
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

Francisco Javier Ortín Cervera 204066 IAPM

PROOF OF FEEDBACK: A NOVEL BLOCKCHAIN

PROTOCOL FOR REWARDING VALUABLE FEEDBACK
Master Thesis

Academic Supervisor
Innar Liiv

PhD

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Francisco Javier Ortín Cervera
(signature)

Date: May 10, 2022

i

Annotatsioon

Tagasiside on alati vajalik, kuid mitte alati kätte saadud, eriti kui seda ei nõuta. Aga
sageli on see väga väärtuslik, eriti kui tegemist on spontaanse ja aktiivse tagasisidega. See
võib aidata igal üksusel ja ühiskonnal tervikuna kasvada ning seetõttu on mõistlik seda
premeerida. Siin esitatud töös pakutakse välja uus plokiahela protokoll nimega Tagasiside
tõendus, mida kliendid saavad kasutada tagasiside andmiseks, mida hindavad mitmed
kohtunid ja selle eest kliendid saavad premeeritud.

Selles lõputöös on nutilepingute abiga loodud prototüüp EVM plokiahelas ja välja on
töötatud DApp, et kasutajad saaksid protokolliga suhelda. Siin esitatud töö valideerib ka ka-
vandatud protokolli ja liidese, viies läbi auditi peamiselt nutilepingute kohta, mis näitavad,
et sellist süsteemi on võimalik luua, ning saadud väärtus ületab oluliselt tegevuskulusid.

Esitatud analüüsis tuuakse välja, kuidas üldine süsteem ei ole täielikult detsentraliseeritud,
kuna selle mõned osad tuleb hoida privaatsena, kuid mainitakse ka selles töös kasutatavaid
läbipaistvuse, jälgitavuse ja tokeniseerimise võimalusi, mis teevad selle siiski väga väärtus-
likuks protokolliks. Mõned ettepanekud tulevase arengu kohta, nagu süsteemi reguleeriva
DAO rakendamine, on esitatud ka selle lõputöö viimases osas.

ii

Abstract

Feedback is always needed but not always received, especially when it is not required. But
often it is very valuable, most notably when it is spontaneous and active feedback. This
can help any entity and the society as a whole grow, and that is why it makes sense to
reward it. The work here presented proposes a new blockchain protocol called the Proof of
Feedback, which customers can use to provide feedback that is evaluated by a set of jurors
and rewarded.

In this master thesis a prototype has been build with the help of smart contracts in an EVM
blockchain and a DApp has been developed for the users to interact with the protocol. This
thesis also validates the proposed protocol and interface by conducting an audit mainly on
the smart contracts showing that is possible to create such system and the value generated
greatly surpasses the operational cost.

In the analysis presented is pointed out how the overall system is not totally decentralized
since some parts of it must be kept private, but is also mentioned the transparency, traceabil-
ity and tokenization possibilities used in this work that still make it a very valuable protocol.
Some proposals for future development like the implementation of a DAO governing the
system are also presented at the end of this thesis.

iii

List of abbreviations and terms

API Application Programming Interface
BSC Binance Smart Chain
DAG Direct Acyclic Graph
DAO Decentralized Autonomous Organization
DApp Decentralized Application
DDoS Distributed Denial of Service
DB Database
DONs Decentralized Oracle Networks
DPoS Delegated Proof of Stake
EVM Ethereum Virtual Machine
EOA Externally Owned Account
ERC Ethereum Request for Comment
EUR Euro
ICO Initial Coin Offering
IoT Internet of Things
IPFS InterPlanetary File System
JSON JavaScript Object Notation
JWT JSON web token
KYC Know Your Client
NFT Non-Fungible Token
NPS Net Promoter Score
PBFT Practical Byzantine Fault Tolerance
PoA Proof of Authority
PoF Proof of Feedback
PoH Proof of History
PoRep Proof of Replication
PoS Proof of Stake
PoSA Proof of Stake Authority
PoW Proof of Work
SSL Secure Socket Layer
UI User Interface

iv

UK United Kingdom
UKCSI United Kingdom Customer Satisfaction Index
USD United States Dollar

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Theoretical background 3
2.1 Customer feedback studies . 3

2.1.1 Types of feedback . 4
2.1.2 How to define valuable feedback 6

2.2 Blockchain . 7
2.2.1 Core concepts . 8
2.2.2 Consensus protocols and mechanisms; mining and other blockchain

protocols . 10
2.2.3 Types of blockchains . 13
2.2.4 Blockchain issues . 14

2.3 Smart contracts . 14
2.3.1 EVM compatible blockchains 15
2.3.2 ERC-20 tokens . 16

2.4 Oracles . 17
2.4.1 Types of blockchain oracles . 18

2.5 Decentralized autonomous organizations (DAO) 18

3 Novel blockchain protocol: Proof of Feedback 20
3.1 Existing related works . 20
3.2 Architecture of the protocol . 21

3.2.1 Original idea . 21
3.2.2 Possible architectures . 22
3.2.3 Feedback storage . 26
3.2.4 Jurors . 26
3.2.5 Regulator node . 27
3.2.6 Validators . 27
3.2.7 Feedback evaluation . 29
3.2.8 Oracles . 29
3.2.9 Possibility of a ruling DAO . 30

3.3 Implementation prototype . 31

vi

3.3.1 Blockchain Polygon . 31
3.3.2 PoF contracts . 32
3.3.3 PoF client . 35
3.3.4 PoF server . 39

4 Validation of the proposed system 41
4.1 Smart contracts audit . 41

4.1.1 Gas costs analysis . 41
4.1.2 Contract vulnerabilities . 43
4.1.3 Platform security flaws . 47

4.2 Decentralization analysis . 47
4.2.1 Preserving feedback requirements 48

4.3 Possible improvements . 48

5 Conclusions 50

References 52

Appendices 64

Appendix 1 - "Proof of Feedback" contracts 65

vii

List of Figures

1 PoF original concept from the Easy Feedback Token whitepaper [1] . . . 21
2 PoF architecture model 1. 23
3 PoF architecture model 2. 24
4 PoF architecture model 3. 25
5 PoF feedback registration smart contract call 32
6 PoF feedback evaluation smart contract calls 33
7 PoF random jurors draw algorithm . 34
8 PoF interface. Landing page . 35
9 PoF interface. Customer view for giving feedback 36
10 Flow chart for the feedback registration process 37
11 PoF interface. Juror view while evaluating evaluating feedback 38
12 PoF interface. Feedback evaluation data flow chart 39

13 PoF reentrancy vulnerability point . 44

viii

List of Tables

1 Table showing corresponding consensus mechanism of the main blockchains 12
2 Main units of ether . 16

3 Table showing the corresponding evaluation grades 29

4 Table the gas cost of the different smart contract functions 42
5 April 2021 - April 2022 historical MATIC price 42
6 Future cost estimation in euros . 43
7 Generated value by feedback getting rewarded and jurors evaluating feedback 43
8 Relation of generated value versus cost 43

ix

1. Introduction

Feedback is something that is always needed in any organization that wants to advance and
serve well the society by fulfilling its mission. Feedback can be very valuable, depending
on whether it is well-founded and whether it helps the feedback recipient get better. There
are already several solutions in the business world to manage specific feedback such as
order process evaluation, product reviews, etc. There is also other feedback that is not
so easy to measure but that can be even more valuable than product feedback, especially
when it comes to a company’s reputation or business model.

Since feedback can have great value in many different aspects, it makes sense to reward
feedback that can help entities grow their business or some other kind of activity and serve
the society in a better way. But to do so using traditional economic tools and without an
interest of conflicts is very difficult. For this purpose, a decentralized protocol called “Proof
of Feedback” is designed to work in a decentralized manner with the help of blockchain
technologies. This original concept was firstly devised by Easy Feedback Token OÜ, and
sketched in its whitepaper [1], but research is needed to prove that it can be implemented it
and is worth doing it in the blockchain. The author of this master’s thesis is a board member
of the company. This work is meant to explore and research the technical possibilities of
such protocol, and how the sketch idea can be implemented.

This master’s thesis aims to answer the following questions:

■ Is it possible to develop a protocol for rewarding valuable spontaneous feedback
using blockchain technologies? Is it worth operating such system?

■ Is it possible to create a decentralized application (DApp) that allows users getting
rewarded?

■ Could this protocol be ruled and maintained by a decentralized autonomous or-
ganization (DAO)? What kind of functions could it assume and how could it be
governed?

The Proof of Feedback would be a protocol where customers can send feedback to a
company in a private and non-anonymous manner and then get rewarded for it. For that a
court of jurors evaluating the feedbacks needs to be designated and operate in a transparent

1

and external way to judge what is valuable feedback that needs to be rewarded.

Decentralization of such a rewarding system can help prevent conflict and promote trans-
parency while at the same time fulfil one of the main purposes of blockchain. Also, deleting
the middleman (entities managing all that process of rewarding economically) can help
make it cheaper and faster to process. But for that this system needs to be feasible and this
protocol idea needs research in various aspects, such as how feedback is transmitted from
clients to oracles, whether that transfer is done in or out of the blockchain; there is also a
need for research on how to use blockchain oracles that supply smart contracts with data
from the outside world.

This master’s thesis is meant to explore the possibilities of using these concepts involved
in Web 3 for tokenizating processes that previously would have been impossible to be
monetized. This explores further uses of blokchain technology other than decentralized
finance (DeFi), that has become so popular in the recent years. The innovation of the
blockchain and the value of feedback join in this work.

The outline of this work starts with an overview of the theoretical background about
feedback, blockchain, smart contracts and oracles. The third chapter presents the novel
blockchain protocol Proof of Feedback and a prototype developed to test it out. Then in
the fourth chapter are carried out different analysis of the protocol and the prototype to
validate the concept and its viability. And the thesis finishes with conclusions from the
presented protocol and prototype along with its validation process.

2

2. Theoretical background

In this chapter has been compiled a review of the available literature regarding the different
building blocks of this master’s thesis. Starting from customer feedback in section 2.1 as
the base point, following to the main base for all the technology involved in section 2.2
about blockchain, and going more specific into the different elements of the blockchain that
can make a feedback rewarding system possible: the building blocks of interaction, smart
contracts in section 2.3; the connections between the distributed system and the real-world
data, oracles in section 2.4; and the possibility of a more independent organization on top
of all that system, a decentralized autonomous organization (DAO) in section 2.5.

2.1 Customer feedback studies

Researching the available literature there are many different definitions of feedback,
mainly depending on to whom it is addressed. The following definition gives an overall
integrating view of what feedback is: “Feedback is personalized information based on
direct observation crafted and delivered so receivers can use the information to achieve
their best potential.” [2].

One of the main ideas that motivates the development of this work is that feedback gives
value to the entity receiving the feedback as well as to the society. The better the person
receiving the feedback can act/perform/operate/serve the more it contributes to the overall
good and growth of the society.

Different kinds of feedback have been researched and will be taken on account since they
can be extrapolated, but this work will focus on customer feedback that is the main object
of value to be rewarded.

One thing is clear, nowadays there is a common agreement on feedback playing a key role
in the growth and prosperity of any company. And there are multiple sources of feedback
as well as multiple kinds, each one has its nuances.

Already since the early 2000’s it was clear that the customer service is a very powerful
tool in the business world [3] and that starts from feedback.

3

Feedback is something that is always needed, even with approaches like having product
owners advocating for the customers need that is not enough, research shows that up to
half the features in IT products are never used [4]. At the same time there might be some
features that a client would appreciate very much but they are never developed due to the
lack of active communication between the client and the service provider. This is another
motive for incentivising feedback.

The UK Customer Satisfaction Index (UKCSI) shows that the numbers of customers facing
a problem is not even constant but has increased in the last year [5]. If anyone were to
think there is a point where there are no new problems, well this report proves it wrong at
least for the present time.

Another reason that shows feedback is always needed is the open loop problem [6],
referring to the challenges for product management to receive accurate customer feedback
to use as a basis in their decision-making processes.

Like Thomson said in its 2005 article "It costs more to retain a customer than to get a
new one." [7]. Knowing what the customer thinks and needs is crucial for the growth of a
company, this is one of the reasons why feedback is so valuable.

2.1.1 Types of feedback

We need to distinguish between different types of feedback depending on who is receiving
and who is giving the feedback.

■ Employees ↔ employees
■ Employee ↔ employer
■ Customer → company
■ Teacher ↔ student
■ Student ↔ student

As previously mentioned this work is focused on the feedback that is given by a customer
to a company (what will be called customer feedback or client feedback).

Within this category of customer feedback, when we focus on the consumer company type
there are also different types of feedback:

■ Complaints, for instance where there has been some problem in the provision of a
service, or a product does not fulfill the expectations of the customer.

4

■ Claims, very similar to the complaints, some would call it a kind of complaint which
regards a problem with ownership or lack of it, as well as deceptive services or
products. Sometimes it requires legal advice to be solved.

■ Suggestions, when a client has a proposal to improve a product or service.
■ Congratulations, the client feels the need to congratulate the company for some

product or service that has been really successful and that way inform that is a good
path to keep in the future.

■ Queries, often the customer does not know what is the intended use of a feature, or
some part of a process is not clear. Feedback in this cases is about making some
information more clear.

■ Requirements [8], this is very often in software development when client and provider
work tight together, or where often the pipelines depend directly on the requirements
from the customer. This kind of feedback is usually an integral part of the product
development, but it can also be regarded as customer feedback.

The first two types (complaints and claims) will be called reactive feedback while the other
4 (suggestions, congratulations, queries and requirements) will be designated as active

feedback.

It can be said that the previously mentioned types of feedback would fall in the category of
what is spontaneous feedback most of the time, though it could be part of programmatic
surveys.

In an article from 2019, Onorel [9] proposes different the types of feedback dividing them
in three categories:

1. Informal feedback, a superior, a subordinate, a customer, or a supplier may provide
informal comments on working performance. Indeed, regular observation of how
others behave when interacting with them is crucial to feedback. This necessitates
direct engagement within the workplace.

2. Formal feedback, after a longer period of observing employee behavior, a perfor-
mance appraisal processor, and workplace surveys, formal feedback is given.

3. 360º feedback. Though this one might be considered part of the formal feedback.
In this type of feedback, data is gathered from a variety of people involved in the
process, and the receiver’s attention is focused on its involvement as seen from many
angles.

But feedback can also be classified as:

5

■ Structured feedback: quantitative, qualitative (free text, questions). It comes from
the active initiative of the one receiving the feedback, Kurt Schneider calls it pulled

feedback [8] (from the article: “Response rates are typically low.”). Then here it can
be programmatic, as something that is asked over time or focused on a given product
or service that has just been provided.

■ Spontaneous feedback: from the initiative of the consumer, or as Kurt Schneider
would say pushed feedback.“No external motivation is involved. Usually, end-users
do not bother to write a letter or email hours after the encounter.” [8].

Another division in types of feedback can be publicly available and private feedback. The
first refers to feedback that anyone can read, either because it is published in the company’s
website or because it is in any kind of blog or web for reviews.

They have different effects on the receiver of the feedback depending on how the feedback
is written. We know from research that the chance of sales is influenced by seller ratings in
sites like Ebay [10] and that it also has an important impact in Amazon book sales [11].
We also know that longer feedback usually is correlated with its quality [12] as well as it
influences in the sales [11].

This master’s thesis is focused on the spontaneous customer feedback, even though the
developed prototype can be also used in structured feedback, but would still have to be
evaluated with the purpose of assessing the value that is giving to the receiver and the
society.

2.1.2 How to define valuable feedback

Not all feedback is good or equally valuable. There are many research papers talking about
the necessity of processing feedback [2, 13, 4] to get something valuable from it. As it can
be seen in the Gerdes, Stringam and Brookshire article [14] many attempts have been made
to develop an algorithm to asses quantitative and qualitative feedback, specifically text.

That is why, specially at the beginning of such a rewarding system, is very important the
human evaluation by experts in the field regarding the feedback. Professionals that can
assess how good it is. In the second chapter 3.2.7 would be proposed an standard system
for the evaluation of feedback.

There exists one unofficial standard that some might claim it defines what is good feedback,
if for "good" we take that which provokes economical growth. That is the Net Promoter
Score.

6

Net Promoter Score (NPS)

The Net Promoter Score is a metric that assesses customer satisfaction and predicts business
success. This tried-and-true statistic revolutionized the corporate world and is now the
gold standard for customer experience management programs all around the world.

It’s has been proclaimed since its introduction in 2003 as "the one number you need to
grow" [15]. NPS can be even successfully used to measure social performance too[16].

But it also has lots of critics specially in the research field [17, 18]. It could be said that the
main critic is that is not good feedback, since it does not help improve ones performance,
but is just an indicator of how the entity is doing in its market. And it can be criticized citing
Goodheart’s law: "When a measure becomes a target, it ceases to be a good measure"[19].

2.2 Blockchain

Blockchain is referred as the technology that enables the user interaction with different
applications and systems in a decentralized way by means of recording those interactions
(generally called transactions) in a distributed ledger [20]. That information is kept
untampered and unanimous by nodes in the network with the help of cryptographic hashes
for asserting the authenticity of the data and a consensus mechanism to agree on the state
of the blockchain at any time. This makes it tamper evident and tamper resistant [21].

One very important remark is the need to understand that there are many different
blockchains, there is not such a thing as “the blockchain”. Generally, every time blockchain
is mentioned it refers to the distributed ledger when using verbs such as: storing, present
in the blockchain, uploading to the blockchain; and to the network of nodes when talking
about interacting with the blockchain.

Blockchain technology enhances transparency, traceability and accountability [22, 23, 24,
25] of different kinds of data publicly stored in a blockchain. It is a technology that falls in
the category of distributed systems, and has many different products and other technologies
built on top of it. That is why it needs to be defined what are the key components of
blockchain, so it can be differentiated from other distributed technologies that, by being
used around blockchain, might also be mistaken as it.

Blockchain is a trustless alternative to centralized systems (like classical banking, API
service providers...) providing a system that instead of trust requires confidence in the tech-
nological robustness and integrity [26]. That is why it has also been said that “blockchains

7

are an instance of institutional evolution” [20].

Blockchain is notorious for its use in cryptocurrencies and different financial services
related to it. But the previously mentioned features are all important an crucial features
for possible applications in many other fields. When researching about these different use
cases, applications and implementations of blockchain there are mainly 3 fields that have
been extensively explored:

1. Healthcare [27] For the personal control of the patients data in a decentralized and
secure way [28]. This field of research often is intertwined with IoT [29, 28] which
is discussed in the next point.

2. Internet of Things (IoT) [30, 31, 32, 33] . Even connecting IoT and DeFi [34]. As
it happened with the healthcare field, IoT is also used in supply chain systems which
is the next big field [35].

3. Supply chain, several alternatives to the traditional tracking systems have been
proposed using blockchain that help solve trust problems [36]. But there is still a lot
of research needed on the adoption of it in this field [37].

Another topic that has been arising in the last year is the possibility of decentralized
governance, especially in what are so called Decentralized Autonomous Organizations
(DAO) that will be covered in section 2.5. But also in traditional institutions. There are
studies comparing the past and current governing systems as well as future possibilities
[25, 38].

Privacy is also a concern in blockchain technology and a whole set of technology tools and
methods have arised around that topic [39].

Some of the main blockchains [40] are: Bitcoin[41], Ethereum[42], IOTA[43] is intensively
used for IoT systems[44], Polygon, Avalanche, Hyperledger, Tezos, Ripple, Litecoin.

2.2.1 Core concepts

There are many blockchains that are built up using different components. But there are
certain concepts that are common to most of them, and therefore permit us talk about the
following core concepts:

■ Cryptographic hash functions: they perform what is called hashing, a way of
calculating a considerably unique output (called a message digest, or simply digest)
given an input of practically any size (e.g., a file, text, or image) using a cryptographic

8

hash function . Individuals can separately take input data, hash that data, and
derive the identical output, proving that the data has not changed. Even the tiniest
modification in the input (such as a single bit) results in a completely different output
digest.

■ Addresses: blockchain networks utilize an address, which is a short alphanumeric
string of characters produced from the blockchain network user’s public key using
a cryptographic hash function, as well as some other data (e.g., version number,
checksums). Addresses are typically used as the receiver and sender endpoints of a
transaction in most blockchain implementations.

■ Transactions: it could be said that a transaction is the unit of information that is
stored in the blockchain. A transaction is an exchange of information between two
or more parties. When dealing with cryptocurrencies, for example, a transaction is a
cryptocurrency transfer between blockchain network members. But a transaction
can be any interaction between different parties that is recorded in the blockchain, it
can be any information transfer between addresses, be those belonging to a person
or a smart contract (smart contracts will be discussed in 2.3). Usually transactions
need to be paid a fee to be processed.

■ Cryptographic nonce: An arbitrary number that is only used once. A cryptographic
nonce can be coupled with data to generate a variety of hash digests:
hash(data+ nonce) = digest

■ Public and private key: users in a blockchain make use of private and public keys
to make transactions. With different cryptographic methods private keys are used to
make digital signatures that can be later verified when validating transactions in a
block using the public key of the user.

■ Signatures: as mentioned in the previous point signatures are a critical component
of blockchains since they are used all the time to verify the origin and validity of
transactions.

■ Wallet: users can record their private keys manually but it is often done with the
help of software in a physically own device (called hardware wallets) or with the
help of some service provider.

■ Blocks: Users of the blockchain network submit potential transactions to the net-
work using software. These transactions are sent to one or more nodes within the
blockchain network. The submitted transactions are subsequently broadcast to the
rest of the network’s nodes, although this does not automatically add the transaction
to the blockchain. Once a pending transaction has been sent among nodes, it must
wait in a queue until it is published within a block (group of transactions) to the
blockchain by a publishing node in many blockchain systems.

■ Distributed ledger: is the main component of the blockchain, the ledger that all the
nodes in the blockchain must agree in its state (consensus). Is the copy that all nodes

9

keep of the transactions made between users of the given blockchain.
■ Nodes: a blockchain node is one of many devices that run the blockchain protocol

software and, in some cases, record transaction history. In a decentralized peer-to-
peer network, nodes communicate with one another. There are mainly three types of
nodes:

1. Lightweight, a node that does not keep or maintain a copy of the blockchain
and must rely on full nodes to process transactions.

2. Full-node, contains all current state of the blockchain, all the blocks that have
been registered in the distributed ledger. Sends current information to other
nodes, and verifies the validity and authenticity of freshly added blocks.

3. Archive node, is like a full node but with all information but since the genesis
block (first block of the blockchain).

■ Consensus mechanism: is the main mechanism that nodes in a blockchain use to
agree on the validity and the current status of the blockchain. It will be discussed
more in detail in in the next subsection 2.2.2.

2.2.2 Consensus protocols and mechanisms; mining and other
blockchain protocols

It will be discussed in this subsection how there are certain misleading terms around
consensus protocol and consensus mechanism. When talking about blockchain consensus
mechanisms Aggarwal and Kumar give the following definition: "A consensus mechanism
is a fault-tolerant mechanism used in a blockchain to reach an agreement on a single state
of the network among distributed nodes. These are protocols that make sure all nodes
are synchronized with each other and agree on transactions, which are legitimate and are
added to the blockchain. Their function is to ensure the validity and authenticity of the
transactions." [45].

But there is also a different understanding that will be referred as consensus protocol within
which we can include the consensus algorithm that is used during the mining process. For
instance the consensus protocol used in Bitcoin as explain below.

Nakamoto consensus protocol

The Nakamoto consensus protocol can be summarized by the following rules, which
correspond to the five components of a blockchain consensus protocol [46]:

1. Proof of Work (PoW): for generating blocks there requires finding a preimage to a
hash function so that hashing a block produces a hash satisfying a given difficulty

10

(for instance producing a hash starting with 8 zeros). This difficulty is updated every
2016 blocks depending on the network power so that the average block mining time
stays around 10 minutes.

2. Gossiping Rule: whenever a node receives or generates a new transaction it needs to
be broadcasted to the rest of the nodes in the network immediately.

3. Validation Rule: all blocks and transactions need to be validated before applying
the gossiping rule. Several things need to be validated: digital signatures of the
transaction, double-spending check, correctness of the transaction (e.g.: does the
wallet have enough coins to send).

4. Longest-Chain Rule: when there is more than one chain generated by the process of
different nodes adding transactions, the network takes as valid the longest one.

5. Block Rewards and Transaction Fees: in the form of a coinbase transaction to itself,
the block generator can claim a certain amount of new tokens plus fees collected
from all enclosed transactions.

If we deem Proof of Work as a consensus mechanism, is still part of the bigger picture here
indicated as consensus protocol. Consensus mechanism are often referred as consensus
algorithms too.

Main consensus mechanisms

Most blockchains have similar rules for their consensus protocols, and here are presented
the consensus mechanisms used in the main blockchains (Bitcoin, Ethereum , Binance
chains, Polygon...):

■ Proof of Work (PoW), that has been described above.
■ Proof of Stake (PoS), there is a group of so called validators in the network that

stake the native token of the blockchain (there is a minimum required). Then these
validators are randomly selected to create and mine a block. They also have the duty
of checking and validating blocks created by other validators [47].

■ Delegated Proof of Stake (DPoS), is similar to PoS but here any stakeholder can
delegate his/her voting power to a validator by staking tokens. Instead of constructing
blocks themselves, the stakeholders grant the right to create blocks to the delegates
they support, decreasing their computational power usage to zero [48].

■ Proof of Stake Authority (PoSA), is a combination of PoS and Proof of Authority
(PoA). In this mechanism there is a set of validators previously selected (PoA) and
then those validators stake their tokens to get elected for mining blocks (PoS).

■ Direct Acyclic Graph (DAG), Tangle, Any new arriving transaction in Tangle could
join the blockchain network as a new vertex (or tip) as soon as they approve a number

11

of unconfirmed transactions (typically two with the random selection). When the
cumulative weight (the total of its own weight and the weights of other transactions)
reaches the predefined threshold, confirmation is obtained [49].

There are many more: Proof of Space [50], Proof of Elapsed Time [51], Practical Byzantine
Fault Tolerance (PBFT) [52], but it is not possible to cover all of them in this work so only
the most important ones are described, they are also presented in table 1.

Table 1. Table showing corresponding consensus mechanism of the main blockchains

Blockchain Consensus mechanism Source
Bitcoin Proof of Work Original paper [53]

Ethereum Moving from PoW to PoS Official documenta-
tion[47]

IOTA Tangle with the helpt of Direct Acyclic
Graph

Official documenta-
tion[54]

Polygon Proof of Stake Official documenta-
tion[55]

BinanceSmartChain Proof of Stake Authority Official documenta-
tion[56]

Avalanche Snowball Algorithm (with the help of
DAGs)

Official documenta-
tion[57]

Solana Proof of History (PoH) but it is also com-
bined with PoS and the Proof of Repli-
cation (PoRep)

Solana whitepaper:
"The combination
of PoRep and PoH
provides a defense
against forgery of the
ledger with respect to
time (ordering) and
storage."[58]

Blockchain protocols

There is an extended understanding to consensus mechanisms. There are blockchain
projects that used the noun "proof" to start naming their protocols that need different
parties agreement on some part of their project. The author of this thesis has found
appropriate to name them blockchain protocols, differentiating them from real blockchain
consensus mechanism on the whole network level. Examples of this kind of protocols
are: Proof of Disease [59], Proof of humanity [60] not to be mistaken with the Kleros one
[61], Proof of Ownership [62] and many more that are constantly created. These type of

12

"consensus" protocols are deployed in a blockchain (or in several different blockchains,
what could make them cross-chain protocols), they are not natively part of the blockchain.

2.2.3 Types of blockchains

Permissionless and permissioned approaches to blockchain have been characterized as
two general high-level categories. Anyone can read and write to the blockchain without
authorization in a permissionless blockchain network. Permissioned blockchain networks
restrict participation to specified individuals or organizations and provide finer control.
Understanding the variations between these two categories allows any entity to determine
which subset of blockchain technologies is best suited to its requirements, when considering
its adoption [21].

There is a more general categorization of blockchains:

■ Permisionless blockchains:
– Public blockchains, anyone can communicate with another transacting party us-

ing public or open blockchains. The two parties’ identities are either pseudony-
mous or completely anonymous. An open blockchain indicates that transactions
have little to no privacy depending on the blockchain, as all participants can
see all transactions. An open blockchain also necessitates a significant amount
of computational resources to operate a large-scale distributed ledger [63].

– Side blockchains, a sidechain is a secondary blockchain that is linked to the
main chain by a two-way peg. They are often developed to help solving certain
blockchain problems like scalability, security, privacy, etc [64]. They can be
considered a first step towards cross-chains.

– Cross-chains, these are specific blockchains build on top of their blockchains
to interconnect them. They might be referred as layer 2 blockchains and they
are used to access different blockchains (layer 1) in a decentralized manner.
Cross-chain refers to the application of certain technologies to allow value
to pass through barriers between chains, allowing value to be transferred
from one blockchain to another, allowing for value circulation. The data
synchronization between the ledgers must ensure that the changes in the two
ledgers are consistent; otherwise, problems such as double payment or value
loss would arise [65].

■ Permissioned blockchains:
– Private blockchains, only pre-validated persons or groups of individuals can

access the ledger as well as enter and see data using private or closed blockchain
technologies. Others are aware of all users’ identities before they transact [63].

13

Quorum and Hyperledger projects are examples of private blockchains [66].
– Consortium blockchains, are a semi-decentralized kind in which the blockchain

network is managed by multiple organizations. It differs from the private
blockchain, which is controlled by a single entity. In this type of blockchain,
more than one organization serves as the authority for mining and information
exchange. Blockchains are employed in a variety of industries, including bank-
ing and government agencies. R3 is an example of a consortium blockchain
[52].

– Hybrid blockchains, is a merged solution of public and private blockchain
networks. In this situation, the functionality of both blockchains are used (for
example, users can choose between a "private permission-based system" and a
"public permission-less system"). Users can regulate who has access to which
data in the blockchain on the hybrid platform. Only a few of the blockchain’s
records are allowed to be made public, while the rest are kept hidden in the
private network [52].

2.2.4 Blockchain issues

Clearly, there is a need to research and develop more blockchain related technologies.
By the year 2016, even though the idea of blockchain can be claimed to have existed
already for almost 30 years [21], research was focused only on Bitcoin [67], leaving many
important related topics such as smart contracts and others covered in this master’s thesis
out of the scope. It is also understandable since the name as we use it today was first
coined in the famous Satoshi Nakamoto’s paper in 2008 [53].

This technology still presents many challenges and open questions for the research com-
munity concerning all aspects: security [32], blockchain is not immune to malicious users
[21] and hackers and it has being exploited in different ways; regulations [68, 69, 38];
privacy [39]; the connection with the real-world [44], here oracles present a very important
role which will be discussed in section 2.4.

2.3 Smart contracts

Smart contracts are programs deployed in a blockchain that can interact independently with
the different participants of the blockchain (wallets, nodes, other smart contracts). They
are self-executing [70], tamper resistant, distributed, immutable (once they are deployed
they cannot be modified). The idea of smart contracts was originally proposed by Nick
Szabo [71].

14

With the help of a Turing-complete virtual machine referred as Ethereum virtual machine
(EVM), Ethereum is the first public blockchain platform to handle complex and customiz-
able smart contracts. Every node in the Ethereum network runs an EVM implementation
and executes the same instructions, making EVM the runtime environment for smart
contracts [27]. Or as it is described in the official Ethereum documentation: "The EVM’s
physical instantiation can’t be described in the same way that one might point to a cloud or
an ocean wave, but it does exist as one single entity maintained by thousands of connected
computers running an Ethereum client." [72]. Every Ethereum node runs on the EVM to
maintain consensus across the blockchain.

The smart contracts can be written in different programming languages depending on the
blockchain. For the EVM the most popular are Solidity and Viper.The contract code is
compiled down to EVM bytecode and deployed on the blockchain for execution. Ethereum
was the first blockchain to deploy smart contracts on a large scale, and it is now the
most popular smart contract development platform. It may be used to create a variety of
decentralized apps (DApps), such as digital rights management, crowdfunding, gambling,
and so on.

Smart contracts have many advantages but they have to be carefully managed since small
mistakes can cause big losses in hacks. During last year 2021, happened the biggest exploit
of a smart contract so far where around $611,000,000 in cryptocurrencies was stolen
from Poly Network a cross-chain protocoll [73]. Recently an Estonian company called
Superfluid got hacked for a sum of 8.7M$ by exploiding one unchecked parameter given
in a function of the smart contracts [74].

2.3.1 EVM compatible blockchains

We have mentioned Ethereum as a blokckchain but to be more precise, with that it was
meant the Ethereum mainnet. Ethereum in itself is a protocol that is open source. That has
allowed many other blockchain projects launch their own EVM with certain adjustments
of their own, these are called EVM compatible blockchains, since the core concepts are the
same and usually the same smart contract code can be deployed in any compatible chain
without any change in the programming.

We can talk about the EVM as a supercomputer build up by thousands of other computers
running interconnected as the nodes of a blockchain. Many EVM compatible are considered
side-chains of Ethereum (sidechains described in subsection 2.2.3).

When we talk about EVM compatible blockchains we often refer to chains that use forks of

15

the EVM with small adaptations for their own projects. For instance Polygon already uses
PoS as the consensus mechanism for the blockchain. They are often permissionless chains,
but since the code is open source nobody can stop permissioned chains to be developed
based on an EVM.

This compatibility allows different projects to target specific goals to solve with the help
of blockchain and at the same time making the connection with other blockchains easy,
allowing fast transfer of projects. They are often cheaper and faster alternatives.

Native token and its units

Ethereum has ether (ETH) as its native cryptocurrency. Ether is used to pay gas fees for
the transactions recorded in the blockchain, it is also used in many applications as means
of payment. It can be divided in smaller unit as it can have up to 18 decimals. In table 2
are presented the main units of ethers metric system [75].

Table 2. Main units of ether

Unit Wei Value Wei
wei 1 wei 1
Kwei (babbage) 103 wei 1,000
Mwei (lovelace) 106 wei 1,000,000
Gwei (shannon) 109 wei 1,000,000,000
microether (szabo) 1012 wei 1,000,000,000,000
milliether (finney) 1015 wei 1,000,000,000,000,000
ether 1018 wei 1,000,000,000,000,000,000

All EVM compatible blockchains have their own native token to fulfill at least the purposes
of paying transaction fees and they keep the same division of units as in Ethereum.

2.3.2 ERC-20 tokens

There are other kinds of cryptocurrencies that can be used in blockchains and in EVM
compatible blockchains is even an standard that has become very popular for fungible
tokens, the ERC-20 [76]. ERC stands for Ethereum Request for Comment and is the prefix
for the standards used in the EVM. The Ethereum community reviews these documents
called ’Ethereum Improvement Proposal’ (EIP). They provide suggestions, and the devel-
oper who generated the document may alter it as a result. After working through the EIP
process, the Ethereum community accepts some of these documents, finalizes them, and
then developers implement them. This is how the document gets transformed into an ERC.

They have been used many times for raising funds [77] with a process called Initial Coin

16

Offering (ICO). Interested investors can purchase a new cryptocurrency token produced by
a blockchain project through the ICO. The issued token may have some utility in relation
to the project’s product or service, or it may simply represent a stake in a company or
project. ERC-20 tokens have been used in many blockchain projects as fungible tokens
used to run different protocols by giving monetary incentives (tokens). This is the case of
the EASYF used in the protocol proposed in this master’s thesis. The code for the EASYF
in the appendix one in listing 1.

2.4 Oracles

As previously mentioned one of the blockchain smart contracts main characteristics is
the determinism of the programs, the execution of business logic code in a decentralized
architecture where all executing nodes trust and agree on the execution outcomes [78].

One of the most significant problems of smart contract applications is the inability to
access data outside of the blockchain, this is called the oracle problem. This is because the
blockchain is a deterministic system, which means that every node in the network must be
able to replay every transaction and smart contract code and get the same outcome.

There might be a case where a smart contracts needs to make a query from an external
source like a web service API. While executing the contract at a given time a node might
get value x from that query, and at the same time maybe with some milliseconds difference,
another node processing the same block and smart contract call might get a different
value x′ ≠ x for whatever reason (data quickly changes, the query did not work...). This
difference does not comply with the determinism of the blockchain. If, for example, the
value of the EUR/USD asset is requested from the API, as this is highly volatile, these
circumstances are quite likely to occur [79].

In simple terms, an oracle is a data supplier. An oracle answers inquiries about the real
world through smart contracts. In most circumstances, a smart contract would be unable to
know the information it needs to perform its function without the assistance of an oracle,
since the only information that has all the time available is the one that resides in the
blockchain.

Oracles give the Web3 ecosystem a method to connect to existing data sources, legacy
systems, and advanced calculations. A whole new system of what are called decentralized
oracle networks (DONs) have been developed to enable the implementation of hybrid
smart contracts, in which on-chain code and off-chain infrastructure are coupled to provide
complex decentralized applications (dApps) that react to real-world events and interact

17

with traditional systems [80].

2.4.1 Types of blockchain oracles

Beniiche in his study of blockchain oracles [81] proposes different types of oracles based
on the following qualities:

■ Source: what is the origin of the data. There are several options: it comes from
software, hardware or directly from human interaction (in which case, it would still
be intermediate by software).

■ Direction of information: the data is coming into the blockchain (inbound) or is send
from the blockchain to an external agent (outbound).

■ Trust: is the origin of the data centralized or decentralized. Decentralization is re-
garded as more trustable since it can also avoid small errors that can pass unchecked.

A single oracle can be classified into several of these types. A centralized inbound software
oracle, for example, is one that gets information from a company’s website.

2.5 Decentralized autonomous organizations (DAO)

According to Singh and Kim "a Decentralized Autonomous Organization (DAO) is an
organization that can run on its own predefined protocols without having any hierarchical
management. It operates based on the predefined smart contract code such as EVM in
Ethereum platform." [82].

There is not much research done yet about how people in DAOs deal with the socio-
technical issues that arise from the conflict between pseudonymity while they still need to
collaborate and trust one another [83].

In some DAOs, they issue tokens to offer their members governance rights, and blockchain
users can trade in these governance tokens to become members of DAOs (with accom-
panying governance rights). As a result, by making distributed operational or strategic
decisions, DAO members can contribute to the organization’s goals. On-chain voting can
be used to reach a decentralized consensus on these decisions [84].

There are several DAO’s that work on a membership based on the ownership of NFT’s
[85]. There are several big projects based on this mechanism [86, 87, 88]. In these cases
the token itself might represent ownership of a share of some treasury [85].

18

There have been several researches about how DAO can influence different organizations.
For instance, in the university of Glasgow, an exploratory DAO was developed for storing
students’ grades untampered in the blockchain with a rewarding system which turned out
to not be suitable according to their observations [89].

On the other hand there are certain applications regarding finance that have proven to be
very effective and useful. One example of that is MakerDAO, which is regarded as one of
the most advanced and well-known DeFi ecosystems, intends to use over collateralization
to develop the Dai stablecoin, which may address many of the theoretical and practical
issues that other stablecoins have faced [90].

DAO’s are a very typical organization structure for DApps [84] and are in the core concepts
of what is called Web3.

19

3. Novel blockchain protocol: Proof of Feed-
back

This master’s thesis proposes a new blockchain protocol called the Proof of Feedback (PoF).
The main idea of this protocol is to reward good feedback that is given from customers to
different entities. That feedback needs to be evaluated in an open and transparent manner
which is one of the concerns on the viability of this protocol.

The first idea and draft of this protocol was proposed by the Estonian company Easy
Feedback Token OÜ in their whitepaper [1] for the ICO of the EASYF, an ERC-20 token
deployed in the Polygon blockchain to be the rewarding token of the PoF. The idea in the
whitepaper [1] is conceptually drafted and the technicalities on how to implement that
protocol as well as what things are possible and which ones not, need to be investigated.
The proposal is also open to be changed and adapted to the research results of this master’s
thesis.

The PoF is a protocol that needs to be regional so, it needs an implementation for each
sovereign country. In the subsection 3.2.2 about the architecture of the protocol will be
discussed what parts of the protocol are implemented locally. This will be further discussed
in subsection 3.2.4.

The main purpose of this work is to design a prototype studying the different technical
difficulties and obstacles that might arise during its implementation.

3.1 Existing related works

Looking for similar systems in research papers there has not been found any work related
to rewarding feedback with the help of blockchain technology. Nonetheless there have
been found systems implementing non-native consensus mechanism like systems that
connect the blockchain with end users. Most research papers found with similar works are
in the healthcare field [59, 91].

In the healthcare field there has been developed a system interacting with the blockchain
with a consensus mechanism called Proof of Disease [59] that aims to solve different

20

challenges that have not been solve by previous electronic health records and health
exchange information systems. It is similar to the this work in some of the requirements,
since the Proof of Disease protocol needs to store data using a public ledger with different
external parties (oracles) taking part in that process.

In the university of Glasgow was implemented a prototype system in the form of a DAO to
grade students with the help of blockchain [89] and there are public rewards depending
on those grades. But is hard to know up to what extend that system can be similar to the
proposed protocol in this thesis.

3.2 Architecture of the protocol

3.2.1 Original idea

In figure 1 from the whitepaper [1] can be observed a minimal version of the main parts of
the Proof of Feedback.

Figure 1. PoF original concept from the Easy Feedback Token whitepaper [1]

A user gives feedback through some user interface (UI) and then that feedback is passed
to the correspondent validator (Company validator in the case of company registered in a
paid service where they evaluate the feedback they have received; Internal validator for a

21

non-registered company; and the lawyer validator when the feedback is a complain needing
legal intervention for solving the case). Those validators are composed of different juries
that evaluate the feedback and pass that score to the regulator node that rewards the user
and necessary participants of the internal validator.

In this original proposal there is no interaction with the blockchain until the last step.
Making it a totally centralized process until the owner of the ERC-20 EASYF token
minting contract interacts with the blockchain. This is done by a regulator node that would
mint EASYF only in the last step. This work aims to study possible ways to implement
such system with the help of blockchain technology. A more decentralized and transparent
alternative would be to have all the validators as smart contracts in the blockchain.

In the next subsection 3.2.2 different protocol architecture possibilities will be described
and analysed.

3.2.2 Possible architectures

There are mainly three layers with a possible fourth in the Proof of Feedback that will be
later discussed in more detail but will be briefly introduced here:

1. Feedback origin layer: here is where starts the interaction from the end-user with
the PoF by writing feedback to an specific company through the a DApp with a UI
for providing feedback (in the original concept shown in figure 1 the first 2 blocks:
user and feedback). That feedback is then passed to the next layer.

2. Evaluation layer: once the feedback from the user is received and registered it
needs to be evaluated by a court of jurors that will decide if the feedback is worth a
reward and they will give an evaluation to it.

3. Rewarding layer: in this last layer, primarily the customer received the reward in
form of EASYF tokens and in some cases the jurors received a reward too.

4. Minting layer: In 2 of the proposed models this one is part of the rewarding layer.
This level is composed by the contract of the protocol in charge of minting the ERC-
20 tokens, either to directly reward a customer and jurors, or to provide liquidity to a
contract.

In the aim of decentralizing this process as much as possible and making everything
transparent as well as publicly traceable, the evaluation layer would be already in direct
interaction with the blockchain by implementing the different validators in smart contracts.

Also giving companies the possibilities to directly mint EASYF tokens would lead to the

22

possibility of unbalance or totally biased rewarding, since it could be in their own interest
to reward more their customers. This could motivate other companies might start doing
the same up to a point where either the total supply is fastly minted making the protocol
useless and the token losing all its value in the market. That is why it is proposed that the
companies that want to reward using the PoF, can deploy their own company node and
provide it with some EASYF token liquidity that they might acquire in the market.

PoF architecture 1

In the architecture shown in figure 2 the oracle functions that are specific for each country
are concentrated in one regulator node which is unique for each country.

Since the minting of the EASYF can be done only by the owner of the contract and that
is only one address, there would be the need to have an intermediary "minter" contract
that would own the ERC-20 token contract. Then the different regulator nodes would have
access to call this minter contract which, in turn, would mint the necessary tokens.

Figure 2. PoF architecture model 1.

23

PoF architecture 2

In this second proposal the regulator and minter node would be fused in one, decreasing
the number of internal participants in the protocol and calls between each other. This has
the downside that each internal and lawyer validators need to implement its own oracle
calls to get external knowledge about what is the regional purchasing power. The oracle
for the price of the EASYF could remain in the regulator node since it should be the same
across all the global market.

As it can be seem in figure 3 the rewarding and minting layer are the same in this architec-
ture.

Figure 3. PoF architecture model 2.

PoF architecture 3

The third variant proposed in figure 4 is mostly like the first one in figure 2 but in this one
the regulator nodes are provided some liquidity of EASYF and they can directly reward
the customers and the jurors with their contract balance.

24

Figure 4. PoF architecture model 3.

In the diagram show in figure 4 the minter designates the person or entity owning the
EASYF contract that would be the administrator at the beginning but with a possibility to
be later passed to a regulating DAO that would decide on the supply of the token.

The main advantage of this architecture is that if the contracts of the validators, the regulator
or the minting node were to be hacked, only the liquidity they have at the moment of the
hack could be used and not take over all the minting leaving the value of the token to
quickly drop due to the control over its supply in the PoF, the main system that gives it
meaning. At the same time it has the drawback that at the beginning is still being owned
by a single entity (that does not necessarily mean a single failure point, the ownership
could be performed with a multi-signature wallet providing increased security) which is
not a very decentralized governing mechanism. Even when handing over the ownership
of the ERC-20 token contract to a DAO would not be much different security since the
DAO is governed by a smart contract that, in turn, can be hacked. This leaves us with the
main reason to use this architecture would be due to governing motives, since it could be
controlled how much each regional implementation of the PoF can spend.

25

3.2.3 Feedback storage

The matter on how to store the feedback provided by the customer is very delicate, since it
needs to be private but at the same time interact with a system that is public and transparent.
How can data be stored in a public ledger but at the same time be private, meaning that
only the interested parties can have access to it is the key question here.

We can analyze first who are those interested parties. First of all the customer providing
the feedback, then the jurors that must evaluate it and third the company receiving that
feedback. The rest of the society should not have access to the content of that feedback.

One possibility to store the feedback in a public but private way is by storing publicly the
data encrypted with the public key of the interested parties (that public key would be the
wallet addresses), and therefore only those parties could access that data. This data could
be stored in the blockchain and stay there forever encrypted, but it has a cost, "Forever
isn’t free" [92]. Testing it in Polygon testnet the cost of storing 10 000 bytes of data is
297089520 GWei and if the cost of the token is 1.20C/MATIC that means that storing 10
000 bytes of data on-chain would cost 0.3565C. This is clearly not scalable. The contract
used for testing this can be found in the appendix listing 6.

Another public option would be using the InterPlanetary File System (IPFS) [93]. Accord-
ing to the protocol documentation "IPFS is a distributed system for storing and accessing
files, websites, applications, and data." [94]. It has become very popular in Web3 applica-
tions since it is an open and decentralized protocol that allows users to store information
without it being inside a single entity infrastructure. This would be a more optimal solution.
But still would require being encrypted with the public keys of the parties allowed to access
that data (this requirement also applies to the on-chain storage solution).

The third option is keeping records of the feedback in a traditional and centralized manner
in a database. This option is easier to handle, especially when taking on account data
privacy laws. It is also true that feedback does not have to be stored forever. Its storage
is essentially needed to be forwarded to the interested parties. This has been the option
implemented in the prototype developed during this master’s thesis.

3.2.4 Jurors

The jurors are external parties, persons interacting with the protocol through externally
owned accounts (EOAs), as oracles in the sense that they provide real world data, that

26

is external to the blockchain. They are assigned feedback to evaluate according to a
pre-established criteria.

There are some proposed requirements [1] that the jurors should fulfill to be deemed
trustworthy and competent in the evaluation of feedback:

1. Having set up a company and/or to have been self-employed.
2. Have working experience in at least three sectors of activity. We might also have the

possibility of having Jurors specialized in a single sector of activity, who will only
have the option of evaluating feedback in that sector.

3. Have more than 15 years of work experience.

These requirements are a proposal not yet tested. The initial proposal for choosing the
jurors is that the documentation will be sent to a notary for controlling the compliance with
these requirements and is the entity administrating the Proof of Feedback that will elect
the jurors. The number of jurors can grow overtime as long as they meet the requirements.
The Court of Jurors is elected for every country where the PoF is implemented so that they
can understand the local environment (language, market, legislation, etc).

This selection part is the one that can be delegated to a DAO and will be discussed in
section 3.2.9

3.2.5 Regulator node

The rewarding of the customer and the jurors happen through this node. The validators
provide the evaluation that the jurors have given and is the regulator that calculates what
should be the right amount rewarded to the customer.

3.2.6 Validators

The role of the validators is the to be the connection with the blockchain. Firstly, the user
interacts with them in a direct or indirect way when registering feedback, and then are
the jurors that provide their evaluations inserting them through the validators. There are
different validators depending on two things: the relationship of the company with the
administrator of the protocol; and the kind of feedback given.

27

Internal validator

The internal validator receives the feedback (customer address, feedback id) and needs to
randomly select 3 jurors to give them the evaluation task. This is an extra challenge since
the EVM is a deterministic computer and performing a random selection on-chain is an
easily hackable task in the sense, that it could be predicted who are going to be the jurors,
and therefore, the hacker could input information in a way that the agreed juror would get
to evaluate the feedback previously set.

To avoid such previously fixed performance there would be needed an oracle to provide
off-chain randomness that cannot be predicted. This kind of oracle already exits [95], this
option though needs an extra call to an external contract and pay the fee for such call.
Solving this problem will be discussed in the implementation section 3.3.2 solving this
issue.

Lawyer validator

When the feedback is a complaint/claim that requires legal advice or remedies during the
process, the lawyer validator will be the only one in charge of managing the rewards to
users. In each jurisdiction, a renowned legal firm specializing in consumer protection will
form the lawyer validator. Users that offer input that meets the following conditions would
receive tokens from this legal validator oracle:

1. The feedback sent has a chance of being dealt with as a judicial or extrajudicial
claim.

2. When a customer engages a law company to handle the claim, the claim is processed,
and then after the judge has ruled the case, the lawyer validator would compensate
the user with EASYF tokens.

3. Once the judge has handed down his sentence, the lawyer validator oracle would
award EASYF tokens equal to 10% of the compensation received.

Company validator

In the original whitepaper [1] there was another kind of validator called company validator
that was used for companies that are customers of Easy Feedback. This kind of validator
led to have a company with minting capabilities and with no control by the rest of the
network. This capability has been considered unsuitable for the system, removed and
the possibility for a company to reward EASYF is been left in a way that they can have
a company node but they have to provide it themselves with the liquidity by means of
purchasing EASYF in the market.

28

3.2.7 Feedback evaluation

The final result of the evaluation will be the average of the 3 Jurors’ scores [1].

For each of the three categories of the feedback that are evaluated: usefulness, originality
and execution, the Court of Jurors will use the following grading scale:

Very Low Low High Medium Very High
0 1 2 3 4

Table 3. Table showing the corresponding evaluation grades

And, therefore, the maximum total sum of the 3 Jurors would be 36 points giving a final
result of an average of 12 points. This average result needs to be translated to a value in
EASYF tokens. That amount needs to depend on what is the current price of EASYF in
the market and the Big Mac index [96] of the country where the company receiving the
feedback is located.This will be further discussed int the subsection about the different
oracles 3.2.8

All scores will be transformed into tokens by the equivalence of 12 points means the dollar
equivalent of the US price of 2 Big Macs which according to the current Big Mac index
for Estonia (2022) published by The Economist magazine $4.43, would mean a reward of
8.86 dollars.

This value of around 8 dollars with the equivalence 1 EASYF = 0.05 USD, would corre-
spond initially to 160 EASYF, at the moment of listing in trading exchanges. The 160
tokens will vary depending on the value at which they are traded on the market.

3.2.8 Oracles

Once the feedback is in the blockchain there are still two important data needed from the
real world, and therefore two external oracles are needed to provide them.

Token market price feeding

The ideal solution would be to have an external decentralized oracle hosted by a service
like Chainlink [97] but since the token is still not traded in the market, such implementation
is not feasible in the scope of this work. That is why it will be implemented using a smart
contract written by the author of this thesis.

29

Big Mac index feeding

This index is well-known but there are still not public oracles implemented for it. The goal
is to have such public oracle feeding information to the PoF, but such implementation has
been left out the scope of this work and it has been implemented manually with a smart
contract. And probably for this feed, since this index is updated once per year is not worth
implementing a whole oracle system only for it.

3.2.9 Possibility of a ruling DAO

There are many aspects of this system that would still be managed and ruled by a sin-
gle entity, the company implementing the system. This is not what is sought with the
development of DApps in a blockchain (what is called Web3). This is a bottle neck for
decentralization. Many of the functions executed by the initial administrator of the protocol
could be given to a DAO.

Governing scope of the DAO

Here are discussed the different functions the DAO could perform:

■ Approve new jurors for the different internal validators. That would require the devel-
opment of an additional system to proposed new jurors and a mechanism for voters
to revise their application and make a voting decision accordingly. This presents an
extra difficulty due to the regional implementation of the internal validators.

■ Revise and update the requirements for new jurors applications.
■ Revise and update the evaluation criteria and methods.
■ Audit the different systems of the Proof of Feedback (e.g.: draw system, the maxi-

mum rewards, the evaluation layer).
■ Audit the amount of feedback each customer and each juror has received. This

audits can be held in a decentralized way with the help of the Graph, a decentralized
protocol for indexing data of the blockchain [98].

■ Provide liquidity to the different regulator nodes by minting new EASYF-s. This
would mean giving the DAO the ownership of the EASYF smart contract.

Note all these functions would need to be given at once, and they require further research.

Possible voting powers:

There are several voting powers that can be granted by:

30

■ EASYF token holdings.
■ Some certification that the participant has given feedback using the PoF (one voting

power). This could be recorded by giving a feedback NFT (Non-Fungible Token) to
each customer that has given feedback.

■ Amount of times interacted with the PoF. This could also be implemented with the
help of an NFT.

■ Amount of times with successful feedback in the PoF.
■ Delegated staking of EASYF.
■ Using LP (Liquidity Provider) tokens that have been accumulated by staking.

3.3 Implementation prototype

For testing this protocol a reduced version has been implemented. Reduced in the sense
that includes only one internal validator from the regional layer that covers one sector of
the economic system; and one regional regulator node. In the prototype has been left out
the lawyer validator since it involves more parties and legal matters out of the scope in this
master’s thesis.

The smart contracts implementation will be discussed in subsection 3.3.2. The interactions
between the end-users and the jurors with the smart contracts will be explained in subsec-
tion 3.3.3. And the management of the feedback as well as users and jurors data will be
detailed in subsection 3.3.4.

The whole system has a traditional client-server architecture with an added interaction
with the blockchain for tokenisating the process of rewarding feedback.

3.3.1 Blockchain Polygon

This prototype has been implemented in the EVM compatible blockchain Polygon. There
are mainly two reasons to use this blockchain: the community behind the blockchain (we
could say its popularity) and the cost per transaction. The native token of this blockchain
is called MATIC.

Ethereum is a very popular blockchain in terms of market capital and daily users, but its
raise in value (fiat price per each ether) and number of users forced it to have excessively
high gas fees (over $63 on average during November 2021) [99]. The effect of this has
been scarcely studied, but it has been researched how it has a slight negative impact in the
activity of DAO’s [100]. Nevertheless, in this systems the cryptocurrency amounts that

31

are usually transfer should be relatively big compared to the gas fees. The design of the
proposed system in this master’s thesis requires small fees for it to be feasible. This will
be part of the validation process as discussed in section 4.1.1.

Nonetheless there are several alternative blockchains that are easily portable from one to
another, due to the fact of being EVM compatible like Polygon, Binance Smart Chain
(BSC), Avalanche, Fantom Opera... And Polygon comes often as a popular alternative that
is cheaper and faster than Ethereum as per 2022. It might be claimed that BSC is more
popular, even so is more centralized than Polygon.

3.3.2 PoF contracts

During the course of this thesis several smart contracts have been writing to test the
different architectures. But using the proposed architecture shown in figure 4 there are
mainly 3 different contracts: InternalValidator in appendix listing 2, RegionalRegulator
shown in listing 3 and EASYFPriceFeed in listing 5. The last being the oracle code
written for this thesis since the implementation of a decentralized oracle has become very
expensive [101] and the requirements of the price feed oracle for this protocol are simple.

Figure 5. PoF feedback registration smart contract call

The process for registering feedback shown in figure 5 starts by any address calling the
function askFeedbackEvaluation in which the user needs to provide the id of the
feedback to be evaluated. The function starts by checking that the contract has enough
jurors registered to start working and that the feedback id is new. Then the address of the
feedback provider is stored in a structure of the state data in the internal validator contract.
That structure is stored in a map where the index is the feedback id. Using the provided

32

feedback id the jurors are assigned randomly and this data is also stored in the structure.
Then it needs to be evaluated by the jurors. All the feedback registration process happens
in an internal validator smart contract.

Figure 6. PoF feedback evaluation smart contract calls

Once the feedback is stored in the smart contract the evaluation process can start as shown
in figure 6. Each juror needs to call the function evaluateFeedback providing the
feedback id and their 3 scores evaluating that feedback. The function first checks that the
jurors has been assigned that feedback and that the feedback evaluations are in the correct
range. Then it stores the average evaluation of the juror in the structure of the feedback.
Once the last juror inserts his/her evaluation the function calculates all 3 jurors average
and calls the reward function of the regional regulator. It checks evaluation is within the
permitted range and makes sure the feedback has not been rewarded yet. Then it calculates
the amount to be rewarded using equation 3.1:

2 · bigMacIndex · evaluation
maxEvaluation · EASY FPrice

(3.1)

The EASYF price is retrieved by calling the EASYF price feed oracle. If the amount to
be rewarded does not exceed the maximum set in the smart contract then it proceeds to

33

reward the user and the jurors calling the ERC-20 smart contract functions.

Random jurors draw

To avoid an attack like the one to the Fomo3d game [102] where the seed for generating a
random number was generated from data publicly available from the blockchain it needs
to be given from the outside real world.

Figure 7. PoF random jurors draw algorithm

As previously mentioned in section 3.2.6, once a feedback is registered it needs to be
randomly assigned to 3 different jurors. This poses the problem of generating randomness
on-chain. But this may be solved by having a feedback id that is random (the id can be
generated outside the blockchain and input as a parameter). Feedback id should be in the
format of a valid 20-byte address [103]. For that it the feedback could be contained in a
structure and ciphered using sha256 algorithm and take the right most 160-bits. This creates
a practically collision free id that is almost impossible to predict unless the user inserting
the feedback knows exactly the structure of the feedback content used to be hashed and add
words getting a favorable hash. A simple fix would be to add a random number (nonce) to

34

that content or a timestamp in the back-end making it practically impossible to the user to
predict the outcome.

Then in the smart contract can be used a modulo of the hash with the total number of jurors.
The jurors’ wallets are stored in an array, and the function randomJurors takes as a
parameter a feedback id (160-bit address) that is first cast to an unsigned integer to draw
the indexes as it is explained in figure 7 describing the algorithm.

The more jurors the less often collisions. With 7 jurors around 49% of the times there is
some collision. With 17 there is already only 18% collisions. This has been empirically
tested. It has also been proved that the jurors are uniformly assign for evaluation, meaning
that there is no favourite index with this algorithm, all indexes are drawn with the same
frequency.

3.3.3 PoF client

The UI for the user where the feedback can be provided has been focused on three types of
feedback (mentioned in subsection 2.1.1): claims, complaints and suggestions. There is a
simple landing page as shown in figure 8 where the user can start and decide whether to
provide feedback or evaluate some by inserting the id of the feedback to be evaluated.

Figure 8. PoF interface. Landing page

Giving feedback

The first part of the interface is for the client to provide feedback to a company. In figure 9
can be seen the page that the client gets for providing feedback. Before providing feedback

35

the user needs to log in using a blockchain wallet (in the current version 2 of the most
popular wallet service providers are supported: Metamask and Coinbase).

Figure 9. PoF interface. Customer view for giving feedback

Apart from that, the user would need to fill some more data in order to give private and
non-anonymous feedback. The required information are name, year of birth, gender and
e-mail address. This data is needed to ensure several things:

■ The user is at least 14 years old.
■ Contact information for different purposes: notification of feedback being processed,

notification when getting rewarded, contact for the company specially when solving
a claim or complain.

■ Basic information for future statistics and better training of the machine learning
system that wants to be implemented in the future as a first filter for jurors.

■ Whitelisting an address to be able to interact with the system. One aspect to be
discussed is the necessity to perform a deeper KYC (Know Your Customer) process.

The process of providing feedback is simple. It starts by the user filling the form with

36

the necessary feedback information: type of feedback, sector in which the company is
operating, the company that is receiving the feedback and the feedback itself.

Once the form is filled with correct data then it is send to the server where the feedback is
stored in a private database. A flow chart describing the process can be observed in figure
10.

Figure 10. Flow chart for the feedback registration process

Evaluating feedback

Once a feedback has been registered in the blockchain and stored in the database the jurors
can start evaluating it. Figure 11 shows a screenshot of the evaluation page the jurors are
prompted and the process of evaluating.

The process for the jurors is very simple they just give their evaluation according to the
criteria described in chapter 3.2.7. When the jurors submit their evaluation they interact
with a the smart contract of the internal validator as described in the previous chapter
3.3.2. In the submission process that information is also sent to the server. This part has
no influence in the rewarding process, but is necessary for the interaction with the PoF
interface. Once all of them have evaluated the feedback, the smart contract automatically

37

Figure 11. PoF interface. Juror view while evaluating evaluating feedback

finishes the rest of the process. In figure 12 is described the process interconnecting the
client, server and smart contract.

That part happens in the blockchain and in the current implementation no information of
the part is stored in the server, but it could be done by submitting the transaction address
to the server and taking the information that is available in the logs thanks to the emitted
events of the smart contract. It has the problem that if the user closes the application before
sending the transaction address to the server, the feedback would still be rewarded but that
information would stay unrecorded. This could be solved by implementing a an indexing
node with the help of the decentralized indexing protocol the Graph [98]. Which allows to
index continuously information of the tracked events from certain smart contracts, which

38

Figure 12. PoF interface. Feedback evaluation data flow chart

would allow the tracking of the rewarding part without the need of the client sending that
information.

3.3.4 PoF server

The server part of the system manages all the database (DB) queries, creating the object
models, registering new entries, updating them, retrieving them to send the information to
the client and in general all traditional DB management actions.

Secure connection.

It ensures that users are connected with their wallet address and authenticated with a type
of bearer token called JSON web token (JWT) [104] which is often used for assuring a
secure private connection without need of all the credentials of the user going from client
to server [105]. In this application the client asks for the authentication token which the
server produces with an expiration time by using a fixed JWT string and signing it with the
public wallet address of the user.

39

This secure connection allows to verify who is making the request, and send the data they
are allowed to have access. For instance only jurors that have been assigned a feedback for
evaluation can fetch that data. Once they request the data of a specific feedback by its id,
it is checked from the server side that the juror has been assigned that feedback. This is
important since any one can see the feedback ids that have been registered in the smart
contract.

Main queries the server handles:

■ Feedback related queries:
– /getfeedbackinfo post request for retrieving feedback.
– /registerFeedback post request for storing or updating feedback to the

db. As discussed in 3.2.6 when the feedback is going to register the server
provides an extra number to the content of the feedback in order to be hashed
and returned to the client as feedback id.

■ User-authentication related queries:
– /getToken post request for getting authentication token. Needs user address
– /accountdetails post request for registering/updating account (wallet

address) information .
– /getaccountinfo get request for getting account (wallet address) infor-

mation.

40

4. Validation of the proposed system

There are mainly two aspects analyzed for the validation of the system: a general audit
of the protocol and the interface in section 4.1 and to what degree is the whole system
really decentralized in section 4.2. At the end of the validation chapter some possible
improvements are presented in section 4.3.

4.1 Smart contracts audit

Like for any system involving ownership of some asset, in this case digital assets in the
form of cryptocurrencies, there are standard mechanisms for auditing smart contracts and
different tools to perform an automated audit [102, 106] as well as specialized companies
like Certik [107]. The use of such tools has been left out the scope of this master’s thesis.

The author of this master’s thesis has summarized what seems to be general practice in the
blockchain industry [108], since there is not much unified standard in open research for
auditing smart contracts. Firstly the cost of deploying and operating the system is analysed
in subsection 4.1.1, then the different possible vulnerabilities of the smart contracts are
defined in subsection 4.1.2 and finally what can be the platform security flaws in subsection
4.1.3.

4.1.1 Gas costs analysis

The first analysis to validate the system is the cost of deploying and using such system.
For that the different operations’ costs have been measure using the developed prototype.

In table 4 are presented the gas cost of each function that have been measured while
running the tests locally. Is important to take on account that the gas cost may vary a bit
depending on the moment usage of the network. Also, when translating that cost to euros
must be reminded that the conversion from the Polygon native cryptocurrency to euros
might change overtime.

Also we can observe that the cost of deployment is very small, a maximum of 4 euro cents
for the regional regulator. But then we need to process what is the cost each time a feedback

41

Table 4. Table the gas cost of the different smart contract functions

Solc version: 0.8.12 Optimizer enabled Runs: 200 Block limit: 30000000 gas
Methods 21 gwei/gas 1.20 eur/matic

Contract Method Min Max Avg # calls eur (avg)
EasyFeedBackToken mint 38651 55775 47213 32 0.00
EASYFPriceFeed setPriceFeed 24799 46711 29736 100 0.00
PoFInternalValidator addJuror 79701 113901 86032 54 0.00
PoFInternalValidator askFeedbackEvaluation 148018 148419 148084 204 0.00
PoFInternalValidator evaluateFeedback 61845 311161 132236 303 0.00
PoFRegionalRegulator addInternalNode 74580 91680 90823 20 0.00
PoFRegionalRegulator setMaxEvaluation 51203 59603 55403 2 0.00
PoFRegionalRegulator withdraw - - 57276 1 0.00

Deployments % of limit
EasyFeedBackToken - - 1044625 3.5 % 0.03

EASYFPriceFeed - - 268824 0.9 % 0.01
PoFInternalValidator 1189237 1189249 1189248 4 % 0.03

PoFRegionalRegulator 1625688 1625700 1625699 5.4 % 0.04

is registered and evaluated. To have an idea of what that cost means the cryptocurrency
units will be converted to the local fiat, euros. But the price of MATIC in relation to euros
is volatile along time. Table 5 shows the variation in price during the last year (from April
2021 to April 2022). That data will be used to analyzed the possible operational variable
cost.

Table 5. April 2021 - April 2022 historical MATIC price

MATIC/C
Minimum 0,587305667
Maximum 2,543323738
Average 1,350823265
Standard deviation 0,371608122

The cost of askFeedbackEvaluation function is: (148084/109) ∗ 21 ∗ 1, 20 =

0, 0037317168C
The average cost of evaluateFeedbackwith multi evaluation function is: (132236/109)∗
21 ∗ 1, 20 = 0, 0033323472C
So the total cost per feedback is 0, 0037317168 + 3 ∗ 0, 0033323472 = 0, 0137287584C
If the yearly prognosticated amount of feedbacks is 100 000 the cost per year would be 1
372,87584C.

From the previous cost tables we can make a prediction of the operational cost for the
Proof of Feedback protocol as shown in table 6

But more interesting than the total cost is the relative cost of the value generated versus the
cost of generating that value. The value generated is more stable since it has establish an
amount of 2 BigMacs to reward feedback an another 2 to reward the jurors. That amount is
updated once or twice per year, allowing to do a more precise analysis. Table 7 shows the

42

Table 6. Future cost estimation in euros

Function Gas cost Ether/Gwei Gas MATIC/EUR Cost
multiplier Min Avg Max Min Avg Max

askFeedbackEvaluation 148084 1000000000 21 0,58 1,35 2,54 0,0018 0,0042 0,0079
evaluateFeedback 132236 1000000000 21 0,58 1,35 2,54 0,0016 0,0038 0,0071

Total cost per feedback 0,0067 0,0155 0,0291
Total cost per 100 000 feedback 671,91 1545,40 2909,70

generated variable generated value (maximum, minimum and the average). The estimation
has been done using the last BigMac index for Estonia 4,43 and the average conversion
from USD to EUR during April 2021 to April 2022: 0,867916.

Table 7. Generated value by feedback getting rewarded and jurors evaluating feedback

Generated value (C) Customer Jurors Total
Min 0,00 7,69 7,69
Avg 3,84 7,69 11,53
Max 7,69 7,69 15,38

And table 8 presents the variable relation of the generated value versus cost. It can be
observed that even in the least favorable scenario when the generated value is the minimum
(7,69C) and the cost is the maximum (0,0279C) the generated value is still more than 264
times bigger, which seems to justify the cost. In the best case scenario that ratio is even
bigger with the generated value being more than 2288 times bigger than the cost.

Table 8. Relation of generated value versus cost

Total
Cost

Min Avg Max
0,0067 0,0155 0,0291

Generated
Min 7,69 1144,46 497,59 264,28
Avg 11,53 1716,69 746,38 396,42
Max 15,38 2288,92 995,18 528,56

4.1.2 Contract vulnerabilities

There are mainly three types of vulnerabilities analysed:

1. Reentrancy issues [109]: it refers to issues that arise when a smart contract makes an
external call to another smart contract function before the effects of the original smart
contract call are resolved. Because the original contract’s balance has not yet been
changed, the external contract can then recursively call the original smart contract
and interact with it in ways it should not be allowed to. There have been several
serious and big attacks of this kind in terms of capital in DeFi projects ($11.7M in

43

the case of Agave DAO and Hundred Finance [110] and $2M in Revest Finance
[111] and even bigger ones [112]).

2. Integer overflows and underflows: since the blockchain is a deterministic machine
and smart contracts must be too, they work only with integers, and when a smart
contract performs an arithmetic operation but for instance the result exceeds the
storage limit of the smart contract (usually 18 decimal places) it leads to leaks or
errors. As a result, inaccurate numbers may be estimated, or function calls being
wasted.

3. Front running opportunities: Market purchases or sales can be predicted by poorly
designed programming. As a result, others may be able to use and trade on the
knowledge for their own gain. This affects mostly DeFi projects, but this prototype
is not left out of this vulnerability.

Reentrancy issues

In the current prototype there are no calls to external untrusted contracts at the moment,
so this kind of attack is more theoretic. But analyzing the points where there are calls to
external contracts, there is one reentrancy vulnerability when the last juror has evaluated
the feedback. There is one requirement to check if the feedback has been rewarded or not
to avoid double rewarding but, that flag is set after the customers and the jurors have been
rewarded (a call to the ERC-20 token contract), so that could be exploited but only by
designated jurors. In theory all jurors are externally owned accounts (EOA), that means
the callers of the functions are not contracts, and therefore they cannot have a fallback
function that exploits that vulnerability. Figure 13 shows the point within calls where the
reentrancy vulnerability can happen.

Figure 13. PoF reentrancy vulnerability point

To avoid any possibility of that exploit, for instance a juror is registered with an smart
contract he/she controls, adding a noReentrant modifier that locks reentrancy calls
would prevent that call. Though that kind of juror should not be allowed. The proposed
modifier for avoiding that attack is shown in listing 4.1.

1 // attribute to be added in the contract

2 bool internal locked;

44

3
4 modifier noReentrant() {

5 require(!locked, "Locked: ongoing contract call");

6 locked = true;

7 _;

8 locked = false;

9 }

Listing 4.1. Lock modifier

There are also several modifiers: in the internal validator only jurors can call evaluate
function and they are required to have that feedback assigned (this is checked within the
function. There is also a modifier onlyInternalValidator that prevents anyone
from calling the reward function in the regulator.

Integer overflows and underflows

The basic arithmetic operation security is handled by the standard safeMath library that
most smart contract use in EVM blockchains.

In the proposed system there are several points where overflows or underflows might
happen:

■ Evaluation number: if the jurors were to enter an excessively high evaluation there
could be a situation were the tokens rewarded would be unfairly high. Of course the
front-end does not allow so, but the juror could still register the feedback directly
using the block explorer of Polygon or through some node. To prevent that the smart
contracts have a maxEvaluation parameter that cannot be exceeded.

■ Maximum evaluation: if the maximum evaluation is not synchronized between
internal validator and the regulator it might lead to an overflow when rewarding
the feedback. To solve that problem there is a centralized (within PoF contracts)
mechanism in which the maximum evaluation can only be updated using the regulator
node and is that contract that updates the maximum evaluation in the internal nodes.

■ Regulator liquidity: if the regulator does not have enough liquidity, it reverts the call
preventing the situation were a feedback has been evaluated and cannot be rewarded
due to lack of liquidity and a bug in the code so when the internal validator calls the
regulator reward function and one of the things it requires is for the smart contract
to have enough balance to proceed with the call.

■ There is one for loop in the code for the internal validator that could be problematic
if there would be millions of jurors registered in a smart contract, which should never
be the case. This could only be exploit by hacking the owners wallet and registering

45

millions of jurors, which would be absurdly expensive for the hacker in terms of gas
fees.

Front running opportunities

There are no sales in this project but there are a couple of points in the prototype that could
become front running opportunities:

1. A customer and one or more evaluators agreeing on a certain feedback rewards.
For that they would need to generate a favourable feedback id that would draw the
evaluators that agreed on the process. With few jurors this would not be very hard
to achieve since you could brute force a favourable hash by changing the feedback
content with some number used as nonce. This vulnerability is stopped in the server
by adding a secret nonce.
Of course, if the administrators of the system got to know about it, they can take
the jurors out of the smart contract (with the function removeJuror and the user
can be banned in the DApp (that functionality is added in the server code and there
is the administrator role that can call that function). That does not stop any user
from registering any feedback id in the validator, but that could not get rewarded
since there is no register of that feedback. This is still a vulnerability, since any bot
could flood the smart contract with unusable ids, potentially blocking real feedback
being registered. That is why a possible improvement could be verifying users in a
whitelist that the internal validators can check against.
There is another requirement for using any internal validator: there have to be at
least 7 jurors registered in the contract to start operating. If there are not enough
jurors, then the call is reverted.

2. The price feed for EASYF that would come from an external oracle, if it got hacked
like it happened with DeusDao [113] it could be used to manipulate the amount of
tokens rewarded and therefore drain funds from the contract. In the current prototype
this is not a problem since that oracle is controlled by the administrators of the
system. But even if that oracle got hacked or there are some problems with an
external oracle the architecture of the system would not allow to drain more funds
that the limited amount allocated to the regulator node. And at the same time there is
an extra attribute in the contract maxReward against which the calculated amount
to be rewarded is checekd, and if it exceeds that maximum the call is reverted.

46

4.1.3 Platform security flaws

When a protocol or platform is ready for production and professional audits are performed,
they look at the network that hosts the contracts, as well as the API that is used to interface
with the DApp. Users could connect their wallets to fraudulent blockchain applications if
a project is subject to a defacement attack where the UI hijacked. Also the system could
be subject of DDoS (Distributed Denial of Service) attack and the interface would become
useless.

The prototype developed during the course of this master thesis is no yet ready for pro-
duction and does not have protection from DDoS or defacement attacks since it has been
run locally and does not have an SSL certificate. But as specified in the chapter about
the server 3.3.4 it does have an authenticated connection between the front-end and the
back-end. This mechanism avoids external users accessing feedbacks data (only assigned
evaluators).

4.2 Decentralization analysis

When analyzing how decentralized the proposed prototype is, the first task is finding
out how many single failure points there are. Meaning, points that if they are exploited
the whole system would not work. The first obvious answer would be the point where
any of the smart contracts does not work, but that has been previously covered, and if it
gets hacked most of the token funds still remain secured as long as the EASYF ERC-20
smart contract remains unhacked. Also the previously mentioned situation is more than
one failure point. Each of the contracts has an owner that at the beginning would be the
administrator of the system, but each of those contract owners (in the case they would
become several different) would be a single failure point (excluding the EASYF token
contract since the protocol needs tokens but not the contract). Here the interface part for
the PoF is not considered a single failure point since, the system can still work without it.

But there is indeed a bottle-neck in the interface part, a point where one entity has control
over that flow diminishing decentralization. If the server part stops working the system
can be used, but the jurors have no way to know the contents of the feedback they need to
evaluate.

Another point for analyzing decentralization is transparency of the protocol. The users’
personal data is kept private for obvious reasons: complying with data protection laws as
well as the fact that there is no need for that data to be public. The content of the feedbacks

47

is also kept private.

4.2.1 Preserving feedback requirements

As described at the beginning of this thesis the feedback must be private and non anony-
mous. In chapter 3.3.4 was discussed how the privacy of the feedback is ensured by the
authentication mechanism which allows to securely store the data and provide it only to
the jurors that need to evaluate it, as well as to the entity receiving the feedback.

The prototype presented in this work does not fulfill the non anonymity requirement, since
the user can log in with a blockchain wallet and there is no further verification required as
well as no credentials are asked to provide feedback. But it is easy to restrict the registering
of feedback until the user has provided personal information the same way that when a
juror that has not been assigned a feedback cannot retrieve information about it.

4.3 Possible improvements

One concern is the determinism of smart contracts, once it is deployed it cannot be changed.
That is why for the prototype of this system there are mechanisms that prevent different
exploits like funds getting locked (for that there is withdraw function that allows to return
funds to the owner of the contracts); deprecated internal nodes with access to the regulator
node (this is done by adding or removing linked validators to the regulator node); and
so on. But not all possible exploits or vulnerabilities arise from the beginning as well as
improvements to the contracts. That is why there exist mechanisms to upgrade contracts
that have been developed in EVM compatible blockchains. Further research would be
needed but it is possible to create smart contracts that are upgradable, secure and scalable
[114].

Implementing a DAO is out of the scope of this work since it is a whole topic and
implementation process on its own. But this would be one of the next improvements
towards decentralization of the system.

The way the system is designed right now can be accessed only by people that has an EVM
compatible wallet and that has certain knowledge on how to use Web3 applications. As
per today, there are still many people that is not so familiar with these kind of systems, and
therefore would be left out from this system. This is the main obstacle in the use of the
proposed system since is meant to be for everyone.

48

There are at least two different possible solutions for people without a blockchain wallet:

1. Qredo [115]: is a layer 2 protocol for managing crypto assets. Where a dozens of
wallets can be open and assigned to different customers so the customer without
his/her own wallet can still get the rewards and claim them in the future once has
opened a blockchain wallet. The main disadvantage of this solution is that in the
ledger it can be seen as a many rewards going to one address, that is the bridge to
the Qredo layer 2 solution, giving the impression that someone is unfairly benefiting
from the system.

2. Having a smart contract with a list of clients, where the correspondent EASYF
tokens are deposited. This is a bit more expensive solution but more transparent.

In both, solutions the management of the funds would still be centralized. These solutions
have been thought and discovered in the course of this master’s thesis and are a feasible
future implementation.

In the current implementation there is lack of connection between the server side and the
blockchain in the registering process. The authenticity of the data relies on the secure
connection between client and server. It is true that the server provides the feedback ID to
the client without which there is no way to go. But it is lacking the mechanism to check if
the feedback has been indeed registered. The server does verify the jurors assignation and
for that operation reads data from the blockchain.

49

5. Conclusions

Often is claimed that the main advantage in adopting blockchain technology is decentral-
ization. While this claim is not far from reality, is not the only point as well as it does not
mean that everything should be decentralized when adopting this technology. Blockchain
helps in some other aspects:

■ Transparency: by having a public record of transactions with a set of addresses.
■ Tokenization: monetizing systems that were impossible or extremely cumbersome

to do before.
■ Data verification: Everybody can check what has happened in each transaction and

know that it has not been tampered.

These are characteristics that give sense to the Proof of Feedback protocol implementation
proposed in this master’s thesis.

At the same time this master’s thesis provides mainly the following contributions:

■ An overview of the existing research literature about feedback and blockchain
technologies, and a bit more deeply on smart contracts and EVM blockchains that
implement them, as well as a summary on blockchain oracles.

■ Several architecture possibilities for an EVM blockchain protocol meant to reward
valuable feedback along with different proposals on how to store feedback with
different levels of decentralization.

■ A prototype built using smart contracts in an EVM blockchain has been shown that
is technically possible to have a newly created and innovative protocol for rewarding
valuable feedback with the help of blockchain technologies, that is the Proof of
Feedback presented in this thesis.

■ A DApp prototype (client and server type application) to function as an interface for
interacting with the proposed protocol smart contracts.

■ This master’s thesis also proposes a new algorithm for drawing three numbers
on-chain at random given an external seed in the form of a valid EVM address.

■ An audit report analysing the prototype to validate the protocol and the initial user
interface. The gas cost analysis in section 4.1.1 shows that the value generated

50

each time feedback is provided justifies by far the cost of operating this system. In
addition, as analysed in the contract vulnerabilities section 4.1.2 and in the platform
security flaws section 4.1.3 it seems that the protocol and the DApp are secure
enough to be deemed feasible.

■ An analysis about the degree of decentralization the system has. There are still some
decentralization steps that could be taken as described in section 4.2, but the system
is open and transparent enough to be implemented.

■ An initial draft on how a DAO could be designed to rule the protocol: what functions
in managing the protocol it could fulfill (3.2.9) and by what mechanisms could it be
ruled (3.2.9).

There are still many things that could be improved in this master’s thesis as pointed out
in section 4.3. Additionally, scalability of the system remains to be tested out and a
professional audit should still be performed from an external agent, since the analysis of
the system done here has been performed by the same author of the master’s thesis.

To conclude, this master thesis presents an innovative protocol to reward valuable feedback
with the help of blockchain and has been proved feasible, secure and economically viable.

51

Bibliography

[1] Easy Feedback Token Whitepaper. URL: https://easyfeedbacktoken.
io/wp-content/uploads/2019/06/Easy_Feedback_Token_EFT_

WhitePaper_en.pdf (visited on 02/18/2022).

[2] Rachel Jug, Xiaoyin Sara Jiang, and Sarah M. Bean. “Giving and Receiving Effec-
tive Feedback: A Review Article and How-To Guide”. In: Archives of Pathology

& Laboratory Medicine 143.2 (Feb. 2019), pp. 244–250. ISSN: 0003-9985. DOI:
10.5858/ARPA.2018-0058-RA.

[3] Bob Thompson. “eService: Strategies for success in the customer age”. In: Right-

now Technologies (2002). URL: https://mthink.com/legacy/www.
crmproject.com/content/pdf/CRM3_wp_thompson.pdf.

[4] Helena Holmström Olsson and Jan Bosch. “Towards Continuous Customer Vali-
dation: A Conceptual Model for Combining Qualitative Customer Feedback with
Quantitative Customer Observation”. In: Lecture Notes in Business Information

Processing. Vol. 210. Springer, Cham, 2015, pp. 154–166. ISBN: 9783319195926.
DOI: 10.1007/978- 3- 319- 19593- 3_13. URL: https://link.
springer.com/chapter/10.1007/978-3-319-19593-3_13.

[5] UK Customer Satisfaction Index (UKCSI) - Institute of Customer Service - The

state of customer satisfaction in the UK - July 2021. Tech. rep. 2021. URL: https:
//www.instituteofcustomerservice.com/research-insight/

ukcsi/ (visited on 02/16/2022).

[6] Helena Holmstrom Olsson and Jan Bosch. “From opinions to data-driven software
R&D: A multi-case study on how to close the ’open loop’ problem”. In: Proceed-

ings - 40th Euromicro Conference Series on Software Engineering and Advanced

Applications, SEAA 2014. Institute of Electrical and Electronics Engineers Inc.,
Oct. 2014, pp. 9–16. ISBN: 9781479957941. DOI: 10.1109/SEAA.2014.75.

[7] Bob Thompson. “The loyalty connection: Secrets to customer retention and in-
creased profits”. In: RightNow Technologies & CRMguru 18 (2005).

[8] Kurt Schneider. “Focusing spontaneous feedback to support system evolution”.
In: Proceedings of the 2011 IEEE 19th International Requirements Engineering

Conference, RE 2011. 2011, pp. 165–174. ISBN: 9781457709234. DOI: 10.1109/
RE.2011.6051645.

52

https://easyfeedbacktoken.io/wp-content/uploads/2019/06/Easy_Feedback_Token_EFT_WhitePaper_en.pdf
https://easyfeedbacktoken.io/wp-content/uploads/2019/06/Easy_Feedback_Token_EFT_WhitePaper_en.pdf
https://easyfeedbacktoken.io/wp-content/uploads/2019/06/Easy_Feedback_Token_EFT_WhitePaper_en.pdf
https://doi.org/10.5858/ARPA.2018-0058-RA
https://mthink.com/legacy/www.crmproject.com/content/pdf/CRM3_wp_thompson.pdf
https://mthink.com/legacy/www.crmproject.com/content/pdf/CRM3_wp_thompson.pdf
https://doi.org/10.1007/978-3-319-19593-3_13
https://link.springer.com/chapter/10.1007/978-3-319-19593-3_13
https://link.springer.com/chapter/10.1007/978-3-319-19593-3_13
https://www.instituteofcustomerservice.com/research-insight/ukcsi/
https://www.instituteofcustomerservice.com/research-insight/ukcsi/
https://www.instituteofcustomerservice.com/research-insight/ukcsi/
https://doi.org/10.1109/SEAA.2014.75
https://doi.org/10.1109/RE.2011.6051645
https://doi.org/10.1109/RE.2011.6051645

[9] Petris, or Blidaru Onorel. “The Importance of Feedback in Organizational Commu-
nication.” In: Social-Economic Debates 8.1 (2019), pp. 30–38. ISSN: 2248-3837.

[10] Paul Resnick and Richard Zeckhauser. “Trust among strangers in internet transac-
tions: Empirical analysis of eBay’ s reputation system”. In: Advances in Applied

Microeconomics 11 (Oct. 2002), pp. 127–157. ISSN: 02780984. DOI: 10.1016/
S0278-0984(02)11030-3/FULL/PDF. URL: https://www.emerald.
com/insight/content/doi/10.1016/S0278-0984(02)11030-

3/full/html.

[11] Judith A. Chevalier and Dina Mayzlin. “The Effect of Word of Mouth on Sales: On-
line Book Reviews:” in: Journal of marketing research 43.3 (Oct. 2006), pp. 345–
354. ISSN: 00222437. DOI: 10.1509/JMKR.43.3.345. URL: https:
//journals.sagepub.com/doi/full/10.1509/jmkr.43.3.345.

[12] Phillip Dawson et al. “What makes for effective feedback: staff and student perspec-
tives”. In: Assessment & Evaluation in Higher Education 44.1 (Jan. 2018), pp. 25–
36. ISSN: 1469297X. DOI: 10.1080/02602938.2018.1467877. URL:
https://www.tandfonline.com/doi/abs/10.1080/02602938.

2018.1467877.

[13] Berry O’Donovan, Chris Rust, and Margaret Price. “A scholarly approach to
solving the feedback dilemma in practice”. In: Assessment & Evaluation in Higher

Education 41.6 (Aug. 2016), pp. 938–949. ISSN: 1469297X. DOI: 10.1080/
02602938.2015.1052774. URL: https://www.tandfonline.com/
doi/abs/10.1080/02602938.2015.1052774.

[14] John Gerdes, Betsy Bender Stringam, and Robert G. Brookshire. “An integrative
approach to assess qualitative and quantitative consumer feedback”. In: Electronic

Commerce Research 2008 8:4 8.4 (Oct. 2008), pp. 217–234. ISSN: 1572-9362. DOI:
10.1007/S10660-008-9022-0. URL: https://link.springer.
com/article/10.1007/s10660-008-9022-0.

[15] Frederick F Reichheld. “The One Number You Need to Grow”. In: Harvard

business review 81.12 (2003), pp. 46–55. URL: https://hbr.org/2003/
12/the-one-number-you-need-to-grow.

[16] Thomas A. Burnham and Jeffrey A. Wong. “Factors influencing successful net
promoter score adoption by a nonprofit organization: a case study of the Boy
Scouts of America”. In: International Review on Public and Nonprofit Marketing

15.4 (Dec. 2018), pp. 475–495. ISSN: 18651992. DOI: 10.1007/S12208-018-
0210-X/TABLES/6. URL: https://link.springer.com/article/
10.1007/s12208-018-0210-x.

53

https://doi.org/10.1016/S0278-0984(02)11030-3/FULL/PDF
https://doi.org/10.1016/S0278-0984(02)11030-3/FULL/PDF
https://www.emerald.com/insight/content/doi/10.1016/S0278-0984(02)11030-3/full/html
https://www.emerald.com/insight/content/doi/10.1016/S0278-0984(02)11030-3/full/html
https://www.emerald.com/insight/content/doi/10.1016/S0278-0984(02)11030-3/full/html
https://doi.org/10.1509/JMKR.43.3.345
https://journals.sagepub.com/doi/full/10.1509/jmkr.43.3.345
https://journals.sagepub.com/doi/full/10.1509/jmkr.43.3.345
https://doi.org/10.1080/02602938.2018.1467877
https://www.tandfonline.com/doi/abs/10.1080/02602938.2018.1467877
https://www.tandfonline.com/doi/abs/10.1080/02602938.2018.1467877
https://doi.org/10.1080/02602938.2015.1052774
https://doi.org/10.1080/02602938.2015.1052774
https://www.tandfonline.com/doi/abs/10.1080/02602938.2015.1052774
https://www.tandfonline.com/doi/abs/10.1080/02602938.2015.1052774
https://doi.org/10.1007/S10660-008-9022-0
https://link.springer.com/article/10.1007/s10660-008-9022-0
https://link.springer.com/article/10.1007/s10660-008-9022-0
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://doi.org/10.1007/S12208-018-0210-X/TABLES/6
https://doi.org/10.1007/S12208-018-0210-X/TABLES/6
https://link.springer.com/article/10.1007/s12208-018-0210-x
https://link.springer.com/article/10.1007/s12208-018-0210-x

[17] Nicholas I. Fisher and Raymond E. Kordupleski. “Good and bad market research: A
critical review of Net Promoter Score”. In: Applied Stochastic Models in Business

and Industry 35.1 (Nov. 2018), pp. 138–151. ISSN: 1526-4025. DOI: 10.1002/
ASMB . 2417. URL: https : / / onlinelibrary . wiley . com / doi /
full/10.1002/asmb.2417%20https://onlinelibrary.wiley.

com/doi/abs/10.1002/asmb.2417%20https://onlinelibrary.

wiley.com/doi/10.1002/asmb.2417.

[18] Sven Baehre et al. “The use of Net Promoter Score (NPS) to predict sales growth:
insights from an empirical investigation”. In: Journal of the Academy of Marketing

Science 50.1 (July 2021), pp. 67–84. ISSN: 15527824. DOI: 10.1007/S11747-
021-00790-2/TABLES/8. URL: https://link.springer.com/
article/10.1007/s11747-021-00790-2.

[19] Marilyn Strathern. “‘Improving ratings’: audit in the British University system”.
In: European Review 5.3 (1997), pp. 305–321. DOI: 10.1002/(SICI)1234-
981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4.

[20] Sinclair Davidson, Primavera De Filippi, and Jason Potts. “Blockchains and the eco-
nomic institutions of capitalism”. In: Journal of Institutional Economics 14.4 (Aug.
2018), pp. 639–658. ISSN: 17441382. DOI: 10.1017/S1744137417000200.

[21] Dylan Yaga et al. “Blockchain Technology Overview”. In: arXiv preprint

arXiv:1906.11078 (June 2019). DOI: 10 . 6028 / NIST . IR . 8202. arXiv:
1906 . 11078v1. URL: http : / / arxiv . org / abs / 1906 . 11078 %
20http://dx.doi.org/10.6028/NIST.IR.8202.

[22] Liuwen Yu et al. “Enhancing Trust in Trust Services: Towards an Intelligent
Human-input-based Blockchain Oracle (IHiBO)”. In: Proceedings of the 55th

Annual Hawaii International Conference on System Sciences. 2022. URL: https:
//orbilu.uni.lu/handle/10993/50022.

[23] Samuel Yousefi and Babak Mohamadpour Tosarkani. “An analytical approach
for evaluating the impact of blockchain technology on sustainable supply chain
performance”. In: International Journal of Production Economics 246 (Apr. 2022),
p. 108429. ISSN: 0925-5273. DOI: 10.1016/J.IJPE.2022.108429.

[24] Huizhen Liu et al. “Research on Logistics Information Management System Based
on Blockchain Perspective”. In: Academic Journal of Business & Management 4
(2022), pp. 26–29. DOI: 10.25236/AJBM.2022.040105.

[25] Sanjeev Verma and Ashutosh Sheel. “Blockchain for government organizations:
past, present and future”. In: Journal of Global Operations and Strategic Sourcing

(2022). ISSN: 23985364. DOI: 10.1108/JGOSS-08-2021-0063/FULL/
PDF.

54

https://doi.org/10.1002/ASMB.2417
https://doi.org/10.1002/ASMB.2417
https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/10.1002/asmb.2417
https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/10.1002/asmb.2417
https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/10.1002/asmb.2417
https://onlinelibrary.wiley.com/doi/full/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.2417%20https://onlinelibrary.wiley.com/doi/10.1002/asmb.2417
https://doi.org/10.1007/S11747-021-00790-2/TABLES/8
https://doi.org/10.1007/S11747-021-00790-2/TABLES/8
https://link.springer.com/article/10.1007/s11747-021-00790-2
https://link.springer.com/article/10.1007/s11747-021-00790-2
https://doi.org/10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4
https://doi.org/10.1017/S1744137417000200
https://doi.org/10.6028/NIST.IR.8202
https://arxiv.org/abs/1906.11078v1
http://arxiv.org/abs/1906.11078%20http://dx.doi.org/10.6028/NIST.IR.8202
http://arxiv.org/abs/1906.11078%20http://dx.doi.org/10.6028/NIST.IR.8202
https://orbilu.uni.lu/handle/10993/50022
https://orbilu.uni.lu/handle/10993/50022
https://doi.org/10.1016/J.IJPE.2022.108429
https://doi.org/10.25236/AJBM.2022.040105
https://doi.org/10.1108/JGOSS-08-2021-0063/FULL/PDF
https://doi.org/10.1108/JGOSS-08-2021-0063/FULL/PDF

[26] Primavera De Filippi, Morshed Mannan, and Wessel Reijers. “Blockchain as a con-
fidence machine: The problem of trust & challenges of governance”. In: Technol-

ogy in Society 62 (Aug. 2020). ISSN: 0160791X. DOI: 10.1016/J.TECHSOC.
2020.101284/BLOCKCHAIN_AS_A_CONFIDENCE_MACHINE_THE_

PROBLEM_OF_TRUST_CHALLENGES_OF_GOVERNANCE.PDF.

[27] Shuai Wang et al. “Blockchain-Enabled Smart Contracts: Architecture, Appli-
cations, and Future Trends”. In: IEEE Transactions on Systems, Man, and Cy-

bernetics: Systems 49.11 (Nov. 2019), pp. 2266–2277. ISSN: 21682232. DOI:
10.1109/TSMC.2019.2895123.

[28] Arijit Sengupta and Hemang Subramanian. “User Control of Personal mHealth
Data Using a Mobile Blockchain App: Design Science Perspective”. In: JMIR

mHealth and uHealth 10.1 (Jan. 2022), e32104. ISSN: 22915222. DOI: 10.2196/
32104. URL: https://mhealth.jmir.org/2022/1/e32104.

[29] M. M. Kamruzzaman et al. “Blockchain and Fog Computing in IoT-Driven Health-
care Services for Smart Cities”. In: Journal of Healthcare Engineering 2022 (Jan.
2022), pp. 1–13. ISSN: 2040-2295. DOI: 10.1155/2022/9957888.

[30] Guangquan Xu et al. “SG-PBFT: a Secure and Highly Efficient Distributed
Blockchain PBFT Consensus Algorithm for Intelligent Internet of Vehicles”. In:
Journal of Parallel and Distributed Computing (Feb. 2022). ISSN: 0743-7315.
DOI: 10.1016/J.JPDC.2022.01.029. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0743731522000363.

[31] Comp Sci et al. “Performance analysis of lightweight Internet of things devices
on blockchain networks”. In: TURKISH JOURNAL OF ELECTRICAL ENGI-

NEERING & COMPUTER SCIENCES 30.2 (Feb. 2022), pp. 328–343. ISSN:
1300-0632. DOI: 10.3906/elk-2103-110. URL: https://github.
com/ConsenSys/quorum.

[32] Remzi Gürfidan and Mevlüt Ersoy. “A new approach with blockchain based for
safe communication in IoT ecosystem”. In: Journal of Data, Information and Man-

agement 2022 (Feb. 2022), pp. 1–8. ISSN: 2524-6364. DOI: 10.1007/S42488-
021-00063-1. URL: https://link.springer.com/article/10.
1007/s42488-021-00063-1.

[33] Ahmed Alkhateeb et al. “Hybrid Blockchain Platforms for the Internet of Things
(IoT): A Systematic Literature Review”. In: Sensors 22.4 (2022), p. 1304.

[34] Lei Xu et al. “New Gold Mine: Harvesting IoT Data Through DeFi in a Secure
Manner”. In: Blockchain – ICBC 2021. Springer, Cham, Dec. 2021, pp. 43–58. DOI:
10.1007/978-3-030-96527-3_4. URL: https://link.springer.
com/chapter/10.1007/978-3-030-96527-3_4.

55

https://doi.org/10.1016/J.TECHSOC.2020.101284/BLOCKCHAIN_AS_A_CONFIDENCE_MACHINE_THE_PROBLEM_OF_TRUST_CHALLENGES_OF_GOVERNANCE.PDF
https://doi.org/10.1016/J.TECHSOC.2020.101284/BLOCKCHAIN_AS_A_CONFIDENCE_MACHINE_THE_PROBLEM_OF_TRUST_CHALLENGES_OF_GOVERNANCE.PDF
https://doi.org/10.1016/J.TECHSOC.2020.101284/BLOCKCHAIN_AS_A_CONFIDENCE_MACHINE_THE_PROBLEM_OF_TRUST_CHALLENGES_OF_GOVERNANCE.PDF
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.2196/32104
https://doi.org/10.2196/32104
https://mhealth.jmir.org/2022/1/e32104
https://doi.org/10.1155/2022/9957888
https://doi.org/10.1016/J.JPDC.2022.01.029
https://linkinghub.elsevier.com/retrieve/pii/S0743731522000363
https://linkinghub.elsevier.com/retrieve/pii/S0743731522000363
https://doi.org/10.3906/elk-2103-110
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://doi.org/10.1007/S42488-021-00063-1
https://doi.org/10.1007/S42488-021-00063-1
https://link.springer.com/article/10.1007/s42488-021-00063-1
https://link.springer.com/article/10.1007/s42488-021-00063-1
https://doi.org/10.1007/978-3-030-96527-3_4
https://link.springer.com/chapter/10.1007/978-3-030-96527-3_4
https://link.springer.com/chapter/10.1007/978-3-030-96527-3_4

[35] Hajar Moudoud, Soumaya Cherkaoui, and Lyes Khoukhi. “An IoT Blockchain
Architecture Using Oracles and Smart Contracts: The Use-Case of a Food Supply
Chain”. In: IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, PIMRC 2019-Septe (Sept. 2019). DOI: 10.1109/PIMRC.
2019.8904404.

[36] Guojun Ji et al. “Timing of blockchain adoption in a supply chain with competing
manufacturers”. In: International Journal of Production Economics 247 (May
2022), p. 108430. ISSN: 0925-5273. DOI: 10.1016/J.IJPE.2022.108430.

[37] Soumyadeb Chowdhury et al. “Blockchain technology adoption for managing
risks in operations and supply chain management: evidence from the UK”. In:
Annals of Operations Research (Jan. 2022), pp. 1–36. ISSN: 0254-5330. DOI:
10.1007/S10479-021-04487-1/TABLES/11. URL: https://link.
springer.com/article/10.1007/s10479-021-04487-1.

[38] Himanshu Falwadiya and Sanjay Dhingra. “Blockchain technology adoption in
government organizations: a systematic literature review”. In: Journal of Global

Operations and Strategic Sourcing ahead-of-p.ahead-of-print (Feb. 2022). ISSN:
2398-5364. DOI: 10.1108/JGOSS-09-2021-0079. URL: https://www.
emerald.com/insight/content/doi/10.1108/JGOSS-09-2021-

0079/full/html.

[39] Comp Sci, Murat Osmanoğlu, and Ali Aydın Selçuk. “Privacy in blockchain
systems”. In: Turkish Journal of Electrical Engineering& Computer Sciences 30
(2022), pp. 344–260. DOI: 10.3906/elk-2105-183.

[40] Dejan Vujičić, Dijana Jagodić, and Siniša Randić. “Blockchain technology, bitcoin,
and Ethereum: A brief overview”. In: 2018 17th International Symposium on

INFOTEH-JAHORINA, INFOTEH. Vol. 2018-Janua. East Sarajevo, Bosnia and
Herzegovina: Institute of Electrical and Electronics Engineers Inc., Apr. 2018,
pp. 1–6. ISBN: 9781538649077. DOI: 10.1109/INFOTEH.2018.8345547.

[41] Bitcoin - Open source P2P money. URL: https://bitcoin.org/en/
(visited on 02/16/2022).

[42] Home | ethereum.org. URL: https://ethereum.org/en/ (visited on
02/16/2022).

[43] Home | IOTA. URL: https://www.iota.org/ (visited on 02/16/2022).

[44] Abhimanyu Rawat, Vanesa Daza, and Matteo Signorini. “Offline Scaling of IoT
Devices in IOTA Blockchain”. In: Sensors 22.4 (2022), p. 1411.

[45] Shubhani Aggarwal and Neeraj Kumar. “Cryptographic consensus mechanisms”.
In: Advances in Computers 121 (Jan. 2021), pp. 211–226. ISSN: 0065-2458. DOI:
10.1016/BS.ADCOM.2020.08.011.

56

https://doi.org/10.1109/PIMRC.2019.8904404
https://doi.org/10.1109/PIMRC.2019.8904404
https://doi.org/10.1016/J.IJPE.2022.108430
https://doi.org/10.1007/S10479-021-04487-1/TABLES/11
https://link.springer.com/article/10.1007/s10479-021-04487-1
https://link.springer.com/article/10.1007/s10479-021-04487-1
https://doi.org/10.1108/JGOSS-09-2021-0079
https://www.emerald.com/insight/content/doi/10.1108/JGOSS-09-2021-0079/full/html
https://www.emerald.com/insight/content/doi/10.1108/JGOSS-09-2021-0079/full/html
https://www.emerald.com/insight/content/doi/10.1108/JGOSS-09-2021-0079/full/html
https://doi.org/10.3906/elk-2105-183
https://doi.org/10.1109/INFOTEH.2018.8345547
https://bitcoin.org/en/
https://ethereum.org/en/
https://www.iota.org/
https://doi.org/10.1016/BS.ADCOM.2020.08.011

[46] Yang Xiao et al. “A Survey of Distributed Consensus Protocols for Blockchain
Networks”. In: IEEE Communications Surveys and Tutorials 22 (2 Apr. 2020),
pp. 1432–1465. ISSN: 1553877X. DOI: 10.1109/COMST.2020.2969706.

[47] Proof-of-stake (PoS) | ethereum.org. 2022. URL: https://ethereum.org/
en/developers/docs/consensus-mechanisms/pos/#top (visited
on 02/16/2022).

[48] Shijie Zhang and Jong Hyouk Lee. “Analysis of the main consensus protocols of
blockchain”. In: ICT Express 6 (2 June 2020), pp. 93–97. ISSN: 2405-9595. DOI:
10.1016/J.ICTE.2019.08.001.

[49] Bin Cao et al. “Performance analysis and comparison of PoW, PoS and DAG
based blockchains”. In: Digital Communications and Networks 6.4 (Nov. 2020),
pp. 480–485. ISSN: 2352-8648. DOI: 10.1016/J.DCAN.2019.12.001.

[50] Ling Ren and Srinivas Devadas. “Proof of Space from Stacked Expanders”. In:
Theory of Cryptography. Ed. by Martin Hirt and Adam Smith. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 262–285. ISBN: 978-3-662-53641-4.

[51] Lin Chen et al. “On security analysis of proof-of-elapsed-time (poet)”. In: Inter-

national Symposium on Stabilization, Safety, and Security of Distributed Systems.
Springer. 2017, pp. 282–297.

[52] Mohammad Wazid et al. “A Tutorial and Future Research for Building a
Blockchain-Based Secure Communication Scheme for Internet of Intelligent
Things”. In: IEEE Access 8 (2020), pp. 88700–88716. ISSN: 21693536. DOI:
10.1109/ACCESS.2020.2992467.

[53] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentral-

ized Business Review (2008). DOI: 10.1007/s10838-008-9062-0. arXiv:
43543534534v343453. URL: https://www.debr.io/article/
21260.pdf.

[54] An Introduction to IOTA | IOTA Wiki. 2022. URL: https://wiki.iota.org/
learn/about-iota/an-introduction-to-iota#consensus-in-

a-blockchain (visited on 02/16/2022).

[55] What Is Polygon | Polygon Technology | Documentation. 2022. URL: https://
docs.polygon.technology/docs/validate/polygon-basics/

what-is-polygon/ (visited on 03/14/2022).

[56] What Is BscScan and How to Use It? | Binance Academy. 2021. URL: https:
//academy.binance.com/en/articles/what-is-bscscan-and-

how-to-use-it (visited on 02/16/2022).

57

https://doi.org/10.1109/COMST.2020.2969706
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/##top
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/##top
https://doi.org/10.1016/J.ICTE.2019.08.001
https://doi.org/10.1016/J.DCAN.2019.12.001
https://doi.org/10.1109/ACCESS.2020.2992467
https://doi.org/10.1007/s10838-008-9062-0
https://arxiv.org/abs/43543534534v343453
https://www.debr.io/article/21260.pdf
https://www.debr.io/article/21260.pdf
https://wiki.iota.org/learn/about-iota/an-introduction-to-iota##consensus-in-a-blockchain
https://wiki.iota.org/learn/about-iota/an-introduction-to-iota##consensus-in-a-blockchain
https://wiki.iota.org/learn/about-iota/an-introduction-to-iota##consensus-in-a-blockchain
https://docs.polygon.technology/docs/validate/polygon-basics/what-is-polygon/
https://docs.polygon.technology/docs/validate/polygon-basics/what-is-polygon/
https://docs.polygon.technology/docs/validate/polygon-basics/what-is-polygon/
https://academy.binance.com/en/articles/what-is-bscscan-and-how-to-use-it
https://academy.binance.com/en/articles/what-is-bscscan-and-how-to-use-it
https://academy.binance.com/en/articles/what-is-bscscan-and-how-to-use-it

[57] Avalanche Blockchain Consensus | Avalanche Docs. URL: https://docs.
avax.network/learn/platform-overview/avalanche-consensus/

(visited on 02/16/2022).

[58] Anatoly Yakovenko. “Solana: A new architecture for a high performance
blockchain v0. 8.13”. In: Whitepaper (2018).

[59] Asoke K Talukder et al. “Proof of Disease: A Blockchain Consensus Protocol
for Accurate Medical Decisions and Reducing the Disease Burden”. In: 2018

IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Comput-

ing, Scalable Computing Communications, Cloud Big Data Computing, Internet

of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-

Com/IOP/SCI). 2018, pp. 257–262. DOI: 10.1109/SmartWorld.2018.
00079.

[60] Ali Arjomandi-Nezhad et al. “Proof of humanity: A tax-aware society-centric con-
sensus algorithm for Blockchains”. In: Peer-to-Peer Networking and Applications

14.6 (Nov. 2021), pp. 3634–3646. ISSN: 19366450. DOI: 10.1007/S12083-
021-01204-4/TABLES/1. URL: https://link.springer.com/
article/10.1007/s12083-021-01204-4.

[61] Proof Of Humanity. URL: https://www.proofofhumanity.id/ (visited
on 02/09/2022).

[62] Yang Ming et al. “Blockchain-Enabled Efficient Dynamic Cross-Domain Dedu-
plication in Edge Computing”. In: IEEE Internet of Things Journal (2022), pp. 1–
1. ISSN: 2327-4662. DOI: 10.1109/JIOT.2022.3150042. URL: https:
//ieeexplore.ieee.org/document/9708087/.

[63] Vida J. Morkunas, Jeannette Paschen, and Edward Boon. “How blockchain tech-
nologies impact your business model”. In: Business Horizons 62 (3 May 2019),
pp. 295–306. ISSN: 0007-6813. DOI: 10.1016/J.BUSHOR.2019.01.009.

[64] Amritraj Singh et al. “Sidechain technologies in blockchain networks: An ex-
amination and state-of-the-art review”. In: Journal of Network and Computer

Applications 149 (Jan. 2020), p. 102471. ISSN: 1084-8045. DOI: 10.1016/J.
JNCA.2019.102471.

[65] Shaofeng Lin et al. “Research on Cross-chain Technology of Blockchain”. In: Pro-

ceedings - 2021 6th International Conference on Smart Grid and Electrical Automa-

tion, ICSGEA 2021 (May 2021), pp. 405–408. DOI: 10.1109/ICSGEA53208.
2021.00098.

58

https://docs.avax.network/learn/platform-overview/avalanche-consensus/
https://docs.avax.network/learn/platform-overview/avalanche-consensus/
https://doi.org/10.1109/SmartWorld.2018.00079
https://doi.org/10.1109/SmartWorld.2018.00079
https://doi.org/10.1007/S12083-021-01204-4/TABLES/1
https://doi.org/10.1007/S12083-021-01204-4/TABLES/1
https://link.springer.com/article/10.1007/s12083-021-01204-4
https://link.springer.com/article/10.1007/s12083-021-01204-4
https://www.proofofhumanity.id/
https://doi.org/10.1109/JIOT.2022.3150042
https://ieeexplore.ieee.org/document/9708087/
https://ieeexplore.ieee.org/document/9708087/
https://doi.org/10.1016/J.BUSHOR.2019.01.009
https://doi.org/10.1016/J.JNCA.2019.102471
https://doi.org/10.1016/J.JNCA.2019.102471
https://doi.org/10.1109/ICSGEA53208.2021.00098
https://doi.org/10.1109/ICSGEA53208.2021.00098

[66] Harsh Sheth, Harsh Sheth, and Janvi Dattani. “Overview of Blockchain Technol-
ogy”. In: Asian Journal For Convergence In Technology (AJCT) ISSN -2350-1146

0 (0 Apr. 2019). URL: https://asianssr.org/index.php/ajct/
article/view/728.

[67] Jesse Yli-Huumo et al. “Where Is Current Research on Blockchain Technol-
ogy?—A Systematic Review”. In: PLOS ONE 11.10 (Oct. 2016), e0163477. ISSN:
1932-6203. DOI: 10.1371/JOURNAL.PONE.0163477. URL: https://
journals.plos.org/plosone/article?id=10.1371/journal.

pone.0163477.

[68] Zixuan Wang. “Analysis of risks and regulatory issues in the development of
blockchain finance”. In: Academic Journal of Business& Management 4 (2022),
pp. 61–66. DOI: 10.25236/AJBM.2022.040111.

[69] Diego Cagigas et al. “Explaining public officials’ opinions on blockchain adoption:
a vignette experiment”. In: Policy and Society (Feb. 2022). ISSN: 1449-4035. DOI:
10.1093/POLSOC/PUAB022. URL: https://academic.oup.com/
policyandsociety/advance-article/doi/10.1093/polsoc/

puab022/6524356.

[70] Bhabendu Kumar Mohanta, Soumyashree S. Panda, and Debasish Jena. “An
Overview of Smart Contract and Use Cases in Blockchain Technology”. In: 2018

9th International Conference on Computing, Communication and Networking

Technologies, ICCCNT 2018 (Oct. 2018). DOI: 10.1109/ICCCNT.2018.
8494045.

[71] Nick Szabo. “Formalizing and Securing Relationships on Public Networks”. In:
First Monday 2.9 (Sept. 1997). ISSN: 1396-0466. DOI: 10.5210/FM.V2I9.
548. URL: https : / / firstmonday . org / ojs / index . php / fm /
article/view/548/469%20https://firstmonday.org/ojs/

index.php/fm/article/view/548.

[72] Ethereum Virtual Machine (EVM) | ethereum.org. URL: https://ethereum.
org/en/developers/docs/evm/ (visited on 02/18/2022).

[73] Rekt - Poly Network - REKT. 2021. URL: https://rekt.news/polynetwork-
rekt/ (visited on 02/17/2022).

[74] Rekt - Superfluid - REKT. 2022. URL: https://rekt.news/superfluid-
rekt/ (visited on 02/17/2022).

[75] Ether — Ethereum Homestead 0.1 documentation. URL: https://ethdocs.
org/en/latest/ether.html (visited on 05/03/2022).

59

https://asianssr.org/index.php/ajct/article/view/728
https://asianssr.org/index.php/ajct/article/view/728
https://doi.org/10.1371/JOURNAL.PONE.0163477
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163477
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163477
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163477
https://doi.org/10.25236/AJBM.2022.040111
https://doi.org/10.1093/POLSOC/PUAB022
https://academic.oup.com/policyandsociety/advance-article/doi/10.1093/polsoc/puab022/6524356
https://academic.oup.com/policyandsociety/advance-article/doi/10.1093/polsoc/puab022/6524356
https://academic.oup.com/policyandsociety/advance-article/doi/10.1093/polsoc/puab022/6524356
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.5210/FM.V2I9.548
https://doi.org/10.5210/FM.V2I9.548
https://firstmonday.org/ojs/index.php/fm/article/view/548/469%20https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548/469%20https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548/469%20https://firstmonday.org/ojs/index.php/fm/article/view/548
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://rekt.news/polynetwork-rekt/
https://rekt.news/polynetwork-rekt/
https://rekt.news/superfluid-rekt/
https://rekt.news/superfluid-rekt/
https://ethdocs.org/en/latest/ether.html
https://ethdocs.org/en/latest/ether.html

[76] Reza Rahimian and Jeremy Clark. “TokenHook: Secure ERC-20 smart contract”.
In: (July 2021). DOI: 10.48550/arxiv.2107.02997. arXiv: 2107.02997.
URL: https://arxiv.org/abs/2107.02997v1.

[77] Paul Cuffe. “The role of the erc-20 token standard in a financial revolution: the
case of initial coin offerings”. In: IEC-IEEE-KATS Academic Challenge, Busan,

Korea, 22-23 October 2018. IEC-IEEE-KATS. 2018.

[78] Hamda Al-Breiki et al. “Trustworthy Blockchain Oracles: Review, Comparison,
and Open Research Challenges”. In: IEEE Access 8 (2020), pp. 85675–85685.
ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2992698.

[79] VITO FERRULLI. “On demand decentralized oracles for blockchain: a new Chain-
link based architecture”. In: (2022). URL: https://etd.adm.unipi.it/
t/etd-02062022-124127/.

[80] What Is an Oracle in Blockchain? » Explained | Chainlink. URL: https :
/ / chain . link / education / blockchain - oracles (visited on
05/01/2022).

[81] Abdeljalil Beniiche. “A Study of Blockchain Oracles”. In: (Mar. 2020). URL:
https://arxiv.org/abs/2004.07140v2.

[82] Madhusudan Singh and Shiho Kim. “Blockchain technology for decentralized
autonomous organizations”. In: Advances in Computers 115 (Jan. 2019), pp. 115–
140. ISSN: 0065-2458. DOI: 10.1016/BS.ADCOM.2019.06.001.

[83] Michael Fröhlich et al. “Blockchain and Cryptocurrency in Human Computer
Interaction: A Systematic Literature Review and Research Agenda”. In: arXiv

preprint arXiv:2204.10857 (2022).

[84] Xi Zhao et al. “Task management in decentralized autonomous organization”.
In: Journal of Operations Management (Apr. 2022). ISSN: 1873-1317. DOI:
10.1002/JOOM.1179. URL: https://onlinelibrary.wiley.com/
doi/full/10.1002/joom.1179%20https://onlinelibrary.

wiley . com / doi / abs / 10 . 1002 / joom . 1179 % 20https : / /

onlinelibrary.wiley.com/doi/10.1002/joom.1179.

[85] Sarah Allen et al. “NFTs for Art and Collectables: Primer and Outlook”. In: (2022).

[86] Doodles. URL: https://doodles.app/ (visited on 05/03/2022).

[87] Song a Day World. URL: https://songaday.world/songadao/ (visited
on 05/03/2022).

[88] MODA DAO - Home, Whitepaper. 2021. URL: https://www.modadao.io/
%20https://gateway.pinata.cloud/ipfs/QmX9tuaHepxwaTwTU5TnWDksWNSSm2JWNncc2avLABTavc

(visited on 05/03/2022).

60

https://doi.org/10.48550/arxiv.2107.02997
https://arxiv.org/abs/2107.02997
https://arxiv.org/abs/2107.02997v1
https://doi.org/10.1109/ACCESS.2020.2992698
https://etd.adm.unipi.it/t/etd-02062022-124127/
https://etd.adm.unipi.it/t/etd-02062022-124127/
https://chain.link/education/blockchain-oracles
https://chain.link/education/blockchain-oracles
https://arxiv.org/abs/2004.07140v2
https://doi.org/10.1016/BS.ADCOM.2019.06.001
https://doi.org/10.1002/JOOM.1179
https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/abs/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/10.1002/joom.1179
https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/abs/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/10.1002/joom.1179
https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/abs/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/10.1002/joom.1179
https://onlinelibrary.wiley.com/doi/full/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/abs/10.1002/joom.1179%20https://onlinelibrary.wiley.com/doi/10.1002/joom.1179
https://doodles.app/
https://songaday.world/songadao/
https://www.modadao.io/%20https://gateway.pinata.cloud/ipfs/QmX9tuaHepxwaTwTU5TnWDksWNSSm2JWNncc2avLABTavc
https://www.modadao.io/%20https://gateway.pinata.cloud/ipfs/QmX9tuaHepxwaTwTU5TnWDksWNSSm2JWNncc2avLABTavc

[89] John Rooksby and Kristiyan Dimitrov. “Trustless Education? A Blockchain System
for University Grades”. In: 2017.

[90] Martin Brennecke et al. “The De-Central Bank in Decentralized Finance: A Case
Study of MakerDAO”. In: Proceedings of the 55th Annual Hawaii International

Conference on System Sciences. 2022.

[91] Efthymios Chondrogiannis et al. “Using blockchain and semantic web tech-
nologies for the implementation of smart contracts between individuals and
health insurance organizations”. In: Blockchain: Research and Applications 3.2
(June 2022), p. 100049. ISSN: 2096-7209. DOI: 10.1016/J.BCRA.2021.
100049. URL: https://linkinghub.elsevier.com/retrieve/
pii/S2096720921000440.

[92] Forever Isn’t Free: The Cost of Storage on a Blockchain Database | by Jamila

Omaar | IPDB Blog | Medium. 2017. URL: https://medium.com/ipdb-
blog / forever - isnt - free - the - cost - of - storage - on - a -

blockchain-database-59003f63e01 (visited on 01/31/2022).

[93] IPFS Powers the Distributed Web. URL: https://ipfs.io/ (visited on
02/01/2021).

[94] What is IPFS? | IPFS Docs. URL: https://docs.ipfs.io/concepts/
what-is-ipfs/ (visited on 02/18/2022).

[95] Introduction to Chainlink VRF | Chainlink Documentation. URL: https://
docs.chain.link/docs/chainlink-vrf/ (visited on 03/14/2022).

[96] P Woodall. “The Big Mac Index”. In: The Economist (1986). URL: https:
//www.economist.com/big-mac-index.

[97] Lorenz Breidenbach et al. Chainlink 2.0: Next steps in the evolution of decentral-

ized oracle networks. 2021. (Visited on 05/03/2022).

[98] Introduction - The Graph Docs. URL: https://thegraph.com/docs/en/
about/introduction/ (visited on 03/18/2022).

[99] Ethereum Gas Fees Are Red Hot, Infuriating Users and Boosting Rivals. URL:
https://markets.businessinsider.com/news/currencies/

ethereum-transaction-gas-fees-high-solana-avalanche-

cardano-crypto-blockchain-2021-12 (visited on 05/01/2022).

[100] Youssef Faqir-Rhazoui et al. “Effect of the Gas Price Surges on User Activity
in the DAOs of the Ethereum Blockchain”. In: Conference on Human Factors

in Computing Systems - Proceedings (May 2021). DOI: 10.1145/3411763.
3451755.

61

https://doi.org/10.1016/J.BCRA.2021.100049
https://doi.org/10.1016/J.BCRA.2021.100049
https://linkinghub.elsevier.com/retrieve/pii/S2096720921000440
https://linkinghub.elsevier.com/retrieve/pii/S2096720921000440
https://medium.com/ipdb-blog/forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01
https://medium.com/ipdb-blog/forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01
https://medium.com/ipdb-blog/forever-isnt-free-the-cost-of-storage-on-a-blockchain-database-59003f63e01
https://ipfs.io/
https://docs.ipfs.io/concepts/what-is-ipfs/
https://docs.ipfs.io/concepts/what-is-ipfs/
https://docs.chain.link/docs/chainlink-vrf/
https://docs.chain.link/docs/chainlink-vrf/
https://www.economist.com/big-mac-index
https://www.economist.com/big-mac-index
https://thegraph.com/docs/en/about/introduction/
https://thegraph.com/docs/en/about/introduction/
https://markets.businessinsider.com/news/currencies/ethereum-transaction-gas-fees-high-solana-avalanche-cardano-crypto-blockchain-2021-12
https://markets.businessinsider.com/news/currencies/ethereum-transaction-gas-fees-high-solana-avalanche-cardano-crypto-blockchain-2021-12
https://markets.businessinsider.com/news/currencies/ethereum-transaction-gas-fees-high-solana-avalanche-cardano-crypto-blockchain-2021-12
https://doi.org/10.1145/3411763.3451755
https://doi.org/10.1145/3411763.3451755

[101] Mudabbir Kaleem and Weidong Shi. “Demystifying Pythia: A Survey of ChainLink
Oracles Usage on Ethereum”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics) 12676 LNCS (2021), pp. 115–123. ISSN: 16113349. DOI: 10.1007/978-
3-662-63958-0_10/FIGURES/5. URL: https://link.springer.
com/chapter/10.1007/978-3-662-63958-0_10.

[102] Daojing He et al. “Smart Contract Vulnerability Analysis and Security Audit”. In:
IEEE Network 34 (5 Sept. 2020), pp. 276–282. ISSN: 1558156X. DOI: 10.1109/
MNET.001.1900656.

[103] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[104] M. Jones, J. Bradley, and N. Sakimura. “JSON Web Token (JWT)”. In: (May
2015). DOI: 10.17487/RFC7519. URL: https://www.rfc-editor.
org/info/rfc7519.

[105] Prajakta Solapurkar. “Building secure healthcare services using OAuth 2.0 and
JSON web token in IOT cloud scenario”. In: Proceedings of the 2016 2nd Inter-

national Conference on Contemporary Computing and Informatics, IC3I 2016

(2016), pp. 99–104. DOI: 10.1109/IC3I.2016.7917942.

[106] Petar Tsankov et al. “Securify: Practical Security Analysis of Smart Contracts”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-

tions Security 18 (2018). DOI: 10.1145/3243734.

[107] CertiK Blockchain Security Leaderboard. URL: https://www.certik.com/
(visited on 05/01/2022).

[108] What Is a Smart Contract Security Audit? | Binance Academy. URL: https:
//academy.binance.com/en/articles/what-is-a-smart-

contract-security-audit (visited on 05/01/2022).

[109] Noama Fatima Samreen and Manar H. Alalfi. “Reentrancy Vulnerability Identifi-
cation in Ethereum Smart Contracts”. In: IWBOSE 2020 - Proceedings of the 2020

IEEE 3rd International Workshop on Blockchain Oriented Software Engineering

(Feb. 2020), pp. 22–29. DOI: 10.1109/IWBOSE50093.2020.9050260.

[110] Rekt - Agave DAO, Hundred Finance - REKT. URL: https://rekt.news/
agave-hundred-rekt/ (visited on 05/01/2022).

[111] Rekt - Revest Finance - REKT. URL: https://rekt.news/revest-
finance-rekt/ (visited on 05/01/2022).

[112] Hack Solidity: Reentrancy Attack | HackerNoon. URL: https://hackernoon.
com/hack-solidity-reentrancy-attack (visited on 05/01/2022).

62

https://doi.org/10.1007/978-3-662-63958-0_10/FIGURES/5
https://doi.org/10.1007/978-3-662-63958-0_10/FIGURES/5
https://link.springer.com/chapter/10.1007/978-3-662-63958-0_10
https://link.springer.com/chapter/10.1007/978-3-662-63958-0_10
https://doi.org/10.1109/MNET.001.1900656
https://doi.org/10.1109/MNET.001.1900656
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.1109/IC3I.2016.7917942
https://doi.org/10.1145/3243734
https://www.certik.com/
https://academy.binance.com/en/articles/what-is-a-smart-contract-security-audit
https://academy.binance.com/en/articles/what-is-a-smart-contract-security-audit
https://academy.binance.com/en/articles/what-is-a-smart-contract-security-audit
https://doi.org/10.1109/IWBOSE50093.2020.9050260
https://rekt.news/agave-hundred-rekt/
https://rekt.news/agave-hundred-rekt/
https://rekt.news/revest-finance-rekt/
https://rekt.news/revest-finance-rekt/
https://hackernoon.com/hack-solidity-reentrancy-attack
https://hackernoon.com/hack-solidity-reentrancy-attack

[113] Rekt - Deus DAO - REKT. URL: https://rekt.news/deus-dao-rekt/
(visited on 05/01/2022).

[114] Van Cuong Bui et al. “Evaluating Upgradable Smart Contract”. In: Proceedings

- 2021 IEEE International Conference on Blockchain, Blockchain 2021 (2021),
pp. 252–256. DOI: 10.1109/BLOCKCHAIN53845.2021.00041.

[115] Kealan Mccusker and Brian Spector. “Qredo Network - Yellow Paper”. In: (2020).
URL: https://milagro.apache.org..

63

https://rekt.news/deus-dao-rekt/
https://doi.org/10.1109/BLOCKCHAIN53845.2021.00041
https://milagro.apache.org.

Appendices

64

Appendix 1 - "Proof of Feedback" contracts

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity >=0.6.0 <0.8.0;

4
5 import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

6 import "@openzeppelin/contracts/token/ERC20/ERC20Capped.sol";

7 import "@openzeppelin/contracts/access/Ownable.sol";

8
9 contract EasyFeedBackToken is ERC20Capped, Ownable {

10 constructor ()

11 ERC20("EasyFeedback", "EASYF")

12 ERC20Capped(179141000000 * 1 ether)

13 {

14 // Mint 1% of total supply

15 mint(msg.sender, (1791410000 * 1 ether));

16 }

17
18 event Burned(address indexed burner, uint256 burnAmount);

19
20 event Minted(

21 address indexed minter,

22 address indexed receiver,

23 uint256 mintAmount

24);

25
26 function mint(address _to, uint256 _amount) public onlyOwner {

27 require(_amount > 0, "ERC20: Cannot mint 0 tokens");

28 _mint(_to, _amount);

29 emit Minted(owner(), _to, _amount);

30 }

31
32 function burn(uint256 _amount) public {

33 require(_amount > 0, "ERC20: Cannot burn 0 tokens");

34 _burn(msg.sender, _amount);

35 emit Burned(msg.sender, _amount);

36 }

37 }

Listing 1. ERC-20 token EASYF smart contract

65

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity ^0.8.12;

4
5 import "@openzeppelin/contracts/access/Ownable.sol";

6
7 /**

8 @title PoF Regional regulator interface

9 */

10 interface IPoFRegionalRegulator {

11 function reward(

12 address payable,

13 address payable,

14 address payable,

15 address payable,

16 address,

17 uint256

18) external;

19 }

20
21 /**

22 @title PoF Internal Validator

23 @author Javier Ortin

24 @notice Proof of Feedback validator registering the users’ feedback

then

25 randomly drawing the jurors assigned for evaluating the

feedback

26 and sending the final decision to the regulator node

27 */

28 contract PoFInternalValidator is Ownable {

29 ///Events of the contract.

30
31 event AddedJuror(address jurorAdress);

32 event RemovedJuror(address jurorAdress);

33 event UpdatedMaxEvaluation(uint256 newMaxEvaluation);

34 event FeedbackRegistered(address feedbackID);

35 event FeedbackEvaluated(

36 address feedbackID,

37 address juror,

38 uint256 originality,

39 uint256 usefulness,

40 uint256 execution,

41 uint256 alreadyEvaluated

42);

43
44 /// State variables

45

66

46 /// @dev Map used to whitelist jurors

47 mapping(address => bool) public isJuror;

48
49 /// @dev Array containing the addresses of the jurors

50 address[] private jurors;

51
52 /// @dev total amount of jurors in the internal validator

53 uint256 totalJurors = 0;

54
55 /**

56 @notice Structure for given feedback

57 @dev customer is a payable address

58 @dev evaluated how many jurors have already evaluated

59 */

60 struct Feedback {

61 address customer;

62 address juror1;

63 address juror2;

64 address juror3;

65 mapping(address => uint256) evaluations;

66 bool registered;

67 uint256 evaluated;

68 uint256 finalEvaluation;

69 }

70
71 /// @dev map for storing feedbacks’ information

72 mapping(address => Feedback) public feedbacks;

73
74 /**

75 @dev minimum amount of jurors that the internal validator must have

76 to have a fair random selection of jurors and start operating

77 */

78 uint256 public minJurors = 7;

79
80 /// @notice PoF Regional Regulator to which this validator connects

81 address public pofRegulator;

82
83 /// @notice Maximum points that a feedback can get

84 uint256 public maxEvaluation;

85
86 /// @notice Code of the country (ISO 3166) where this validator

operates

87 /// @dev Code should follow the ISO 3166 standard

88 string public countryCode;

89
90 constructor(

91 address _pofRegulator,

67

92 uint256 _maxEvaluation,

93 string memory _countryCode

94) {

95 pofRegulator = _pofRegulator;

96 maxEvaluation = _maxEvaluation;

97 countryCode = _countryCode;

98 }

99
100 /// Modifiers

101
102 /**

103 * @dev Reverts if called by any account that is not the PoF

regulator.

104 */

105 modifier onlyRegulator() {

106 require(

107 pofRegulator == _msgSender(),

108 "Regulator: caller is not PoF Regulator"

109);

110 _;

111 }

112
113 /**

114 * @dev Throws if called by any account that is not a juror.

115 */

116 modifier onlyJuror() {

117 require(

118 isJuror[_msgSender()],

119 "Juror: caller is not a PoF Internal validator juror"

120);

121 _;

122 }

123 /// Functions

124
125 /**

126 @param juror new address to be added as a juror

127 @dev adds a new juror address to the map and array of jurors

128 */

129 function addJuror(address juror) public onlyOwner {

130 require(juror != address(0x0), "Zero address cannot be an juror

");

131 require(!isJuror[juror], "Address is already a juror");

132 jurors.push(juror);

133 isJuror[juror] = true;

134 totalJurors++;

135 emit AddedJuror(juror);

136 }

68

137
138 /**

139 @param juror address to be removed

140 @dev removes a juror address from the map and array of jurors

141 */

142 function removeJuror(address juror) public onlyOwner {

143 require(isJuror[juror], "Address must be a juror");

144 for (uint256 i = 0; i < totalJurors; i++) {

145 if (jurors[i] == juror) {

146 jurors[i] = jurors[totalJurors - 1];

147 jurors.pop();

148 isJuror[juror] = false;

149 totalJurors--;

150 emit RemovedJuror(juror);

151 }

152 }

153 }

154
155 /**

156 @notice Set new maximum evaluation that a feedback can have

157 @param _maxEvaluation new maximum evaluation points

158 */

159 function setMaxEvaluation(uint256 _maxEvaluation) public

onlyRegulator {

160 maxEvaluation = _maxEvaluation;

161 emit UpdatedMaxEvaluation(_maxEvaluation);

162 }

163
164 /**

165 @notice Function to registerthe feedback in the blockchain

166 @param feedbackID id of the given feedback in the form of a valid

address.

167 */

168 function askFeedbackEvaluation(address feedbackID) public {

169 require(

170 totalJurors >= minJurors,

171 "There are not enough jurors to use the PoF"

172);

173 require(!feedbacks[feedbackID].registered, "Feedback must be

new.");

174 feedbacks[feedbackID].customer = _msgSender();

175 address juror1;

176 address juror2;

177 address juror3;

178 (juror1, juror2, juror3) = randomJurors(feedbackID);

179 feedbacks[feedbackID].juror1 = juror1;

180 feedbacks[feedbackID].juror2 = juror2;

69

181 feedbacks[feedbackID].juror3 = juror3;

182 feedbacks[feedbackID].registered = true;

183 emit FeedbackRegistered(feedbackID);

184 }

185
186 /**

187 @notice Function that only jurors can call to evaluate the feedback

they have been assigned

188 @param feedbackID id of the given feedback in the form of a valid

address.

189 @param originality evaluation points for this criteria

190 @param usefulness evaluation points for this criteria

191 @param execution evaluation points for this criteria

192 */

193 function evaluateFeedback(

194 address feedbackID,

195 uint256 originality,

196 uint256 usefulness,

197 uint256 execution

198) public onlyJuror {

199 require(

200 _msgSender() == feedbacks[feedbackID].juror1 ||

201 _msgSender() == feedbacks[feedbackID].juror2 ||

202 _msgSender() == feedbacks[feedbackID].juror3,

203 "The juror must have the feedback assigned for evaluation"

204);

205 require(

206 originality <= maxEvaluation &&

207 usefulness <= maxEvaluation &&

208 execution <= maxEvaluation,

209 "Evaluation cannot be more than the maximum"

210);

211 feedbacks[feedbackID].evaluations[_msgSender()] =

212 (originality + usefulness + execution) /

213 3;

214 feedbacks[feedbackID].evaluated++;

215 emit FeedbackEvaluated(

216 feedbackID,

217 _msgSender(),

218 originality,

219 usefulness,

220 execution,

221 feedbacks[feedbackID].evaluated

222);

223 if (feedbacks[feedbackID].evaluated == 3) {

224 finalEvaluation(feedbackID);

225 }

70

226 }

227
228 /**

229 @notice Calculation of the final evaluation. Arithmetic mean.

230 @param feedbackID id of the given feedback in the form of a valid

address.

231
232 */

233 function finalEvaluation(address feedbackID) private {

234 uint256 evaluation = (

235 feedbacks[feedbackID].evaluations[feedbacks[feedbackID].

juror1] +

236 feedbacks[feedbackID].evaluations[feedbacks[feedbackID].

juror2] +

237 feedbacks[feedbackID].evaluations[feedbacks[feedbackID].

juror3]) /

238 3;

239 feedbacks[feedbackID].finalEvaluation = evaluation;

240 IPoFRegionalRegulator(pofRegulator).reward(

241 payable(feedbacks[feedbackID].customer),

242 payable(feedbacks[feedbackID].juror1),

243 payable(feedbacks[feedbackID].juror2),

244 payable(feedbacks[feedbackID].juror3),

245 feedbackID,

246 evaluation

247);

248 }

249
250 /**

251 @notice Algorithm for randomly selecting the jurors.

252 @param feedbackID id of the given feedback used as seed.

253 @return address 3 addresses of the jurors selected.

254 @dev this function can only be called internally

255 */

256 function randomJurors(address feedbackID)

257 private

258 view

259 returns (

260 address,

261 address,

262 address

263)

264 {

265 uint256 index = uint256(uint160(address(feedbackID)));

266 uint256 i1 = index % totalJurors;

267 uint256 i2 = (index / totalJurors) % totalJurors;

268 uint256 i3;

71

269 if (i2 == i1) i2 = (i2 + 1) % totalJurors;

270 if (i1 != 0 && i2 != 0) i3 = (i1 + i2) % totalJurors;

271 else {

272 i3 = (i1 + i2 + 1) % totalJurors;

273 if (i3 == 0) ++i3;

274 }

275 return (jurors[i1], jurors[i2], jurors[i3]);

276 }

277 }

Listing 2. Internal validator smart contract

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity ^0.8.12;

4
5 import "@openzeppelin/contracts/access/Ownable.sol";

6 import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

7 import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

8
9 /**

10 @title EASYF price feed oracle interface

11 */

12 interface IEASYFPriceFeed {

13 function priceFeed() external returns (uint256);

14 }

15
16 /**

17 @title EASYF price feed oracle interface

18 */

19 interface IPoFInternalValidator {

20 function setMaxEvaluation(uint256) external;

21 }

22
23 /**

24 @title PoF Regional regulator smart contract

25 @author Javier Ortin

26 @notice PoF smart contract in charge of sending the rewards to the end

user

27 @dev To this contract connect several PoF internal validators and it

has only one

28 call to an external oracle to provide the market price of EASYF

29 */

30 contract PoFRegionalRegulator is Ownable {

31 using SafeERC20 for IERC20;

32
33 ///Events of the contract.

34

72

35 /// @dev Amount in EASYF.

36 event Rewarded(

37 address beneficiary,

38 address feedbackID,

39 uint256 amount,

40 uint256 evaluation

41);

42 event UpdatedMaxReward(uint256 newMaxReward);

43 event UpdatedJurorsReward(uint256 newMaxReward);

44 event UpdatedBigMacIndex(uint256 newBigMacIndex);

45 event UpdatedMaxEvaluation(uint256 newMaxEvaluation);

46 event AddedInternalValidator(address newInternalValidator);

47 event RemovedInternalValidator(address newInternalValidator);

48
49 /// State variables

50
51 /// @dev Map used to store which feedbacks have been already

rewarded to

52 /// avoid rewarding the same feedback twice

53 mapping(address => bool) public rewarded;

54
55 /// @dev Map used to whitelist internalValidators

56 mapping(address => bool) public isInternalValidator;

57 address[] public internalValidators;

58
59 /// @notice ERC-20 token: EASYF used as a reward

60 address public easyf;

61
62 /// @notice EASYF price feed oracle

63 address public easyfPriceFeed;

64
65 /**

66 @notice Maximum amount rewarded.

67 Safety feature. In case some oracle is hacked

68 there is still a maximum amount that cannot be surpassed

69 @dev Units are EASYF (ERC-20 ether unit)

70 */

71 uint256 public maxReward;

72
73 /// @notice reward for jurors for each evaluation

74 /// @dev Units are EASYF (ERC-20 ether unit)

75 uint256 public jurorsReward;

76
77 /// @notice BigMac index of the region where this regulator is

implemented

78 /// @dev it should be multiplied by 100 to work with integers

79 uint256 public bigMacIndex;

73

80
81 /// @notice Maximum points that a feedback can get

82 /// @dev In the future might be decided to take some different

scala

83 /// but in general it should not be changed

84 uint256 public maxEvaluation;

85
86 /// @notice Code of the country (ISO 3166) this node regulates

87 /// @dev Code should follow the ISO 3166 standard

88 string public countryCode;

89
90 bool internal locked;

91
92 constructor(

93 address _easyf,

94 address _easyfPriceFeed,

95 uint256 _maxReward,

96 uint256 _jurorsReward,

97 uint256 _bigMacIndex,

98 uint256 _maxEvaluation,

99 string memory _countryCode

100) {

101 easyf = _easyf;

102 maxReward = _maxReward;

103 jurorsReward = _jurorsReward;

104 bigMacIndex = _bigMacIndex;

105 easyfPriceFeed = _easyfPriceFeed;

106 maxEvaluation = _maxEvaluation;

107 countryCode = _countryCode;

108 }

109
110 /// Modifiers

111
112 /**

113 * @dev Throws if called by any account that is not a PoF Internal

validator.

114 */

115 modifier onlyInternalValidator() {

116 require(

117 isInternalValidator[msg.sender],

118 "InternalValidator: caller is not a PoF Internal validator"

119);

120 _;

121 }

122
123 /**

124 * @dev Throws if trying a reentrancy attack.

74

125 */

126 modifier noReentrant() {

127 require(!locked, "Locked: ongoing contract call");

128 locked = true;

129 _;

130 locked = false;

131 }

132
133
134 /// Functions

135
136 /**

137 @notice Set new maximum amount that can be rewarded

138 @param _maxReward new maximum reward amount of EASYF tokens

139 */

140 function setMaxReward(uint256 _maxReward) public onlyOwner {

141 require(_maxReward > 0, "Maximum reward cannot be zero");

142 maxReward = _maxReward;

143 emit UpdatedMaxReward(maxReward);

144 }

145
146 /**

147 @notice Set new bigMac Index. Usually updated once or twice per

year.

148 @param _bigMacIndex bigMac index of the country

149 */

150 function setBigMacIndex(uint256 _bigMacIndex) public onlyOwner {

151 require(_bigMacIndex > 0, "BigMac index cannot be zero");

152 bigMacIndex = _bigMacIndex;

153 emit UpdatedBigMacIndex(bigMacIndex);

154 }

155
156 /**

157 @notice Set new maximum evaluation that a feedback can have

158 @param _maxEvaluation new maximum evaluation points

159 */

160 function setMaxEvaluation(uint256 _maxEvaluation) public onlyOwner

{

161 require(_maxEvaluation > 0, "Maximum evaluation cannot be zero"

);

162 maxEvaluation = _maxEvaluation;

163 for (uint256 i = 0; i < internalValidators.length; i++) {

164 IPoFInternalValidator(internalValidators[i]).

setMaxEvaluation(

165 _maxEvaluation

166);

167 }

75

168 emit UpdatedMaxEvaluation(_maxEvaluation);

169 }

170
171 /**

172 @param internalValidatorAdress new address to be added as an

internal validator

173 @dev adds a new internal validator address to the map

internalValidators

174 */

175 function addInternalValidator(address internalValidatorAdress)

176 public

177 onlyOwner

178 {

179 require(

180 internalValidatorAdress != address(0x0),

181 "Zero address cannot be an internal validator"

182);

183 require(

184 !isInternalValidator[internalValidatorAdress],

185 "Address is already an internal validator"

186);

187 internalValidators.push(internalValidatorAdress);

188 isInternalValidator[internalValidatorAdress] = true;

189 emit AddedInternalValidator(internalValidatorAdress);

190 }

191
192 /**

193 @param internalValidatorAdress internal validator address to be

removed from the map

194 @dev removes a new internal validator address to the map

internalValidators

195 */

196 function removeInternalValidator(address internalValidatorAdress)

197 public

198 onlyOwner

199 {

200 require(

201 isInternalValidator[internalValidatorAdress],

202 "Address is not an internal validator"

203);

204 for (uint256 i = 0; i < internalValidators.length; i++) {

205 if (internalValidators[i] == internalValidatorAdress) {

206 internalValidators[i] = internalValidators[

207 internalValidators.length - 1

208];

209 internalValidators.pop();

210 isInternalValidator[internalValidatorAdress] = false;

76

211 emit RemovedInternalValidator(internalValidatorAdress);

212 }

213 }

214 }

215
216 /**

217 @notice Calculates the amount of token an evaluation is worth

218 @param evaluation amount of points a feedback has been given

219 @dev only to be called by reward function.

220 No need to divide bigMacIndex and easyfPrice since both are

multiplied by 100 and

221 one is diving the other

222 */

223 function calculateAmount(uint256 evaluation) private returns (

uint256) {

224 uint256 calculatedReward = (2 * bigMacIndex * evaluation * 1

ether) /

225 (maxEvaluation * IEASYFPriceFeed(easyfPriceFeed).priceFeed

());

226 require(

227 (maxReward * 1 ether) >= calculatedReward,

228 "Reward amount cannot be bigger than maximum reward"

229);

230 return calculatedReward;

231 }

232
233 /**

234 @notice Calculates and sends the reward to the customer

235 @param customer address of the customer that sent the feedback

236 @param juror1 address of the juror1 to be rewarded

237 @param juror2 address of the juror2 to be rewarded

238 @param juror3 address of the juror3 to be rewarded

239 @param feedbackID id of the given feedback. Use to avoid double-

rewarding

240 @param evaluation points the evaluation has received.

241 */

242 function reward(

243 address payable customer,

244 address payable juror1,

245 address payable juror2,

246 address payable juror3,

247 address feedbackID,

248 uint256 evaluation

249) public onlyInternalValidator noReentrant{

250 require(evaluation > 0, "Evaluation cannot be zero");

251 require(

252 evaluation <= maxEvaluation,

77

253 "Evaluation points cannot be bigger than the maximum points

"

254);

255 require(!rewarded[feedbackID], "Feedback has been already

rewarded");

256
257 /// Calculate how many tokens an evaluation means

258 uint256 amount = calculateAmount(evaluation);

259 require(

260 IERC20(easyf).balanceOf(address(this)) >= amount,

261 "Not enough liquidity in the regional regulator"

262);

263
264 /// Reward the customer

265 IERC20(easyf).approve(address(this), amount);

266 IERC20(easyf).safeTransferFrom(address(this), customer, amount)

;

267
268 /// Reward the jurors

269 IERC20(easyf).approve(address(this), jurorsReward);

270 IERC20(easyf).safeTransferFrom(address(this), juror1,

jurorsReward);

271 IERC20(easyf).approve(address(this), jurorsReward);

272 IERC20(easyf).safeTransferFrom(address(this), juror2,

jurorsReward);

273 IERC20(easyf).approve(address(this), jurorsReward);

274 IERC20(easyf).safeTransferFrom(address(this), juror3,

jurorsReward);

275
276 /// Set the feedbackID as already rewarded

277 rewarded[feedbackID] = true;

278
279 emit Rewarded(customer, feedbackID, amount, evaluation);

280 }

281
282 /**

283 @notice Sends all liquidity to the owner who later can burn it or

relocated

284 */

285 function withdraw() public onlyOwner {

286 uint256 amount = IERC20(easyf).balanceOf(address(this));

287 /// Send funds to the owner of the contract

288 IERC20(easyf).approve(address(this), amount);

289 IERC20(easyf).safeTransferFrom(address(this), owner(), amount);

290 }

291 }

Listing 3. Regional Regulator smart contract

78

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity ^0.8.12;

4
5 import "@openzeppelin/contracts/access/Ownable.sol";

6 import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

7 import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

8
9 /**

10 @title Company node

11 @author Javier Ortin

12 @notice Proof of Feedback company node in charge of sending the rewards

to the end user

13 @dev Liquidity should be provided by the company

14 */

15 contract PoFCompany is Ownable {

16 using SafeERC20 for IERC20;

17
18 ///Events of the contract.

19
20 /// @dev Amount in EASYF.

21 event Rewarded(

22 address beneficiary,

23 address feedbackID,

24 uint256 amount,

25 uint256 evaluation

26);

27 event UpdatedMaxReward(uint256 newMaxReward);

28 event UpdatedMaxEvaluation(uint256 newMaxEvaluation);

29
30 /// State variables

31
32 /// @dev Map used to store which feedbacks have been already

rewarded to

33 /// avoid rewarding the same feedback twice

34 mapping(address => bool) public rewarded;

35
36 /// @notice ERC-20 token contract: EASYF used as a reward

37 address public easyf;

38
39 /// @notice Maximum amount rewarded

40 /// @dev in eth -> EASYF token

41 uint256 public maxReward;

42
43 /// @notice Maximum points that a feedback can get

44 uint256 public maxEvaluation;

45

79

46 string public company_name;

47
48 /// @notice Contract constructor

49 constructor(

50 address _easyf,

51 uint256 _maxReward,

52 uint256 _maxEvaluation,

53 string memory _company_name

54) {

55 easyf = _easyf;

56 maxReward = _maxReward;

57 maxEvaluation = _maxEvaluation;

58 company_name = _company_name;

59 }

60
61 /// Functions

62
63 /**

64 Set new maximum amount that can be rewarded

65 @param _maxReward new maximum reward amount of EASYF tokens

66 */

67 function setMaxReward(uint256 _maxReward) public onlyOwner {

68 require(_maxReward > 0, "Maximum reward cannot be zero");

69 maxReward = _maxReward;

70 emit UpdatedMaxReward(maxReward);

71 }

72
73 /**

74 Set new maximum evaluation that a feedback can have

75 @param _maxEvaluation new maximum evaluation points

76 */

77 function setMaxEvaluation(uint256 _maxEvaluation) public onlyOwner

{

78 require(_maxEvaluation > 0, "Maximum evaluation cannot be zero"

);

79 maxEvaluation = _maxEvaluation;

80 emit UpdatedMaxEvaluation(_maxEvaluation);

81 }

82
83 /**

84 @notice Calculates the amount of token an evaluation is worth

85 @param evaluation amount of points a feedback has been given

86 @dev since this is own by a company they don’t need to follow the

87 oracle standard of the PoF. They still would theoretically

follow it

88 */

89 function calculateAmount(uint256 evaluation)

80

90 private

91 view

92 returns (uint256)

93 {

94 return (maxReward * evaluation * 1 ether) / maxEvaluation;

95 }

96
97 /**

98 @notice Calculates and sends the reward to the customer

99 @param customer address of the customer that sent the feedback

100 @param feedbackID id of the given feedback. Use to avoid double-

rewarding

101 @param evaluation points the evaluation has received.

102 */

103 function reward(

104 address payable customer,

105 address feedbackID,

106 uint256 evaluation

107) public onlyOwner {

108 require(evaluation > 0, "Evaluation cannot be zero");

109 require(

110 evaluation <= maxEvaluation,

111 "Evaluation points cannot be bigger than the maximum points

"

112);

113 require(!rewarded[feedbackID], "Feedback has been already

rewarded");

114
115 /// Calculate how many tokens an evaluation is worth

116 uint256 amount = calculateAmount(evaluation);

117 require(

118 IERC20(easyf).balanceOf(address(this)) >= amount,

119 "Not enough liquidity in the company node"

120);

121
122 /// Reward the customer

123 IERC20(easyf).approve(address(this), amount);

124 IERC20(easyf).safeTransferFrom(address(this), customer, amount)

;

125
126 /// Set the feedbackID as already rewarded

127 rewarded[feedbackID] = true;

128
129 emit Rewarded(customer, feedbackID, amount, evaluation);

130 }

131 }

Listing 4. Company validator smart contract

81

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity ^0.8.12;

4
5 import "@openzeppelin/contracts/access/Ownable.sol";

6
7 /**

8 @title Oracle for the EASYF token price

9 @author Javier Ortin

10 @notice price feed for other contracts to get the USD trading price of

EASYF token

11 @dev The owner can update the current trading price (USD) of the EASYF

token.

12 Interface to add in the contract:

13 interface IEASYFPriceFeed {

14 function priceFeed() external returns (uint256);

15 }

16 */

17 contract EASYFPriceFeed is Ownable {

18 /// Events

19 event UpdatedPriceFeed(uint256 price);

20
21 /// State variables

22 /// @notice state variable to call for getting EASYF price

23 uint256 public priceFeed;

24
25
26 constructor(

27 uint256 _priceFeed

28) {

29 priceFeed = _priceFeed;

30 }

31
32 /**

33 Sets the current EASYF token price.

34 @param price new price in USD

35 */

36 function setPriceFeed(uint256 price) public onlyOwner {

37 priceFeed = price;

38 emit UpdatedPriceFeed(priceFeed);

39 }

40 }

Listing 5. EASYF price feed oracle smart contract

1 // SPDX-License-Identifier: MIT

2
3 pragma solidity ^0.8.12;

82

4
5 import "@openzeppelin/contracts/access/Ownable.sol";

6
7 /**

8 @title Contract for testing the cost of storing feedback directly in

the blockchain

9 @author Javier Ortin

10 @notice simple contract that stores bytes of any kind of data assigned

to an id.

11 @dev Not intended to be used in production

12 */

13 contract FeedbackStorage is Ownable {

14 event FeedbackRegistered(address feedbackID, address customer);

15
16 /**

17 @notice Structure for given feedback

18 */

19 struct Feedback {

20 address customer;

21 bytes feedbackData;

22 bool registered;

23 }

24
25 /// @notice map for given feedbacks id -> Feedback struct

26 mapping(address => Feedback) public feedbacks;

27
28 /**

29 Insertion of the feedback in to the blockchain

30 @param feedbackID id of the given feedback in the form of a valid

address.

31 @param feedbackData bytes contain the encrypted feedback data

32 */

33 function registerFeedback(address feedbackID, bytes calldata

feedbackData)

34 public

35 {

36 require(!feedbacks[feedbackID].registered, "Feedback must be

new.");

37 feedbacks[feedbackID].customer = _msgSender();

38 feedbacks[feedbackID].feedbackData = feedbackData;

39 feedbacks[feedbackID].registered = true;

40 emit FeedbackRegistered(feedbackID, feedbacks[feedbackID].

customer);

41 }

42 }

Listing 6. Feedback storing smart contract

83

	List of Figures
	List of Tables
	Introduction
	Theoretical background
	Customer feedback studies
	Types of feedback
	How to define valuable feedback

	Blockchain
	Core concepts
	Consensus protocols and mechanisms; mining and other blockchain protocols
	Types of blockchains
	Blockchain issues

	Smart contracts
	EVM compatible blockchains
	ERC-20 tokens

	Oracles
	Types of blockchain oracles

	Decentralized autonomous organizations (DAO)

	Novel blockchain protocol: Proof of Feedback
	Existing related works
	Architecture of the protocol
	Original idea
	Possible architectures
	Feedback storage
	Jurors
	Regulator node
	Validators
	Feedback evaluation
	Oracles
	Possibility of a ruling DAO

	Implementation prototype
	Blockchain Polygon
	PoF contracts
	PoF client
	PoF server

	Validation of the proposed system
	Smart contracts audit
	Gas costs analysis
	Contract vulnerabilities
	Platform security flaws

	Decentralization analysis
	Preserving feedback requirements

	Possible improvements

	Conclusions
	References
	Appendices
	Appendix 1 - "Proof of Feedback" contracts

