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Abstract

Digital Twin technology in the automotive industry is a growing trend that promises to
bring accurate and cost-effective simulations, testing environments and predictive
maintenance platforms. Autonomous vehicles are a special case - the number of sensors
such vehicles possess and the amounts of data they generate can help to create precise,
sophisticated models and environments for testing and analysis. To make this happen, a
research project "Digital Twin for propulsion drive of autonomous electric vehicle”

(project number PSG-453) was founded.

In this Master's thesis, a middleware framework for communication of Digital Twin
entities is proposed. The framework based on Robot Operating System 2 (ROS2) and
micro-ROS frameworks is used to connect two entities of the propulsion drive system
Digital Twin. In the end, the latency tests are used to verify the reliability and speed of

the framework.

This thesis is written in English language and is 46 pages long, including 6 chapters, 15

figures and 5 tables.



Annotatsioon

Digitaalsete kaksikute tehnoloogia on autotddstuses kiiresti kasvav arengusuund, mis
lubab luua tépse ja tootliku keskonda simulatsiooni, testimise ja ennustava hoolduse
jaoks. Autonoomsed sBidukid on erijuhtumid - suur arv andureid vdimaldab genereerida
piisavalt andmeid selleks, et luua tépne ja keeruline keskkond autonoomsete sdidukite
testimiseks ja anallisiks. Seetdttu oli "Isejuhtiva elektrisdiduki veoajami digitaalne
kaksik" (projekti kood PSG-453) loodud.

Antud 18putdd pakub vahevararaamistiku digitaal kaksiku tksuste infovahetuseks ning
selgitab, kuidas see seob digikaksiku Uksusi kokku. VVahevararaamistik on loodud Roboti
Operatsioonsiisteemi 2 (ROS2) ning micro-ROS'i pdhjal. Kokkuvdtes on esitatud
latentsuse testide tulemused, mis kinnitavad, et vahevararaamistik vastab Kiiruse ja

tookindluse nouetele.

Ldputdd on kirjutatud inglise keeles ning sisaldab teksti 46 lehekiljel, 6 peatikki, 15

joonist, 5 tabelit.



Al
API
Black box

CAD
CLI
DAS
DDS
DT

Guest machine

GUI

Host machine

IM
MATLAB
MCU
micro-ROS
0Ss

PDS
PMSM
PSG-453

QoS
ROS
ROS2
RTT
TB
USB
VM

List of abbreviations and terms

Artificial Intelligence
Application Programming Interface

Object or system producing useful information without
revealing any information about its internal workings

Computer-Aided Design
Command Line Interface
Data Acquisition System
Data Distribution Service
Digital Twin

An independent instance of an OS and associated software and
information

Graphical User Interface

The physical machine that provides the guest VM with
computing hardware resources

Induction Motor

Commercial numerical analysis programming platform
Microcontroller Unit

Native embedded implementation of ROS2

Operating System

Propulsion Drive System

Permanent Magnet Synchronous Machine

DT for propulsion drive of autonomous electric vehicle project
code

Quality of Service

Robot Operating System

Robot Operating System 2 — the successor of ROS
Round Trip Time

Test Bench

Universal Serial Bus

Virtual machine
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1 Introduction

With the increasing complexity of modern mechatronic systems, the traditional methods
of monitoring and maintaining these systems have become inapplicable. At the same time,
their sophisticated design and ability to generate large amounts of data open new ways

for analysis and simulations.

One example of such a system is the self-driving vehicle ISEAUTO which is being
developed on the premises of Tallinn University of Technology (TalTech) since 2018 [1].
A large number of installed sensors and powerful processing units allow this vehicle to
navigate autonomously by processing the surrounding environment and making choices
based on the received data. Very little is done towards an in-depth understanding of how
these autonomous vehicles are affected during operation, considering how analysis of the

vehicle’s working systems can improve its overall performance.

To solve this problem, a research project PSG-453 [2] [3] was established, which aims to
develop a specialized, unsupervised analysis of a propulsion drive system (PDS) of
ISEAUTO based on the technology of digital twins (DT). The outcomes of this project
are expected to be: a new educational tool, the discovery of new methods for monitoring

and maintenance, and an improved analysis of existing systems.

The task of this thesis is to implement the middleware that connects specifically chosen
hardware and software components of the DT and test the latency of implemented
middleware solution. The thesis is organized in the following way. Chapter 2 presents the
background of digital twin technology, outlines the state of the art in DT technology in
the automotive field, and provides background to the PSG-453 project. Chapter 3
describes the selection of middleware framework and provides an overview of the
selected framework. Chapter 4 covers the implementation details of the middleware.
Chapter 5 describes the results of implementation and provides suggestions for future

work. Conclusions are given in the Summary section.
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2 Background

This section provides an insight into the current state of the art of DT, the history of the
concept, and notable examples of systems deployed with DT principles in the automotive
industry. At the end of the chapter, an overview and state of the ongoing project are given

with defined goals to be achieved.

2.1 Definition of Digital Twin

There are several definitions of DT that were given over time by various academics and
organizations. The first-ever definition originates from Dr. Michael Grieves who
introduced this concept in 2002 — DT is a set of virtual information constructs that fully
describes a potential or actual physical manufactured product from the micro atomic level

to the macro geometrical level, as shown in Figure 1 [4].

Data

Figure 1. Visual representation of digital twin concept described by M. Grieves [4].

In [5], DT is defined as a software analog of a physical system that mimics the internal
processes, technical characteristics, and overall behavior of the system. Lockheed Martin
gives the following definition of a DT: “virtual representations of as-built physical assets,
processes, and systems that can be used across the product life cycle using real-time data

and other sources to provide actual insights” [6]. All in all, most definitions are similar in
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describing the idea of the DT — it is a precise virtual clone of a real device or system based
on physical properties, gathered or real-time sensor data, intending to simulate its
behavior. IBM outlines several key differences that make DT stand ahead of simulations
— larger scale (many engineering disciplines studied at the same time) and two-way flow
of information (sensor data from the physical device and feedback from the virtual
environment of the DT) [7].

2.2 A brief history of Digital Twin technology

The general concept of the DT was first introduced in 2002. Shortly after, it was adopted
by the aerospace industry — particularly by NASA and U.S. Air Force. Since 2014,
companies such as Lockheed Martin, Boeing, and General Electric were brought together
by U.S. Air Force to conduct a series of applied research in the field of DT [8]. The advent
of 1oT and Big Data has further bridged the gap between physical and virtual worlds and
necessitated the development of a sophisticated model to meaningfully process and
visualize the physical processes. Altogether, these events have sparked the interest in
research of DT technology and, as can be seen in Figure 2, the number of publications

has been growing exponentially ever since [9].
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Figure 2. The number of digital twin-related publications by year, from 2011 to 2020 on Scopus and
ScienceDirect [9].
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The growth and importance of the DT technologies can also be verified by the fact that
Gartner has named DT as a strategic technology trend in three consecutive years (2017 -
2019) [10] [11] [12], and Forbes [13] described the DT as one of the defining

technologies of next decade.

2.3 Digital Twin technology in the automotive industry

Traditionally, automotive and aerospace systems have been designed with empirical
engineering practices [14], but with increasing performance requirements, the necessity
for “self-awareness” during operation, and lack of external support, new engineering
practices are needed. With the introduction of the DT, new development and testing
simulation practices became available to fulfill new requirements, and consequently, the

interest in research of these technologies is growing steadily, as can be seen in Figure 3.
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Figure 3. Search? results for publications related to digital twins in automotive applications in periods
2011-2022 in ScienceDirect and Scopus.

In [15], Best et al. claim that gained information from vehicle simulations could provide
critical training data on algorithmic inefficiencies before actual vehicle testing. As a

result, they developed a simulation platform for autonomous driving of a vehicle with the

! Search consisted of the following query: (TITLE-ABS-KEY (digital AND twin AND car ) OR TITLE-
ABS-KEY (digital AND twin AND vehicle ) OR TITLE-ABS-KEY (digital AND twin AND
automative)). The last time the search was conducted was on 04.05.2022.
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possibility of generating labeled data for machine learning. In their research, simulation
covers kinematics and dynamics, traffic rules, path planning, and environmental
conditions. However, the research does not cover the simulation of hardware components

of the vehicle, solely focusing on the software aspect and Al.

Liu et al. [16] demonstrate two DT models created by two different methods: Gaussian
process and convolutional neural networks (CNN). Both DT models were created using
the sensor data, collected from a transmission shaft of the vehicle. The simulated
measurements were almost identical to those measured on the real vehicle. The conducted
study achieved its task of identifying the driving states, but researchers noted that a real-
time dual connection between DT and the real vehicle is needed to achieve reliable results.

An improved design was proposed by Chen et al. [17], where scientists developed a
hardware-in-the-loop (HiL) simulation platform. The focus was applied on bridging the
gap between pure software simulations and hardware simulation, and making the
simulation more “online” in nature, by establishing a link between the virtual and real car
environments. In their platform, the Electronic Control Unit (ECU) was used for hardware
control, with the rest of simulation (such as simulated sensor data, kinematics, and
dynamics) occurring in a virtual environment. The simulated data from driving was
streamed to the ECU, where the hardware evaluated the state of driving and returned the

calculated decisions to the virtual environment.

Using a different approach, Ruba et al. [18] developed a real-time DT implementation
using Field-Programmable Gate Array (FPGA) for a propulsion system. In their setup,
DT of a propulsion system TB was implemented with two FPGAs: one for mimicking the
entire behavior of a Permanent Magnet Synchronous Machine (PMSM) TB, and another
FPGA for simulating the control unit. The communication between these two FPGAS was
handled by digital and analog 10, utilizing the same interfaces that were used between a
PMSM TB and control unit. Therefore, researchers were able to swap the FPGA control

unit with the real control unit.

RassOlkin et al. [3] [19] described a concept of the DT that features three components: a
physical entity, a virtual entity, and a service entity. All these entities are interconnected
by middleware. The physical entity is represented in a form of the propulsion drive TB,
the virtual entity - as the simulated 3D model of TB, and the service entity - as an
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integrated service platform responding to the demands of both physical and virtual
systems. The study outlines that such DT should provide monitoring capabilities in

dynamic regimes.

The abovementioned findings indicate that DT technology is a trending subject of
research in the automotive industry and is expected to grow in the upcoming years.
Studies are being carried out to make interactions between digital and physical systems
more dynamic, occur in real-time, and make simulated operations more identical to those
of physical vehicle systems. The benefits of using such systems are reduced cost for
carrying out tests and simulations, reduced need for physical testing in the field, and the
ability to simulate various scenarios that are difficult to simulate in physical testing.

2.4 Case study - Digital Twin for a propulsion drive system

DT for propulsion drive of autonomous electric vehicle (project number PSG-453) [2] [3]
is a research project which aims to develop a specialized unsupervised analysis and
prognosis tool of an ISEAUTO PDS, based on DT technology. The design of the proposed

DT can be seen in Figure 4.

Virtual entity

Service entity

= Function; Iterative optimization

= Input;
= Output;

= Spatial model;

= Physical model;
Interaction = Behavior model;

= Historical datasets;

= etc.

= Quality;
= State;

Interaction
Iterative optimization

uoneziwdo annessy
uondeIAU|

Real physical entity

(1oT) (DAS)

Iterative optimization

Interaction and Mapping

Figure 4. Architecture of the PSG-453 DT showing how the 4 modules are used [20].

The proposed DT consists of four modules: the real vehicle that is supplied with sensors

(real physical entity), a test bench (TB) of a vehicle’s propulsion drive (designated as Test
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benches), 3D models of the TB/real vehicle (virtual entity), the service platform (service
entity). All communication is to be handled by a middleware, through which the DT data

is going to flow.

The data is being sent and received from all modules to all modules simultaneously, thus
enabling the creation of sophisticated controls and analysis of the whole DT in real time.
The data generated during the operation of a real vehicle/TB is consumed by the virtual
and service entity. Those entities, in response, generate feedback data and other useful

parameters that help the analysis of vehicle operation.

To illustrate the process better, assume the following scenario. The PDS TB starts its
operation, and the shaft of a motor starts to spin. A sensor installed on the motor records
the angular velocity of the shaft and sends it to the virtual entity. The virtual entity
calculates the linear velocity of each wheel based on the received shaft angular velocity
and forces the 3D model of a vehicle to move. At the same time, friction is exerted on the
wheels, causing the vehicle to slow down. The actual recorded linear velocity is
recalculated back to the shaft angular velocity and is sent to the PDS to adjust to changes.
Meanwhile, the service entity monitors that the data sent by the PDS TB is in the correct

range.

2.4.1 Physical entity

The physical entity of the DT is replaced by experimental TB consisting of a PDS
identical to the one present inside the ISEAUTO vehicle. The PDS features a Mitsubishi
PMSM traction motor Y4F1 (present in i-MIiEV car models) which is operated by an
ABB HES880 - a frequency converter that transforms the supply power to the motor
based on the set parameters. HES880 in its turn is powered by a Cinergia B2C+ battery
emulation system. Y4F1 motor’s output is attached to a shaft via a gearbox. The shaft is
attached to two ABB IM loading motors (ABB 3GAA132214-ADE) that simulate the
loads on the traction motor. Two loading motors are connected to two ABB ACS880
frequency converters that transform the supply power to the motor based on the set
parameters. The PDS is attached to a metallic frame which enables the operation of the
system and allows the connection of other elements to the system (controllers,

converters, sensors, etc). Described TB can be observed in Figure 5 and Figure 6.
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Figure 5. TB for PDS in the Electrical Machine Group lab.
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Figure 6. Hlustration schematic for TB for PDS.
2.4.2 Virtual entity

As seen in Figure 7, the virtual entity is represented as a 3D model of the TB created in
the virtual environment provided by the Unity game engine. The virtual entity is
composed of imported CAD geometric models of PDS parts (motors, shafts, bearings,
gearbox), thus keeping the real dimensions of the TB. Implemented software in Unity
controls the 3D model and can simulate motion and action depending on the provided
input. Likewise, the virtual entity can have virtual sensors that record the simulated
operation data of the 3D model and stream it back to the physical entity through the

middleware.
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Figure 7. 3D model of the PDS TB in a virtual entity of DT [21].

2.4.3 Service entity

The service system represents an integrated service platform responding to the demands
of both physical and virtual systems and acts as a predictive maintenance component [3].
It monitors the operation of TB, analyses any detected abnormalities to find the cause of
them, and ultimately warns about problems in the DT. One of the implementations is
described in [20] where inter-turn short circuit faults were detected and analyzed in
MATLAB software during operation.

2.5 Problem statement

At the time of writing this Master’s thesis, the PSG-453 team was in the process of
connecting physical entities with their virtual and service entity counterparts. The goal of
this Master’s thesis is to connect the traction motor of the PDS with a service entity, for

the analysis of the traction motor’s data.

2.6 Motivation

In any complex system, reliable, scalable, and secure communication between all entities
ensures the operation of the system as a whole. In present days, it is observable that many
independent technologies that tackle a specific set of problems have begun to be used
interchangeably to provide new functionalities. DT technology is one of such fields, and
the proposed DT by PSG-453 requires a flexible means to communicate between all the

independent technologies.
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In this thesis, a middleware framework on a base of ROS2 (Robot Operating System 2)

and micro-ROS (micro-ROS) is proposed, through which:
o all entities will be defined in the ROS2-based middleware in a structural manner
e data will be sampled from the physical entity (PDS TB) using micro-ROS
e sampled data will be sent to the service entity

e the service entity will process the data and send it back to the middleware

2.7 Section summary

In this section, the state of the art in DT for automotive applications has been defined.
Literature research indicates that interest in DT for automotive applications is increasing
every year. Motivations for that are the cost-effectiveness of DTs, advanced maintenance,
and analysis of automotive systems. The background for the PSG-453 project and its
current state was introduced. Current DT consists of the physical, virtual, and service

entities. The problem and motivation for this Master’s thesis were outlined.
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3 Middleware framework selection

This section provides the definition of middleware, explains the process of selecting the
appropriate middleware framework for the needs of described DT, and gives an overview

of ROS2 and micro-ROS middleware frameworks.

3.1 Definition of middleware

There is no official definition of the term "middleware”, as industry and academics
explain this term differently, yet one definition found by the authors explains it the most
clearly: middleware platforms are intermediaries between sensors, services, and
applications, managing the flow of data and allowing them to interoperate [22].
Middleware handles all the serialization and transfer of information from one platform to
another utilizing various applied standards. Middleware has a defined Application
Program Interface (API) that allows engineers to bind the middleware software to their
parts of the system and allow inter-system communication. Dozens of middleware
frameworks are available for use, both proprietary and free of charge. Some of the
frameworks are based on standard communication protocols, whereas other frameworks
use custom solutions. Different frameworks have different fields of application, ranging

from smart homes to aerospace.

3.2 Overview and selection of available middleware

Considering the complexity of elements that constitute a DT (as described in Section 2.4)
and the overall application of a DT, it is important to choose appropriate middleware and
define an architecture for DT connections. Based on the needs of the TB DT of PSG-453,

a set of qualitative criteria based on [22] was outlined:
1. Area of use suitable for industrial cases.

Applicability for industrial use-cases guarantees that middleware is reliable, possibly
standardized, and is capable to handle desired loads of data flow.
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2. Support for desired communication model — publisher-subscriber.

As described in Section 2.4, data between components is expected to flow (e.g.,
continuously streamed). Publisher-subscriber model is more appropriate for this
reason due to its asynchronous nature (communication speeds may vary for each

element), and greater scalability if compared to other communication models.
3. Must support real-time operation.

Data from DT must be coming with real-time precision, thus enabling precise analysis

of operating PDS.
4. Availability and clarity of documentation.

Concise documentation that is easily available and covers all the information

regarding middleware is required to ensure smooth integration into a system.
5. Quality of the support and livelihood of developer communities.

The livelihood of developer communities guarantees that middleware is being
improved continuously, reported bug fixes get resolved, and help will be guaranteed

if edge cases are encountered.

In a previously conducted study [23], the author has compared the most common
middleware frameworks that apply to the investigated study case. The results of the
comparison are presented in Table 1. An initial group of middleware frameworks was
selected based on their application cases — industrial, automotive, or robotics. From there,
it was important to select those supporting the publisher-subscriber model. Then, the
advantages and disadvantages of all middleware frameworks were considered, and the
choice in favor of ROS2 was made. The native support for real-time operation,
availability of extensive documentation, and the use of a standardized (DDS) middleware
were the key factors taken into account. Also, the liveliness of ROS2 was considered the

best as it is an actively developing platform.

22



Table 1. Comparison of available middleware frameworks [23].

Framework Initial Type Messaging Advantages Disadvantages
Release Type
+ Real time support - Inactive community
Inter-Process Message bus + Solved head-of-line - Development
ach 2013 Communication Publish- problem for accessing the discontinued
mechanism subscribe newest message - No ready software
+ Extensive documentation packages
+ Extensible family of
Publish- connecti.on types . - Limited real time support
YARP 2002 Robotics middleware . + Extensive documentation - No ready software
subscribe + Active community packages
+ QoS policies
Libraries and tools for + Distributed network topology - No ready software
message passing and Publish- + Low—Iat'enc.y inter-process packages
LCM 2006 data marshaling, . communication - Development stalled
targeted at real-time subscribe + Large support of - Weak documentation
systems programming languages - Inactive community
+ Extensive collection of ready- - Limited real time
to-use packages support
ROS 2007 Robotics middleware Publish- + Extgnsive documentation -Hasa masFer server
subscribe + Active community through which all
connections are handled
- Support ends in 2025
+ Real time support - Development is still
+ Distributed network topology  ongoing
Publish- + Native embedded support - Documentation is
ROS2 2017 Robotics middleware subscribe + Based on a standard aimed more at ROS users

+ Active community
+ Extensive documentation
+ QoS policies

- Some of ROS ready
packages are still being
ported to ROS2

In [23], it was also discovered that the reliability of DDS implementation makes ROS2

better at retaining messages and delivering them without losses — in high-frequency

communication, the latency was roughly 25 times less, and the number of lost messages

was 32 times less in ROS2 compared to ROS. The discovery was made through latency

testing — every message contained a header consisting of a unique 1D and a timestamp.

All publishers inserted an ID into the message with the time of submission. All

subscribers were aware of the message ID that they needed to receive. If the IDs matched,

the timestamps were compared, and the difference (indicating the latency) was saved.

Else, the message was considered lost, and the subscriber would reset the ID to the next

expected one. All data was logged into text files and analyzed separately using Jupyter

Notebook.
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3.3 ROS2

ROS?2 is a state-of-the-art framework for robotics development that consists of a large set
of free and open-source tools and libraries for robotic engineering, and a structured

communication layer.

The communication in ROS2 is realized via a publisher-subscriber messaging pattern.
Messaging occurs between ROS Nodes which are defined as “processes that perform
computation” [24]. ROS Nodes can advertise (produce and send messages) or subscribe
(receive messages) to Topics (name buses over which Nodes exchange Messages) [25].
ROS messages constitute data structures made of typed fields [26] to group all the
necessary information collected by ROS Nodes. Messages can be default ones provided
by ROS packages or they can be custom-defined. Additionally, ROS2 has a request-
response messaging pattern in form of ROS Services, which is suitable for cases such as

one-time requests to complete some operation.

ROS2 also provides a set of GUI and CLI tools for debugging and monitoring. ROS2 CLI
tools typically enable users to get information regarding subscriptions and publishers,
frequency of submitted Messages, the Message content, etc. The GUI tools allow data
visualization — for example, RQt Plot is used to plot the data on a time graph to visualize
how data is changing over time. Rosbags [27] allow recording ROS Messages on different
topics to play this data back later — a feature particularly useful for offline development,

and development based on data gathered during real-life operations.

ROS2’s predecessor, ROS, was widely used in academia and research for its rich set of
documentation and available ROS packages - already developed software components for
complex robotic tasks (navigation, localization, computer vision, etc) that are open-
source and available to everybody. ROS was well-perceived by the community - it is
widely used in academic institutions for education and research. Furthermore, there were
some commercial robot platforms developed [28] as well as the largest framework for
autonomous vehicles development — Autoware Al [29]. However, as the use of ROS was
growing beyond the academic world, it became apparent that ROS must meet a
completely new set of demands than it originally was created for. Therefore, the
development of ROS2 began with the aim to create a robust platform suitable to operate

in real-time, in non-ideal network conditions, and be possible to use on embedded
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devices. ROS2 is developed and managed by Open Robotics, with some parts of the
software being co-developed by renowned industry leaders in the automotive and

technology sectors (such as Bosch, Sony, AWS, iRobot, etc) [30].

3.3.1 ROS2 architecture

The communication in ROS2 is based on the Data Distribution Service - a middleware
protocol and API standard for data-centric connectivity from the Object Management
Group (OMGQG). It provides reliable, low-latency, and real-time communication. Its key
feature — dynamic discovery and Quality of Service (QoS) makes it server-free and more
extensible [31]. In large systems with multiple communicating elements, DDS solves the
problem of scalability and speed, providing a fast network. DDS is well-standardized
[32], and has been a part of other time-critical standards used in automotive, aerospace,
and defense industries (e.g NATO NGVA, AUTOSAR Adaptive) [33].

ROS?2 is structured as follows: the user application layer is used for writing software for
ROS Nodes. The user application layer relies on the ROS2 Client layer, which provides
users with the language-specific (C++, Python, C) API for ROS2 core libraries and
functions. The client layer is connected to the DDS Abstraction layer which binds ROS2
with DDS implementations. The communication is handled entirely by various DDS
vendors on the DDS Implementation Layer. ROS2 entirely resides in operating systems.

The visual representation of described architecture can be seen in Figure 8.

o Application Layer

rclcpp rclpy rclc
(C++ API) (Python API) (CAPI)
o ROS2 Client Layer

ROS2 Client Library (rcl library)

ROS Middleware interface (rmw) } Abstract DDS Layer

eProsima Eclipse RTI Connect DDS Implementation
Fast DDS Cyclone DDS DDS Layer

} OS Layer

Figure 8. ROS2 Architecture.
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User-written software can be grouped into ROS Packages and compiled using colcon —a
process automation CLI tool for building sets of software packages. Compiled software
can be launched by a standalone execution, or it can be executed in series according to

specified logic, using launch files.

3.3.2 micro-ROS

To gather information from sensors and influence the operation of the TB, hardware
interfacing is required. The simplest hardware for this purpose would be microcontroller
units (MCUs) — compact integrated circuits designed to control specific operations in
embedded systems. Typically, MCUs would be used for low-level operating, control, and
data gathering with an interface to a higher-level governing system. For instance, the OS
manages the access and use of resources to the user and is interfaced with hardware.
Hardware, on the other hand, has its firmware that manages energy, internal sensors, etc.
MCUs vary, they have different resources and are equipped with different base software

available.

Default distributions of ROS2 are not optimized for use on microcontrollers or real-time
OS. Community-developed solutions to tackle these problems exist, namely rosserial
[34] and mROS [35], but they have a very limited set of features, and their development
is discontinued. Considering the features available in ROS2 (QoS, security) and
ambitions to support real-time operation, a micro-ROS (micro-ROS) project has been
established [36].

micro-ROS is a microcontroller-optimized ROS2 distribution that supports all the main
features of ROS2 in resource-constrained environments and can be seamlessly integrated
with ROS2. It is the de-facto standard ROS2 approach for embedded systems, developed
by Bosch GmbH [37]. micro-ROS aims to bring support to a wide set of microcontrollers,
but for now, there is a limited set of officially and community-supported MCU platforms.
Additionally, Bosch GmbH provides instructions on how to compile micro-ROS on yet
unsupported MCU platforms that meet the minimal hardware requirements.

It is important to note, that micro-ROS is still in active development, and it has not yet

been officially standardized for production use.

26



3.3.3 Difference between ROS2 and micro-ROS architectures

As described in [36], the executors present in ROS2 (rclcpp) and micro-ROS (rclc) are
different. rclcpp executor requires dynamic memory allocation, which cannot be used on
many microcontrollers. Additionally, the rclcpp library was not created for resource-
constrained environments and thus it is not optimized to fit the small memory of MCUs.
Furthermore, the rclc executor features deterministic scheduling and execution and real-

time guarantees [38].

If in ROS2 the choice of DDS Implementation is available to a user, in micro-ROS it is
fixed to eProsima Micro XRCE-DDS - a software solution that allows communication in
extremely resource-constrained environments (in this specific case - MCUs) with an
existing DDS network [39].

Contrary to ROS2, the choice of OS (if available) is limited only to RTOS that can operate
on MCUs. Currently, supported ones are Zephyr, FreeRTOS, and NuttX [36].

Other features, such as Node discovery and bridge between micro-ROS Nodes and DDS
middleware are resource-hungry and are implemented in a ROS 2 Agent — a separate
piece of software that is meant to run on the host where ROS2 is running. It supports
Serial, UDP, and Bluetooth connection with MCU.

The abovementioned differences can be observed Figure 9 which illustrates the full

architecture of micro-ROS.

C++ API
(rclcpp)

Convenience functions,
deterministic execution, ...

ROS Middleware Interface (rmw)

[l ROS 2 BN Micro XRCE-DDS Client
Agent Ethern;t,

rclc:

oo
=
=L
—
(1]
£
£=
Q
c
(7]
o

Bluetooth,
el POSIX + Additional abstractions

Zephyr, FreeRTOS, NuttX Additional

drivers, ...

Figure 9. micro-ROS architecture [36].
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3.4 Section summary

In this section, the definition of middleware was given. An appropriate middleware
framework for purposes of DT was selected. The selection process included a comparison
of available middleware frameworks that satisfy the given criteria and a comparison of
performance between ROS and ROS2. Definitions and architectures of ROS2 and micro-

ROS frameworks were given.
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4 Middleware implementation for studied Digital Twin

This section provides the description and requirements of the middleware
implementation. The details of the middleware interface to hardware and software are

given. The method of gathering motor data using an MCU is explained.

4.1 Desired operation and requirements

To implement the middleware for the DT of PDS, it is required to first determine what it
should be interfaced with, and which operation must be performed through it. In the scope
of this Master’s thesis, only several components of PDS are chosen for detailed study: the
HES880 frequency converter and the traction motor. The studied part of PDS TB can be
seen illustrated in Figure 10.

Cinergia HES880
——_
TAG:BAT x N TAGTD %
TAG:LD1 % TAG:LD2 X
ACS880 ACS880
\_ Drivel J\ Drive2 |
TRACT|ON —¢ T ace x
MOT@R
=| GEAR

o x JAGTM X

o x

o S TAG:TS2 X §

- TORQUE v STAGILM2 x

TAGILM1 %

TORQUE SENSOR 2
SENSOR 1 - LOADING
MOTOR 1 (LEFT WHEEL) MOTOR 2

Figure 10. Illustration of studied components in TB for PDS. Studied parts are enclosed by a red frame.

The desired operation to be fulfilled for the abovementioned components of PDS TB is
defined as follows:

1. All entities and their subsystems and components must be grouped and

structurally represented in the middleware.
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2. The DT middleware must receive the data regarding the supply input power to the
Mitsubishi PMSM traction motor Y4F1.

The supply input power is defined as a 3-phase voltage and current that is generated
by a frequency converter attached to the motor. Based on input configurations, the
frequency converter modifies the power supply that is then supplied to the motor,
causing it to work. The power supply modified by the frequency converter must be

sampled and sent into the middleware.

3. This data must be conveyed to the service entity to calculate the motor’s output

parameters.

The service entity, upon reception of data, must extract the following parameters
using analytical model of the traction motor: angular velocity and torque of the

traction motor.
4. Calculated torque and angular velocity must be sent into the middleware.

Parameters calculated by the service entity must be present in the middleware for

other entities.

4.2 Proposed solution

Considering the described operation and requirements presented in Section 4.1, the

following solution is proposed:

1. An MCU with micro-ROS installed will be connected to the output of frequency
converter HES880 to sample the data at a 1 kHz frequency.

2. The sampled measurements are serialized into ROS messages and sent to the
middleware (via a micro-ROS agent hosted on a separate machine) to the

designated topic.

3. The service entity connects to the middleware by subscribing to the designated
topic and processes the incoming data to calculate the angular velocity and torque

of the traction motor.
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4. The service entity publishes the resultant angular velocity and torque to the

designated topic, thus sending the data back to the middleware.
The proposed solution is illustrated in Figure 11.

MCU output: Current and

voltage measurements Windows
Host machine
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20.04VM
u ROSm
m_ Y | MCUwith > micro-ROS Agent
W micro-ROS
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g

Figure 11. Draft of a proposed solution. U, V, W indicate the 1,2 and 3 phase voltage and current.

Service entity input: Current and
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Service entity
(MATLAB)

Service entity output: calculated
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In the proposed solution the middleware coverage ranges from a host Windows 10
machine to a microcontroller. Due to the micro-ROS agent requirements, it executes on
a guest Ubuntu 20.04 virtual machine (VM). The service entity executes in a MATLAB
run-time environment installed in Windows 10. Defined ROS2 messages and interfaces
between entities are described in Section 4.3, service entity is described in Section 4.4,

and used hardware elements are described in Section 4.5.

4.3 Structure of ROS2 middleware

Inside the DT it is expected that components, parts, and subsystems are going to
communicate with each other. The publisher-subscriber topology allows for flexible
communication between them. But the problem that arises is — how does a component
know which information it is supposed to receive? Considering the design of physical
entity TB (as described in 2.4.1), we will have a total of three motors — one as part of PDS

and two loading motors to simulate the load. These three motors communicate the same
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information (torque, angular velocity, power, etc), but they must be differentiated. The
same applies to whole subsystems — there may be similar sets of information flows, but
they may be required inside the subsystem only, without exposure to other subsystems.

To solve this, context is required for every ROS Node, ROS Message, and ROS Topic.

4.3.1 Naming requirements

To differentiate between subsystems in the DT, hierarchical naming and grouping should
apply to every component of the DT.

ROS2 provides a flexible naming configuration that helps developers to design modular
components of their ROS2 applications and for others to be able to easily integrate them.
Although every component is required to have a pre-defined name for a Node or Topic,
it can be renamed, mapped, or grouped by any name defined by the user. The names can
be of two types: relative and global. A global name would indicate a completely specified
name for a Node or Topic, and it cannot be modified. Relative names can be supplied
with a namespace during configuration and launch — which makes it possible to have the

same Nodes grouped under different names.

In our middleware design, all names are expected to be relative and specified with a
namespace indicating a group at a launch time. This will allow modular development and
reuse of DT components. Thus, every component will have a default relative Node name
(indicating which component it is generally) and Topic names (indicating the generic
parameters it communicated with), and upon launch time these components are grouped
by a namespace according to the naming requirements of PSG-453 project that can be
shown in Table 2.
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Table 2. Namespaces used for grouping components of the DT.

Name of the namespace Components to be used for

Traction motor components, torque, angular velocity, power calculating nodes, any

th_tm
fth_ hardware connected to them.
/tb_Im_left
Any loading motor components: torque, angular velocity, power calculating nodes,
any hardware connected to them. Left and right specify exactly which loading motor
in the physical entity it is.
/tb_Im_right
/tb_service Service entities used for the analysis of the TB PDS, warning systems.
/tb_virtual Components of the visual entity that are interfaced to ROS Middleware.
Jtb._bat Components related to the battery that is used to simulate operating battery in
- ISEAUTO.
Jtb_td Components related to frequency converter (traction drive HES880 used to control
- traction motor).
/tb_ld_left
Components related to frequency converters (ACS850 used to control loading motors).
Since each frequency converter can control only one motor, they are designated left
and right per loading motor they control.
/tb_ld_right

It is important to note that namespaces are generally applied to Nodes that are associated
with the component of DT they represent, and topics they would send the data to would
include the Node’s namespace. However, it is possible for Nodes of one group to require

data from Nodes of other groups.

To better illustrate the latter, assume there are two Nodes: /tb_tm/left_shaft_consumer
and /tb_Im_left/torque_producer. /tb_tm/left_shaft_consumer Node is expecting to
receive the torque that left loading motor exerts on it. In this case,
/tb_tm/left_shaft_consumer Node would subscribe to a topic published by
/tb_Im_left/torque_producer Node (e.g. /tb_Im_left/torque). In this case, it is logical to
assume that the exerted torque is a part of loading motor, rather than the traction motor’s
shaft.

33



4.3.2 ROS2 messages definitions

Section 3.3 described ROS messages as custom or standard data structures made of typed
fields to group information provided by Nodes. For DT, custom messages were defined
to group several signals and/or parameters together that are related by time and context.
Every message contains a header that records the time of submission and a unique ID of
the message. All messages were included in a separate ROS Package digital_twin_msgs
that is required by the middleware to operate the DT. Apart from custom-defined
definitions, the middleware uses standard ROS messages (std_msgs) [40] where
necessary. Message defined in ROS package digital _twin_msgs can be seen in Table 3,
and the structure of each message can be observed in Appendix 2.

Table 3. Messages of DT defined in the digital_twin_msgs package.

Name of the message Description

A message consisting of 3 phase currents values. Used to store information

digital_twin_msgs::Current
gital_twin_msg about AC current.

A message consisting of 3 phase voltages values. Used to store information

igital i ::Vol
digital_twin_msgs::Voltage about AC voltage.

Message comprised of Current.msg and Voltage.msg with a timestamp. Used

digital_twin_msgs::Supplylnput . . R
gital_ -Msg pRlyinp as a container structure to communicate the AC input of the motors.

A message consisting of power values of a 3-phase AC input at every phase and

digital_twin_msgs::Power
gtal -Msg total mean. Includes a timestamp. Used to store information about AC power.

Generic float data-type message with a timestamp. Can be used for any topic

digital_twin_msgs::Float32Stamped - ) .
requiring a generic float type data container.

4.4 Used service entity

The service entity in use for the objective is an analytical simulation model of the traction
motor which was built in MATLAB/Simulink interfaced with middleware. The
simulation model was developed by the author’s colleague for a separate research
problem, as presented in [41]. Hence, this model is not in the scope of this Master’s thesis
and will be treated as a black box. The model’s purpose is to calculate the traction motor’s

output torque and angular velocity based on the input voltage of the motor. The
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calculation is based on derived analytical equations of the electromagnetic properties of
the traction motor.

The input voltage of the model is the input voltage of the traction motor generated by the
HESB880 frequency converter and is expected to be received by the service entity in real
time. A ROS2 Subscriber MATLAB block is used to connect the service entity to
middleware for voltage data reception, and a ROS2 Publisher MATLAB block is used for
sending angular velocity and torque data back to middleware. When received, voltage
input is deserialized using a Bus Selector MATLAB block and is directed into the model.
When finished processing, the model outputs angular velocity and torque parameters; in
combination with the Blank Message MATLAB block, these parameters constitute a new
ROS message that is then published via a ROS2 publisher block. The described service

entity can be seen in Figure 12 and its interface with middleware is shown in Table 4.

ROS2 Subscriber PMSM simulation model
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Figure 12. MATLAB/Simulink block diagram of used service entity.
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Table 4. Middleware interface of service entity.

Topic Message type Description

Topic to subscribe. Used to receive voltage of

th_t ly i t digital_twi =S Iyl t
/tb_tm/supply_inpu 'gital_twin_msgs::supplyinpu traction motor from the middleware.

Topic for publishing. Used to send the

/tb_tm/torque digital_twin_msgs::Float32Stamped calculated torque to the middleware.
Topic for publishing. Used to send the
/tb_tm/angular_velocity digital_twin_msgs::Float32Stamped calculated angular velocity to the

middleware.

4.5 Hardware interface between TB and middleware

To gather the data from the HES880 frequency converter and direct it to middleware,
there must be hardware that serves as an interface between these two entities. In our case,
it must be an MCU capable of reading analog data, have a peripheral interface able to

communicate via Serial/USB and be possible to run with micro-ROS.

One of the aims of micro-ROS is to provide support for a large number of families of
microcontrollers. Although this is a large and complicated task when this Master’s thesis
was written several microcontroller families were already supported [42]. This meant,
that there were tools for compilation of micro-ROS to targeted microcontrollers and
official manuals assisting in this matter. Considering the requirements, the officially
supported microcontrollers by micro-ROS, and the availability of the latter on the
premises of Tallinn University of Technology, a choice was made to proceed with Teensy
4.0.

Teensy 4.0 [43] is a small ARM family microcontroller. It features a 600 MHz ARM
Cortex-M7 processor, with 1024kB of RAM and 1984kB of Flash memory with USB
peripheral supporting speeds up to 480 Mbit/sec. It features 40 GPIO pins, 14 of which
can be configured as analog input pins. Teensy is programmable through Arduino IDE

with an installed Teensyduino add-on. Teensy 4.0 is illustrated in Figure 13.
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Figure 13. Teensy 4.0 microcontroller unit [43].

To fulfill the operation described in Section 4.1, Teensy 4.0 with micro-ROS software
will gather the data from the HES880 frequency converter and send it to the middleware

via a micro-ROS agent.

4.5.1 Teensy 4.0 with micro-ROS

To get micro-ROS running on Teensy 4.0, the official tutorial from micro-ROS [44] with
some additional steps was followed. In the tutorial, it is suggested to download the already
pre-compiled micro-ROS library for microcontrollers and just copy it to the Arduino IDE
library folder. For the desired operation, however, support for digital_twin_msgs must
have been provided, thus additional steps were required. For this to happen, the micro-
ROS library was recompiled according to instructions from the official Github repository

[45]. The following steps were done:
1. Download and install Arduino IDE and Teensyduino add-on.

2. Download the micro-ROS Arduino source library for ROS2 foxy distribution.

git clone git@github.com:micro-ROS/micro_ros_arduino.git
git checkout foxy

3. Add digital_twin_msgs package to a folder

lextras/library_generation/extra_packages of micro-ROS Arduino library.

4. Compile the micro-ROS Arduino library for Teensy 4.0.

sudo docker pull microros/micro_ros_static_library_builder:foxy

sudo docker run -it --rm -v $(pwd):/project --env
MICROROS_LIBRARY_FOLDER=extras microros/micro_ros_static_library_ builder:foxy
-p teensy4

5. Copy the contents of /src into the Arduino IDE’s library folder.
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Afterward, micro-ROS API becomes available for use in Arduino IDE and enables to
write, compile and flash written software with digital_twin_msgs messages included in
Teensy 4.0. As soon as the software is flashed and is working correctly, Teensy 4.0 must
be connected to a computer with a micro-ROS agent via a USB. By default, the
connection is plug-and-play and the micro-ROS agent should detect new microcontrollers
automatically. However, since the micro-ROS agent is running on a VM, USB support
had to be enabled in the settings of a VM. When the micro-ROS agent detects a new
connected microcontroller, it becomes available in the whole middleware and the

communication (data sending and reception) starts automatically.

4.5.2 HES880 frequency converter

ABB HES880 [46] is a mobile frequency converter for controlling asynchronous AC
induction motors. In the case of TB, HES880 controls the Mitsubishi traction motor. The
HES880 consists of 2 parts: the drive module and the control module. Based on the
selected parameters in the control module, the HES880 modifies the supply AC voltage

and frequency into AC motor input.

The frequency converter directly dictates the operation of an electrical motor it controls
by supplying AC voltage to the motor. Knowing this, it is possible to measure the
output of the frequency converter directly and then forward it to the middleware.

4.5.3 HES880 output measurement

The output of HES880 is AC current, and appropriate electronics were required to
transform the AC current into a positive-only (larger than 0V) periodic voltage signal in
a range of 0 — 3.3V, for Teensy 4.0 MCU to sample it. Signal conversion and electronics
design were done by the author’s colleague who had the required knowledge and skills to
solve this problem. Therefore, the electronics and signal conversion will be treated as a
black box solution and is out of the scope of this Master’s thesis. Nevertheless, a short
description will be provided to explain the general idea of how the signal conversion is
done.

Three devices, known as current clamps, are attached to the cables that connect HES880

output terminals with the Mitsubishi traction motor’s input terminals. Depending on the

configuration and wiring, the current clamps can measure voltages and currents and
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output both as voltage signals. These devices have conversion ratios (also known as
scale): ImV/A for current (that is, every 1mV clamp output represents 1 measured Amp
of input current), and 10mV/V for voltage (that is, every 10mV clamp output represents
1 measured Volt of input voltage). The input signals generated by HES880 were in the
range of +350A to -350A for current and +500V to -500V for voltage. However, for the
selected operation of HES880, the generated current and voltage would not exceed
ranges +200A to -200A and +25V to -25V, respectively. As a result of conversion from
current clamps, the input signals of current and voltage are scaled to: +200mV to -
200mV and +250mV to -250mV, respectively. Because most ADCs (analog-to-digital
converters) present in MCUs (including Teensy 4.0) can only process positive analog
signals, the output signals of current clamps must be brought to the positive-only range.

For this, a level shifter was used that lifts the signal by 1 V.

Teensy 4.0 MCU features 14 analog input pins that can be used to sample the data.
Measurements of 3-phase AC current and voltage would require 6 analog inputs. A0 —
A5 were used to sample the data, A0-A2 for current and A3-A5 for voltages. The
frequency of AC current is estimated to be around 20 Hz, therefore input AC signal is
sampled at 1 kHz frequency, eliminating the possibility of aliasing. Teensy 4.0 MCU has
a 10-bit ADC (input range 0 — 1023 bits) that can measure voltages in the range 0 — 3.3V,
which means that the resolution of the ADC is approximately 3.22 mV. For conversion
of bits to voltage in mV, Equation 1 was used:

Equation 2 and Equation 3 show the conversion of acquired voltage to real measured
voltage and current, respectively (1000 was subtracted to bring the measured voltage
back to its original range; vt_scale is the voltage scale factor and is equal to 10 mV;

ct_scale is the current scale factor and is equal to 1 A):

U.,— 1000

Unmeasureda = Z::SW (2)
U;, — 1000

Imeasureda = ZZ.S‘W (3)
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With everything considered, a script that handles data sampling, serialization of data into
ROS messages, and transport to the middleware was written, as presented in Appendix 3.
The script was compiled using Teensyduino IDE and flashed onto Teensy 4.0 MCU.

4.6 Section summary

This section covered the details of middleware implementation for a given problem. The
desired operation of a DT entity was described, and a possible solution was proposed. All
communication details were covered: interfaces between hardware and software
components, subscribed and published topics, and used messages with the data they
contain. An overview of used hardware components was given and the data gathering

method was explained.
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5 Results

This section covers the achieved results of the conducted work. The sampled data is
shown, along with the results of latency tests. The section explains achieved results and

provides suggestions for future work.

5.1 Acquired data

Acquired data by Teensy 4.0 MCU was sampled at 1 kHz frequency and converted to raw
voltage, as shown in Equation 1. The raw voltage measurement was then used to calculate
the real current and voltage as described in Section 4.5.3 in Equations 2, 3 and the
resultant measured current and voltage signals were serialized into ROS2
digital_twin_msgs/Supplylnput message. As the last step, the messages were published
on ROS2 topic /tb_tm/supply_input. The operation was recorded by ROS2 as a roshag
and analyzed in MATLAB. The results of measured AC voltage and current can be

observed in Figure 14.
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Figure 14. Real measured current and voltage as a result of conversion: a) measured AC current, b)
measured AC voltage. U, V, W are designations for every phase in AC current.
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Acquired measurements of current and voltage appear to be noisy, but the overall
representation of sine waves of voltage and current are kept, thus aliasing was avoided.
There is a multitude of factors that can be the cause of the noise: losses in precision
from sampling (as the ADC has 10-bit precision), noise from the level shifter caused by
oscillation of the shifting signal, the interference from the environment and the signal
quality produced by the HES880 frequency converter itself. To smooth out the signal,
the service entity uses a second-order filter implementation before feeding the voltage

signal to the main model.

5.2 Latency test

To validate that implemented solution can be used in real-time, a latency test was
conducted. For this specific case, RTT (round trip time, visual representation can be seen
in Figure 15) latency test was chosen, due to MCU and host machine possessing different
clocks. Different clocks may not be properly synchronized, leading to false results.
Furthermore, virtual machines specifically are subject to an occurrence known as clock
drift. Typically, VMs synchronize their clock with the host machine every 60 seconds and

therefore may “lag behind” the host system.

ftb_tm/ping fb_tmipong

time1 |

|

time2

|

time2 — timel
2
Figure 15. RTT latency test visualization.

latency =

To conduct the RTT latency test, a new message type was defined consisting of a message
ID and time stamp. Every message was generated by Teensy 4.0 MCU and sent to a ROS2
listener, running in the MATLAB run-time environment. The listener, upon receiving the

message, verified that the message was not lost (by comparing the expected message 1D
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with the received one) and simply sent it back to the Teensy 4.0 MCU. When the MCU
received messages back, it calculated the approximate time it took for a message to return.
To avoid running out of memory, the Teensy 4.0 did not store the latencies locally and
forwarded them to a specially created ROS2 Node on a host machine that later calculated
mean, maximum, and minimum latency. The test was conducted for 60000 messages. The
latency was measured in microseconds since the clock of Teensy 4.0 is capable of
recording time only with microsecond precision. Written scripts for the latency test can

be seen in Appendix 4, 5, and 6.

Latency test between Teensy 4.0 MCU and service entity yielded the following results:
only 560 messages out of 60000 were received, with mean latency being 350 s,
maximum latency being 7569 ps, and minimum latency being 92 ps. As investigation
showed, it was not the fault of middleware, but MATLAB/Simulink software itself.
MATLAB/Simulink was unable to receive data at high frequencies and was forced to
drop messages, leading to a low rate of successfully delivered messages.

Such operation cannot be considered reliable, and it can be concluded that
MATLAB/Simulink solutions must be changed to be capable of receiving high-frequency
data.

5.2.1 Suggested improvement to the service entity

Even though MATLAB cannot process software in real time, it has a code generator that
can transform various models into lower-level programming languages for target devices.
Essentially, MATLAB/Simulink code generator establishes a connection with the target
device, transforms the model into a C++ code, and attempts to compile it using the default
compiler for ROS2. Therefore, the goal was to use the model of the service entity to
generate a ROS2 Node C++ code, with VM being the target device. After following the
manual on MATLAB/Simulink code generation [47], the generation succeeded, and the

model was available as a ROS2 node in the VM.

The same RTT latency test was conducted to calculate the approximate latency of the
solution. The results were indeed better: all 60000 messages were successfully delivered,
mean latency was 197 us, maximum latency was 6594 pus, and minimum latency was 151

us. The increase in reliability suggests that using lower-level code for processing data is
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more preferred in the scope of the proposed DT. For comparison, both latency test results

can be observed in Table 5.

Table 5. Results of conducted RTT latency tests

Oy?eratlon Messages sent (#) Messages lost (#) Mean latency Maximum latency Minimum latency
environment (ms) (ps) (ps)
MATLAB -ti
; run-time 60.000 59.440 350 7569 92
on Windows host
Compiled C++
program on 60.000 0 197 6594 151
Ubuntu VM

5.3 Overview of conducted work and final solution

As a result of implementations described in Section 4, the following tasks were done:

1. Traction motor input data was sampled from the HES880 frequency converter by
Teensy 4.0 MCU.

2. The software for Teensy 4.0 MCU was written using the micro-ROS framework.
The software handled data sampling, serialization, and transport to the
middleware via a micro-ROS agent.

3. The service entity was interfaced with the middleware to receive and send the

traction motor data.
4. A latency test was conducted to estimate the reliability of the solution.

5. Conversion of MATLAB/Simulink model to C++ was made as a possible way to

fix unreliable data reception by the service entity.

The achieved result satisfies the operational requirements presented in Section 4.1. ROS2
framework proves to be quite flexible for designing systems and implementing the intra-
communication between the components of a system. Its internal implementation of the
DDS standard provides a reliable means to communicate in a peer-to-peer manner.
Custom message definition, contextual grouping using namespaces and provided API are
optimal for such fields as DT technology. The micro-ROS framework provides an out-

of-the-box approach for connecting microcontrollers to ROS2. However, supported
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hardware is still limited and some operational requirements for micro-ROS are yet to be
fulfilled. MATLAB/Simulink computational abilities were found to be unreliable and
conversion to C++ had to be made to improve the communication between the

middleware and the service entity.

5.3.1 Suggestions for future work

To improve the overall design of the DT, the following improvements are suggested:

1. The service entity components that require high-frequency communication and/or
real-time operation must be migrated to lower-level implementation, such as C++,

Python, or a similar language/platform.

2. For increased precision of the DT, it may be necessary to utilize communication
protocols like SPI or 12C between MCU and the middleware. This will increase

possible messaging frequency.

3. In the future, TB may have a very large number of connections to the DT, and
microcontrollers may not be the optimal way to interface these connections. A

larger module/router would be required in this case.

4. Electronics that handle signal processing may need to be of higher precision to

eliminate noise.

5.4 Section summary

This section provided an overview of conducted work. Latency tests revealed that the
service entity implementation in MATLAB/Simulink was very unreliable when it came
to receiving data. A solution to mitigate this problem was provided. Overall, the latency
between the MCU and the service entity is low enough to be considered real-time. The
final solution was presented, featuring all the interfaces between the components of DT.
In the end, the author provided suggestions for future work to improve the state of the
DT.
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6 Summary

Digital Twin (DT) technology is a trending technology in the automotive field that
allows advanced analysis and testing of such complex systems. Autonomous vehicles
are a special case — the possession of large amounts of sensors and processing
capabilities allows a very in-depth study of the internal workings of the vehicles, but
very little is done towards the understanding of how these autonomous vehicles are
affected during operation. For this reason, DT for propulsion drive of autonomous
electric vehicle (project number PSG-453) was established. The project aims to develop
a DT for the propulsion drive system of ISEAUTO — a self-driving vehicle being
developed by Tallinn University of Technology since 2018.

In recent years the DT technology in the automotive field has seen a spike in
publications and various methods are actively proposed and discussed. The latest
developments indicate interest in creating high-precision DTs for hardware components

of the vehicles in an attempt to create cost-effective, in-depth analysis systems.

The goal of this thesis was to connect two entities present in DT architecture, proposed
by PSG-453: a traction motor from the physical entity with the analytical model of the
motor from the service entity. The connection had to follow the implementation of
middleware — a special software layer that handles all the communication between all
the entities of the DT system. The chosen middleware framework — ROS2, was

described in terms of architecture and capabilities.

As a result, the traction motor was interfaced with ROS2 middleware via Teensy 4.0
microcontroller that uses micro-ROS — a ROS2 framework for embedded devices. The
analytical model of the motor developed in MATLAB software was interfaced with the
middleware using the provided ROS2 API. The acquired results were presented and
analyzed. The latency test shows that the implemented solution operates in real time. At

the same time, the latency test suggested that the service entity had to be run outside the
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MATLAB run-time environment due to low reliability, hence an improvement was

made to overcome this issue.

Based on the results of this Master’s thesis, a conference paper was written to describe

the used approach for connecting DT entities and describing the achieved results.

47



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A. Rassolkin, R. Sell and M. Leier, "Development Case Study of the First
Estonian Self-Driving Car, ISEAUTO," Electrical, Control and Communication
Engineering, vol. 14, pp. 81-88, 07 2018.

Estonian Research Information System, "Digital twin for propulsion drive of
autonomous electric vehicle,” [Online]. Available:
https://www.etis.ee/Portal/Projects/Display/72b66c74-e911-49c3-ac6a-
6716f9e72ba5?lang=ENG. [Accessed 27 04 2022].

A. Rassolkin, T. Vaimann, A. Kallaste and V. Kuts, "Digital twin for propulsion
drive of autonomous electric vehicle,” in 2019 IEEE 60th International Scientific
Conference on Power and Electrical Engineering of Riga Technical University
(RTUCON), 2019.

M. Grieves, "Origins of the Digital Twin Concept,” August 2016. [Online].
Available: 10.13140/RG.2.2.26367.61609. [Accessed 05 03 2022].

O. G. Brylina, N. N. Kuzmina and K. V. Osintsev, "Modeling as the Foundation
of Digital Twins," in 2020 Global Smart Industry Conference (GloSIC), 2020.

Lockheed Martin, "Visualizing the digital thread and Digital Twins," Lockheed
Martin, October 2021. [Online]. Available: https://www.lockheedmartin.com/en-
us/news/features/2021/visualizing-the-digital-thread-and-digital-twins.html.
[Accessed 05 03 2022].

IBM, "What is a Digital Twin?," IBM, [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2016-10-18-gartner-
identifies-the-top-10-strategic-technology-trends-for-2017. [Accessed 05 03
2022].

J. Wu, Y. Yang, X. U. N. Cheng, H. Zuo and Z. Cheng, "The Development of
Digital Twin Technology Review," in 2020 Chinese Automation Congress (CAC),
2020.

M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray and D. Devine,
"Digital Twin: Origin to Future,” Applied System Innovation, vol. 4, 2021.

[10] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2017,"

October 2016. [Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2016-10-18-gartner-identifies-the-top-10-strategic-technology-trends-for-
2017. [Accessed 06 03 2022].

[11] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2018,

October 2017. [Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2017-10-04-gartner-identifies-the-top-10-strategic-technology-trends-for-
2018. [Accessed 06 03 2022].

48



[12] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2019,"
October 2018. [Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-
2019. [Accessed 06 03 2022].

[13] B. Marr, "These 25 Technology Trends Will Define The Next Decade,” Forbes, 20
April 2020. [Online]. Available:
https://www.forbes.com/sites/bernardmarr/2020/04/20/these-25-technology-
trends-will-define-the-next-decade/. [Accessed 05 03 2022].

[14] E. Glaessgen and D. Stargel, "The Digital Twin Paradigm for Future NASA and
U.S. Air Force Vehicles," in 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference.

[15] A. Best, S. Narang, L. Pasqualin, D. Barber and D. Manocha, "AutonoVi-Sim:
Autonomous Vehicle Simulation Platform With Weather, Sensing, and Traffic
Control," in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, Salt Lake City, 2018.

[16] J. Liu, Y. Dong, Y. Liu, P. Li, S. Liu and T. Wang, "Prediction Study of the
Heavy Vehicle Driving State Based on Digital Twin Model," in 2021 IEEE
International Conference on Power Electronics, Computer Applications
(ICPECA), 2021.

[17]1 Y. Chen, S. Chen, T. Zhang, S. Zhang and N. Zheng, "Autonomous Vehicle
Testing and Validation Platform: Integrated Simulation System with Hardware in
the Loop*," in 2018 IEEE Intelligent Vehicles Symposium (1V), 2018.

[18] M. Ruba, R. O. Nemes, S. M. Ciornei, C. Martis, A. Bouscayrol and H. Hedesiu,
"Digital Twin Real-Time FPGA Implementation for Light Electric Vehicle
Propulsion System Using EMR Organization," in 2019 IEEE Vehicle Power and
Propulsion Conference (VPPC), 2019.

[19] A. Rassolkin, V. Rjabtsikov, T. Vaimann, A. Kallaste and V. Kuts, "Concept of
the Test Bench for Electrical Vehicle Propulsion Drive Data Acquisition,” in 2020
X1 International Conference on Electrical Power Drive Systems (ICEPDS), 2020.

[20] V. Rjabtsikov, A. Rassdlkin, B. Asad, T. Vaimann, A. Kallaste, V. Kuts, S.
Jegorov, M. Stepien and M. Krawczyk, "Digital Twin Service Unit for AC Motor
Stator Inter-Turn Short Circuit Fault Detection,” in 2021 28th International
Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED),
2021.

[21] V. Kuts, A. Rassodlkin, A. Partyshev, S. Jegorov and V. Rjabtsikov, "ROS middle-
layer integration to Unity 3D as an interface option for propulsion drive
simulations of autonomous vehicles," I0OP Conference Series: Materials Science
and Engineering, vol. 1140, p. 012008, May 2021.

[22] J. Cardoso, C. Pereira, A. Aguiar and R. Morla, "Benchmarking 1oT middleware
platforms,” pp. 1-7, 2017.

[23] S. Jegorov, A. Rassdlkin, V. Kuts, V. Rjabtsikov and A. Partyshev, "The
comparison between ROS and ROS2 based on the propulsion drive of autonomous
vehicle," Array, 2022 (Submitted).

[24] ROS Wiki, "ROS Nodes," 2017. [Online]. Available: http://wiki.ros.org/Nodes.
[Accessed 24 03 2022].

[25] ROS Wiki, "ROS Topics," 2017. [Online]. Available: http://wiki.ros.org/Topics.
[Accessed 24 03 2022].

49



[26] ROS Wiki, "ROS Messages," 2018. [Online]. Available:
http://wiki.ros.org/Messages. [Accessed 24 03 2022].

[27] ROS Wiki, "ROS Bags,"” [Online]. Available: http://wiki.ros.org/Bags. [Accessed
02 05 2022].

[28] R. Tellez, "Top 10 ROS based robotics companies,” The Robot Report, 22 July
2019. [Online]. Available: https://www.therobotreport.com/top-10-ros-based-
robotics-companies-2019/. [Accessed 24 03 2022].

[29] The Autoware Foundation, "Autoware Overview," The Autoware Foundation,
[Online]. Available: https://www.autoware.org/autoware. [Accessed 24 03 2022].

[30] Open Robotics, "ROS2 Roadmap,” [Online]. Available:
https://docs.ros.org/en/foxy/Roadmap.html. [Accessed 25 03 2022].

[31] DDS Foundation, "What is DDS?," [Online]. Available: https://www.dds-
foundation.org/what-is-dds-3/. [Accessed 25 03 2022].

[32] DDS Foundation, "What is the DDS Standard?,” [Online]. Available:
https://www.dds-foundation.org/omg-dds-standard//. [Accessed 25 03 2022].

[33] DDS Foundation, "DDS in Other Standards,” [Online]. Available:
https://www.dds-foundation.org/dds-in-other-standards/. [Accessed 25 03 2022].

[34] P. Bouchier, "Embedded ROS [ROS Topics]," IEEE Robotics Automation
Magazine, vol. 20, pp. 17-19, 2013.

[35] H. Takase, T. Mori, K. Takagi and N. Takagi, "MROS: A Lightweight Runtime
Environment for Robot Software Components onto Embedded Devices," in
Proceedings of the 10th International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies, New York, NY, USA, 2019.

[36] J. Staschulat, I. Litkebohle and R. Lange, "The rclc Executor: Domain-specific
deterministic scheduling mechanisms for ROS applications on microcontrollers:
work-in-progress,” in 2020 International Conference on Embedded Software
(EMSOFT), 2020.

[37] R. Lange, "Micro-ROS — bringing the most popular robotics middleware onto tiny
microcontrollers," Bosch Research Blog, 19 January 2021. [Online]. Available:
https://www.bosch.com/stories/bringing-robotics-middleware-onto-tiny-
microcontrollers/. [Accessed 29 03 2022].

[38] micro-ROS, "Execution Management,” [Online]. Available:
https://micro.ros.org/docs/concepts/client_library/execution_management/.
[Accessed 15 04 2022].

[39] eProsima, "eProsima Micro XRCE-DDS," 2018. [Online]. Available:
https://micro-xrce-dds.docs.eprosima.com/en/latest/index.html. [Accessed 19 04
2022].

[40] ROS Wiki, "ROS std_msgs message package,"” 2018. [Online]. Available:
http://wiki.ros.org/std_msgs. [Accessed 12 04 2022].

[41] M. Tbrahim, A. Rassolkin, S. Jegorov, V. Rjabtsikov, T. Vaimann and A. Kallaste,
"Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor Digital
Twin," 2022 (Submitted).

[42] micro-ROS, "Supported Hardware | micro-ROS," 2022. [Online]. Available:
https://micro.ros.org/docs/overview/hardware/. [Accessed 18 04 2022].

50



[43] PJRC, "Teensy® 4.0 Development Board," PJRC | Electronic Components
Available Worldwide, [Online]. Available:
https://www.pjrc.com/store/teensy40.html. [Accessed 18 04 2022].

[44] micro-ROS, "Teensy with Arduino | micro-ROS," 2018. [Online]. Available:
https://micro.ros.org/docs/tutorials/core/teensy_with_arduino/. [Accessed 12 03
2022].

[45] micro-ROS, "micro-ROS for Arduino,” GitHub, [Online]. Available:
https://github.com/micro-ROS/micro_ros_arduino#readme. [Accessed 20 04
2022].

[46] ABB, "HES880 drives modules. Mobile drive solution for working machine and
marine applications,” 2018. [Online]. Available:
#https://library.abb.com/d/3AUA0000161471#. [Accessed 20 04 2022].

[47] Mathworks, Inc., "Generate Code to Manually Deploy a ROS 2 Node from
Simulink," Mathworks, Inc., [Online]. Available:
https://www.mathworks.com/help/ros/ug/generate-code-to-manually-deploy-ros-
2-node.html. [Accessed 25 04 2022].

51



List of publications

S. Jegorov, A. Rassdlkin, V. Kuts, V. RjabtSikov and A. Partyshev, "The comparison
between ROS and ROS2 based on the propulsion drive of autonomous vehicle,” Array,
2022 (Submitted) — Appendix 7.

V. Rjabtsikov, A. Rassolkin, B. Asad, T. Vaimann, A. Kallaste, V. Kuts, S. Jegorov,
M. Stepien and M. Krawczyk, "Digital Twin Service Unit for AC Motor Stator Inter-
Turn Short Circuit Fault Detection,” in 2021 28th International Workshop on Electric
Drives: Improving Reliability of Electric Drives (IWED), 2021. — Appendix 8

V. Kuts, A. Rassolkin, A. Partyshev, S. Jegorov and V. Rjabtsikov, "ROS middle-layer
integration to Unity 3D as an interface option for propulsion drive simulations of
autonomous vehicles,” IOP Conference Series: Materials Science and Engineering,
vol. 1140, p. 012008, May 2021. — Appendix 9.

M. Ibrahim, A. Rassdlkin, S. Jegorov, V. Rjabtsikov, T. Vaimann and A. Kallaste,
"Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor Digital
Twin," 2022 (Submitted). — Appendix 10

S. Jegorov, A. Rassolkin, V. Rjabtsikov, M. Ibrahim and V. Kuts, " Novel Digital Twin
Concept for Industrial Applications. Study Case: Propulsion Drive System," ASME
IMECE Conference 2022, 2022 (Submitted) — Appendix 11.

52



Appendix 1 — Non-exclusive license for reproduction and

publication of a graduation thesis’

| Sergei Jegorov

1. Grant Tallinn University of Technology free license (non-exclusive license) for my

thesis “Middleware framework for Digital Twin entities communication”, supervised

by Anton Rassdlkin and Eduard Petlenkov.

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.

I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive license.

I confirm that granting the non-exclusive license does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her
graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
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Appendix 2 — digital twin_msgs ROS2 message definitions

Voltage.msg float32 voltagel
float32 voltage2

float32 voltage3

Current.msg float32 currentl
float32 current2
float32 current3

SupplyInput.msg builtin_interfaces/Time stamp
digital_twin_msgs/Voltage voltages
digital twin_msgs/Current currents

Power.msg builtin_interfaces/Time stamp
float32 phasel
float32 phase2
float32 phase3
float32 total

Float32Stamped.msg builtin_interfaces/Time stamp
float32 data
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Appendix 3 — Embedded software for sampling and

transporting current and voltage data

/** @file tractionMotorMeasurement.c
*  @brief Script to handle data sampling, serialization,
* and transport to middleware of TB DT.
*
* @author Sergei Jegorov (sejego)
*/

#include <micro_ros_arduino.h>

#include <stdio.h>

#include <rcl/rcl.h>

#include <rcl/error_handling.h>
#include <rclc/rclc.h>

#include <rclc/executor.h>
#include <unistd.h>

#include <time.h>

#include <std_msgs/msg/float32.h>
#include <digital_twin_msgs/msg/supply_input.h>

#define LED_PIN 13

#define RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){error_loop(del);}}

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){}}

rcl_publisher_t publisher;

digital twin_msgs__msg_ SupplyInput msg;
rclc_executor_t executor;

rclc_support_t support;

rcl_allocator_t allocator;

rcl_node_t node;

rcl_timer_t timer;

unsigned long long time_offset = 0;

const char *node_name = "teensy mcu";

const char *node_namespace = "tb_tm";

const int VT_SCALE = 10; // scale for voltage measurements 10mV/V;
const int CT_SCALE = 1; // current fir current measurements 1mV/A

typedef struct timespec timespec;
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/** @brief Synchronize time of MCU with uROS Agent time
*

* This function makes a call to uROS agent on the host to
* receive the UNIX time in nanoseconds. The current time of the MCU
* starts counting from @ when it launches, thus we can find the time
* offset by subtracting MCU time from an actual UNIX time
*
* @param None
* @return None
*
*/
void sync_time(void)
{
// get the current time from the agent
unsigned long now = millis();
RCCHECK (rmw_uros_sync_session(19), );
unsigned long long ros_time_ms = rmw_uros_epoch_millis();
// now we can find the difference between ROS time and uC time
time_offset = ros_time_ms - now;
}

/** @brief Get current UNIX time of the MCU
*

* Takes into account the calculated offset and returns the UNIX time in
seconds and nanoseconds

* since seconds to be used as timestamp.

* @param None

*  @return timespec type current time in UNIX seconds and nanoseconds since
seconds

*/

timespec get_time(void)

{
timespec ts = {0};
// add time difference between uC time and ROS time to
// synchronize time with ROS
unsigned long long now = millis() + time_offset;
ts.tv_sec = now / H
ts.tv_nsec = (now % ) * H

return ts;

}
/** @brief calculate the sample into voltage in mV

*

* Recalculates the input sample bits into voltage. Knowing
* that ADC is 10-bit, it gives a precision of ~ 3.22 mV/bit
*

*  @param int sample, a value from © - 1023

*  @return float voltage in mV

*/

float sampleToVoltage(int sample)
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{
return sample*( )/ ((float) s // mv

}

/** @brief Computes the real values of traction motor input.
*
* Each pin from A@-A6 is read and first computed to mV value,

* then is recalculated as follows: first 1000mV is subtracted to bring the
shifted signal down

* to original one, then it is scaled value to reflect the real value of
sampled current/voltage.
*
* @param None
* @return None
*/
void computeAndPublish(void)
{
// create a temo variable to store intermediate voltage values
int adc_in_sample = 0;
adc_in_sample = analogRead(©);
msg.currents.currentl = (sampleToVoltage(adc_in_sample) - ) /
CT_SCALE;
adc_in_sample = analogRead(1);
msg.currents.current2 = (sampleToVoltage(adc_in_sample) - ) /
CT_SCALE;
adc_in_sample = analogRead(2);
msg.currents.current3 = (sampleToVoltage(adc_in_sample) - ) /
CT_SCALE;
adc_in_sample = analogRead(3);
msg.voltages.voltagel = (sampleToVoltage(adc_in_sample) - ) /
VT_SCALE;
adc_in_sample = analogRead(4);
msg.voltages.voltage2 = (sampleToVoltage(adc_in_sample) - ) /
VT_SCALE;
adc_in_sample = analogRead(5);
msg.voltages.voltage3 = (sampleToVoltage(adc_in_sample) - ) /
VT_SCALE;

timespec ts = get_time();
msg.stamp.sec = ts.tv_sec;

msg.stamp.nanosec = ts.tv_nsec;

RCSOFTCHECK(rcl_publish(&publisher, &msg, NULL));

/** @brief Enter an error state, blinking the LED with a designated frequency

* in an infinite loop

* @param delay_ms indicating the period of blinking
*  @return None

*/

void error_loop(int delay _ms)
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{
while(1){

digitalWrite(LED_PIN, !digitalRead(LED_PIN));
delay(delay _ms);
}
}

/** @brief Callback function with a wall timer used for publishing ROS

messages periodically
*

* Timer callback is executed everytime a timer fires an interrupt.
*
* @param pointer to timer, int64_t last_call_time
*  @return None
*/
void timer_callback(rcl_timer_t * timer, int64_t last_call_time)
{

RCLC_UNUSED(last_call time);

if (timer != NULL) {
computeAndPublish();

}

/** @brief Setup function to initialize all ROS2 nodes, publishers,
subscribers, timers

* and uROS executors
%

*

* 1Initializes uROS executors, publishers with designated topics and message
types, timers

* and callbacks for publishing and handling subscriptions. In case
something goes wrong,

* MCU will enter into an error state with LED blinking
*

* @param None
*  @return None
*/
void setup() {
set_microros_transports();

pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);

delay/( )H
allocator = rcl_get_default_allocator();

//create init_options, if fails, will blink every 1s
RCCHECK(rclc_support_init(&support, 9, NULL, &allocator), )s

// create node
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RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support),

)s

// create publisher, if fails, the LED blinks every 100ms

RCCHECK(rclc_publisher_init_default(&publisher, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital twin_msgs, msg, SupplyInput),
"supply_input"), )

// create timer,
const unsigned int timer_timeout = RCL_MS_TO _NS(1);

RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout,
timer_callback), );

// create executor
RCCHECK(rclc_executor_init(&executor, &support.context, 1, &allocator),

)5

RCCHECK(rclc_executor_add_timer(&executor, &timer), )H

sync_time();

/** @brief loop function where main code executes
*

* spin the executor forever to run uROS
*

* @param None

*  @return None

*/

void loop() {
rclc_executor_spin(&executor);

59



Appendix 4 — Latency test software run on Teensy 4.0 MCU

/** @file latency_test.c
* @brief Script for generating data with time stamps
and measuring RTT latency.

*
*
*  @author Sergei Jegorov (sejego)
*

*/
#include <micro_ros_arduino.h>

#include <stdio.h>

#include <rcl/rcl.h>

#include <rcl/error_handling.h>
#include <rclc/rclc.h>

#include <rclc/executor.h>

#include <rmw_microros/rmw_microros.h>
#include <unistd.h>

#include <std_msgs/msg/u_int64.h>
#include <digital_twin_msgs/msg/latency_test.h>

#define LED_PIN 13

#tdefine RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){error_loop(del);}}

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){}}

rcl_publisher_t publisher_ping;
rcl _publisher_t publisher_result;
rcl_subscription_t subscription_pong;

digital_twin_msgs__msg_LatencyTest msg_in;
digital_twin_msgs__msg_ LatencyTest msg_out;
std_msgs__msg UInt64 msg_res;

rclc_executor_t executor;
rclc_support_t support;
rcl_allocator_t allocator;
rcl_node_t node;
rcl_timer_t timer;

unsigned int msg_id = 0;
unsigned long long time_offset = 0;
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const char *node_name = "teensy mcu";
const char *node_namespace = "tb tm";

/** @brief Enter an error state, blinking the LED with a designated frequency
* in an infinite loop
*
* @param delay_ms indicating the period of blinking
*  @return None

*/
void error_loop(int delay_ms)
{
while(1){
digitalWrite(LED_PIN, !digitalRead(LED_PIN));
delay(delay ms);
}
}

/** @brief Synchronize time of MCU with uROS Agent time
*

* This function makes a call to uROS agent on the host to
* receive the UNIX time in nanoseconds. The current time of the MCU
* starts counting from © when it launches, thus we can find the time
* offset by subtracting MCU time from an actual UNIX time
*
* @param None
*  @return None
*
*/
void sync_time(void)
{
unsigned long now = micros();
rmw_uros_sync_session(10);
unsigned long long ros_time_us = rmw_uros_epoch_nanos() / 5
// now we can find the difference between ROS time and uC time
time_offset = ros_time_us - now;
¥

/** @brief Get current UNIX time of the MCU
*

* Takes into account the calculated offset and returns the UNIX time in
microseconds
k
*  @param None
*  @return uint64_t current time in microseconds
*/
unsigned long long get time(void)
{
// add time difference between uC time and ROS time to
// synchronize time with ROS
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unsigned long long now = micros() + time_offset;
return now;

/** @brief Publish ping message with the ID and time stamp
*

* @param None

*  @return None

*/
void publish_ping(void)
{

unsigned long long stamp = get_time();
msg_out.seq_id = msg_id;
msg_out.stamp = stamp;
RCSOFTCHECK(rcl_publish(&publisher_ping, &msg out, NULL));
msg_id += 1;
/** @brief Publish latency result message to calculating Node on host

Calculates the difference in received time as a RRT.

@param pointer to message type
@return None

S R R

*/
void publish_res(const void * msgin)
{
unsigned long long time_now = get time();
const digital twin_msgs__msg LatencyTest * msg = (const
digital twin_msgs__msg LatencyTest *)msgin;
msg_res.data = time_now - msg->stamp;
RCSOFTCHECK(rcl _publish(&publisher_result, &msg res, NULL));

/** @brief Callback function with a wall timer used for publishing ROS
messages periodically
*

* Timer callback is executed everytime a timer fires an interrupt.
*

* @param pointer to timer, int64_t last_call_time

*  @return None

*/

void timer_callback(rcl_timer_t * timer, int64_t last call time)

{
RCLC_UNUSED(last_call time);

if (timer != NULL){
publish_ping();
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/** @brief Subscriber callback to perform operation when new message is
received

*

* @param pointer to received message

*  @return None

*/
void subscriber_pong_callback(const void * msgin)

{

publish_res(msgin);

/** @brief Setup function to initialize all ROS2 nodes, publishers,
subscribers, timers

* and uROS executors
*

*
* Initializes uROS executors, publishers with designated topics and message
types, timers

* and callbacks for publishing and handling subscriptions. In case
something goes wrong,

* MCU will enter into an error state with LED blinking
*
* @param None
*  @return None
*/
void setup() {
set_microros_transports();

pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);

delay( );

allocator = rcl_get _default_allocator();

//create init_options, if fails, will blink every 1s
RCCHECK(rclc_support_init(&support, 9, NULL, &allocator), )H

// create node
RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support),

)5

// create publisher, if fails, the LED blinks every 100ms
RCCHECK(rclc_publisher_init_default(&publisher_ping, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital twin_msgs, msg, LatencyTest), "ping"),
)s
RCCHECK(rclc_publisher_init_default(&publisher_result, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, UInt64), "latency results"),

)s

// create subscriber, if fails, the LED blinks every 100ms
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RCCHECK(rclc_subscription_init_default(&subscription_pong, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital twin_msgs, msg, LatencyTest), "pong"),

)s

// create timer,
const unsigned int timer_timeout = RCL_MS_TO _NS(1);

RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout,
timer_callback), );

// create executor

RCCHECK(rclc_executor_init(&executor, &support.context, 2, &allocator),
)

RCCHECK(rclc_executor_add_timer(&executor, &timer), )H

RCCHECK(rclc_executor_add_subscription(&executor, &subscription_pong,
&msg_in, &subscriber_pong_callback, ON_NEW_DATA), );

sync_time();

}

/** @brief loop function where main code executes
*

* spin the executor forever to run uROS
*

* @param None

*  @return None

*/

void loop() {
rclc_executor_spin(&executor);
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Appendix 5 — Latency software run on MATLAB

latencyTestNode = ros2node("/latencyTestNode");

pause(2);

global next;

global recv;

global lost;

next = 0;

recv = 0;

lost = 0;

pingSubscriber = ros2subscriber(latencyTestNode,"/tb tm/ping");

pongPublisher =
ros2publisher(latencyTestNode,"/tb tm/pong","digital twin msgs/LatencyTest");

while true
msg = receive(pingSubscriber,10);
if next == msg.seq_id

recv = recv + 1;
out_msg = ros2message("digital twin msgs/LatencyTest");
out_msg.seq_id = msg.seq_id;
out_msg.stamp = msg.stamp;
send(pongPublisher,out_msg);
else
lost = lost + msg.seq_id - next;
end

next = msg.seq_id + 1;
if recv >=
quit();

end
end
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Appendix 6 — Latency test software run on Ubuntu VM

/**

* @file latencyTestNode.cpp

* @author Sergei Jegorov (sejego)

* @brief This ROS2 Node records latencies, received and lost messages,
calculates

* min, max and meand latencies in microseconds.

*

* @copyright Copyright (c) 2022

ES

*/

#include <iostream>
#include <vector>
#include <chrono>
#include <ratio>
#include <memory>
#include <algorithm>

#include "rclcpp/rclcpp.hpp”
#include "rclcpp/time.hpp"

#include <digital_twin_msgs/msg/latency_test.hpp>
#include "std_msgs/msg/u_int64.hpp"

#include "data_logger/data_logger.hpp"

using namespace Datalogger;
using namespace std::chrono_literals;

class LatencyTestNode : public rclcpp::Node

{
public:
std::unique_ptr<SubscriptionLogger> p_input_sub;

LatencyTestNode() : Node("latency test node")

{
PongPublisher_ = this-
>create_publisher<digital twin_msgs::msg::LatencyTest>("/tb_tm/pong", );

PingSubscriber_ = this-
>create_subscription<digital twin_msgs::msg::LatencyTest>("/tb _tm/ping", R

std::bind(&LatencyTestNode: :pingCallback, this, std::placeholders:: _1));
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LatencySubscriber_ = this-
>create_subscription<std_msgs::msg::UInt64>("/tb_tm/latency results”, R

std::bind(&LatencyTestNode::latencyCallback, this, std::placeholders:: 1));
p_input_sub.reset(new SubscriptionLogger("/tb_tm/ping"));

RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "Subscription logger
initialized");

RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "LatencyTestNode
initialized");

}

private:
/* Declare all message types, Publishers and Subscribers */

rclcpp::Publisher<digital_twin_msgs::msg::LatencyTest>::SharedPtr
PongPublisher_;

rclcpp::Subscription<digital twin_msgs::msg::LatencyTest>::SharedPtr
PingSubscriber_;

rclcpp::Subscription<std_msgs::msg::UInt64>::SharedPtr
LatencySubscriber_;

digital twin_msgs::msg::LatencyTest msg_to_send;

/* If the expected 'ping' message is received, it is considered received,

* and is sent back to the original publisher. Then, it receives the
recorded latencies

* and stores them in a vector of latencies
*/
void pingCallback(const digital twin_msgs::msg::LatencyTest::SharedPtr
msg)
{
if(msg->seq_id == p_input_sub->next_id) {
msg_to_send.seq_id = msg->seq_id;
msg_to_send.stamp = msg->stamp;
p_input_sub->recv_counter += 1;
PongPublisher_ ->publish(msg to_send);
} else {
p_input_sub->lost_count += 1;
}

p_input_sub->next_id = msg->seq_id + 1;

void latencyCallback(const std_msgs::msg::UInt64::SharedPtr msg){
uinte4_t latency_us = msg->data / 2;
p_input_sub->time_diffs.push_back(latency_us);
}
}s

int main(int argc, char ** argv)

{

rclcpp::init(argc, argv);
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auto ptr = std::make_shared<LatencyTestNode>();
rclcpp::spin(ptr);
Datalogger::save_logged_data("latency test results.csv");
rclcpp::shutdown();

return 0;
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Appendix 7 — The comparison between ROS and ROS2 based

on the propulsion drive of autonomous vehicle

The comparison between ROS and ROS2 based on the propulsion drive
of autonomous vehicle

Sergei Jegorov

Abstract—The Industrial Internet Of Things (IloT) is a
leading trend in systems development and is being applied
in various autonomous systems for control and monitoring
purposes. Sensors and actuators transmitting data over the net-
work prove valuable for creating models, conducting accurate
simulations, verifying and troubleshooting complex systems.
Such systems typically consist of several subsystems that are
relying on middleware frameworks for intercommunication.
Robot Operating System (ROS) framework is commonly used
in mobile robots and autonomous vehicles development. Having
collection of ready made packages available for use and
providing tools for nodes interconnection made ROS famous in
academy and industry. Since 2017, ROS2 is continuously being
developed and rel d, and will e lly replace ROS. Main
ROS2 targets are to eliminate problems present in ROS and
to add new features supporting real-time implementations. In
this paper, lhe autlmrs explain the importance of middleware,

iddl e frameworks commonly used in
the hclds of robotics and autonomous vehicles, and justify why
ROS2 could be preferred for the Digital Twin (DT) applications.
Moreover, research includes latency performance comparison
between ROS and ROS2 on a basis of existing DT system that
was migrated from ROS to ROS2.

Keywords — ROS, ROS2, digital twin, autonomous vehicles,
middleware, latency, IoT

I. INTRODUCTION

The advancement of ToT (Internet of Things) has created
new opportunities for creating sophisticated systems, such
as smart cities, smart gadgets, mobile robots, autonomous
vehicles, etc. In mentioned smart systems, the communica-
tion between the entities is happening inside a middleware -
distributed system services that have standard programming
interfaces and protocols [1]. The importance of middleware
is critical - without it the system cannot operate as a whole,
and this is especially a concern in the complex systems such
as autonomous vehicles, robotics, fault-detection etc. The
choice of the right middleware becomes therefore crucial,
as it often can determine how reliably and fast the system
will perform.

In previous research studies conducted by the authors, Dig-
ital Twin (DT) for propulsion electrical drive of autonomous
vehicle was introduced [2], with a dedicated test bench where
a real motor drive was connected with Unity 3D visualized
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motor[3]. The data exchange and additional computation was
happening in Robot Operating System (ROS). Since then, the
system defined in middleware was migrated to the successor
of ROS - ROS2.

In this article, the choice of middleware will be explained
through a comparison of available middleware platforms, and
results of performance evaluation of ROS and ROS2 will be
discussed.

A. What is middleware?

There is no official definition of the term "middleware"
available, as industry and academics explain this term differ-
ently, yet one definition found by the authors explains it the
most clearly: middleware platforms are intermediaries be-
tween sensors, services, and applications, managing the flow
of data and allowing them to interoperate [4]. Middleware
handles all the serialization and transfer of information from
one platform to another utilizing various applied standards.
Middleware has a defined Application Program Interface
(API) that allows engineers to bind the middleware software
to their parts of the system and allow inter-system communi-
cation. Dozens of middleware frameworks are available for
use, both proprietary and free of charge. Some of the frame-
works are based on standard communication protocols (such
as DDS), whereas other frameworks use custom solutions.

II. ASSESMENT OF AVAILABLE MIDDLEWARE

There is no systematic way of comparing different mid-
dleware frameworks, therefore, in this paper we will define
our set of criteria for evaluating and comparing the available
middleware. A set of qualitative criteria for IoT frameworks
was suggested in [4], what is also appropriate for the current
study:

1) area of application (web-development, embedded pro-
gramming, etc);
support for the desired communication model (pub-
sub, request-response, etc);
availability and clarity of the documentation, as well
as available tutorials;
quality of the support and livelihood of developer
communities;

2

3

=

4

=

First and foremost, the area of development of interest
of this study is industrial simulations for DTs. Since the
main research topic deals with electrical motor-drive system
and autonomous vehicle, it was considered beneficial to use
technologies that are either used in these fields or utilize
standardized protocols suitable for industrial/transportation
use cases.



TABLE 1

COMPARISON OF AVAILABLE MIDDLEWARE.

Initial < M . q : ;
Platform Rélease Type Type Ad Disadvantages
+ Real-time support - Inactive community
ad 2013 Inter-Process Message bus + Solved head-of-line problem for - Development discontinued
48 o Communication mechanism Publish-subscribe accessing the newest message - No ready software
+ Extensive documentation packages
+ Extensible family of - Limited el dme
connection types SUBDOR
YARP 2002 Robotics middleware Publish-subscribe + Extensive documentation h NPZ ey ot
+ Active community ok ; Y
+ QoS policies pacxages
4 § : - No ready software
Libraries and tools for message :T:::-k;l.::e: ne:‘\:oﬁ :op:Ing\ packages
LCM 2006 passing and data marshalling, Publish-subscribe e - Development stalled
5 communication 5 g
targeted at real-time systems 3 - Weak documentation
+Large support of Thactive e S
prog S - Inactive community
- Limited real time
+ Extensive collection of support
ROS 2007 Robotics middleware Publish-subscribe  'eady-to-use packages - Has 3 masterisciver
+Extensive documentation through which all
+ Active community connections are handled
- Support ends in 2025
+ Real time support - Development is
+ Distributed network topology still ongoing
Rebotics iniddlewie + Native embedded support - Documentation is aimed
ROS2 2017 ’ ! Publish-subscribe ~ + Based on a standard more on ROS users

successor of ROS

+ Active community
+ Extensive documentation
+ QoS policies

- Some of ROS ready
packages are still
being ported

The communication model preferably should be modular
and of publisher-subscriber type, since at any point of
operation it should be possible to get the data of a single
component and study it. This can be helpful in creating sys-
tems where elements may need to get the data from another
shared element. Likewise, the control of subscriptions and
publishers is possible, either by stopping any publishing, or
publishing simulated data to observe the reaction of the sys-
tem. Based on these parameters, the following frameworks
can be considered suitable for the needs of the research:
ach, LCM, YARP, ROS, ROS2. An overview of the main
advantages and disadvantages found in these frameworks is
presented in Table I.

Ach [5] provides a message bus or publish-subscribe style
of communication between multiple writers and multiple
readers. A real-time system has multiple Ach channels
across which individual data samples are published. Ach was
created with intention to be used for communication in real-
time systems that sample data from physical processes.

LCM [6] stands for Lightweight Communications and
Marshalling. It is a lightweight library for message passing
using publish-subscribe model aimed at assisting the devel-
opment of low-latency, real-time systems. Apart from its
message passing and marshalling, the LCM is also notable
for providing real-time deep traffic inspection tool that can
decode and display messages with minimal user effort. LCM
is a standalone library that can be easily integrated in a
variety of systems.

YARP [7] (Yet Another Robot Platform) is a framework
developed to support modular development of humanoid
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robotics that are to be operated in harsh and non-ideal
conditions. YARP is highly modular and is compatible with
other frameworks, if needed. YARP includes a model of
communication that is transport-neutral, so that data flow is
decoupled from the details of the underlying networks and
protocols in use. Importantly for the long term, YARP is
designed to play well with other architectures.[8]

ROS - a framework for robotics development which con-
sists of a pub-sub mechanism that exchanges ROS messages
of TCP/UDP network. ROS is widely used in academia
and research for its rich set of documentation and available
ROS packages - already developed software components for
complex tasks (navigation, localization, computer vision etc)
that is open-source and available to everybody.

ROS?2 is the successor of ROS. ROS2 is currently being
actively developed to provide the following features: support
of Data Distribution Service (DDS) standard, industry-grade
support and the deprecation of original ROS in 2025 [9],
transfer of ROS core libraries to use the C++11 standard,
real-time operating systems (RTOS) and microcontrollers
native support [10]. The interest in development of such
system has even brought renown companies in technology
such as Apex Al iRobot and Sony [11] to work on various
features of ROS2.

It is understandable that these frameworks can perform
better or worse depending on the use cases. However, popu-
larity of ROS and its large support from the community and
technical industries promises a robust and reliable system.
Additionally, Autoware Al - leading development platform
for autonomous vehicles is based on ROS, and is used in



the studied vehicle - ISEAUTO [12]. The test bench that
was developed in [2] is largely based on the drive system of
ISEAUTO. Likewise, active development of ROS2, official
statement that ROS will be supported only until 2025, new
features of ROS2 all suggested that migrating existing system
in its early development stage would be beneficial for the
authors of the research.

ITI. COMPARISON OF ROS AND ROS2 PERFORMANCE

One of the questions that may arise in one’s mind when
migrating from one technology to another is, why is the
new technology better than the previous one? The topic of
difference in performance of ROS and ROS2 has already
been researched in [13], where dependency of latency and
size of the transmitted data was outlined. Since the release of
ROS2, researchers have been investigating the performance
of ROS2 in order to shed light on possible underdevelop-
ments of ROS2 and help to improve the system design. This
way, researchers could actively contribute to the development
of ROS2. Notable examples of such kinds are ApexAl's
performance test [14] and iRobot’s ROS2 benchmark [15];
these companies are directly involved in ROS2 development.
However, none of similar frameworks were found for orig-
inal ROS, hence the performance evaluation between two
versions (ROS and ROS2) had to be conducted from scratch.

A. Specimen case study

The system that acts as a specimen in the experiment is
a part (refer to it as loading_motor_dt) of Loading Motor
DT [16] that has been created initially using ROS and then
migrated to ROS2. The loading_motor_dt is a middleware
written in C++ laying between the real test bench and the
3D visualization simulated in Unity3D environment, and is
responsible for calculating physical values of the 7.5 kW
induction motor. Currently, loading_motor_dt uses the data
received from the data acquisition system (DAS) and from
the efficiency map created during a previous study. DAS
reads the 3-phase AC current and voltage magnitudes at a
specified frequency and stores them as ¢sv files. All files are
then loaded into the loading_motor_dt through ROS launch
files, processed and used for further calculation of motor’s
values. The structure of the current ROS system can be seen
in the Fig. 1.

B. Description of evaluation

There are multiple ways of determining the performance
of the system. In this research, focus will be on one of
the core values of any similar middleware - communication,
namely the latency of messaging. Latency can be defined as
a time delay between initial input and output. In the case
of middleware, latency would be the time delay between the
moment a ROS message was sent from one node, and the
moment it was received by the other node, e.g.:

tiat = trecv = tsent (M
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where t;qs is latency, fye is the time moment where
message was received and #g.,,¢ is the moment the message
was sent.

Every ROS message, apart from the load (or the useful
data) consists of two more data fields: the unique ID of
the message and the time variable in nanoseconds. ID is
required to verify that the received message is indeed the
expected message and was not lost. IDs are incremented by 1
every time they are sent. On the receiving node, the received
message’s ID is checked and then it is incremented by 1
- this way, if a message was lost, the receiving node can
still expect correct message during the next cycle. In case
the ID matches, the message is counted as received, and the
difference in t,.., and t..,; is calculated; otherwise, this is
omitted. Visually, this is represented in the Fig. 2.

In order to keep track of recorded latencies, tracked nodes,
received messages count etc, a separate class was defined -
Datalogger. DataLogger is a ROS-independent class (can
be instantiated in both ROS and ROS2), whose instances are
created for every launched node, and they keep the track on
aforementioned data and calculate the maximum, minimum
and mean latency of every node. When loading_motor_dt
stops executing, the following parameters per node are stored
in ¢sv files: topic_name, sent(#), received(#), mean latency,
maximum latency, minimum latency, frequency, message size.
These files are later grouped and analyzed using Pandas
Python package.

Each experiment is run for 60 seconds. All experiments
were carried out on a machine with the following parameters:

CPU Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz
2.50 GHz

« RAM 32GB

« x64 POP OS! 20.04 (Ubuntu-based Linux distribution)
« ROS2 Foxy Fitzroy with | ROS Noetic Ninjemys !

IV. RESULTS

This section contains the results for latency test obtained
through Datalogger class and iRobot benchmark. Obtained
results were analyzed with Pandas in Python.

A. ROS vs. ROS2

Tables IT and III compare ROS and ROS2 latency tests.
The difference between ROS and ROS2 appear to be sig-
nificant, with ROS2 being much more robust and reliable.
In ROS, loss in messages appears to be higher for topics
transmitting messages at very high frequencies, whereas in
ROS2 they are somewhat independent of topic frequency.
Interestingly, both ROS versions show increased latency
for messages published on ’fairly low’ frequencies (0.2
Hz). Overall, ROS2 appears to be much more efficient and
reliable.

'Both versions were present on the machines, but only one at a time was
running for latency test. ROS2 uses Default DDS vendor cProsima Fast
DDS.
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Fig. 1. loading_motor_dt system in ROS2
TABLE II
LATENCY TEST RESULTS FOR ROS.
topic received(#)  lost(#) meanfus] max_latency[us] min_latency[us] message_size[b] frequency[hz]
1 /input_current 58199 337 8796.0 21603.3 180.4 24 1000
2 /input_voltage 58427 109 8837.3 22004.1 228.0 241000
3 [electrical_torque_ref 3532 36 2115737.8 4293061.0 2982.6 16 60
4 factual_rpm 3532 24 2114560.6 4293068.0 3024.2 16 60
5 /motor_power/electrical_power 11 0 2500060.1 4131624.0 558433.1 28 0.2
6 /efficiency 588 5 15823.0 17038.6 1743 16 60
TABLE III
LATENCY TEST RESULTS FOR ROS2.
topic received(#) lost(#) mean[us] max_latency[us] min_latency[us] message_size[b] frequency[hz]

I /input_current 58563 3 347.7 18525.2 476 24 1000
2 /input_voltage 58563 3 356.5 18489.2 57.8 24 1000
3 Jelectrical_torque_ref 3557 8 352.6 12211.1 71.6 16 60
4 /actual_rpm 3565 2 364.1 11237.5 91.4 16 60
5 /motor_power/electrical_power 11 0 350.6 496.6 282.6 28 02
6 Jefficiency 595 0 563.9 110559.0 99.6 16 60

B. ROS vs. ROS2 vs. iRobot benchmark

Another interesting comparison to show would be the
difference between the evaluation of ROS, ROS2 and iRobot
benchmark. As can be seen in Table IV and V, iRobot bench-
mark showcases even more superior results of evaluation
compared to one conducted in this research. However, it
should be noted that iRobot generates a ROS2 system based
on a defined topology, where all nodes are supposedly same
in their computation, and are optimized to maximum effi-
ciency. Additionally, the results generated by iRobot did not
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include the actual size of the message transmitted by nodes.
Defined message size in topology is recorded as a result,
excluding the size of the header each iRobot benchmark
message had. For this reason, additional 16 bytes (the size
of performance_test/header) were added to the message_size
column in Table IV.

V. DISCUSSION AND CONCLUSIONS

Conducted research shows that never mind the system
and middleware, there can and will be loss of some data



TABLE IV
LATENCY TEST RESULTS FROM IROBOT BENCHMARK.

topic received(#) lost(#) meanfus] max_latency[us] min_latency[us] message_size[b] frequency[hz]
1 /input_current 59849 0 78 902 9 28 1000
2 /input_voltage 59878 0 50 971 10 28 1000
3 Jelectrical_torque_ref 3595 0 92 750 20 20 60
4 Jactual_rpm 3595 0 93 4912 21 20 60
5 /motor_power/electrical _power 12 0 139 233 71 32 02
6 /fefficiency 600 0 102 796 16 20 60
TABLE V

ROS msg received

Received msg ID ==
Expected msg ID?

>

Expected msg ID =
Recelved msg ID + 1
Received counter += 1
Latency = Received
msg time - current time
L.

Expected msg ID =
Received msg ID + 1

Fig. 2.

Visual representation of DataLogger’s algorithm.

during transmission, and engineers must be ready to increase
redundancy in their systems. Same applies to the maintainers
of loading_motor_dt.

Communication reliability and speed appears to be signif-
icantly larger in ROS2, which can be explained by the lack
of rosmaster, adopted DDS standard and upgrade of ROS
features to accommodate newer C++ features. This suggests
that switching to ROS2 in the long-term will improve op-
erations of systems already written and proven to work in
original ROS.

Initially, performance evaluation of the ROS2 version of
the system was supposed to be conducted using only iRobot’s
framework, and an attempt was made to create a similar
framework for ROS. However, this idea was abandoned due
to the fact that original ROS design is not suitable for
the creation of a similar framework because of following
reasons:

1) Original ROS cannot dynamically generate Nodes>.

2This scenario is possible with use of Nodelets, but it then would assume
that Nodelets are running in a single process, which is not true in case of
our system in both ROS and ROS2
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COMPARISON OF ALL THREE LATENCY TESTS.

evaluations average_mean[us] lost(#)
1 iRobot’s ROS2 framework 92.3 0
2 ROS2 389.2 16
3 ROSI1 11273025 511

2) iRobot’s framework design targets latest ROS2 features
and API which are totally distinct from original ROS.
Reverse engineering in this case is unreasonable.
iRobot’s framework is well-designed and complex for
a reason - the outcome of this work directly contributes
to the development of ROS2. There would be minimal
contribution from such system to original ROS at this
time.

3

=

It still remains unclear why iRobot’s framework show-
cased significantly better result and if it is a result of opti-
mizations on iRobot’s side or disadvantages of our system,
and requires further investigation.

APPENDIX

All experiments with instructions are available on the
PSG453 project’s GitHub.

ACKNOWLEDGMENTS

The research is supported by the Estonian Research Coun-
cil under grant PSG453 "Digital Twin for Propulsion Drive
of Autonomous Electric Vehicle". In addition, Vladimir Kuts
has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No. 847577; and a re-
search grant from Science Foundation Ireland (SFI) under
Grant Number 16/RC/3918 (Ireland’s European Structural
and Investment Funds Programmes and the European Re-
gional Development Fund 2014-2.

REFERENCES

[1] P. A. Bernstein, “Middleware: A model for dis-
tributed system services,” Commun. ACM, vol. 39,
no. 2, pp. 86-98, Feb. 1996, 1ssN: 0001-0782. por:
10.1145/230798.230809. [Online]. Available:
https : / /doi . org/ 10 .1145 /230798 .
2308009.



(2]

[4]

(5]

(7

[10]

(1]

[12]

(13]

[14]

A. Rassolkin, T. Vaimann, A. Kallaste, and V. Kuts,
“Digital twin for propulsion drive of autonomous
electric vehicle,” Oct. 2019. por: 10 . 1109 /
RTUCON48111.2019.8982326.

V. Kuts, A. Rassolkin, A. Partyshev, S. Jegorov, and
V. RjabtSikov, “ROS middle-layer integration to unity
3d as an interface option for propulsion drive sim-
ulations of autonomous vehicles,” IOP Conference
Series: Materials Science and Engineering, vol. 1140,
no. 1, p. 012 008, May 2021. DOI: 10.1088/1757-
899x / 1140 / 1 / 012008. [Online]. Available:
https://doi.org/10.1088/1757-899x/
1140/1/012008.

J. Cardoso, C. Pereira, A. Aguiar, and R. Morla,
“Benchmarking iot middleware platforms,” pp. 1-7,
2017. po1: 10.1109/WoWMoM.2017.7974339.
N. T. Dantam, D. M. Lofaro, A. Hereid, P. Y. Oh,
A. D. Ames, and M. Stilman, “The ach library: A
new framework for real-time communication,” IEEE
Robotics Automation Magazine, vol. 22, no. 1, pp. 76—
85, 2015, 1ssN: 1070-9932. poI: 10.1109/MRA.
2014.2356937.

A. S. Huang, E. Olson, and D. C. Moore,
“Lem: Lightweight communications and marshalling,”
pp. 40574062, 2010. pOI: 10.1109/IR0S.2010.
5649358.

G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet
another robot platform,” International Journal of Ad-
vanced Robotic Systems, vol. 3, no. 1, p. 8, Mar. 2006.
DOI: 10.5772/5761. [Online]. Available: https:
//doi.org/10.5772/5761.

P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-
lived robot genes,” Robotics and Autonomous Systems,
vol. 56, no. 1, pp. 2945, Jan. 2008. po1: 10.1016/
j . robot .2007 .09 . 014. [Online]. Available:
https://doi.org/10.1016/j. robot .
2007.09.014.

OpenRobotics, Noetic ninjemys: The last official ros
1 release. [Online]. Available: http://design.
ros2.org/articles/changes.html.

D. Thomas, Changes between ros 1 and ros 2,” ros
2 design. [Online]. Available: http://design.
ros2.org/articles/changes.html.
OpenRobotics, Ros2 features roadmap. [Online].
Available: https://docs.ros.org/en/foxy/
Roadmap.html.

A. Rassolkin, R. Sell, and M. Leier, “Development
case study of first estonian self-driving car iseauto,”
1, vol. 14, 2018, pp. 81-88.

Y. Maruyama, S. Kato, and T. Azumi, “Exploring the
performance of ROS2,” Oct. 2016. pOI: 10.1145/
2968478.2968502. [Online]. Available: https:
//doi.org/10.1145/2968478.2968502.
ApexAl, Apexai ros2 performance test, https://
gitlab.com/ApexAI/performance_test/,
2020.

74

[15] iRobot, frobot ros2 performance evaluation frame-
work, https: //github.com/irobot -ros/
ros2-performance, 2020.

[16] A. Rassolkin, V. Rjabtsikov, T. Vaimann, A. Kallaste,

V. Kuts, and A. Partyshev, “Digital twin of an electri-
cal motor based on empirical performance model,” in
2020 XI International Conference on Electrical Power
Drive Systems (ICEPDS), IEEE, 2020, pp. 1-4.

Sergei Jegorov is currently a Computer and Sys-
tems Engineering MSc student at Tallinn Univer-
sity of Technology. His primary interest is in soft-
ware engineering, IoT, and systems development.
He participated previously in a Horizon2020 EU
project L4AMS and is working now in the PSG453
project of Tallinn University of Technology.

Vladimir Kuts reccived his Ph.D. in Mechanical
Engineering from Tallinn University of Technol-
ogy (TalTech) in 2019. From the Year 2017, Dr.
Kuts has been Head of Industrial Virtual and Aug-
mented Reality Laboratory (www.ivar.taltech.ce)
in the Department of Mechanical and Industrial
Engineering Department of TalTech. Currently, he
is a research fellow at the University of Limerick,
Ireland. His main research interests include Indus-
trial Digital Twins synchronized with real indus-
trial equipment such as robots and Virtual Reality
technologies for human-robot interaction standards validation. Moreover, he
is serving as vice-chair of the IEEE Estonian section.

Anton Rassolkin was born in Tallinn, Estonia,
in 1985. He received the BSc, MSc, and Ph.D.
degrees in electric drives and power electronics
from Tallinn University of Technology (Estonia)
in 2008, 2010, and 2014, respectively. In 2010
he received a Dipl.-Ing. degree in automation
from the University of Applied Science Giessen-
Friedberg (Germany). He has been working in

4 F ; 3
{ several companies as an electrical engineer and

| at universities as a lecturer. Internationally, he

. has been working as a visiting researcher at the
Institute for Competence in Auto Mobility (IKAM, Barleben, Germany),
a visiting associate at Belarusian State Technological University (Minsk,
Belarus). In addition, he serves as a visiting professor at the Faculty of
Control Systems and Robotics at ITMO University (St. Petersburg, Russia)
and a visiting professor at the Faculty of Electrical Engineering Department
of Power Electronics, Electrical Drives and Robotics at Silesian University
of Technology (Gliwice, Poland). Presently, he holds the position of pro-
fessor in Mechatronics at the Department of Electrical Power Engineering
and Mechatronics, School of Engineering, Tallinn University of Technology
(TalTech). The main research interests are mechatronics and electrical drives,
particularly for electric transportation and autonomous vehicles. He is a
member of IEEE (§’12-M’16-SM’20) and the Estonian Society of Moritz
Hermann Jacobi.



EV systems.

Andriy Partyshev received his BSc in engineering
in 2021. He was a part of a competitive robotics
team in the US for three years. He is currently a
member of the Industrial Virtual and Augmented
Reality Laboratory in the Department of Mechan-
ical and Industrial Engincering of TalTech and
participated in multiple internships offered by in-
ternational companies. Andriy’s primary research
areas are robotization of industry, robot control via
Industrial Digital Twin.

Viktor RjabtSikov received his BSc and MSc
degrees in electrical engineering in 2018 and 2020,
respectively. He is currently a Ph.D. Student at
Department of Electrical Power Engineering and
Mechatronics in Tallinn University of Technology.
In addition, Viktor has participated in various in-
ternships at different Estonian companies. Primary
research interest relates to electrical drives and
clectrical machine control theory. In addition, his
research interest includes electric vehicles propul-
sion systems and Digital Twins implementation to

75



Appendix 8 — Digital Twin Service Unit for AC Motor Stator

Inter-Turn Short Circuit Fault Detection

2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED) | 978-1-6654-1456-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/IWED52055.2021.9376328

2021 28th Intemational Workshop on Electric Drives: Improving Reliability of Electric Drives (TWED), Moscow, Russia. Jan 27 - 29, 2021

Digital Twin Service Unit for AC Motor Stator
Inter-Turn Short Circuit Fault Detection

Viktor Rjabtsikov, Anton Rassolkin,
Bilal Asad, Toomas Vaimann,
Ants Kallaste
Department of Electrical Power
Engineering and Mechatronics
Tallinn University of Technology
Tallinn, Estonia

viktor.rjabtsikov(@taltech.ee

Abstract—A modern trend for industry digitalization
brings new d ds for the develoy t and application of
the deling and simul approach. It is already not
enough to have only a virtual representation of the object and
run it independently from the physical object. The Digital
Twin (DT) aspect indicates a connection between the physical
object and the corresponding virtual twin established by
generating real-time data using sensors. The DT represents
physical object operation throughout its life cycle, making it an
essential tool for improving that object's reliability. In this
paper, an application of the DT service unit for AC motor
stator inter-turn short circuit fault detection is presented.
According to real-time measurements, Linux Robot Operation
System (ROS) simulates AC clectrical machine-specific
behavior in case of unbalanced stator currents and notify
about possible fault appcarance and propagation. Fault, such
as discussed in the paper (AC machine stator inter-turn) is
considered one of the most prevalent possible electrical motor
failure.

Keywords— Industry applications, Motor drives, Model-
driven development

I INTRODUCTION

The Digital Twin (DT) is a trending tcchnology. It
defined as a virtual representation that collaborates with the
physical object throughout its lifecycle and provides services
for the evaluation, optimization, prediction, etc. [1] The very
first concept of DT presented by M. Grieves [2] in 2014 was
composed of three main components — the physical and
virtual entitics, supported by the data. The main limitation of
such a concept highlighted in [3] is the virtual entity's
application generally for simulation purposes. More recent
works [4]| represent DT technology as a five-dimension
structure, with services and connections as separate entities.
Different test benches, as reduced models of the complex
system, may be introduced as an additional entity that may
noticeably improve DT development and implementation
process, as presented in [5]. Fig. 1 shows the 5-dimensional
DT model and the components' synergy as the main
component real physical entity provides the DT development
basis. The virtual entity represents the physical entity in
different approaches and is responsible for the obscrvation,
simulation, control, and optimization strategics of the DT
system. The data entity acts as an operator for the whole
system and develops the DT itself. The service entity will be
more detailed discussed in the paper. It represents a platform
with a set of services and responds to the demands of either
physical and virtual entities. The last entity that completes

The rescarch has been supported by the Estonian Rescarch Council
under grant PSG453 “Digital twin for propulsion drive of autonomous
electric vehicle™.
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the five-dimensional DT model is a connection that defines
the interaction between other entities. In addition to
regulations in the motor drive system [6], service entities
may include sub-services, such as path planning, energy
optimization, maintcnance, diagnostic, ctc.

The proper, reliable, accurate, and efficient fault
detection DT service units may be a valuable tool throughout
the electrical motor-drive life cycle. Literature review shows
that preventive maintenance programs reduce total electrical
motor rewinds from 85% to 20% of the entirc motor repairs
[7]. The rcasons bchind the failurcs in rotating clectrical
machines are a combination of one or more issues that have
their origin in design, manufacturing tolerance, assembly,
installation, working environment, nature of the load, and
maintenance schedule. AC machine stator inter-turn fault is
considered onc of four [8] most prevalent possible clectrical
motor failures, together with air gap cccentricity, broken
rotor bar/end-rings, and bearing failures. Usually, the inter-
turn short circuit starts with insulation failure, accompanied
by extremely high current flow due to the high voltage
potential differences between adjacent coils.

This paper presents the study on inter-turn short circuit
[ault detection in the induction machine's stator (IM), IM is a
popular choice in industrial drive applications. However,
IM's stator construction is the same as in the case of other

Service entity
Function;

Input;

Output;

Fault detection;
Quality;

State;
etc. M

Virtual entity

g
Real physical enti‘yc/@" b

Spatial model;
Physical model;
= Behavior model;
= Historical datasets;

L

Iterative optimization

f\__/?

Interaction and Mapping

Fie. 1. Five-dimensional Digital Twin model of AC motor.



AC machines, and fault detection algorithms using specified
DT service units may be used for different types of AC
electrical machines.

The paper presents the DT service unit application for
AC motor stator inter-turn short circuit fault detection and is
structured as follows. The nature of the AC electrical motor
stator fault is discussed in Section II. The definition of fault
imitating measurements for DT development is presented in
Section III. The behavior of Linux Robot Operation System
(ROS) node according to real-time measurements of a real
physical entity (AC clectrical motor) and specific behavior
model, dedicated to detect unbalanced stator currents and
notify about possible fault appearance and propagation, is
presented in Section IV,

II.  FAULT DIAGNOSTICS AND DETECTION

Unlike preventive and reactive maintenance, predictive
maintenance is gaining heightened popularity |7]. The fault
detection of clectrical machines at the incipient stage for
predictive maintenance is essential for a safe and reliable
industrial operation. This is also vital for machine life
estimation as the faults are degenerative. Any machine under
ideal conditions should be perfectly symmetrical for all of its
phases. But practically, the asymmetry is investable. The
main contributors to thosc asymmectrics arc the clectrical and
mechanical faults. Nearly all faults can be divided into two
classes: electrical and mechanical. The most common of
them are rotor faults [9], such as bad bearings, broken bars,
eccentricity, and winding short circuits. These fault’s leading
causes may include thermal degradation, hazardous
industrial cnvironment, bad foundation, and magnctic strcss
and vibrations. The winding insulation degradation is slow
but a continuous process that can lead to a catastrophic
situation. This can lead to the faults such as inter-turn short
circuit, phase to phase short circuit, or phase to ground short
circuit. Moreover, the increased asymmetry among phase
impedances can incrcasc the speed and torque ripples, which
can causc other mechanical faults. Almost all faults modulate
the supply current with a specific bandwidth of frequencies.
Being present in the current, they influence the other
parameters such as speed, torque, flux, and voltage, etc.

The detection of those frequency components at the early
stage of the fault can avoid significant damage. [10] In
induction machines, all fault dependent harmonics are the
function of slip. This divides the signal under observation
into two categories: the transient and the steady-state. In a
stcady-statc regime, the signal is stationary, and the standard
signal processing techniques can be used for fault detection.
Among several signal processing techniques, the discrete-
time Fourier transform (DTFT) is being used successfully.
This is because it can be used on a piece of equipment with
low computation power and can give a good insight into the
harmonics. Since the fault-based harmonics are dependent on
the slip, DTFT fails to provide any mcaningful information
under no and low load conditions. Another problem of DTFT
is the spectral leakage, which can hide all small-amplitude
faulty harmonics. In the transient regime, the signal is non-
stationary due to varying slip. Hence the time-frequency
analysis becomes cssential. [t may lead to a specific
frequency pattern as, during the transient period, the slip
changes its value from one to nominal. The signal analysis in
the transient interval reduces the problems related to the load
dependency of faulty [requency components. The most
common time-frequency techniques include short-time
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Fourier transform (STFT), wavelet transform (WT), and
multiple signal classification (MUSIC), etc.

The electrical motors should have minimal speed and
torque ripples. In induction machines, the most prominent
causes of those ripples are because of the current harmonics.
The primary sources of currents harmonics in induction
machines are the supply-based, inherit eccentricity, bad
bearings, bad foundation, and the presence of any fault.
Moreover, the thermal, skinning, and proximity effect also
reduces the symmetry of winding electrical parameters such
as resistance. The non-symmetrical three-phase impedances
produce negative sequence currents in the motor, increasing
the speed and torque ripples. These ripples can become a
causc for more mechanical faults due to the increase in the
vibration. The problem becomes worst with the degrading
winding insulation resulting in short circuit failures. Various
techniques can be used to detect the short circuit early, such
as Park and Clark’s vector, extended Park’s vector, Park’s
vector modulus, symmetrical components, pattern
recognition-based advanced techniques, etc.

I1l.  EXPERIMENTAL RESULTS

Finding faults in the early stages of the machine work is
advantageous when planning and maintaining the machine.
Confirmation of a DT fault can be carricd out by verifying
the mathematical model in which the real physical model's
accurate data is continually being sent. A massive amount of
data is needed to properly train the mathematical model, so
the fault detection's final result will be more accurate.

An imbalance occurs in the stator windings with an inter-
turn short circuit, where the resistance decrcases in the
winding with a turn-to-turn short circuit. For experiments
with a smooth decrease in the first phase of the winding
resistance, an adjustable resistor was used, connected in
parallel to the winding's first phase. By adjusting the parallel-
connected resistor, the total resistance of the first phase
winding changes and, at the same time decreasing current
passing by winding by directing some of the phase current o
the resistor. Suppose the resistance of the regulated resistor is
equal to the winding resistance of the first phase. In that case,
the current passing through the first phase will be divided
exactly in half, which gives 50% of the fault, or in other
words, an inter-turn short circuit between hall of the
winding. The illustrative figure is shown in Fig. 2.

R50%
R90%(R100%

Wi
Vi

Fig. 2. Stator winding of induction machine with parallel connected
regulaled power resistor.
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Fig. 3. Example of laboratory simulation and fault data acquisition.

There are several advantages to connecting a resistor in
parallcl. The first is the possibility of tcsting the motor
without harming it and without changing the winding sidc of
the stator. The second is the ability to measure an error of
one percent where the change in current will be minimal, but
at the same time, it is essential for the rapid response of the
fault detection system. And the third is the ability to adjust
the fault percent over a very large interval. This resistance
interval depends only on the number of resistors in parallel,
where it is possible to achieve any winding resistance.

The test bench contained two 7,5 kW induction motors,
where onc was uscd as a driving motor and the other as the
loading motor. For data acquisition, current clamps, and
DEWETRON data acquisition systems (DAS) were used.
Both induction motors were connected to the star connection.
The driving motor was connected directly to the grid to
climinate harmonics that can be carried out by a frequency
converter. First, the tests were carried out with an intact and
faulty motor where the results could be compared. The points
of reference for us were faults of 1%, 2%, and 5%; for each
[ault point, there were [our stages ol load: no load, 25%,
50%, and 75%. Lastly, two different scenarios were carried
out where the neutral point was connected and disconnected
from the motor.

Comparing the graphs of the current of different
percentages of failure, then a dependence appears that the
greater the percentage of failure, the greater the currents'
asymmetry. Also, the more load on the motor, the less
harmonics in the current are visible, and there is less
curvaturc of the current. And lastly, a disconnccted ncutral
point not only increases the current asymmetry but also
affects the voltage shape and amplitude. In Fig. 3. examples
of DEWETRON DAS data with faulty currents and with a
disconnected neutral point arc shown.

Data collected during the experiment were transferred to
a ROS-based server, where the studied motor's DT is located.
The next section describes the structure of the DT service
and presents an example of data processing. To test different
file formats performance with ROS in the current sctup,
mcasurcment data from the real induction motor werc saved
into files with various extensions (*.mat, *.xIsx, *.csv, *.txt).
This data is further fetched into the ROS, transformed to
ROS messaged, and is advertised on the topics.

IV. DT SERVICE UNIT DESCRIPTION

The developed DT's virtual entity consists of models’ set,
spatial model, physical model, behavior model, rule model,
etc. In the spatial model, the studied electrical motor parts
arc constructed as a computer-aided geometric model to be
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assembled in ROS's virtual engine. In the physical model, the
performance of separate parts of the physical entity
simulated using numerical computing environments, like
MATLAB [11], FEMM [12], Agros2D [13], etc. The
behavior model is the main focus of the current rescarch
paper; it is responsible for transfer data from the real
physical entity, calculating motor parameters, and stream to
the ROS topics available for models. Rule model covering
constraints for road load can be simulated through behavior
analysis and data associations that can be observed using
virtual scnsors.

ROS acts as a physics engine for the current setup of the
DT. It simulates the real induction motor's behavior and
features and acts as a publisher of data to be used by virtual
models. ROS has a publisher/subscriber architecture, it
allows models from different environments to publish or
subscribe to the ROS topics and interact with them. The
communication between various platforms is handled using
ROS bridge — a node that converts ROS messages into
JavaScript Object Notation (JSON) or Message Queuing
Telemetry Transport (MQTT) formatted data. Subscription
or publishing to ROS bridge's port allows direct
communication with ROS nodes themselves. Due to the
JSON standard format, any model in a virtual environment
can be programmed to receive or publish messages to ROS
topics.

Input signal tracking is performed through the following
process: when measurement data from the motor windings
come as an input current to ROS, it is being compared
against the expected data, and if the received measurement
on any of the winding exceeds the margins determined by the
admitted error, a fault notification is filed. The measured data
is being summed up and compared for a specific amount of
time that is necessary (o calculate an optimal error, therefore
allowing the system to accurately tell if there is a fault in the
windings of the motor. After the specific time clapses, the
sum value and error are refreshed.

The fault detection algorithm realized for DT is shown in
Fig. 4. ROS gets connected to the real motor (for this article,
recorded data of the motor was used to simulate the real
input from the motor). The current data received from motors
is being processed, converted to ROS messages, and is
published in the ROS environment, as shown in Fig. 5.a. At
the same time, the node listening to the currents topic starts
receiving messages. The current values retrieved from these
messages are processed as follows: a motor phase is chosen
as the base phase. Relatively to this phase, we convert other
phase currents to imaginary units. These imaginary units can
be uscd to represent the percentage of load applicd on the
moltor. As a rule of thumb, these values should be very close
to one another, e.g., within the allowed margins (due to
noises and imperfections). If one of the imaginary units
exceeds the set margins, then a warning message is being
published by ROS (used to notify the model) and is output in
the terminal (shown in Fig. 5b). The published message can
be used as an indicator in the 3D model or real test bench of
a potential fault in the system.

V. DISCUSSION
Today’s technology development level allows cven
smartphones [ 14] or any portable recording device to be used
for condition monitoring. However, making a service dataset
available for condition monitoring and fault diagnosis DTs’



can contribute even more efficiently to electrical energy
conversion systems. DT assets enable system users to view
the behavior of last in real-time and apply practical
knowledge gained with a plant system. DT's application
allows using hybrid analyzing mcthodologics to contributc to
computational modeling and simulation of complex
problems that appear in numerous multidisciplinary
applications. The DT's main principles have an immediate
and critical application to fault detection in the energy
conversion systems, especially in electric drives. However,
there arc fundamental risks, like worthless complexity and
usclulness of possible DT services. For some applications,
DT may be an unconscionable complicated, or expensive or
technology.

ROS is connected
with real motor
v
Data starts to flow
v
Read input current data

v
Process and convert
raw data to ROS msg
v
Publish to ROS topics
v
Read from ROS
currents topic

Due to its nature, DT may be designed so that services
give an early indication of the system's possible
malfunctions. In that case, maintenance can be scheduled
appropriately on an “as needs™ [15] basis rather than at fixed
time intervals. Nowadays, DT technology is implemented in
different industrial applications; some successfully
implement various diagnostics services. A literature review
of DT's possiblc implementation for wind turbine condition
monitoring and fault diagnosis is given in [16]. The
application of DT in vehicles is a popular topic in the recent
decade. In 2012 researchers from NASA in [17] suggested
using DT to mirror its twin's life and enable unprecedented
levels of safety and rcliability. DT must integratc high-
fidelity simulation with the portable integrated monitoring
system, maintenance history, and all available historical and
fleet data by the author's approach. A more recent example is
given in [18] by K. Shubenkova et al., authors suggest to
track data of KAMAZ trucks failures throughout the logistic
process and to predict failures of cach particular vehicle.
Proposed DT compared with the real numbers of failurcs
confirm the forecasts' adequacy at the level of 10%.

Publish warning
¥/ message

VI. CONCLUSION Fig. 4. Simple inter-turn short circuit fault detection algorithm realized [or
current DT,

In this rescarch work, we have implemented inter-turn
short circuit fault detection into the DT of the induction a)
motor. A spatial model developed in Unity 3D was combined

with ROS service that allows online condition moniloring. sejego@Lenovo-IdeaPad-S500:~/catkin_ws$ rostopic echo /tb/loadin

g_motor /motor_status/phase

The studied fault was simulated in laboratory conditions to current1: 166.0
verify the ROS nodcs behavior. Basically, the cmulator was Epllat it
crcated from historical data and a physical/mathematical

= ) current1: 100.0
model of the induction motor. current2: 95.05999755859375
current3: 78.17999267578125

Developed DT can serve as a virtual sensor for the
current1: 100.0

scparate clectric motor or be a part of complex clectrical current2: 95.0999984741211
energy conversion systems. Further investigation is needed CUFrantay I8: 2009052200028
for extending the services assets of developed DT. DT current: 100.0

services that use signal processing and pattern recognition CUrcante: 95.1500015250789

. o 5 current3: 78.44999694824219
algorithms for different fault detection are constructed and

ane o mi v P 1 . currentl: 100.0
analyzed. Comblm_ng datd‘from pldnt systems, virtual o e Sesevssatiring
sensors, and machinc lcarning routincs will allow more current3: 78.62999725341797

precisc diagnosis and prognosis possibilitics for the physical 1
entity and may introduce degradation services (e.g.,

efficiency loss, demagnetization, etc.) of the physical entity. b)
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Abstract. As autonomous vehicle development continues at growing speeds, so does the need
for optimization, diagnosis, and testing of various autonomous systems elements, under different
conditions. However, since such processes should be carried out in parallel, it may result in
bottlenecks in development and increased complexity. The trend for Digital Twins brings a
promising option for the diagnosis and testing to be carried out separately from the physical
devices, incl. Autonomous vehicles, in the virtual world. The idea of intercommunication
between virtual and physical twins provides possibilities to estimate risks, drawbacks, physical
damages to the vehicle's drive systems, and the physical one's critical conditions. Although the
problem of providing communications between these systems arises, at the speed that will be
adequate to represent the physical vehicle in the virtual world correctly, it is still a trending topic.
The paper aims to demonstrate a way to solve this problem - by using ROS as a middleware
interface between two twining systems on the autonomous vehicle propulsion drive example.
Data gathered from the physical and virtual world can be exchanged in the middle to allow
continuous training and optimization of the propulsion drive model, leading to more efficient
path planning and energy-efficient drive of the autonomous vehicle itself.

1. Introduction

Simulation is an approximate or l-to-1 imitation of a real process, often taking part in the virtual
environment, troubleshooting, researching, testing, training, monitoring, controlling, or educating. In
the past decade, simulations have been vital in production and development as they are capable of
preventing many problems related to planning and reducing bottlenecks at early stages, also during the
real-time maintenance of the process [1]-[5] and, especially with increasing technology complexity and
rise in using fully autonomous systems, enforcing and changing work-safety features. One side of the
simulation aspect - the concept of Digital Twin (DT) [6], [7] is being exploited in the related research
to develop a precise dual-way synchronized simulation interface for the propulsion drives [8], [9] to be
ready to be integrated into the electrical vehicles [10].

Physics simulations are very common and critical nowadays. They are used enormously in such
applications as MATLAB Simulink, Simscape, CAD design, SolidWorks, etc., and gaming physical

Conltent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any [urther distribution
5 of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1
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processes simulations. They should be considered in the mechatronic systems' planning stage [11]. Of
course, they all have approximation and simplifications, while not all possible physical laws can be yet
simulated simultaneously; however, such simulations provide considerable benefit in research and
testing.

In a previous study done by authors of the related paper, which was on the on electrical motors
simulation under development of DT for propulsion drive of an autonomous electric vehicle [12],
Unity3D was used for simulations of DT that was exchanging messages with Robot Operation System
(ROS) node through a ROS bridge [13]. However, ROS is not being used only for robots but also for
various drones, self-driving vehicles, and autonomous systems. ROS enables inter-process
communication; it is believed to be a quality method of interconnecting a digital twin propulsion drive
system with its real counterpart. ROS was used for performance calculation using an empirical
performance model for induction motor (IM). As a visualization tool in the related research is being
used Unity3D which is connected with ROS directly [14]. Even though Unity3D simulated most of the
motor's physical behavior (torque and rotation), the response and received numerical values,
unfortunately, do not suit the DT development in the long run. The reason for this is the complexity of
the overall system of physics of IM. Moreover, to make the system transferable and usable with other
models (not the ones present in Unity3D but also in Gazebo or elsewhere) the physics handling has to
be close to standalone.

The research's main aim is to develop a framework and a toolkit, including a middle-layer ROS interface
connected with the physical propulsion drive workbench and its DT, which can be visualized in various
simulation engines. The related paper aims to develop a methodology to connect the interface with
Unity3D for the visualization, considering data exchange and feedback.

2. Methodology

2.1. Working principle of a test bench on a digital twin

For the current case study, the DT operates on the simulated data generated based on real data measured
and gathered from the 7,5 kW IM (ABB 3GAA132214-ADE). The data was gathered using the data
acquisition system (DAS) Dewetron Dewe 2 and saved into files with a different extension (*.mat,
*xlsx, *.csv, *.txt). The measured data can be anything regarding the motor's operation, namely input
currents and voltages, consumed and shaft powers, torque and angular velocity on data acquisition, and
other side data calculated from them. According to DAS tuning (16Hz - 100kHz), the parameters can
be measured with different frequencies, and received data is relative to time. This feature enables to
recreate of the motor's behavior precisely as it happened in the real case scenario with the help of ROS
Server. An example of such can be seen in Figure 1, where the input current from frequency converter
to IM was recorded and now can be simulated in ROS (graph from ROS package rgt plot we were not
included to the related paper because it could not handle plotting messages at such high frequency).

In the proposed DT system, ROS Server acts as a data server and physics simulator. The idea behind it
is the following: the server is a standalone subsystem of a TB DT that is responsible for processing real,
measured data of the motor, calculating other motor parameters based on the processed data, and
streaming to the ROS topics available for models.

Figure 2 features the architecture of the DT setup for TB. The real data is fetched to appropriate ROS
Nodes (components of ROS server that are performing calculations, real data processing, and streaming
of data) present in the server, processed and translated into ROS messages, and finally, sent to the DT
model over ROS Bridge. The real data can be based on the empirical model/map of the motor (or its
part) or the actual raw data.

Upon receiving ROS messages, the model can perform the necessary actions to simulate the
mechanical/electrical/thermal behavior. Models can be present in any simulation environment. They are
subscribed to ROS Server's topics over APl or ROS Bridge and configured to perform the necessary
operations based on the subscribed ROS topic (for example, rotation based on received angular speed).
Furthermore, the module can feature simulated 'measurement' devices/sensors that can send back the
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data over the ROS bridge. In this case, the ROS Nodes can process and calculate other required values,
as it would happen in the real TB.

L1 Current
L2 Current
L3 Current

Current (A)
o

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (s)

Figure 1. Input current measurements sampled at SkHz frequency

The current DT of TB consists of the Unity 3D model and ROS Server. ROS Server streams simulated
values regarding input power (3-phase current and voltages), efficiency calculated based on measured
torque and angular velocity. The torque is calculated by the physics engine of the Unity3D, whereas
other values are based on the real ones. This creates a problem of incorrect data calculation because
Unity does not focus on calculating correct values on physics laws, as it is more for games, allowing
developers to adjust the physics laws to the game setup. This is why the shift from the physics engine
of the model environment to ROS was introduced. ROS server would serve physical parameters based
on the real TB data and independent of the modeling environment.
Additionally, ROS can record rosbags — files with recorded values from topics/servers that can be played
back to repeat the behavior. Such a feature would allow us additional analytical features from the DT
side.
Simulation environment
[ Testbench 3D model |

[ Object controller ] [Simulatedsensors]

]

( ROS Bridge Client ]
Q
=1
= Command
& Feedback
o
o

( ROS Bridge Client ]
[ Data processing ]

Saw || empirical models l R
ROS Server
Figure 2. The generic architecture of TB DT
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2.1.1. ROS Interfacing

To allow easy interfacing of ROS with other systems, a ROS Bridge node has to be used. It converts
ROS communications into a JSON file format and sends them outside of the ROS ccosystem. JSON is
used because of its universal format with existing libraries that support its serialization and
deserialization in almost every modern programming language. Taking it one step further, ROS Bridge
can be used to port specific ROS topics to and out of Message Queuing Telemetry Transport (MQTT)
protocol to upscale the system and allow it to run on multiple machines around the world. This so-called
MQTT Bridge sends data to the remote server by taking the serialized message on a specified ROS topic
and publishes it into a specified MQTT topic. MQTT Bridge is also capable of the inverse - it receives
a JSON-serialized message and attempts to deserialize it into a specified ROS topic in a specific message
type. Together these systems make interfacing of ROS with any visualization solution much simpler to
develop. To further simplify the deserialization process, classes that match ROS message types were
created in C# for Unity3D implementation of the ROS interface. This approach can be considered the
most efficient because, in this case, a ROS message delivered in the serialized form via MQTT can be
directly deserialized into an object of a matching type. This approach can be implemented in similar
ways on the majority of existing programming languages, making it the most straightforward and most
versatile option.

Visualization is being done in Unity3D (See Fig. 3) engine connected to the physics simulator via ROS
Interface, where it is a 1 to 1 scale propulsion drive model with the transmission, wheel parts, and non-
visible gears. Model is being assembled as the physical one, and each part is being controlled by a related
script, where data is being fed from the middle layer.

Figure 3. Visualization of propulsion drive test bench done in Unity3D
3. Discussion

The primary outcome of the related part of the more extensive research in developing the fully
synchronized DT of the propulsion drive is that the ROS interface was developed. It is possible to feed
it with gathered from the physical data and give to the visual simulated, which in related usc-case is
being Unity3D. The given data simulation runs and gives logged feedback about physical interactions
back to the ROS middle layer, where the model is being improved and sent back to the visual side,
improving it after each data movement loop. However, some limitations were met during the
development of methodology, and more developments go to reach the final aim of the stated research
aim (See Table 1).

85



Modern Materials and Manufacturing (MMM 2021)

IOP Publishing

IOP Conf. Series: Materials Science and Engineering

1140 (2021) 012008

doi: 10.1088/1757-899X/1140/1/012008

Table 1. Limitations and further steps

Limitations

Future steps

The model was tested with only one type of visual
simulation tool. Possible additional integrations

To establish correct torque calculations based on
the real values collected from the physical TB.

should be done in the middle layer to be suitable

for additional software tool packages. : :
P g To implement a two-way connection between

physical TB and its DT.

If DT and TB work simultaneously over the
internet, the frequency of data acquisition may be
too high to send on time, the possibility of lags

The injection process flow of new components of
TB into the DT.

To create unpredicted behaviors in the system,
trigger points, and try to make the system respond
to the unpredicted change making it more
adaptive to changes

4. Conclusions

The ROS interface connected with the Digital Twin of the propulsion drive workbench visualized in
Unity3D was introduced during the related work. Raw and simulated data and empirical models can be
post-processed and fed to the visual simulation, where additional data is being logged and given as
feedback to the middleware to improve the model and physical simulation itself. The next crucial step
is to feed physical simulation directly with data from the physical drive, enabling synchronization
between the real and virtual worlds through the developed interface.
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Abstract— Digital twin (DT) technology has contributed to
the development process of many applications, including electric
vehicles (EVs). The DT concept is to create a digital
representation of the real physical asset and support its
performance by utilizing simulation and optimization tools fed
with real data. DT technology can be used to solve general
problems related to EV motors, such as estimation of the driving
torque and the internal rotor temperature. This paper provides
the concepts for implementing a DT of an EV permanent
magnet synchronous motor (PMSM) based on its analytical
performance model. DT architecture comprises two main
components: virtual model and real-time data exchange set. The
motor physical model (test bench) was provided in detail. An
analytical performance q-d mathematical model supported by
the motor equivalent circuit was explained. The motor virtual
model was built based on the proposed analytical model using
MATLAB/Simulink. ROS2 node, implemented on a
microcontroller,was used for real-time data exchange between
the physical and the virtual motor models. The main target is to
monitor the physical motor performance and estimate its torque
through its digital twin. The obtained results from the DT
showed the effectiveness of the proposed method.

Keywords—Digital Twin, Modelling,
synchronous motor, Virtual sensor

Permanent magnet

Nomenclature
Usq, Usq  d- and g-axis stator voltage components

A’Sd! lsq

Apm Permanent magnet flux linkages

d- and g-axis flux linkage components

isa,lsq  d- and g-axis stator current components
W, Electrical angular velocity
P Number of poles pairs
lsq,lsq  d-and g-axis inductances
T; Stator winding resistance
Egq d- and g-axis induced EMF components

T.,T,, Motor electrical torque, mechanical load torque
] Rotor inertia
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L INTRODUCTION

Digital twin (DT), as a definition, is used to create and
maintain a digital representation of a real physical object,
asset, process, or service. It's, in essence, a computer program
that uses real-world data to create simulations that can predict
how a product or process will perform[1].

While simulations and DTs both use digital models to
replicate products and processes, the difference between them
is that DT creates a virtual environment able to study several
simulations, backed up with real-time data and a two-way
flow of information between the twin and the sensors that
collect this data. This increases the accuracy of predictive
analytical models, offering a greater understanding of the
management and monitoring of products, policies, and
procedures. DT can be applied to an electric vehicle (EV) for
different usages such as health monitoring, diagnostics,
prognostics, optimization, scenario, and risk assessment [2]. It
can be created at the system level, subsystem level, individual
component level, and many other assets.

The electric motor is considered the core element of the
propulsion system of any EV. It must meet the EV
requirements of high performance, high torque/power density,
and mainly high operational efficiency [3]. To achieve that,
two main conditions must be fulfilled; proper motor design
and an efficient control algorithm. Most EV motors depend on
torque-based control strategies [4]. Torque estimation is
critical for EV manufacturers as it is a vital variable in
powertrain management and energy-saving strategies. It is
preferable to avoid using torque transducers in EV motors for
reasons concerning size, cost, and mechanical positioning
challenges.

DT is offering an efficient solution for the above issue. In
a connected context, a cross-platform engine Unity 3D was
used as a virtual environment for a DT for monitoring an
induction motor based on an empirical performance model
[1]. Inter-turn short circuit fault detection was implemented
into a DT of an AC 3-phase induction motor (IM) in [5]. DT
of an EV motor to optimize the motor performance concerning
estimating driving torque and cooling control based on a micro
lab box was proposed in [6]. Monitoring and conditions
analyzing DT of an IM based on a simulation finite element
method (FEM) model were addressed in [6]. DT model for
fault detection of a 50 MW permanent magnet synchronous
motor (PMSM) based on a numerical analysis model was



discussed in [7]. Health monitoring and lifetime prediction of
an EV PMSM were done by implementing an intelligent DT
model based on MATLAB/Simulink and a mixed fuzzy logic
and artificial neural network discussed in [8].

In this research paper, the concept of DT of an EV-PMSM
is proposed. The paper is organized as follows; An overview
of DT technology and its areas of applications for EV
propulsion motors is discussed in section I Section II
illustrates the mathematical dynamic model derivation and
equivalent circuits of PMSM. Section III presents the main
architecture of the motor DT, which is divided into three
subsections. The reduced physical model (test bench) of EV
PMSM is presented in section IML.A. Data exchange set
(communication) model between physical and virtual models
is proposed in IIL.B. Section IIL.C provides the virtual
(Simulation) model of the motor. The concept of DT is
achieved by liking the virtual and physical model based on
Robot Operating System V.2 (ROS2) framework. Obtianed
primilary results are discussed in section VI. Conclusion and
future works are addressed in section V.

II. EV-PMSM ANALYTICAL PERFORMANCE MODEL

The stator flux linkage vector of PMSM can be drawn in
the rotor refernce frame (d-q) and, statator reference frame (a-
B), as shown in Fig.1.

Fig. 1. Vector diagram of a PMSM. Stator reference frame (=) and rotor
reference frame (d-q).

When the rotor reference frame is considered, the
equivalent d- and g-axis stator windings are transformed into
the reference frames revolving at rotor speed. The
consequence is that there is zero speed differential between
the rotor and stator magnetic fields, and the stator d- and g-
axis windings have a fixed phase relationship with the rotor
magnet axis, which is the d axis in the modeling [9].

Fig. 2 shows the d-q equivalent circuit of PMSM from
which the following equations are deduced.
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Fig. 2. PMSM d-q equivalent circuit.
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The stator voltage equations can be written in synchronous
d—q reference frame as follows:

Usq = Recy + 5 Aa — Welsg. 1))
Usq = Relq + 5 Ag + Wehsq, @
where the flux linkage equation can be given below.
Asa = Apm + Lalsa, 3)
A lsqisq. @)

So, the stator voltage equations can be rewritten as follows:

sq —

Usq = Tslsq + lsdj:;im + Esq, ®
Usg = Tsig + g %iq + Esq. (6)
where
Esq = —welsqlsq @)
Egq = w,(Apm + Logisg), 8

taking Laplace transformation then d/dt = s, then the stator
voltage matrix can be expressed as the follow:

welsq ] [isd]
Y % Slsq isq
[ 5 ©

+
We lpm

usd] s tsla
us‘l N (‘Jelsd

The electromagnetic torque equation can be defined as follows

3 o -
Te = 2 14 lsq('lpfm + (lsd = lsq)lsd ) (10)
The mechanical equation of the motor is driven from the
general machine swing equation as follows:

dwe

]?zTe_Tm (1)

III. DiGITAL TWIN OF EV-PMSM

As previously discussed, that DT is a replica of an existing
physical model. It consists of three main parts as follows:
physical model, Data exchange set (communication model),
and virtual simulation model.

A. A.Physical Model (test bench)

The motor physical model was taken from ISEAUTO to
be a real representation of an EV motor. ISEAUTO was built
on a Mitsubishi i-MiEV trolley based on a Y4AF1 PMSM [10].
Table. 1 present ISEAUTO motor parameters.

TABLEL 'UNDERSTUDY PMSM PARAMETERS

Parameter Description Value Unit

P Number of pole pairs 4 -

] Stator resistance 007 Q

14 q-axis inductance 44-10% H

L d-axis inductance 5.7-10% H

Permanent magnet 5

Apm linkage flux 0273 Web
N; Rated speed 3000 pm
P: Rated output power 35 kw




The motor test bench is set as the following. The motor
is driven by an EV Inverter (ABB HES880) with direct
torque control (DTC) algorithm. It's also equipped with a
resolver decoder for speed and position measurement on its
shaft. The EV inverter was fed by a battery emulator system
(Cinergia B2C+30). The inverter was driven by a visual
interface unit.

Voltage and current sensors were placed on the motor
input terminals to collect stator voltage and current input
signals. Voltage sensors were also connected to the resolver
main and auxiliary windings to collect motor speed and
position data. Fig.3 shows the experimental motor test
bench.

Inverter

EVaivert ! Interface

Fig. 3. PMSM test bench.

B. Data Exchange set (Communication model).

The outputs of the test bench sensors were connected to
ROS2 Foxy node implemented on a (Teensy 4.0) board.
Teensy 4.0 is a microcoprocessor development board
manufactured by PJRC. It features ARM Cortex-M7
processor, float point math units, 1984 KB of Flash and
1024 KB RAM memory and features a total of 40 GPIO
pins. Real time data are received via the subscriber of
MATLAB ROS2 Toolbox. The subscriber is a node that
subscribes to a topic and processes the received data. The
received data are ROS2 messages from the Digital Twin
middleware, and each message is a structure consisting of
three-phase currents, three-phase voltages, and resolver
signals. Upon reception, the stator phase voltage and
resolver signals are extracted by the subscriber and are sent
to the simulation model for further analysis and processing.
Simulated real time data of motor torque is sent to an
interface module (Work station) to be analysed. As a future
step, the analysed data is transferred into data commends to
control the real motor model. Fig. 4 shows the operational

architect of DT.
4
a

Rasaeania
I ——
p—

Termsy Micropeocessor

Smuided red timeB1a

Interfaos Module

Fig. 4. The operational architecture of Digital Twin
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C. Simulation Model

The motor simulation model was built using
MATLAB/Simulink on the basis of deriviated PMSM
analytical d-q equations from section II. Two ROS2
subscribers were implemented in the simulation model to
enable data exchange with the physical model.

Subscriber 1 collects real-time data of stator voltage and
resolver position coming from the test bench and then uses
them as an input for the simulation model. Second,
subscriber 2 is responsible for receiving real-time data of
stator current from the physical model to be compared with
the result from the simulation. Stator current comparator is
used initially for DT tuning in and checking the simulation
model accuracy. The resolver decoder block processes the
resolver winding signals coming from subscriber I,
transferring them into a position value input to the motor
block. Measurement block contains scopes to observe
motor simulation outputs of electromagnetic torque,
angular speed, and the compared stator phase current.
Fig.5. shows the simulation model of PMSM with the two
ROS?2 subscribers.

F=2]sin
%[ Resolver
IsNew [ Decoder B
2 =
e (5 T
- — Resolver Decoder <Electromagnelic Torade <Nm>>
e
th_tmsupply_input <voltage1>
Subscrber | Spevd <radliss
oltagez>
phase
1sNew | [ <votaged>
o3 [\ lj PMSM Comp
ot 5
e == Comparator Measurment
th_lmsupply_input =

Subscriber 2

Fig.5. PMSM digital model

IV. RESULTS AND DISCUSSION

The objective of this research is to demonstrate the
effectiveness and readiness of the DT concept for the EV-
motor torque estimation. The physical model was run in
parallel with the simulation virtual model of the motor under
two operating speeds cases in no loading conditions to
validate the simulation model's accuracy in real-time. Stator
voltage and rotor position were fed to the simulation model
in real-time through the ROS2 node. Stator current from the
physical model received in subscriber 2 was compared with
results from simulation. Motor Torque and speed can be
observed through the scopes. Fig. 6 a, b shows the resultant
motor electromagnetic torque rotor and angular speed
obtained from the simulation model for two operating speed
cases.

Te (Nm)



To (Nam)

we( radisec)

Fig. 6 Estimated Torque — Speed vs time from simulation, a —and b -

From Fig. 6 it can be noticed the reduction in noload
torqur (inertia) with the increased speed that explained by
the control algorithm of EV-inverter.

Torque in fig.6 a takes longer stability time than that in

fig .6 b as the speed in case a. starts from stand still to low
speed but in case b it mutates from low speed to high speed.

Fig.7 shows stator phase cwrent obtained from the
simulation model and received from the test bench for the
same two operating speed cases.
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Fig. 7. Stator current simulated and measured vs time.a —and b -

Fig. 7a, b shows the highly agreement between measured
value of stator phase current from testbench and its
counterpart derived from the simulation model is clear, this
proves the simulation effectiveness.

From Figure 7 a and b, it can be noticed that the value of
the stator current in case a is higher than that in case b,
that makes sens with the increased motor speed.
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There is some noticeable noise in the phase current
waveform coming from the testbench compared to that
obtained from the simulation at an acceptable level with no
fundamental differences due to the current sensors'
accuracy.

V. CONCLUSION

This paper proposes a conceptual methodology for
designing a DT of an EV- PMSM. DT is objected to
estimating the motors' electromagnetic torque. The
MATLAB/Simulink virtual simulation model was built
based on the analytical performance model. The concept of
the DT of real-time implementation was achieved by linking
both virtual and physical models by ROS2 nodes data
messages exchange features.

The obtained results of estimated torque from the virtual
model are promising and prove the methodology's
effectiveness.

‘What was presented in this research are the basics that can
be developed in the future to formulate a complete DT
model through which a strategy to control the physical
motor torque can be applied.
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ABSTRACT

This paper introduces a novel concept of interconnecting
components of Digital Twins using ROS2 and micro-ROS
frameworks. Authors of the research argue that middleware
implementation plays the most important role in performance of
Digital Twins. Propulsion Drive System Digital Twin is presented
where method of connecting hardware and software components
is explained through a case study. Interface between traction
motor of the Propulsion Drive System and software service entity
is implemented on a basis of a microcontroller running micro-
ROS. The suggested method of connecting components of Digital
Twins is tested through round-tvip time latency test. Results of
the test indicate that the proposed concept is suitable for Digital
Twin technologies in industrial field.

Keywords: Digital Twins, ROS2, micro-ROS, autonomous
vehicles, MATLAB

1. INTRODUCTION

Global trending in sustainable and smart manufacturing is
pushing technological industries such as automotive, aerospace,
marine to develop new means of developing,
manufacturing and maintaining the systems they create. One of
technologies that promises to bring manufacturing to the next
level are Digital Twins (DT) [1] - cyber-physical systems meant
to duplicate the behaviour of real systems, objects, facilities and
environment. Such technology provides possibilities to
industries to control every step of their manufacturing - starting
with facility planning and ending with digitalization of the

! Search query for title, abstract, keywords containing “Digital Twin
vehicle”, “Digital Twin car” or “Digital Twin automotive” terms.
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manufacturing itself for the purpose of optimizing processes. In
this paper, we would like to focus on a very important field of
manufacturing of our age - automotive. Since the term DT was
introduced in 2002, the DT technology has been slowly but
surely getting more and more attention from large automotive
industries. Just by looking at the results of the search presented
in Figure 1, we can imagine how important and widespread the
DT trend has become.
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FIGURE 1: RESULTS OF SEARCH! FOR PUBLICATIONS
RELATED TO DT IN AUTOMOTIVE INDUSTRY.

With growth of interest in DT technology, there has also been an
increase in available frameworks and platforms for development
of such. To name a few: Azure Digital Twins [2],Google Supply
Chain Twin [3] , AWS IoT TwinMaker [4], etc. These platforms
use middleware frameworks extensively under the hood to
perform communication between various components of DT

1 ©2022 by ASME



systems. Often times, the right choice of the platform and/or
framework is going to determine how well DT is going to
perform. In previously conducted research, Jegorov et al. [5]
make a comparison of available middleware frameworks that are
suitable for industrial and automotive applications. The choice
ultimately went to ROS2 [6] — the successor of ROS (Robot
Operating System). In this paper, we would like to extend the
reach of ROS2 by adding its low-level counterpart — micro-ROS
[7] and present a part of DT that gathers low-level motor data to
calculate physical parameters of the motor that are difficult to
measure in real life.

2. BACKGROUND

Digital Twin for propulsion drive of autonomous electric
vehicle (PSG453) [8] is a research project which aims to develop
a specialized, unsupervised analysis and prognosis tool for
autonomous vehicles. The concept of this project consists of four
modules (can be seen in Figure 2): real vehicle that is supplied
with sensors (real physical entity), Test Bench (IB) of a
propulsion drive that is present in the vehicle (designated as
testbenches — laboratory setups that represent some part of a real
system), 3D models of the TB/real vehicle (virtual entity), the
monitoring system (service entity).

Virtual entity

Service entity

Iterative optimization

Function;
Input;

Output;
Quality;

Spatial model;
Physicel model;
Behavior model;
Historical datasets;
etc.

Interaction

Interaction

Iterative optimization

uopezywpo anpeay
uonde.inu|

Real physical entity
(DAS)

Iterative optimization

B

Interaction and Mapping

FIGURE 2:
PROPULSION DRIVE OF AUTONOMOUS ELECTRIC
VEHICLE [9]

ARCHITECTURE OF DIGITAL TWIN FOR

All communication is handled via the middleware, through
which DT data is going to flow. The data is being sent and
received from all modules to all modules simultaneously, thus
enabling to create sophisticated controls, analysis of the whole
DT inreal time. Data is being generated by real physical vehicle
(either recorded data or if operated online), by TB (during
operation), virtual entity (generates data mainly as feedback to
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reflect changes on real vehicle/TB but can be used as the main
data driving entity) and service entity, mainly warnings, alerts
and in-depth analytical data of some gathered operation data
from TB.

2.1 Physical entity

The physical entity of the DT is presented as a TB consisting
of a propulsion drive system (PDS) identical to the one present
inside the ISEAUTO. The PDS features a Mitsubishi PMSM
traction motor Y4F1 (present in i-MiEV car models, used for
operation of the car) which is operated by an ABB HESS880 -
frequency converter that transforms the supply power to the
motor based on the set parameters. HES880 in its turn, is
powered by a Cinergia B2C+ battery system. Y4F1 motor’s
output is attached to a shaft via a gearbox. The shaft is fixed to
two ABB Induction loading motors (ABB 3GAA132214-ADE)
that simulate the loads the system is subject to. Two loading
motors are connected to two ABB ACS880 frequency converters
that transform the supply power to the motor based on the set
parameters. The PDS is attached to a metallic frame which
enables operation of the system and allows connection of other
elements to the system (controllers, converters, sensors etc.).

2.2 Virtual entity

Virtual entity is represented as a 3D copy of the TB created
in a virtual environment of a Unity game engine. The virtual
entity is composed of imported CAD geometric models of all the
parts of PDS (motors, shafts, bearings, gearbox), thus keeping
real dimensions and parameters of the TB. Implemented
software in Unity controls parts of the 3D model and can
simulate motion and action depending on the provided input.
Likewise, the virtual entity can have virtual sensors that record
the simulated data from operation of the 3D model of the PDS in
a virtual environment and is able to stream it back to the physical
entity via middleware.

2.3 Service entity

Service system represents an integrated service platform
responding to the demands of both physical and virtual systems
and acts as a predictive maintenance component [8]. It monitors
the operation of TB, analyses any found abnormalities in
operation to find the cause of them and ultimately warns about
abnormalities of the system. One of the implementations is
described in [9], where inter-turn short circuit faults were
detected and analyzed in MATLAB/Simulink software during
operation. It is important to note, that MATLAB/Simulink
cannot be used in situations where receiving high-frequency data
is required, as it does not have enough processing power to do
that effectively. In such cases, MATLAB Code generator is used
to migrate the software made in MATLAB/Simulink on a lower-
level implementation to ensure efficient handling of high-
frequency data.

2.4 Interconnecting middleware

The element that ties everything together is the middleware
of the DT — it is responsible for transport of data between all the
entities. It is implemented using the ROS2 framework. ROS2

2 © 2022 by ASME



provides a reliable, decentralized publisher-subscribe
communication mechanism which is based on a DDS standard.
Entities themselves consist of a multitude of components that can
communicate data, and they are defined as ROS2 Nodes. In
ROS2, when communicating, these Nodes publish and/or
subscribe to topics to receive data and perform some actions
based on this data. All entities of the DT, when transporting data,
use custom-defined messages that are available on ROS topics,
prefixed with the group name, indicating the entity that the data
belongs to. The custom-defined messages are all part of the
collection (or ROS package) named digital_twin_msgs.

2.5 Study case — traction motor with service entity
integration

In this paper, we will investigate the integration of traction
motor with service entity. The goal is to establish the
connection between a PMSM analytical model of the Y4F1
traction motor and the motor itself, namely with the supply
input power of the motor. The supply input power of the motor
is the output of the ABB HES880 frequency converter. Based
on the supplied voltage, for an electrical motor that is not
subjected to any load, it is possible to compute angular velocity
and torque of the motor as described in [10]. The comresponding
service entity with interfaces to middleware can be seen in
Figure 3. It is important to note, that this service entity model
was generated into a C++ ROS2 node using Simulink Code
Generator.

UG sivdaton model

3.1 Defined data message structures

The supply input power consists of mainly two parameters
that are of highest importance — the input AC current and input
AC voltage. As these parameters are interrelated, they should be
coupled together. For this reason, custom ROS2 message was
defined (Figure 4). As can be seen, the structure of this message
consists of 3-phase voltage and 3-phase current containers and a
variable to store the time (typically time when data was
recorded). The voltage and current containers are defined in their
respective messages as seen in Figure 5.

Defined message structure will be used for serialization by a
Node responsible for interfacing with the hardware (i.e., traction
motor), and by the service entity for receiving the data.

builtin_interfaces/time stamp
digital_twin_msgs/Current currents
digital twin msgs/Voltage voltages

FIGURE 4: DEFINED MESSAGE STRUCTURE FOR
SUPPLY INPUT

float32 voltagel
float32 voltage2
float32 voltage3

float32 currentl
float32 current2
float32 current3

FIGURE 5: DEFINED MESSAGE STRUCTURE FOR
AC CURRENT AND VOLTAGE CONTAINERS
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FIGURE 3: SERVICE ENTITY WITH PMSM ANALYTICAL MODEL.

3. DEVELOPMENT OF MIDDLEWARE BETWEEN
TRACTION MOTOR AND SERVICE ENTITY
Development of middleware for the mentioned problem

consists of 2 subtasks:

1. Defining the structure of data that is involved in the
process.

2. Implementing the hardware/software interface
between traction motor and the service entity.
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3.2 Hardware-software interface

The supply input of the traction motor is generated by ABB
HES880 frequency converter. The generated current and
voltages are known to be periodic signals alternating at a
frequency ~20 Hz. In order to record these signals, Teensy 4.0
MCU [11] was used to sample the data at 1 kHz frequency (to
get precise signal sampling and avoid aliasing).
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To get the signal into a range that Teensy 4.0 MCU can sample,
three devices, known as current clamps, were attached to the
cables that connect HES880 output terminals with Y4F 1 traction
motor’s input terminals. The current clamps have a specific
conversion ratio and transform the AC current and voltage
signals to the following signals: -400mV to +400mV periodic
wave that represents AC current in range -40A to +40A; and -
1.4V to +1.4V periodic wave that represents Ac voltage in range
-1400 mV to +1400 mV. Because most ADCs (analog-to-digital
converter) present in MCUs (including Teensy 4.0) can only
process positive analog signals, the output signals of current
clamps must be brought to only positive range. For this, a level
shifter was used. To serialize the sampled data into ROS
messages and sent it to ROS2 middleware, micro-ROS
framework was used for writing the software on Teensy 4.0.
micro-ROS connected to the micro-ROS agent running on the
same machine where service entity was and did all the
serialization and message transport. Figure 6 illustrates the
described hardware/software interface, including gathering of
data, serialization and transport of messages to the service entity.

MCU output: Current and
voltage measurements Wwindows
Host machine

(M)
o Thuniu

2004 VM
Uqk
U; I; MCU with ROS msg
T
R Usla micro-ROS < micro-ROS Agent
/\/
Service entity Input: Current and
voltage measurements
/ service enlity outpul: caiculated Senvice entity

(MATLAB)

angular velocily and torque

lg )
FIGURE 6: HARDWARE/SOFTWARE INTERFACE BETWEEN
TRACTION MOTOR AND SERVICE ENTITY

4. RESULTS AND ANALYSIS

In order to validate that implemented solution can be used
in real-time, a latency test was conducted. For this specific case,
RTT (round trip time, visual representation can be seen in Figure
8) latency test was chosen, due to MCU and host machine
possessing different clocks. Different clocks may not be properly
synchronized, leading to false results.
To conduct the RRT latency test, a new message type was
defined consisting of a message ID and time stamp. Every
message was generated by Teensy 4.0 MCU and sent to a ROS2
listener operating in the same environment as service entity. The
listener, upon receiving the message, verified that the message
was not lost (by comparing the expected message ID with the
received one) and simply sent it back to the Teensy 4.0 MCU.
When the MCU received its messages back, it calculated the
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approximate time it took for a message to retumn. To avoid
running out of memory, the Teensy 4.0 did not store the latencies
locally, and forwarded them to a specially created ROS2 Node
on a host machine that later calculated mean, maximum and
minimum latency. The test was conducted for 60000 messages.
The latency was measured in microseconds, since the clock of
Teensy 4.0 is capable of recording time with microsecond

precision.
ftb_tm/ping ftb_tm/pong
time1 __\
time2 /

time2 — timel

latency = 2

FIGURE 7: ILLUSTRATION OF RTT LATENCY TEST

Latency test between Teensy 4.0 MCU and service entity in
MATLAB/Simulink yielded the following results: 60000 out of
60000 messages were successfully delivered, mean latency was
197 us, maximum latency was 6594 us, min latency being 151
us. Such reliable and low-latency communication suggests that
the implemented feature can operate in real-time, which is a key
feature of DT technology.

5. CONCLUSION

In this research paper the authors investigated a novel
method of interfacing elements of DT. ROS2 and micro-ROS
frameworks were used as middleware for transport and
serialization of data. Hardware component of DT — traction
motor, was connected to another component of DT — service
entity. The conducted latency test suggests that reliability and
low latency of the method is suitable for use in DT technologies.
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