
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mahdad Khelghatdoust – 182472IVSM

ACTIVEMQ SUPPORT FOR MANAGING

CLOUD INSTANCE CONFIGS USING

SPRING FRAMEWORK

Master’s thesis

Supervisor: Juhan-Peep Ernits

PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mahdad Khelghatdoust – 182472IVSM

ACTIVEMQ TUGI PILVERAKENDUSTE

SÄTETE HALDUSEL SPRING

RAAMISTIKUS

magistritöö

Juhendaja: Juhan-Peep Ernits

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mahdad Khelghatdoust

12.05.2020

4

 Abstract

Deploying updated configuration to the applications is one of the most challenging parts

of application deployment. Companies have different ways to deploy and apply their

configuration changes. Cloud providers have different services for that. For example,

Amazon Web Service recently released AppConfig.

Spring Cloud facilitates developers to develop distributed web applications in the popular

Spring framework. Spring Cloud Stream Binder, which is a subproject of Spring Cloud,

is useful in organizing communication between the components of the distributed

application. We can use Spring Cloud Stream Binder to help our application communicate

with the message broker and other components. Also, with using Spring Cloud Stream

Binder, Spring Cloud Bus, and Spring Cloud Config, we can implement a project to push

updated configuration to the client applications. Spring Cloud Stream Binder has several

implementations for different messaging queues. Still, at the time of starting the thesis,

there was no binder for ActiveMQ, a widely used and efficient messaging queue.

For fixing the problem, we develop a binder for ActiveMQ using Spring Cloud Stream

framework. Our approach enables companies using ActiveMQ also to use it for

configuration management. To put it in context, we compare it with Amazon AppConfig.

We demonstrate the result in two different sample projects. The first one is a consumer

and producer application that communicate with each other through the provided Spring

Cloud Stream Binder with ActiveMQ. The second project is using the proposed Spring

Cloud Stream Binder with ActiveMQ to push updated configuration to client applications.

Keywords: cloud computing, configuration management, Spring Cloud

framework, ActiveMQ

This thesis is written in English and is 48 pages long, including 6 chapters, 19 figures and

3 tables.

5

Annotatsioon

ActiveMQ tugi pilverakenduste sätete haldusel Spring

raamistikus

Konfiguratsioonisätete uuendamine käigusolevates rakendustes on tarkvara halduses üks

väiljakutseterohkemaid aspekte. Ettevõtted kasutavad rakenduste ja sätete käikuandmisel

erinevaid meetodeid. Pilveteenuste pakkujatel on selleks erinevad teenused, näiteks

Amazon Web Services lasi hiljuti välja rakenduse AppConfig.

Spring Cloud lihtsustab hajusveebirakenduste arendust populaarses Spring raamistikus.

Spring Cloud Stream Binder on Spring Cloud alamprojekt, mille eesmärgiks on

hajusrakenduse erinevate komponentide vahelise suhtluse korraldamine. Kasutada Spring

Cloud Stream Binder komponenti, et aidata rakendusel suhelda sõnumihaldussüsteemiga

ja teiste komponentidega. Kasutades Spring Cloud Stream Binder, Spring Cloud Bus ja

Spring Cloud Config komponente loome lahenduse, mille abil saab levitada värskendatud

konfiguratsioonisätteid. Spring Cloud Stream Binder sisaldab tuge mitme erineva

sõnumihaldussüsteemi jaoks, kuid käesoleva töö alustamisel ei olnud olemas tuge

ActiveMQ jaoks. ActiveMQ on laialdaselt kasutatav ja hea jõudlusega lahendus.

Probleemi lahenduseks arendame Spring Cloud Stream raamistikule ActiveMQ

siduskomponendi. Meie lahendus võimaldab ActiveMQ-d kasutavatel ettevõtetel

edaspidi ka sätteid ActiveMQ kaudu levitada. Lahenduse kontekstipanekuks võrdleme

seda Amazon AppConfiguga.

Tulemust illustreerime kahe erineva näidisrakendusega. Esimene on sõnumite saatja ja

vastuvõtja rakendus, kus suhtlus käib üle Spring Cloud Stream Binder komponendi

ActiveMQ kaudu. Teises näidisrakenduses kasutatakse Spring Cloud Stream Binder

komponenti ActiveMQ-ga uuendatud sätete saatmiseks klientrakendustesse.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 48 leheküljel, 6 peatükki, 19

joonist, 3 tabelit.

6

List of abbreviations and terms

MQ Messaging queue

AWS Amazon web service

DS Design science

DSRM Design science research methodology

GCP Google cloud platform

POM Project object model

URL Uniform resource locator

JMS Java message service

EC2 Amazon elastic compute cloud

S3 Simple storage service

IOT Internet of things

JSON Javascript object notation

Rest-API Representational state transfer- application programming

interface

7

Table of contents

1 Introduction ... 11

1.1 Unit of study ... 12

1.2 Motivation ... 12

1.3 Research goal .. 12

1.3.1 Research questions ... 13

1.4 Relevant concepts .. 13

1.5 Research design ... 14

1.5.1 Research method .. 14

1.6 Evaluation ... 15

2 Proposed solution ... 16

2.1 Spring Cloud Framework .. 17

2.1.1 Spring Cloud Bus ... 17

2.1.2 Spring Cloud Config ... 17

2.1.3 Spring Cloud Stream .. 18

2.2 Implementation ... 20

2.2.1 Req 1: The project should follow Spring cloud stream binders packaging

structures ... 20

2.2.2 Req 2: Client Applications should be able to set connection properties of the

ActiveMQ using our solution .. 21

2.2.3 Req 3: Consumers and Producers should be able to define the required

properties .. 21

2.2.4 Req 4: The binder should be able to automatically provision consumer and

producer destination by the name that is given in the configuration as a destination

name ... 22

2.2.5 Req 5: Input and output channel should be able to connect to the ActiveMQ

broker using our project, and the binder should be able to consume a message and

handle it to a consumer .. 24

2.2.6 Req 6: The project should have a starter config to help clients to use the

dependency easily ... 25

8

3 Amazon AppConfig ... 27

3.1 Amazon Web Services .. 27

3.1.1 Amazon Elastic Compute Cloud ... 27

3.1.2 Amazon Cloud Watch... 27

3.1.3 Amazon Lambda Function .. 27

3.1.4 Amazon S3 ... 28

3.1.5 Amazon System Manager ... 28

3.1.6 Amazon Parameter Store .. 28

3.1.7 Amazon AppConfig .. 28

3.2 The Advantages and Disadvantages of Amazon AppConfig 28

3.2.1 Advantages of Amazon AppConfig .. 28

3.2.2 Disadvantages of Amazon AppConfig .. 30

4 Amazon AppConfig Vs. Spring Cloud Config .. 31

4.1 Security ... 31

4.2 Cost ... 31

4.3 Ease of use .. 32

4.4 Functionality ... 33

5 Evaluation .. 35

5.1 Use case 1 ... 35

5.2 Use case 2 ... 40

5.3 Use case 3 ... 41

6 Conclusion ... 46

References .. 47

9

List of figures

Figure 1: Spring Cloud Stream Application Model .. 19

Figure 2: Two destination models in ActiveMQ .. 23

Figure 3: Spring Cloud Stream Binder ActiveMQ Definition 25

Figure 4: Package Structure of Spring Cloud Starter Stream ActiveMQ 25

Figure 5: Pom of Spring Cloud Starter Stream module .. 26

Figure 6: HelloBinding Interface implementation .. 36

Figure 7: ProducerController implementation.. 37

Figure 8: The application.properties for use case 1 .. 37

Figure 9: Dependency list for Producer project.. 38

Figure 10: HelloBinding implementation for the Consumer project 38

Figure 11: HelloListener Class implementation for the Consumer project 39

Figure 12: The application.properties for the Consumer project................................... 39

Figure 13: Dependency list for the Consumer project .. 39

Figure 14: Config-Server Main class ... 42

Figure 15: The Application properties file for Config Server 42

Figure 16: Dependency List for Config Server Project .. 43

Figure 17: Controller for Config Client project.. 43

Figure 18: Bootstrap.yml file for Config Client project ... 44

Figure 19: The dependency list of Config Client project .. 45

10

List of tables

Table 1: Design science steps in this study adapted from design science research

methodology for information systems [12]. ... 14

Table 2: Requirement list for Spring cloud stream binder ActiveMQ implementation . 16

Table 3: Comparison between Amazon AppConfig and Spring Cloud Config 33

11

1 Introduction

Spring framework is one of the most popular and valuable frameworks in the Java

language for building web applications. Nowadays, many companies are using the Spring

framework and implementing their applications relying on it. In addition to passing

requirements, companies need to keep an eye on providing high availability services with

downtime close to zero or as little as possible and responding to requests in an appropriate

time. For supporting the mentioned problems, companies are using messaging queues to

improve availability. There are many different messaging queue applications available,

and one of the most widely known, open-source, and Multi-Protocol ones is ActiveMQ

[1] [2]. For example, Amazon uses ActiveMQ as the underlying technology for

AmazonMQ for providing three nines level of message durability [3].In the modern cloud

architecture applications are divided into smaller and independent components that lead

to easier development, deployment, and maintenance. Messaging queue provides

communication between these distributed applications [1] [4]. The Spring framework also

contains some projects to use with a messaging queue; one of these projects is Spring

Cloud. Spring Cloud gives some projects that help developers to build some common

patterns in cloud distributed systems. One of these patterns is configuration management

[5]. But the problem was that at the time of starting the current work, Spring Cloud Stream

did not support ActiveMQ.

In this thesis, we are going to clearly explain how we would like to use ActiveMQ and

one of the Spring Cloud projects, specifically Spring Cloud Stream in order to make it

easier to develop reliable applications. We implement Spring Cloud Stream for

ActiveMQ, and we write down the requirements to make it possible to have principled

evaluation. Then we implement a client to use Spring Cloud Stream with Spring Cloud

Bus and Spring Cloud Config to manage our application configurations and push them

directly to the application(s) without any other deployment or downtime in our

application.

12

1.1 Unit of study

This study is about updating configuration properties of client applications using the

Spring framework and ActiveMQ. The focus is on the Spring Cloud framework

(specifically Spring Cloud Stream Binder) and ActiveMQ. The importance of the problem

is confirmed by Amazon recently (November 2019) by announcing AppConfig, which

provides a different solution to the configuration management problem [6]. Also Cisco is

providing almost the same functionality as Amazon AppConfig [7]. We will compare our

proposed solution to Amazon AppConfig. The solution that we propose in the current

thesis will help companies who already have ActiveMQ in a project to use it also for

configuration synchronization, thus simplifying the setup. Also, having the same

technology stack for different tasks in a project helps to handle tasks in a more

manageable way than having multiple different technology stacks in the same project.

1.2 Motivation

These days many companies are using ActiveMQ in cloud environments like Amazon or

Microsoft Azure1. Our solution helps companies that are using ActiveMQ to publish their

updated configurations to client applications; also, during this study, we noticed that in

November 2019 Amazon released a new feature, AppConfig, that can be used to

synchronize configuration parameters with clients. Its behavior is similar to our approach

but is relevant in the Amazon environment, so it means that Amazon's solution is not

available to be used with other cloud providers.

1.3 Research goal

We would like to study how updating configuration parameters of cloud applications can

be achieved using ActiveMQ and Spring Cloud framework in order to keep the

development and configuration of the application within one framework. The case study

will involve the implementation of the solution for updating configuration parameters in

client applications using Spring Cloud frameworks and ActiveMQ. We should mention

1 A list of companies using ActiveMQ can be acquired from, e.g. (accessed on May 10, 2020)

https://discovery.hgdata.com/product/apache-activemq

13

that our solution will also work with ActiveMQ over cloud service providers like Amazon

or Microsoft Azure, etc.

1.3.1 Research questions

In this thesis, we will seek answers for the following main questions:

 How can we use Spring Cloud Stream framework with ActiveMQ?

 How will the proposed solution compare to the recently announced Amazon

AppConfig?

For finding an answer to the first question, we will implement the solution using

ActiveMQ and Spring Cloud sub-projects. Answering the second question involves

running a suite of test applications with our implementation for Spring Cloud Stream and

our example application for Amazon AppConfig.

1.4 Relevant concepts

We already know that Apache ActiveMQ is a message broker for communication among

different systems using the Java Message Service specification [8] [9]. Also, we know

that Spring Cloud Config is one of the Spring Cloud projects, and it is a programming

library that gives us server-side and client-side support for externalized configuration in

a distributed system. Using Config Server, we have a central place to manage external

properties for applications across all environments [10]. In addition to this information,

we know that for achieving the goal of the current thesis, we need to use many different

Spring Cloud projects that we will explain in the section 2.1.

Although we can use different messaging queues and provide a solution to push real-time

configurations to clients, at the time of starting the thesis work, there was no existing

solution for pushing updates to client applications using ActiveMQ and Spring Cloud

Framework. We should mention at this point that many different companies are using

ActiveMQ on different cloud solutions like Amazon Web Service, Microsoft Azure, or

Google Cloud Platform, and this solution can help them to solve the configuration

management problem more elegantly. Besides, after we had already started the current

work, Amazon released a new feature that is called AppConfing. AppConfig makes

application configuration faster than with traditional deployment. Amazon AppConfig

can handle deployment to many different application types. An application can be a

14

microservice on EC2 instance, or mobile app, or Amazon Lambda or a system you run

on behalf of others [6].

1.5 Research design

To answer research questions, we start by reading the existing documents related to

different messaging queues; in the second step, we implement the solution for pushing

updated configuration properties to Application clients using Spring Cloud Config,

Spring Cloud Stream Binder, and Spring Cloud Bus. We read the Spring Framework

Github project documentation to understand the current solution based on RabbitMQ,

which helps us to implement a solution to support ActiveMQ and also follow the Spring

Framework open-source principles. Then we apply an example application using

ActiveMQ. Finally, we compare our approach with Amazon AppConfig. The

implementation starts from defining essential requirements, and by providing an

implementation that supports the use cases.

1.5.1 Research method

In this study, we are going to use the design science research methodology (DSRM) to

cover our research plan [11], [12]. Based on the mentioned methodology, we have the

following steps:

Table 1: Design science steps in this study adapted from design science research methodology for

information systems [12].

Step Definition

Identify problem and motivation Define the problem and showing the

importance

Define solution What is the solution? And what would be

a better approach?

Design and development Artifact

Demonstration Using artifact to solve the problem

Evaluation Test and evaluate the result based on the

requirements

As we can see from Table 1, we have five phases. First, we identify the problem and

explain motivation, as we did in the above section. Second, we define our solution as we

mentioned we are going to implement a Spring Cloud Stream Binder framework for

ActiveMQ. The next phase is designing and developing of the suggested solution. In step

15

five, we demonstrate our solution, and we show a client application that is using our

framework to push the updated configuration. Finally, we evaluate our solution by

implementing some use cases. In case if there is any failure in the evaluation step, we

come back to step three and apply some changes and continue with steps four and five.

1.6 Evaluation

In order to validate and interpret the outcome, we are going to implement some use cases

to test our solution and illustrate how it would be used in a real-life scenario. The first use

case is one producer project and one consumer project, which communicates with each

other as two micro services using our solution and binder application. The second project

is a client and server applications. The server application serves the client(s)

configurations and also pushes updated configuration to the client(s).

16

2 Proposed solution

In this section, we are going to explain our solution and illustrate how does it work. For

a better and more precise explanation, we decided to start by designing some

requirements. Then we introduce some general related topics about Spring framework,

and finally, we explain how our implementation answers to the needs.

The requirement list is the following:

Table 2: Requirement list for Spring cloud stream binder ActiveMQ implementation

No Requirement Explanation

1 The project should follow Spring cloud stream

binders packaging structures

Like other Spring Cloud Stream

Binder Implementations

2 Client Applications should be able to set

connection properties of the ActiveMQ using

our solution

Properties for connection to

ActiveMQ

3 Consumers and Producers should be able to

define the required properties

Properties for setting up

Consumers and producers

4 The binder should be able to automatically

provision consumer and producer destination

by the name that is given in the configuration

as a destination name

It should support the destination

for both Consumer and

producer

5 Input and output channel should be able to

connect to ActiveMQ broker using our project,

and the binder should be able to consume a

message and handle it to a consumer

It should support two

destination models: Topic and

Queue

6 The project should have a starter config to help

clients to use the dependency easily

The Pom File to handle Spring

Cloud Stream Binder

Implementation

17

2.1 Spring Cloud Framework

Spring Cloud is one of the popular projects of the Spring Framework that provides some

services to developers to build some common patterns of distributed applications that can

be deployed easily and as fast as possible. Some of these common patterns that Spring

Cloud delivers are as follows: configuration management, service discovery, one-time

token, a control bus, micro proxy, and so on [5]. For supporting each of these patterns,

Spring Cloud contains some projects, some of the notable projects under Spring Cloud

framework, which are relevant to our topic are the following:

Spring Cloud Stream, Spring Cloud Bus, Spring Cloud Config

For achieving one of the goals of this thesis, which is pushing updated configuration to

client applications using ActiveMQ, we need to get more familiar with the mentioned

Spring Cloud projects. For the said goal, Spring Cloud Config uses Spring Cloud Bus to

send a message or push an updated config to clients. Still, for accomplishing this purpose,

Spring Cloud Bus itself relies on Spring Cloud Stream, specifically Spring Cloud Stream

Binder Implementation. There is a lack of Spring Cloud Stream Binder implementation

for ActiveMQ that we are going to implement.

2.1.1 Spring Cloud Bus

Based on the Official Spring Cloud Bus guide [13], this project is being used for

connecting nodes of a distributed system with a lightweight message broker. This

functionality can be used to manage configuration or broadcast a state change or other

management instructions. The Spring Cloud Bus and Spring Cloud Stream Binder Rabbit

is using Spring Cloud Stream. We can add our Spring Cloud Stream Binder instead of

Spring Cloud Stream Binder Rabbit.

Besides, it is essential to say that the Spring Cloud Bus is an abstraction built on top of

Spring Cloud Stream.

2.1.2 Spring Cloud Config

Spring Cloud Config is another project under the Spring Cloud framework. This project

provides support for server-side and client-side applications, and the goal of this project

is to externalize configuration in a distributed system. There is a direct relation between

18

Spring Cloud Config Starter and Spring Cloud Config Client and Spring Cloud Starter

project.

As we already mention Spring Cloud Config supports client and server sides, we need

to use these dependencies so it would be good to mention some of the features of these

two projects [10]:

 Spring Cloud Config Server:

o Providing APIs to support external configuration. It can be name-value

pair or content of YAML file

o Encrypt and decrypt property values

 Spring Cloud Config Client:

o Bind to the config server and initialize Spring Environment using

property resources

o Encrypt and decrypt property values

2.1.3 Spring Cloud Stream

The last Spring Cloud framework project that is currently relevant is Spring Cloud

Stream. Based on Spring Cloud Stream framework official website [14] at the time of

writing, the project supports a variety of binder implementations for a different type of

queues:

 RabbitMQ

 Apache Kafka

 Kafka Streams

 Amazon Kinesis

 Google PubSub (Partner maintained)

 Solace PubSub+ (Partner maintained)

 Azure Event Hubs (Partner maintained)

 Apache RocketMQ (Partner maintained)

As we can see, there is no support for ActiveMQ, so this is the part that we are

contributing and implementing ActiveMQ support for the mentioned project. Also, we

should mention at this point that the Spring Cloud Stream project is mainly used for the

19

development of highly scalable event-driven micro services linked to standard messaging

systems [5].

Based on Spring Cloud Stream official guide [5], each Spring Cloud Stream Binder

project contains the following three core modules:

1. Destination Binder: Components that are in charge of integration with external

messaging systems.

2. Destination Bindings: Bridge between the external messaging systems and the

application provided by Message Producers and Consumers (created by

Destination Binders).

3. Message: The data structure used by producers and consumers to communicate

with destination Binders.

In Figure 1, we can see the Spring Cloud Stream Application model:

Figure 1: Spring Cloud Stream Application Model

20

Another fact about using Spring Cloud Stream is that if we want to use a messaging queue,

like RabbitMQ, typically, we should write a lot of boilerplate code and properties to

connect to RabbitMQ. But by using Spring Cloud Stream, we do not need to write that

code because the framework gives us an abstract view, and it handles all the configuration

parts automatically.

In the next step, we are going to explain how we would like to implement Spring Cloud

Stream Binder for ActiveMQ.

2.2 Implementation

For implementing the Spring Cloud Stream Binder for ActiveMQ in a principled way, we

are going to specify how we will satisfy the requirements that we already defined in Table

2.

Also, final implementation can be downloaded from this repository:

https://github.com/madkt12/spring-cloud-stream-binder-activemq

2.2.1 Req 1: The project should follow Spring cloud stream binders packaging

structures

We should say that Spring Cloud is an open-source project, so we use the Spring Cloud

Stream Binder Rabbit Github repository that is based on RabbitMQ as a role model to get

familiar with the project and framework structures.

We divide our implementation into the following different modules:

1. Spring Cloud Stream Binder ActiveMQ Core: This project includes core

functionalities of our Spring Cloud Stream binder that provides provisioning,

properties, and mapping.

2. Spring Cloud Stream Binder ActiveMQ: This project consists of the configuration

properties based on client projects, and it has a binder of the ActiveMQ channel.

3. Spring Cloud Starter Stream ActiveMQ: This project is just a dependency on

Spring Cloud Stream Binder ActiveMQ to use it in our Spring Cloud Stream client

projects. And it is an alternative way to use the project’s dependency directly.

We should add this point that all these modules are included in a parent project. Also, the

parent project includes all the common dependencies. We will explain and discuss all the

mentioned projects in the following parts.

https://github.com/madkt12/spring-cloud-stream-binder-activemq

21

2.2.2 Req 2: Client Applications should be able to set connection properties of the

ActiveMQ using our solution

To meet this requirement, we should explain that in the Spring Cloud Stream Binder

ActiveMQ Core project, we create a package called properties, and in that class, we

declared host, user, and password properties. Also, we defined configuration properties

annotation over the class and adding this prefix: spring.cloud.stream.active.binder. The

naming convention for this prefix is almost the same as other Spring Cloud Stream Binder

projects. For example, for the RabbitMQ, it is like this: spring.cloud.stream.rabbit.binder.

So this class helps us to get connection properties from client application and we can use

ActiveMQConnectionFactory from ActiveMQ dependency to create a connection

whenever it is needed. In addition to this information, for following object-oriented

programming rules and design patterns, we defined getters and setters for properties to

prevent direct access to the properties.

As we are using Configuration properties annotation here, we need to add Spring Boot

dependency, because we need to have this dependency into other projects we decided to

add it to the parent project.

2.2.3 Req 3: Consumers and Producers should be able to define the required

properties

To satisfy this requirement, we define two classes, one for consumer properties and

named it ActiveConsumerProperties and another one for producer:

ActiveProducerProperties. Both Java classes are placed in the properties package in the

Spring Cloud Stream Binder ActiveMQ Core project. We need to add the following

variables:

 Destination: Shows the destination

 Type: It can be Topic or Queue; by default is Queue

 Transactional: True/False; by default is False

We need Spring Cloud Stream to identify our properties, so first, we should add Spring

Cloud dependency to the parent project, then we have to implement the

BinderSpecificPropertiesProvider interface. This interface helps Spring Cloud Stream to

22

get consumer and producer objects from the binder project, which is Spring Cloud Stream

Active Binder here. Also, to complete this part, we have to extend

AbstractExtendedBindingProperties and override the getExtendedPropertyBinding

method and return our ActiveBindingProperties.class. So, after all these steps, now this

configuration helps Spring Cloud Stream to identify consumer, producer, and connection

properties.

2.2.4 Req 4: The binder should be able to automatically provision consumer and

producer destination by the name that is given in the configuration as a destination

name

First, it is good to explain briefly how does ActiveMQ work, and then we elaborate the

way that we use it to implement the current part of the project.

Producers create messages and send them to a destination. Consumers receive and make

a process over messages [1] [9]. But before that ActiveMQ broker routes messages to one

of two following destinations:

1. To a queue: that delivers messages to a single consumer (also known as a point to

point model) [9].

2. To a topic: that delivers messages to multiple consumers (also known as a

publish/subscribe model) [9].

In the following figure, we show two different destination models in ActiveMQ.

23

Figure 2: Two destination models in ActiveMQ

As can be seen in Figure 2, the consumers are getting messages from the destination and

not directly from producers.

For implementing this part, we need to create the provisioning package in Spring Cloud

Stream Active Binder Core and add the ActiveProvisioner class. In this class, we create

consumer and producer destinations based on the extended properties that we mentioned

in the previous requirement. So, the client properties related to the destination will be

used in the class. As we can see from the name of the package and class, this class is in

charge of the provisioning of consumer and producer destinations. Again, in this class,

we are using ProvisioningProvider interface from Spring Cloud Stream dependency to

make our project compatible with it.

The last package of this project is mapping. This package has a class named

ActiveMessageProducerMapper. This class extends MessageProducer to create producer

24

endpoint, as the MessageProducer is an Abstract class, creating an object out of it, is

impossible, so we need to implement our own MessageProducer Mapper.

The functionality of this module is that it creates a connection to ActiveMQ and prepares

the Consumer endpoint as well as supports the produced message. In more detail, in this

section, we check the type of destination if it is a queue or a topic and then take the

appropriate action. The above checking is happening on the producer part. As we already

mentioned, this module is tightly coupled with the previous module, and it is using all the

properties that Spring-Cloud-Stream-Binder-ActiveMQ-Core project contains.

2.2.5 Req 5: Input and output channel should be able to connect to the ActiveMQ

broker using our project, and the binder should be able to consume a message and

handle it to a consumer

The current requirement depends on all previous requirements.

When sending a message, the message producer has to honor the properties set in the

client application. Also, there should be a consumer endpoint that can listen to the proper

destination based on the given properties and receive the messages. In this case, we need

to create an ActiveMessageChannelBinder class in the Spring-Cloud-Stream-Binder-

Active project. This class includes two main methods that are being inherited from

AbstractMessageChannelBinder. We need to override the following two methods:

 CreateProducerMessageHandler: It provides the logic to produce the message.

Also, it identifies which destination type is required based on the given properties.

 CreateConsumerEndpoint: ActiveMessageProducerMapper is responsible for

consuming the message and processed it to the client. Usually, the message

producer classes extend MessageProducerSuppourt class from the Spring

Integration framework. Still, in our case, as we need to use JmsTemplate instead

of MessageTemplate for creating a connection to JMS, and also we need to have

a customized message listener, we created our ActiveMessageProducerMapper

class. We should mention that this class is in the mapper package in the Spring-

Cloud-Stream-Binder-ActiveMQ-Core project.

Our binder relies on the ActiveProvisioning class, which is being initialized in our

constructor with ActiveBinderConfigurationProperties.

Finally, Spring Cloud Stream looks at the META-INF package inside the resources folder

to find the type of Spring binder of our Spring Cloud Stream binder project. So after

25

finishing the above classes, we have to write the configuration shown in Figure 3 into

Spring.binder file and declare our binder configuration entry.

activemq:\
stream.config.ActiveMessageChannelBinderConfiguration

Figure 3: Spring Cloud Stream Binder ActiveMQ Definition

2.2.6 Req 6: The project should have a starter config to help clients to use the

dependency easily

The configuration goes into a pom file that can be used in the Spring Cloud Stream client

projects as a dependency. The structure of this module is simple and straight as shown in

Figure 4.

Figure 4: Package Structure of Spring Cloud Starter Stream ActiveMQ

The contents of the pom file is given in Figure 5.

26

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-stream-binder-activemq-
parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <modelVersion>4.0.0</modelVersion>

 <artifactId>spring-cloud-starter-stream-activemq</artifactId>
 <description>Spring Cloud Starter Stream Activemq</description>

 <url>https://projects.spring.io/spring-cloud</url>
 <organization>
 <name>Pivotal Software, Inc.</name>
 <url>https://www.spring.io</url>
 </organization>

 <properties>
 <main.basedir>${basedir}/../..</main.basedir>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-stream-binder-
activemq</artifactId>
 </dependency>
 </dependencies>

</project>

 Figure 5: Pom of Spring Cloud Starter Stream module

The pom file has some metadata related to the Spring project, and specifically, Spring

Cloud projects like URL, organization name for Spring. It also has a dependency on

Spring Cloud Stream Binder ActiveMQ, which is one of our modules for using this in the

client projects. In addition to the information, the pom file has using the parent element

as one out of four modules in the Spring Cloud Stream ActiveMQ Binder project.

27

3 Amazon AppConfig

3.1 Amazon Web Services

The current chapter is dedicated to explaining how Amazon AppConfig works and what

functionality of Amazon Web Services is required for it to function, and then we compare

our proposed solution with the new feature of Amazon Web Services. On 25 November

2019, Amazon announced AppConfig, a new service that the customers can use to easily

apply their updated configuration properties to the application, which is hosted in Amazon

environments [15]. Before we start explaining Amazon AppConfig, we need to

understand some concepts of Amazon Web Services.

3.1.1 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud or Amazon EC2 supports Amazon Web Services and

provide computing capabilities. By using Amazon EC2, we do not need to be worried

about our application’s hardware, so it means we do not need to spend money on hardware

in advance. In addition to this information, Amazon EC2 is scalable; it means we can

scale it up or down based on our requirements. Also, it helps customers to deploy and run

their applications faster and easier [16].

3.1.2 Amazon Cloud Watch

Amazon Cloud Watch monitors other Amazon web services, resources, and applications

that are hosted by Amazon. It collects logs, events, and operational data. Also, it can react

appropriately against an alarm and fire some actions at the required time. For example,

we can simply monitor different resources usages like CPU usages on our Amazon EC2

instance [17]. Amazon Cloud Watch has an essential role in Amazon web Services.

3.1.3 Amazon Lambda Function

AWS Lambda Function allows us run an application without any managing servers.

With the Lambda function, we can run our code for virtually any type of application or

backend service - all with zero administration. Just we upload our code, then Lambda

takes care of everything required to run and scale the code in case if it is needed [18].

28

3.1.4 Amazon S3

Amazon S3 is an object storage service providing scalability, data availability, security,

and performance. It means users and companies can use it to save and secure any amount

of data across a variety of use cases [19].

3.1.5 Amazon System Manager

Amazon System manager is a flexible management service that helps us to manage and

administer our workloads. This amazon service is designed to enable easy configuration

and management of systems on a large scale, and it makes writing automation artifacts so

simple [20]. Amazon System Manager contains many different services; two of these

services are essential in our scenario; Amazon Parameter Store and Amazon AppConfig.

3.1.6 Amazon Parameter Store

Amazon Parameter Store gives us a way to handle our configuration data in a secure

mode. The service helps us to separate our secrets and configuration data from our

code. These parameters also can be plain text or secrets like database passwords. And it

can be used in other AWS services. The parameter store is part of the Application

management suite of the Amazon System Manager [21].

3.1.7 Amazon AppConfig

Amazon AppConfig is one of the Amazon web service products which is under AWS

System Manager in application management suite, which helps customers to manage and

deploy application configurations fast. You can use AppConfig with an application

hosted on Amazon Elastic Compute Cloud (EC2) instances, Amazon Lambda Functions,

Android, IOS (generally all mobile apps), containers and IoT devices, and with several

more types of applications [22]. Besides this, Amazon.com, Kinder, and Alexa are using

Amazon AppConfig at the time of writing, and it seems that the service is widely used within

various products/services offered by Amazon.

3.2 The Advantages and Disadvantages of Amazon AppConfig

3.2.1 Advantages of Amazon AppConfig

Based on the Amazon official documentation [22], AppConfig provides the following

benefit:

29

 Deploy using different source of configuration

o Amazon AppConfig supports configuration, which is stored in Amazon

Parameter Store, System Manager Document, and recently on 13 March

2020, they announced that AppConfig is supporting Amazon S3 as a

Configuration source as well [23].

 Decreasing errors during configuration changes

o Amazon AppConfig reduces errors during configuration deployment,

using validation of configuration changes. It means that before

deployment, we can validate changes by defining a JSON schema or

creating some Lambda function.

 Update application without interruption

o Amazon AppConfig deploys configuration changes without any

interruption at runtime.

 Control deployment of changes across the application

o Amazon AppConfig provides deployment strategy, which gives more

control over the configuration changes deployment, and by that, we can

say how quickly we want our application targets to receive changes.

 Easy rollback during the failure of configuration changes

o We can easily enable Amazon CloudWatch to monitor our deployment,

and in case if there is any problem, we can roll back to the preferred

configuration version.

 Managing different environments for deploying configuration changes

o Amazon AppConfig provides us a configuration profile that we can set it

based on the different environments that we have or based on the sub-

component and apply the changes.

 Security management of deploying configuration changes

30

o We can give access to the preferred role to be able to deploy configuration

changes.

3.2.2 Disadvantages of Amazon AppConfig

We can say at the time of writing Amazon AppConfig has the following drawbacks:

 Young product

o Amazon AppConfig is quite a young product in Amazon Web Services,

which is publicly available.

 Is not available in all regions

o Amazon AppConfig is not available in some regions. E.g. China.

 Using it needs some code changes in the current application

o We need to configure our application in such a way that our application

will be able to poll the updated configuration using

the GetConfiguration API periodically.

31

4 Amazon AppConfig Vs. Spring Cloud Config

In previous chapters, we discussed the benefits and drawbacks of Amazon AppConfig.

We also proposed a solution based on the Spring Cloud Stream ActiveMQ Binder, Spring

Cloud Config and Spring Cloud Bus that we can use to push updated configuration to the

client applications.

In the current chapter, we are going to compare Amazon AppConfig to our solution based

on the following criteria: security, cost, flexibility, ease of use and some of the important

functionalities. Also we should say that the comparison in this section is tightly coupled

with many different points And the result should be interpreted based on the conditions.

4.1 Security

Amazon Web Service helps us to handle role based access and it means we can apply

which roles and users are allowed to deploy changes. Still, we should say that in the

Spring framework, we can easily enable the Spring Security framework by adding Spring

Security dependency to the project and apply role-based access to the Cloud Config part.

Also we need to mention that the proposed solution should be used in an internal network

so by default it mitigates some risks of having public interface [24].

We know that Amazon AppConfig supports the Amazon Parameter Store as a secure

source of configuration. But again, in Spring Cloud Config, we can enable encryption, so

based on the public key and private key, we can save encrypted parameters and fetch

decrypted parameters. In addition to this information Spring Cloud Config Server

supports Vault. Vault is a tool for securely accessing secrets.

As a result, we can say both approaches are following enough security principles. Just by

using Amazon AppConfig by default we are using a secure way but for Spring Cloud

Config more developments needed.

4.2 Cost

If we already are using Amazon Web Services, then the cost of using Amazon AppConfig

is not considerable, and it offers many different ways of billing. But if we are already

32

using an on-premises ActiveMQ instance, then it is more reasonable to use the Spring

Cloud Config and our proposed solution.

Generally, the cost of using Amazon AppConfig itself is not expensive. At the time of

writing the thesis based on the Amazon system manager guide [25], AppConfig is

following the “pay per usage” approach. It means that we pay only for what we are using,

and in AppConfig, we pay 0.2 dollars per 1M GetConfiguration API calls and 0.0008

dollars for a configuration change per instance. For example, if we have an application

that its configuration changes 5 times per day, and also we have 1000 target that are

fetching configuration changes every 5 minutes, after a month the cost of using

AppConfig is as follow:

Each month per minute = 30 days* 24 hours* 60 minutes = 43200

Cost of API calls after a month = 1 configuration* 1000 targets* 0.2 calls per minute *

43200 * 0.2 dollars per 1 million calls = 1.728 dollars

Cost of deployments after a month =1 configuration* 1000 targets* 5 changes per day*

30 days* 0.0008 dollars for each deployment= 120

Total cost = 1.728 Cost of API calls after a month + 120 Cost of deployments after a

month = 121.728 dollars

But we should add this point that this is just the cost of Amazon AppConfig. If we want

to use Amazon Parameter Store or any other service to act as a source of configuration

and using CloudWatch to monitor target, then we should pay for those services separately.

As a result, however using Amazon AppConfig with all required features like Amazon

CloudWatch and Amazon S3 can invoice a considerable cost but if we want to have same

functionality in Spring Cloud Config probably we need to pay more for monitoring tools

and services.

4.3 Ease of use

Using AppConfig in an existing application is a little difficult because after setup in

Amazon environment, we have to change our application in a way that we call

GetConfiguration api periodically to fetch configs and set it to the application. But using

33

Spring Cloud Config is not that difficult, and we can easily create Spring Cloud Config

Server project and add Spring Cloud Config dependency to our project and start using it,

in the evaluation part, use case 2 we illustrate how we can do it.

As a result, we can say developing Spring Cloud Config solution can be easier approach

specially if we want to apply it into an existing project. Because for applying Amazon

AppConfig into an existing project considerable coding needed but for Spring Cloud

Config just we need to modify the application properties and add a Spring Cloud Config

dependency.

4.4 Functionality

In this section, we compare some of the Amazon AppConfig functionalities that we

mentioned in the section 3.2 with Spring Cloud Config solution.

Table 3: Comparison between Amazon AppConfig and Spring Cloud Config

Amazon AppConfig Spring Cloud Config

Deploy using different source of

configuration

Spring Cloud Config also supports a lots of

different source of configuration. It supports

following list: Git, SVN, file System, AWS

S3, Vault, Redis and JDBC

Validation of configuration parameters before

deploying

Spring Cloud Config Server supports

different formats of configuration. It can be

Yaml, properties, plain texts and JSON.

Validation can be achieved with extra

developments. For example there is a separate

project in the following git

repository:https://github.com/intuit/intuit-

spring-cloud-config-

validator/blob/master/README.md

Configuration changes without any

interruption at runtime

It depends on the server configuration and

infrastructure.

https://github.com/intuit/intuit-spring-cloud-config-validator/blob/master/README.md
https://github.com/intuit/intuit-spring-cloud-config-validator/blob/master/README.md
https://github.com/intuit/intuit-spring-cloud-config-validator/blob/master/README.md

34

Deployment strategy There is no strategy, and all are depend on the

person who is responsible for deployment.

However, there is a retry option on the client-

side that in case if Config Server application

is not available in application start time, it

helps to retry and fetch the configuration.

Monitoring and roll back functionality Monitoring can be set up on the server and

client applications. But there is no automatic

roll back. Also, there is a health indicator

option in config on client side that can be used

to monitor client configs.

Managing different environments and

configuration profiles

It supports different environment profiles and

it can be used as a configuration profiles. But

there is no validators for configuration.

As a result, both approaches are providing a lot of functionalities, but we should say that

achieving some functionalities in Amazon AppConfig is much easier than Spring Cloud

Config.

35

5 Evaluation

In the current chapter, we are going to evaluate our proposed solution. We decided to

implement some test applications and try to use our project as a dependency. We designed

some use cases:

 Use case 1: There are two applications (one producer and one consumer), and they

are communicating with each other using Spring Cloud Stream framework

dependencies and our proposed solution. Both Topic and Queue destination

models should be verified in this use case.

 Use case 2: There are three applications (one producer and two consumers), and

they are communicating with each other using Spring Cloud Stream framework

dependencies and our proposed solution. Both Topic and Queue destination

models should be verified in this use case.

 Use case 3: There are two applications (one server and one client), and the server

pushes updated configuration to the client. Using the required Spring Cloud

Framework and our proposed solution.

5.1 Use case 1

Description:

1. The user calls a rest API in the browser.

2. The producer sends the message based on the configuration to the given

destination and channel name.

3. The consumer receives the message based on the configuration from the given

destination and channel name.

4. The consumer prints the received message to the console.

5. We repeat the steps for both Topic and Queue destinations.

Implementation:

36

We create two projects, Cloud-Stream-Producer-ActiveMQ and Cloud-Stream-

Consumer-ActiveMQ. The projects can be clone from following GitHub repositories:

 Cloud-Stream-Producer-ActiveMQ: https://github.com/madkt12/cloud-stream-

producer-activemq

 Cloud-Stream-Consumer-ActiveMQ: https://github.com/madkt12/cloud-stream-

consumer-activemq

In the producer project, we created two packages, one is the binding, and another one is

the controller. Also, we create an application.properties in the resources directory of our

project. In the binding package, we create an interface called HelloBinding. The interface

is responsible for binding message channel names so that Spring Cloud Stream can

identify it as a message channel. In Figure 6, you can see our HelloBinding interface

implementation.

import org.springframework.cloud.stream.annotation.Output;
import org.springframework.messaging.MessageChannel;

public interface HelloBinding {

 @Output("greetingChannel")
 MessageChannel greeting();
}

Figure 6: HelloBinding Interface implementation

Now we need to implement our controller class so that the Spring boot framework

identifies our REST-API. In Figure 7, you can see our controller class implementation.

https://github.com/madkt12/cloud-stream-consumer-activemq
https://github.com/madkt12/cloud-stream-consumer-activemq

37

import org.springframework.messaging.Message;
import org.springframework.messaging.MessageChannel;
import org.springframework.messaging.support.MessageBuilder;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import un.ttl.thesis.cloudstreamproduceractivemq.binding.HelloBinding;

@RestController
public class ProducerController {

 private MessageChannel greet;

 public ProducerController(HelloBinding binding) {
 greet = binding.greeting();
 }

 @GetMapping("en/greet/{name}")
 public void publish(@PathVariable String name) {
 String greeting = "Hello, " + name + "!";
 Message<String> msg = MessageBuilder.withPayload(greeting)
 .build();
 this.greet.send(msg);
 }
}

Figure 7: ProducerController implementation

As can be seen, we are using the MessageChannel that we defined in the HelloBinding

interface. Now we just need to update application.properties file to the following code

shown in Figure 8.

server.port=8080
spring.cloud.stream.active.binder.host=tcp://localhost:61616
spring.cloud.stream.active.binder.password=admin
spring.cloud.stream.active.binder.user=admin
spring.cloud.stream.active.bindings.greetingChannel.producer.destinati
on=greetings
spring.cloud.stream.active.bindings.greetingChannel.producer.type=queu
e
spring.cloud.stream.default-binder=activemq

Figure 8: The application.properties for use case 1

In the application properties file, we set the host, password, and user values of our

ActiveMQ broker. We informed Spring Cloud Stream that our default binder

implementation is activemq. Then, we inform our binder about bindings channel name

and producer destination and type. In this part, we verified Req 2 and 3.

Finally, in the pom file, we have following dependencies as well as the Spring Boot Parent

as shown in Figure 9.

38

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-starter-stream-
activemq</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 <version>3.0.2.RELEASE</version>
 </dependency>
</dependencies>

Figure 9: Dependency list for Producer project

As can be seen, we are just using Spring-Cloud-Starter-Stream-ActiveMQ dependency

here from our binder implementation. The scenario covers Req 6.

By running the project and calling the rest-API, we can check the ActiveMQ admin web

browser and see the required channel and destination is created there. Also, we can verify

that message is in the enqueue and pending list. The scenario covers Req 4 and 5 partially.

Now we need to implement the Cloud-Stream-Consumer-ActiveMQ project. We have

two packages, the binding and the listener. The binding package has an interface called

HelloBinding as shown in Figure 10.

import org.springframework.cloud.stream.annotation.Input;
import org.springframework.messaging.SubscribableChannel;

public interface HelloBinding {

String GREETING = "greetingChannel";

 @Input(GREETING)
 SubscribableChannel greeting();
}

Figure 10: HelloBinding implementation for the Consumer project

As the latter is our consumer project we have Input annotation instead of Output, and also

we have SubscribableChannel methods return type to connect to the greetingChannel the

place where data will be pushed.

We have a listener class named HelloListener in the listener package, as shown in

Figure 11.

39

@EnableBinding(HelloBinding.class)
public class HelloListener {

 @StreamListener(target = HelloBinding.GREETING)
 public void processHelloChannelGreeting(String msg) {
 System.out.println(msg);
 }
}

Figure 11: HelloListener Class implementation for the Consumer project

We have StreamListener annotation that helps the consumer and Cloud Stream

framework to understand that the method is listening to the greetingChannel.

Our application properties file is shown in Figure 12.

server.port=9090
spring.cloud.stream.active.binder.host=tcp://localhost:61616
spring.cloud.stream.active.binder.password=admin
spring.cloud.stream.active.binder.user=admin
spring.cloud.stream.active.bindings.greetingChannel.consumer.destinati
on=greetings
spring.cloud.stream.active.bindings.greetingChannel.consumer.type=queu
e
spring.cloud.stream.default-binder=activemq

Figure 12: The application.properties for the Consumer project

So in the application properties file, we set the host, password, and user values of our

ActiveMQ broker. We informed Spring Cloud Stream that our default binder

implementation is activemq. Then, we inform our binder about bindings channel name

and consumer destination and type. The scenario validates Req 2 and 3.

Finally, in the pom file, we have following dependencies as well as the Spring Boot Parent

as shown in Figure 13.

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 </dependency>

 <dependency>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-starter-stream-activemq</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
</dependencies>

Figure 13: Dependency list for the Consumer project

40

As can be seen, we are just using Spring-Cloud-Starter-Stream-ActiveMQ dependency

here from our binder implementation. In this part, we tested Req 6.

By running the project and calling the producer rest-API, we can check the ActiveMQ

admin web browser and see the required channel and destination was created there. Also,

we can verify that the counter increased in the enqueue and dequeue part. And finally, we

can see the output in the consumer console. In this part, we tested Req 4 and 5.

In the last step of the use case, we want to make some changes with application properties

to ensure that the topic model works.

So we change the destination types to Topic and restart the application again. And we can

see the message in the consumer project console as we expected. In this part, we tested

Req 4 and 5 to see that our solution works with the Topic destination.

5.2 Use case 2

Description:

1. The user calls a rest API in the browser.

2. The producer sends the message based on the configuration to the given

destination and channel name.

3. All consumers receive the message based on the configuration channel name if

the destination type is Topic.

4. All consumers print the received message to the console.

5. We repeat the steps for both Queue destinations, but this time just one consumer

receives the message.

Implementation:

We have same project as use case 1. So we have Cloud-Stream-Producer-ActiveMQ,

Cloud-Stream-Consumer-ActiveMQ, but we would like to add new instance of the

consumer so we would have two consumer projects and named it Cloud-Stream-

Consumer-ActiveMQ-1 and Cloud-Stream-Consumer-ActiveMQ-2.

41

We have exactly the same implementation for both consumers and we just do some

changes in application.properties. We change the destination types to the topic and run

all projects and call the rest-API to send the message to the destination and check both

consumers to verify that they received the message.

As the last test, we would add a new channel to the producer, and by calling two different

rest-APIs, we sent two different messages to two different channels that one was a Queue

destination, and another one was Topic destination.

At the end of this use case, we tested and verified that all requirements are working well.

5.3 Use case 3

Description:

1. The user pushes the updated configuration properties to a git repository

2. The server fetches the properties

3. The server pushes properties to the client

4. The client received updated configuration

Implementation:

We create two projects, Config-Server and Config-Client. The projects can be clone from

following GitHub repositories:

 Config-Server: https://github.com/madkt12/spring-cloud-config-server

 Config-Client: https://github.com/madkt12/spring-cloud-config-client

In this implementation, dependencies are the most crucial part, because we want to make

sure that our Spring Cloud Stream Binder ActiveMQ is compatible with Spring Cloud

Bus, Spring Cloud Config. So first, we need to say again that, Spring Cloud Config is for

pushing a notification to clients relies on Spring Cloud Bus. Spring Cloud Bus for sending

notification relies on Spring Cloud Stream, specifically Spring Cloud Stream Binder

Implementations.

https://github.com/madkt12/spring-cloud-config-server
https://github.com/madkt12/spring-cloud-config-client

42

On the server-side, we need to implement the code shown in Figure 14 in the main class.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.config.server.EnableConfigServer;

@SpringBootApplication
@EnableConfigServer
public class TestServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(TestServerApplication.class, args);
 }

}

Figure 14: Config-Server Main class

The only change that we have here is EnableConfigServer annotation, and this annotation

lets Spring know that this class is our Cloud Config Server. Then we need to implement

the application properties, as shown in Figure 15.

spring.cloud.config.server.git.uri=https://github.com/madkt12/my-
config.git
management.endpoint.refresh.enabled=true
server.port=8001
management.endpoints.web.exposure.include=*
spring.cloud.stream.default-binder=activemq
spring.cloud.stream.active.binder.host=tcp://localhost:61616
spring.cloud.stream.active.binder.password=admin
spring.cloud.stream.active.binder.user=admin

Figure 15: The Application properties file for Config Server

This properties file shows that we have set the git URL that our project fetches

configuration. It also can be a simple file on the server or somewhere else. The second

line will enable endpoint refresh. Our config server port is 8081. And we also set our

stream binder configuration. We should add this point that we need to mention for Spring

Cloud Stream that the default Binder is ActiveMQ, so it will not communicate with

RabbitMQ instead of ActiveMQ.

The configuration file is on git, and it has some key-pair values. As we can see, there is

no channel or destination definition in our application properties file. Spring Cloud Bus

will define it automatically.

The Config server project dependencies are shown in Figure 16.

43

<dependencies>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
 <version>2.2.2.RELEASE</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-monitor</artifactId>
 <version>2.2.2.RELEASE</version>
 </dependency>

 <dependency>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-starter-stream-activemq</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-bus</artifactId>
 <version>2.2.1.RELEASE</version>
 </dependency>

</dependencies>

Figure 16: Dependency List for Config Server Project

After running the project, we see that the configuration is loaded. Then on the client-side,

we need to implement the Config Client project. In the Config Client in addition to the

main class we have a controller class that simply shows the properties that it fetches from

config-server, as shown in Figure 17.

@RestController
@RefreshScope
public class ClientController {
 @Value("${db-username}")
 private String dbUsername;

 @Value("${contentful-username}")
 private String contentfulUsername;

 @GetMapping("/db")
 public String showDbUserName() {
 return "The db username is: " + dbUsername;
 }

 @GetMapping("/contentful")
 public String showContentFulUserName() {
 return "The contentful username is: " + contentfulUsername;
 }

}

Figure 17: Controller for Config Client project

44

The class contains an annotation RefreshScope that is being used to load properties value

from the Spring Cloud Config Server.

The Application properties file in the project is so simple, and it just includes application

port numbers. But there is a bootstrap.yml file that is necessary for any Config Client

project that wants to fetch data from the Spring Config Server project. The bootstrap.yml

file is shown in Figure 18.

spring:
 application:
 name: config-client

 cloud:
 config:
 uri: http://localhost:8001
 stream:
 default-binder: activemq
 active:
 binder:
 host: tcp://localhost:61616
 user: admin
 password: admin

 profiles:
 active: dev

Figure 18: Bootstrap.yml file for Config Client project

The name of the application properties is essential, as the Config server typically has to

serve up properties for many applications. The cloud.config.url is the Config-server URL.

We need to mention for Spring Cloud Stream that the default Binder is ActiveMQ, so it

will not communicate with RabbitMQ instead of ActiveMQ. And also we set broker

properties.And finally, we can set active profile and fetch properties based on the profile

and file name in the git repository.

The Pom file of this project is shown in Figure 19.

45

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-bus</artifactId>
 <version>2.2.1.RELEASE</version>
 </dependency>

 <dependency>
 <groupId>org.spring.cloud.stream</groupId>
 <artifactId>spring-cloud-stream-binder-activemq</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
</dependencies>

Figure 19: The dependency list of Config Client project

We called the client API, and we received the fetched properties from git. We updated

properties and pushed them to the repository by calling the monitor API from Config-

Server, the Spring Cloud Config understands which file has been updated and by calling

the following API: curl -X POST http://localhost:8001/actuator/bus-refresh Config

Server pushes updated configuration to the client. Then Config-Client fetches it. In this

communication, Spring Cloud Bus created a Queue automatically and named

springCloudBus.

By the above use case, once again, we tested and validated that our solution is compatible

with Spring Cloud Bus and Spring Cloud Config. And They are working as they do but

with our Spring Cloud Stream ActiveMQ Binder.

http://localhost:8001/actuator/bus-refresh

46

6 Conclusion

As illustrated in the evaluation section, the goal of the thesis is reached. The developed

framework is a tool that helps developers and operations to push their configuration

changes to different application targets easily using ActiveMQ. The framework is also

useful in case if the company has many microservices and needs to make a connection

between these components. Also, we should add this point that the developed framework

can be used along with other Spring Cloud Framework components easily.

We also compared our solution to Amazon AppConfig and discussed the benefits and

drawbacks of it in the context of the Spring Cloud framework. The service is quite young,

but if a company is already using other Amazon Web Services, Amazon AppConfig can

help manage configuration changes.

We compared our solution with Amazon AppConfig regarding security, cost, ease of use,

and some of the critical functionality. We explained that Spring Framework could help

us to achieve a secure way to handle role-based authentication, which allows us to give

push notification access to those users that are eligible to handle it. However, Amazon is

making money as a service provider and also, Amazon AppConfig costs for companies,

on-premises server, and ActiveMQ instance cost as well. We know that Amazon Web

Services provide many different services along with AppConfig, which makes working

with it more comfortable. For example, Amazon CloudWatch supports Amazon

AppConfig, and we can use this monitoring tool in case of failure in configuration

deployment and roll back to the preferred version.

Finally, we should say that the Spring framework is an open-source project. And any

open-source project needs an active community to be alive. This framework helps

developers who are using ActiveMQ and Spring Cloud framework projects.

47

References

[1] V. M. Ionescu, “The analysis of the performance of RabbitMQ and ActiveMQ,” 14th RoEduNet

International Conference - Networking in Education and Research (RoEduNet NER), Craiova,

pp. 132-137, 2015.

[2] “Apache ActiveMQ,” The Apache Software Foundation, [Online]. Available:

https://activemq.apache.org/. [Accessed 12 2019].

[3] “Amazon MQ FAQs,” Amazon Web Services, [Online]. Available:

https://aws.amazon.com/amazon-mq/faqs/. [Accessed 02 2020].

[4] “Benefits of Message Queues,” Amazon Web Services, [Online]. Available:

https://aws.amazon.com/message-queue/benefits/. [Accessed 01 2020].

[5] “Spring Cloud,” Spring, [Online]. Available: https://spring.io/projects/spring-cloud. [Accessed

01 2020].

[6] “Safe Deployment of Application Configuration Settings With AWS AppConfig,” Amazon Web

Services, [Online]. Available: https://docs.aws.amazon.com/systems-

manager/latest/userguide/appconfig.html. [Accessed 12 2019].

[7] “Method for managing application configuration state with cloud based application management

techniques,” [Online]. Available: https://patents.google.com/patent/US20190303212A1/en.

[Accessed 04 2020].

[8] A. F. Klein, . M. Ştefănescu, . A. Saied and K. Swakhoven, “An Experimental Comparison of

ActiveMQ and OpenMQ,” Fifth International Conference on Digital Information Processing

and Communications (ICDIPC), pp. 24-30, 2015.

[9] B. Snyder, D. Bosanac and R. Davies, ActiveMQ in Action, Manning Publications, 2011.

[10] “Spring Cloud Config Reference Guide,” [Online]. Available: https://cloud.spring.io/spring-

cloud-config/reference/html/. [Accessed 01 2020].

[11] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen and J. Bragge, “The design

science research process: A model for producing and presenting information systems research,”

2006.

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, “A design science research

methodology for information systems research,” Journal of Management Information Systems,

vol. 24, no. 3, pp. 45-77, 2007.

[13] “Spring Cloud Bus,” [Online]. Available: https://spring.io/projects/spring-cloud-bus. [Accessed

01 2020].

[14] “Spring Cloud Stream,” [Online]. Available: https://spring.io/projects/spring-cloud-stream.

[Accessed 01 2020].

[15] “simplify application configuration with aws appconfig,” Amazon Web Services, 25 November

2019. [Online]. Available: https://aws.amazon.com/about-aws/whats-new/2019/11/simplify-

application-configuration-with-aws-appconfig/. [Accessed 12 2019].

[16] “What is Amazon EC2?,” Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html. [Accessed 01 2020].

48

[17] “What Is Amazon CloudWatch?,” Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html.

[Accessed 01 2020].

[18] “What Is AWS Lambda?,” Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html. [Accessed 01 2020].

[19] “Amazon S3,” Amazon Web Services, [Online]. Available: https://aws.amazon.com/s3/.

[Accessed 01 2020].

[20] “AWS Systems Manager,” Amazon Web Services, [Online]. Available:

https://www.amazonaws.cn/en/systems-manager/. [Accessed 12 2019].

[21] “AWS Systems Manager Parameter Store,” Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-

store.html. [Accessed 01 2020].

[22] “AWS AppConfig,” Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig.html. [Accessed 12

2019].

[23] “AWS AppConfig announces integration with Amazon S3,” Amazon Web Services, [Online].

Available: https://aws.amazon.com/about-aws/whats-new/2020/03/aws-appconfig-announces-

integration-with-amazon-s3/. [Accessed 03 2020].

[24] “Common vulnerabilities and exposures,” [Online]. Available: https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=spring. [Accessed 04 2020].

[25] “AWS Systems Manager pricing,” Amazon Web Services, [Online]. Available:

https://aws.amazon.com/systems-manager/pricing/. [Accessed 02 2020].

