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Abstract

Speaker identification is a task of assigning speaker identities to speech segments in an
audio recording. Typically, training speaker identification systems requires hand-labelling
the data by experts, which is expensive and time-consuming. Weakly supervised learning
solves this problem by using only recording-level labels. These labels can be acquired
from existing metadata (e.g. descriptions) faster and at lower costs compared to human
labour.

The thesis studies recent advances in machine learning methods for speaker identification.
An existing implementation of a weakly supervised speaker identification system is used as
a baseline. Several improvements proposed from recent years are implemented, including
for example data augmentation techniques, using and fine-tuning a state-of-the-art x-vector
embeddings extractor. The improvements are validated by measuring precision and recall
on several test sets from different domains.

The experiments show that the improved weakly supervised speaker identification system
can maintain high precision even for out-of-domain datasets and at the same time increase
recall compared to the baseline system. That means the improved system is more robust to
channel variances and speakers with similar voice characteristics, therefore high precision
is maintained as the data evolves. At the same time the improved system can recognize
more speakers that appear in the training data.

The thesis is written in English and is 49 pages long, including 7 chapters, 16 figures and
20 tables.
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Annotatsioon
Kaudselt Juhendatud Kõnelejatuvastuse Süsteemi Implementatsioon

Eesti Avaliku Elu Tegelaste Näitel

Kõnelejatuvastus on ülesanne, mis määrab kõneleja identiteedi igale kõne segmendile
helifailis. Tavaliselt vajab kõnelejatuvastuse süsteemi treenimine ekspertide poolt käsitsi
märgendatud andmeid, mida on kallis ja ajakulukas koguda. Kaudselt juhendatud õp-
pimine lahendab selle probleemi, kasutades ainult salvestuse tasemel märgendusi juba
olemasolevatest metaandmetes (näiteks kirjeldus). Selliseid andmeid on oluliselt kiirem ja
odavam koguda.

Magistritöö eesmärgiks on uurida hiljutisi edusamme masinõppe meetodites kõnelejatu-
vastuse läbiviimiseks. Alusena on kasutatud olemasolevat kaudselt juhendatud kõnele-
jatuvastuse süsteemi, samuti on rakendatud mitmeid viimastel aastatel väljapakutud täius-
tusi. Need täiustused sisaldavad näiteks andmete paljundamist, ette-treenitud kõneleja
x-vektorite eraldaja kasutamist ja kohandamist. Süsteemi täiustused valideeritakse mõõtes
täpsust ja saagist erinevate valdkondade test andmete peal.

Katsed näitavad, et täiustatud kaudselt juhendatud kõnelejatuvastuse süsteem suudab
säilitada kõrge täpsuse ka eri valdkondade andmete peal, mida mudel ei ole varem näinud,
samas tõsta ka saagist. See tähendab, et täiustatud mudel suudab täpsemini tuvastada
sarnase kõnestiiliga isikuid üle erinevate kanalite ning tuvastada rohkem treeningandmetes
kohatud isikuid.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 7 peatükki, 16
joonist, 20 tabelit.
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1. Introduction

Speaker identification is a task of recognizing the identity of a speaker based on his/her
voice. This task has a wide range of applications, from forensic investigations to voice-
based authentication systems. Common speaker identification systems rely on supervised
learning, which require large amount of discretely labelled data. However, collecting
discretely labelled data is a time-consuming and expensive process.

To address this issue, previous research has proposed weakly supervised approaches to
speaker identification systems. In particular, the thesis of Martin Karu and Tanel Alumäe
in 2018 proposed a method for speaker identification using audio recordings with only
recording level labels [1].

The thesis aims to improve the aforementioned existing weakly supervised speaker identi-
fication system. Specifically, a larger and more recent dataset from the Estonian Public
Broadcasting archive is used to train the model. Furthermore, a more recent pre-trained
model is used for calculating speaker embeddings for input to the speaker identification
model. The pre-trained speaker embedding model is also fine-tuned on raw audio files
as an input instead of using static pre-calculated speaker embeddings. In addition to
the in-domain recordings from the Estonian Public Broadcasting archive, the improved
versions are also evaluated using out-of-domain audio recordings (e.g. "Arvamusfestival").
The hypothesis is that at least 90 % precision can be achieved in identifying corresponding
speakers on both in-domain and out-of-domain datasets and at the same time recall is
increased compared to the baseline model by using these techniques.
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2. Background Theory

2.1 Speaker Recognition

Speaker recognition in general consists of several sub-tasks, including speaker diarization,
verification, and identification.

2.1.1 Speaker Diarization

Speaker diarization is a process of partitioning an audio stream into homogeneous speaker
segments and determining which segments are uttered by the same speaker [2]. This
process is often categorised further into speech detection, speaker segmentation and
speaker clustering stages. Speaker diarization is typically a preliminary step to speaker
verification or identification process as it reduces the complexity of the process down to a
single speaker. The process of a typical speaker diarization system is depicted in Figure 1.

Figure 1. The process of speaker diarization. A typical speaker diarization system consists
of a speech detection stage, a segmentation stage, and a clustering stage [3].

2.1.2 Speaker Identification

Speaker verification and speaker identification are two very similar areas of research.
Speaker verification is a process of deciding whether an unknown speaker segment belongs
to a specific reference speaker or not [2]. Latter has only two possible outcomes - whether to
accept the reference speaker or reject the impostor. Speaker verification is commonly used
in forensic investigation and voice-based authentication systems. Speaker identification
differs from speaker verification only by deciding between multiple reference speakers
instead of one [2]. Speaker identification systems are often seen in automatic transcription
systems. Figure 2 depicts the difference in speaker identification and verification systems.
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Figure 2. Speaker recognition fundamental tasks (verification and identification) [4].

A speaker identification system typically uses speaker diarization as a preliminary step to
reduce the complexity of the problem down to a single speaker.

Speaker identification process typically consist of two phases: enrolment and recognition,
also known as training and testing phases [2].

In most modern speaker identification systems, a model is trained for each speaker sepa-
rately in the enrolment phase. Each speaker in the training set will be associated with a
feature vector called embedding. The embedding is a compact representation of the unique
characteristics of a speaker’s voice. In the recognition phase, an unknown speaker segment
is provided to a classifier that decides which speaker in the training set is the most similar
to the unknown speaker.

In some literature, speaker recognition models are divided into two sections: frontend
and backend. Frontend is applied both in the enrolment and the recognition phase and is
responsible for extracting the features (e.g. MFCCs) from a raw audio waveform, that are
later used for speaker modelling. Backend is responsible for the speaker modelling and
either identifying or verifying the speaker identity by comparing the embeddings from the
known speakers to the embedding from the unknown speaker’s speech signal (see Figure
3).

2.2 Weakly Supervised Learning

2.2.1 Overview

Machine learning is typically divided into supervised and unsupervised learning. Unsuper-
vised learning does not require any labels on the data that is used to train a machine learning
model. Usually these methods are used for solving clustering, association pattern mining,
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Figure 3. Speaker verification system with frontend and backend diversity [5].

and dimensionality reduction problems. Supervised learning requires labels on the data
that is used to train a model. These methods are typically used for solving classification
and regression problems.

Speaker identification is a type of multi-label classification problem, therefore supervised
learning is the most suitable approach for solving the problem. However, collecting large
amount of labelled data for a speaker identification task is time-consuming and expensive.
Fortunately, weakly supervised learning can be used to overcome this issue.

Weakly supervised learning refers to machine learning methods where datasets are used
with partially labelled data. Many types of weak supervision exist, including:

■ Candidate labels: Multiple labels are assigned to each training sample, while only
one of them is correct.

■ Probabilistic labels: Every label is assigned to every training sample with a given
probability.

■ Incomplete labelling: Each training sample belongs to multiple classes, but only a
partial set of the classes are labelled for each sample.

■ Crowd annotation: Labelling is done by non-expert and cheap labour, thus the labels
are not very trustworthy.

■ Label proportions: The proportions of the labels in a set of instances are known, but
not which ones precisely correspond to each label.

2.2.2 Weakly Supervised Speaker Identification

Speaker identification systems aim to identify a person based on his/her voice. Training a
speaker identification model usually requires time-based annotations on the training data.
However, it is difficult to cover a wide range of speakers (e.g. thousands of politicians
for media monitoring purposes) and it is difficult to keep it up-to-date as it requires
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hand-labelling additional data. An example of time-based annotation is seen in Figure 4.

Figure 4. Time-based annotations required for supervised learning in speaker identification
systems.

Weakly supervised speaker identification system however requires only recording-level
labels. That means only the set of speakers who appear somewhere in the recording are
known, therefore time-based annotation is not required (see Figure 5). This simplifies the
data acquisition process, since there is a lot more data already available on the internet that
already include this kind of metadata (e.g. textual descriptions describing the contents and
speakers of a radio show).

Figure 5. Recording-level labels required for weakly supervised learning in speaker
identification systems.

2.2.3 Method

In 2017, Martin Karu and Tanel Alumäe proposed a weakly supervised method for speaker
identification (see Figure 6). For training, a list of audio files is used only with the
corresponding sets of speakers. Training the system requires speaker diarization, which
outputs a list of automatically segmented audio files, where each utterance belongs to
an unknown homogeneous speaker. Each segment is then transformed into a speaker
embedding. Since it is unknown which embeddings correspond to which speakers, a deep
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neural network is trained that maps speaker embeddings to the speakers known from the
training data, using a special cost function. [1]

Figure 6. Overview of a weakly supervised speaker identification system proposed by
Martin Karu and Tanel Alumäe. [1]

The weakly supervised DNN uses a set of recordings for training, each of which consists
of a set of persons-of-interest that speak there, and a set of embeddings. However, it is
unknown which embeddings correspond to which speakers. Also, there could be more
embeddings compared to the number of speaker labels.

The weakly supervised DNN is used to compute posterior probabilities for all embeddings
of the diarized speakers in a recording. These posterior probabilities are then averaged
(predicted average), which results in a probability distribution across speakers. An expected
average, described in Equation 2.1, is also calculated for the special cost function. Finally,
Kullback-Leibler divergence is calculated between the predicted and expected average
distributions. Until the model has not converged during training, the DNN gradients and
model weights are recalculated during back-propagation, and the process is repeated. [1]
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pn(yi) =


1

|Xn| if yi ∈ Yn

max(0, 1− |Yn|
|Xn|) if yi = ⟨unk⟩

0 otherwise

(2.1)

Intuition

Assume there are five speaker embeddings (five diarized speakers) and two speaker labels
(John and Mary) from a single recording. Xn = 5 is the number of detected speakers. For
John and Mary, the expected average posterior probability is 1

5
. For other known speakers,

the expected average posterior is zero. For the unknown speaker label (sort of background
model), the expected average is 1− 2

5
= 3

5
.

Therefore, the model is encouraged to produce non-zero average posterior speaker A only
if speaker A occurs in the corresponding recording. For all other recordings, the model is
trained to produce a zero average posterior for speaker A.

Limitations

The described method also introduces some limitations:

■ Each person-of-interest should appear in several recordings (the more, the better).
■ Two persons should not always appear in the same recording (otherwise there is no

way to distinguish which embedding belongs to which speaker).

2.3 Mel-Frequency Cepstral Coefficients

The human auditory system is more sensitive to some frequency bands than others. This
sensitivity is not linear across the frequency range. MFCCs take this into account by using
the Mel-scale, which is a logarithmic scale that maps frequencies from Hz to a perceptually
relevant scale. [6]

The Mel-scale is based on the observation that humans perceive differences in low-
frequency sounds more easily than differences in high-frequency sounds. Therefore,
MFCCs use more filter banks to cover the lower frequency range, and fewer filter banks
for the higher frequency range. [6]

MFCCs also involve taking the logarithm of the magnitude of the speech spectrum, which
compresses the dynamic range of the signal and makes it easier to work with. After
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applying the Mel-scale, the logarithmic transformation, and other additional processing
steps (e.g. applying a Discrete Cosine Transform), the resulting MFCCs provide a compact
representation of the spectral characteristics of a speech signal. [7]

Calculating MFCCs consists of the following steps:

1. Pre-emphasis: The speech signal is passed through a high-pass filter to emphasize
higher frequencies [7].

2. Framing: The pre-emphasized signal is divided into overlapping frames, typically
with 20-40ms durations[7].

3. Windowing: A windowing function (e.g. Hamming) is applied to each frame to
smoothen the frame boundaries [7].

4. Fast Fourier Transform: The Fourier transform is applied to each frame to convert it
from time domain to the frequency domain. The frequency domain can be visualized
as a spectrogram over the time-domain [7].

5. Mel-filterbank: A bank of filters, spaced according to the Mel-scale, is applied to
the magnitude spectrum of each frame. This results in the energy within each of the
frequency bands.

6. Discrete Cosine Transform: The DCT is applied to the logarithm of the energies
from the filterbanks to obtain a set of cepstral coefficients [7].

7. Finally, the first few coefficients are discarded, since they represent the overall energy
/ gain of the signal. The rest of the coefficients (2-13) are kept as MFCCs [7].

Different forms of the audio signal during the calculation process are depicted in Figure 7.

Figure 7. Forms of an audio signal during the MFCCs calculation [8].
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2.4 Embeddings

Extracting features that represent the most discriminative features of a speaker’s voice
is the key problem in speaker identification systems. This section describes different
algorithms used to calculate speaker embeddings and how they have improved over time.

2.4.1 I-vectors

For years GMM-UBM (Gaussian Mixture Model - Universal Background Model) was the
state-of-the-art method used for speaker recognition tasks. In essence, it follows a standard
speaker identification process. Firstly, a Gaussian mixture model is trained across all the
speakers in the training set. Secondly, for each speaker in the training set, the means of the
Gaussian mixture model are adjusted. As a result, the adapted mixture components from
the GMM are used as a speaker embedding, also referred to as a GMM supervector [9].

However, the traditional GMM-UBM method does not perform well due to speaker and
channel variability (noise, echoes, distortions from the microphone; pitch, gender, dialect
of the speaker; etc.). In 2011, i-vectors were introduced to overcome the speaker and
channel variability using joint factor analysis (JFA) on top of the traditional GMM-UBM
approach [9].

I-vectors output a compact representation of the unique speaker’s voice characteristics (em-
beddings) together with the total variability matrix to overcome the previously mentioned
speaker and channel variability issues [9].

The i-vector extraction framework is depicted in Figure 8.

Figure 8. The i-vector extraction framework [10].
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2.4.2 X-vectors

With the popularization of deep neural networks, alternative approaches to the traditional
GMM-UBM method were proposed. In 2018, David Snyder et al. proposed a method to
map variable-length utterances to fixed-dimensional embeddings, called x-vectors, using
deep neural networks [11].

The x-vector system consists of five frame-level layers, one statistical pooling layer, two
segment-level layers, and a soft-max layer. In the experimental setup, the input used 30-
dimensional MFCC features, extracted from 25ms audio signal frames, mean-normalized
over a sliding window of up to 3 seconds [12].

Suppose t is the current time step. Frames from (t-2) to (t+2) are spliced at the first layer.
On the second frame layer, the output of the first layer is spliced at time steps (t-2) to t and
t to (t+2). The third frame layer splices the output of the second layer at time steps (t-3) to
t and t to (t+3). The fourth and the fifth layer keep the same temporal context. Therefore,
the total temporal context after the third layer is 15 frames [12].

The statistical pooling layer converts the variable-length input into a fixed-dimensional
vector. It aggregates over the output vectors from the fifth frame layer and computes their
mean and standard deviation [12].

The segment layers are hidden layers that map the output of the statistical pooling layer
to speaker identities. Finally, the softmax layer returns the probability distribution across
speakers available in the training set [12].

In the enrolment phase, the x-vector system is trained to solve a classification problem. A
speaker segment is input to the model. The model outputs a probability distribution across
all the known speaker labels. To use this model as an embedding extractor, the last layer is
discarded together with the non-linearity (ReLU) layer from the second segment layers,
and the output is used as the speaker embedding for the speaker identification model [12].

Architecture of the x-vector system described by Snyder et al. is depicted in Figure 9.

2.4.3 ECAPA-TDNN

ECAPA-TDNN is a version of the previously described x-vector system with enhance-
ments adapted from recent trends in face verification and computer vision. The network
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Figure 9. Architecture of the x-vector system [13].

architecture is depicted in Figure 10. The ECAPA-TDNN architecture has two main
differences:

■ Channel- and context-dependent statistics pooling: the statistical pooling layer is
replaced with an attention mechanism and adapted to be channel-dependent. Suc-
cess with multi-headed attention has shown that certain speaker properties can be
extracted on different sets of frames. The attentive statistical pooling allows the net-
work to focus only on frames it deems important. Furthermore, making the attention
mechanism channel-dependent allows focusing only on speaker characteristics that
do not activate on identical or similar time instances [14].

■ 1-dimensional squeeze-excitation Res2Blocks: since the temporal context of the
initial x-vector system is limited to 15 frames, and it is proven to be beneficial to
expand the temporal context, the frame-level layers are replaced with a Conv1D +
ReLU + Batch normalization block, three SE-Res2Blocks with residual connections,
following another Conv1D + ReLU block before the attentive statistical pooling
layer [14].

Conv1D

Conv1D layer stands for 1-dimensional convolutional layer, also known as temporal
convolution. It is a set of 1-dimensional filters (or kernels), parameters of which are
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Figure 10. Network topology of the ECAPA-TDNN [14].

learned throughout the training. It convolves over a single dimension in the input and
produces a transformed output depending on the learned weights.

ReLU

ReLU stands for rectified linear unit. ReLU is a simple activation function commonly used
in neural networks that helps to model non-linearities in the data.

Batch Normalization

Batch normalization simply centres and re-scales the layer inputs to make the neural
network training process more stable and faster [15]. It also helps to avoid the exploding
and/or vanishing gradients problem in neural networks.

20



Squeeze and Excite (SE)

Convolutional layers allow learning multiple feature maps from a single input (channel) as
the layers go deeper by increasing the number of channels in the output of a convolutional
layer. However, traditionally these channels are all weighted equally. Squeeze-and-
Excitation technique allows to selectively emphasize channels with more informative
features [16].

SE-Res2Block

SE-Res2Block consists of four blocks [16]:

■ Conv1D + ReLU + Batch normalization
■ Res2 Dilated Conv1d + ReLU + Batch normalization: Dilation adds a configurable

spacing between each element in the input
■ Conv1D + ReLU + Batch normalization
■ SE block
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3. Data

This chapter describes the data used in the speaker identification experiments. The data
consists of audio recordings and metadata associated with each recording from two publicly
available sources: Estonian Public Broadcasting archive and Soundcloud.

3.1 Sources

3.1.1 Estonian Public Broadcasting Archive

Estonian Public Broadcasting archive is a collection of radio and TV shows that have been
produced and broadcasted by Estonian Public Broadcasting (ERR) over the years. Access
to the archive is free of charge. Each radio episode contains its metadata, including the
title, description and names of the speakers in the episode. TV shows do not include any
metadata besides the title, therefore the names of the speakers had to be labelled manually.

The thesis uses data from three different radio shows: "Päevakaja", "Reporteritund", and
"Uudised". Additionally, six episodes from both "Aktuaalne Kaamera" and "Ringvaade"
are used.

3.1.2 Soundcloud

Soundcloud is an audio distribution platform, where users can share and listen to music,
podcasts, and other audio content from independent creators.

To evaluate model performance on out-of-domain datasets, a set of episodes are used from
the "Arvamusfestival" channel. "Arvamusfestival" is an annual open-air event, where
people can discuss and debate a range of topics and issues that are important to society,
including politics, culture, environment, education, and more. These debates are recorded
and published through the Soundcloud platform.

Each episode includes only description for each episode, which may or may not include
the names of the speakers in the episode.
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3.2 Data Acquisition

Two scrapers were built in order to obtain the data from the aforementioned sources.

Firstly, the ERR archive scraper takes a list of URLs referencing the radio shows in interest.
The scraper iterates over all the shows and episodes, downloads the audio files and extracts
metadata visible on the page. Names of the speakers were formatted to a unified format,
i.e. {first name} {last name}.

Similar scraper was used for TV shows, however none of the TV shows had any metadata
associated. Six episodes from "Aktuaalne Kaamera" and six episodes from "Ringvaade"
were randomly selected and manually labelled with the names of the speakers.

Secondly, the Soundcloud scraper takes a reference to a Soundcloud profile and downloads
all the tracks with corresponding descriptions uploaded by that user.

Since the system is trained to identify Estonian Public Figures and most of the content
is in Estonian, a language identification model was used to exclude episodes of the
"Arvamusfestival" in foreign languages. The language identification model is a version
of RoBERTa, called XLM-RoBERTa, which is trained on 2.5TB of CommonCrawl data
containing 100 languages using masked language modelling (MLM) objective.

On the purged dataset, a named entity recognition model was used to recognize names
of the speakers from the episode descriptions. Since the names of the speakers were
arbitrarily located in the description (see Figure 11), a rule-based approach would not
have been effective. The model used for named entity recognition was XLM-R + NER
(another version of XLM-RoBERTa), which is fine-tuned for named entity recognition on
XTREME dataset containing data across 40 languages.

Figure 11. Description of an episode in "Arvamusfestival".
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Unfortunately, some speakers who appeared in the recordings were not mentioned in the
descriptions and caused false-positives in the model validation phase. Thus, ten episodes
with the largest speaker sets were picked and manually verified from the "Arvamusfestival"
dataset.

3.3 Statistics

3.3.1 Total number of shows used

The total number of in-domain recordings is close to 24 000. The put-of-domain recordings
include 32 recordings from ERR TV shows and "Arvamusfestival", which were hand-
picked and whose labels were manually verified after an automatic extraction. Datasets
were split into train, dev, and test sets. The train set is used for training the model. The dev
set is used for model training progress monitoring and validation. The test set is used for
the trained model evaluation. Table 1 displays the total number of recordings used in each
set.

Show Train Dev Test Total
Uudised 10585 1323 1324 13232
Päevakaja 7109 889 889 8887
Reporteritund 1236 154 155 1545
TV (Aktuaalne Kaamera, Ringvaade) 0 6 6 12
Arvamusfestival 0 0 20 20

Table 1. Total number of recordings per show and dataset.

3.3.2 Total duration of recordings

In total almost 4490 hours of recordings was acquired. The distribution of the recording
durations is shown in Table 2.

Show Train Dev Test Total
Uudised 27492 3110 3207 33809
Päevakaja 118655 18945 19537 157137
Reporteritund 59973 8049 8187 76209
TV (Aktuaalne Kaamera, Ringvaade) 0 173 171 344
Arvamusfestival 0 0 1861 1861

Table 2. Total duration of recordings per show and dataset in minutes.
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3.3.3 Number of recordings annually

Figure 12 shows the number of recordings annually for each show in the dataset. "Re-
porteritund" dates back to year 1957, but the number of shows recorded varies annually.
"Uudised" is a show with the highest number of recordings. The published recording
frequency has increased almost 10 times since the last few years.

Figure 12. Number of recordings per show annually.

3.3.4 Average number of speaker occurrences per show annually

Figure 13 shows how the average number of speaker occurrences in a recording has
changed over the years per show. While most of the shows include a similar number of
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speakers on average in every episode, the number of speaker occurrences per episode has
increased in "Päevakaja" since 2009.

Figure 13. Average number of speaker occurrences in a recording per show annually.

3.3.5 Frequency Rank vs. Appearances

Figure 14 depicts how the speaker occurrence frequency rank compares to the number of
occurrences across all episodes in a show. For example, it is shown that in "Päevakaja" the
most frequent speaker appears in around 400 episodes more compared to the second most
frequent speaker.
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Figure 14. Average number of speaker occurrences per show.

3.3.6 Most Frequent Speakers per Show

Figures 3-7 display top ten most frequent speakers in the show. It is shown that out-of-
domain shows ("Arvamusfestival" and TV) do not include any frequent speakers that
appear in in-domain shows ("Uudised", "Päevakaja", and "Reporteritund").
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Show Name Count Rank
Uudised Uku Toom 903 1
Uudised Madis Hindre 814 2
Uudised Mall Mälberg 715 3
Uudised Indrek Kiisler 708 4
Uudised Margitta Otsmaa 474 5
Uudised Ester Vilgats 474 5
Uudised Jüri Nikolajev 452 7
Uudised Joakim Klementi 436 8
Uudised Kai Vare 425 9
Uudised Olev Kenk 400 10

Table 3. Top 10 most frequent speakers in "Uudised".

Show Name Count Rank
Päevakaja Uku Toom 2182 1
Päevakaja Mall Mälberg 1736 2
Päevakaja Tõnu Karjatse 1562 3
Päevakaja Margitta Otsmaa 1450 4
Päevakaja Kai Vare 1376 5
Päevakaja Indrek Kiisler 1312 6
Päevakaja Riina Eentalu 1238 7
Päevakaja Janek Salme 1188 8
Päevakaja Madis Hindre 981 9
Päevakaja Olev Kenk 922 10

Table 4. Top 10 most frequent speakers in "Päevakaja".

Show Name Count Rank
Reporteritund Arp Müller 405 1
Reporteritund Kaja Kärner 319 2
Reporteritund Mirko Ojakivi 179 3
Reporteritund Lauri Hussar 107 4
Reporteritund Andrus Ansip 54 5
Reporteritund Peeter Kaldre 45 6
Reporteritund Neeme Raud 32 7
Reporteritund Urmas Paet 31 8
Reporteritund Mart Ummelas 27 9
Reporteritund Harri Tiido 26 11

Table 5. Top 10 most frequent speakers in "Reporteritund".
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Show Name Count Rank
TV Marko Reikop 6 1
TV Anna Pihl 4 2
TV Martin Mileiko 3 6
TV Maria-Ann Rohemäe 3 6
TV Margus Saar 3 6
TV Priit Kuusk 3 6
TV Kadri Hinrikus 3 6
TV Taavi Rõivas 3 6
TV Tiina Jaakson 3 6
TV Astrid Kannel 2 20

Table 6. Top 10 most frequent speakers in TV.

Show Name Count Rank
Arvamusfestival Mailis Reps 3 1
Arvamusfestival Kristi Ockba 2 3.5
Arvamusfestival Züleyxa Izmailova 2 3.5
Arvamusfestival Urmas Viilma 2 3.5
Arvamusfestival Märt Treier 2 3.5
Arvamusfestival Aaro Nursi 1 88.5
Arvamusfestival Kaisa Jõgeva 1 88.5
Arvamusfestival Kaupo Heinma 1 88.5
Arvamusfestival Katrin Helendi 1 88.5
Arvamusfestival Katri Lamesoo 1 88.5

Table 7. Top 10 most frequent speakers in "Arvamusfestival".
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4. Experimental Setup

This chapter describes the experimental setup for the weakly supervised speaker identifica-
tion system.

4.1 Overview

As a baseline a deep neural network is implemented that expects speaker embeddings as an
input, solves a multi-label classification problem, and outputs the probability distribution
across the speakers known from the training set. The speaker label with the highest
probability is chosen as the identity for the input speaker embedding.

The baseline model uses static i-vector embeddings extracted from audio files using the
Kaldi toolkit. The extraction process is explained more in detail in Chapter 5.

The speaker identification model is written using the PyTorch deep learning library. The
data structure and pre-processing in managed using the Kaldi toolkit.

4.2 Model Architecture

The model architecture is a simple fully-connected deep neural network and consists of
the following layers:

■ Linear: Applies linear transformation on the input data
Input: (batch size, embedding dimensionality).
Embedding dimensionality depends on the type of embeddings used
(2048 for i-vectors and 192 for x-vectors).

■ Leaky ReLU: Activation function that allows to learn non-linearities in the input
data. Similar to ReLU, but has a small slope for negative values instead of zero.

■ Dropout: Disables a random subset of neurons on every training step to avoid
overfitting. By default, 10 % of the neurons are randomly disabled.

■ Linear:
Input: (batch size, hidden dim)
Hidden dim is a configurable number of dimensions defined as a hyperparameter

before training.
■ Leaky ReLU
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■ Dropout
■ Linear:

Input: (batch size, hidden dim)
Output: (batch size, number of speakers in training set).

■ Soft-max: Normalizes the output probability distribution, so the values sum to 1.

The model is implemented using the PyTorch Lightning framework. Lightning abstracts
away most of the boilerplate code that is typically required for training a deep neural
network. At the same time it allows to easily override every step in the training process.

4.3 KaldiDataset

The dataset loader was implemented using the PyTorch Dataset abstraction, which defines
functions how to load the data into memory from disk in batches. Batching allows to train
and inference the model on datasets that would not normally fit into operational memory
or video ram.

Since the dataset structure follows the standard Kaldi format, a generic KaldiDataset class
was implemented. KaldiDataset requires wav2names.json and wav2spk files to be present
in the provided dataset path.

KaldiDataset is responsible for the following tasks:

■ Mapping speaker names to sequential label identifiers.
■ Counting the number of speaker occurrences in the dataset.
■ Computing the oracle name coverage: In the training phase speakers that occur less

than a configurable min-speaker-occ times are excluded from the dataset. Oracle
name coverage is the ratio of names left in the dataset. This is also the theoretical
maximum recall the model can achieve during the evaluation phase.

■ Loading speaker embeddings from the disk.

4.4 Training

The training process is similar to the weakly supervised speaker identification method
described in Chapter 1. A batch of embeddings is propagated through the aforementioned
network. The model calculates label regularized loss during training based on the previous
work of Martin Karu and Tanel Alumäe. Stochastic gradient descent optimizer minimizes
the loss function through back-propagation. This process is repeated over each batch and
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for a fixed number of times (epochs). [1]

4.5 Inference

Once the model is trained, a new speaker embedding can be extracted from a new speech
segment, which can be input to the network to calculate the probability distribution across
the known speaker identities.

In order to select a single speaker identity from the probability distribution as a prediction,
a fixed threshold is used that can be tuned after the model is trained. The output values
always sum to one. Threshold allows to pick a single label based on the probability
distribution if the label has higher probability than the threshold compared to other labels
in the output. Otherwise, the predicted label is unknown.

During the evaluation phase, precision and recall is measured at a fixed 50 % threshold.
Precision measures how many speakers the model predicted correctly from all of its
predictions. Recall measures how many speakers the model could recognize at all. In this
thesis, the goal is to optimize for high precision while also trying to increase recall.
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5. Improvements

This section proposes several improvements to the baseline model described in Chapter
4. The i-vector-based model is re-trained on the dataset described in Chapter 3. The
posterior probabilities are adjusted, and data augmentation is applied to improve the
model’s performance. Furthermore, i-vector embedding extractor is replaced with x-
vectors embedding extractor using a pre-trained ECAPA-TDNN model. Moreover, the
pre-trained ECAPA-TDNN model is fine-tuned to fit the data collected in this thesis.
Finally, dynamic audio-level augmentation is performed using spec-augmentation. [17]

5.1 Adjusting the Posterior Probabilities

Adjusting the posterior probabilities is a regularization technique used to improve gen-
eralization performance in machine learning methods when the training data is highly
imbalanced. The general idea is to penalize the model’s output probability distribution
depending on the number of occurrences of the speakers in the training data. Machine
learning methods can bias towards the more frequent speakers. That means during infer-
ence, the model is overly confident over the frequent speakers, but not very confident about
the speakers seen only a few times in the training set.

Let’s obtain the true prior probabilities for each class, P ′(y = k), and the imbalanced prior
probabilities, P (y = k), where k is the speaker label.

For each class k, the ratio of true priors to imbalanced priors can be computed:

Rk =
P ′(y=k)
P (y=k)

The given the output probabilities of the speaker identification model, P (y = k|x), can be
adjusted by using the following formula:

P ′(y = k|x) = P (y=k|x)·Rk

Z

where Z is the normalization constant to ensure the sum of the adjusted probabilities equals
1:

Z =
∑

k P (y = k|x) ·Rk
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5.2 Data Augmentation

The performance of deep neural network-based models relies heavily on the amount of
data used for training. Growing the size of the labelled dataset can be expensive, therefore
data augmentation is often used to prevent overfitting and to improve the generalization
ability [18].

In this thesis, each recording was modified in the training set by adding following noises
to the audio files, each with 80 % probability:

■ Reverberation (Room Impulse Response, Echo): A repeated vanishing reflection of
sound after it is produced [19].

■ Background noise: A random Gaussian noise - makes input space smoother and
easier to learn.

■ Point-source noise: Random sudden noises (e.g. door slams and footsteps).

The modified recordings were combined with the original recordings and used for training
with two times larger number of epochs.

5.3 Pre-Trained Models

Due to the lack of available in-domain data, training a large deep neural network from
scratch that performs well is nearly impossible. In these cases transfer learning is commonly
used to adapt pre-trained models to use-cases with smaller datasets. Transfer learning
consists of two steps: training and fine-tuning. The model is usually trained to solve a
general task on a very large dataset that is easy to acquire. These pre-trained models are
also often made publicly available for research purposes. Finally, the pre-trained model is
fine-tuned to a specific use-case on a smaller dataset with a smaller learning rate.

The implementation in this thesis uses a pre-trained a TDNN-UBM i-vector extractor and
a pre-trained ECAPA-TDNN x-vector extractor.

5.3.1 Kaldi’s TDNN-UBM I-vectors

The baseline model uses i-vector extractor provided by the Kaldi toolkit. Kaldi is toolkit
that provides scripts and libraries for common speech recognition tasks. Kaldi’s i-vector
extractor uses TDNN-UBM (Time delay deep neural network-based universal background
model). TDNN-UBM is a method similar to GMM-UBM described in Chapter 2, however
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the speakers are modelled using a time delay neural network instead of a Gaussian mixture
model [20].

Kaldi toolkit has strict requirements how the dataset should be stored in order to use its
scripts. Fortunately, it also provides scripts to transform the raw audio and metadata files to
the standard structure expected by Kaldi. The data directory is split by show and includes
components including:

■ /wav/: Directory containing the audio files in waveform audio file format (wav).
■ /wav.scp: File that defines a mapping between an audio file identifier and the wav

file location.
■ /wav2names.json: File that defines which speakers speak in each audio file.

To extract i-vector embeddings from raw audio files, Kaldi provides a script called ex-
tract_ivectors.sh. The script outputs a spk_ivector.scp file, which contains the extracted
embeddings for every diarized speaker. These embeddings can be used to train and
inference the weakly supervised speaker identification model.

5.3.2 Speechbrain’s ECAPA-TDNN X-vectors

ECAPA-TDNN was proposed by Brecht Desplanques et al. in 2020 and showed 19 % rela-
tive improvement in equal-error-rate compared to the strong baseline systems in VoxCeleb
and VoxSRC 2019 evaluation sets. This thesis uses x-vectors from the SpeechBrain’s
ECAPA-TDNN model [21] pre-trained on the Voxceleb dataset [22].

To acquire the pre-trained model, speechbrain library provides EncoderClassifier class,
which was used to download the pre-trained speechbrain/spkrec-ecapa-voxceleb model.
To store the x-vector embeddings in the same format as i-vector embeddings, the kaldiio

library provides WriteHelper class that allows to store the embeddings in the format
expected by Kaldi. The stored embeddings were used in the same manner to train the
weakly supervised speaker identification model.

5.4 Fine-Tuning ECAPA-TDNN

Instead of training the speaker identification model separately from the embedding extractor
model, the ECAPA-TDNN model is used as a backbone for the speaker identification
model. This way the embedding extractor can be fine-tuned while training the speaker
identification model.
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In order to combine these two models, the KaldiDataset was modified by adding the
ECAPA-TDNN pre-trained model as a backbone to the weakly supervised speaker identifi-
cation model.

KaldiDataset now loads the raw audio files in addition to their metadata. During training,
two five-second samples were randomly picked from each utterance on every epoch.

The speaker identification model now downloads the pre-trained ECAPA-TDNN model.
On forward propagation, the model is input the five-second audio segments instead of
the static speaker embeddings. The model first calculates features (MFCCs) from the
raw audio file, applies mean variance normalization, and computes embeddings using the
ECAPA-TDNN network. The rest of the model architecture remains the same.

Fine-tuning a pre-trained model should not be done using as high learning rate as the rest
of the model. The learning rate is scaled down to 1 % only for the backbone model. The
learning rate is also frozen after 3000 training steps to avoid overfitting the pre-trained
model.

5.5 SpecAugment

Now that the speaker identification model is trained together with the x-vectors extractor,
dynamic data augmentation can be applied in the training phase as well. SpecAugment is
one of the most widely used audio augmentation methods today. SpecAugment (see Figure
15) applies the following transformations on the extracted features (MFCCs) spectrogram:

■ Time stretch: Scaling the input along the time domain.
■ Time masking: Masks n time windows across the whole frequency domain.
■ Frequency masking: Masks n frequency bands across the whole time domain.
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Figure 15. Spec-Augment applied on an audio spectrogram [23].

This thesis uses only time masking and frequency masking, because the model is trained
strictly on five-second audio samples. Masking is applied after mean variance normaliza-
tion for two frequency bands and two time windows.

After applying the dynamic spec-augmentation, the model was trained two times longer
than normally, so the model would see more than one combination of the augmented data.
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6. Evaluation

This chapter explains how each of the aforementioned improvements affected the baseline
model performance. Precision and recall is used to evaluate each model improvement. All
predictions use a fixed 50 % threshold, i.e. if the model is 50 % more confident about a
label compared to the other labels, it is chosen as the prediction. Otherwise, the predicted
speaker identity is unknown.

The goal is to optimize the speaker identification system for precision in order to avoid
false-positives as much as possible. The precision can be further increased by increasing the
threshold, however this increase will sacrifice recall, i.e. fewer speakers will be recognized.

6.1 Baseline

As a baseline, the weakly supervised speaker identification model proposed by Martin Karu
and Tanel Alumäe is reimplemented in PyTorch [1]. The model was previously trained
only on a "Päevakaja" dataset acquired from ERR archive in 2017. Table 8 shows the
performance metrics per show on the newly acquired datasets. It is shown that precision
on "Päevakaja" is still higher than 90 %, however it produces a lot of false-positives for
out-of-domain datasets.

dev test
Show Precision Recall Precision Recall
Uudised 77.8 % 45.4 % 69.8 % 41.1 %
Päevakaja 95.2 % 59.6 % 90.5 % 48.1 %
Reporteritund 75.6 % 58.8 % 74.2 % 56.4 %
TV 63.7 % 27.3 % 69.0 % 23.4 %
Arvamusfestival 43.1 % 17.2 %

Table 8. Baseline model performance metrics.

6.2 Larger and More Recent Dataset

It is expected that people in the Estonian Public Broadcasting shows change over time.
That reduces the recall of the model over time. New speakers with similar voices may also
be confused with known speakers, which makes the model produce more false-positives.
After re-training the model on the larger and more recent datasets, the precision and recall
increased for all shows, as seen in Table 9.
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The lowest precision for in-domain data increased to 93.8 % and for out-of-domain data
increased to 87 %. It is also shown that recall for out-of-domain shows is much lower
compared to the in-domain shows. That is expected since not all speakers are present in
the in-domain datasets.

dev test
Show Precision Recall Precision Recall
Uudised 98.7 % 52.6 % 96.4 % 45.4 %
Päevakaja 97.2 % 58.8 % 98.7 % 62.0 %
Reporteritund 93.8 % 54.8 % 94.1 % 57.2 %
TV 89.3 % 18.5 % 87.0 % 17.9 %
Arvamusfestival 95.7 % 12.4 %

Table 9. Re-trained model performance metrics on a larger dataset.

6.3 Adjusting the Posterior Probabilities

Next, the output probabilities for more frequent speaker labels were penalized to remove
bias towards the more frequent speakers in the training set. Table 10 shows the re-trained
model performance metrics with adjusted posterior probabilities. It is shown that the
adjustment increases precision, but lowers recall for all datasets. The lowest precision for
in-domain datasets increased to 96.1 % and for out-of-domain datasets increased to 92.3 %.
The precision now is in the expected region, however there is still improvement for recall.

dev test
Show Precision Recall Precision Recall
Uudised 99.6 % 43.8 % 99.1 % 37.1 %
Päevakaja 97.8 % 50.7 % 99.3 % 55.5 %
Reporteritund 97.6 % 47.2 % 96.1 % 46.7 %
TV 93.3 % 10.4 % 92.3 % 10.7 %
Arvamusfestival 100 % 10.2 %

Table 10. Re-trained model performance metrics with adjusted posterior probabilities.

6.4 Speechbrain’s ECAPA-TDNN

Next, Kaldi’s i-vector embeddings were replaced by Speechbrain’s ECAPA-TDNN’s x-
vector embeddings. Table 11 shows the performance metrics of the speaker identification
model based on x-vectors. Table 12 uses also adjusted posterior probabilities.

Table 11 shows the highest recall so far without sacrificing a lot on precision. It is shown in
Table 12 that posterior probability adjustment helps to increase precision for out-of-domain
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datasets, but at the same time lowers recall too much, therefore weighting the adjustment
should be considered.

dev test
Show Precision Recall Precision Recall
Uudised 98.4 % 56.4 % 96.3 % 49.9 %
Päevakaja 97.6 % 62.0 % 98.8 % 63.7 %
Reporteritund 93.2 % 57.7 % 94.2 % 59.1 %
TV 90.3 % 20.7 % 89.7 % 23.2 %
Arvamusfestival 92.1 % 19.8 %

Table 11. X-vector-based model performance metrics.

dev test
Show Precision Recall Precision Recall
Uudised 99.0 % 40.9 % 98.9 % 36.3 %
Päevakaja 98.0 % 44.4 % 99.3 % 48.8 %
Reporteritund 98.3 % 41.7 % 96.3 % 41.2 %
TV 100 % 11.1 % 100 % 11.6 %
Arvamusfestival 100 % 12.4 %

Table 12. X-vector-based model performance metrics with posterior probability adjustment.

6.5 Data Augmentation

Next, the model was trained on the augmented dataset. Tables 13 and 14 show the
model performance metrics trained on the embeddings from the augmented dataset. Data
augmentation helped to increase precision and recall for in-domain datasets, but not enough
for out-of-domain datasets.

dev test
Show Precision Recall Precision Recall
Uudised 98.9 % 56.9 % 97.6 % 50.9 %
Päevakaja 97.8 % 62.5 % 98.9 % 63.7 %
Reporteritund 95.4 % 58.0 % 93.7 % 58.0 %
TV 87.1 % 20.0 % 87.1 % 24.1 %
Arvamusfestival 86.5 % 18.1 %

Table 13. Model performance metrics with data augmentation.
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dev test
Show Precision Recall Precision Recall
Uudised 99.0 % 41.7 % 99.0 % 36.7 %
Päevakaja 97.8 % 44.2 % 98.9 % 48.5 %
Reporteritund 97.9 % 34.3 % 94.2 % 33.2 %
TV 100 % 16.3 % 92.9 % 11.6 %
Arvamusfestival 100 % 12.4 %

Table 14. Model performance metrics with data augmentation and posterior probability
adjustment.

6.6 Fine-Tuned ECAPA-TDNN

Next, the static embeddings were replaced by fine-tuning the x-vector extractor while
training the speaker identification model. Tables 15 and 16 show the model performance
metrics with fine-tuned x-vector extractor. Fine-tuning the embedding extractor increased
precision and recall for all datasets.

dev test
Show Precision Recall Precision Recall
Uudised 98.7 % 56.9 % 97.9 % 51.1 %
Päevakaja 98.1 % 63.2 % 98.9 % 64.8 %
Reporteritund 95.0 % 58.0 % 94.3 % 59.7 %
TV 93.8 % 22.2 % 93.5 % 25.9 %
Arvamusfestival 97.4 % 21.5 %

Table 15. Model performance metrics with fine-tuning.

dev test
Show Precision Recall Precision Recall
Uudised 98.2 % 42.5 % 98.8 % 35.7 %
Päevakaja 97.2 % 46.3 % 98.5 % 50.2 %
Reporteritund 98.1 % 44.6 % 95.4 % 45.3 %
TV 93.3 % 10.4 % 92.9 % 11.6 %
Arvamusfestival 100 % 17.5 %

Table 16. Model performance metrics with fine-tuning and posterior probability adjustment.

6.7 SpecAugment

Finally, spec-augmentation was applied to the x-vector extractor and the model was trained
for two times higher number of epochs. Tables 17 and 18 show the model performance
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metrics with spec-augmented embedding extractor. This change achieved the highest
recalls so far with acceptable precisions across all datasets. For out-of-domain datasets it
is over-confident, however the precision can be increased by increasing model threshold.

dev test
Show Precision Recall Precision Recall
Uudised 98.4 % 57.7 % 97.8 % 52.0 %
Päevakaja 98.1 % 63.7 % 99.0 % 65.3 %
Reporteritund 95.8 % 59.3 % 94.6 % 60.7 %
TV 92.5 % 27.4 % 91.2 % 27.7 %
Arvamusfestival 95.2 % 22.6 %

Table 17. Model performance metrics with SpecAugment.

dev test
Show Precision Recall Precision Recall
Uudised 98.9 % 43.3 % 99.2 % 38.1 %
Päevakaja 97.5 % 47.8 % 98.8 % 51.2 %
Reporteritund 97.0 % 47.8 % 95.3 % 47.3 %
TV 91.7 % 16.3 % 94.7 % 16.1 %
Arvamusfestival 97.1 % 18.6 %

Table 18. Model performance metrics with SpecAugment and with posterior probability
adjustment.

6.8 Threshold Tuning

Based on the precisions and recalls above, F1 scores were calculated across all model
versions and datasets. The SpecAugmented ECAPA-TDNN model produced the highest
relative improvement across all datasets. The relative improvements are visible in Table
19.

Uudised Päevakaja Reporteritund TV Arvamusf.
dev test dev test dev test dev test test

Model F1 relative improvement
i-vector 19.7% 19.2% 0.0% 21.3% 4.6% 11.0% -19.7% -15.2% -10.3%
ecapa 25.0% 27.1% 3.4% 23.3% 7.8% 13.4% -11.7% 5.5% 32.7%
ecapa/aug 26.0% 29.3% 4.0% 23.3% 9.1% 11.8% -14.9% 8.1% 21.9%
fine-tuned 25.9% 29.9% 4.8% 24.7% 8.9% 14.1% -6.0% 16.1% 43.4%
spec-augm 26.8% 31.2% 5.4% 25.3% 10.8% 15.4% 10.6% 21.5% 48.9%

Table 19. Relative F1 measure baseline improvements across datasets.

The SpecAugmented ECAPA-TDNN model is used to tune the model threshold. Since F1
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score is not interpretable enough, the thesis aims to maximize the recall at 95 % precision
metric instead. This metric shows how many speakers the model can recognize in the
dataset without falling below 95 % precision.

As seen in Figure 16, in order to reach at least 95 % precision across all the in-domain
datasets, at minimum 60 % threshold should be used due to "Reporteritund" test set. It is
also shown that the model struggles to reach 95 % precision for the TV dev set. However,
setting 80 % threshold would be enough to reach the target precision for "Arvamusfestival"
and TV test sets.

Figure 16. Precision vs. recall with thresholds at 95 % precision across datasets.

6.9 Summary

The main problem with the baseline model was low precision on all datasets except
"Päevakaja". The final model was able to increase precision above 90 % on all datasets,
even for shows the model has not seen during training. At the same time, the model was
able to increase recall across all the datasets as well.

The baseline model was already tuned to achieve 95 % precision on an older set of
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recordings from "Päevakaja". Comparing the baseline to the final spec-augmented ECAPA-
TDNN model, it is shown in Table 19 that it achieved 5.4 % relative F1 improvement on
"Päevakaja" dev set and 25.3 % on "Päevakaja" test set.

It is shown in Table 20 how much the SpecAugmented ECAPA-TDNN model improved
both precision and recall across all datasets. The highest improvements in precision are
seen for out-of-domain datasets, which was also the main objective in this thesis. Increased
precision for out-of-domain dataset means that fewer speakers will be misidentified as the
data evolves.

Show Dataset Metric Improvement
Uudised dev Precision 26.4 %
Uudised dev Recall 27.0 %
Uudised test Precision 40.0 %
Uudised test Recall 26.5 %
Päevakaja dev Precision 3.0 %
Päevakaja dev Recall 6.9 %
Päevakaja test Precision 9.3 %
Päevakaja test Recall 35.8 %
Reporteritund dev Precision 26.7 %
Reporteritund dev Recall 0.9 %
Reporteritund test Precision 27.5 %
Reporteritund test Recall 7.6 %
TV dev Precision 45.2 %
TV dev Recall 0.4 %
TV test Precision 32.1 %
TV test Recall 18.3 %
Arvamusfestival test Precision 121.2 %
Arvamusfestival test Recall 31.8 %

Table 20. Relative precision and recall improvements across datasets.
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7. Summary

The master thesis discussed background theory on speaker recognition and how speaker
identification problem is solved today. It discussed the data acquisition process and
provided statistics on the acquired data quality. Furthermore, it described the weakly-
supervised speaker identification system used as a baseline, inspired from a previous master
thesis by Martin Karu and Tanel Alumäe. It described several improvements to the baseline
model, including data augmentation techniques, using and fine-tuning a state-of-the-art
pre-trained x-vector embeddings extractor, and more. Finally, each improvement was
evaluated to see how it affected the model performance.

For model performance evaluation, precision and recall were measured at a fixed 50 %
precision. It was shown that the baseline model performed well on "Päevakaja" dataset,
which it was trained on, but poorly on out-of-domain datasets. It was also shown that the
baseline model produces more false-positives even for "Päevakaja" as new speakers appear
in the recordings. Finally, the threshold was tuned on the best performing model to achieve
at least 95 % precision on every in-domain dataset.

The hypothesis was that at least 90 % precision can be achieved on all datasets and at
the same time recall can be increased on all datasets compared to the baseline model. In
conclusion, the hypothesis is accepted based on the evaluation results seen in Chapter 6.

The main problem with the baseline model was low precision on out-of-domain audio
recordings. That also means the baseline model produces more and more false-positives as
new speakers appear in new recordings. Based on the out-of-domain dataset evaluations,
the improved system allows maintaining higher precision compared to the baseline system
as the data evolves and new speakers with similar voice characteristics appear.

The described baseline model is used today for automatic transcription system called
"Kõnesalvestuste browser" (speech recordings browser), developed and maintained by
TalTech Laboratory of Language Technology. The system collects new radios shows daily
and transcribes them with names of Estonian public figures. This thesis provides practical
output in terms of replacing the speaker identification system with the improved version
from this thesis. Higher precision reduces the number of complaints about false-positives
by the website visitors.
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