
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Valeri Andrejev 164224IAPB

FEASIBILITY ANALYSIS OF MIGRATION

FROM SPRING MVC TO SPRING

WEBFLUX: A CASE STUDY

Bachelor's thesis

Supervisor: Vadim Kaparin

 PhD

2

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Valeri Andrejev 164224IAPB

SPRING MVC-ST SPRING WEBFLUX-LE

ÜLEMINEKU OTSTARBEKUSE ANALÜÜS:

JUHTUMIUURING

Bakalaureusetöö

Juhendaja: Vadim Kaparin

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Valeri Andrejev

18.05.2021

4

Abstract

During recent years reactive programming is gaining popularity among web-application

developers. A reactive application promises better performance and more stability under

load. With release of Spring WebFlux it is highly advocated to try it out to see gain in

performance of your team’s Spring-based web-product. It is rarely possibly to start a new

project when you are working in a corporation. Usually, a team is developing an

application for years, adding new features and changing old ones. So, question arises:

“Is our application future-proof, should we migrate?”

Due to of the complexity of the existing application and the lack of publicly available

complex migration examples, it is impossible to quickly give a definite answer to those

question. To find the answer, this thesis analyses an existing production application by

migrating its minimally necessary part and comparing the migrated version’s

performance to the old one.

This thesis is written in andEnglish is 40 pages long, including 7 chapters, 16 figures and

2 tables.

5

Annotatsioon

Spring MVC-st Spring WebFlux-le ülemineku otstarbekuse

analüüs: juhtumiuuring

Viimastel aastatel on reaktiivne liikumine veebirakenduste arendajate seas

muutunud populaarseks. Reaktiivne rakendus lubab paremat jõudlust ning suuremat

stabiilsust koormuse all. Spring WebFluxi väljaandmisega soovitatakse seda katsetada, et

saada tagasisidet oma meeskonna Springi-põhise veebitoote jõudlustest.

Suurettevõttes töötades on harva võimalik uut projekti alustada. Tavaliselt töötab

meeskond aastaid rakendust välja töötades, lisades uusi ja muutes vanu funktsionaalsusi.

Seega tekib küsimus:

"Kas meie rakendus on tulevikukindel, kas on seda otstarbekas migreerida?"

Olemasoleva rakenduse keerukuse ja avalikult kättesaadavate keeruliste harva

esinevate migreerimisnäidete tõttu, on võimatu nendele küsimustele kiiresti kindlaid

vastuseid leida. Selles lõputöös analüüsitakse olemasolevat toodangu rakendust, et

nendele küsimustele vastust leida, migreerides selle rakenduse minimaalse vajaliku osa

ja võrreldes migreeritud versiooni jõudlust eelmisega.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 40 leheküljel, 7 peatükki, 16

joonist, 2 tabelit.

6

List of abbreviations and terms

MVC Model-View-Controller—architecture for web applications.

API Application Programming Interface

POJO Plain Old Java Object

IoC Inversion of Control

DI Dependency Injection

DTO Data Transfer Object

LDAP Lightweight Directory Access Protocol

JPA Java Persistence API

MsSQL Microsoft SQL —SQL server developed by Microsoft.

JDBC Java Database Connectivity

R2DBC Reactive Relational Database Connectivity—reactive analogue
of JDBC.

SOAP Simple Object Access Protocol

JTL JMeter Text Logs

VCS Version Control System

IDE Integrated Development Environment

CI/CD Continuous Integration/Continuous Delivery

CPU Central Processing Unit

RAM Random-Access Memory

7

Table of contents

1 Introduction ... 10

2 Overview of Spring MVC and Spring WebFlux ... 12

2.1 Spring MVC vs Spring WebFlux ... 12

3 Tools used for analysis .. 14

3.1 Choice of tools for monitoring ... 14

3.2 Choice of testing tools .. 14

4 Overview of the analysed application ... 17

5 Migration to WebFlux ... 19

5.1 Presentation layer migration: .. 19

5.2 Service layer migration ... 20

5.3 Persistence layer migration ... 22

5.4 Infrastructure layer migration ... 23

6 Performance testing ... 24

6.1 Input from monitoring .. 24

6.2 Performance test ... 25

6.3 Performance testing results ... 27

6.3.1 Normal load ... 27

6.3.2 Higher load .. 27

6.3.3 Stress load .. 27

6.4 Impact on system resources .. 32

7 Summary .. 35

8

List of figures

Figure 1. Spring MVC and Spring WebFlux comparison [2] .. 10

Figure 2. Thread-based concurrent system [5] .. 12

Figure 3. Event-loop-based system [5] ... 13

Figure 4. Monitoring tools communication .. 14

Figure 5. Infrastructure and communication .. 18

Figure 7. Example of developed performance test. .. 25

Figure 8. Testing infrastructure and communication.. 26

Figure 9. Performance test response times under normal load (lower is better). 28

Figure 10. Performance test response times under higher load (lower is better). 29

Figure 11. Performance test response times under stress load (lower is better). 30

Figure 12. Performance test failed requests under stress load (lower is better). 31

Figure 13. JVM total memory .. 32

Figure 14. JVM Heap Memory... 33

Figure 15. CPU usage ... 33

Figure 16. Garbage collections ... 34

9

List of tables

Table 1. Comparison of tools for testing application performance [13] 15

Table 2. Methods before (A) and after (B) migration .. 20

10

1 Introduction

The aim of this thesis is to analyse feasibility of migration of the existing Spring MVC-

based production application (hereinafter referred as the application) to Spring WebFlux.

“Before Spring WebFlux came in version of Spring boot 5.0, the only option was the

classic Spring MVC framework built on top of Servlet API. This framework is, to this

day, the most popular choice for new Spring projects and it works like a charm, but

reactive, non-blocking programming model is gaining traction in recent years. The idea

behind it is to reduce time application spends in blocking state waiting for data to arrive

(from a database, another service, message queue, etc.) which could make an application

faster” [1].

Spring MVC and Spring WebFlux “work together to expand the range of available

options. The two are designed for continuity and consistency with each other, they are

available side by side, and feedback from each side benefits both sides.” [2] (See Figure 1)

Motivation for migration to Spring WebFlux could be:

 Deprecation of existing blocking libraries (for example RestTemplate from Spring

Web is in maintenance mode since Spring 5.0 [3])

Figure 1. Spring MVC and Spring WebFlux comparison [2]

11

 Current or expected increase of usage load [2]

 Live interest within the development team

Reasons for the analysis of migration of the application are:

 Expected double increase in usage load within a year.

 Demand for assessment within the development team and from the management.

 Complexity of the application (hard to access without deep analysis).

In the second chapter there is in more detail how Spring MVC and Spring WebFlux differ.

The third chapter describes briefly the choice of tools needed for analysis. The fourth

chapter gives an overview of the analysed application. The fifth chapter describes in

details migration implementation. In the sixth chapter performance tests creation, setup

and results are handled.

12

2 Overview of Spring MVC and Spring WebFlux

In this chapter Spring MVC and Spring WebFlux difference is explained.

2.1 Spring MVC vs Spring WebFlux

“Spring provides Model-View-Controller (MVC) architecture, and components that can

be used to develop flexible and loosely coupled web applications. It uses the features of

Spring core features like IoC and DI.

 The Model encapsulates the application data and in general they will consist of

POJOs.

 The View is responsible for rendering the model data and in general it generates

HTML output that the client’s browser can interpret.

 The Controller is responsible for processing user requests and building an

appropriate model and passes it to the view for rendering.” [4]

Spring MVC is uses a blocking model to handle requests. It means, that for each request

there is a dedicated thread for getting data and producing response (See Figure 2).

Figure 2. Thread-based concurrent system [5]

13

Spring WebFlux discards the thread-per-request blocking model to embrace a multi-

event-loop, asynchronous, non-blocking model with back-pressure.

 “The event loop runs continuously in a single thread, although we can have as

many event loops as the number of available cores

 The event loop process the events from an event queue sequentially and returns

immediately after registering the callback with the platform

 The platform can trigger the completion of an operation like a database call or an

external service invocation

 The event loop can trigger the callback on the operation completion notification

and send back the result to the original caller.” [5] (See Figure 3)

From developing perspective the most drastic change is the use of reactive classes: Mono

[6] and Flux [7], that wrap requested object or objects respectively by data provider

(Publisher [8]) and unwrapped by data consumer (Subscriber [9])

Figure 3. Event-loop-based system [5]

14

3 Tools used for analysis

In this chapter performance-testing and monitoring tools used for analysis are described.

3.1 Choice of tools for monitoring

Before the start of the analysis there was no monitoring for the application. For the

purpose of primary statistics and for overseeing further performance testing monitoring

was set up.

The combination of Micrometer + Prometheus + Grafana was selected for monitoring as

they are easily integrable with Spring Boot and sufficient for analysis and further

maintenance of the application [10]. Docker containers with Prometheus and Grafana

were deployed to the same nodes as the application using Rancher 2 with Kubernetes as

container orchestration framework. Configurations for both Prometheus [11] and Grafana

[12] are done accordingly to existing tutorials and are, therefore, intentionally left out of

the description. Communication within one node is shown in Figure 4.

3.2 Choice of testing tools

Before the start of the analysis there were no active performance tests running for the

application.

MICROMETER

Figure 4. Monitoring tools communication

15

Previous performance test attempt was couple of years old and using Gatling for running

the tests. Comparison data used for research can be seen in Table 1.

Tool Pros Cons

JMeter

GUI for non-programmers

Popularity

Protocols support

Documentation

Rich ecosystem

Slow test plan creation

No VCS friendly format

Not programmers friendly

No simple CI/CD integration

Gatling

VCS friendly

IDE friendly (auto complete and
debug)

Natural CI/CD integration

Natural code modularization and
reuse

Less resources (CPU & RAM)
usage

All details of simple test plans at
a glance

Scala knowledge and environment
required

Smaller set of protocols supported

Less documentation & tooling

Taurus

VCS friendly

Simple CI/CD integration

Unified framework for running
any type of test

Built-in support for running tests
at scale

All details of simple test plans at
a glance

Simple way to do assertions on
statistics

Both Java and Python environments
required

Not as simple to discover (IDE
auto-complete or GUI) supported
functionality

Not complete support of JMeter
capabilities (nor in the roadmap)

ruby-dsl

VCS friendly

Simple CI/CD integration

Unified framework for running
any type of test

Built-in support for running tests
at scale

Both Java and Ruby environments
required

Not following same naming
convention and structure as JMeter

Not complete support of JMeter
capabilities (nor in the roadmap)

No integration for debugging
JMeter code

Table 1. Comparison of tools for testing application performance [13]

16

Tool Pros Cons

All details of simple test plans at
a glance

jmeter-java-
dsl

VCS friendly

IDE friendly (auto-complete and
debug)

Natural CI/CD integration

Natural code modularization and
reuse

Existing JMeter documentation

Easy to add support for JMeter
supported protocols and new
plugins

Could easily interact with JMX
files and take advantage of
JMeter ecosystem

All details of simple test plans at
a glance

Simple way to do assertions on
statistics

Basic Java knowledge required

Same resources (CPU & RAM)
usage as JMeter

For purpose of analysis there was the need for easier setup and shorter learning curve, so

it was decided to use jmeter-java-dsl tool from Abstracta team.

17

4 Overview of the application

The analysed application is an internal tool of a medium-sized international financial

corporation. Its purpose is to aggregate data from external partners, store, map, process

and provide it to internal users for various business use cases. Use cases of the application

are left intentionally out of the scope of the thesis for confidentiality reasons.

Data acquiring process consists of daily delta files uploading by external partners to File

Storing server, from where the application downloads them and processes. The delta files

contain all the units which were changed during previous day. Depending on business

need and internal configuration it is possible to query single data unit directly from

external data repositories to get the freshest data. Infrastructure and communication can

be seen in Figure 5.

Technological stack of the application is based on Spring Boot framework. Detailed

technological stack is thoroughly described in following chapter.

The application has instances in three different environments: development, test and

production. To achieve near-production experience we analyse only test environment

instances.

The application is deployed using Kubernetes template to two separates nodes, which are

located on two physically separated servers. It is possible to connect directly to individual

node, but for analysis purpose testing is limited to connection through load balancer, as it

allows to simulate production conditions.

18

FIREWALL

APP APP

Load Balancer

WEB

UNCONTROLLED ZONE

CONTROLLED ZONE

RESTRICTED ZONE

End users

External Data
Repositories

Micro-zone

MsSQL
Cluster

FIREWALL

INTERNAL USERS

<ONLINE REQUESTS>

<ONLINE REQUESTS>

Load Balancer

File Storing Server

<DELTA FILE DOWNLOAD>

<DELTA FILE DOWNLOAD>

<DELTA FILE UPLOAD>

<Cache Cluster>

Figure 5. Infrastructure and communication

19

5 Migration to WebFlux

In this chapter migration to WebFlux is described.

Migration of the application consisted of static analysis and replacement of dependencies

as well as of experimental one, where in order to compile some classes, it was needed to

import required dependency. The application is using Gradle building tool for

dependencies management. During migration minimal working set of endpoints was

migrated.

5.1 Presentation layer migration

Presentation layer of the application consists mostly of REST endpoints to serve other

internal applications. For internal purposes there is also a page for collecting various

statistics and testing.

Migration started with replacing Spring Boot Web with Spring Boot WebFlux

implementation 'org.springframework.boot:spring-boot-starter-web'

implementation 'org.springframework.boot:spring-boot-starter-webflux'

This dependency also “pulls in all other required dependencies:

 spring-boot and spring-boot-starter for basic Spring Boot application setup

 spring-webflux framework

 reactor-core” [14]

To serve html for page the application uses Thymeleaf. Reactive Thymeleaf does not

require dependency change. In the migrated version attributes for Thymeleaf page model

are wrapped in a class named ReactiveDataDriverContextVariable, that increases code

produced to serve content. The example from the migrated endpoint:

20

model.addAttribute("config",

new ReactiveDataDriverContextVariable(getRegistryConfig()));

As alternative, it is possible to extend this class with a local wrapper to give this method

more aesthetic look or use DTO with builder to hide new object creation for every model

attribute.

For REST endpoints it is used the same @RestController annotation as in MVC version,

but response is composed not from Object, but Mono of Flux wrapped around this object.

5.2 Service layer migration

No additional dependencies or dependency replacement was needed for service layer.

Most noticed difference in the produced code is that imperative paradigm is replaced with

functional. Table 2 displays a part of the code migrated with corresponding changed code.

Case Code

1A public void checkRequestAllowed(RequestSource request) throws

RequestNotAllowedException {

 checkServiceAllowed(request);

}

1B public Mono<Boolean> checkRequestAllowed(RequestSource request) {

 return checkServiceAllowed(request);

}

2A private void checkServiceAllowed(RequestSource request) throws

RequestNotAllowedException {

 String service = request.getService();

 if (!isRequesterAllowed(service)) {

 throw new RequestNotAllowedException();

 }

}

Table 2. Methods before (A) and after (B) migration

21

2B private Mono<Boolean> checkServiceAllowed(RequestSource request) {

 String service = request.getService();

 return isRequesterAllowed(service)

 .flatMap(isAllowed -> {

 if (!isAllowed) {

 return Mono

 .error(new RequestNotAllowedException());

 }

 return Mono.just(true);

 });

}

3A private boolean isRequesterAllowed(String requesterName) {

 Map<String, Boolean> accessMap = getRegistryConfig();

 if (accessMap.containsKey(requesterName)) {

 return accessMap.get(requesterName);

 }

 log.warn("No status for requester '{}' in configuration property

{}", requesterName, SERVICE_STATUSES.getName());

 return false;

}

3B private Mono<Boolean> isRequesterAllowed(String requesterName) {

 return getRegistryConfig()

 .filter(value -> value.containsKey(requesterName))

 .flatMap(value -> Mono.just(value.get(requesterName)))

 .switchIfEmpty(Mono.fromSupplier(() -> {

 log.warn("No status for requester '{}' in configuration

property {}", requesterName, SERVICE_STATUSES.getName());

 return false;

 }));

}

4A private Map<String, Boolean> getRegistryConfig() {

 return entityManager.getRegistryConfig(null, SERVICE_STATUSES);

}

4B private Mono<Map<String, Boolean>> getRegistryConfig() {

 return entityManager.getRegistryConfig(null, SERVICE_STATUSES)

.next();

}

22

In some cases (e.g., case 1 and 2) there was the need to replace void with Mono<> to

handle error within the existing code thrown by Mono.error(…).

5.3 Persistence layer migration

Most of the changes made for dependencies are done for persistence layer. In this layer

appears most difficulties too. The first thing to migrate, MsSQL driver, has fresh reactive

version:

implementation 'io.r2dbc:r2dbc-mssql'

Although for requests handling this version is sufficient it has significant drawbacks for

the usage in the application:

 No support for integrated security (the application uses LDAP with Kerberos)

[15].

 Database version control framework (FlyWay) used in the application is not

supporting this version.

Repository migration to reactive version was done with replacing JPA dependency with

corresponding R2DBC analogue. Major replacements for this change include also Hikari

pool replacement with R2dbc pool and drop of Hibernate framework.

implementation 'org.springframework.boot:spring-boot-starter-data-jpa'

implementation 'org.springframework.data:spring-boot-starter-data-r2dbc'

The application uses a lot of JPA annotations. R2dbc repositories are not supporting large

portion of JPA annotations such as composite keys (@Embeddable and @EmbeddedId),

generation strategy for primary keys (@GeneratedValue(strategy =

GenerationType.AUTO)), etc. To support those, it is possible to use Hibernate Reactive

Core [16], but it currently does not support MsSQL database.

For connection to external repositories the application uses class HttpClient from Apache

and mostly SOAP dependencies to receive data in XML format:

23

implementation 'org.apache.httpcomponents:httpclient:4.5.3'

implementation 'javax.xml.ws:jaxws-api:2.3.1'

implementation 'com.sun.xml.messaging.saaj:saaj-impl:1.4.0'

Because of latter performance testing is unreliable if tested with external repositories,

migration of mentioned implementation was left out of the scope of this thesis and was

not implemented, but was investigated, nevertheless. Starting from version 5 of Apache

client it provides reactive support [17]. For SOAP it is possible to wrap service with

asynchronous handler ReactorAsyncHandler [18]. As alternative for both approaches it

is possible to use WebClient – reactive http client included in Spring WebFlux [2], [19].

5.4 Infrastructure layer migration

Currently there is no reactive implementation of integrated security as LDAP with

Kerberos, that is used in the application. As alternative it is possible to use class from

Spring Security - ReactiveAuthentificationManagerAdapter, which “adapts an

AuthenticationManager to the reactive APIs. This is somewhat necessary because many

of the ways that credentials are stored (i.e. JDBC, LDAP, etc) do not have reactive

implementations.” [20]

The application uses Infinispan for clustered caching. It stores information on one node

into cache so another node receives reference of that stored instance, which can be

retrieved if needed. Although it is stated, that Infinispan is supporting non-blocking

caching [21], there was not luck during analysis to make it working in clustered mode for

both Mono and Flux units. Therefore, it was disabled during migration. For that reason,

the special version of the application with disabled caching was made.

24

6 Performance testing

This chapter describes preparation, execution and results of performance testing.

6.1 Input from monitoring

Grafana and Prometheus allow us to query and visualize wide spectre of application

statistical data. To setup performance tests firstly it is needed to determine normal load

of the application. From Grafana it is possible to query statistics, that collects Prometheus,

and draw the graph of queries per minute using following command:

sum(increase(http_server_requests_seconds_count[1m]))

The result of this query gives us combined load for both nodes of the application as seen

in Figure 6.

Request’s load varying during working hours (8:00 to 17:00) on average between 200

requests per minute and 400 requests per minute with spikes reaching 450. In peak hours

between 9:00 and 11:00 average load is 350.

Figure 6. Requests per minute during 24h.

25

6.2 Performance test

To examine the application performance tests were created. Using the determined average

request during peak hours two scenarios were defined to mimic live load:

 normal load of 350 users increased gradually for 1 minute requesting once (see

Figure 7).

 higher load of 350 users increased gradually for 1 minute making two requests

each.

The third scenario for stress testing was determined experimentally to better show

 @Tag("normal")

 @Test

 void testPerformanceNormal() throws IOException {

 TestPlanStats stats = testPlan(

 threadGroup(350, 1,

 httpSampler(ENDPOINT, PARAMS)

 .header("Authorization", CREDENTIALS)

 .children(

 responseAssertion()

 .containsSubstrings("\"success\": true")

))

 .rampUpPeriod(Duration.ofSeconds(60)),

 htmlReporter(getClass().getClassLoader()

 .getResource("")

 .getPath()

 .split("build")[0] + "build/reports/jmeter"))

 .run();

 assertThat(stats.overall().elapsedTimePercentile99())

 .isLessThan(Duration.ofSeconds(10));

 assertThat(stats.overall().errorsCount())

 .isLessThan(10);

 }

Figure 7. Example of developed performance test.

26

performance of WebFlux version of the application in comparison to its non-migrated

version: 10000 users increased gradually for 1 minute making four requests each.

Endpoint used is common URL for both application nodes behind load balancer.

The code in Figure 7 is the example of the jUnit test created for normal load performance

testing using jmeter-java-dsl library. Tags before the test are used to be able to run it

individually with Gradle in pipeline. Each test produce html report as well as JTL files.

The tests also use AssertJ dependency for code readability.

To analyse and test properly we need near-production conditions. For that purposes a

special Jenkins pipeline was created to run performance tests automatically against test

environment of the application as seen in Figure 8. As mentioned in the previous chapter,

the special version of the application with cache disabled was created to be better

comparable with the migrated version. Testing was consequently performed on the

migrated version, on the version without cache and on the existing application.

Node 1

Node 2

Load Balancer

MsSQL
Cluster

<Cache Cluster>

Figure 8. Testing infrastructure and communication

27

6.3 Performance testing results

In this chapter we will analyse performance tests result.

6.3.1 Normal load

Results of the tests under normal load are seen in Figure 9. Average response times and

minimal response times for the migrated version were the smallest, but with none to small

difference with other versions. The longest response time for the migrated version was

almost half compared with the original version. The version of the application with no

cache was better, than cache version in average and maximal response time, but in

minimal slower than two others. Longer response times for the original can be explained

with clustered caching- extra request between caching layer is done every time, when

request is landing on the version, where a cached object has only its reference from the

other node. Interestingly, in 99th percentile of responses the version with disabled cache

showed the lowest response time of three versions.

6.3.2 Higher load

Results of the tests under higher load are seen in Figure 10. They are very similar to the

previous results. Slightly higher response times on average and in minimal. Maximum

response time gap decreased between the migrated and the non-cache version but

increased in comparison with the original version. Percentile statistics show, that the

migrated version was more consistent showing slight increase in 90th and 95th and slight

decrease in 99th percentile.

6.3.3 Stress load

Results of response time under stress load are seen in Figure 11. Comparing response

times, it could be misread as the migrated version being the slowest of three versions, but

if to consider the number of failed responses in Figure 12 it makes the migrated version

most successful to produce response under heavy load. On the other hand, 10 % of

responses in the migrated version are nearly three minutes long and longer, making them

also too long for a requesting agent and probably droppable by a requestor.

28

Figure 9. Performance test response times under normal load (lower is better).

124
99

721

120 107

469

110 99

393

0

100

200

300

400

500

600

700

800

Average Min Max

Re
sp

on
se

 ti
m

e
(m

s)

Normal Load

MVC MVC(no cache) WebFlux

150

179

287

127 131
143

117 119

166

0

50

100

150

200

250

300

350

90th pct 95th pct 99th pct

Re
sp

on
se

 ti
m

e
(m

s)

Axis Title

Normal Load Percentile

MVC MVC(no cache) WebFlux

29

Figure 10. Performance test response times under higher load (lower is better).

162
110

946

131 118

434

118 111

421

0

100

200

300

400

500

600

700

800

900

1000

Average Min Max

Re
sp

on
se

 ti
m

e
(m

s)

Higher Load

MVC MVC(no cache) WebFlux

263

347

746

145 158

225

121 127
160

0

100

200

300

400

500

600

700

800

90th pct 95th pct 99th pct

Re
sp

on
se

 ti
m

e
(m

s)

Higher Load Percentile

MVC MVC(no cache) WebFlux

30

Figure 11. Performance test response times under stress load (lower is better).

13774

4

66608

14369

4

68518
74488

5

183250

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Average Min Max

Re
sp

on
se

 ti
m

e
(m

s)

Stress Load

MVC MVC(no cache) WebFlux

50574 52981
58559

50410
54634

58726

147491
155514

166320

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

90th pct 95th pct 99th pct

Re
sp

on
se

 ti
m

e
(m

s)

Stress Load Percentile

MVC MVC(no cache) WebFlux

31

Figure 12. Performance test failed requests under stress load (lower is better).

24473
22948

5782

0

5000

10000

15000

20000

25000

30000

MVC MVC(no cache) WebFlux

N
um

be
r o

f r
eq

ue
st

s

Stress Load Failed Requests

61,18

57,37

14,46

0

10

20

30

40

50

60

70

MVC MVC(no cache) WebFlux

(%
)

Stress Load Error Percentage

32

6.4 Impact on system resources

Although supposed in multiple articles about WebFlux comparison to MVC (e.g., [22]

[23]), definite advantage in memory and CPU usage was not seen during the tests. The

root cause of it is probably the same number of initial threads in a thread pool of the

application and the same memory allocation size in the application settings. During the

performance tests there was also seen drawbacks of Prometheus monitoring. With peak

numbers of request during stress tests Prometheus failed to connect to the application to

read statistics, so there are minor gaps in some readings from the application, which,

however, did not change overall trends.

As seen in Figures 13 through 17, the performance tests executed with normal, higher and

stress load accordingly as following: from 2:03 to 2:19 – WebFlux version was tested,

from 2:20 to 2:27 - the version with cache disabled was tested and from 2:32 to 2:38 –

the original version.

Figure 13. JVM total memory

33

 As seen in Figures 13 and 14, the usage of memory is even higher in the WebFlux

version.

 CPU level and garbage collection are also higher and longer in time in the WebFlux

version (see Figures 15 and 16) due to higher number of successful responses during the

stress test.

Figure 14. JVM Heap Memory

Figure 15. CPU usage

34

To sum up, resource monitoring did not demonstrate definite improvement in system

resource usage for the migrated application during the performance tests.

Figure 16. Garbage collections

35

7 Summary

In this thesis migration to Spring WebFlux from Spring MVC was analysed and assessed.

Migration of the existing application is always harder, than making something from

scratch. This is true also for migration done in the framework of this thesis. Code-wise

migrated application did not have all the features as the original application, lacking in

support of entities annotations, database versioning, caching and security features, that

local developers and company’s systems are using. Further investigation is needed for

adapting some workarounds and alternate solutions for fully migrating some features or

adapting code to existing solutions and paradigms.

The choice of monitoring and testing tools was sufficient, proving enough input for

gathering performance data. During the performance tests it was found minor drawback

of monitoring tool Prometheus, previously not encountered and hardly mentioned in

external sources. Further investigation is needed for overcoming that.

The performance tests results show, that WebFlux has advantage in speed under normal

and higher loads and has higher rate of successful responses than the original application

under stress load. No system resources benefits were spotted for the existing application.

The analysis also pointed out some bottlenecks of the existing application. Current

cashing solution for distributed cache is making response time longer due to exchange of

cache between different nodes when same data is queried multiple times. This statement

could be also applicable for having configuration for different kinds of endpoints cached

only on one node, making each request to other node longer.

To sum up, migration of the existing application is not feasible right now. Although the

application could benefit from migration in performance, important features, needed for

the application is not fully supported yet. Furthermore, it could require more time for

other team members for adaptation of functional paradigm and event-driven

development. As suggested in many different sources (e.g., [2]), sometimes it is wise to

36

adopt only some features of reactive stack and continue using wide-featured solutions

from blocking stack.

37

References

[1] S. Vidak, “Spring WebFlux Introduction” [Online]. Available:

https://mister11.github.io/posts/spring_webflux/. [Accessed 18.05.2021].

[2] “Web on Reactive Stack” [Online]. Available: https://docs.spring.io/spring-

framework/docs/current/reference/html/web-reactive.html. [Accessed

18.05.2021].

[3] “Class RestTemplate” [Online]. Available: https://docs.spring.io/spring-

framework/docs/current/reference/html/web-reactive.html. [Accessed

18.05.2021].

[4] O. Elgabry, “Spring: A Head Start ๞๟๠๡— Spring MVC (Part 5)” [Online].

Available: https://medium.com/omarelgabrys-blog/spring-a-head-start-spring-

mvc-part-5-db6b7b195e51. [Accessed 18.05.2021].

[5] K. Chandrakant, “Concurrency in Spring WebFlux” [Online]. Available:

https://www.baeldung.com/spring-webflux-concurrency. [Accessed 18.05.2021].

[6] “Class Mono<T>” [Online]. Available:

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html.

[Accessed 18.05.2021].

[7] “Class Flux<T>” [Online]. Available:

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html.

[Accessed 18.05.2021].

[8] “Interface Publisher<T>” [Online]. Available: https://www.reactive-

streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Publisher.html.

[Accessed 18.05.2021].

[9] “Interface Subscriber<T>” [Online]. Available: https://www.reactive-

streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Subscriber.html.

[Accessed 18.05.2021].

38

[10] “Comparisson to Alternatives” [Online]. Available:

https://prometheus.io/docs/introduction/comparison/. [Accessed 18.05.2021].

[11] “Getting Started” [Online]. Available:

https://prometheus.io/docs/prometheus/latest/getting_started/. [Accessed

18.05.2021].

[12] “Grafana Documentation” [Online]. Available:

https://grafana.com/docs/grafana/latest/. [Accessed 18.05.2021].

[13] “jmeter-java-dsl” [Online]. Available: https://github.com/abstracta/jmeter-java-

dsl. [Accessed 18.05.2021].

[14] “Guide to Spring 5 WebFlux” [Online]. Available:

https://www.baeldung.com/spring-webflux. [Accessed 18.05.2021].

[15] [Online]. Available: https://github.com/r2dbc/r2dbc-mssql/issues/101. [Accessed

18.05.2021].

[16] “Hibernate Reactive” [Online]. Available: https://github.com/hibernate/hibernate-

reactive. [Accessed 18.05.2021].

[17] “HttpClient Overview” [Online]. Available:

http://hc.apache.org/httpcomponents-client-5.1.x/index.html. [Accessed

18.05.2021].

[18] B. Garvelink, “Reactive Web Service Client with JAX-WS” [Online]. Available:

https://godatadriven.com/blog/reactive-web-service-client-with-jax-ws.

[Accessed 18.05.2021].

[19] “Make asynchronous SOAP call in Spring WebFlux” [Online]. Available:

https://stackoverflow.com/questions/60324772/make-asynchronous-soap-call-in-

spring-webflux. [Accessed 18.05.2021].

[20] “Class ReactiveAuthenticationManagerAdapter” [Online]. Available:

https://docs.spring.io/spring-

security/site/docs/current/api/org/springframework/security/authentication/Reacti

veAuthenticationManagerAdapter.html. [Accessed 18.05.2021].

[21] “Infinispan 10.1.0.Final” [Online]. Available:

https://infinispan.org/blog/2019/12/23/infinispan-10/. [Accessed 18.05.2021].

39

[22] A. Filichkin, “Spring Boot performance battle: blocking vs non-blocking vs

reactive” [Online]. Available: https://filia-aleks.medium.com/microservice-

performance-battle-spring-mvc-vs-webflux-80d39fd81bf0. [Accessed

18.05.2021].

[23] P. Minkowski, “Performance Comparison Between Spring MVC vs Spring

WebFlux with Elasticsearch” [Online]. Available:

https://piotrminkowski.com/2019/10/30/performance-comparison-between-

spring-mvc-and-spring-webflux-with-elasticsearch/. [Accessed 18.05.2021].

.

40

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Valeri Andrejev

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Feasibility Analysis of Migration from Spring MVC to Spring WebFlux: A

Case Study”, supervised by Vadim Kaparin

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

18.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

licence shall not be valid for the period.

