective tool with. 88.9 % average fault cover  and short run times, 
followed by GATEST (genetic algorithms) with 87.9 % and HITEC (deterministic) 
with 76.9 % coverage. The fault list sizes for the circuits are provided in the second 
column of the Table.

Table 4.1 Comparison of sequential circuit test generation tools 

Circuit Faults

HITEC GATEST DECIDER Total

F.C.,% Time,s F.C.,% Time, s F.C.,% Time, s F.C., %

Gcd 454 81,1 169,5 91,0 75 89,9 129,8 91,7

Sosq 1938 77,3 728,4 79,9 739 80,1 129,6 80,3

Mult8x8 2036 65,9 1243 69,2 821,6 74,7 93,7 74,8

Ellipf 5388 87,9 2090 94,7 6229 95,04 1258,9 95,06

Risc 6434 52,8 49020 96,0 2459 96,5 150,5 96,7

Diffeq 10008 96,2 13320 96,40 3000 97,09 453,7 97,20

Average F.C. 76,9 87,9 88.9 89.3

However, the goal is not to compare the absolute results of the tools, which has 
been done in earlier works [15], but to find out, what regions of the circuit space 
are covered by the tools implementing completely different approaches. Our study 
reveals a number of facts previously not known about the capabilities of test tools. 
For  example,  what  we  noticed  is  that  although  genetic  algorithm  based  tool 
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performed well on the absolute scale,  it contributed little if any new faults to the 
two remaining tools.  Also, the hierarchical test pattern generator achieves highest 
results for five out of six benchmark circuits but it is still far from the combined 
fault coverage of the three tools summed. The combined results are presented in 
the last column of Table 4.1.

In current study we compared three test generators on six different sequential 
circuit benchmarks. We examined the fault space covered by different generators in 
order to determine the sets of overlapping between the tools. We also carried out a 
more detailed analysis, identifying in which type of the circuit modules (functional 
units, MUXs, registers, etc.) different ATPGs covered faults. The main goal was to 
find out suggestions for improving the sequential test generation methods in the 
future.

For the experiments the following benchmark circuits have been used: gcd is a 
greatest common divisor circuit,  mult8x8 is a 8-bit  multiplier,  diffeq is a circuit 
implementing the differential equation calculation method,  sosq implements sum 
of  squares,  risc is  an  ALU-based  microprocessor,  ellipf is  a  DSP  circuit 
implementing an elliptical filter.  Gcd,  ellipf and  diffeq belong to the HLSynth92 
benchmark family [16] while the remaining three are from the VILAB set [17]. 
The characteristics of benchmark circuits are presented in the table 4.2. 

Table 4.2 Characteristics of benchmark circuits
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Diffeq 6 5 81 3 48 7 9 5 10008

Ellipf 28 9 130 8 113 17 7 3 5388

Gcd 8 2 9 1 4 3 4 3 454
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The experiments were run on a 366 MHz SUN UltraSPARC 60 server with 512 
MB RAM under SOLARIS 2.8 operating system. We work with stuck-at faults.

Figures 4.1 and 4.2 give a more detailed look to the test results of Table 4.1. 
Figure 4.1 shows overlappings of the faults covered by the three generators for the 
six  example  circuits.  Here,  “hierarchical”  denotes  the  ATPG  DECIDER  [15], 
“genetic” stands for GATEST [19] and “deterministic” is for HITEC [18]. 
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Figure 4.1 Portions of faults detected by hierarchical, genetic and deterministic 
ATPGs

The most  important  observations we can make basing on Figure 4.1 are the 
following:
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1. While  experiments  in  Table  4.1  indicate  that  DECIDER gives  in  most 
cases the highest fault  coverage, we can see that there are some unique 
portions of faults covered by GATEST and HITEC. 

In fact, the union of the sets of faults covered by the three test generators gives a 
fault coverage that is in average 0.4 (!) per cent higher than the average fault cover 
of DECIDER.

2. Table 4.1 also shows that GATEST performs well in terms of the absolute 
fault  coverage  numbers.  However,  it  fails  to  detect  nearly  any  unique 
faults.

If we look at Figure 4.1, it can be seen that the genetic tool GATEST does not 
provide any new unique faults at  all for four out of six benchmarks: gcd, sosq, 
ellipf, diffeq. HITEC, whose fault coverage numbers are roughly 11 per cent lower 
than GATEST’s, detects much higher number of unique faults.

This leads to a conclusion that  there are many ‘hard-to-test’  random pattern 
resistant  faults  that  GATEST  as  a  simulation-based  method  is  not  capable  of 
detecting. While deterministic methods are known to have difficulties with larger 
sequential  designs they could still  provide useful  addition in terms of detecting 
hard-to-test faults.

Figure  4.2 presents  the  distribution  of  achieved  fault  coverages  by  module 
types. Five different types are distinguished: functional unit, comparison operation, 
MUX, register and control part FSM. ‘Total’ denotes the summed result for the 
whole circuit. In the Figure, average values for the set of six circuits are shown. 

One of the conclusions that can be made based on Figure 4.2 is that DECIDER 
covers well the faults in functional units, comparison operators and MUXs. These 
are  the  modules  it  explicitly tests  (See the  grey circles  Figure  3.2!).  However, 
control part FSM is poorly covered by the hierarchical tool. This means that fault 
models  for  testing control  part  could be useful  improvement  to  the  tool  in  the 
future.
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Figure 4.2 Coverage of circuit regions for the three test generators
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4.2 Chapter Summary 

This Chapter has provided background information needed to understand basic 
principles of high-level test generation.

The  main  contribution  of  the  Chapter  was  to  introduce  a  new  method  of 
comparison of different test generation approaches based on three tools: a genetic 
algorithm test generator GATEST [19], a deterministic logic-level tool HITEC [18] 
and a hierarchical tool DECIDER [15]. The purpose of this study was to find out, 
which fault types are likely to be covered by different approaches. 

Experiments on a set of six sequential benchmark circuits lead to the following 
conclusions:

• While genetic algorithm based tool performs well in terms of the absolute 
fault coverage numbers, it fails to detect nearly any unique faults.

• Deterministic tool has difficulties with larger sequential designs but it is 
capable of detecting a portion of hard-to-test faults.

• The union of the sets of faults covered by the three test generators has a 
fault coverage that is in average 0.4 per cent higher than the fault cover of 
the best tool in the comparison: DECIDER.

• DECIDER loses fault coverage mainly in the control part FSM.

The  analysis  carried  out  will  be  helpful  for  further  development  of  the 
hierarchical  ATPG  DECIDER.  Moreover,  the  authors  hope  that  the  results 
presented  here  could  give  valuable  guidelines  for  the  developers  of  future  test 
pattern generators in general.
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Chapter 5 
TEST PATTERN GENERATION FOR 

SEQUENTIAL CIRCUITS

The theoretical contribution of this Chapter gives an overview of the research 
results in generating test pattern for sequential circuits is presented in Papers II and 
III. The research described in this Chapter embraces comparatively large area and 
can be divided into two major parts: 

a)  In  Section  5.1,  the  scope  of  the  research  is  mainly  focused  on  a  novel 
constraint-based automated test pattern generation at Register-Transfer Level [II].

b)   In addition, in Section 5.2 we concentrate on research of  identification of 
Potentially Testable Initialization Faults at the RT-Level [III].

5.1 Constraint-Based Test Pattern Generation at the 
Register-Transfer Level

The second paper is entitled “Constraint-based Test Pattern Generation at 
the Register-Transfer Level” [II]. The authors of the paper were Taavi Viilukas, 
Jaan Raik,  Maksim Jenihhin,  Raimund Ubar  and the  author  of  this  thesis.  The 
paper  was  presented  at  the  13th IEEE International  Symposium on Design  and 
Diagnostics of electronic circuits and Systems  (DDECS'10) in Vienna, Austria in 
Aprill 2010.
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The paper introduces a novel constraint-based automated test pattern generator 
for Register-Transfer Level (RTL) designs. The tool combines test path constraint 
activation with a constraint  solver.  First,  a  deterministic  algorithm that  extracts 
constraints for activating test paths at RTL is applied. Subsequently, a constraint 
solving package ECLiPSe  [14] is used for assembling the tests. Experiments on 
ITC99  and  HLSynth92/95  benchmarks  show  that  the  proposed  deterministic 
method offers short run times. In particular, it provides increased fault coverage for 
hard-to-test designs with respect to earlier approaches.

5.1.1 Concept of Path Activation Constraints

The  test  generation  approach  proposed  in  current  thesis  contains  two  main 
phases. During the first phase, high-level test path activation, an untested module is 
selected  and  for  this  module  propagation  and  justification  is  performed  as 
explained in Section 5.1.2. In addition, constraints for the test path are extracted. 
The goal  of  the second phase is  to satisfy the constraints  by using a constraint 
solver and to compile  the test  patterns by assigning the values obtained by the 
constraint solver to the primary input signals (See Section 5.1.3). 

The high-level test generation constraints considered in paper [II]  are divided 
into  three  categories.  These  are  path  activation  constraints,  transformation 
constraints and propagation constraints. Path activation constraints correspond 
to the logic conditions in the control flow graph that have to be satisfied in order to 
perform propagation and value justification through the circuit.  Transformation 
constraints, in turn, reflect the value changes along the paths from the inputs of the 
high-level Module Under Test (MUT) to the primary inputs of the whole circuit. 
These  constraints  are  needed  in  order  to  derive  the  local  test  patterns  for  the 
module under test.  Propagation constraints show how the value propagated from 
the output of the MUT to a primary output is depending on the values of the signals 
in the system.  The main idea here is to guarantee that fault  signals will  not be 
masked when propagated. 

Let us explain the role of these constraints in test generation on an example test 
path activation for a circuit module shown in Figure 5.1. In the Figure there are two 
path activation constraints:  true = f1(x1,x2) and  false = f2(x2,x3). The first  one is 
necessary to propagate the value from the output  of  the module to the primary 
output y3 of the circuit. The latter is required for justification of the first input (D1) 
of the module under test. Both these constraints are extracted from the conditional 
nodes  traversed in  the  control  flow graph of  the  circuit  during  high-level  path 
activation. 
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The figure also presents two transformation constraints. These constraints 
are  applied  for  computing  the  value  of  the  corresponding  module  input 
depending on the values of primary inputs of the circuit. Finally, there is a 
propagation  constraint,  which  states  that  the  value  propagated  from  the 
module to the primary output y3 is dependent on the primary input x6. Thus, 
in order to avoid fault masking the value of x6 must be chosen such that the 
fault free and faulty values of Dout would differ. Note, that the subsets of the 
primary input variables included into the different types of constraints may 
overlap.

Fig. 5.1. An example of test generation constraints

In  the  following,  the  data  structure  and  update  operations  of  high-level  test 
generation constraints are defined. 
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Definition 1: A condition C in the form S = g(x), where S is an integer, Boolean 
or symbolic value, and g(x) is an expression on a subset of variables of the model 
representing the system under test, is referred to as constraint.

In current approach, symbolic values that can be used for S in a constraint  S = 
g(x) are Di and Dout which correspond to the values of the i-th input and the output 
of the current Module Under Test (MUT), respectively (See Figure 5.1).

Definition 2: Constraint S = g(x) is said to be justified if x ⊆  xI , where xI is the 
set of primary inputs of the system. Otherwise, S = g(x) is an unjustified constraint 
(See Section 3.4) . 

If a constraint S = g(x) is unjustified then all the variables in the set xU ⊆  x that 
are not input variables xI are said to be unjustified variables of the constraint.

Definition  3:  Let  xJ be  the  set  of  justified  variables  and  xU be  the  set  of 
unjustified variables of a constraint S = g(xJ, xU).

The process, where each variable  xU
i is substituted by expressions on model 

variables x’i ⊆  x, is refered to as updating the constraint S = g(xJ, xU) and it creates 
a new constraint  S’ =  g’(xJ,  x’), where  g’ can be regarded as a superposition of 
functions on a set of variables in the system model representation. Section  5.1.3 
presents an example of constraint update in test path activation.

Note, that justified constraints consist of operations on primary inputs  xI and 
constants xC (see Section 3.4). Furthermore, the exponential size complexity of the 
constraints  g(x) is avoided by uniting multiple occurrences of the same variable 
(i.e. the literals) in the constraints at each time step into one single fanout variable. 
Because of this, the size requirements for the constraints are linear with respect to 
justification time-frames and they represent a small subset of the expanded time-
frame model of the circuit. Thus, the high-level test constraint extraction procedure 
is scalable.

5.1.2 Deterministic Test Path Activation

The  high-level  symbolic  path  activation,  proposed  in  current  thesis  is  a 
complete algorithm, i.e. if transparent paths for fault effect propagation and value 
justification exist, they will be activated. The algorithm has been implemented as a 
systematic search and therefore an inconsistency in any stage causes a backtrack 
and a return to the last decision. The general test generation flow is presented in 
Figure 5.2 [29] , [38].
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Figure 5.2 The general flow of the hierarchical test generation algoritm

In the following the propagation and justification principles of the proposed RT 
level ATPG are presented. 
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5.1.2.1 Fault Effect Propagation 
The purpose of the propagation procedure is to activate a state sequence that 

propagates the fault effect from the output of the module under test to one of the 
primary outputs of the design. In current approach, propagation along single path is 
implemented. In order to keep track of the fault effect propagation a dedicated fault 
effect  pointer  is  used.  During  propagation,  high-level  test  path  activation 
constraints are created. Fig. 5.3, presents the algorithm for fault effect propagation. 
In the algorithm descriptions the term consistent FSM control vector is frequently 
used. By this term we mean a control vector (row) in the control part’s FSM state 
table whose control signal values are consistent with value assignments made for 
control signals while propagating (activating) paths in the datapath.

        

Figure 5.3 Fault effect propagation algorithm
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 /* Fault manifestation for module M */ 
Create constraints from all the module inputs input i(M) 
Set fault effect pointer to node output(M) 
/* Fault effect propagation * / 
While fault pointer is not propagated to a primary output 
Let a be the node pointed by fault effect pointer 
Choose the most observable fanout branch of a 
 Set contro l signals required to transport fault effect from the 

fanout branch to the next fanout stem or register node b  
 /* always only one such path exists! * / 
Set fault effect pointer to b 
If exists a consistent FSM control vector then 
 Choose the most observable consistent contro l vector 
 Create constraints of corresponding FSM input vector 
 If b is a register then  
  move to the next time-frame 
 Endif 
Else 
 Backtrack 
Endif 
Endwhile 

 



5.1.2.2 Constraint Justification
Subsequent  to  propagation,  constraint  justification starts.  Justification moves 

backward in time, starting from the clock-cycle, where propagation ended. During 
this  process  existing  constraints  are  updated  and  additional  path  activation 
constraints  are  created.  Finally,  constraints  solving  procedure  is  applied  to  the 
extracted constraints and module under test is fault simulated by constraint-driven, 
local test data.

Nodes of the circuit, which correspond to primary inputs xI or constants xC  are 
called  justified  nodes.  All  other  nodes  are  said  to  be  unjustified.  Constraints 
containing unjustified nodes are referred to as unjustified constraints. 

Justification step: first select previous state. Then update constraints according 
to control vector of this control state.

Updating the test generation constraints is defined in Section 5.1.1 and shown in 
more  detail  on  an  example  presented  in  Section  5.1.3. Basically,  updating  a 
constraint  can  be  regarded  as  superposition  of  the  unjustified  nodes  of  the 
constraint by new datapath nodes determined by paths activated in the datapath by 
current control vector.

At  each  justification  step,  current  justification  objective  is  chosen.  In  the 
proposed algorithm  implementation the justification objective is to justify the 
first  unjustified  node  from  the  first  unjustified  constraint.  The  algorithm  for 
constraint justification is presented in Fig 5.4.
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Figure 5.4 Constraint justification algorithm

5.1.3 Constraint Extraction Example

In the following, the test path activation algorithm and constraint extraction is 
explained  basing  on  the  example  of  the  Greatest  Common  Divisor  (GCD). 
Consider the GCD algorithm described at behavioral level in a pseudo hardware 
description language:

A := IN1;

B := IN2;

while (A ≠ B)

if (A < B) then
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 /* Constraint justification */ 
While exist unjustified constraints 
If current time- frame is earlier than manifestation then 
 Let current objective be to justify node b 
 Choose the most controllable fanout, F.U. or register node a,  

             which directly precedes b  
 Set control signals activating path from a to b  
 /* always only one such path exists! */ 

 If exists a consistent FSM control vector then 
    Choose the most controllable consistent control vector 
     Create constraints of corresponding FSM input vector 
     If a is a register then  
     move to the previous time- frame 
  Endif 
 Else 
 Backtrack 
Endif 

Else 
  Move to the previous time- frame 
Endif  
Update all active constraints 
Endwhile 
/* Solve constraints (See Section 5!) */ 

 
/* Solve constraints (Section 5.1.4) */



B := B – A;

else

A := A – B;

end if;

end while;

OUT := A;

Let us assume that subsequent to applying high-level synthesis to the algorithm 
description  we  obtain  the  RTL  architecture  presented  in  Figure  5.5  This 
architecture consists of a datapath of 3 Functional Units (FU), 2 registers and 4 
multiplexers and a control part Finite State Machine (FSM) of  four states. The 
datapath architecture is depicted in Figure  5.5a and the control part is given as a 
state table in Figure 5.5b, respectively.

a)
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b) 

Figure 5.5 RT-level architecture of the GCD circuit

Let us explain the test generation algorithm described in Section  5.1.2 by the 
example of generating test paths for the module SUBTR.

Fault  manifestation. Set  all  the  variables  to  ‘don’t  care’  values.  Create 
transformation  constraints  D0=mux3,  D1=mux4.  Set  the  fault  effect  pointer  to 
variable SUBTR, i.e. yD := SUBTR.

Fault effect propagation. Choose a datapath register that reads from the FU 
SUBTR. There are two possible choices: reg_A and reg_B, respectively.  Let us 
select the first choice. Subsequently, we activate the path from SUBTR to reg_A, 
which results in the following variable assignments: A_enable := 1, mux_12 := 1.

Next,  we  have to  choose a  consistent  FSM control  vector.  The only vector 
consistent with previous variable assignments is the one corresponding to row 7 in 
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the FSM state table (labeled by vector 0, X, X, S3, S0, 1, 0, 1, 0). Based on this 
vector we obtain the following assignments: reset:=0, B_enable := 0, mux_34 := 0, 
state := S3 (in current clock cycle), state := S0 (in the next clock cycle). We move 
to the next clock cycle and set the fault effect pointer yD to reg_A (i.e. OUT).

We detect that the fault effect pointer points to a variable corresponding to a 
primary output and thus have successfully completed the fault propagation process.

Constraints justification. As there were no path activation constraints created 
during  manifestation  and  propagation  stages,  we  move  backwards  in  terms  of 
clock-cycles until the clock-cycle of manifestation phase is reached. We select the 
justification  objective  from  the  unjustified  variables  of  the  transformation 
constraints  (D0=mux3,  D1=mux4).  Let  current  objective  be  to  justify  variable 
mux3. Due to the fact that we have already assigned mux_34 := 0 at current clock-
cycle  during  the  propagation  process,  then  we  have  no  choice  but  backtracing 
mux3 to reg_A.  We update the constraints, obtaining D0= reg_A, D1= reg_B and 
move to the preceding clock cycle.  

Without  focusing  on  further  details,  we  continue  executing  the  constraint 
justification algorithm until the path presented in Figure 5.6 is activated as one of 
possible high-level path solutions. 

Figure 5.6 High level path activation example

In the Figure we have denoted the manifestation clock cycle by t, the i-th cycle 
following  t  is  denoted  by  t+i  and  i-th  cycle  preceding  t  is  denoted  by  t-i, 
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respectively.  Below the clock-cycle  information,  the activated state sequence is 
provided.  Then  we  present  graphically  the  processes  of  fault  propagation  and 
extraction of transformation constraints. Decisions in the high-level path activation 
are marked by stars (*) in the Figure. Extraction of path activation constraints is 
depicted below the striped line. Here, t corresponds to Boolean value ‘true’ and f 
corresponds to ‘false’.  As shown in Figure  5.6 we have to apply the constraint 
satisfaction process to the following set of constraints: in1 < in2 is false, in1 ≠ in2 
is true.

Subsequent  to testing the node with the first  path,  backtrack occurs and the 
high-level path activation algorithm tries to find alternative path solutions.

5.1.4 Solving the Test Path Constraints

In the previous top-down test pattern generation algorithms by the authors [12, 
13], random constraint solving was applied. In this research we have selected the 
open source ECLiPSe constraint solver (ECLiPSe5.10_41) to solve the test path 
constraints.  ECLiPSe supports  most  of  the common techniques  used in solving 
constraint  problems.  It  includes  constraint  programming,  mathematical 
programming,  local  search  and  various  combinations  of  the  above.  We  have 
embedded the solver into the C++ code of the ATPG and use the string-based 
input. 

As  experiments  presented  in  the  following  Section  show  the  deterministic 
constraint solving has definite advantages over the pseudo-random method.

5.1.5 Experimental Results

In  order  to  evaluate  the  impact  of  the  deterministic  constraint  solving 
experiments on ITC99 and HLSynth92/95 benchmarks were carried out. By this 
moment we have included the following three circuits into the analysis: b00, 604 
and gcd because these circuits contain “equal to” comparison operators which are 
hard to test by pseudorandom constraint solving.

Table  5.1 shows  the  comparison  of  the  semi-formal  approach  DECIDER 
presented in [12] and the proposed top-down tool. Comparison has been obtained 
by fault simulating the test sets generated by both generators by a stuck-at fault 
simulator for sequential circuits. The row ‘# faults’ of the Table shows the number 
of stuck-at faults in the circuit. The row ‘# tested’ presents the number of tested 
faults by [12] and the proposed approach. The row ‘cover., %’ lists the achieved 
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stuck-at  fault  coverages.  ‘time,  s’  stands  for  the  ATPG run  times  in  seconds. 
Finally, the number of generated test vectors is reported in the row ‘# vect.’

Table 5.1 Comparison of semi-formal [12] and the proposed deterministic ATPG 
methods*

* Note: Results in Table 5.1, Table 6.5 from Section 6.2.5 and Table 5.2 from Section 
5.2.2 does not match because benchmarks were run with different synthesis tool using 
different options.

It can be seen that the fault coverage improvement obtained by the deterministic 
constraint solving setup ranges from 3 to 34 % for the tested examples. Note, that 
while  the  fault  coverages  for  the  circuits  are  low,  this  is  a  usual  case  for  the 
sequential ATPG because of the large number of untestable faults.
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b00 b04 gcd

[12] current [12] current [12] current

1328 1328 1488 1488 1658 1658 # faults

251 714 899 943 1443 1519 # tested

18.90 53.77 60.42 63.37 87.03 91.62 cover, %

0.0053 0.0044 0.002 0.011 2.72 0.02 time, s

534 874 574 572 4471 4756 # vect.



5.2 RT-Level Identification of Potentially Testable 
Initialization Faults

The third paper that is called “RT-Level Identification of Potentially Testable 
Initialization  Faults”  [III] addresses  the  problem  of  an  important  subclass  of 
faults, the potentially detectable initialization faults. The authors of the paper were 
Jaan Raik, Hideo Fujiwara  and the author of this thesis. It was presented at the 
Ninth IEEE Workshop on RTL and High Level Testing (WRTLT' 08) in Sapporo, 
Japan in November 2008. 

The goal of paper was to propose high-level identification of potentially testable 
initialization  faults.  Experiments  presented  in  the  paper  show  that  potentially 
detectable initialization faults form a large subset of all the faults not testable by 
hard-detection. As a result of the proposed approach, both, the speed as well as the 
confidence level of sequential ATPG can be increased. 

In  sequential  Automated  Test  Pattern Generation (ATPG) based on a  three-
valued algebra (0,1,X) a fault is said to be hard-detected if a fault effect (0/1 or 1/0) 
appears at a primary output. However, not all the faults can be tested by such hard-
detection  model.  Many faults  belonging  to  the  class  of  initialization  faults  are 
known to be covered only by resorting to potential detection (effect 0/X or 1/X). 
Existing  high-level  fault  models  assume  hard-detection  and  therefore  are  not 
capable of handling the initialization faults.  This means wasting test  generation 
time also for those faults that may only be detected potentially.

5.2.1 Basic Definitions

Sequential  ATPG and fault  simulation typically relies  on the 3-valued logic 
algebra 0, 1, and X, where X is an artificial logic value to represent the unknown or 
don’t-care state. 

Definition 1: A fault f is said to be hard-testable iff for this fault a fault effect 
(0/1 or 1/0) can be propagated to a primary output. 

Definition 2: A fault f is only potentially testable iff it is not hard-testable and 
for  this  fault  either  1/X  (i.e.,  the  fault-free  value  is  1  and  the  faulty  value  is 
unknown X) or 0/X can be propagated to a primary output.

Let us denote the set of all stuck-at faults by A, the set of hard-testable faults by 
D and the set of potentially testable faults by P. Relations between these three sets 
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is presented in Fig. 5.7. The goal of the method proposed in current thesis is to 
increase the fault efficiency of high-level fault models by identifying potentially 
testable  faults  from  RTL.  The  area  of  faults  identified  by  current  method  is 
depicted by the dashed circle in the Figure.

                      

Figure 5.7 Relations between fault classes

5.2.2 Experimental Analysis of Fault Classes

Table 5.2 presents the experimental  analysis  of  four sequential  designs.  The 
benchmarks were chosen from the HLSynth92 and HLSynth95 families and they 
were synthesized to RT-level from behavioral VHDL descriptions using the high-
level  synthesis  tool  SYNT from Synthesia.  Subsequently,  the  RTL descriptions 
were synthesized to logic-level by Synopsys Design Compiler. The circuits were 
tested by two sequential ATPG tools: a simulation-based ATPG SBGEN [28] and a 
hierarchical ATPG DECIDER [29].

In the Table, the rows have the following meaning. Row ‘total faults’ shows the 
number of stuck-at faults in the circuit. Row ‘hard-detected’ gives the number of 
faults that were covered according to the hard-detection model.  Row ‘potential-
detect.’ presents the number of potentially detected faults covered by the sequential 
ATPG  tests.  This  result  was  obtained  by  running  a  sequential  stuck-at  fault 
simulator.  Row  ‘uncontr./unobs.’  stands  for  the  sum  of  uncontrollable  and 
unobservable  faults.  These are  faults,  which are  caused by constant  inputs  and 
unconnected gate outputs, respectively. This type of faults is very easy to identify 
and they are reported by most  commercial  and academic fault  simulators.  Row 
‘reg. untestable’ stands for a special class of register control faults, which can be 
proved untestable from the RT-level as shown in [IV]. Row ‘other’ includes all the 
remaining faults.
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Table 5.2 Fault distribution in sequential designs

We can make the following conclusions based on the fault distribution shown in 
Table 5.2. First, if we take into account the classes of uncontrollable/ unobservable, 
register untestable and potentially detected initialization faults then the calculated 
fault efficiency is high, ranging from 96.7 to nearly 100 per cent. However, since 
traditional high-level ATPG is not capable of identifying the untestable and the 
initialization faults the achieved confidence level in terms of fault efficiency would 
be very low. The goal of the current research is to extend RTL ATPG by potential 
detection capabilities in order to achieve higher fault efficiency.

5.2.3 RTL Detection of Initialization Faults

Potentially detectable initialization faults can be divided into three main groups: 
reset  faults,  control  part  faults  and  loop-counter  faults.  High-level  detection  of 
faults for all these groups will be discussed in more detail in this Section.

In  order  to  present  the  RT-level  initialization  fault  detection  method  let  us 
introduce some definitions.
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Circuit GCD SOSQ MULT DIFFEQ

total faults 1760 2130 2242 10326

hard-detected 1569 1514 1417 9853

potential-detect. 16 181 117 14

uncontr./unobs. 98 275 505 320

reg. untestable 65 130 130 130

other 12 30 73 9

fault efficiency 99.32 98.59 96.74 99.91



Definition 3: Registers that are either directly or through some combinational 
logic connected to primary outputs are refered to as the  output registers of the 
design.

Definition 4: Let the control part state, which is set by activating the global 
reset signal be called  reset state and the set of control signal assignments at this 
state be called reset state control vector.

Also let us assume for the sake of simplicity that the global reset signal is active 
high, i.e. reset=1 initializes the circuit state.

5.2.3.1 Reset Faults
First, consider the global reset signal. In order to potentially detect  reset stuck-

at-1 (s-a-1) fault we propose the following condition :

Condition 1:

• Reset s-a-1 is potentially detectable if the control vector at the reset  
state neither resets nor enables any of the output registers.

We need to check the presence or absence of register reset at all of the output 
registers in order to make sure that the global reset s-a-1 fault does not belong into 
the fault class D (See Section 5.2.1!).  The condition also requires that the reset 
state control vector disables all the output registers, i.e. their corresponding enable 
signals are set to the value 0. This blocks the possibility to initialize any output 
register and, thus, guarantees potential detectability of reset s-a-1 fault.

Consider  the  RTL  architecture  of  the  Greatest  Common  Divisor  (GCD) 
example shown in Figure 5.8. Fig. 5.8a presents the datapath, which contains only 
one output register REG_2. The first row in the state table in Fig 5.8.b shows the 
reset  state  control  vector  for  the  circuit.  As  it  can  be  seen,  REG_2  is  not  a 
resettable register. So, first part of Condition 1 holds. Also the second part holds 
because REG_2 is disabled in the reset state (Reg_2_Enable = 0). Thus, the fault 
Reset  s-a-1 is potentially detectable in the GCD circuit.
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Figure 5.8 a) Datapath and b) reset state control vector
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Now  let  us  introduce  the  condition  for  identifying  the  fault  Reset  s-a-0 
potentially detectable from the RTL.With Reset s-a-0 fault the control state takes a 
don’t-care value X. It means that any control vector is valid, except the reset state 
one. If for each output register there exists such control vector, where it is disabled 
then none of these registers can be controlled using the 3-valued algebra and the 
value of output registers will also be X. 

Condition 2:

• Reset s-a-0 is potentially detectable if for all the output registers there 
exists a non-reset-state control vector where they are disabled.

For example, the third control vector of the FSM table in Figure 5.8b disables 
the output register REG_2 at the same time when Reset=0. Since the value of the 
state register is unknown we can conclude that the value of REG_2 must also be 
unknown. Thus,  the fault  Reset  s-a-0 is only potentially detectable in the GCD 
example.

5.2.3.2 Control Part Faults
Similar to initialization faults at the global reset there may also be potentially 

detectable faults in the signals of the control part FSM. For example, a stuck-at 
fault  at  a single bit  in the state register may prevent initialization of the output 
register,  etc.  The  RTL  signals,  where  potentially  detectable  faults  have  to  be 
considered include:

− control signals (FSM outputs)

− state register bits

− status bits (FSM inputs)

Let us consider each of the three cases.

Control signals.  Control signals enter from the control part into the datapath 
and are partitioned to register enable signals and multiplexer address selects. The 
values for these signals are determined by the current control state and primary 
inputs of the design. 

At the RT-level,  it is possible to potentially detect s-a-0 faults at  the enable 
signals of the datapath registers by checking the following simple condition:
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     Condition 3:

• Register enable signal s-a-0 is potentially detectable if the register is  
not resettable.

In  other  words,  enable  signal  s-a-0  faults  at  the  non-resettable  registers  are 
always (!) potentially detectable. This is due to the fact that disabling an output 
register by setting its enable s-a-0 does not allow initialization of this register and, 
thus, constantly holds the value X in it.

Stuck-at-1  faults  at  register  enable  signals   are  either  hard-detectable  or 
untestable (See [IV, VI]).

State register bits. Stuck-at fault at the bits of the control part state register can 
be identified untestable if the coding of the control part  FSM is known. In that 
case, a fault at a state register bit converts the fault-free FSM into a faulty one. In 
the case it will introduce illegal states (i.e. state values not present in the fault-free 
FSM) the fault cannot be detectable at the RTL. This is due to the fact that control 
vectors for illegal states are unknown at the RT-level while they have determined 
values at  the logic-level.  However, in the  case if the faulty FSM introduces no 
illegal states then the following condition can be applied:

Condition 4:

A state register bit s-a fault is potentially detectable if its corresponding faulty  
FSM does include neither illegal states nor reachable states loading the output  
registers.

Consider the example FSM shown in Fig.  5.9a. Bold circle denotes the reset 
state, during two of the state transitions, its output register is loaded. Now let us see 
the case when the least significant bit of the state register has the fault s-a-1. In that 
case a faulty FSM presented in Fig. 5.9b will result. In this FSM the output register 
cannot be loaded. Thus, the state register bit fault is only potentially detectable. 
However, if the second bit of the state is s-a-1 (See Fig. 5.9c) then the faulty FSM 
will include a faulty state „110” and we cannot show potential detectability of this 
fault from the RT-level.
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a)                                                                          

            

   

  

                      

  

 

                                   

Figure 5.9 a) A fault-free FSM, b) potentially detectable state bit fault, c) faulty FSM 
containing illegal states

Status bits.  The status bits enter from the datapath into the control part FSM. 
These signals represent the results of comparison operations and they control the 
selection of state transitions in the FSM. For example, the result of the comparison 
‘reg < step’ is a status bit for the FSM in Fig. 5.9a.

Similar to state register bit faults, in case of stuck-at faults at status bits a faulty 
FSM will result where some of the branches will be excluded. Also, some of the 
legal  states  may  become  unreachable.  However,  illegal  states  can  not  result 
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because of status bits faults. Otherwise the condition for potential detectability of 
status bit faults is identical to Condition 4.

5.2.3.3. Loop-counter Faults
Loop-counters are blocks in RTL designs whose role is  to implement  fixed-

length loops of the algorithm realized by the circuit. Output of a loop counter is a 
status bit (output of a comparison operator).  Thus, identification of which loop-
counters  contain  potentially  testable  faults  is  exactly  identical  to  proving  the 
potential testability for status bits. 
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5.3 Chapter Summary

The  theoretical  contribution  of  this  Chapter  in  studying  of  a  test  pattern 
generation for sequential circuit was presented in Papers: “Constraint-based Test 
Pattern  Generation  at  the  Register-Transfer  Level”  [II]  and  “RT-Level 
Identification of Potentially Testable Initialization Faults” [III].

The  paper  [II]  introduced  a  novel  constraint-based  automated  test  pattern 
generator for Register-Transfer Level (RTL) designs. The tool combines test path 
constraint activation with a constraint solver.

 First, a deterministic algorithm that extracts constraints for activating test paths 
at RTL is applied. Subsequently, a constraint solving package ECLiPSe is used for 
assembling the tests. Experiments on ITC99 and HLSynth92/95 benchmarks show 
that the proposed deterministic method offers very short run times. In particular, it 
provides  increased  fault  coverage which  ranges  from 3 to  34  % for  the  tested 
examples with respect to earlier approaches.  

While the fault coverages for the circuits are low, this is a usual case for the 
sequential  ATPG because of the large number  of  untestable faults.  As a future 
work we plan to integrate untestable fault analysis for sequential circuits (will be 
considered in the Chapter 6 (e.g. [V]) into the constraint-based ATPG to improve 
fault efficiency estimation.

The  paper  [III] presented  a  new  method  for  high-level  identification  of 
potentially testable initialization faults. 

Existing high-level fault  models  assume hard-detection and therefore are not 
capable of handling such initialization faults. Furthermore, three important classes 
of initialization faults were identified in the thesis: reset faults, control part faults 
and loop-counter faults. High-level methods for potential detection of faults of the 
respective classes were proposed.

Experiments  presented  in  this  thesis  show  that  potentially  detectable 
initialization  faults  form a  large  subset  of  all  the  faults  not  testable  by  hard-
detection.  As a result  of  the proposed approach, both, the speed as well  as the 
confidence level  of  sequential ATPG in terms of higher fault  efficiency can be 
increased.

We  plan  to  implement  the  potential  fault  detection  method  and  include  the 
capabilities to an RTL test pattern generator. 
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In each direction of the research, new appreciable results were achieved. The 
results were presented at international conferences.
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Chapter 6 
PROVING UNTESTABLE FAULTS IN 

SEQUENTIAL CIRCUITS AT RTL

The theoretical contribution of the second part of this Chapter in  identifying 
untestable faults in sequential circuits is presented in Paper IV and in Paper V. 

The  Paper  IV proposes  a new  approach  of  applying  model-checking  for 
detecting  untestable  stuck-at  faults  at  the  register-transfer  level.  The  Paper  V 
considers register-transfer  level  (RTL)  test  pattern  generation  for  non-scan 
sequential circuits containing feedback loops.

6.1 Untestable Fault Identification in Sequential Circuits 
Using Model-Checking

The  fourth paper  titled  “Untestable  Fault  Identification  in  Sequential 
Circuits Using Model-Checking“.  However, the intermediate steps of  research 
were published in Paper [VI] Hierarchical Identification of Untestable Faults in 
Sequential  Circuits.  We  have  selected  only  Paper  [IV]  that  contain  the  most 
important achievements and continues to improve the technique proposed in Paper 
[VI]. 

Two novelties are introduced: a new approach of applying model-checking for 
detecting untestable stuck-at faults at the register-transfer level and a method of 
generating PSL language assertions for proving untestable register stuck-on faults.
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The authors of the paper were  Jaan Raik, Hideo  Fujiwara, Raimund Ubar and 
the author of this thesis. The paper was presented at  The Seventeenth Asian Test 
Symposium (ATS' 08) in Sapporo, Japan in November 2008.

In their previous work [VI], authors introduced a new subclass of untestable 
faults, called register input logic stuck-on faults and that it is possible to identify 
such faults from the register-transfer level (RTL) description of the circuit. Authors 
pointed  out  their  relation  to  untestable  gate-level  stuck-at  faults.  Moreover, 
experiments show that a large subset of faults not tested by sequential ATPG fall 
into  this  category.  However,  the  paper  did not  propose any formal  method for 
identifying untestable register faults. In the paper  [IV] we present a new method 
that  is  capable  of  identifying  such type  of  untestable  faults.  We propose using 
model-checking  for  detecting  untestable  stuck-at  faults  at  the  Register-Transfer 
Level  (RTL).  In  particular,  we  present  a  method  for  formally  generating  PSL 
language assertions for proving untestable stuck-at faults in sequential synchronous 
designs.

 Experiments show that the faults identified by the method form in fact a large 
subset of all the untested stuck-at faults. An additional application of the method is 
in high-level test synthesis, where testability of sequential designs can be improved 
simultaneously with minimization of the circuit area. 

6.1.1 Introduction

Test generation for sequential synchronous designs is a time-consuming task. 
Automated Test Pattern Generation (ATPG) tools spend a lot of effort not only for 
deriving test vectors for testable faults but also for proving that there exist no tests 
for the untestable faults.  Because of this  reason,  the identification of untestable 
faults  has  been  an  important  aspect  in  speeding  up  the  sequential  ATPG.  The 
methods  proposed  previously  are  based  on  performing  static  and  dynamic 
implications at the logic-level. Current thesis presents an approach that takes the 
problem of identifying untestable faults one step further: to the higher abstraction 
levels.  We  show that  it  is  possible  to  very  quickly  find  a  large  subset  of  all 
untestable faults before handing the untestability identification over to classical, 
logic-level methods.

6.1.2 Motivation for Targeting Register Faults

A special  case of  datapaths where register  enable signals are redundant  is a 
pipeline. In pipelines data is transported during each clock-cycle and therefore the 
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registers should be constantly enabled.  Enable signals in pipelines are normally 
omitted and the registers are replaced by buffers consisting of D-flipflops.

However, there are other cases than pure pipelines, where the redundancy of 
enable  signals  is  much  more  difficult  to  identify.  Consider  for  example  the 
Extended Finite State Machine (EFSM) representation of the Differential Equation 
(diffeq) benchmark shown in Fig. 6.1 In this kind of EFSM description, the nodes 
represent  control  states  and the  arrows represent  transitions  between the  states. 
Shown  on  the  transitions  are  the  enabling  functions  (on  top  of  the  line),  i.e. 
conditions that enable the state transition, and the update functions (below the line) 
that correspond to datapath register assignments. 

  
      

Figure 6.1 EFSM of the Diffeq benchmark

Let us focus on register ADG (in Fig. 6.1). It can be seen that this register reads 
during transitions s1→s2, s2→s3, s3→s4. It can also be seen that ADG is in turn an 
input for two other registers: BCF and Y (shown by grey background). The latter 
read ADG only during transitions s2→s3, s3→s4, s4→s5. Now let us assume that the 
enable signal of register ADG is permanently stuck on. In that case, ADG may read 
faulty values except between the state transitions s1...s4 when it is also enabled in 
the fault-free circuit. Note however that ADG is read always one transition later, 
i.e.  between s2...s5.  Thus, only fault-free values can be read from ADG and the 
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stuck-on fault of its enable signal is untestable. On the other hand, as an opposite 
example, enable in register DZ is testable because DZ is read at s1→s2 but DZ 
reads no value during one of the preceeding transitions: s5→s1.

The goal of this research is to introduce a formal technique for identifying such 
kind of untestable stuck-at faults from the RT-level. The method presented in this 
thesis not only allows untestable fault identification but it can also be implemented 
in high-level test synthesis [35-37]. 

In the following, conditions that are sufficient for identifying untestable faults 
in  register  enables  are  introduced.  Later  on  we  implement  the  untestable  fault 
analysis  relying  on  standard  model-checking  tools.  Finally,  we  carry  out 
experiments on RTL benchmarks in order to assess the relevance of register enable 
faults among the untestable faults in sequential designs and evaluate the efficiency 
of the proposed method in untestability identification. 

6.1.3 Register-Transfer Level Architecture

Let us first  consider the general  architecture of  register-transfer  level  (RTL) 
circuits. In RTL descriptions the design is partitioned into a control part (FSM) and 
a datapath part. The latter consists of registers  R, multiplexers  M  and functional 
units (FUs) F. The former includes a state register for preserving the control state sj 

from the set of states S. The set of control signals C enter from the control part into 
the datapath and are partitioned to register enable signals E and multiplexer address 
selects A. The control signals C=E∪A are determined by the current control state 
sj∈S. The status bits  B enter from the datapath into the control part FSM. These 
signals represent the results of comparison FUs and they facilitate the selection of 
state transitions in the FSM.

When a behavioral or behavioral RTL circuit is synthesized into RTL then the 
following  two  main  steps  are  carried  out  by  the  high-level  synthesis  tool:  1) 
allocation of time-steps for operations, 2) binding of operations and variables into 
hardware resources: FUs, registers and multiplexers. Depending on the constraints 
given to the synthesis tool it may try to bind several operations into the same FU or 
a number of variables into the same register. At different time-steps registers obtain 
values  from  different  sources  (other  registers,  FUs  or  primary  inputs).  Thus, 
multiplexers to be controlled by the control part are created to select the correct 
source at each moment.

The general case for RTL datapaths is thus, a mux-operation-mux-register form 
(See example in Fig. 6.2). In other words, when moving from one register rsrc∈R to 
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register  rdst we may pass through an FU  f∈F  whose inputs may be selected by 
multiplexers  Min⊂M  and we may also need an additional multiplexer  mout∈M  to 
allow the target register  rdst read from different sources. Reading new data into 
registers  ri∈R is  controlled by the control  part  FSM via  register  enable  signals 
ei∈E.  Enable  signals  ei  are  activated  (i.e.  ei=1)  only  when  the  corresponding 
registers  ri  perform a  new  read  operation,  otherwise  the  enable  is  deactivated 
(ei=0). Register may also include a global reset input. 

Selecting between different  sources  is  controlled by the  multiplexers  mk∈M 
whose address signals ak∈A enter from the control part. During these states when 
register  reads  new data  its  multiplexer  address  value  is  specified  to  select  the 
correct  source.  At  any  other  state  the  value  of  the  mux  address  is  normally 
unspecified  and this  fact  makes  the  untestability analysis  of  gate-level  stuck-at 
faults from the RT-level difficult. However, in the following Section we propose a 
property, which allows identification of a large number of untestable faults without 
knowing the exact logic implementation of the control part.

 

Figure 6.2 RTL datapath fragment
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6.1.4 Identifying Untestable Registers

In  this  Section,  we  present  a  property  for  proving  untestable  register 
stuck-on  faults  implementing  a  commercial  model-checking  engine.  The 
analysis is carried out at the register transfer level, and the untestability of 
control signals is formally calculated. 

Let us introduce some preliminary definitions.

Definition  1:  For  any  datapath  register  r the  registers  ri whose  inputs  are 
reachable from r through combinational logic (multiplexers and FUs) are refered to 
as  the  guarding  registers of  register  r.  For  example,  the  guarding  registers  of 
register r in Figure 6.2 are  r3 and r4. Note, that with the presence of feedback loops 
register r itself may belong to its guarding registers ri.

Definition 2: If the address signals ak of multiplexers mk are set to values that 
activate  a  path  between  two  datapath  registers  r1 and  r2  we  say  that  the  path 
activation condition between  r1 and  r2 holds and denote it by  αr1,r2=1. Otherwise, 
αr1,r2=0.

For example, in Figure 6.2 the path between registers r and r3 is selected only if 
the mux address signals am1=0 and am2=1. Thus, αr,r3=am1·am2.

Definition 3: Let us refer to the set of states from where a control state sj∈S can 
be reached within one clock-cycle as immediately preceding states of sj.  Let us 
denote immediately preceding states of sj by prev(sj).

Throughout this thesis we use the superscript notation to show at which state the 
signal values will be considered. For example, the value of a datapath signal v at 
the state sj is denoted by vsj.

Theorem 1: Let  e  be an enable signal controling a datapath register  r, let  sj, 
j=1,...,n,  n=|S| be the set of control states and ri,  i=1,...,m be the set of guarding 
registers for r.

If
)(

,
...1...1

jj

i

j sprevs
rr

s
i

minj
ee →⋅∀∀

==
α  then the register enable signal e stuck-at-1 

fault is untestable. 
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In other words, the sufficient condition for untestability of the fault e stuck-at-1 
is that for all the states  sj where a guarding register  ri (enabled by  ei) is reading 
from r (enabled by e) all the immediatly preceding states of sj write values to r.

Proof:  If a faulty value from register r is to be propagated to any observable 
output  then  it  has  to  be  transported  via  one  of  the  guarding  registers  ri.  Any 
guarding register ri can read the fault value only at those states sj where  js

ie = 1. 

Thus,  at  the  states  where  js
ie =  0  the  faulty  value  of  r  can  not  propagate. 

Furthermore,  if  the  enable  signal  ei of  ri is  activated  then  exactly  one 
activation condition αr*,ri , where r* is r or any other register that can be read 
by  ri,  must  be  equal  to  1  (See  Section  6.1.3 for  the  definition  of  RTL 
architecture!).  It  is clear  that  if  r* is not  r then the faulty value will  not 
propagate to ri at the current state sj. Thus, the prerequisite for fault propagation 
to a guarding register ri at the state sj is ei·αr,ri=1.

However, if this prerequisite is fulfilled but the register  r is enabled at all the 
states  prev(sj) then it will contain only the fault-free value at  prev(sj). Thus, the 
fault e stuck-at-one can not be tested. ■

Note,  that  the  property  for  register  untestability  identification  introduced  in 
Theorem 1 is only a sufficient condition for the register to be untestable. There 
may exist untestable register enables that do not match this condition and therefore 
the property is somewhat pessimistic. However, its main advantage lies in the ease 
of computation by formal algorithms. Experimental analysis presented in Section 
6.1.6 shows that in practice the method is well capable of proving untestability in 
different  sequential  benchmarks.  It  is  also  important  to  stress  that  all  register 
enables identified by Theorem 1 are always stuck-at untestable at the logic-level.

6.1.5 Reducing Untestability Identification to Model-Checking
This Section will discuss the technical implementation of the RTL untestable 

fault identification method in VHDL and PSL using Cadence IFV 05.50 model-
checker. We forwarded the condition from Theorem 1 to the model-checker. If the 
model-checker formally proves that the condition always holds for a register r then 
it can be concluded that the stuck-at-1 fault of its enable signal e is untestable.

The following VHDL code with embedded PSL constructs was generated and 
included to the VHDL architecture description of the Design Under Test (DUT) for 
untestability identification of register r: 
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PROPERTIES: if (ABV_ON) generate

begin

  write_event_<r>  <= <ei·αr,ri> ;

read_event_buffer:

   process

   begin

     wait until clock'event and clock = '1' ;

       read_event_<r>  <= <e>  ;

   end process read_event_buffer ;

-- psl ASSERT_PSL_CHECK_<r> :

-- assert always write_event_<r> -> read_event_<r>

-- abort(reset);K 

end generate PROPERTIES;

The VHDL signal write_event_<r> was introduced. The signal will be equal to 
one  when  some  guarding  register  reads  from  r.  A  dedicated  VHDL  process 
read_event_buffer was introduced to detect the time-steps when fault-free values 
are  read  to  r  during  the  previous  clock-cycle.  Note,  that  the  value  of 
read_event_<r> is equal to e but there is a one cycle delay between two signals. It 
has  been  introduced  in  order  to  simplify  the  PSL  assertion 
ASSERT_PSL_CHECK_<r> by allowing a combinational property (implication) 
to be checked. 

There  are  special  cases  of  registers,  which  are  guarded  not  only  by  other 
datapath registers and thus, the signal write_event_<r> must be treated differently. 
For  registers  that  are  inputs  for  FUs  that  generate  status  bits  B  the  signal 
write_event_<r> is assigned to value one during those states when B is read by the 
control  part  for  selecting  between  alternative  state  transitions.  Moreover,  for 
registers  connected  to  the  primary  outputs  of  DUT  write_event_<r>  must  be 
constantly tied to one. 

84



6.1.6 Impact of Register Faults at the Gate-Level

Let us consider the impact of an untestable register enable stuck-on fault at the 
gate-level. Fig. 6.3 presents a typical gate-level implementation of a single bit in a 
datapath register. The arrows mark the untestable stuck-at faults in the register  r 
whose enable signal e is untestable. As it can be seen, an untestable register enable 
causes four additional stuck-at signals to be untestable in a register implementing 
and-or  multiplexers.  Thus  a  total  number  of  untestable  lines  in  a  register  with 
untestable enable signal is 4n + 1 (Four faults per bit plus the fanout stem of the 
enable  e). In the case of 32-bit  register the number of untestable stuck-at faults 
caused by a register stuck-on fault is as high as 129. Experimental results presented 
in  the  following Section show that  a  large subset  of  all  the  stuck-at  faults  not 
covered by the sequential ATPG belong in fact into this particular class of  faults.

Figure 6.3 Gate-level impact of untestable e ≡ 1

6.1.7 Experimental Results

In  Table  6.1,  untestable  fault  identification  experiments  on  four  sequential 
designs  are  presented.  The  benchmarks  were  chosen  from the  HLSynth92  and 
HLSynth95 families and they were synthesized to RT-level from behavioral VHDL 
descriptions  using  the  high-level  synthesis  tool  SYNT  from  Synthesia. 
Subsequently, the RTL descriptions were synthesized to logic-level by Synopsys 

85

e

r
in

r
out

≡1

≡1

≡0,≡1

DFF



Design  Compiler.  The  same  tool  was  applied  for  estimating  the  circuit  area 
minimization by removal of untestable register enables.

Untestable  fault  identification  was  carried  out  with   Cadence  IFV  model-
checker on a SUN Sun-blade 100 Workstation with single 500 MHz UltraSPARC-
IIe  processor,  500 MB RAM, Solaris  2.9  OS.  The circuits  were  tested by two 
sequential ATPG tools: a simulation based ATPG SBGEN [28] and a hierarchical 
ATPG DECIDER [29]. 

Table 6.1 Experimental results on identification of untestable faults

design # faults
# 

tested
# 

untest. # remain. F.C., % F.E., % CPU time

gcd 1662 1564 65 33 94.10 98.01 2 min 56 s

sosq 1996 1514 130 352 75.85 82.36 4 min 09 s

mult8x8 2093 1417 130 546 67.70 73.91 3 min 29 s

diffeq 10098 9853 130 115 97.57 98.86 11 min 38 s

The union of the faults covered by the two test generators was chosen as the 
number  of  detected faults  (column ‘# tested’)  in Table 6.1.  Column  ‘#  faults’ 
shows the total number of stuck-at faults in the circuits. Column ‘# untest.’ shows 
the number of untestable register enable faults identified by the method proposed 
in this thesis. Column “# remain.” shows the number of faults that were neither 
tested nor identified untestable.  Columns ‘F.C.’ and ‘F.E.’  present  the achieved 
fault  coverage  and  fault  efficiency  (i.e.  test  coverage),  respectively. Finally, 
column ‘CPU time’ gives the CPU run times for the untestability identification.

As it can be seen from Table 6.1, a large number of untestable faults has been 
identified by the method in a relatively short run time.  Large amount of the faults 
not  tested  in  the  given  benchmark  circuits  fall  into  the  category  of  untestable 
register enable faults. An additional benefit of the approach is the increase in fault 
efficiency. Identification of untestable faults allows raising the confidence in the 
test coverage and in the efficiency of the ATPG.
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6.2 Untestability Identification Driven by RT-Level 
Constraints

The  last paper  titled “Constraint-Based  Hierarchical  Untestability 
Identification for  Synchronous  Sequential  Circuits“ [V].  The  authors  of  the 
paper were J. Raik, T. Viilukas, M. Jenihhin, R. Ubar, H. Fujiwara and the author 
of this thesis. The paper was submitted to the DATE'11 conference.

The paper considers a novel register-transfer level (RTL) test pattern generation 
for  non-scan  sequential  circuits  containing  feedback  loops.  In  addition,  a 
deterministic hierarchical automated test pattern generator (ATPG) which is guided 
by  RT-level  constraints  was  developed. First,  an  RTL  test  pattern  generator 
Decider is  applied in order to extract  test  path extraction constraints.  Then, the 
constraint-driven deterministic ATPG is run providing hierarchical test generation 
and testability proof in sequential circuits. 

We showed by experiments that the tool is capable of quickly proving a large 
number of untestable faults obtaining near to 100 % fault efficiency. 

In addition, our study shows that traditional, bottom-up test generation at RTL 
is  often  too  optimistic  due  to  the  fact  that  propagation  constraints  have  been 
ignored and capabilities to prove untestable faults have been missing. In this thesis 
we consider top-down approach of test generation.

6.2.1 Preliminaries

6.2.1.1 Assignment Decision Diagrams
Assignment decision diagram (ADD) is an acyclic graph that consists of a set of 

nodes that can be categorized into four types:  read node,  write node, operation 
node and assignment decision node (ADN), and a set of edges which contain the 
connectivity information between two nodes (Figure 6.4). A read node represents a 
primary input port, a storage unit  or a constant while a write node represents a 
primary output port or a storage unit. An operation node expresses an arithmetic 
operation unit or a logic operation unit while an ADN selects a value from a set of 
values  that  are  provided  to  it  based  on  the  conditions  computed  by  the  logic 
operation  units.  If  one  of  the  condition  inputs  becomes  true,  the  value  of  the 
corresponding  data  input  will  be  selected.  Although  ADD  was  essentially 
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introduced as an internal representation in the high-level synthesis process, it can 
be used to describe a functional RTL circuit, the controller part and the data path 
part of which are homogeneously represented.

Figure 6.4 Assignment Decision Diagram (ADD)

6.2.1.2 Test Environment
When a node N is under test, the testability of the node is guaranteed if (a) any 

value can propagate from a read node corresponding to a primary input port to the 
input of  N,  and (b) the value at the output of  N  can propagate to a write node 
corresponding to a primary output port. The paths which allow (a) and (b) to occur 
are called  justification path  and  propagation path, respectively.  Justification and 
propagation  can  be  done  through symbolic  processing  that  utilizes  nine-valued 
algebra.  The  series  of  symbols  obtained  from  the  symbolic  processing  that 
activates justification and propagation paths is known as the  test environment  for 
the node under test.

For a given node under test, its test sequence is generated by first extracting a 
test pattern from the test set library and by substituting the test pattern for the test 
environment. The test set library is obtained beforehand by first simply taking a 
gate-level circuit whose functionality is the same as that of the node under test, 
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then generating the test patterns for all faults in the circuit using a combinational 
ATPG algorithm. 

6.2.1.3 Multi-valued Algebra for Test Propagation
The  nine  symbols  of  Ghosh’s  nine-valued  algebra,  each  of  which  can  be 

assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.

• C0(v): variable v can be set to 0.

• C1(v): variable v can be set to 1.

• Ca1(v): all bits of variable v can be set to 1’s.

• Cq(v): variable v can be set to a constant.

• Cz(v): variable v can be set to high impedance Z.

• Cs(v): state variable v can be set to a specific state.

• O(v): any fault effect at variable v can be observed.

• O’(v): fault effect of D’ can be observed for a single bit variable v.

To generate a test  environment,  first  an objective  has  to  be set.  In  order to 
achieve the test  environment  objective,  the test  sequence for each ADD can be 
generated through the following two phases  using the  justification/  propagation 
rules defined in [23] and briefly explained in an example in Section 6.2.2:

Phase 1: Generate the test environment of the node under test.

Phase 2: Generate the test sequence of the node under test by substituting the 
test patterns of the gate-level circuit corresponding to the node under test for the 
test environment.

In many cases the propagation rules of the multi-valued algebra are unable to 
generate  test  environment  for  a  module  even  if  test  for  this  module  exists. 
Furthermore, the generated environment may decrease the fault coverage for the 
module under test because the network constraints are not taken into account when 
creating the local test set to be substituted into the environment. 
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6.2.1.4 The Concept of Test Path Constraints
The constraint-driven deterministic test generation approach proposed in current 

thesis contains two main phases. During the first phase, constraints for setting up a 
test  path  to  test  an  RTL  module  are  extracted.  The  second  phase  generates 
deterministic tests to the low-level module taking into account the path constraints. 
This  guarantees  high fault  coverage for  the  module  under  test  and also allows 
keeping track of the untestable faults.

We  apply  RTL  ATPG  Decider  [12] in  order  to  extract  the  constraints  for 
accessing  the  Module  Under  Test  (MUT).  Decider  activates  as  many  sets  of 
constraints  as there are test  paths for  that  module  in a bounded limit  of  clock-
cycles. In [II] formal satisfaction method for the test path activation constraints has 
been  included  into  the  tool.  However,  the  work  in  [II] does  not  consider  the 
problem of testing the modules in a deterministic manner  at  the low-level.  The 
purpose is  to  process  the  set  of  constraints  in  order  to  derive  conditions  for  a 
dedicated logic-level ATPG in proving untestability.

In order to extract  the RTL constraints  for  MUT, a test  path activation tool 
Decider  is  applied.  The  high-level  test  generation  constraints  considered  by 
Decider are divided into three categories.  These are  path activation constraints, 
transformation constraints and propagation constraints. Path activation constraints 
correspond  to  the  logic  conditions  in  the  control  flow  graph  that  have  to  be 
satisfied in order to perform propagation and value justification through the circuit. 
Transformation constraints, in turn, reflect the value changes along the paths from 
the inputs of the high-level MUT to the primary inputs of the whole circuit. These 
constraints are needed in order to derive the local test patterns for the module under 
test.  Propagation constraints show how the value propagated from the output of 
the MUT to a  primary output  is  depending on the values  of  the  signals  in the 
system.  The main idea here is to guarantee that fault  effect will not be masked 
when propagated. 

Note, that the extracted constraints consist of operations on primary inputs and 
constants.  Furthermore,  the  exponential  size  complexity  of  the  constraints  is 
avoided by uniting multiple occurrences of the same variable (i.e. the literals) in 
the constraints at each time step into one single fanout variable. Because of this, 
the  size  requirements  for  the  constraints  are  linear  with  respect  to  justification 
time-frames and they represent a small subset of the expanded time-frame model of 
the circuit. Thus, the high-level test constraint extraction procedure is scalable in 
terms of memory space requirements.
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6.2.2  Generating  Test  Environments  Under  Control  and  Data 
Dependencies

In  this  Section  we  describe  the  problem of  setting  up  constraint-driven  test 
environments  for  RTL modules  in  the  case  of  dependencies  between data  and 
control signals. We present a motivating example explaining the shortcomings that 
are common to the previous test environment generation approaches that ignore the 
effect of test path constraints.

Consider as an example, a simplification of the ADD for the Greatest Common 
Division (GCD) benchmark presented in Figure 6.5a. Without loss of generality in 
this ADD the control state information has been removed in order to improve the 
readability of the diagram. 

Assume  that  our  task  is  generating  a  test  environment  for  the  subtraction 
module (MUT) in the Figure. It can be seen that the output value of MUT will be 
propagated  to  the  primary  output  OUT  only  if  the  first  value  input  of  the 
corresponding assignment decision is 1. When we justify the symbols at the MUT 
inputs according to the propagation rules presented in Section 6.2.1.3, then the 
strict interpretation of these rules would lead into a contradiction. Assume the both 
inputs of the MUT are set to Cg according to the rule in Figure 6.5. In order to 
propagate  the  output  value  of  the  MUT  the  first  control  input  of  the  ADN 
preceding the OUT is set to C1. The justification rules for the equality operator “=” 
require Cq from the IN1 and IN2 read nodes. 
a) 
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Figure 6.5 Test environment generation for GCD

That leads to conflict at the read nodes in the strict interpretation of the Ghosh’s 
multi-value algebra for test propagation (please refer to Figure 6.5b). However, the 
weak  interpretation  (also  used  in  [24])  would  still  allow  the  following  test 
environment: IN1=Cg and IN2=Cg. Note, that in current situation the weak rules 
are preferable since they at least allow testing part of the MUT while the strict rules 
would not generate the test environment at all.

To  summarize,  the  strict  interpretation  of  Ghosh’s  algebra  lead  to  overly 
pessimistic results because tests for some MUTs are aborted due to justification 
conflicts. On the other hand, the weak interpretation is too optimistic and can also 
lead to loss of fault coverage because some of the test patterns that are expected to 
cover faults in the MUT do not propagate.

Consider the case where in a bottom-up scenario we have a deterministic test Tq 

generated for the MUT reaching the maximum fault coverage Wq for the module. 
Then, we use top-down approach and generate the test environment for the module 
and substitute Tq into the test  environment.  Due to the test  path constraints the 
actual  fault  coverage that  can be achieved for  MUT inside the  network is  Wa, 
which is  generally lower  than the  fault  coverage Wq.  However,  when we fault 
simulate Tq substituted into the test environment in bottom-up approach, we obtain 
a fault coverage Wr, where :

Wr ≤ Wa≤ Wq                                   (1) 

In other  words,  the bottom-up approach may lose  some fault  coverage with 
respect to the top-down one because the set of the tests to choose from is restricted 
to Tq. If the local test generation algorithm for MUT had had knowledge about the 
test  path  constraints  it  would  have  generated  a  different  test  Td,  whose  fault 
coverage would have been equal to Wa. Furthermore, the remaining faults inside 
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MUT would have been proven untestable. Thus, a deterministic ATPG taking into 
account the test path constraints is necessary in order to achieve maximum fault 
coverage and also to prove untestability within sequential networks. Experiments 
with the constraint-driven deterministic ATPG presented in Section 6.2.5 show that 
the difference between the coverages Wr and Wa may be even as high as 8-14 per 
cent of stuck-at coverage.

In the next Section we show how the test constraints can be efficiently included 
into  the  test  environment  in  order  to  allow  high-fault  coverage  testing  of  the 
modules and also to provide proof for sequentially untestable stuck-at faults.

     6.2.3 Generating the Constraint-based Test Environment

In this Section we explain extracting the test path constraints for a MUT. We 
show how to compute the constraint-based test environment from the set of test 
constraints.

Consider Figure 6.6, which gives the full set of constraints for the MUT from 
the example of Figure 6.6. In other words, the MUT can only be tested using one of 
the two test paths presented in Figure  6.6a and  6.6b. The two paths are identical 
except for the fact that the primary inputs IN1, IN2 are swapped in them. 

Figure 6.6. Full set of test path constraints for MUT
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Note, that from the point of view of accessing the MUT these two environments 
are equivalent.  It  is  irrelevant  which primary input  is  used in applying  the test 
patterns  when  representing  the  constraint-based  test  environment  for  proving 
untestability. Therefore, we denote the value justified from the i-th input of MUT 
by xk and the value propagated from the MUT output by y.

The constraints C1 and C2 both consist of two sub-constraints C1,1, C1,2 and C2,1, 
C2,2, respectively. C1,1 (which is equivalent to C2,1) states that x1 must not be equal 
to x2. C1,2 (equivalent to C2,2) states that x1 must be greater than x2. Since all the sub-
constraints within a constraint should hold simultaneously they be combined using 
the  conjunction  operator.  In  turn,  all  the  constraints  are  combined  using  the 
disjunction operation because any one of the test paths may be used for accessing 
the MUT. In general case for constraints Ci each consisting of sub-constraints Ci,j 

the constraint-environment for proving sequential untestability is calculated using 
the following formula:

                                             (2)

Subsequent  to combining the test  path constraints  constraint  minimization is 
performed. For the example in Figure 6.6 we obtain:

.)()()()( 2121212121 xxxxxxxxxx >=>∧≠∨>∧≠

Figure  6.7 shows  the  constraint-based  environment  resulting  for  testing  the 
MUT of the example presented in Figure  6.5. In the next Section we propose a 
gate-level  ATPG  that  relies  on  this  kind  of  constraint-based  environment  to 
perform hierarchical untestability identification and test pattern generation.

Figure 6.7 Constraint-based test environment the MUT
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6.2.4 Constraint-Driven Deterministic ATPG

As it was mentioned above, the proposed ATPG method consists of two steps. 
First, the test constraints are extracted at RTL as explained in the previous Section. 
As a second step, a constraint-driven deterministic ATPG is run as discussed here. 
An  example  of  a  constraint-based  environment  was  shown  in  Figure  6.7.  The 
constraint is converted to the gate-level by applying logic synthesis and the MUT is 
instantiated from the design, in order to ensure that the gate-level structure tested 
exactly matches the one of MUT embedded to the RTL network. Then a gate-level 
ATPG is executed [28], which identifies sequentially untestable faults in the MUT.

Figure  6.8 presents the corresponding test  flow. First,  RTL ATPG is run in 
order to derive high-level test path constraints. The constraints are minimized as 
shown in the previous Section, translated into VHDL and synthesized to logic-level 
using Synopsys Design Compiler. 

Figure 6.8. Top-down constraint-based hierarchical ATPG flow
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Subsequently,  the  gate-level  ATPG is  run.  As a result  we obtain the list  of 
sequentially untestable faults in the MUT as well  as test  patterns for the whole 
design.  Experiments  presented  in  the  next  Section  show  that  the  proposed 
constraint-based  method  obtained  100  per  cent  fault  efficiency  for  all  the 
considered modules at the same time when the symbolic approach proposed in [23] 
is too optimistic, loosing 8-14 per cent of fault coverage in the modules.

6.2.5 Experimental Results

In  order  to  evaluate  the  hierarchical  untestability  identification  and  test 
generation method, experiments on HLSynth92 and HLSynth95 benchmarks were 
run.  In addition, to compare the solution with the traditional bottom-up approach 
(e.g. [23]) and assess its fault efficiency, a detailed case-study was carried out. 

Table 6.2 presents the characteristics of the example circuits used in test pattern 
generation  experiments.  The  following  benchmarks  were  included  to  the  test 
experiment: a Greatest Common Divisor (GCD), an 8-bit multiplier (MULT8x8), 
and a Differential Equation (DIFFEQ). In the Table, the number of single stuck-at 
faults,  the  number  of  primary  input  and  primary  output  bits,  the  number  of 
registers, multiplexers and functional units are reported, respectively.

Table 6.2 Benchmark characteristics

     

In Table 6.3, comparison of test generation results of three ATPG tools on the 
hierarchical benchmark designs are presented. This comparison was carried out in 
order to show the time needed for extracting the constraint-based environment as 
explained  in  Section  6.2.3.  The  tools  include  a  gate-level  deterministic  ATPG 
Hitec  [2], a  genetic  algorithm  based  Gatest  [6],  hierarchical  ATPG  Decider. 
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circuit # faults PI bits PO bits # reg. # mux # FU

gcd 472 33 16 3 4 3

mult8x8 2356 17 16 7 4 9

diffeq 10326 81 48 7 9 5



Columns  ‘F.C.,  %’ give the  single  stuck-at  fault  coverages  of  the  test  patterns 
generated.  Columns  ‘time,  s’  stand  for  test  generation  run-times  obtained on  a 
366MHz Sun UltraSparc60 server with 512MB RAM under Solaris 2.8 operating 
system.

Table 6.3 Comparison of sequential ATPG

          

   

Table  6.4 shows  experiments  of  the  deterministic  constraint-driven  ATPG 
developed  in  this  thesis.  The  experiments  present  comparison  of  the  proposed 
method to the bottom-up paradigm [23]. For a reference, the modules were tested 
by the ATPG in a stand-alone mode. As a result a test sequence Tq yielding 100 % 
stuck-at fault coverage Wq was obtained. The proposed top-down constraint-driven 
ATPG  reached  fault  coverage  Wa which  was  less  than  Wq because  of  the 
constraints when accessing the module  under test  in the network. However, the 
fault efficiency of the proposed approach was 100 % for all the modules.

When Tq was substituted to the test environment in a bottom-up manner then 
fault coverage Wr was reached, which was always lower than Wa because some of 
the tests were invalidated by sequential dependencies. In fact, Wr was considerably 
lower (by 8-14 %) for all the four modules analyzed.

The  test  environment  synthesis  from  VHDL  to  logic-level  using  Synopsys 
Design Compiler remained almost constant and was around 5 to 10 s per module 
while the deterministic constraint-based ATPG spent less than 0.02 s per module 
under test. The synthesis and test experiments were carried out on a Sun-Fire-V250 
station with 1.28 GHz sparcv9 processor under Solaris 2.9 OS. 
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circuit HITEC GATEST DECIDER

F.C., % time, s F.C., % time, s F.C., % time, s

gcd 81.1 169.5 91.0 75 89.9 129.8

mult8x8 65.9 1243 69.2 821.6 74.7 93.7

diffeq 96.2 13.320 96.40 3000 97.09 453.7



Table 6.4  Constraint-driven ATPG vs. bottom-up RTL test

     

        

Table 6.5 presents detailed statistics of the circuits analyzed. The Table lists the 
total number of stuck-at faults in the whole circuit, the number of detected faults, 
number  of  unobservable/uncontrolllable  faults,  the  number  of  faults  proven 
sequentially untestable by the proposed constraint-based approach and finally the 
number of all  the remaining faults.  The experiments show the efficiency of the 
constraint-driven engine in untestability identification. Though the method covers 
quickly  untestable  faults  caused  by  sequential  untestability  in  the  considered 
modules with 100 % fault efficiency, there remains a number of faults which are 
still neither tested nor proven untestable. Some of these remaining faults can be 
tested or proven untestable by traditional approaches at the logic-level.
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Circuit gcd mult8x8 diffeq

Module SUB ADD2 ADD3 SUB2 MUX3 MUX4

Wq, % 100 100 100 100 100 100

Wa, % 95.74 86.64 55.88 85.33 75.00 75.00

Wr, % 85.11 72.49 47.06 74.07 64.71 64.71

ATPG, s 0.01 0.01 < 00.1 0.02 < 0.01 < 0.01

synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10



Table 6.5. Distribution of faults*

   

     
   

* Note: Table 6.5 and Table 5.2 from Section 5.2.2 does not match because some of 
benchmarks were synthesized by different conditions.
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gcd mult8x8 diffeq

# total faults 472 2356 10326

# detected faults (hard/potentially 
detected + reg. untestable) 439 1737 9867

# unobs./uncontr. 28 195 252

# untest. w constr. 4 156 68

# remaining 1 268 139



6.3 Chapter Summary

In  this  Chapter  the  overview  of  the  research  results  published  in Papers: 
“Untestable  Fault  Identification  in  Sequential  Circuits  Using  Model-
Checking“  [IV] and  in  “Constraint-Based  Hierarchical  Untestability 
Identification for Synchronous Sequential Circuits“ [V]. The overview has been 
presented together with the overall experimental results.

This Chapter describes the research that contrbutes mainly to the study of a an 
Untestable Faults in Sequential Circuits at RTL Level tehniques.

The  first contribution is  Untestable Fault Identification in Sequential Circuits 
Using Model-Checking  and proposes a new approach of quick identification  of 
untestable logic-level stuck-at faults from the register transfer level. The novelty of 
the  approach  lies  in  using an  existing commercial  model-checking  tool  for  the 
untestability  analysis.   In  particular,  a  technique  for  formally  generating  PSL 
language assertions for proving untestable stuck-at faults in sequential synchronous 
designs  was  developed.  Experiments  on  well-known  sequential  benchmarks 
showed that as much as 20-60 per cent of faults not detected by sequential ATPG 
were identified untestable in a short run time by the approach.

The proposed untestable fault identification may also be implemented in high-
level test synthesis. It was shown that by removing the redundant enable signals in 
average 5 per cent of the circuit area could be saved. An additional effect of the 
identification of untestable register enable faults lies in reducing yield loss.

The second one considers  a  new method  and tool  for  register-transfer  level 
(RTL) test pattern generation for non-scan sequential circuits containing feedback 
loops. A deterministic hierarchical automated test pattern generator (ATPG) guided 
by RT-level constraints is proposed. First, an RTL test pattern generator Decider is 
applied in order to extract test  path extraction constraints.  Then,  the constraint-
driven  deterministic  ATPG  is  run  providing  hierarchical  test  generation  and 
testability proof in sequential circuits. 

In addition, our study shows that traditional test generation at RTL based on 
symbolic  test  environment  generation  is  too  optimistic  due  to  the  fact  that 
constraints in accessing the modules under test  have been ignored. Experiments 
showed that bottom-up strategies caused a decrease of stuck-at fault coverage up to 
the range of 8-14 % in the modules tested. This short-coming was overcome by the 
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proposed constraint-based method which obtained 100 per cent fault efficiency for 
all the modules considered.

To the best of our knowing this is the first method that can prove sequential 
untestability starting from the RTL.

In each direction of the research, new appreciable results were achieved. The 
resuls were also presented at conferences.
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Chapter 7
 CONCLUSIONS 

This thesis has presented several techniques to perform hierarchical test pattern 
generation and untestability identification for synchronous sequential circuits that 
is the one of the major issues in the area of digital circuits testing.

In this Chapter the main contributions of the work are outlined and points out 
open  problems  and  the  perspectives  for  future  research.  In  addition,  the 
contribution list in research done by the author of this thesis is added.

7.1 Thesis Contribution

The main contributions of the presented work are summarized below. 

Test Pattern Generation for Sequential Circuits

• An  overview  of  the  comparative  study  of  ATPG  methods  has  been 
proposed  [I]. A comparative study of test  pattern generation approaches 
based on three tools: a genetic algorithm test generator GATEST [19], a 
deterministic  logic-level  tool  HITEC  [18]  and  a  hierarchical  tool 
DECIDER [15]. The purpose of this study was to find out,  which fault 
types  are  covered  by  the  tools  implementing  completely  different 
approaches. 
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Experiments on a set of six sequential benchmark circuits lead to the following 
conclusions:

While genetic algorithm based tool performs well in terms of the absolute fault 
coverage numbers, it fails to detect nearly any unique faults.

Deterministic tool has difficulties with larger sequential designs but it is capable of 
detecting a portion of hard-to-test faults.

The union of the sets  of  faults  covered by the three test  generators has a fault 
coverage that is in average 0.4 per cent higher than the fault cover of the best tool 
in the comparison: DECIDER.

DECIDER loses fault coverage mainly in the control part FSM.

The analysis  carried out was and will be helpful for further development of the 
hierarchical  ATPG  DECIDER.  Moreover,  the  authors  hope  that  the  results 
presented  here  could  give  valuable  guidelines  for  the  developers  of  future  test 
pattern generators in general.

• A  novel  constraint-based  automated  test  pattern  generator  for  Register-
Transfer Level (RTL) designs has been introduced [II]. The tool combines 
test path constraint activation with a constraint solver. First, a deterministic 
algorithm  that  extracts  constraints  for  activating  test  paths  at  RTL  is 
applied. Subsequently, a constraint solving package ECLiPSe [14] is used 
for assembling the tests. 

Experiments on ITC99 and HLSynth92/95 benchmarks showed that the proposed 
deterministic  method offers  short  run times.  In  particular,  it  provides  increased 
fault coverage for hard-to-test designs with respect to earlier approaches.

While  the  fault  coverages  for  the  circuits  are  low,  this  is  a  usual  case  for  the 
sequential  ATPG because of the large number  of  untestable faults.  As a future 
work we plan to integrate untestable fault analysis for sequential circuits presented 
in  this  thesis  into  the  constraint-based  ATPG  to  improve  fault  efficiency 
estimation.

• This thesis also presented the problem of high-level identification of an 
important  subclass  of  faults,  of  potentially  testable  initialization  faults 
[III]. Existing high-level fault models assume hard-detection and therefore are 
not capable of handling such initialization faults. 
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Experiments  showed that  potentially  detectable  initialization  faults  form a  large 
subset of all the faults not testable by hard-detection. As a result of the proposed 
approach, both, the speed as well as the confidence level of sequential ATPG can 
be  increased.  We  plan  to  implement  the  potential  fault  detection  method  and 
include the capabilities to an RTL test pattern generator. 

Proving Untestable Faults in Sequential Circuits at RTL

• An approach of  identifying of untestable faults in sequential circuits has 
been considered [IV]  .  We proposed using model-checking for detecting 
untestable  stuck-at  faults  at  the  Register-Transfer  Level  (RTL).  In 
particular, we presented a method for formally generating PSL language 
assertions for proving untestable stuck-at faults in sequential synchronous 
designs. 

Experiments showed that the faults identified by the method form in fact a large 
subset  of  all  the  untested  stuck-at  faults.  It  was  shown  that  by  removing  the 
redundant enable signals in average 5 per cent of the circuit area could be saved. 
An additional effect of the identification of untestable register enable faults lies in 
reducing yield loss.

• A novel method of register-transfer level (RTL) test pattern generation for 
non-scan sequential circuits containing feedback loops has been introduced 
[V].  In  addition,  a  deterministic  hierarchical  automated  test  pattern 
generator (ATPG) which is guided by RT-level constraints was developed. 
First, an RTL test pattern generator Decider is applied in order to extract 
test  path extraction constraints.  Then, the constraint-driven deterministic 
ATPG is run providing hierarchical test generation and testability proof in 
sequential circuits. 

The proposed method is capable of quickly proving a large number of untestable 
faults obtaining near to 100 % fault efficiency. In addition, our study showed that 
traditional  test  generation  at  RTL  is  often  too  optimistic  due  to  the  fact  that 
propagation  constraints  have  been  ignored  and  capabilities  to  prove  untestable 
faults have been missing. Experiments showed that bottom-up strategies may cause 
a  decrease of stuck-at fault coverage up to the range of 8-14 % in the modules 
under  test.  To the  best  of  our  knowing this  is  the  first  method that  can prove 
sequential untestability starting from the RTL.
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In conclusion, numerous challenging problems and open issues pave the  road 
towards test generation for sequential circuits, but we believe that this remains the 
primary research direction for the next few years.

106



7.2 Author's Contribution

This Subsection provides the contribution list in research done by the author of 
this thesis.

The author of this thesis was involved in all stages of the research: studying 
problems,  preparation, development, testing and presenting the research results.

Paper  I „Comparative  Analysis  of  Sequential  Circuit  Test  Generation 
Approaches“ deals with a comparative study of test pattern generation approaches 
based on three tools: a genetic algorithm test generator GATEST, a deterministic 
logic-level tool HITEC and a hierarchical tool DECIDER. 

The  author  of  this  thesis  was  responsible  for  performing  the  experimental 
analysis  based on comparative study of test pattern generation approaches using 
three test generation tools and studying which fault types are likely to be covered 
by different approaches. 

In addition, obtained results were included to author's Bachelor work:

2004,  Comparative  Analysis  of  Sequential  Circuit  Test  Generation  
Approaches,  B.Sc.,  supervisor  Dr.  Jaan  Raik,  Tallinn  University  of  
Technology, Faculty of Information Technology

Paper  II „Constraint-based  Test  Pattern  Generation at  the  Register-Transfer 
Level”  introduces a novel  constraint-based automated  test  pattern generator  for 
Register-Transfer  Level  (RTL)  designs.  The  tool  combines  test  path  constraint 
activation with a constraint  solver.  First,  a  deterministic  algorithm that  extracts 
constraints for activating test paths at RTL is applied. Subsequently, a constraint 
solving package ECLiPSe [14] is used for assembling the tests.

Additional  motivation  for  the  work  in  Paper  I was  to  find  guidelines  for 
improving the fault models implemented in the hierarchical test pattern generator 
DECIDER, which is being developed at TUT. Based on received results a Master 
of Science work was defended by the author:
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2005,  Experimental  analysis  of  hierarhical  test  generator  DECIDER,  
M.Sc., supervisor  Dr.  Jaan  Raik,  Tallinn  University  of  Technology,  
Faculty of Information Technology

This was the motivation for the future research that was presented in Paper II.

The author of the thesis was responsible of performing experimental  analysis 
using deterministic method. 

In  Paper III „RT-Level  Identification  of  Potentially  Testable  Initialization 
Faults” the idea is to introduce the problem of an important subclass of faults, the 
potentially detectable initialization faults. 

The author of  this  thesis  studied the problem of identification of potentially 
testable initialization faults and presented the proposed method  at the workshop:

The Ninth IEEE Workshop on RTL and High Level Testing (WRTLT’08), 
IEEE, pp. 667-672, November 27-28, 2008, Sapporo, Japan. 

A new approach of applying model-checking for detecting untestable stuck-at 
faults  at  the register-transfer  level is  introduced in  Paper IV. In particular,  we 
presented a method for formally generating PSL language assertions for proving 
untestable stuck-at faults in sequential synchronous designs.

The contributions of the author of the thesis are performing the experimental 
research and analysis of identification of  Untestable Faults in Sequential Circuits 
using model-checking. The intermediate steps of research were published in Paper 
VI “Hierarchical Identification of Untestable Faults in Sequential Circuits”. Paper 
IV contains  the  most  important  achievements  and  continues  to  improve  the 
technique proposed.

In addition, the results of the proposed research were presented by the author  at 
the conference:

The  17th  Asian  Test  Symposium  (ATS’08),  IEEE,  pp.  667-672,  
November 24-27, 2008, Sapporo, Japan.
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The Paper  V „Constraint-Based Hierarchical  Untestability Identification for 
Synchronous  Sequential  Circuits“ considers  register-transfer  level  (RTL)  test 
pattern generation for non-scan sequential circuits containing feedback loops.

The contribution of the author of this thesis was to study the problem of  Untestability 
Identification for Synchronous Sequential Circuits more deeper proceed from Paper IV 
and VI.

The author was developing a new method of register-transfer level (RTL) test pattern 
generation  for  non-scan  sequential  circuits  containing  feedback  loops,  performing 
experimental analysis  using  the  deterministic  hierarchical  automated  test  pattern 
generator (ATPG) which is guided by RT-level constraints. 

 In this research we went to one step further by identifying from experiments 
that  the  tool  is  capable  of  quickly proving a  large number  of  untestable  faults 
obtaining near to 100 % fault efficiency. 
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