

Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Sergei Jegorov 204707IASM

Middleware framework for Digital Twin entities

communication

Master's thesis

Supervisor: Anton Rassõlkin

 Ph.D.,

Co-Supervisor Eduard Petlenkov

 Ph.D.

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Sergei Jegorov 204707IASM

Vahevararaamistik digitaalse kaksiku üksuste

infovahetuseks

Magistritöö

Juhendaja: Anton Rassõlkin

 Ph.D.,

Kaasjuhendaja: Eduard Petlenkov

 Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Sergei Jegorov

05.05.2022

4

Abstract

Digital Twin technology in the automotive industry is a growing trend that promises to

bring accurate and cost-effective simulations, testing environments and predictive

maintenance platforms. Autonomous vehicles are a special case - the number of sensors

such vehicles possess and the amounts of data they generate can help to create precise,

sophisticated models and environments for testing and analysis. To make this happen, a

research project "Digital Twin for propulsion drive of autonomous electric vehicle”

(project number PSG-453) was founded.

In this Master's thesis, a middleware framework for communication of Digital Twin

entities is proposed. The framework based on Robot Operating System 2 (ROS2) and

micro-ROS frameworks is used to connect two entities of the propulsion drive system

Digital Twin. In the end, the latency tests are used to verify the reliability and speed of

the framework.

This thesis is written in English language and is 46 pages long, including 6 chapters, 15

figures and 5 tables.

5

Annotatsioon

Digitaalsete kaksikute tehnoloogia on autotööstuses kiiresti kasvav arengusuund, mis

lubab luua täpse ja tootliku keskonda simulatsiooni, testimise ja ennustava hoolduse

jaoks. Autonoomsed sõidukid on erijuhtumid - suur arv andureid võimaldab genereerida

piisavalt andmeid selleks, et luua täpne ja keeruline keskkond autonoomsete sõidukite

testimiseks ja analüüsiks. Seetõttu oli "Isejuhtiva elektrisõiduki veoajami digitaalne

kaksik" (projekti kood PSG-453) loodud.

Antud lõputöö pakub vahevararaamistiku digitaal kaksiku üksuste infovahetuseks ning

selgitab, kuidas see seob digikaksiku üksusi kokku. Vahevararaamistik on loodud Roboti

Operatsioonsüsteemi 2 (ROS2) ning micro-ROS'i põhjal. Kokkuvõtes on esitatud

latentsuse testide tulemused, mis kinnitavad, et vahevararaamistik vastab kiiruse ja

töökindluse nõuetele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 15

joonist, 5 tabelit.

6

List of abbreviations and terms

AI Artificial Intelligence

API Application Programming Interface

Black box Object or system producing useful information without

revealing any information about its internal workings

CAD Computer-Aided Design

CLI Command Line Interface

DAS Data Acquisition System

DDS Data Distribution Service

DT Digital Twin

Guest machine An independent instance of an OS and associated software and

information

GUI Graphical User Interface

Host machine The physical machine that provides the guest VM with

computing hardware resources

IM Induction Motor

MATLAB Commercial numerical analysis programming platform

MCU Microcontroller Unit

micro-ROS Native embedded implementation of ROS2

OS Operating System

PDS Propulsion Drive System

PMSM Permanent Magnet Synchronous Machine

PSG-453 DT for propulsion drive of autonomous electric vehicle project

code

QoS Quality of Service

ROS Robot Operating System

ROS2 Robot Operating System 2 – the successor of ROS

RTT Round Trip Time

TB Test Bench

USB Universal Serial Bus

VM Virtual machine

7

Table of contents

1 Introduction ... 11

2 Background .. 12

2.1 Definition of Digital Twin .. 12

2.2 A brief history of Digital Twin technology .. 13

2.3 Digital Twin technology in the automotive industry .. 14

2.4 Case study - Digital Twin for a propulsion drive system 16

2.4.1 Physical entity ... 17

2.4.2 Virtual entity .. 18

2.4.3 Service entity ... 19

2.5 Problem statement .. 19

2.6 Motivation .. 19

2.7 Section summary .. 20

3 Middleware framework selection .. 21

3.1 Definition of middleware .. 21

3.2 Overview and selection of available middleware ... 21

3.3 ROS2 .. 24

3.3.1 ROS2 architecture ... 25

3.3.2 micro-ROS ... 26

3.3.3 Difference between ROS2 and micro-ROS architectures 27

3.4 Section summary .. 28

4 Middleware implementation for studied Digital Twin .. 29

4.1 Desired operation and requirements ... 29

4.2 Proposed solution ... 30

4.3 Structure of ROS2 middleware ... 31

4.3.1 Naming requirements .. 32

4.3.2 ROS2 messages definitions ... 34

4.4 Used service entity .. 34

4.5 Hardware interface between TB and middleware .. 36

4.5.1 Teensy 4.0 with micro-ROS .. 37

8

4.5.2 HES880 frequency converter .. 38

4.5.3 HES880 output measurement .. 38

4.6 Section summary .. 40

5 Results ... 41

5.1 Acquired data .. 41

5.2 Latency test ... 42

5.2.1 Suggested improvement to the service entity .. 43

5.3 Overview of conducted work and final solution .. 44

5.3.1 Suggestions for future work .. 45

5.4 Section summary .. 45

6 Summary .. 46

References .. 48

List of publications ... 52

Appendix 1 – Non-exclusive license for reproduction and publication of a graduation

thesis ... 53

Appendix 2 – digital_twin_msgs ROS2 message definitions .. 54

Appendix 3 – Embedded software for sampling and transporting current and voltage

data ... 55

Appendix 4 – Latency test software run on Teensy 4.0 MCU 60

Appendix 5 – Latency software run on MATLAB... 65

Appendix 6 – Latency test software run on Ubuntu VM ... 66

Appendix 7 – The comparison between ROS and ROS2 based on the propulsion drive

of autonomous vehicle .. 69

Appendix 8 – Digital Twin Service Unit for AC Motor Stator Inter-Turn Short Circuit

Fault Detection ... 76

Appendix 9 – ROS middle-layer integration to Unity 3D as an interface option for

propulsion drive simulations of autonomous vehicles ... 81

Appendix 10 – Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor

Digital Twin .. 88

Appendix 11 – Novel Digital Twin Concept For Industrial Application. Study Case:

Propulsion Drive System .. 92

9

List of figures

Figure 1. Visual representation of digital twin concept described by M. Grieves [4].... 12

Figure 2. The number of digital twin-related publications by year, from 2011 to 2020

on Scopus and ScienceDirect [9]. ... 13

Figure 3. Search results for publications related to digital twins in automotive

applications in periods 2011-2022 in ScienceDirect and Scopus. 14

Figure 4. Architecture of the PSG-453 DT showing how the 4 modules are used [20]. 16

Figure 5. TB for PDS in the Electrical Machine Group lab. .. 18

Figure 6. Illustration schematic for TB for PDS. ... 18

Figure 7. 3D model of the PDS TB in a virtual entity of DT [21]. 19

Figure 8. ROS2 Architecture. ... 25

Figure 9. micro-ROS architecture [36]. .. 27

Figure 10. Illustration of studied components in TB for PDS. Studied parts are enclosed

by a red frame. .. 29

Figure 11. Draft of a proposed solution. U, V, W indicate the 1,2 and 3 phase voltage

and current. ... 31

Figure 12. MATLAB/Simulink block diagram of used service entity. 35

Figure 13. Teensy 4.0 microcontroller unit [43]. ... 37

Figure 14. Real measured current and voltage as a result of conversion: a) measured AC

current, b) measured AC voltage. U, V, W are designations for every phase in AC

current. .. 41

Figure 15. RTT latency test visualization. .. 42

10

List of tables

Table 1. Comparison of available middleware frameworks [23]. 23

Table 2. Namespaces used for grouping components of the DT. 33

Table 3. Messages of DT defined in the digital_twin_msgs package. 34

Table 4. Middleware interface of service entity. .. 36

Table 5. Results of conducted RTT latency tests ... 44

11

1 Introduction

With the increasing complexity of modern mechatronic systems, the traditional methods

of monitoring and maintaining these systems have become inapplicable. At the same time,

their sophisticated design and ability to generate large amounts of data open new ways

for analysis and simulations.

One example of such a system is the self-driving vehicle ISEAUTO which is being

developed on the premises of Tallinn University of Technology (TalTech) since 2018 [1].

A large number of installed sensors and powerful processing units allow this vehicle to

navigate autonomously by processing the surrounding environment and making choices

based on the received data. Very little is done towards an in-depth understanding of how

these autonomous vehicles are affected during operation, considering how analysis of the

vehicle’s working systems can improve its overall performance.

To solve this problem, a research project PSG-453 [2] [3] was established, which aims to

develop a specialized, unsupervised analysis of a propulsion drive system (PDS) of

ISEAUTO based on the technology of digital twins (DT). The outcomes of this project

are expected to be: a new educational tool, the discovery of new methods for monitoring

and maintenance, and an improved analysis of existing systems.

The task of this thesis is to implement the middleware that connects specifically chosen

hardware and software components of the DT and test the latency of implemented

middleware solution. The thesis is organized in the following way. Chapter 2 presents the

background of digital twin technology, outlines the state of the art in DT technology in

the automotive field, and provides background to the PSG-453 project. Chapter 3

describes the selection of middleware framework and provides an overview of the

selected framework. Chapter 4 covers the implementation details of the middleware.

Chapter 5 describes the results of implementation and provides suggestions for future

work. Conclusions are given in the Summary section.

12

2 Background

This section provides an insight into the current state of the art of DT, the history of the

concept, and notable examples of systems deployed with DT principles in the automotive

industry. At the end of the chapter, an overview and state of the ongoing project are given

with defined goals to be achieved.

2.1 Definition of Digital Twin

There are several definitions of DT that were given over time by various academics and

organizations. The first-ever definition originates from Dr. Michael Grieves who

introduced this concept in 2002 – DT is a set of virtual information constructs that fully

describes a potential or actual physical manufactured product from the micro atomic level

to the macro geometrical level, as shown in Figure 1 [4].

Figure 1. Visual representation of digital twin concept described by M. Grieves [4].

In [5], DT is defined as a software analog of a physical system that mimics the internal

processes, technical characteristics, and overall behavior of the system. Lockheed Martin

gives the following definition of a DT: “virtual representations of as-built physical assets,

processes, and systems that can be used across the product life cycle using real-time data

and other sources to provide actual insights” [6]. All in all, most definitions are similar in

13

describing the idea of the DT – it is a precise virtual clone of a real device or system based

on physical properties, gathered or real-time sensor data, intending to simulate its

behavior. IBM outlines several key differences that make DT stand ahead of simulations

– larger scale (many engineering disciplines studied at the same time) and two-way flow

of information (sensor data from the physical device and feedback from the virtual

environment of the DT) [7].

2.2 A brief history of Digital Twin technology

The general concept of the DT was first introduced in 2002. Shortly after, it was adopted

by the aerospace industry – particularly by NASA and U.S. Air Force. Since 2014,

companies such as Lockheed Martin, Boeing, and General Electric were brought together

by U.S. Air Force to conduct a series of applied research in the field of DT [8]. The advent

of IoT and Big Data has further bridged the gap between physical and virtual worlds and

necessitated the development of a sophisticated model to meaningfully process and

visualize the physical processes. Altogether, these events have sparked the interest in

research of DT technology and, as can be seen in Figure 2, the number of publications

has been growing exponentially ever since [9].

Figure 2. The number of digital twin-related publications by year, from 2011 to 2020 on Scopus and

ScienceDirect [9].

14

The growth and importance of the DT technologies can also be verified by the fact that

Gartner has named DT as a strategic technology trend in three consecutive years (2017 -

2019) [10] [11] [12], and Forbes [13] described the DT as one of the defining

technologies of next decade.

2.3 Digital Twin technology in the automotive industry

Traditionally, automotive and aerospace systems have been designed with empirical

engineering practices [14], but with increasing performance requirements, the necessity

for “self-awareness” during operation, and lack of external support, new engineering

practices are needed. With the introduction of the DT, new development and testing

simulation practices became available to fulfill new requirements, and consequently, the

interest in research of these technologies is growing steadily, as can be seen in Figure 3.

Figure 3. Search1 results for publications related to digital twins in automotive applications in periods

2011-2022 in ScienceDirect and Scopus.

In [15], Best et al. claim that gained information from vehicle simulations could provide

critical training data on algorithmic inefficiencies before actual vehicle testing. As a

result, they developed a simulation platform for autonomous driving of a vehicle with the

1 Search consisted of the following query: (TITLE-ABS-KEY(digital AND twin AND car) OR TITLE-

ABS-KEY(digital AND twin AND vehicle) OR TITLE-ABS-KEY(digital AND twin AND

automotive)). The last time the search was conducted was on 04.05.2022.

0

50

100

150

200

250

300

350

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

N
u

m
b

er
 o

f
P

u
b

lic
at

io
n

s

Publication Year

ScienceDirect Scopus

15

possibility of generating labeled data for machine learning. In their research, simulation

covers kinematics and dynamics, traffic rules, path planning, and environmental

conditions. However, the research does not cover the simulation of hardware components

of the vehicle, solely focusing on the software aspect and AI.

Liu et al. [16] demonstrate two DT models created by two different methods: Gaussian

process and convolutional neural networks (CNN). Both DT models were created using

the sensor data, collected from a transmission shaft of the vehicle. The simulated

measurements were almost identical to those measured on the real vehicle. The conducted

study achieved its task of identifying the driving states, but researchers noted that a real-

time dual connection between DT and the real vehicle is needed to achieve reliable results.

An improved design was proposed by Chen et al. [17], where scientists developed a

hardware-in-the-loop (HiL) simulation platform. The focus was applied on bridging the

gap between pure software simulations and hardware simulation, and making the

simulation more “online” in nature, by establishing a link between the virtual and real car

environments. In their platform, the Electronic Control Unit (ECU) was used for hardware

control, with the rest of simulation (such as simulated sensor data, kinematics, and

dynamics) occurring in a virtual environment. The simulated data from driving was

streamed to the ECU, where the hardware evaluated the state of driving and returned the

calculated decisions to the virtual environment.

Using a different approach, Ruba et al. [18] developed a real-time DT implementation

using Field-Programmable Gate Array (FPGA) for a propulsion system. In their setup,

DT of a propulsion system TB was implemented with two FPGAs: one for mimicking the

entire behavior of a Permanent Magnet Synchronous Machine (PMSM) TB, and another

FPGA for simulating the control unit. The communication between these two FPGAs was

handled by digital and analog IO, utilizing the same interfaces that were used between a

PMSM TB and control unit. Therefore, researchers were able to swap the FPGA control

unit with the real control unit.

Rassõlkin et al. [3] [19] described a concept of the DT that features three components: a

physical entity, a virtual entity, and a service entity. All these entities are interconnected

by middleware. The physical entity is represented in a form of the propulsion drive TB,

the virtual entity - as the simulated 3D model of TB, and the service entity - as an

16

integrated service platform responding to the demands of both physical and virtual

systems. The study outlines that such DT should provide monitoring capabilities in

dynamic regimes.

The abovementioned findings indicate that DT technology is a trending subject of

research in the automotive industry and is expected to grow in the upcoming years.

Studies are being carried out to make interactions between digital and physical systems

more dynamic, occur in real-time, and make simulated operations more identical to those

of physical vehicle systems. The benefits of using such systems are reduced cost for

carrying out tests and simulations, reduced need for physical testing in the field, and the

ability to simulate various scenarios that are difficult to simulate in physical testing.

2.4 Case study - Digital Twin for a propulsion drive system

DT for propulsion drive of autonomous electric vehicle (project number PSG-453) [2] [3]

is a research project which aims to develop a specialized unsupervised analysis and

prognosis tool of an ISEAUTO PDS, based on DT technology. The design of the proposed

DT can be seen in Figure 4.

Figure 4. Architecture of the PSG-453 DT showing how the 4 modules are used [20].

The proposed DT consists of four modules: the real vehicle that is supplied with sensors

(real physical entity), a test bench (TB) of a vehicle’s propulsion drive (designated as Test

In
te

ra
ct

io
n

It
e

ra
ti

ve
 o

p
ti

m
iz

at
io

n

In
teractio

n

Iterative o
ptim

ization

▪ Function;
▪ Input;
▪ Output;
▪ Quality;
▪ State;
▪ etc.

▪ Spatial model;
▪ Physical model;
▪ Behavior model;
▪ Historical datasets;
▪ etc.

17

benches), 3D models of the TB/real vehicle (virtual entity), the service platform (service

entity). All communication is to be handled by a middleware, through which the DT data

is going to flow.

The data is being sent and received from all modules to all modules simultaneously, thus

enabling the creation of sophisticated controls and analysis of the whole DT in real time.

The data generated during the operation of a real vehicle/TB is consumed by the virtual

and service entity. Those entities, in response, generate feedback data and other useful

parameters that help the analysis of vehicle operation.

To illustrate the process better, assume the following scenario. The PDS TB starts its

operation, and the shaft of a motor starts to spin. A sensor installed on the motor records

the angular velocity of the shaft and sends it to the virtual entity. The virtual entity

calculates the linear velocity of each wheel based on the received shaft angular velocity

and forces the 3D model of a vehicle to move. At the same time, friction is exerted on the

wheels, causing the vehicle to slow down. The actual recorded linear velocity is

recalculated back to the shaft angular velocity and is sent to the PDS to adjust to changes.

Meanwhile, the service entity monitors that the data sent by the PDS TB is in the correct

range.

2.4.1 Physical entity

The physical entity of the DT is replaced by experimental TB consisting of a PDS

identical to the one present inside the ISEAUTO vehicle. The PDS features a Mitsubishi

PMSM traction motor Y4F1 (present in i-MiEV car models) which is operated by an

ABB HES880 - a frequency converter that transforms the supply power to the motor

based on the set parameters. HES880 in its turn is powered by a Cinergia B2C+ battery

emulation system. Y4F1 motor’s output is attached to a shaft via a gearbox. The shaft is

attached to two ABB IM loading motors (ABB 3GAA132214-ADE) that simulate the

loads on the traction motor. Two loading motors are connected to two ABB ACS880

frequency converters that transform the supply power to the motor based on the set

parameters. The PDS is attached to a metallic frame which enables the operation of the

system and allows the connection of other elements to the system (controllers,

converters, sensors, etc). Described TB can be observed in Figure 5 and Figure 6.

18

Figure 5. TB for PDS in the Electrical Machine Group lab.

Figure 6. Illustration schematic for TB for PDS.

2.4.2 Virtual entity

As seen in Figure 7, the virtual entity is represented as a 3D model of the TB created in

the virtual environment provided by the Unity game engine. The virtual entity is

composed of imported CAD geometric models of PDS parts (motors, shafts, bearings,

gearbox), thus keeping the real dimensions of the TB. Implemented software in Unity

controls the 3D model and can simulate motion and action depending on the provided

input. Likewise, the virtual entity can have virtual sensors that record the simulated

operation data of the 3D model and stream it back to the physical entity through the

middleware.

19

Figure 7. 3D model of the PDS TB in a virtual entity of DT [21].

2.4.3 Service entity

The service system represents an integrated service platform responding to the demands

of both physical and virtual systems and acts as a predictive maintenance component [3].

It monitors the operation of TB, analyses any detected abnormalities to find the cause of

them, and ultimately warns about problems in the DT. One of the implementations is

described in [20] where inter-turn short circuit faults were detected and analyzed in

MATLAB software during operation.

2.5 Problem statement

At the time of writing this Master’s thesis, the PSG-453 team was in the process of

connecting physical entities with their virtual and service entity counterparts. The goal of

this Master’s thesis is to connect the traction motor of the PDS with a service entity, for

the analysis of the traction motor’s data.

2.6 Motivation

In any complex system, reliable, scalable, and secure communication between all entities

ensures the operation of the system as a whole. In present days, it is observable that many

independent technologies that tackle a specific set of problems have begun to be used

interchangeably to provide new functionalities. DT technology is one of such fields, and

the proposed DT by PSG-453 requires a flexible means to communicate between all the

independent technologies.

20

In this thesis, a middleware framework on a base of ROS2 (Robot Operating System 2)

and micro-ROS (micro-ROS) is proposed, through which:

• all entities will be defined in the ROS2-based middleware in a structural manner

• data will be sampled from the physical entity (PDS TB) using micro-ROS

• sampled data will be sent to the service entity

• the service entity will process the data and send it back to the middleware

2.7 Section summary

In this section, the state of the art in DT for automotive applications has been defined.

Literature research indicates that interest in DT for automotive applications is increasing

every year. Motivations for that are the cost-effectiveness of DTs, advanced maintenance,

and analysis of automotive systems. The background for the PSG-453 project and its

current state was introduced. Current DT consists of the physical, virtual, and service

entities. The problem and motivation for this Master’s thesis were outlined.

21

3 Middleware framework selection

This section provides the definition of middleware, explains the process of selecting the

appropriate middleware framework for the needs of described DT, and gives an overview

of ROS2 and micro-ROS middleware frameworks.

3.1 Definition of middleware

There is no official definition of the term "middleware", as industry and academics

explain this term differently, yet one definition found by the authors explains it the most

clearly: middleware platforms are intermediaries between sensors, services, and

applications, managing the flow of data and allowing them to interoperate [22].

Middleware handles all the serialization and transfer of information from one platform to

another utilizing various applied standards. Middleware has a defined Application

Program Interface (API) that allows engineers to bind the middleware software to their

parts of the system and allow inter-system communication. Dozens of middleware

frameworks are available for use, both proprietary and free of charge. Some of the

frameworks are based on standard communication protocols, whereas other frameworks

use custom solutions. Different frameworks have different fields of application, ranging

from smart homes to aerospace.

3.2 Overview and selection of available middleware

Considering the complexity of elements that constitute a DT (as described in Section 2.4)

and the overall application of a DT, it is important to choose appropriate middleware and

define an architecture for DT connections. Based on the needs of the TB DT of PSG-453,

a set of qualitative criteria based on [22] was outlined:

1. Area of use suitable for industrial cases.

Applicability for industrial use-cases guarantees that middleware is reliable, possibly

standardized, and is capable to handle desired loads of data flow.

22

2. Support for desired communication model – publisher-subscriber.

As described in Section 2.4, data between components is expected to flow (e.g.,

continuously streamed). Publisher-subscriber model is more appropriate for this

reason due to its asynchronous nature (communication speeds may vary for each

element), and greater scalability if compared to other communication models.

3. Must support real-time operation.

Data from DT must be coming with real-time precision, thus enabling precise analysis

of operating PDS.

4. Availability and clarity of documentation.

Concise documentation that is easily available and covers all the information

regarding middleware is required to ensure smooth integration into a system.

5. Quality of the support and livelihood of developer communities.

The livelihood of developer communities guarantees that middleware is being

improved continuously, reported bug fixes get resolved, and help will be guaranteed

if edge cases are encountered.

In a previously conducted study [23], the author has compared the most common

middleware frameworks that apply to the investigated study case. The results of the

comparison are presented in Table 1. An initial group of middleware frameworks was

selected based on their application cases – industrial, automotive, or robotics. From there,

it was important to select those supporting the publisher-subscriber model. Then, the

advantages and disadvantages of all middleware frameworks were considered, and the

choice in favor of ROS2 was made. The native support for real-time operation,

availability of extensive documentation, and the use of a standardized (DDS) middleware

were the key factors taken into account. Also, the liveliness of ROS2 was considered the

best as it is an actively developing platform.

23

In [23], it was also discovered that the reliability of DDS implementation makes ROS2

better at retaining messages and delivering them without losses – in high-frequency

communication, the latency was roughly 25 times less, and the number of lost messages

was 32 times less in ROS2 compared to ROS. The discovery was made through latency

testing – every message contained a header consisting of a unique ID and a timestamp.

All publishers inserted an ID into the message with the time of submission. All

subscribers were aware of the message ID that they needed to receive. If the IDs matched,

the timestamps were compared, and the difference (indicating the latency) was saved.

Else, the message was considered lost, and the subscriber would reset the ID to the next

expected one. All data was logged into text files and analyzed separately using Jupyter

Notebook.

Table 1. Comparison of available middleware frameworks [23].

Framework
Initial

Release
Type

Messaging

Type
Advantages Disadvantages

ach 2013
Inter-Process
Communication

mechanism

Message bus
Publish-

subscribe

+ Real time support

+ Solved head-of-line

problem for accessing the

newest message

+ Extensive documentation

- Inactive community
- Development

discontinued
- No ready software

packages

YARP 2002 Robotics middleware
Publish-

subscribe

+ Extensible family of
connection types
+ Extensive documentation

+ Active community

+ QoS policies

- Limited real time support

- No ready software

packages

LCM 2006

Libraries and tools for

message passing and

data marshaling,

targeted at real-time

systems

Publish-

subscribe

+ Distributed network topology

+ Low-latency inter-process
communication
+ Large support of
programming languages

- No ready software

packages
- Development stalled

- Weak documentation

- Inactive community

ROS 2007 Robotics middleware
Publish-

subscribe

+ Extensive collection of ready-

to-use packages
+ Extensive documentation

+ Active community

- Limited real time
support
- Has a master server

through which all

connections are handled

- Support ends in 2025

ROS2 2017 Robotics middleware
Publish-

subscribe

+ Real time support
+ Distributed network topology
+ Native embedded support
+ Based on a standard

+ Active community

+ Extensive documentation

+ QoS policies

- Development is still

ongoing

- Documentation is

aimed more at ROS users

- Some of ROS ready

packages are still being

ported to ROS2

24

3.3 ROS2

ROS2 is a state-of-the-art framework for robotics development that consists of a large set

of free and open-source tools and libraries for robotic engineering, and a structured

communication layer.

The communication in ROS2 is realized via a publisher-subscriber messaging pattern.

Messaging occurs between ROS Nodes which are defined as “processes that perform

computation” [24]. ROS Nodes can advertise (produce and send messages) or subscribe

(receive messages) to Topics (name buses over which Nodes exchange Messages) [25].

ROS messages constitute data structures made of typed fields [26] to group all the

necessary information collected by ROS Nodes. Messages can be default ones provided

by ROS packages or they can be custom-defined. Additionally, ROS2 has a request-

response messaging pattern in form of ROS Services, which is suitable for cases such as

one-time requests to complete some operation.

ROS2 also provides a set of GUI and CLI tools for debugging and monitoring. ROS2 CLI

tools typically enable users to get information regarding subscriptions and publishers,

frequency of submitted Messages, the Message content, etc. The GUI tools allow data

visualization – for example, RQt Plot is used to plot the data on a time graph to visualize

how data is changing over time. Rosbags [27] allow recording ROS Messages on different

topics to play this data back later – a feature particularly useful for offline development,

and development based on data gathered during real-life operations.

ROS2’s predecessor, ROS, was widely used in academia and research for its rich set of

documentation and available ROS packages - already developed software components for

complex robotic tasks (navigation, localization, computer vision, etc) that are open-

source and available to everybody. ROS was well-perceived by the community - it is

widely used in academic institutions for education and research. Furthermore, there were

some commercial robot platforms developed [28] as well as the largest framework for

autonomous vehicles development – Autoware AI [29]. However, as the use of ROS was

growing beyond the academic world, it became apparent that ROS must meet a

completely new set of demands than it originally was created for. Therefore, the

development of ROS2 began with the aim to create a robust platform suitable to operate

in real-time, in non-ideal network conditions, and be possible to use on embedded

25

devices. ROS2 is developed and managed by Open Robotics, with some parts of the

software being co-developed by renowned industry leaders in the automotive and

technology sectors (such as Bosch, Sony, AWS, iRobot, etc) [30].

3.3.1 ROS2 architecture

The communication in ROS2 is based on the Data Distribution Service - a middleware

protocol and API standard for data-centric connectivity from the Object Management

Group (OMG). It provides reliable, low-latency, and real-time communication. Its key

feature – dynamic discovery and Quality of Service (QoS) makes it server-free and more

extensible [31]. In large systems with multiple communicating elements, DDS solves the

problem of scalability and speed, providing a fast network. DDS is well-standardized

[32], and has been a part of other time-critical standards used in automotive, aerospace,

and defense industries (e.g NATO NGVA, AUTOSAR Adaptive) [33].

ROS2 is structured as follows: the user application layer is used for writing software for

ROS Nodes. The user application layer relies on the ROS2 Client layer, which provides

users with the language-specific (C++, Python, C) API for ROS2 core libraries and

functions. The client layer is connected to the DDS Abstraction layer which binds ROS2

with DDS implementations. The communication is handled entirely by various DDS

vendors on the DDS Implementation Layer. ROS2 entirely resides in operating systems.

The visual representation of described architecture can be seen in Figure 8.

Figure 8. ROS2 Architecture.

26

User-written software can be grouped into ROS Packages and compiled using colcon – a

process automation CLI tool for building sets of software packages. Compiled software

can be launched by a standalone execution, or it can be executed in series according to

specified logic, using launch files.

3.3.2 micro-ROS

To gather information from sensors and influence the operation of the TB, hardware

interfacing is required. The simplest hardware for this purpose would be microcontroller

units (MCUs) – compact integrated circuits designed to control specific operations in

embedded systems. Typically, MCUs would be used for low-level operating, control, and

data gathering with an interface to a higher-level governing system. For instance, the OS

manages the access and use of resources to the user and is interfaced with hardware.

Hardware, on the other hand, has its firmware that manages energy, internal sensors, etc.

MCUs vary, they have different resources and are equipped with different base software

available.

Default distributions of ROS2 are not optimized for use on microcontrollers or real-time

OS. Community-developed solutions to tackle these problems exist, namely rosserial

[34] and mROS [35], but they have a very limited set of features, and their development

is discontinued. Considering the features available in ROS2 (QoS, security) and

ambitions to support real-time operation, a micro-ROS (micro-ROS) project has been

established [36].

micro-ROS is a microcontroller-optimized ROS2 distribution that supports all the main

features of ROS2 in resource-constrained environments and can be seamlessly integrated

with ROS2. It is the de-facto standard ROS2 approach for embedded systems, developed

by Bosch GmbH [37]. micro-ROS aims to bring support to a wide set of microcontrollers,

but for now, there is a limited set of officially and community-supported MCU platforms.

Additionally, Bosch GmbH provides instructions on how to compile micro-ROS on yet

unsupported MCU platforms that meet the minimal hardware requirements.

It is important to note, that micro-ROS is still in active development, and it has not yet

been officially standardized for production use.

27

3.3.3 Difference between ROS2 and micro-ROS architectures

As described in [36], the executors present in ROS2 (rclcpp) and micro-ROS (rclc) are

different. rclcpp executor requires dynamic memory allocation, which cannot be used on

many microcontrollers. Additionally, the rclcpp library was not created for resource-

constrained environments and thus it is not optimized to fit the small memory of MCUs.

Furthermore, the rclc executor features deterministic scheduling and execution and real-

time guarantees [38].

If in ROS2 the choice of DDS Implementation is available to a user, in micro-ROS it is

fixed to eProsima Micro XRCE-DDS - a software solution that allows communication in

extremely resource-constrained environments (in this specific case - MCUs) with an

existing DDS network [39].

Contrary to ROS2, the choice of OS (if available) is limited only to RTOS that can operate

on MCUs. Currently, supported ones are Zephyr, FreeRTOS, and NuttX [36].

Other features, such as Node discovery and bridge between micro-ROS Nodes and DDS

middleware are resource-hungry and are implemented in a ROS 2 Agent – a separate

piece of software that is meant to run on the host where ROS2 is running. It supports

Serial, UDP, and Bluetooth connection with MCU.

The abovementioned differences can be observed Figure 9 which illustrates the full

architecture of micro-ROS.

Figure 9. micro-ROS architecture [36].

28

3.4 Section summary

In this section, the definition of middleware was given. An appropriate middleware

framework for purposes of DT was selected. The selection process included a comparison

of available middleware frameworks that satisfy the given criteria and a comparison of

performance between ROS and ROS2. Definitions and architectures of ROS2 and micro-

ROS frameworks were given.

29

4 Middleware implementation for studied Digital Twin

This section provides the description and requirements of the middleware

implementation. The details of the middleware interface to hardware and software are

given. The method of gathering motor data using an MCU is explained.

4.1 Desired operation and requirements

To implement the middleware for the DT of PDS, it is required to first determine what it

should be interfaced with, and which operation must be performed through it. In the scope

of this Master’s thesis, only several components of PDS are chosen for detailed study: the

HES880 frequency converter and the traction motor. The studied part of PDS TB can be

seen illustrated in Figure 10.

Figure 10. Illustration of studied components in TB for PDS. Studied parts are enclosed by a red frame.

The desired operation to be fulfilled for the abovementioned components of PDS TB is

defined as follows:

1. All entities and their subsystems and components must be grouped and

structurally represented in the middleware.

30

2. The DT middleware must receive the data regarding the supply input power to the

Mitsubishi PMSM traction motor Y4F1.

The supply input power is defined as a 3-phase voltage and current that is generated

by a frequency converter attached to the motor. Based on input configurations, the

frequency converter modifies the power supply that is then supplied to the motor,

causing it to work. The power supply modified by the frequency converter must be

sampled and sent into the middleware.

3. This data must be conveyed to the service entity to calculate the motor’s output

parameters.

The service entity, upon reception of data, must extract the following parameters

using analytical model of the traction motor: angular velocity and torque of the

traction motor.

4. Calculated torque and angular velocity must be sent into the middleware.

Parameters calculated by the service entity must be present in the middleware for

other entities.

4.2 Proposed solution

Considering the described operation and requirements presented in Section 4.1, the

following solution is proposed:

1. An MCU with micro-ROS installed will be connected to the output of frequency

converter HES880 to sample the data at a 1 kHz frequency.

2. The sampled measurements are serialized into ROS messages and sent to the

middleware (via a micro-ROS agent hosted on a separate machine) to the

designated topic.

3. The service entity connects to the middleware by subscribing to the designated

topic and processes the incoming data to calculate the angular velocity and torque

of the traction motor.

31

4. The service entity publishes the resultant angular velocity and torque to the

designated topic, thus sending the data back to the middleware.

The proposed solution is illustrated in Figure 11.

Figure 11. Draft of a proposed solution. U, V, W indicate the 1,2 and 3 phase voltage and current.

In the proposed solution the middleware coverage ranges from a host Windows 10

machine to a microcontroller. Due to the micro-ROS agent requirements, it executes on

a guest Ubuntu 20.04 virtual machine (VM). The service entity executes in a MATLAB

run-time environment installed in Windows 10. Defined ROS2 messages and interfaces

between entities are described in Section 4.3, service entity is described in Section 4.4,

and used hardware elements are described in Section 4.5.

4.3 Structure of ROS2 middleware

Inside the DT it is expected that components, parts, and subsystems are going to

communicate with each other. The publisher-subscriber topology allows for flexible

communication between them. But the problem that arises is – how does a component

know which information it is supposed to receive? Considering the design of physical

entity TB (as described in 2.4.1), we will have a total of three motors – one as part of PDS

and two loading motors to simulate the load. These three motors communicate the same

32

information (torque, angular velocity, power, etc), but they must be differentiated. The

same applies to whole subsystems – there may be similar sets of information flows, but

they may be required inside the subsystem only, without exposure to other subsystems.

To solve this, context is required for every ROS Node, ROS Message, and ROS Topic.

4.3.1 Naming requirements

To differentiate between subsystems in the DT, hierarchical naming and grouping should

apply to every component of the DT.

ROS2 provides a flexible naming configuration that helps developers to design modular

components of their ROS2 applications and for others to be able to easily integrate them.

Although every component is required to have a pre-defined name for a Node or Topic,

it can be renamed, mapped, or grouped by any name defined by the user. The names can

be of two types: relative and global. A global name would indicate a completely specified

name for a Node or Topic, and it cannot be modified. Relative names can be supplied

with a namespace during configuration and launch – which makes it possible to have the

same Nodes grouped under different names.

In our middleware design, all names are expected to be relative and specified with a

namespace indicating a group at a launch time. This will allow modular development and

reuse of DT components. Thus, every component will have a default relative Node name

(indicating which component it is generally) and Topic names (indicating the generic

parameters it communicated with), and upon launch time these components are grouped

by a namespace according to the naming requirements of PSG-453 project that can be

shown in Table 2.

33

Table 2. Namespaces used for grouping components of the DT.

Name of the namespace Components to be used for

/tb_tm
Traction motor components, torque, angular velocity, power calculating nodes, any

hardware connected to them.

/tb_lm_left
Any loading motor components: torque, angular velocity, power calculating nodes,

any hardware connected to them. Left and right specify exactly which loading motor

in the physical entity it is.

/tb_lm_right

/tb_service Service entities used for the analysis of the TB PDS, warning systems.

/tb_virtual Components of the visual entity that are interfaced to ROS Middleware.

/tb_bat
Components related to the battery that is used to simulate operating battery in

ISEAUTO.

/tb_td
Components related to frequency converter (traction drive HES880 used to control

traction motor).

/tb_ld_left

Components related to frequency converters (ACS850 used to control loading motors).

Since each frequency converter can control only one motor, they are designated left

and right per loading motor they control.

/tb_ld_right

It is important to note that namespaces are generally applied to Nodes that are associated

with the component of DT they represent, and topics they would send the data to would

include the Node’s namespace. However, it is possible for Nodes of one group to require

data from Nodes of other groups.

To better illustrate the latter, assume there are two Nodes: /tb_tm/left_shaft_consumer

and /tb_lm_left/torque_producer. /tb_tm/left_shaft_consumer Node is expecting to

receive the torque that left loading motor exerts on it. In this case,

/tb_tm/left_shaft_consumer Node would subscribe to a topic published by

/tb_lm_left/torque_producer Node (e.g. /tb_lm_left/torque). In this case, it is logical to

assume that the exerted torque is a part of loading motor, rather than the traction motor’s

shaft.

34

4.3.2 ROS2 messages definitions

Section 3.3 described ROS messages as custom or standard data structures made of typed

fields to group information provided by Nodes. For DT, custom messages were defined

to group several signals and/or parameters together that are related by time and context.

Every message contains a header that records the time of submission and a unique ID of

the message. All messages were included in a separate ROS Package digital_twin_msgs

that is required by the middleware to operate the DT. Apart from custom-defined

definitions, the middleware uses standard ROS messages (std_msgs) [40] where

necessary. Message defined in ROS package digital_twin_msgs can be seen in Table 3,

and the structure of each message can be observed in Appendix 2.

Table 3. Messages of DT defined in the digital_twin_msgs package.

Name of the message Description

digital_twin_msgs::Current
A message consisting of 3 phase currents values. Used to store information

about AC current.

digital_twin_msgs::Voltage
A message consisting of 3 phase voltages values. Used to store information

about AC voltage.

digital_twin_msgs::SupplyInput
Message comprised of Current.msg and Voltage.msg with a timestamp. Used

as a container structure to communicate the AC input of the motors.

digital_twin_msgs::Power
A message consisting of power values of a 3-phase AC input at every phase and

total mean. Includes a timestamp. Used to store information about AC power.

digital_twin_msgs::Float32Stamped
Generic float data-type message with a timestamp. Can be used for any topic

requiring a generic float type data container.

4.4 Used service entity

The service entity in use for the objective is an analytical simulation model of the traction

motor which was built in MATLAB/Simulink interfaced with middleware. The

simulation model was developed by the author’s colleague for a separate research

problem, as presented in [41]. Hence, this model is not in the scope of this Master’s thesis

and will be treated as a black box. The model’s purpose is to calculate the traction motor’s

output torque and angular velocity based on the input voltage of the motor. The

35

calculation is based on derived analytical equations of the electromagnetic properties of

the traction motor.

The input voltage of the model is the input voltage of the traction motor generated by the

HES880 frequency converter and is expected to be received by the service entity in real

time. A ROS2 Subscriber MATLAB block is used to connect the service entity to

middleware for voltage data reception, and a ROS2 Publisher MATLAB block is used for

sending angular velocity and torque data back to middleware. When received, voltage

input is deserialized using a Bus Selector MATLAB block and is directed into the model.

When finished processing, the model outputs angular velocity and torque parameters; in

combination with the Blank Message MATLAB block, these parameters constitute a new

ROS message that is then published via a ROS2 publisher block. The described service

entity can be seen in Figure 12 and its interface with middleware is shown in Table 4.

Figure 12. MATLAB/Simulink block diagram of used service entity.

36

Table 4. Middleware interface of service entity.

Topic Message type Description

/tb_tm/supply_input digital_twin_msgs::SupplyInput
Topic to subscribe. Used to receive voltage of

traction motor from the middleware.

/tb_tm/torque digital_twin_msgs::Float32Stamped
Topic for publishing. Used to send the

calculated torque to the middleware.

/tb_tm/angular_velocity digital_twin_msgs::Float32Stamped

Topic for publishing. Used to send the

calculated angular velocity to the

middleware.

4.5 Hardware interface between TB and middleware

To gather the data from the HES880 frequency converter and direct it to middleware,

there must be hardware that serves as an interface between these two entities. In our case,

it must be an MCU capable of reading analog data, have a peripheral interface able to

communicate via Serial/USB and be possible to run with micro-ROS.

One of the aims of micro-ROS is to provide support for a large number of families of

microcontrollers. Although this is a large and complicated task when this Master’s thesis

was written several microcontroller families were already supported [42]. This meant,

that there were tools for compilation of micro-ROS to targeted microcontrollers and

official manuals assisting in this matter. Considering the requirements, the officially

supported microcontrollers by micro-ROS, and the availability of the latter on the

premises of Tallinn University of Technology, a choice was made to proceed with Teensy

4.0.

Teensy 4.0 [43] is a small ARM family microcontroller. It features a 600 MHz ARM

Cortex-M7 processor, with 1024kB of RAM and 1984kB of Flash memory with USB

peripheral supporting speeds up to 480 Mbit/sec. It features 40 GPIO pins, 14 of which

can be configured as analog input pins. Teensy is programmable through Arduino IDE

with an installed Teensyduino add-on. Teensy 4.0 is illustrated in Figure 13.

37

Figure 13. Teensy 4.0 microcontroller unit [43].

To fulfill the operation described in Section 4.1, Teensy 4.0 with micro-ROS software

will gather the data from the HES880 frequency converter and send it to the middleware

via a micro-ROS agent.

4.5.1 Teensy 4.0 with micro-ROS

To get micro-ROS running on Teensy 4.0, the official tutorial from micro-ROS [44] with

some additional steps was followed. In the tutorial, it is suggested to download the already

pre-compiled micro-ROS library for microcontrollers and just copy it to the Arduino IDE

library folder. For the desired operation, however, support for digital_twin_msgs must

have been provided, thus additional steps were required. For this to happen, the micro-

ROS library was recompiled according to instructions from the official Github repository

[45]. The following steps were done:

1. Download and install Arduino IDE and Teensyduino add-on.

2. Download the micro-ROS Arduino source library for ROS2 foxy distribution.

git clone git@github.com:micro-ROS/micro_ros_arduino.git

git checkout foxy

3. Add digital_twin_msgs package to a folder

/extras/library_generation/extra_packages of micro-ROS Arduino library.

4. Compile the micro-ROS Arduino library for Teensy 4.0.

sudo docker pull microros/micro_ros_static_library_builder:foxy

sudo docker run -it --rm -v $(pwd):/project --env
MICROROS_LIBRARY_FOLDER=extras microros/micro_ros_static_library_builder:foxy
-p teensy4

5. Copy the contents of /src into the Arduino IDE’s library folder.

mailto:git@github.com:micro-ROS/micro_ros_arduino.git

38

Afterward, micro-ROS API becomes available for use in Arduino IDE and enables to

write, compile and flash written software with digital_twin_msgs messages included in

Teensy 4.0. As soon as the software is flashed and is working correctly, Teensy 4.0 must

be connected to a computer with a micro-ROS agent via a USB. By default, the

connection is plug-and-play and the micro-ROS agent should detect new microcontrollers

automatically. However, since the micro-ROS agent is running on a VM, USB support

had to be enabled in the settings of a VM. When the micro-ROS agent detects a new

connected microcontroller, it becomes available in the whole middleware and the

communication (data sending and reception) starts automatically.

4.5.2 HES880 frequency converter

ABB HES880 [46] is a mobile frequency converter for controlling asynchronous AC

induction motors. In the case of TB, HES880 controls the Mitsubishi traction motor. The

HES880 consists of 2 parts: the drive module and the control module. Based on the

selected parameters in the control module, the HES880 modifies the supply AC voltage

and frequency into AC motor input.

The frequency converter directly dictates the operation of an electrical motor it controls

by supplying AC voltage to the motor. Knowing this, it is possible to measure the

output of the frequency converter directly and then forward it to the middleware.

4.5.3 HES880 output measurement

The output of HES880 is AC current, and appropriate electronics were required to

transform the AC current into a positive-only (larger than 0V) periodic voltage signal in

a range of 0 – 3.3V, for Teensy 4.0 MCU to sample it. Signal conversion and electronics

design were done by the author’s colleague who had the required knowledge and skills to

solve this problem. Therefore, the electronics and signal conversion will be treated as a

black box solution and is out of the scope of this Master’s thesis. Nevertheless, a short

description will be provided to explain the general idea of how the signal conversion is

done.

Three devices, known as current clamps, are attached to the cables that connect HES880

output terminals with the Mitsubishi traction motor’s input terminals. Depending on the

configuration and wiring, the current clamps can measure voltages and currents and

39

output both as voltage signals. These devices have conversion ratios (also known as

scale): 1mV/A for current (that is, every 1mV clamp output represents 1 measured Amp

of input current), and 10mV/V for voltage (that is, every 10mV clamp output represents

1 measured Volt of input voltage). The input signals generated by HES880 were in the

range of +350A to -350A for current and +500V to -500V for voltage. However, for the

selected operation of HES880, the generated current and voltage would not exceed

ranges +200A to -200A and +25V to -25V, respectively. As a result of conversion from

current clamps, the input signals of current and voltage are scaled to: +200mV to -

200mV and +250mV to -250mV, respectively. Because most ADCs (analog-to-digital

converters) present in MCUs (including Teensy 4.0) can only process positive analog

signals, the output signals of current clamps must be brought to the positive-only range.

For this, a level shifter was used that lifts the signal by 1 V.

Teensy 4.0 MCU features 14 analog input pins that can be used to sample the data.

Measurements of 3-phase AC current and voltage would require 6 analog inputs. A0 –

A5 were used to sample the data, A0-A2 for current and A3-A5 for voltages. The

frequency of AC current is estimated to be around 20 Hz, therefore input AC signal is

sampled at 1 kHz frequency, eliminating the possibility of aliasing. Teensy 4.0 MCU has

a 10-bit ADC (input range 0 – 1023 bits) that can measure voltages in the range 0 – 3.3V,

which means that the resolution of the ADC is approximately 3.22 mV. For conversion

of bits to voltage in mV, Equation 1 was used:

𝑈𝑖𝑛 =
𝑁𝑏𝑖𝑡𝑠 × 3300

1024
 (1)

Equation 2 and Equation 3 show the conversion of acquired voltage to real measured

voltage and current, respectively (1000 was subtracted to bring the measured voltage

back to its original range; vt_scale is the voltage scale factor and is equal to 10 mV;

ct_scale is the current scale factor and is equal to 1 A):

𝑈𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝑈𝑖𝑛 − 1000

𝑣𝑡_𝑠𝑐𝑎𝑙𝑒
 (2)

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝑈𝑖𝑛 − 1000

𝑐𝑡_𝑠𝑐𝑎𝑙𝑒
 (3)

40

With everything considered, a script that handles data sampling, serialization of data into

ROS messages, and transport to the middleware was written, as presented in Appendix 3.

The script was compiled using Teensyduino IDE and flashed onto Teensy 4.0 MCU.

4.6 Section summary

This section covered the details of middleware implementation for a given problem. The

desired operation of a DT entity was described, and a possible solution was proposed. All

communication details were covered: interfaces between hardware and software

components, subscribed and published topics, and used messages with the data they

contain. An overview of used hardware components was given and the data gathering

method was explained.

41

5 Results

This section covers the achieved results of the conducted work. The sampled data is

shown, along with the results of latency tests. The section explains achieved results and

provides suggestions for future work.

5.1 Acquired data

Acquired data by Teensy 4.0 MCU was sampled at 1 kHz frequency and converted to raw

voltage, as shown in Equation 1. The raw voltage measurement was then used to calculate

the real current and voltage as described in Section 4.5.3 in Equations 2, 3 and the

resultant measured current and voltage signals were serialized into ROS2

digital_twin_msgs/SupplyInput message. As the last step, the messages were published

on ROS2 topic /tb_tm/supply_input. The operation was recorded by ROS2 as a rosbag

and analyzed in MATLAB. The results of measured AC voltage and current can be

observed in Figure 14.

Figure 14. Real measured current and voltage as a result of conversion: a) measured AC current, b)

measured AC voltage. U, V, W are designations for every phase in AC current.

42

Acquired measurements of current and voltage appear to be noisy, but the overall

representation of sine waves of voltage and current are kept, thus aliasing was avoided.

There is a multitude of factors that can be the cause of the noise: losses in precision

from sampling (as the ADC has 10-bit precision), noise from the level shifter caused by

oscillation of the shifting signal, the interference from the environment and the signal

quality produced by the HES880 frequency converter itself. To smooth out the signal,

the service entity uses a second-order filter implementation before feeding the voltage

signal to the main model.

5.2 Latency test

To validate that implemented solution can be used in real-time, a latency test was

conducted. For this specific case, RTT (round trip time, visual representation can be seen

in Figure 15) latency test was chosen, due to MCU and host machine possessing different

clocks. Different clocks may not be properly synchronized, leading to false results.

Furthermore, virtual machines specifically are subject to an occurrence known as clock

drift. Typically, VMs synchronize their clock with the host machine every 60 seconds and

therefore may “lag behind” the host system.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1

2

Figure 15. RTT latency test visualization.

To conduct the RTT latency test, a new message type was defined consisting of a message

ID and time stamp. Every message was generated by Teensy 4.0 MCU and sent to a ROS2

listener, running in the MATLAB run-time environment. The listener, upon receiving the

message, verified that the message was not lost (by comparing the expected message ID

43

with the received one) and simply sent it back to the Teensy 4.0 MCU. When the MCU

received messages back, it calculated the approximate time it took for a message to return.

To avoid running out of memory, the Teensy 4.0 did not store the latencies locally and

forwarded them to a specially created ROS2 Node on a host machine that later calculated

mean, maximum, and minimum latency. The test was conducted for 60000 messages. The

latency was measured in microseconds since the clock of Teensy 4.0 is capable of

recording time only with microsecond precision. Written scripts for the latency test can

be seen in Appendix 4, 5, and 6.

Latency test between Teensy 4.0 MCU and service entity yielded the following results:

only 560 messages out of 60000 were received, with mean latency being 350 μs,

maximum latency being 7569 μs, and minimum latency being 92 μs. As investigation

showed, it was not the fault of middleware, but MATLAB/Simulink software itself.

MATLAB/Simulink was unable to receive data at high frequencies and was forced to

drop messages, leading to a low rate of successfully delivered messages.

Such operation cannot be considered reliable, and it can be concluded that

MATLAB/Simulink solutions must be changed to be capable of receiving high-frequency

data.

5.2.1 Suggested improvement to the service entity

Even though MATLAB cannot process software in real time, it has a code generator that

can transform various models into lower-level programming languages for target devices.

Essentially, MATLAB/Simulink code generator establishes a connection with the target

device, transforms the model into a C++ code, and attempts to compile it using the default

compiler for ROS2. Therefore, the goal was to use the model of the service entity to

generate a ROS2 Node C++ code, with VM being the target device. After following the

manual on MATLAB/Simulink code generation [47], the generation succeeded, and the

model was available as a ROS2 node in the VM.

The same RTT latency test was conducted to calculate the approximate latency of the

solution. The results were indeed better: all 60000 messages were successfully delivered,

mean latency was 197 μs, maximum latency was 6594 μs, and minimum latency was 151

μs. The increase in reliability suggests that using lower-level code for processing data is

44

more preferred in the scope of the proposed DT. For comparison, both latency test results

can be observed in Table 5.

Table 5. Results of conducted RTT latency tests

Operation

environment
Messages sent (#) Messages lost (#)

Mean latency

(μ

Maximum latency

 μ

Minimum latency

 μ

MATLAB run-time

on Windows host
60.000 59.440 350 7569 92

Compiled C++

program on

Ubuntu VM

60.000 0 197 6594 151

5.3 Overview of conducted work and final solution

As a result of implementations described in Section 4, the following tasks were done:

1. Traction motor input data was sampled from the HES880 frequency converter by

Teensy 4.0 MCU.

2. The software for Teensy 4.0 MCU was written using the micro-ROS framework.

The software handled data sampling, serialization, and transport to the

middleware via a micro-ROS agent.

3. The service entity was interfaced with the middleware to receive and send the

traction motor data.

4. A latency test was conducted to estimate the reliability of the solution.

5. Conversion of MATLAB/Simulink model to C++ was made as a possible way to

fix unreliable data reception by the service entity.

The achieved result satisfies the operational requirements presented in Section 4.1. ROS2

framework proves to be quite flexible for designing systems and implementing the intra-

communication between the components of a system. Its internal implementation of the

DDS standard provides a reliable means to communicate in a peer-to-peer manner.

Custom message definition, contextual grouping using namespaces and provided API are

optimal for such fields as DT technology. The micro-ROS framework provides an out-

of-the-box approach for connecting microcontrollers to ROS2. However, supported

45

hardware is still limited and some operational requirements for micro-ROS are yet to be

fulfilled. MATLAB/Simulink computational abilities were found to be unreliable and

conversion to C++ had to be made to improve the communication between the

middleware and the service entity.

5.3.1 Suggestions for future work

To improve the overall design of the DT, the following improvements are suggested:

1. The service entity components that require high-frequency communication and/or

real-time operation must be migrated to lower-level implementation, such as C++,

Python, or a similar language/platform.

2. For increased precision of the DT, it may be necessary to utilize communication

protocols like SPI or I2C between MCU and the middleware. This will increase

possible messaging frequency.

3. In the future, TB may have a very large number of connections to the DT, and

microcontrollers may not be the optimal way to interface these connections. A

larger module/router would be required in this case.

4. Electronics that handle signal processing may need to be of higher precision to

eliminate noise.

5.4 Section summary

This section provided an overview of conducted work. Latency tests revealed that the

service entity implementation in MATLAB/Simulink was very unreliable when it came

to receiving data. A solution to mitigate this problem was provided. Overall, the latency

between the MCU and the service entity is low enough to be considered real-time. The

final solution was presented, featuring all the interfaces between the components of DT.

In the end, the author provided suggestions for future work to improve the state of the

DT.

46

6 Summary

Digital Twin (DT) technology is a trending technology in the automotive field that

allows advanced analysis and testing of such complex systems. Autonomous vehicles

are a special case – the possession of large amounts of sensors and processing

capabilities allows a very in-depth study of the internal workings of the vehicles, but

very little is done towards the understanding of how these autonomous vehicles are

affected during operation. For this reason, DT for propulsion drive of autonomous

electric vehicle (project number PSG-453) was established. The project aims to develop

a DT for the propulsion drive system of ISEAUTO – a self-driving vehicle being

developed by Tallinn University of Technology since 2018.

In recent years the DT technology in the automotive field has seen a spike in

publications and various methods are actively proposed and discussed. The latest

developments indicate interest in creating high-precision DTs for hardware components

of the vehicles in an attempt to create cost-effective, in-depth analysis systems.

The goal of this thesis was to connect two entities present in DT architecture, proposed

by PSG-453: a traction motor from the physical entity with the analytical model of the

motor from the service entity. The connection had to follow the implementation of

middleware – a special software layer that handles all the communication between all

the entities of the DT system. The chosen middleware framework – ROS2, was

described in terms of architecture and capabilities.

As a result, the traction motor was interfaced with ROS2 middleware via Teensy 4.0

microcontroller that uses micro-ROS – a ROS2 framework for embedded devices. The

analytical model of the motor developed in MATLAB software was interfaced with the

middleware using the provided ROS2 API. The acquired results were presented and

analyzed. The latency test shows that the implemented solution operates in real time. At

the same time, the latency test suggested that the service entity had to be run outside the

47

MATLAB run-time environment due to low reliability, hence an improvement was

made to overcome this issue.

Based on the results of this Master’s thesis, a conference paper was written to describe

the used approach for connecting DT entities and describing the achieved results.

48

References

[1] A. Rassõlkin, R. Sell and M. Leier, "Development Case Study of the First

Estonian Self-Driving Car, ISEAUTO," Electrical, Control and Communication

Engineering, vol. 14, pp. 81-88, 07 2018.

[2] Estonian Research Information System, "Digital twin for propulsion drive of

autonomous electric vehicle," [Online]. Available:

https://www.etis.ee/Portal/Projects/Display/72b66c74-e911-49c3-ac6a-

6716f9e72ba5?lang=ENG. [Accessed 27 04 2022].

[3] A. Rassõlkin, T. Vaimann, A. Kallaste and V. Kuts, "Digital twin for propulsion

drive of autonomous electric vehicle," in 2019 IEEE 60th International Scientific

Conference on Power and Electrical Engineering of Riga Technical University

(RTUCON), 2019.

[4] M. Grieves, "Origins of the Digital Twin Concept," August 2016. [Online].

Available: 10.13140/RG.2.2.26367.61609. [Accessed 05 03 2022].

[5] O. G. Brylina, N. N. Kuzmina and K. V. Osintsev, "Modeling as the Foundation

of Digital Twins," in 2020 Global Smart Industry Conference (GloSIC), 2020.

[6] Lockheed Martin, "Visualizing the digital thread and Digital Twins," Lockheed

Martin, October 2021. [Online]. Available: https://www.lockheedmartin.com/en-

us/news/features/2021/visualizing-the-digital-thread-and-digital-twins.html.

[Accessed 05 03 2022].

[7] IBM, "What is a Digital Twin?," IBM, [Online]. Available:

https://www.gartner.com/en/newsroom/press-releases/2016-10-18-gartner-

identifies-the-top-10-strategic-technology-trends-for-2017. [Accessed 05 03

2022].

[8] J. Wu, Y. Yang, X. U. N. Cheng, H. Zuo and Z. Cheng, "The Development of

Digital Twin Technology Review," in 2020 Chinese Automation Congress (CAC),

2020.

[9] M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray and D. Devine,

"Digital Twin: Origin to Future," Applied System Innovation, vol. 4, 2021.

[10] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2017,"

October 2016. [Online]. Available: https://www.gartner.com/en/newsroom/press-

releases/2016-10-18-gartner-identifies-the-top-10-strategic-technology-trends-for-

2017. [Accessed 06 03 2022].

[11] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2018,"

October 2017. [Online]. Available: https://www.gartner.com/en/newsroom/press-

releases/2017-10-04-gartner-identifies-the-top-10-strategic-technology-trends-for-

2018. [Accessed 06 03 2022].

49

[12] Gartner, "Gartner Identifies the Top 10 Strategic Technology Trends for 2019,"

October 2018. [Online]. Available: https://www.gartner.com/en/newsroom/press-

releases/2018-10-15-gartner-identifies-the-top-10-strategic-technology-trends-for-

2019. [Accessed 06 03 2022].

[13] B. Marr, "These 25 Technology Trends Will Define The Next Decade," Forbes, 20

April 2020. [Online]. Available:

https://www.forbes.com/sites/bernardmarr/2020/04/20/these-25-technology-

trends-will-define-the-next-decade/. [Accessed 05 03 2022].

[14] E. Glaessgen and D. Stargel, "The Digital Twin Paradigm for Future NASA and

U.S. Air Force Vehicles," in 53rd AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference.

[15] A. Best, S. Narang, L. Pasqualin, D. Barber and D. Manocha, "AutonoVi-Sim:

Autonomous Vehicle Simulation Platform With Weather, Sensing, and Traffic

Control," in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, Salt Lake City, 2018.

[16] J. Liu, Y. Dong, Y. Liu, P. Li, S. Liu and T. Wang, "Prediction Study of the

Heavy Vehicle Driving State Based on Digital Twin Model," in 2021 IEEE

International Conference on Power Electronics, Computer Applications

(ICPECA), 2021.

[17] Y. Chen, S. Chen, T. Zhang, S. Zhang and N. Zheng, "Autonomous Vehicle

Testing and Validation Platform: Integrated Simulation System with Hardware in

the Loop*," in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018.

[18] M. Ruba, R. O. Nemes, S. M. Ciornei, C. Martis, A. Bouscayrol and H. Hedesiu,

"Digital Twin Real-Time FPGA Implementation for Light Electric Vehicle

Propulsion System Using EMR Organization," in 2019 IEEE Vehicle Power and

Propulsion Conference (VPPC), 2019.

[19] A. Rassõlkin, V. Rjabtšikov, T. Vaimann, A. Kallaste and V. Kuts, "Concept of

the Test Bench for Electrical Vehicle Propulsion Drive Data Acquisition," in 2020

XI International Conference on Electrical Power Drive Systems (ICEPDS), 2020.

[20] V. Rjabtšikov, A. Rassõlkin, B. Asad, T. Vaimann, A. Kallaste, V. Kuts, S.

Jegorov, M. Stępień and M. Krawczyk, "Digital Twin Service Unit for AC Motor

Stator Inter-Turn Short Circuit Fault Detection," in 2021 28th International

Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED),

2021.

[21] V. Kuts, A. Rassõlkin, A. Partyshev, S. Jegorov and V. Rjabtšikov, "ROS middle-

layer integration to Unity 3D as an interface option for propulsion drive

simulations of autonomous vehicles," IOP Conference Series: Materials Science

and Engineering, vol. 1140, p. 012008, May 2021.

[22] J. Cardoso, C. Pereira, A. Aguiar and R. Morla, "Benchmarking IoT middleware

platforms," pp. 1-7, 2017.

[23] S. Jegorov, A. Rassõlkin, V. Kuts, V. Rjabtšikov and A. Partyshev, "The

comparison between ROS and ROS2 based on the propulsion drive of autonomous

vehicle," Array, 2022 (Submitted).

[24] ROS Wiki, "ROS Nodes," 2017. [Online]. Available: http://wiki.ros.org/Nodes.

[Accessed 24 03 2022].

[25] ROS Wiki, "ROS Topics," 2017. [Online]. Available: http://wiki.ros.org/Topics.

[Accessed 24 03 2022].

50

[26] ROS Wiki, "ROS Messages," 2018. [Online]. Available:

http://wiki.ros.org/Messages. [Accessed 24 03 2022].

[27] ROS Wiki, "ROS Bags," [Online]. Available: http://wiki.ros.org/Bags. [Accessed

02 05 2022].

[28] R. Tellez, "Top 10 ROS based robotics companies," The Robot Report, 22 July

2019. [Online]. Available: https://www.therobotreport.com/top-10-ros-based-

robotics-companies-2019/. [Accessed 24 03 2022].

[29] The Autoware Foundation, "Autoware Overview," The Autoware Foundation,

[Online]. Available: https://www.autoware.org/autoware. [Accessed 24 03 2022].

[30] Open Robotics, "ROS2 Roadmap," [Online]. Available:

https://docs.ros.org/en/foxy/Roadmap.html. [Accessed 25 03 2022].

[31] DDS Foundation, "What is DDS?," [Online]. Available: https://www.dds-

foundation.org/what-is-dds-3/. [Accessed 25 03 2022].

[32] DDS Foundation, "What is the DDS Standard?," [Online]. Available:

https://www.dds-foundation.org/omg-dds-standard//. [Accessed 25 03 2022].

[33] DDS Foundation, "DDS in Other Standards," [Online]. Available:

https://www.dds-foundation.org/dds-in-other-standards/. [Accessed 25 03 2022].

[34] P. Bouchier, "Embedded ROS [ROS Topics]," IEEE Robotics Automation

Magazine, vol. 20, pp. 17-19, 2013.

[35] H. Takase, T. Mori, K. Takagi and N. Takagi, "MROS: A Lightweight Runtime

Environment for Robot Software Components onto Embedded Devices," in

Proceedings of the 10th International Symposium on Highly-Efficient

Accelerators and Reconfigurable Technologies, New York, NY, USA, 2019.

[36] J. Staschulat, I. Lütkebohle and R. Lange, "The rclc Executor: Domain-specific

deterministic scheduling mechanisms for ROS applications on microcontrollers:

work-in-progress," in 2020 International Conference on Embedded Software

(EMSOFT), 2020.

[37] R. Lange, "Micro-ROS – bringing the most popular robotics middleware onto tiny

microcontrollers," Bosch Research Blog, 19 January 2021. [Online]. Available:

https://www.bosch.com/stories/bringing-robotics-middleware-onto-tiny-

microcontrollers/. [Accessed 29 03 2022].

[38] micro-ROS, "Execution Management," [Online]. Available:

https://micro.ros.org/docs/concepts/client_library/execution_management/.

[Accessed 15 04 2022].

[39] eProsima, "eProsima Micro XRCE-DDS," 2018. [Online]. Available:

https://micro-xrce-dds.docs.eprosima.com/en/latest/index.html. [Accessed 19 04

2022].

[40] ROS Wiki, "ROS std_msgs message package," 2018. [Online]. Available:

http://wiki.ros.org/std_msgs. [Accessed 12 04 2022].

[41] M. Ibrahim, A. Rassõlkin, S. Jegorov, V. Rjabtšikov, T. Vaimann and A. Kallaste,

"Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor Digital

Twin," 2022 (Submitted).

[42] micro-ROS, "Supported Hardware | micro-ROS," 2022. [Online]. Available:

https://micro.ros.org/docs/overview/hardware/. [Accessed 18 04 2022].

51

[43] PJRC, "Teensy® 4.0 Development Board," PJRC | Electronic Components

Available Worldwide, [Online]. Available:

https://www.pjrc.com/store/teensy40.html. [Accessed 18 04 2022].

[44] micro-ROS, "Teensy with Arduino | micro-ROS," 2018. [Online]. Available:

https://micro.ros.org/docs/tutorials/core/teensy_with_arduino/. [Accessed 12 03

2022].

[45] micro-ROS, "micro-ROS for Arduino," GitHub, [Online]. Available:

https://github.com/micro-ROS/micro_ros_arduino#readme. [Accessed 20 04

2022].

[46] ABB, "HES880 drives modules. Mobile drive solution for working machine and

marine applications," 2018. [Online]. Available:

#https://library.abb.com/d/3AUA0000161471#. [Accessed 20 04 2022].

[47] Mathworks, Inc., "Generate Code to Manually Deploy a ROS 2 Node from

Simulink," Mathworks, Inc., [Online]. Available:

https://www.mathworks.com/help/ros/ug/generate-code-to-manually-deploy-ros-

2-node.html. [Accessed 25 04 2022].

52

List of publications

S. Jegorov, A. Rassõlkin, V. Kuts, V. Rjabtšikov and A. Partyshev, "The comparison

between ROS and ROS2 based on the propulsion drive of autonomous vehicle," Array,

2022 (Submitted) – Appendix 7.

V. Rjabtšikov, A. Rassõlkin, B. Asad, T. Vaimann, A. Kallaste, V. Kuts, S. Jegorov,

M. Stępień and M. Krawczyk, "Digital Twin Service Unit for AC Motor Stator Inter-

Turn Short Circuit Fault Detection," in 2021 28th International Workshop on Electric

Drives: Improving Reliability of Electric Drives (IWED), 2021. – Appendix 8

V. Kuts, A. Rassõlkin, A. Partyshev, S. Jegorov and V. Rjabtšikov, "ROS middle-layer

integration to Unity 3D as an interface option for propulsion drive simulations of

autonomous vehicles," IOP Conference Series: Materials Science and Engineering,

vol. 1140, p. 012008, May 2021. – Appendix 9.

M. Ibrahim, A. Rassõlkin, S. Jegorov, V. Rjabtšikov, T. Vaimann and A. Kallaste,

"Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor Digital

Twin," 2022 (Submitted). – Appendix 10

S. Jegorov, A. Rassõlkin, V. Rjabtšikov, M. Ibrahim and V. Kuts, " Novel Digital Twin

Concept for Industrial Applications. Study Case: Propulsion Drive System," ASME

IMECE Conference 2022, 2022 (Submitted) – Appendix 11.

53

Appendix 1 – Non-exclusive license for reproduction and

publication of a graduation thesis1

I Sergei Jegorov

1. Grant Tallinn University of Technology free license (non-exclusive license) for my

thesis “Middleware framework for Digital Twin entities communication”, supervised

by Anton Rassõlkin and Eduard Petlenkov.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

54

Appendix 2 – digital_twin_msgs ROS2 message definitions

Voltage.msg float32 voltage1
float32 voltage2
float32 voltage3

Current.msg float32 current1
float32 current2
float32 current3

SupplyInput.msg builtin_interfaces/Time stamp
digital_twin_msgs/Voltage voltages
digital_twin_msgs/Current currents

Power.msg builtin_interfaces/Time stamp
float32 phase1
float32 phase2
float32 phase3
float32 total

Float32Stamped.msg builtin_interfaces/Time stamp
float32 data

55

Appendix 3 – Embedded software for sampling and

transporting current and voltage data

/** @file tractionMotorMeasurement.c

 * @brief Script to handle data sampling, serialization,

 * and transport to middleware of TB DT.

 *

 * @author Sergei Jegorov (sejego)

*/

#include <micro_ros_arduino.h>

#include <stdio.h>

#include <rcl/rcl.h>

#include <rcl/error_handling.h>

#include <rclc/rclc.h>

#include <rclc/executor.h>

#include <unistd.h>

#include <time.h>

#include <std_msgs/msg/float32.h>

#include <digital_twin_msgs/msg/supply_input.h>

#define LED_PIN 13

#define RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){error_loop(del);}}

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){}}

rcl_publisher_t publisher;

digital_twin_msgs__msg__SupplyInput msg;

rclc_executor_t executor;

rclc_support_t support;

rcl_allocator_t allocator;

rcl_node_t node;

rcl_timer_t timer;

unsigned long long time_offset = 0;

const char *node_name = "teensy_mcu";

const char *node_namespace = "tb_tm";

const int VT_SCALE = 10; // scale for voltage measurements 10mV/V;

const int CT_SCALE = 1; // current fir current measurements 1mV/A

typedef struct timespec timespec;

56

/** @brief Synchronize time of MCU with uROS Agent time

 *

 * This function makes a call to uROS agent on the host to

 * receive the UNIX time in nanoseconds. The current time of the MCU

 * starts counting from 0 when it launches, thus we can find the time

 * offset by subtracting MCU time from an actual UNIX time

 *

 * @param None

 * @return None

 *

 */

void sync_time(void)

{

 // get the current time from the agent

 unsigned long now = millis();

 RCCHECK(rmw_uros_sync_session(10), 1000);

 unsigned long long ros_time_ms = rmw_uros_epoch_millis();

 // now we can find the difference between ROS time and uC time

 time_offset = ros_time_ms - now;

}

/** @brief Get current UNIX time of the MCU

 *

 * Takes into account the calculated offset and returns the UNIX time in
seconds and nanoseconds

 * since seconds to be used as timestamp.

 * @param None

 * @return timespec type current time in UNIX seconds and nanoseconds since
seconds

 */

timespec get_time(void)

{

 timespec ts = {0};

 // add time difference between uC time and ROS time to

 // synchronize time with ROS

 unsigned long long now = millis() + time_offset;

 ts.tv_sec = now / 1000;

 ts.tv_nsec = (now % 1000) * 1000000;

 return ts;

}

/** @brief calculate the sample into voltage in mV

 *

 * Recalculates the input sample bits into voltage. Knowing

 * that ADC is 10-bit, it gives a precision of ~ 3.22 mV/bit

 *

 * @param int sample, a value from 0 - 1023

 * @return float voltage in mV

*/

float sampleToVoltage(int sample)

57

{

 return sample*(3300)/((float)1024); // mV

}

/** @brief Computes the real values of traction motor input.

 *

 * Each pin from A0-A6 is read and first computed to mV value,

 * then is recalculated as follows: first 1000mV is subtracted to bring the
shifted signal down

 * to original one, then it is scaled value to reflect the real value of
sampled current/voltage.

 *

 * @param None

 * @return None

*/

void computeAndPublish(void)

{

 // create a temo variable to store intermediate voltage values

 int adc_in_sample = 0;

 adc_in_sample = analogRead(0);

 msg.currents.current1 = (sampleToVoltage(adc_in_sample) - 1000.0) /
CT_SCALE;

 adc_in_sample = analogRead(1);

 msg.currents.current2 = (sampleToVoltage(adc_in_sample) - 1000.0) /
CT_SCALE;

 adc_in_sample = analogRead(2);

 msg.currents.current3 = (sampleToVoltage(adc_in_sample) - 1000.0) /
CT_SCALE;

 adc_in_sample = analogRead(3);

 msg.voltages.voltage1 = (sampleToVoltage(adc_in_sample) - 1000.0) /
VT_SCALE;

 adc_in_sample = analogRead(4);

 msg.voltages.voltage2 = (sampleToVoltage(adc_in_sample) - 1000.0) /
VT_SCALE;

 adc_in_sample = analogRead(5);

 msg.voltages.voltage3 = (sampleToVoltage(adc_in_sample) - 1000.0) /
VT_SCALE;

 timespec ts = get_time();

 msg.stamp.sec = ts.tv_sec;

 msg.stamp.nanosec = ts.tv_nsec;

 RCSOFTCHECK(rcl_publish(&publisher, &msg, NULL));

}

/** @brief Enter an error state, blinking the LED with a designated frequency

 * in an infinite loop

 *

 * @param delay_ms indicating the period of blinking

 * @return None

*/

void error_loop(int delay_ms)

58

{

 while(1){

 digitalWrite(LED_PIN, !digitalRead(LED_PIN));

 delay(delay_ms);

 }

}

/** @brief Callback function with a wall timer used for publishing ROS
messages periodically

 *

 * Timer callback is executed everytime a timer fires an interrupt.

 *

 * @param pointer to timer, int64_t last_call_time

 * @return None

 */

void timer_callback(rcl_timer_t * timer, int64_t last_call_time)

{

 RCLC_UNUSED(last_call_time);

 if (timer != NULL) {

 computeAndPublish();

 }

}

/** @brief Setup function to initialize all ROS2 nodes, publishers,
subscribers, timers

 * and uROS executors

 *

 *

 * Initializes uROS executors, publishers with designated topics and message
types, timers

 * and callbacks for publishing and handling subscriptions. In case
something goes wrong,

 * MCU will enter into an error state with LED blinking

 *

 * @param None

 * @return None

 */

void setup() {

 set_microros_transports();

 pinMode(LED_PIN, OUTPUT);

 digitalWrite(LED_PIN, HIGH);

 delay(1000);

 allocator = rcl_get_default_allocator();

 //create init_options, if fails, will blink every 1s

 RCCHECK(rclc_support_init(&support, 0, NULL, &allocator), 1000);

 // create node

59

 RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support),
1000);

 // create publisher, if fails, the LED blinks every 100ms

 RCCHECK(rclc_publisher_init_default(&publisher, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, SupplyInput),
"supply_input"), 1000);

 // create timer,

 const unsigned int timer_timeout = RCL_MS_TO_NS(1);

 RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout,
timer_callback), 500);

 // create executor

 RCCHECK(rclc_executor_init(&executor, &support.context, 1, &allocator),
500);

 RCCHECK(rclc_executor_add_timer(&executor, &timer), 100);

 sync_time();

}

/** @brief loop function where main code executes

 *

 * spin the executor forever to run uROS

 *

 * @param None

 * @return None

 */

void loop() {

 rclc_executor_spin(&executor);

}

60

Appendix 4 – Latency test software run on Teensy 4.0 MCU

/** @file latency_test.c

 * @brief Script for generating data with time stamps

 * and measuring RTT latency.

 *

 * @author Sergei Jegorov (sejego)

 *

 */

#include <micro_ros_arduino.h>

#include <stdio.h>

#include <rcl/rcl.h>

#include <rcl/error_handling.h>

#include <rclc/rclc.h>

#include <rclc/executor.h>

#include <rmw_microros/rmw_microros.h>

#include <unistd.h>

#include <std_msgs/msg/u_int64.h>

#include <digital_twin_msgs/msg/latency_test.h>

#define LED_PIN 13

#define RCCHECK(fn, del) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){error_loop(del);}}

#define RCSOFTCHECK(fn) { rcl_ret_t temp_rc = fn; if((temp_rc !=
RCL_RET_OK)){}}

rcl_publisher_t publisher_ping;

rcl_publisher_t publisher_result;

rcl_subscription_t subscription_pong;

digital_twin_msgs__msg__LatencyTest msg_in;

digital_twin_msgs__msg__LatencyTest msg_out;

std_msgs__msg__UInt64 msg_res;

rclc_executor_t executor;

rclc_support_t support;

rcl_allocator_t allocator;

rcl_node_t node;

rcl_timer_t timer;

unsigned int msg_id = 0;

unsigned long long time_offset = 0;

61

const char *node_name = "teensy_mcu";

const char *node_namespace = "tb_tm";

/** @brief Enter an error state, blinking the LED with a designated frequency

 * in an infinite loop

 *

 * @param delay_ms indicating the period of blinking

 * @return None

*/

void error_loop(int delay_ms)

{

 while(1){

 digitalWrite(LED_PIN, !digitalRead(LED_PIN));

 delay(delay_ms);

 }

}

/** @brief Synchronize time of MCU with uROS Agent time

 *

 * This function makes a call to uROS agent on the host to

 * receive the UNIX time in nanoseconds. The current time of the MCU

 * starts counting from 0 when it launches, thus we can find the time

 * offset by subtracting MCU time from an actual UNIX time

 *

 * @param None

 * @return None

 *

 */

void sync_time(void)

{

 unsigned long now = micros();

 rmw_uros_sync_session(10);

 unsigned long long ros_time_us = rmw_uros_epoch_nanos() / 1000;

 // now we can find the difference between ROS time and uC time

 time_offset = ros_time_us - now;

}

/** @brief Get current UNIX time of the MCU

 *

 * Takes into account the calculated offset and returns the UNIX time in
microseconds

 *

 * @param None

 * @return uint64_t current time in microseconds

 */

unsigned long long get_time(void)

{

 // add time difference between uC time and ROS time to

 // synchronize time with ROS

62

 unsigned long long now = micros() + time_offset;

 return now;

}

/** @brief Publish ping message with the ID and time stamp

 *

 * @param None

 * @return None

 */

void publish_ping(void)

{

 unsigned long long stamp = get_time();

 msg_out.seq_id = msg_id;

 msg_out.stamp = stamp;

 RCSOFTCHECK(rcl_publish(&publisher_ping, &msg_out, NULL));

 msg_id += 1;

}

/** @brief Publish latency result message to calculating Node on host

 *

 * Calculates the difference in received time as a RRT.

 *

 * @param pointer to message type

 * @return None

 */

void publish_res(const void * msgin)

{

 unsigned long long time_now = get_time();

 const digital_twin_msgs__msg__LatencyTest * msg = (const
digital_twin_msgs__msg__LatencyTest *)msgin;

 msg_res.data = time_now - msg->stamp;

 RCSOFTCHECK(rcl_publish(&publisher_result, &msg_res, NULL));

}

/** @brief Callback function with a wall timer used for publishing ROS
messages periodically

 *

 * Timer callback is executed everytime a timer fires an interrupt.

 *

 * @param pointer to timer, int64_t last_call_time

 * @return None

 */

void timer_callback(rcl_timer_t * timer, int64_t last_call_time)

{

 RCLC_UNUSED(last_call_time);

 if (timer != NULL){

 publish_ping();

 }

}

63

/** @brief Subscriber callback to perform operation when new message is
received

 *

 * @param pointer to received message

 * @return None

 */

void subscriber_pong_callback(const void * msgin)

{

 publish_res(msgin);

}

/** @brief Setup function to initialize all ROS2 nodes, publishers,
subscribers, timers

 * and uROS executors

 *

 *

 * Initializes uROS executors, publishers with designated topics and message
types, timers

 * and callbacks for publishing and handling subscriptions. In case
something goes wrong,

 * MCU will enter into an error state with LED blinking

 *

 * @param None

 * @return None

 */

void setup() {

 set_microros_transports();

 pinMode(LED_PIN, OUTPUT);

 digitalWrite(LED_PIN, HIGH);

 delay(1000);

 allocator = rcl_get_default_allocator();

 //create init_options, if fails, will blink every 1s

 RCCHECK(rclc_support_init(&support, 0, NULL, &allocator), 1000);

 // create node

 RCCHECK(rclc_node_init_default(&node, node_name, node_namespace, &support),
1000);

 // create publisher, if fails, the LED blinks every 100ms

 RCCHECK(rclc_publisher_init_default(&publisher_ping, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, LatencyTest), "ping"),
2000);

 RCCHECK(rclc_publisher_init_default(&publisher_result, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(std_msgs, msg, UInt64), "latency_results"),
2000);

 // create subscriber, if fails, the LED blinks every 100ms

64

 RCCHECK(rclc_subscription_init_default(&subscription_pong, &node,
ROSIDL_GET_MSG_TYPE_SUPPORT(digital_twin_msgs, msg, LatencyTest), "pong"),
2000);

 // create timer,

 const unsigned int timer_timeout = RCL_MS_TO_NS(1);

 RCCHECK(rclc_timer_init_default(&timer, &support, timer_timeout,
timer_callback), 1000);

 // create executor

 RCCHECK(rclc_executor_init(&executor, &support.context, 2, &allocator),
500);

 RCCHECK(rclc_executor_add_timer(&executor, &timer), 300);

 RCCHECK(rclc_executor_add_subscription(&executor, &subscription_pong,
&msg_in, &subscriber_pong_callback, ON_NEW_DATA), 3000);

 sync_time();

}

/** @brief loop function where main code executes

 *

 * spin the executor forever to run uROS

 *

 * @param None

 * @return None

 */

void loop() {

 rclc_executor_spin(&executor);

}

65

Appendix 5 – Latency software run on MATLAB

latencyTestNode = ros2node("/latencyTestNode");

pause(2);

global next;

global recv;

global lost;

next = 0;

recv = 0;

lost = 0;

pingSubscriber = ros2subscriber(latencyTestNode,"/tb_tm/ping");

pongPublisher =
ros2publisher(latencyTestNode,"/tb_tm/pong","digital_twin_msgs/LatencyTest");

while true

 msg = receive(pingSubscriber,10);

 if next == msg.seq_id

 recv = recv + 1;

 out_msg = ros2message("digital_twin_msgs/LatencyTest");

 out_msg.seq_id = msg.seq_id;

 out_msg.stamp = msg.stamp;

 send(pongPublisher,out_msg);

 else

 lost = lost + msg.seq_id - next;

 end

 next = msg.seq_id + 1;

 if recv >= 60000

 quit();

 end

end

66

Appendix 6 – Latency test software run on Ubuntu VM

/**

 * @file latencyTestNode.cpp

 * @author Sergei Jegorov (sejego)

 * @brief This ROS2 Node records latencies, received and lost messages,
calculates

 * min, max and meand latencies in microseconds.

 *

 * @copyright Copyright (c) 2022

 *

 */

#include <iostream>

#include <vector>

#include <chrono>

#include <ratio>

#include <memory>

#include <algorithm>

#include "rclcpp/rclcpp.hpp"

#include "rclcpp/time.hpp"

#include <digital_twin_msgs/msg/latency_test.hpp>

#include "std_msgs/msg/u_int64.hpp"

#include "data_logger/data_logger.hpp"

using namespace DataLogger;

using namespace std::chrono_literals;

class LatencyTestNode : public rclcpp::Node

{

 public:

 std::unique_ptr<SubscriptionLogger> p_input_sub;

 LatencyTestNode() : Node("latency_test_node")

 {

 PongPublisher_ = this-
>create_publisher<digital_twin_msgs::msg::LatencyTest>("/tb_tm/pong", 10);

 PingSubscriber_ = this-
>create_subscription<digital_twin_msgs::msg::LatencyTest>("/tb_tm/ping", 50,

std::bind(&LatencyTestNode::pingCallback, this, std::placeholders::_1));

67

 LatencySubscriber_ = this-
>create_subscription<std_msgs::msg::UInt64>("/tb_tm/latency_results", 100,

std::bind(&LatencyTestNode::latencyCallback, this, std::placeholders::_1));

 p_input_sub.reset(new SubscriptionLogger("/tb_tm/ping"));

 RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "Subscription logger
initialized");

 RCLCPP_INFO(rclcpp::get_logger("rclcpp"), "LatencyTestNode
initialized");

 }

 private:

 /* Declare all message types, Publishers and Subscribers */

 rclcpp::Publisher<digital_twin_msgs::msg::LatencyTest>::SharedPtr
PongPublisher_;

 rclcpp::Subscription<digital_twin_msgs::msg::LatencyTest>::SharedPtr
PingSubscriber_;

 rclcpp::Subscription<std_msgs::msg::UInt64>::SharedPtr
LatencySubscriber_;

 digital_twin_msgs::msg::LatencyTest msg_to_send;

 /* If the expected 'ping' message is received, it is considered received,

 * and is sent back to the original publisher. Then, it receives the
recorded latencies

 * and stores them in a vector of latencies

 */

 void pingCallback(const digital_twin_msgs::msg::LatencyTest::SharedPtr
msg)

 {

 if(msg->seq_id == p_input_sub->next_id) {

 msg_to_send.seq_id = msg->seq_id;

 msg_to_send.stamp = msg->stamp;

 p_input_sub->recv_counter += 1;

 PongPublisher_->publish(msg_to_send);

 } else {

 p_input_sub->lost_count += 1;

 }

 p_input_sub->next_id = msg->seq_id + 1;

 }

 void latencyCallback(const std_msgs::msg::UInt64::SharedPtr msg){

 uint64_t latency_us = msg->data / 2;

 p_input_sub->time_diffs.push_back(latency_us);

 }

};

int main(int argc, char ** argv)

{

 rclcpp::init(argc, argv);

68

 auto ptr = std::make_shared<LatencyTestNode>();

 rclcpp::spin(ptr);

 DataLogger::save_logged_data("latency_test_results.csv");

 rclcpp::shutdown();

 return 0;

}

69

Appendix 7 – The comparison between ROS and ROS2 based

on the propulsion drive of autonomous vehicle

70

71

72

73

74

75

76

Appendix 8 – Digital Twin Service Unit for AC Motor Stator

Inter-Turn Short Circuit Fault Detection

77

78

79

80

81

Appendix 9 – ROS middle-layer integration to Unity 3D as an

interface option for propulsion drive simulations of

autonomous vehicles

82

83

84

85

86

87

88

Appendix 10 – Conceptual Modelling of an EV-Permanent

Magnet Synchronous Motor Digital Twin

89

90

91

92

Appendix 11 – Novel Digital Twin Concept For Industrial

Application. Study Case: Propulsion Drive System

93

94

95

96

