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Terms
Decision support technique A decision support technique (DST) is an approach thatassists individuals and organizations in making informeddecisions. As such, a decision support technique is typ-ically based on a specific original rationale and consistsof a specific data model, specific measures and specificalgorithms. Typical examples of DSTs are Online Analyt-ical Processing (OLAP) (rationale: interactive analysis ofdependencies in data; relational data model), associa-tion rule mining (ARM) (rationale: automatic reportingof dependencies in data; data model: proprietary fre-quent itemset apparatus) and statistical reasoning (SR)(rational: statistical reasoning per se; data model: ran-dom variables).Decision support tool A decision support tool is a software application or sys-tem that aids individuals or organizations in the decision-making process.Statistical paradox A statistical paradox is a phenomenon where a trend orrelationship observed in data appears to contradict com-mon sense, i.e., uninformed human expectation or pre-diction based on the same data, for example, when atrend or relationship observed within subgroups of datavanishes or reverses when the subgroups are combinedor when additional variables are considered.
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Summary
This thesis presents a comprehensive compilation of eight published research articles, summarizing their key findings, methodologies, and contributions. Copies of these articles are included in the appendix for easy access and further exploration.

The thesis is structured as follows. Section 1 provides an introduction and overview of the research problem’s relevance and the underlying motivation for this research. Sub-sequently, in Section 2, the research aim, focus and specific research questions (RQs) are thoroughly discussed, offering readers a clear understanding of the research direction and objectives. Section 3 offers an overview of existing literature and related research, setting the context for the current research. The research methodologies used throughout the thesis are summarized in Section 4, providing readers with an understanding of the research approach. Furthermore, the major contributions of this dissertation are high-lighted and discussed in Section 5. In Section 6, the framework for the unification of decision support techniques (DSTs), the framework for mitigating the impact of bias resulting from statistical paradoxes, and a web-based application developed during the research are presented. The research results are then presented in Section 7, demonstrating their contribution to evaluating the artifacts created during the study. Moreover, Section 8 outlines the future direction of this research, suggesting potential areas for further exploration and improvement. Finally, the thesis concludes in Section 9 with a concise summary, emphasizing the key findings and concluding the research.
1 Introduction
1.1 Problem Relevance
Since the 17th century, statistical reasoning (SR) has played a crucial role in deriving valu-able insights from data [85]. It has been an integral part of various decision support tools like SPSS (Statistical Package for the Social Sciences) and SAS (Statistical Analysis System)[85, 54, 67]. However, the advent of the information technology revolution in the 1990s brought forth a diverse range of powerful decision support techniques (DSTs) [14]. Each of these techniques possesses its own rationale, objectives, and perspectives and has gained significant importance in both research and practice. Presently, many popular DSTs such as association rule mining (ARM) [1, 2, 33], online analytical processing (OLAP) [15], and decision trees [62] are extensively utilized in research and practice for data mining, busi-ness intelligence, and machine learning (ML).

From a technical standpoint, these DSTs have some common objectives. However, they are designed and developed with distinct business perspectives, incorporating a vari-ety of independently developed methods and algorithms, each with its own mathematical formalizations and algorithms.
Therefore, the variations in methodologies, terminology, and data representation sys-tematically construct barriers that restrict the smooth transfer of results and insights across different domains. In particular, unlocking the potential of statistical results in their application scenarios is often challenging. Henceforth, we refer to these fundamental inconsistencies between DSTs as artificial gaps.
Addressing the artificial gaps between DSTs requires bridging the conceptual and methodological differences between DSTs. This can involve developing interoperability frameworks, creating common data representations, establishing semantic correspondences, and devising techniques for translating results and insights across different DSTs. By overcoming these gaps, we can unlock the synergistic benefits of integrating various DSTs, leading to a unified decision support system (DSSs) [30].
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On the other hand, the emergence of various DSTs has overlooked fundamental sta-tistical challenges discussed and identified centuries ago in statistics. These challenges in-clude the identification andmitigation of confounding effects and statistical paradoxes [60,91, 57, 7]. The primary objective of DSTs is to assist decision-makers by offering unbi-ased and reliable data-driven recommendations. However, the existence of confoundersand statistical paradoxes in benchmark and real-life datasets can easily drive a decision-support tool to generate biased outcomes.
In statistics, the discussion on bias, confounders and statistical paradoxes is not new;they have been discussed for centuries, such as Simpson’s paradox [91, 83], Berkson’sparadox [7], and Lord’s paradox [87]. These paradoxes are extreme cases of confoundingthat challenge common assumptions and can lead to surprising conclusions. Moreover,their effects are not only limited to the outcome of DSTs; they can have significant effectsin various domains that involve data analysis. These effects can be attributed to variousfactors such as measurement errors, confounding variables, disparities in data distribu-tion, and non-linear relationships. Therefore, in DSTs, it is essential to consider thesefactors when analyzing data to avoid the adverse impacts of paradoxes.
To address these two significant and distinct challenges in DSTs, this dissertation aimsto strengthen DSTs to develop unified, fair, and trustworthy decision-support applications.In particular, to address the first challenge in DSTs, this research provides an elaborationof semantic correspondences between the three popular DSTs, i.e., ARM, OLAP, and SR.Subsequently, a novel framework for the unification of SR, OLAP, and ARM is suggested.
Further, to address the second research challenge, the dissertation emphasizes ad-dressing the challenges posed by statistical paradoxes in DSTs. To achieve this, the thesisaims to discuss several measures to handle confounding effects and deal with the severeimpacts of statistical paradoxes inDSTs. Next, the author suggests a framework formitigat-ing bias in training datasets. To provide evidence for the relevance of such a framework,the author conducts a series of experiments with three different measures on multiplereal-world and benchmark datasets. To showcase the practical effectiveness of the pro-posed framework, the author has created a user-friendly web-based application. Thisapplication not only incorporates the example measures the author discussed but alsointegrates them into the outlined framework for bias mitigation. The author’s assertion isthat this application can be an invaluable tool for data scientists and researchers, as it hasthe capability to detect and address confounding effects automatically. The author con-tends that the suggested framework and application hold significant potential for futureextensions beyond their current scope of application.
In light of the problem’s relevance, the next two sections, 1.2 and 1.3, provide a detailedexplanation of the two primary research areas.

1.2 On Establishing Semantic Correspondences Between DSTs
Integration of different DSTs to develop unified decision support tools has been discussedby several researchers. In 1997, Kamber et al. [38] discussed the integration of two impor-tant data mining techniques, i.e., OLAP and ARM, and referred to it as metarule-guidedmining, which involved the use of pre-defined rule templates that are customizable bythe user. This approach aimed to streamline the data mining process and increase effi-ciency by providing a framework for users to follow. Later, Han et al. [32] proposed DB-Miner for interactive mining, which provides a wide range of data mining operations suchas association, generalization, characterization, classification, and prediction. In 2002,Imielinski et al. [36] presented cubegrades, which represents a generalization of asso-ciation rules. Cubegrades showcase the impact of specializing (rolldown), generalizing
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(roll-up), and mutating (changing the dimensions) on a set of measures or aggregateswithin a cube. In Zhu’s work [92], an innovative approach called online analytical miningof association rules was proposed. The research presented an algorithm for conductinginter-dimensional ARM, intra-dimensional ARM, and hybrid ARM. These techniques en-able the discovery of association rules across different dimensions of data, both within asingle dimension and between multiple dimensions. Building on the foundation of OLAPtechnologies, Zhu also designed a method for performing multi-level ARM. This approachallows for the exploration and extraction of association rules at multiple levels of granu-larity within a hierarchical structure, enabling a more comprehensive analysis of the data.Moreover, the potential application of association rules has recently been discussed with“cryptocurrency blockchain data" by [49].
Despite the existing research in this area, one notable gap in the state-of-the-art is thelack of elaboration on the concept of semantic correspondences between DSTs. Whilethere are extensive studies on integrating DSTs, the specific notion of semantic corre-spondences, which aims to establish meaningful connections and relationships betweendifferent DSTs, remains underdeveloped. To address this gap, this thesis aims to delveinto the concept of semantic correspondences between the three DSTs, i.e., ARM, OLAPand SR. Furthermore, it can enable decision-makers to work with cross-platform decisionsupport tools and check their results from different viewpoints.
In pursuit of establishing semantic mappings between DSTs, the author places signif-icant emphasis on probability theory. Specifically, the author focuses on conditional ex-pected values (CEVs), which play a central role in our consideration as they correspond to

sliced average aggregates in the context of OLAP. Additionally, they have the potential tocorrespond to ratio-scale confidences in a generalized ARM setting [20]. With a solid un-derstanding of the semantic correspondences between the three DSTs, the author firmlybelieves in the potential to design highly beneficial next-generation features for advanceddecision-support tools. By establishing meaningful connections and correspondences be-tween DSTs, it will be easy to unlock new possibilities and capabilities that enhance theeffectiveness and utility of DSSs.
1.3 Addressing the Severe Impact of Statistical Paradoxes in DSTs
In the realm of DSTs, it is crucial to recognize that biased results can arise due to the pres-ence of confounding variables within the data. The implications of statistical paradoxesand their influence on analyses have been extensively examined by renowned mathe-maticians and statisticians, as evidenced by notable works such as Yule, Pearl, and Berk-son [91, 57, 7]. Statistical paradoxes, including Simpson’s paradox and Berkson’s paradox[83, 7], draw attention to the presence of confounding effects within data analysis. Theseeffects arise when the association between two variables is distorted or modified by theinfluence of a third variable, known as a confounder. The presence of a confounder cancreate an illusion of association or lead to the misinterpretation of causal relationships.This highlights the importance of recognizing and accounting for confounding effects inDSTs to obtain trustworthy and meaningful conclusions.

For instance, an artificial intelligence-based recruitment tool utilized by Amazon [18]appears to have failed to assess candidates for software development roles in a mannerthat is free from gender bias. This is because the tool was trained using resumes from atime when the technology industry was predominantly male, leading to a bias towardsmale candidates. There are many similar examples [55, 37, 8] which clearly highlight theincompetence of DSTs and the need for addressing fundamental statistical challenges.
Various frameworks such as [90, 6, 9, 5, 66] and best practices exist to reduce bias in
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ML, but they are often designed for specific types of bias, such as gender or racial biasand struggle with confounding effects and statistical paradoxes in classical DSTs. It is diffi-cult for any framework to fully recognize and account for the effects of various statisticalparadoxes.To improve the trustworthiness of mainstream DSTs, it is important to effectively mit-igate the severe impacts of confounding, causality, and statistical paradoxes. Addressingparadoxical outcomes and handling statistical paradoxes pose significant challenges forbias mitigation frameworks, particularly when working with different DSTs. Therefore, toovercome these challenges, this thesis highlights several methods to identify and adjustthe impacts of statistical paradoxes and propose a comprehensive framework that specif-ically targets the mitigation of statistical paradoxes in DSTs.
2 Aim and Focus
Whilst there is a lot of discussion and research about developing advanced DSTs [93, 21,89, 11], the notion of identifying semantic correspondences between DSTs and developinga common framework to utilize their varied features is not discussed much in state of theart. Next, the author has also identified a lack of attention and focus on improving thetrustworthiness of DSTs. This means that limited efforts have been made to address andovercome the fundamental statistical challenges that have been discussed for centuries.Based on these two major research gaps, this thesis aims to answer two primary RQsand six supplementary RQs as detailed in Section 2.1.
2.1 Research Questions• RQ-1: How to bridge the artificial gaps between different DSTs?

– RQ-1.1 What are the semantic correspondences between the three major de-cision support techniques, i.e., statistical reasoning (SR), online analytical pro-cessing (OLAP) and association rule mining (ARM)?
– RQ-1.2 How to provide a systematic interpretation of results between differentdecision support techniques? In how far can we consider SR, OLAP, and ARMas synonymous?
– RQ-1.3 How to develop a common framework for integrating SR, OLAP andARM?

• RQ-2: How to systematically assess the impact of statistical paradoxes in multivari-ate data? How to utilize these assessments for better decision-making?
– RQ-2.1 How to identify the existence of the Yule-Simpson effect in multivariatedata?
– RQ-2.2 How to adjust the impact of the Yule-Simpson effect in multivariatedata?
– RQ-2.3 How to develop a platform to handle statistical paradoxes in multi-variate data and recommend appropriate adjustments for improved decision-making?

In this thesis, a comprehensive analysis of eight articles has been conducted to addresstwo primary and six supplementary research questions. The articles have made substan-tial contributions to the existing knowledge in the field, thereby significantly contributingto the existing knowledge in the field.
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The first publication [I], “Expected vs. Unexpected: Selecting Right Measures of Inter-estingness", provides a preliminary study to identify the most typical and useful roles ofthe measures of interestingness in ARM. The second publication [II], “A Novel Frameworkfor Unification of Association RuleMining, Online Analytical Processing and Statistical Rea-soning", undertook an extensive analysis of various strategies aimed at bridging the gapbetween the three popular DSTs: SR, OLAP, and ARM. Our contribution lies in elaborat-ing the semantic correspondences between the foundations of SR, OLAP and ARM, i.e.,probability theory, relational algebra and the itemset apparatus, respectively. Next, theauthor has introduced a novel framework that aims to unify DSTs and developed a corre-sponding tool to validate this concept. This tool facilitates the unified utilization of DSTswithin a conventional decision support process, offering clarity on how operations fromSR, ARM, and OLAP can complement each other in enhancing data comprehension, datavisualization, and decision-making processes.
The third publication [III], “Towards unification of statistical reasoning, OLAP and as-sociation rule mining: Semantics and pragmatics", strives to overcome the artificial gapsthat exist between three DSTs: SR, OLAP and ARM. By establishing these semantic cor-respondences, the author proposes that the unification of DSTs can form the basis fordesigning advanced multi-paradigm data mining tools in the future.
The fourth publication [IV], “Detecting Simpson’s paradox: A machine learning per-spective", centers on addressing a specific instance of a statistical paradox known as Simp-son’s paradox in categorical data. Through real-world case studies, the author highlightsthe profound impact of this paradox. Furthermore, the author presents an algorithm de-signed to detect Simpson’s paradox and identify the confounding variables within cate-gorical datasets.
The fifth Publication [V], “Detecting Simpson’s paradox: A step towards fairness inmachine learning", discusses ways to identify the impact of Simpson’s paradox on lineartrends, particularly in relation to continuous values. Subsequently, the author provides apractical demonstration of its effects using three benchmark training datasets commonlyemployed in ML.
The sixth publication [VI], “Why not to trust big data: Discussing statistical paradoxes",and the seventh publication [VII], “Existence of the Yule-Simpson effect: An experimentwith continuous data" provide a preliminary study and further insights about differentstatistical paradoxes and emphasis on the statistical evaluation and human experts in theloop towards developing trustworthy DSTs.
The eighth publication [VIII], “On statistical paradoxes and overcoming the impact ofbias in expert systems: towards fair and trustworthy decision making”, highlights the sig-nificance of addressing statistical paradoxes within DSTs and aims to contribute to thedevelopment of fair and reliable DSTs. To this end, a framework is proposed for mitigatingthe impact of statistical paradoxes in DSTs. Additionally, various measures for adjustingthe influence of confounders are discussed. To validate the effectiveness and utility ofthe proposed framework, a web-based application has been developed. The current ver-sion of the application allows for the investigation of potential confounders by detectinginstances of Simpson’s paradox and offers a feature for adjusted observations. In orderto provide empirical evidence supporting the relevance of the framework and the appli-cation, a series of experiments have been conducted on both real-world and benchmarkdatasets.
Table 1 provides a concise summary of the author’s publications, mapping their respec-tive research questions and contributions. Publication [I], [II], [III], contributes towardsanswering RQ1, RQ1.1 , RQ 1.2 and RQ 1.3. Rest five publications [IV], [V], [VI], [VII], [VIII]
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Table 1: Mapping among RQs, publications and their contributions

Research Questions Publications ContributionsRQ1, RQ1.1 [I], [II], [III] C1RQ1.2 [II], [III] C1RQ1.3 [II] C1, C2RQ2, RQ2.1 [IV], [V], [VI], [VII], [VIII] C3RQ2.2 [VIII] C4, C5, C6RQ2.3 [VIII] C4, C5, C6

are focused on answering the RQ2, RQ2.1, RQ2.2, and RQ2.3.
3 Related Research
The work presented in this section offers an overview of the related information gatheredfrom the existing literature. It establishes the foundation by synthesizing and summarizingthe current state of knowledge in the field. Moreover, it highlights the gaps and limitationsin the existing literature that pertain to the research questions introduced in Section 2.1.By identifying these gaps, the thesis aims to contribute to the knowledge base in a mean-ingful way. It intends to address these research gaps by conducting original research andproviding novel insights and solutions.
3.1 On the Unification of Decisions Support Techniques
The evolution of DSTs has been driven by advancements in technology, changes in busi-ness environments, and the growing complexity of decision-making processes. Over theyears, DSTs have evolved from traditional manual approaches to more sophisticated andautomated systems. However, some fundamental challenges are yet to be answered. Thissection provides an overview of the studies exploring the integration of DSTs. The authorconducts a thorough examination of relevant research articles pertaining to the integra-tion of various DSTs. Some of these research works are further discussed as follows:

Wang et al. [89] presented a new architecture that integrates knowledge discoveryin databases (KDD) techniques into existing decision support systems (DSSs). The paperdiscusses integrating different techniques in group DSSs using three types of decision sup-port agents. Rupnik et al. [65] developed a data mining decision support system (DMDSS)that combines classification, clustering, and association rules. Zhuang et al. [94] pro-posed a methodology that integrates data mining and case-based reasoning to developa pathology test ordering system. Data mining is used to extract knowledge from pastdata and used in decision support. Liu et al. [50] conducted a survey in 2010 to assess thedevelopment of an integrated decision support system (IDSS). IDSS combines four DSTs:knowledge-based systems, data mining, intelligent agents, and web technology, to helpusers interpret decision alternatives and discover patterns in large data sets.
These works are mainly focused on developing and integrating DSSs with DSTs. How-ever, none of them discuss semantic correspondences between DSTs. The author alsoexamines the current state of the art for integrating OLAP and ARM, with some worksconcentrating on intra-dimensional association rules and others on inter-dimensional as-sociation rules.
Kamber et al. [38]made anotable contribution by addressing the relationship betweenARM and OLAP. Their work introduced a meta-rule-guided mining approach specificallydesigned for extracting association rules from multi-dimensional data cubes. The author
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introduced four algorithms that efficiently analyze OLAP data cubes for discovering valu-able patterns and associations within multi-dimensional datasets. Later, DBMiner wasproposed by Han et al. [32] for interactive mining. It offers a broad range of data min-ing functions, including association, generalization, characterization, classification, andprediction. In 2002, Imielinski et al. [36] introduced cubegrades, a generalization of asso-ciation rules. Cubegrades highlights the impact of roll-up, roll-down, and changing dimen-sions onmeasures or aggregateswithin a cube. Zhu [92] proposed online analyticalminingof association rules and presented algorithms for inter-dimensional, intra-dimensional,and hybrid ARM. These techniques enable the discovery of association rules across differ-ent dimensions of data, bothwithin a single dimension and betweenmultiple dimensions.Building on the foundation of OLAP technologies, Zhu also designed a method for multi-level ARM, enabling a more comprehensive analysis of data.
This thesis provides an elaboration on the semantic correspondences between ARM,OLAP and SR with their foundations, i.e., itemset apparatus, relational algebra, and prob-ability theory, respectively. The work presented in publications [II] and [III] also character-izes the degree and type of synonymity among SR, OLAP and ARM. To achieve semanticcorrespondences between SR and OLAP, the author compared the expected value of anitem X , i.e., E(X), with the output of the AVG query in OLAP. The author demonstratesthat the average of a random variable Y with condition X (Conditional Expected values)and the conditional average of an OLAP query provide the same outcome. The author alsoillustrated the high-level abstraction of the framework, which was also implemented as atool that first recognizes different kinds of data (discretized, numerical, categorical) andthen develops generalized association rules for the various combinations of influencingfactors and target columns.
Additionally, the author has made significant contributions to related research, par-ticularly in the areas of generalizing ARM to continuous values and Big Data. The con-tributions are supported by several research papers coauthored by the author, includ-ing systematic literature reviews on the potential and applications of NARM [43, 42, 40],analysis of human perceptions in discretizing numerical attributes [45, 44], impact-drivendiscretization of numerical factors, and utilization of swarm-intelligence algorithms formining numerical association rules [41, 39]. Furthermore, the author also contributed asa coauthor to the research that explores the application of Big Data analytics in associa-tion rule mining and investigates factors in diverse datasets using cluster-based associa-tion rule mining techniques [73, 72]. These contributions collectively enhance the field ofARM, making it applicable to a wider range of data types and larger datasets [71].

3.2 Statistical Paradoxes
In DSTs, statistical paradoxes refer to situations that produceunexpectedor counter-intuitiveresults that may not align with human expectations or common sense. These paradoxescan have a significant impact on any individual and organization. This section gives anoverview of studies that investigate the existence and impact of statistical paradoxes indata. DSTs, such as ARM and OLAP, can produce biased results due to confounding vari-ables in data [48, 86]. The role of statistical paradoxes and their impact has been discusseddeeply in classical data analysis by expert mathematicians and statisticians [91, 57, 7].Therefore, understanding causal relationships hand in hand with evaluating the existenceof statistical paradoxes is an essential step forward toward developing trustworthy andfair DSTs.

Statistical paradoxes are fundamentally related to a range of various statistical con-cepts such as partial correlations [27], p-technique [13], suppressor variables [16], condi-
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tional independence [19], propensity score matching [64], causal inference [57, 59], andmediator variables [51] as well as statistical challenges such as ecological fallacy [63, 47]and Lord’s paradox [87].
Statistical paradoxes, such as Simpson’s paradox and Berkson’s paradox, highlight theexistence of confounding effects. These effects emerge when the relationship betweentwo variables is distorted or altered due to the presence of a third variable, known as theconfounder. Confounding effects can lead to misleading or counterintuitive conclusions ifnot properly addressed or accounted for in the statistical analysis. In mathematical statis-tics, causality and confounding are two related concepts that researchers widely discuss.This is evident in the works of established researchers such as Otte and Pearl [56, 58].
The work of Pearl [58, 57] has made a substantial impact on the advancement ofprobabilistic reasoning and causal modelling in the field of AI. Pearl’s contributions in-clude the development of an extensive framework for causal inference, which focuses onreasoning about causal relationships between variables. This framework provides valu-able tools and methodologies for understanding cause-and-effect relationships, enablingresearchers and practitioners to uncover the underlying mechanisms driving observedphenomena. Otte [56] discussed how probabilistic causality relates to Simpson’s para-dox. Otte’s discussion revolves around the concept of probabilistic causality, which sug-gests that a cause doesn’t always generate a unique effect but instead alters probabilities.Schield [69] proposed using Cornfield’s conditions to assess the presence of confoundingvariables that affect both the dependent variable (target variable) and independent vari-ables (impact factors). Spellman [84] gave an example of how different information canlead to different conclusions. Schaller [68] talked about how individuals form opinionsand conclusions about others with only a small amount of information. In the work [19],the idea of conditional independence and how it affects statistical inference is presentedand discussed. In Cartwright’s study, the connection between scientific law and causalnecessity in philosophy was investigated [12]. Fiedler discussed sampling issues, pseudo-contingencies, and inductive reasoning in social psychology, including cognitive consis-tency, social cognition, and implicit social cognition [23, 26, 24, 25]. Alipourfard et al. [3]found Simpson’s paradox in social and behavioral data [4]. Blyth [10] discussed Simp-son’s paradox and the sure-thing principle, two essential concepts that can help decision-makers avoid incorrect decisions based on incomplete or misleading data. Hernán [34]provided examples illustrating Simpson’s paradox across various contexts. They empha-sized the significance of understanding confounding variables, selection bias, and effectmodification to accurately interpret statistical results and draw conclusions. Kievit etal. [46] found Simpson’s paradox in psychological science. They created an R package todetect confounding effects in continuous data. Freitas et al. [28] proposed an algorithmfor detecting instances of Simpson’s paradox. However, Curley et al. [17] explained the roleof Simpson’s paradox and its implications for decision-making. In 2010, Greenland [31] in-vestigated the relationship between Simpson’s paradox and Bayesian non-collapsibility.He used an example of adding constants in contingency tables. However, according to Tuet al. [87], various statistical paradoxes, such as Simpson’s paradox, suppression effectsand Lord’s paradox, are all manifestations of the same phenomenon referred to as thereversal paradox.
Tu et al. [87] claimed that different statistical paradoxes, including Simpson’s para-dox, Lord’s paradox, and suppression effects, aremanifestations of the samephenomenonknown as the reversal paradox.
During the investigation of frameworks aimed at mitigating bias, it became evidentthat most of these frameworks were primarily designed to address specific types of bias
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and lacked the capability to effectively handle confounding effects and statistical para-doxes within classical DSTs, such as ARM. Frameworks such as such as [90, 6, 9, 5, 66]have been developed to tackle specific biases, such as gender or racial bias. While theseframeworks have made notable contributions in their respective domains, they often en-counter challenges when it comes to recognizing and accounting for the effects of variousstatistical paradoxes.The existing literature highlights that considerable discussions have contributed to ad-vancing our understanding of these complex phenomena and their implications in dataanalysis and decision-making. However, this work highlights the importance of detectingstatistical paradoxes in data. The author provided a detailed discussion of the impact ofSimpson’s paradox with the help of examples which are presented in [IV], [V], [VI], [VII].This work presented in [VIII] utilizes two measures (one for continuous data and one forcategorical data) for investigating confounders via detecting instances of Simpson’s para-dox in regard to the stratification of Pearson correlation and presents one measure foradjusting the impact of confounders, which generalizes standard back-door adjustmentto continuous data.
4 Research Methodology
The primary methodological foundation of the research conducted in this thesis stemsfrom theprinciples of design science research [35, 53, 52]. Design science researchmethod-ology is widely used in the fields of information systems and computer science to createinnovative artifacts or design solutions that effectively tackle specific challenges or prob-lems. This thesis makes six significant contributions in the form of distinct artifacts andmethods. These contributions are specifically designed to answer the identified RQs andfill the existing technological and knowledge gaps. The development of these artifactsaims to strengthen existing DSTs to foster fair and trustworthy decision-making processes.The central framework of this thesis is built upon a collection of eight research articles.These research articles contribute valuable insights and evidence to support the findingsand conclusions presented in this thesis. Among these scholarly articles, one has beenpublished in a high-impact Q1 journal, highlighting its significance and rigorous evalua-tion [II]. Additionally, another article is a technical report available on the esteemed socialscience research network repository (SSRN) [VIII]. The remaining six articles [I], [III], [IV],[V], [VII], [VI], are published in reputable conference proceedings, further emphasizingtheir scholarly contributions. The collection of these scholarly research articles forms asolid foundation of evidence and insights, lending strong support to the research findingsand conclusions explained in this thesis.In this thesis, the author analyzes the evaluation results, identifies strengths andweak-nesses, and improves the outcomes. This leads to refining and improving the artifact ordesign solution based on the feedback received during the evaluation phase. By adoptingthe design science research methodology throughout the process, the author has appliedrelevant theories and methodologies to guide decision-making. The goal is to ensure therigor and validity of the research while contributing to the advancement of knowledgeand practice in the field.The research design process used in this thesis is illustrated in Figure 1.
4.1 Building
In the research design, constructing and assessing iterations are essential aspects. Build-ing iterations involve the iterative process of developing and refining artifacts [35]. Theprocess begins by identifying a problem and comprehending existing literature, theories,
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Figure 1: Design science process: The primary methodological foundation of the research from the
principles of design science research [35, 53, 52]

and context. Subsequently, potential solutions are conceptualized, leading to the develop-ment and implementation of an artifact or prototype. Lastly, the solution’s effectivenessis evaluated and validated through experiments, simulations, and informed arguments.Towards building the artifacts, as per the design science research methodologies [35,53, 52], the author has used the following three research methodologies for building theartifacts. The publications [I], [VI], and [VII] have been utilized in identifying the problemand defining the clear research objectives.
4.1.1 Problem Identification In design science research, the problem identification phasemarks the initial step in the research process. By following this step, the author of the the-sis meticulously identifies and defines a specific problem or challenge requiring attention.This critical phase involves a comprehensive examination of existing issues and gapswithinthe field of study. Through an in-depth literature review, the author gains a profound un-derstanding of the current state of knowledge and pinpoints the precise research problemthat the study aims to address and resolve. This phase lays the foundational groundworkfor subsequent research activities, guiding the research direction and providing the con-text for further investigation and analysis.
4.1.2 Objective Definition After the problem identification phase, the author proceedsto define clear objectives for the study. These objectives outline the desired outcomesor results that the research intends to accomplish. The objectives provide guidance andserve as a basis for designing the artifacts or solutions in later phases of the researchprocess. By aligning the objectives with the identified problem, the author ensures thatthe study remains focused and purposeful, ultimately contributing to the advancementof knowledge and addressing the research challenge effectively.
4.1.3 Design and Development In the design and development phase, the author takeson the critical task of designing and developing artifacts or solutions to effectively address
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the identified problem. This phase entails the creation of prototypes, models, algorithms,or frameworks that embody the author’s proposed solution. Here, the design and de-velopment phase is an iterative process of refining and improving the artifacts based onevaluation and feedback. This iterative approach ensures that the artifacts continuouslyevolve to meet the desired outcomes and successfully address the identified problem.
4.2 Evaluation
This thesis extensively discusses the evaluation research methodologies based on designscience research applied to the published research articles [35, 52, 53]. Detailed expla-nations of these methodologies are provided in Sections 4.2.1, 4.2.2, and 4.2.3. Throughthese sections, readers of the thesis can gain a comprehensive understanding of the eval-uation methodologies employed in this research work.

4.2.1 Informed Arguments In the field of design science research, informed argumentsplay a crucial role in supporting the development and validation of innovative artifactsor design solutions [35]. These arguments are constructed upon a blend of theoreticalfoundations, empirical evidence, and logical reasoning, working together to enhance thecredibility and persuasiveness of the research findings. By leveraging this comprehensiveapproach, we provide robust support for the development and validation of our designcontributions.
In the publication [III], the author worked to answer RQ1 and provide an in-depth anal-ysis of three different DSTs, i.e., SR, OLAP and ARM and investigate the semantic corre-spondence between them. Further, In the next article [II], the author introduces a novelframework aiming to unify SR, OLAP, and ARM. The primary objective of this frameworkis to provide an integrated approach to decision support by bringing together these tech-nologies.
The publications [VI] and [VII] provide a preliminary investigation into statistical para-doxes, particularly Simpson’s paradox, within DSTs, the author explores the role of Simp-son’s paradox in DSTs and establishes the foundation for the need to detect and addressthis paradox. The framework provided in [VIII] likely builds upon the preliminary studymentioned earlier, and it aims to provide a means to identify the impacts of statisticalparadoxes toward developing fair and trustworthy DSTs.

4.2.2 Controlled Experiments Controlled experiments serve as a widely adopted re-search methodology in various fields, including design science research, to investigatecause-and-effect relationships and evaluate the effects of specific interventions or treat-ments [35]. In such experiments, researchers deliberately manipulate and control inde-pendent variables while observing andmeasuring the resulting impact on dependent vari-ables. In this research, the primary objective of using controlled experiments as a researchmethodology is to control independent variables while measuring the effects on depen-dent variables. Ultimately, the goal is to establish causal relationships and draw valid con-clusions about the effectiveness of the three discussed measures.
The publications [VIII] [V], [IV], delve into the exploration of variousmeasures aimed atidentifying and mitigating the impact of confounding variables in several benchmark andreal-life datasets that contain both categorical and continuous variables. Through rigorousexperimentation with different datasets, this research aimed to assess the effectivenessof these measures.
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4.2.3 Simulation In design science research, simulation plays a pivotal role in thoroughlyevaluating the functionality and effectiveness of specific artifacts or systems [35]. By em-ploying synthetic data in a controlled and virtual environment, the author aims to gain acomprehensive understanding of the performance and capabilities of the artifacts underexamination. This process allows for a detailed assessment of the artifact’s or system’sfunctionality and aids in informing further improvements and refinements.The article [VIII] implemented a web-based application to detect the existence of con-founding effects and the instances of Simpson’s paradox. Further, three measures arediscussed to identify and adjust the impact confounding variable in several benchmarkdatasets. According to the design science researchmethodology, the author accomplishedthemodel development, implementation, experimentation and analyzing the outcome ofthe artifacts.
5 Contributions
The dissertation presents both conceptual and practical solutions, addressing two primaryand six supplementary research questions, concluding with a total of six significant con-tributions. The mapping of contributions and their respective evaluation methodologiesis given in Table 2.The main contributions of this research can be summarized as follows:

• C1: Contribution (C1) highlighted a significant gap among the three most popularDSTs, namely SR, OLAP, and ARM. To address this gap, the author analyzed a rangeof approaches aimed at bridging the gap between the three DSTs.
The author contributed by elaborating on the semantic correspondences betweenthe foundations of SR, OLAP andARM, i.e., probability theory, relational algebra andthe itemset apparatus, respectively. The support of an itemset corresponds to theprobability of a corresponding event and the confidence of an association rule cor-responds to the conditional probability of two corresponding events. Furthermore,the OLAP average aggregate function corresponds to conditional expected values,which closes the loop between ARM, OLAP and probability theory with respect tothe most important constructs in ARM and OLAP. By providing semantic mappingsbetween three DSTs discussed in [III], [II] and [I], the author answers RQ1.1 fully andpartially answers RQ1.2.

• C2: Contribution (C2) suggested a novel framework for the unification of DSTs andimplemented a tool to validate the concept of unification. The tool provides unifiedusage of DSTs in a classical decision support process. It clarifies how far the opera-tions of SR, ARM, andOLAP can complement each other in understanding data, datavisualization and decision-making. The tool was developed on the basis of an open-source framework and tested with two real datasets and one synthetic dataset. Theresults and performance of the tool show valuable contributions toward developingthe next-generation DSSs. The programming code and other instructions on how touse the proposed tool are available in the GitHub repository 1. This particular con-tribution serves as a response to RQ1.3, as discussed in [II].
• C3: Contribution (C3) is the identification of confounding variables and instances ofstatistical paradoxes, i.e., Simpson’s paradox, in multivariate datasets used in DSTs.With this, the author addresses the issue of statistical paradoxes in big data and
1https://github.com/rahulgla/unification
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their implications on benchmark datasets commonly employed in ML. The author’sinvestigation into Simpson’s paradox includes an analysis of its presence and impli-cations in various datasets through a case study and workshop paper published inconferences [VI] and [VII]. These publications provide partial answers to RQ2 andRQ2.1. Additionally, the author addresses the identification of confounding vari-ables and Simpson’s paradox instances in continuous and categorical datasets intwo other articles [IV] and [V].
• C4: Contribution (C4) utilized stratification of Pearson correlation to identify po-tential confounders in categorical and continuous data. Furthermore, the authorgeneralizes back-door adjustment techniques and uses propensity weighting to ad-just the impact of confounders effectively [VIII]. This contribution enhances theunderstanding and application of confounding adjustments in continuous datasets.
• C5: Contribution (C5) introduced a novel framework designed to effectively addressstatistical paradoxes and confounding effects. The framework consists of threemaincomponents and two essential sub-components, visually presented in Figure 4. Theframework has been carefully crafted and thoroughly evaluated to enhance accu-racy and reliability, minimizing biased outcomes in DSTs. Additionally, the frame-work offers a promising approach for promoting fair and trustworthy decision-makingprocesses in various domains. The publication [VIII] comprehensively presents thedetails of the framework and provides in-depth insights into its functionality. Addi-tionally, it addresses and answers RQ2.2 and partially RQ2.3.
• C6: Contribution (C6) demonstrated the practical utility of the proposed framework.To showcase its effectiveness, the author has developed a user-friendly web-basedapplication that seamlessly integrates the discussed examplemeasures for biasmit-igation. This application, presented in publication [VIII], serves as a valuable toolfor data scientists and researchers, offering automated detection and mitigation ofconfounding effects. By providing a streamlined approach to address and overcomechallenges in data analysis, the application makes a significant contribution to thefield. The programming code and usage guidelines for the proposed tool can befound in the GitHub repository 2. Additionally, with this, the author also answersRQ2.3.

6 The Contributed Frameworks and Application
6.1 Framework for the Unification of Decision Support Techniques [II]In this section, the author introduces the framework for unifying three DSTs. Inspired bythe data science process by O’Neil et al. [70], the proposed framework is designed witha modular approach, allowing each module to be interchangeable. Figure 2 provides ahigh-level abstraction of the framework, while a more detailed overview, based on theprocess of KDD [22], is illustrated in Figure 3.The framework comprises sevenmajor components. The graphical user interface (GUI)facilitates communication between decision-makers and the framework for processingraw data. Data pre-processing involves various operations and checks, such as discretiza-tion, data cleaning to identify corrupt data, reviewing data types, and transforming datainto useful formats. The all-combination influencing factor (ACIF) generator is a toolwithinthe framework that empowers decision-makers to select target columns and influencing

2https://github.com/rahul-sharmaa/SimpsonP
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Table 2: Mapping among the contributions of the dissertation and corresponding evaluation
methodologies

Contribution Summary Evaluation MethodologyC1 Establish semantic mappings between DSTs Informed ArgumentsC2 Provide framework for unification of SR,OLAP and ARM Informed Arguments
C3 Present approaches for identifying the ex-istence of confounding effects and well-known statistical paradoxes.

Informed Arguments

C4 Present measures for adjusting the impactof confounding effects Controlled Experiment
C5 Provide a framework for mitigating the im-pact of bias resulting from statistical para-doxes

Informed Arguments

C6 Provide a web-based application to detectand adjust the impact of confounders Simulations

factors, generating different combinations of data items. The decision support engineconsists of multiple DSTs, allowing decision-makers to choose one or more techniques fordata processing and gaining insights. Pattern evaluation utilizes different methods fromSR, OLAP, and ARM to discover meaningful information. Lastly, the semantic mapper isa manual process that maps the results of DSTs and reports various semantic correspon-dences between them. A detailed description of the framework is provided in [II].To illustrate the usefulness of the proposed framework, the author created a workinginstance [61] using ASP.NET, an open-source framework for web application development.This implementation serves as a primeexample of a next-generation decision support tool,showcasing the successful adoption of the proposed framework. The programming codeand detailed instructions on how to use this tool can be accessed in the GitHub repository[82].
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Figure 2: A top-level abstraction of the framework aiming to unify DSTs [II]

6.2 The Framework for Mitigating Bias in Training Datasets [VIII]
Addressing paradoxical outcomes and handling statistical paradoxes is indeed challengingfor bias mitigation frameworks, especially when dealing with large and complex datasets.Successfully navigating these challenges necessitates a combination of technical exper-tise, domain knowledge, and thoughtful consideration of the trade-offs between fairnessand accuracy. Improving existing frameworks requires a continuous focus on expanding
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coverage, enhancing flexibility, fostering collaborationwith domain experts, offering guid-ance on balancing trade-offs, and increasing transparency. To address these challenges,the author proposes a comprehensive framework.The framework consists of three main components and two sub-components, provid-ing a robust approach to handle bias and statistical paradoxes effectively. This approachaims to promote fair and trustworthy decision-making in data analysis and mitigate theimpact of biases in DSTs. Figure 4 provides a graphical representation of this proposedframework.
1. Data pre-processing: The first step involves identifying and removing any errors orinconsistencies in the data. This involves techniques such as data cleaning, normal-ization, dealing with missing values and outlier detection.
2. Bias mitigation techniques: The second step involves using various techniques tomitigate bias in the dataset. This involves techniques such as data augmentation,where new data is generated to balance the representation of different classes orcategories in the data. Another technique uses weighting schemes to give moreweight to underrepresented classes or categories.
3. Evaluation: The evaluation aims to ensure that the bias mitigation techniques ef-fectively improve fairness and provide an accurate outcome. This could involvecomparing the performance of a DST on biased and unbiased datasets by utilizingdifferent metrics.

(a) Incorporating domain knowledge: The step involves incorporating domain knowl-edge into the data analysis process. This involves using expert knowledge toguide the selection of relevant variables and features and using various ad-justment techniques. The goal of incorporating domain knowledge is to un-derstand the causes of several statistical paradoxes and take appropriate stepsto adjust their impact and to further improve the quality and relevance of thedataset.
(b) Adjustments in datasets: Uneven distribution of data between two or moregroups is one of the reasons for bias. Therefore, by balancing the input vari-ables across different groups in the data, an ML model is less likely to makebiased decisions. Balancing the dataset ensures that an ML model is equallyexposed to all groups.

The suggested framework is designed to show the following advantages. A detaileddescription of the framework is provided in [VIII].
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Figure 4: Framework for mitigating the impact of bias resulting from statistical paradoxes [VIII]

• This framework is designed to handle and address bias caused by unexpected rela-tionships betweendata groups, improving fairness and reliability in decision-making.
• The proposed framework takes a more comprehensive approach compared to ex-isting frameworks that typically focus on specific techniques for reducing bias. Itoffers support for multiple bias mitigation techniques that cover various strategiesfor addressing different types of biases.
• The proposed framework allows the balancing and adjustment of training data toavoid statistical paradoxes.
• The proposed framework focuses on involving domain experts in AI developmentand deployment for understanding social and ethical values.

6.3 TheWeb-based Applications to Identify the Impacts of Confounding Variables [VIII]
By utilizing the suggested framework, the author has developed a web-based applica-tion aimed at identifying the impacts of confounding variables and addressing statisticalparadoxes [VIII]. At present, the application performs a systematic identification of con-founding variables in categorical and continuous datasets. Additionally, the applicationcan detect the presence of Simpson’s paradox within multivariate datasets. The applica-tion is developed using Python 3.10 programming language and the FastAPI framework,harnessing its advantages of rapid development and high-performance capabilities. InFigure 5, screenshots of the application’s user interface are provided, highlighting its user-friendly design and simplicity.The application offers a seamless user experience, requiring just a few straightforwardsteps to accomplish its purpose. First, users can easily import a dataset into the applica-tion. Next, select the necessary parameters related to their analysis. Once the dataset andparameters are set, users can simply click on the ‘Check Confounding’ button to detectany confounding variables within the dataset and identify instances of Simpson’s para-dox. This user-friendly approach ensures that users, regardless of their technical exper-tise, can easily harness the power of the application to gain valuable insights from their
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data. The programming code and comprehensive usage guidelines for the proposed ap-plication can be accessed from the GitHub repository 3. The repository contains all thenecessary resources to facilitate a smooth understanding and effective implementationof the application.

Figure 5: Application’s graphical user interface [VIII]

3https://github.com/rahul-sharmaa/SimpsonP
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7 Results and Artifact’s Evaluation
Evaluation serves as a critical component of the research process, ensuring that the arti-fact’s performance and effectiveness are thoroughly assessed. Demonstrating the utility, quality, and efficacy of a design artifact requires a rigorous evaluation process employing well-executed methods.

This section aims to demonstrate the evaluation of the research by presenting the results of the research questions (RQs). It highlights how these results contribute to fill-ing gaps in the existing body of knowledge, advancing our understanding of the subject. Moreover, the section emphasizes how the outcomes of the RQs align with the study’s objectives, validating the research’s relevance and significance. By addressing these RQs, the research provides valuable insights and practical contributions to the field, making it a meaningful and impactful endeavor.
Table 3 presents a comprehensive summary of the results obtained from RQ1, along with the corresponding publications that address these questions. Three research arti-cles are relevant to RQ1 and its corresponding sub-research questions. Table 3 provides a clear overview of the outcomes achieved in relation to the specified research inquiries, showcasing the specific contributions made in each publication.

Table 3: Summary of the RQ1 results with publication and current knowledge gaps

Results with Publications Current Knowledge GapsIn publication [II], a novel framework forthe unification of DSTs is presented todevelop next-generation decision supporttools.

In Section 3.1, the author highlighted thatexisting studies lack a unified framework tointegrate and utilize the outcomes of oneDST in another DST.
The publication [II] implemented a sampletool for unifying DSTs based on the pro-posed framework.

Existing studies discussed in Section 3.1lack any tool or application that deliversthe unification of DSTs.
The publication [III] presented the seman-tic correspondences between the founda-tions of SR, OLAP, and ARM. This can beconsidered as a step towards the unifica-tion of different DSTs

The previous research efforts discussed inSection 3.1, focused on integrating OLAPand ARM but did not specifically addressthe correspondences and unification be-tween DSTs.
The publications [III] and [I] discoveredthat SR, OLAP, and ARM operations com-plement each other in data understanding,visualization, and personalized decision-making.

It remains unclear from existing studieswhether SR, OLAP, and ARM can be con-sidered synonymous. As a result, there is asignificant research gap concerning the ex-ploration of correspondences and the de-velopment of a comprehensive frameworkfor integrating DSTs.
Table 4 aligns the results of RQ2 with the identified knowledge gaps, providing a clear overview of how the research addresses and bridges these gaps. Five research articles are relevant to RQ2, each offering valuable insights that contribute to filling the identified knowledge gaps. The table highlights the specific outcomes of RQ2 and the corresponding 

publications, providing a comprehensive understanding of the research’s impact on the 
existing body of knowledge.
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Table 4: Summary of the RQ2 results with publication and current knowledge gaps

Results with Publications Current Knowledge GapsThe publication [VIII] made a significant con-tribution to the development of fair andtrustworthy DSTs by proposing a frameworkthat effectively mitigates the impact of bi-ases resulting from statistical paradoxes.

In Section 3.2, an overview of the relatedliterature revealed the existence of variousframeworks, but none of them fully recog-nized and accounted for the effects of dif-ferent statistical paradoxes.
Publication [VIII] provides a comprehensiveinvestigation on measures for adjusting theimpact of confounding variables. Addition-ally, it introduces aweb-based application toidentify and adjust the impact of confound-ing variables.

Upon reviewing the information in Section3.2, it becomes evident that in DSTs, noexisting studies combined both theoreticalinsights and practical solutions concerningthe issue of statistical paradoxes.

Publications [VI] and [VII] present a prelim-inary study on statistical paradoxes. Thesecontributions lay the groundwork for fur-ther exploration and understanding of sta-tistical paradoxes and their implications invarious datasets.

The lack of analysis of real-life examplesin the reviewed literature is evident. Thisunderscores the need for further researchand investigation into the practical impli-cations and real-world applications of sta-tistical paradoxes.
The Publication [IV] contributed by iden-tifying the confounding variable and de-tecting Simpson’s paradox within categori-cal datasets by using the stratification Pear-son correlation.

It is worth noting that the literature reviewconducted in the article and summarisedin 3.2 also highlighted the absence of a keysolution for detecting statistical paradoxesin multivariate data.
The publication [V] discussed the ways toidentify the impact of Simpson’s paradoxin continuous data and experimented withthree datasets.

The existing literature lacks a comprehen-sive solution for effectively detecting Simp-son’s paradox in continuous datasets. Thisgap in the literature highlighted the needfor further research and the developmentof robust methodologies specifically tai-lored to address statistical paradoxes.
Through this evaluation, the author concludes that this research successfully addresses all the research questions, resulting in the creation of three IT artifacts: two frameworks and one web-based application. These artifacts serve as valuable contributions to the field, offering innovative solutions and practical tools to tackle the identified challenges.

8 Future Work
This dissertation addressed two major challenges in the development of unified and trust-worthy decision-support techniques. Moving forward, there are potential future steps to 
further improve and enhance the outcomes of this research. By undertaking these future 
steps, the research can continue to advance and make valuable contributions to the field of 
decision support and bias mitigation.
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8.1 Unification of DSTsThis work establishes a foundation for uncovering semantic correspondences between DSTs and developing a unified framework for their usage. Building upon the established foundation, future research should aim to expand the scope of identifying semantic correspondences between DSTs. This expansion should involve investigating and uncovering semantic correspondences among a broader range of DSTs beyond the three currently examined. By exploring additional DSTs, researchers can develop a more comprehensive and inclusive unified framework that encompasses a wider spectrum of decision-support tools. Following future directions will contribute to the advancement of decision support tools, ensuring their relevance, effectiveness, and applicability in various domains.
• Expansion of Semantic Correspondences: Future research should embark on explor-ing and uncovering semantic correspondences between a wider array of DSTs. Thisendeavor will significantly contribute to the advancement of decision support tools,facilitating the development of cutting-edge frameworks that aremore comprehen-sive and versatile. By investigating additional DSTs, researchers can unlock new pos-sibilities and applications in the field, enhancing the effectiveness and adaptabilityof DSSs.
• Performance Optimization: Efforts must be made to address performance issuesthat arise when dealing with large datasets. Leveraging high-performance comput-ing (HPC) infrastructure can significantly enhance the scalability and efficiency ofthe tool, empowering it to handle larger datasets more effectively. This optimiza-tion is crucial to ensure that the tool maintains its reliability and efficiency, even inthe face of growing data volumes.
• Advanced Platform Development: The proposed tool can be further enriched by in-corporating additional features, such as Pearson correlation and regression. Theseenhancements will empower decision-makers with enhanced analytical capabili-ties, facilitating the ability to make well-informed and unbiased decisions with amore comprehensive understanding of the data.

8.2 Statistical Paradoxes on DSTs
In this research, the author investigates well-known statistical paradoxes as evidence ofexpert systembias. Expert systembias poses a significant challenge to successful decision-making as it directly leads to biased decisions. The demonstrated importance of address-ing statistical paradoxes in DSTs sets the direction for future research and developmenttoward the development of fair and trustworthy DSTs. By pursuing the following futuredirections, researchers can advance the field of bias mitigation, improve the reliabilityof DSSs, and contribute to the development of trustworthy AI systems. These efforts willhelp ensure accurate, fair, and accountable decision-making processes with wider societalimplications.

• Mitigation of Multiple Statistical Paradoxes: To advance the effectiveness of theproposed framework inmitigating statistical paradoxes, further research is required.This research should focus on expanding its application beyond Simpson’s paradox
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and encompassing a wider range of statistical paradoxes. Developing robust strate-gies to handle these paradoxes in diverse datasets necessitates a deeper under-standing of statistical concepts. By gaining a more comprehensive understanding,researchers can devise effective and tailored approaches for addressing differentparadoxes encountered in various datasets.
• Handling Complex and High-Dimensional Datasets: Mitigating statistical paradoxesin complex and high-dimensional datasets, which exhibit non-linear and interactiverelationships between variables, presents a significant challenge. To tackle thesecomplexities, future research should concentrate on developing advanced tech-niques that can effectively address these intricacies and offer reliable bias mitiga-tion. The focus should be on devising approaches capable of navigating the intricaterelationships and complexities inherent in such datasets, ensuring accurate and ro-bust bias mitigation strategies.
• Expansion of the Web-Based Tool: The current web-based tool, built upon the pro-posed framework, has demonstrated its efficacy in identifying confounding vari-ables and detecting Simpson’s paradox in both categorical and continuous datasets.To expand its capabilities, further enhancements and refinements are necessary.These improvements will enable the tool to handle a broader range of datasets withdiverse characteristics and effectively address multiple statistical paradoxes. By ex-tending its functionality, the tool will become more versatile and valuable for re-searchers and practitioners inmitigating bias and enhancing decision-making acrossvarious data scenarios.

9 Conclusion
This Ph.D. thesis makes a noteworthy contribution to the field of information system stud-ies by presenting novel insights into two distinct and equally important research areas indecision support techniques. Based on that, the thesis aimed to answer two main and sixsupplementary research questions to foster fair and reliable decision-making proceduresacross diverse domains.

• RQ-1: How to bridge the artificial gaps between different DSTs?
– RQ-1.1 What are the semantic correspondences between the three major de-cision support techniques, i.e., statistical reasoning (SR), online analytical pro-cessing (OLAP) and association rule mining (ARM)?
– RQ-1.2 How to provide a systematic interpretation of results between differentdecision support techniques? In how far can we consider SR, OLAP, and ARMas synonymous?
– RQ-1.3 How to develop a common framework for integrating SR, OLAP andARM?

• RQ-2: How to systematically assess the impact of statistical paradoxes in multivari-ate data? How to utilize these assessments for better decision-making?
– RQ-2.1 How to identify the existence of the Yule-Simpson effect in multivariatedata?
– RQ-2.2 How to adjust the impact of the Yule-Simpson Effect in multivariatedata?
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– RQ-2.3 How to develop a platform to handle statistical paradoxes in multi-variate data and recommend appropriate adjustments for improved decision-making?
To address these questions, this thesis draws on research and contributions from eightarticles published between 2019 and 2023. These research articles offer rigorous analysis,empirical investigations, and experiments using various benchmark and real-life datasets.By leveraging these studies, the thesis enriches the existing body of knowledge in thefield, providing valuable insights and advancements in decision support techniques andbias mitigation.To address the first primary research question and its three supplementary sub-researchquestions, articles [II], [III], and [I] explored various approaches to bridge the gap betweenthree popular DSTs: SR, OLAP, and ARM. Specifically, they elucidated the semantic corre-spondences between their foundations, namely probability theory, relational algebra, anditemset apparatus, respectively. Additionally, the paper [II] introduced a new frameworkto unify DSTs and implemented a tool to validate the concept of unification of DSTs. Theseresearch efforts collectively contribute to the advancement of unified decision supporttechniques and provide valuable insights into the integration of different DSTs.To address the second research question and its three supplementary research ques-tions, article [VIII], [IV], [V], [VI], and [VII] explore various methods for identifying and ad-justing the impact of confounders and statistical paradoxes. These efforts aim to strengthenexisting DSTs, promoting fair and trustworthy decision-making processes. Moreover, thisdissertation proposes an additional framework to mitigate the impacts of statistical para-doxes in expert systems. To validate the effectiveness and usefulness of this framework, aweb-based application has been developed. Currently, the application enables the inves-tigation of possible confounders by detecting instances of Simpson’s paradox and providesa feature for adjusted observations. These contributions collectively advance the field ofdecision support and provide valuable tools and methodologies for addressing biases indata analysis and decision-making.Overall, this research delivers six significant contributions to the fields of decision sup-port and bias mitigation.
1. Elaborating semantic correspondences between the foundations of SR, OLAP, andARM, revealing their interconnections.
2. Proposing a novel framework that unifies DSTs and provides a tool to validate thisunification concept, facilitating unification among different decision support tech-niques.
3. Identifying confounding variables and instances of statistical paradoxes, such asSimpson’s paradox, in multivariate datasets.
4. Generalizing back-door adjustment techniques and utilizing propensity weightingto effectively mitigate the impact of confounders, promoting fairness and reliabilityin decision-making.
5. Proposing a novel framework to address statistical paradoxes and confounding ef-fects, thereby enhancing the accuracy and trustworthiness of DSTs.
6. Developing a web-based tool that automates the detection and mitigation of con-founding effects, providing valuable assistance to data scientists and researchers inbias mitigation and data analysis.
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This research has successfully addressed all research questions and achieved the pri-mary objective of the study. Through the six significant contributions to the field of deci-sion support and bias mitigation, this work has provided valuable insights and solutionsto various challenges in the domain. The proposed unification framework and the de-veloped web-based tool exemplify the practical applications of the research findings. Byeffectively handling confounding variables, statistical paradoxes and promoting fairnessin decision-making, this study has demonstrated its comprehensive approach in enhanc-ing the accuracy and reliability of decision-support techniques. Thus, the objectives ofthis research were fully met, resulting in a substantial contribution to the existing body ofknowledge in this area.
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Abstract
Unification of Decision Support Techniques: Mitigating Statis-
tical Paradoxes for Enabling Trustworthy Decision Making
This dissertation strengthens the decision support techniques by providing a frameworkfor unifying their conceptual foundations and addressing the impact of confounding vari-ables and statistical paradoxes. By doing so, this research aims to enhance the effective-ness and reliability of decision-support techniques in various domains.The research provides six significant contributions to address existing technologicaland knowledge gaps to foster fair and trustworthy decision-making processes. These con-tributions are the outcomes of two primary research questions and six supplementaryresearch questions answered within the thesis. The thesis utilizes design science researchmethodology to create innovative artifacts and methods, providing new insights to widenunderstanding of the domain under the research.The first contribution provides ways to establish semantic correspondences betweenthe three major decision support techniques, i.e., statistical reasoning, online analyticalprocessing and association rule mining. It examines various approaches to bridge thegap between them. The second contribution is a novel framework for unifying decision-support techniques for developing a unified platform to interpret results from one DST toanother. The third contribution discusses two measures for identifying confounding ef-fects in categorical and continuous datasets. The fourth contribution discusses the mea-sure for adjusting the confounding effects.Further, the fifth contribution provides a framework for mitigating the impact of biasresulting from statistical paradoxes. The sixth contribution is a web-based application thatautomatically detects and addresses confounding effects. This application is an invaluabletool for data scientists and researchers, offering automated detection and mitigation ofconfounding effects and providing a streamlined approach to effectively addressing andovercoming such data analysis challenges. The author argues that the suggested frame-work and application possess substantial potential for further extensions beyond theircurrent scope of application.
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Kokkuvõte
Otsuste toetamise tehnikate ühtlustamine: statistiliste paradok-
side mõju maandamine usaldusväärsete otsuste tegemise või-
maldamiseks
See väitekiri tugevdab otsuste tegemist toetavaid tehnikaid, pakkudes raamistikku nendetehnikate kontseptuaalsete aluste ühendamiseks ning käsitledes ühismõjurite (confoun-
ding variable) ja statistiliste paradokside keerukust. Sellest tulenevalt, on käesoleva uurin-gu eesmärgiks tõhustada otsuste tegemist toetavaid tehnikaid ja nende usaldusväärsusterinevates valdkondades.Uurimistöö raames valmis kuus olulist tulemit olemasolevate lünkade kõrvaldamisekstehnoloogias ja teadmistes, et täiustada õiglasi ja usaldusväärseid otsustamist toetavaidprotsesse. Loodud artefaktid on käesoleva lõputöö raames vastatud kahe peamise uuri-misküsimuse ja kuue täiendava uurimisküsimuse tulemused. Lõputöös kasutatakse uuen-duslike artefaktide jameetodide loomiseks disainiteaduse uurimismetoodikat (design science),pakkudes uusi teadmisi selle uurimuse keskseks oleva valdkonna mõistmiseks.Esimene tulem võimaldab luua semantilisi vastavusi kolme peamise otsuste tegemisttoetava tehnika vahel. Nendeks on statistiline põhjendamine, veebipõhine analüütilinetöötlemine ja assotsiatsioonireeglite kaevandamine. Nende tehnikate vaheliste erinevus-te ületamiseks uuritakse erinevaid lähenemisviise. Teiseks tulemiks on uudne raamistikotsustamist toetavate tehnikate ühendamiseks ühtse platvormi väljatöötamiseks, et või-maldada tulemuste tõlgendamist ühest DST-st teise. Kolmas tulem käsitleb kahte meedetandmetöötluses kaasnevate mõjude tuvastamiseks kategoorilistes ja pidevates andmeko-gumites. Neljandas tulemis käsitletakse meetmeid ühismõjurite reguleerimiseks.Lisaks annab lõputöö viies tulem raamistiku statistilistest paradoksidest tulenevatemõjude leevendamiseks. Kuuendaks tulemiks on veebipõhine rakendus, mis tuvastab jakäsitleb automaatselt ühismõjureid. See rakendus on väärtuslik tööriist eelkõige andme-teadlastele, kuid ka teistele teadlastele, pakkudes ühismõjurite automaatset tuvastamistja leevendamist ning sujuvamat lähenemisviisi selliste andmeanalüüsi väljakutsete tõhu-saks ületamiseks ja lahendamiseks. Töö autor usub, et pakutud raamistikul ja rakenduselon märkimisväärne potentsiaal laieneda edaspidiselt väljaspoole nende praegust raken-dusala.
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Abstract. Measuring interestingness in between data items is one of
the key steps in association rule mining. To assess interestingness, after
the introduction of the classical measures (support, confidence and lift),
over 40 different measures have been published in the literature. Out
of the large variety of proposed measures, it is very difficult to select
the appropriate measures in a concrete decision support scenario. In this
paper, based on the diversity of measures proposed to date, we conduct
a preliminary study to identify the most typical and useful roles of the
measures of interestingness. The research on selecting useful measures
of interestingness according to their roles will not only help to decide
on optimal measures of interestingness, but can also be a key factor in
proposing new measures of interestingness in association rule mining.

Keywords: Knowledge discovery in databases · Association rule
mining · Measures of interestingness

1 Introduction

In knowledge discovery in data (KDD), association rule mining (ARM) is one
of the most established data mining techniques. It is commonly used to find out
interesting patterns between data items in large transactional data sets. In ARM,
association rules are accompanied by measures of interestingness (support, con-
fidence, lift etc.)[1]; all of these measures of interestingness use different methods
(frequency, probability and counts) to calculate frequent itemsets in data sets.
The frequency of items represents basic interestingness in association rules. A
main origin of measures of interestingness is from common mathematical and
information theories such as found in statistics, e.g., Yule’s Q method, Yule’s Y
method, correlation coefficient and odds ratio. Out of the 40 different measures
of interestingness available in the literature, no single measure of interestingness
is perfect to calculate interestingness in every ARM task. In this paper, based on

c© Springer Nature Switzerland AG 2020
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the diversity of measures proposed to date, we are identifying their roles, classi-
fying their usefulness from several perspectives to start an extended discussion
on different properties of measures of interestingness.

Issues in Selecting Measures of Interestingness in ARM

(i) A large number of measures of interestingness are available to choose and
many of these measures are not useful in each ARM task.

(ii) The classical measures of interestingness generate a lot of rules, most of
these rules are irrelevant and redundant in many scenarios.

(iii) Based on the meaning of measure of interestingness, it’s hard to decide on
the appropriate measure in a concrete decision support scenario.

(iv) Various interestingness evaluation methods seem not to be rationalized.
Some literature seems to simply combine several kinds of interestingness
evaluations to new kinds of measures.

This paper is structured as follows. In Sect. 2, we describe expectedness and
unexpectedness with respect to the roles of different measures in ARM. Section 3
focuses on the different properties for selecting the right measures of interest-
ingness. Section 4 presents the conclusions and future work.

2 Expectedness and Unexpectedness in ARM

A simple ARM task using classical measures for a data set containing d items
potentially generates 3d − 2d +1 possible association rules and most of these
association rules are expected, obvious and duplicate. Take association rules for
the data items {Milk, Bread, Butter} as an example. In the association rule in
Eq. (1), it can be easily understood that the association of these three items is
rather obvious. In ARM, obvious or common association rules can be referred
to as expected association rules.

{Milk,Bread} ⇒ {Butter} (1)

The main objective of ARM is to find the interesting association rules, hidden
patterns and – most importantly – unexpected association rules in the data
set. The association rules generated using the following combination of {Milk,
Diaper, Beer} is not as obvious andy more and creates a rather novel pattern of
items; in ARM, these types of association rules can be identified as unexpected
association rules:

{Milk,Diaper} ⇒ {Beer} (2)

Based on the variety of definitions of interestingness, the interestingness of an
association rule can be categorized via the following nine properties [8]: (1) con-
ciseness, (2) coverage, (3) reliability, (4) peculiarity, (5) diversity, (6) novelty,
(7) surprisingness, (8) utility and (9) actionability. Descriptions of all of these
properties are summarized in Table 1. Based on these nine definitions of inter-
estingness, the measures of interestingness can be classified into three major
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Fig. 1. Types of measures of interestingness.

categories: (1) objective measures of interestingness, (2) subjective measures of
interestingness and (3) semantic measures of interestingness [14,18]. Figure 1 is
showing all the different types of measures of interestingness.

2.1 Objective Measures of Interestingness for Expected Association
Rules

Every transactional data set has some hidden patterns that can be easily iden-
tified by using predictive performance or statistical significance. In ARM, such
kind of patterns may be referred to as expected patterns and can be computed
using objective measures of interestingness. Objective measures mainly focus on
the statistics and use statistical strength (probability, count etc.) to assess the
degree of interest. As per the definition of interestingness, reliability, general-
ity, conciseness, diversity and peculiarity are based only on data and patterns;
therefore, these properties are the foundation of objective measures of inter-
estingness [8]. Support, confidence, lift, conviction and improvement are some
examples of objective measures of interestingness.

2.2 Subjective Measures of Interestingness for Unexpected
Association Rules

Association rule mining based on common statistical approaches sometimes pro-
duces rather obvious or trivial rules. Therefore, the research of Padmanabhan
and Tuzhilin [18] first explored the problem of interestingness through the notion
of unexpectedness [18,19]. Subjective measures of interestingness usually deter-
mine the unexpected association rules in knowledge discovery. Unexpected pat-
terns are opposite to the person’s existing knowledge and contradict their expec-
tations and existing knowledge [18].

Finding unexpected patterns in association rule mining is not an easy task, it
needs a substantial amount of background information from domain experts [7].
For example, the association rule in Eq. (3) will rather not be considered inter-
esting, even in cases where the rule has a particularly high support and high
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Table 1. Interestingness properties in ARM, summarized and apobted from [2–6,9,
10,12,15,16,19,21,23,24,26–28].

Property Description

Conciseness [4,19] A small number of attribute-value pairs in a
pattern represents the conciseness of the pattern
and a set of small number of patterns refers to a
concise pattern set

Generality/Coverage [2,27] The generality/coverage property in ARM
covers most of the general patterns in ARM

Reliability [16,24] Association rules or patterns based on common
and popular relationships can be identified as
reliable association rules or patterns

Peculiarity [3,28] Peculiarity refers to unexpected behaviour of
patterns. A pattern is said to be peculiar if it is
significantly different from all other discovered
patterns

Diversity [9] For a pattern, diversity refers to the degree of
differences between its elements; for a pattern
set, diversity refers to the degree of differences
in between the patterns

Novelty [21] Combinations of unexpected items which create
a pattern unknown to a person are known as
novel patterns in ARM. These types of patterns
can be discovered but can not be identified
easily

Surprisingness [5,10,23] Patterns which are opposite to a person’s
existing knowledge or expectations or create
contradictions are known as surprising patterns
in ARM

Utility [6,15] Patterns which contribute to reaching a goal are
called patterns with utility. Patterns with utility
allow the user to define utility functions to get
particular information from data

Actionability/Applicability [12,26] Patterns with actionability allow a person to do
a specific task for their benefits. These types of
patterns usually reflect the person’s action to
solve a domain problem [12]

confidence, because the relationship expressed by the rule might be rather obvi-
ous to the analyst. As opposed to this, the association rule between Milk and
Shaving Blades in Eq. (4) might be much more interesting, because the rela-
tionship is rather unexpected and might offer a unique opportunity for selling
to the retail store.

{Bread} ⇒ {Milk} (3)

{Milk} ⇒ {Shaving Blades} (4)
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Unexpectedness in Association Rule Mining. Many different definitions
of unexpectedness have been proposed in the literature. In [18], unexpectedness
has been defined with respect to association rules and beliefs. An association
rule P ⇒ Q is unexpected in regards to the belief X ⇒ Y on a data set D if it
follows the following rules:

– (i) Q∧Y |= FALSE (This property states that Q and Y logically contradict
each other.)

– (ii) This property states that set P ∧ X has a large subset of tuples in the
data set D.

– (iii) Rule P,X ⇒ Q holds. As per the property (i), Q and Y logically contra-
dict each other, therefore it logically follows that P,X ⇒ ¬ Y.

2.3 Semantic Measures of Interestingness

In ARM, semantic measures are a special kind of subjective measures of inter-
estingness which include utility, application-specific semantics of patterns and
domain knowledge of the person.

Utility: A utility function reflects the clear goal of the user. For example, to check
the occurrence of a rare disease, a doctor might select association rules that
correspond to low support rules over those with higher. A user with additional
domain knowledge can use a utility-based approach. The domain knowledge of
the user does not relate to his personal knowledge and expectations from data.

Actionability : In ARM, there is no widespread way to measure the actionability,
i.e., it is up to the ability of an organization to do something useful with a
discovered pattern; therefore, a pattern can be referred to as interesting if it
is both actionable and unexpected. Generally, actionability is associated with
a pattern selection strategy, whereas existing measures of interestingness are
dependent on applications.

3 Properties for Selecting Objective Measures
of Interestingness

It is important to care for applying consistent sets of measures of interestingness,
as sometimes a wrong selection of measures may produce conflicting results. To
select appropriate objective measures of interestingness, 15 key properties have
been introduced in the literature [8,11,20,24]. Some of these properties are well
known and some of the properties are not as popular. These properties are very
useful to select appropriate measures for an ARM task.

Piatetsky-Shapiro [20] proposed three basic properties that need to be fol-
lowed by every objective measure R

Property P1: “R = 0 if X,Y are two statistically independent data items, i.e.,
P(XY ) = P(X)P(Y )”. This property states that accidentally occurred patterns
or association rules are not interesting.
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Property P2: “R monotonically increases with P(XY ) when P(X) and P(Y ) are
same”. P2 states that if a rule X ⇒ Y have more positive correlation then the
rule is more interesting.

Property P3: “R monotonically decreases when other parameters P(X), P(Y ),
P(X,Y ) remain unchanged.”

Tan et al. [24] based on 2 × 2 contingency tables, Tan et al. [24] proposed five
more properties for probability-based objective measures.

Property O1: “A measure of interestingness R is symmetric under variable per-
mutation if it is preserved under the transformation ⇒p of variable permutation,
where ⇒p is defined as matrix transpose as usual.”

B ¬B
A x y
¬A r s

⇒p

B ¬B
A x r
¬A y s

Property O2: “R is same in row and column scaling. This property is known as
the row-and-column scaling invariance.”

B ¬B
A x y
¬A r s

⇒
B ¬B

A k3k1x k4k1y
¬A k3k2r k4k2s

Property O3: “R is anti-symmetric under row and column permutation.”

B ¬B
A x y
¬A r s

⇒
B ¬B

A r s
¬A x y

Property O4: “R should remain same under both row and column permuta-
tion. This is inversion invariance which shows a special case of the row/column
permutation where both rows and columns are swapped simultaneously.”

B ¬B
A x y
¬A r s

⇒
B ¬B

A s r
¬A y x
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Property O5: “This property represents the null invariance.”

B ¬B
A x y
¬A r s

⇒
B ¬B

A x y
¬A r s + k

Lenca et al. [11] proposed five more properties to evaluate measures of inter-
estingness. In these properties, Q1, Q4 and Q5 properties are preferred over the
Q2, Q3 properties

Property Q1: “An interesting measure R is constant if there is no counterexample
to the rule”. As per this property all the association rules with confidence 1
should have same interestingness value.

Property Q2: “R decreases with P(X¬Y ) in a linear, concave, or convex fashion
around 0+.” This property describes that the value of interestingness decreases
with respect to the counterexamples.

Property Q3: “R increases as the total number of records increases.”

Property Q4: “The threshold is easy to fix.” This property focuses on selecting
the easy threshold to separate the interesting association rules from uninteresting
association rules.

Property Q5: “The semantics of the measures are easy to express.” As per this
property, semantics of the interestingness measures should be understandable.

Hamilton et al. [8] have also proposed two more properties to select the right
measures of interestingness.

Property S1: “An interesting measure R should be an increasing function of
support if the margins in the contingency table are fixed.”

Property S2: “An Interesting measure R should be an increasing function of
confidence if the margins in the contingency table are fixed.”

3.1 Towards Selecting Optimal Measures of Interestingness

All three categories of measures (objective, subjective and semantic) consist
of many different measures; therefore, it is very difficult to select appropriate
measures for an ARM task. Table 2 might be a useful step in the selection of
optimal measures of interestingness.

With respect to objective measures of interestingness, Tan et al. and Lenca et
al. [11,24] proposed a ranking method to select measures. The ranking method
is based on a specific data set that allows specific patterns having greatest stan-
dard deviations in all of the rankings. Lenca et al. [11] proposed also another
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approach to select measures; in this approach, a value and a weight is assigned to
each important property in purpose of selecting measures. In the approach pro-
posed by Vaillant et al. [25], objective measures of interestingness are grouped
according to their properties and outcomes.

Table 2. Suggested approaches for selecting optimal measures of interestingness.

Objective Measures of
Interestingness

Subjective Measures of
Interestingness

Semantic
Measures of
Interestingness

Ranking method based on data
sets [24]

Approaches based on formal
specification of user knowledge
[10,13,23]

Utility-based
[22]

Ranking method based on
properties of measures of
interestingness [11]

Eliminating uninteresting
patterns [21]

Actionable
patterns [13]

Clustering method based on
data sets [25]

Constraining the search space
[17]

–

Clustering method based on
properties of measures of
interestingness [25]

– –

In subjective measures of interestingness, user knowledge and data are the
two crucial factors in deciding on optimal measures. Based on existing and vague
knowledge of the user, Liu et al. [13] proposed different subjective measures.
The approach proposed by Sahar et al. [21] is about eliminating uninteresting
patterns; in this approach, there is no specific measure of interestingness. The
method proposed by Padmanabhan et al. [17] is about constraining the search
space , here, user belief is used as a constraint in mining association rules. In this
method, a user’s belief is mined as an association rules and if existing knowledge
contradicts to the mined belief, it is referred to as a surprising pattern.

With respect to selecting optimal semantic measures of interestingness, [22]
have proposed an approach that is about patterns with utility, here, “Interest-
ingness (of a pattern) = probability + utility” [22]. In the actionability approach
proposed by [13], a user provides some patterns in the form of fuzzy rules to rep-
resent both the possible actions and the situations in which they are likely to be
taken.

4 Conclusion

In ARM, it is clear that no single measure of interestingness is suitable for all
ARM tasks – a combination of subjective measures and objective measures seem
to be the future in ARM. Selecting optimal measures of interestingness is still an
open research problem. In this paper, we have conducted a preliminary study of
properties that have been proposed to select optimal measures of interestingness.
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We have summarized the role of expected and unexpected association rules in
data mining and discussed the importance of the degree of user-involvement
within the ARM process. Based on this preliminary work, we aim to design a
user interface that supports the decision maker in selecting optimal measures of
interestingness. The findings should also be helpful in efforts of designing new
measures of interestingness in the future.
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ABSTRACT Statistical reasoning was one of the earliest methods to draw insights from data. However, over
the last three decades, association rule mining and online analytical processing have gained massive ground
in practice and theory. Logically, both association rule mining and online analytical processing have some
common objectives, but they have been introduced with their own set of mathematical formalizations and
have developed their specific terminologies. Therefore, it is difficult to reuse results from one domain in
another. Furthermore, it is not easy to unlock the potential of statistical results in their application scenarios.
The target of this paper is to bridge the artificial gaps between association rule mining, online analytical
processing and statistical reasoning. We first provide an elaboration of the semantic correspondences
between their foundations, i.e., itemset apparatus, relational algebra and probability theory. Subsequently,
we propose a novel framework for the unification of association rule mining, online analytical processing and
statistical reasoning. Additionally, an instance of the proposed framework is developed by implementing a
sample decision support tool. The tool is compared with a state-of-the-art decision support tool and evaluated
by a series of experiments using two real data sets and one synthetic data set. The results of the tool validate
the framework for the unified usage of association rule mining, online analytical processing, and statistical
reasoning. The tool clarifies in how far the operations of association rule mining and online analytical
processing can complement each other in understanding data, data visualization and decision making.

INDEX TERMS Association rule mining, data mining, online analytical processing, statistical reasoning.

I. INTRODUCTION
Decision support techniques play an essential role in today’s
business environment. Since the 17th century, statistical
reasoning (SR) has been used extensively to shape business
decisions [1] and it was the earliest method to draw insights
from data. With the emergence of decision support sys-
tems (DSSs) in the 1970s [2], SR is frequently used in DSSs
and decision support tools, just take SPSS (Statistical Pack-
age for the Social Sciences) [3] or SAS (Statistical Analysis
System) [4] as examples. With the rise of information tech-
nology in the 1990s, online analytical processing (OLAP) [5]

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

and association rule mining (ARM) [6] have emerged as
powerful decision support techniques (DSTs) [7], both with
their specific rationales, objectives, and attitudes. Over the
years, both OLAP and ARM have gained massive ground in
practice (Cognos, SAP-BW resp. RapidMiner, Orange – to
name a few) and, similarly, massive attention in the research
community. Unfortunately, both OLAP and ARM have been
introduced together with their own genuine mathematical for-
malizations and developed their specific terminologies. This
makes it hard to reuse results from one domain in another;
in particular, it is not always easy to unlock the potential of
statistical results in OLAP and ARM application scenarios.
OLAP represents relational data [8] in multi-dimensional
views using roll-ups, drill-downs, slices, dices, etc.
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FIGURE 1. Semantic correspondences between association rule mining, online analytical processing and
statistical reasoning.

In contrast, ARM relies on the notion of itemsets and frequent
itemsets [9] in transaction databases. The correspondences
between OLAP and ARM might seem rather simple, but it is
neither fully elaborated in the state of the art nor implemented
in practice. Because of the strong involvement of SR, OLAP,
and ARM in decision-making, this paper aims to bridge the
artificial gaps between them. We contribute by elaborating
the semantic correspondences between the foundations of SR,
OLAP, and ARM, i.e., probability theory, relational algebra,
and the itemset apparatus.
In Fig. 1, a graphical representation of the process of deter-

mining the semantic correspondence between the SR, OLAP,
and ARM is shown. The solid rectangles are used to indicate
the selected DSTs, and the blue dashed lines rectangles are
used to indicate the foundations of DSTs. The adoption of
concepts in between OLAP and ARM (and vice versa) is
referred to as automatic OLAP [10] and multi-dimensional
ARM [11], respectively. In Table 1 and Table 2, we provide
a list of abbreviations and frequently used symbols that are
being used throughout the paper.
In the process of establishing semantic correspondences

between the three DSTs, probability theory and, in particular,
conditional expected values (CEVs) are at the center of our
considerations. CEVs correspond to sliced average aggre-
gates in OLAP and would correspond to potential ratio-scale
confidences in a generalized ARM [12]. Based on the seman-
tic correspondences between the DSTs, we are convinced that
it is possible to design advantageous next-generation features

of advanced decision support tools. A series of popular deci-
sion support tools is given in Fig. 2. We use software polls by
KDnuggets [13] in the years 2017, 2018, and 2019 tomeasure
the popularity of these tools. The popularity percentages of
the tools demonstrate that a diverse range of tools is popular
in practice and that they have also gained massive attention
in the research community.
Kamber et al. [11] addressed the integration of OLAP and

ARM as soon as 1997. They have provided the notion
of metarule-guided mining, which entails utilizing user-
defined rule templates to direct the mining process. Later,
Han et al. [14] have proposed DBMiner for interactive min-
ing, which provides a wide range of data mining operations
such as association, generalization, characterization, classifi-
cation, and prediction. We also identify several approaches
for integrating different DSTs, and there is significant
research specifically on the integration of OLAP and ARM
in state-of-the-art. We appraise all of these decision sup-
port frameworks and different ways of integrating DSTs;
however, the concept of semantic correspondences between
DSTs is yet to be elaborated in state-of-the-art. A detailed
discussion on a variety of decision support frameworks and
various approaches for the integration of DSTs is given in
Sect. II. Elaborating the semantic correspondences between
DSTs will be helpful to fill the artificial gaps between DSTs.
Furthermore, it can enable decision-makers to work with
cross-platform decision support tools and check their results
from different viewpoints.
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FIGURE 2. A series of popular decision support tools, together with their polarities according to opinion polls by KDnuggets [13] in 2017, 2018,
and 2019.

TABLE 1. Abbreviations and acronyms.

The research on elaborating semantic correspondences
between the three DSTs is significant due to the following
reasons:

1) DSTs are developed independently for intended user
groups and intended use cases.

2) Specific terminologies and functions of DSTs create
artificial gaps between them and their tools.

TABLE 2. List of frequent symbols.

3) Interpretation of results from one DST domain to
another is not easily possible.

4) Artificial gaps between DSTs force decision-makers to
use a variety of DSTs and decision support tools.

5) Various approaches for integrating DSTs are discussed
in state of the art; however, correspondences between
DSTs are obfuscated.

We observed that elaborating semantic correspondence
between DSTs is necessary to bridge various artificial gaps
between them. Therefore, in this paper, we elaborate semantic
correspondences between the foundations of SR, OLAP, and
ARM, i.e., between probability theory, relational algebra, and
the itemset apparatus. In particular, we formally establish the
correspondence between (i) the support of an itemset and
the probability of a corresponding event and (ii) the confi-
dence of an association rule and the conditional probability
of two corresponding events. And (iii), the OLAP average
aggregate function turns out to correspond to conditional
expected values, which closes the loop betweenARM,OLAP,
and probability theory with respect to the most important
constructs in ARM and OLAP.
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Based on the semantic correspondences between the DSTs,
we propose a novel framework for the unification of DSTs.
The framework provides a way to develop various next-
generation decision support tools. To validate the proposed
framework, we implement a sample tool by combining the
operations of three DSTs. The tool’s outcomes establish
semantic correspondence between SR, OLAP, and ARM and
provide various useful data visualization methods. The tool
is implemented on ASP.NET. In the tool, we use ‘all combi-
nations of influencing factors’ (ACIF) function to select the
target column and influencing factors to generate all possible
combinations of data items. The programming code and other
instructions on how to use the proposed tool are available in
the GitHub repository [15]. We have named the tool grand
report [12], [16]; a grand report provides a complete print-
out of generalized association rules, which can also be seen
as the entire unfolding of a pivot table [17]. An instance
of the tool is hosted and available on the web.1 The tool
is straightforward to use, and it provides unified usages of
DSTs.
The key contributions of the paper are as follows:
1) Elaboration of semantic correspondences between the

three DSTs, i.e., SR, OLAP, ARM, and their founda-
tions, i.e., probability theory, relational algebra, and the
itemset apparatus, respectively.

2) We characterize to what extent and how far SR, OLAP,
and ARM can be considered synonymous.

3) A novel framework for the unification of DSTs is
presented to develop next-generation decision support
tools.

4) A sample tool is presented to implement the unification
of DSTs. The tool provides unified usages of DSTs.

5) The tool is tested on various datasets and compared to a
state-of-the-art decision support tool. The comparison
and the tool’s outcome demonstrate the tool’s superior
performance.

The paper is organized as follows: In Sect. II, we review
current work related to the unification of SR, OLAP, and
ARM. Then, in Sect. III, we discuss the main concepts of
mainstream SR, OLAP, and ARM. In Sect. IV, we elaborate
semantic correspondences between the foundations of SR,
OLAP, and ARM, i.e., probability theory, relational algebra,
and the itemset apparatus. Subsequently, in Sect. V, we pro-
vide the framework for the unification of SR, OLAP, and
ARM. A description of its implementation and experiments
to showcase the relevance of the proposed framework are
given. Finally, a discussion on future work and a conclusion
are provided in Sect. VI and Sect. VII, respectively.

II. EXISTING WORK
In this section, previous work related to semantic correspon-
dences between DSTs and various approaches for the integra-
tion of DSTs is explored.

1http://grandreport.me

The classical DSSs [2] were developed to assist managerial
decisions by presenting several combinations of information.
With the emergence of OLAP [5], knowledge discovery in
databases (KDD) [36] and ARM [6], [37], many authors have
proposed a variety of advanced DSSs. In the 1990s, web-
based DSSs have been very popular [38]. Later, organizations
have started taking advantage of different DSTs in DSSs [19].
We examine eighteen different research articles that discuss
the integration of DSSs with different DSTs. A summary
of these articles is given in Table 3. Wang [18] presented a
novel architecture to integrate KDD techniques into existing
DSSs. The authors have discussed the integration of different
KDD techniques in group DSSs via three different types of
decision support agents. In 2002, Fan et al. [19] provided a
simple classification scheme for data value conflicts and pre-
sented an approach for discovering data conversion rules from
data automatically. Bolloju et al. [20] provided a method for
combining decision support and knowledge management to
present an integrative framework for developing enterprise
decision support environments. They used model mart and
model warehouse as repositories.
In 2007, Rupnik et al. [24] discussed a method for com-

bining DSS and data mining methods. The authors devel-
oped a data mining decision support system (DMDSS) that
incorporates classification, clustering, and association rules.
To investigate the use of data mining technology in DSS,
Charest et al. [28] presented a theoretical, conceptual, and
technological framework for the development of an intelli-
gent data mining assistant by employing case-based reason-
ing and formal DL-ontology paradigms. Zhuang et al. [29]
proposed a novel methodology to integrate data mining and
case-based reasoning to develop a pathology test ordering
system. In this paper, data mining concepts were used to
extract the knowledge from past data, and then it was used
in decision support.
In 2010, Liu et al. [30] conducted a survey to determine the

efforts being made to develop an integrated decision support
system (IDSS). IDSS combines four DSTs: knowledge-based
systems, data mining, intelligent agents, and web technology.
IDSS assists users in interpreting decision alternatives, and it
also discovers hidden interesting patterns in large amounts of
data using data mining tools. Gandhi et al. [39] demonstrated
a DSS architecture (DSSA) that combines various data min-
ing techniques. In this architecture, data mining tools were
used to identify a set of features and patterns that domain
experts can use to make decisions.
The majority of these works are inclined towards develop-

ing newDSSs and integrating DSSs with DSTs. However, the
concept of semantic correspondences between DSTs is not
discussed in any of these works. Therefore, we also explore
the state of the art for the integration of OLAP and ARM.
Some of these works focus on intra-dimensional associa-
tion rules, while others are concerned with inter-dimensional
association rules. Almost all intra-dimensional approaches
use repeated predicates from a single data dimension.
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TABLE 3. Existing approaches for the integration of different decision support techniques in DSSs.

A summary of different OLAP and ARM integration
approaches is given in Table 4.
In 1998, Ng et al. [41], and Zhu [10] have proposed

different ways to integrate ARM and OLAP together; how-
ever, their research was centered towards multi-dimensional
ARM, automatic OLAP, and other specific sets of prob-
lems. The mainstream ARM was developed to find fre-
quent items, while OLAP represented a multi-dimensional
view of data using different OLAP operations. Therefore,
the popularity of ARM for transactional datasets and the
progress of OLAP [44] in a multi-dimensional environment
attracted many authors to propose possible ways to inte-
grate the ARM and OLAP. In 1997, Kamber et al. [11] first
addressed the relationship between ARM and OLAP and
proposed a meta-rule-guided mining approach for mining
association rules from a multi-dimensional data cube. In this

paper, Kamber et al. [11] have presented four algorithms that
explore an OLAP data cube for meta-rule-guided mining
of multi-dimensional association rules. Imielinski et al. [40]
have presented cubegrades, a generalization of association
rules which display how a set of measures (aggregates) is
affected by specializing (rolldown), generalizing (roll-up)
and mutating (which is a change in the cube’s dimensions).
In this paper, cubegrades are shown as more expressive than
association rules in capturing associations and trends.
To support the adhoc mining in association rules,

Lakshmanan et al. [42] proposed an idea of constrained fre-
quent set queries (CFQs) and extended the architecture
proposed by Ng et al. [41]. In addition, they introduced a
new notion of quasi-succinctness and developed a heuristic
technique for non-quasi-succinct constraints. Ng et al. [41]
proposed architecture for exploratory mining of association
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TABLE 4. Integration of OLAP and ARM in data mining.

rules that is constraint-based and human-centered. To push
the constraints deep inside the mining process, this paper
presents a new algorithm (CAP) and two new rule prun-
ing properties; antimonocity and succinctness. To generalize
ARM within arbitrary n-ary relations and boolean tensors,
Nguyen et al. [43] proposed exclusive confidence and natural
confidence measures. They have also designed a complete,
scalable algorithm that computes the exclusive measures.
Kamber et al. [11] extended the constrained gradient analy-
sis ‘‘cubegrades’’ presented by Imielinski et al. [40]. In this
paper, the authors have addressed various issues and methods
on efficient mining of multi-dimensional, constrained gradi-
ents in multi-dimensional data cubes. They have also defined
the constraints as significant constraints, probe constraints,
and gradient constraints.
Zhu [10] proposed online analytical mining of association

rules and presented a step-by-step method and algorithm for
inter-dimensional ARM, intra-dimensional ARM, and hybrid
ARM. Based on OLAP technologies, they also designed a
method to perform multi-level ARM. Chen et al. [45] devel-
oped an OLAP and data warehousing-based platform for
weblog records (WLRs), which supports multi-level and
multi-dimensional ARM. Finally, Cerf et al. [46] have pre-
sented an n-array algorithm for n-array relations, which was
used to extract constrained-based closed n-sets.
In the state of the art, integration of DSTs and DSSs frame-

works are broadly discussed. However, the correspondences
between the foundation of DSTs are obfuscated. Therefore,
we aim to elaborate semantic correspondences between the
foundations of the three popular DSTs and bridge the artifi-
cial gaps between them.

III. PRELIMINARIES
This section provides background information about the three
popular DSTs, i.e., SR, OLAP, ARM and their foundation,
i.e., probability theory, relational algebra, and itemset min-
ing. In Sect. III-A, we discuss the concepts of SR. Then,
in Sect. III-B, the concepts of classical ARM are discussed,
and in Sect. III-C, we discuss the basic concepts of OLAP.

A. STATISTICAL REASONING (SR)
With the development of probability theory [1] by thinkers
like Gerolamo Cardano, Blaise Pascal, and Pierre de Fermat,
statistics has evolved as an essential framework for develop-
ing DSS [47] and DSTs; therefore, most of the DSTs have
been developed with the core concepts of SR. Since 1970,
extensive use of computer systems has made it possible to
do large statistical computations that have not been possible
manually. In the 19th and 20th centuries, statistics had its
victory by evolving into the primary scientific tool – think
about classical thermodynamics and its elaboration through
statistical mechanics and quantum physics. In the natural
sciences, statistics have become the necessary foundation
in economics, and many Nobel prizes correspond with the
probabilistic variants of game theory. So, it could be said that
statistics is the language of science. However, even more,
statistics was a crucial driver in the industrial revolution,
by helping to optimize production, think about Student’s
t-distribution.
Moreover, statistics is at the core of optimizing production;

think of Six Sigma alone. All this is true, but since 1970,
we have seen the next wave of SR. Statistics has left the sci-
entific laboratories and entered the everyday decision-making
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TABLE 5. Types of input data used in various decision support techniques.

processes in our organizations. Here, SR is the tool of highly
specialized experts in highly specialized tasks but becomes
available to a broader range of decision-makers. This move-
ment is precisely about what has been expressed by ‘‘The
Future of Data Analysis’’ by Tukey [48]. It means that sys-
tematic decision-making becomes more and more pervasive.
In our opinion, this also explains the emergence of ARM
and OLAP, which are two immensely successful approaches
that complement, extend (but also overlap) the established SR
toolkit. Moreover, the journey has just begun, as the current
interest in data science proves – in 2015, Donoho [49] showed
the evolution of data science from statistics. In Table 5,
we provide different combinations of data used in SR, OLAP,
and ARM. R is used to represent numerical type data, D is
used to represent discrete type data and B is used to represent
bitmap data.

B. ASSOCIATION RULE MINING (ARM)
To understand the relationship between different data items
in transactional datasets and to find out interesting patterns
and correlations, Agrawal et al. [6] presented the central con-
cept of ARM using binary representations of data items
as shown in Table 5. However, ARM is also presented for
numerical data items as quantitative ARM [50], numerical
ARM [51], [52].
ARM is highly effective in discovering relations and

interesting associations among data items using different
measures of interestingness [6], [53] and it is a prevalent
technique that plays a crucial role in market basket data
analysis, bioinformatics, ocean, land, and medical diagnosis.
In the original settings, association rules are extracted from

transactional datasets composed of a set I = {i1, . . . , in} of
n binary attributes called items and a set D = {t1, . . . , tn},
tk ⊆ I , of transactions called database. An association rule
is a pair of itemsets (X ,Y ), often denoted by an implication
of the form X ⇒ Y , where X is called the antecedent
(or premise) and Y is called the consequent (or conclusion),
X ∩ Y = ∅. To select interesting association rules, the
following are the most popular measures of interestingness
in ARM.

Definition 1: The Support of an itemset X with respect to
a set of transactions T , denoted by Supp(X ), is the ratio of
transactions that contain all items of X (number of transac-
tions that satisfy X ) [54]:

Supp(X ) =
|{t ∈ T | X ⊆ t}|

|T |

Definition 2: The confidence of an association rule
X ⇒ Y concerning a set of transaction T , denoted by
Conf (X ⇒ Y ) is the percentage of transactions that con-
tains X which also includes Y . Technically, the confidence
of an AR is an estimation of the conditional probability
of Y over X :

Conf (X ⇒ Y ) =
Supp(X ∪ Y )
Supp(X )

.

Definition 3: The lift of an association rule X ⇒ Y ,
denoted by Lift(X ⇒ Y ), is used to measure misleading
rules that satisfy minimum support and minimum confidence
threshold. The Lift measure is also used to calculate the devi-
ation between an antecedent X and a consequent Y , which is
the ratio of the joint probability of X and Y divided by the
product of their marginal probabilities.

Lift(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X )× Supp(Y )

In ARM, when the number of association rules is too large
to be presented to a data mining expert or even treated by
a computer, measures of interestingness can filter the inter-
esting association rules. After support, confidence, and lift,
more than fifty different measures of interestingness are in the
literature [53], [55], [56]. These measures of interestingness
are discussed in detail in the literature [57], [58]. Initially,
ARM was limited to large transactional datasets. Still, later,
Han et al., Lu et al., Imielinski et al., and Nguyen et al.
[40], [43], [59], [60] presented different views on multi-level
and multi-dimensional ARM. Over the years, different ARM
frameworks [34] and the use of ARM in varied application
scenarios [61], [62] have also been discussed in the state of
the art [63].
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1) MULTIDIMENSIONAL VIEW OF ARM
More recently, ARM has been adapted to the multidimen-
sional case [43] and multitask-based ARM [64]. In multi-
dimensional setting of ARM, datasets are composed of a
set D = {S1, . . . , Sn} of dimensions, and an n-ary relation
between them, i.e. they are formally tuples (S1, . . . , Sn,R)
with R ⊆ S1 × · · · × Sn. In ‘‘Multitask-based’’ ARM,
highly frequent association rules for different ARM tasks are
referred as ‘‘single-task’’ rules which are Later combined
together to generate the global results, i.e, ‘‘multitask rules’’.
Multidimensional association rules are rules between two

so-called associations that generalize the notion of itemset.
They are defined as the Cartesian products of subsets of
dimensions. The set of dimensions used in an association
X is called its domain and is noted dom(X ). For example,
X = {Milk,Bread} × {Winter} is an association on the
domain dom(X ) = {products, seasons}. We use πSi (X ) to
denote the projection of the association X on the dimension
Si, e.g. πproducts(X ) = {Milk, Bread} and πseasons(X ) =
{Winter}.
In the multi-dimensional case, the generalization of the

notion of support is the relative support. The support of an
association X relative to a set D ⊇ dom(X ) of dimensions is
defined as

SuppD(X ) =
∣∣∣{t ∈∏

Sd∈D\{D}
Sd | ∃u ∈

∏
Si∈D\dom(X )

Si such that

∀x ∈ X , x.u.t ∈ R}
∣∣∣ (1)

Using the relative support, two variants of confidence, the
exclusive confidence and natural confidence are defined for
multidimensional association rules:

Confnatural(X ⇒ Y ) =
Suppdom(X∪Y )(X ∪ Y )
Suppdom(X∪Y )(X )

Confexclusive(X ⇒ Y ) =
Suppdom(X∪Y )(X ∪ Y )× P

Suppdom(X )(X )

with P = |
∏

Si∈dom(X∪Y )\dom(X ) πSi (Y )|.
In Table 6, the multidimensional association rule
{Milk} ⇒ {Bread} × {Spring} has a natural support of 1

4
because

Supp{products,seasons}({Milk,Bread} × {Spring}) = |{c2}| = 1

Supp{products,seasons}({Milk}) = |{c1, c2, c3, c4}| = 4. (2)

This rule can also be expressed in first-order logic, i.e.

{Milk} ⇒ {Bread} × {Spring} ≡ ∀X ,Y ,¬purchase

(X ,Milk,Y ) ∨ (purchase(X ,Bread, Spring)

∧purchase(X ,Milk, Spring)). (3)

C. ONLINE ANALYTICAL PROCESSING (OLAP)
Historically, OLAP is not a new idea; it has persisted
over the decades. Initially, in 1962, Kenneth Iverson pro-
posed the foundation of OLAP in his book ‘‘A Program-
ming Language’’ [65]. In 1975, Information Resources Inc.

FIGURE 3. A sample OLAP data cube with three dimensions (D1: location,
D2: product and D3: time).

launched the first OLAP product named ‘‘Express’’, which
was acquired by Oracle Inc. in 1995. In 1993, Edgar F. Codd
used the term OLAP and set up 12 policies for an OLAP
product in his paper ‘‘Providing OLAP (Online Analytical
Processing) to user-analysts: An IT mandate’’ [5]. In OLAP,
it is essential to have a multi-dimensional cube. There-
fore, we show a sample OLAP cube with three dimensions
(D1,D2,D3) in Fig. 3. Practically, an OLAP cube consists
four types of functions; First, OLAP operations, i.e., RollUp,
Drill Down, Slice, Dice, and Pivot. Second is aggregation
operations, i.e., SUM, AVG, COUNT, MIN, MAX, calcu-
late trends, ranking, percentiles, attribute-based grouping,
compare aggregates, etc. The third is the OLAP operator,
i.e., ‘‘Force’’ and ‘‘Extract,’’ which convert a dimension into
a measure and a measure into a dimension. Fourth is the
capability to handle uncertain data within the OLAP model.

IV. SEMANTIC CORRESPONDENCE BETWEEN
SR, OLAP AND ARM
In this section, we establish semantic correspondence
between SR, OLAP, and ARM. We use probability theory
with conditional expected values (CEVs) as the center of
our mappings. First, we provide semantic correspondence
between SR, i.e., probability theory and ARM, and then we
provide semantic correspondence between SR and OLAP.
Definition 4 (σ -Algebra): Given a set �, a σ -Algebra 6

over � is a set of subsets of �, i.e., 6 ⊆ P(�), such that the
following conditions hold true:
1) � ∈ 6
2) If A ∈ 6 then �\A ∈ 6
3) For all countable subsets of 6, i.e., A0,A1,A2 . . . ∈ 6

it holds true that ∪
i∈N0

Ai ∈ 6

Definition 5 (Probability Space): A probability space
(�,6,P) consists of a set of outcomes �, σ algebra of
(random) events 6 over the set of outcomes � and a prob-
ability function P: 6 → R, also called probability measure,
such that the following axioms hold true:
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TABLE 6. A multidimensional binary dataset in which customers (c1 to c4) buy products (Milk, Bread, Diapers, Beer) during seasons (Winter, Spring,
Summer).

1) ∀A ∈ 6.0 ≤ P(A) ≤ 1 (i.e., P: 6→ [0, 1])
2) P(�) = 1
3) (Countable Additivity): For all countable sets of pair-

wise disjoint events, i.e., A0,A1,A2 . . . ∈ 6 with Ai∩Aj=∅
for all i 6= j, it holds true that

P
(∞⋃
i=0

Ai
)
=

∞∑
i=0

P(Ai)

Definition 6 (Conditional Probability): Given two events
{X ,Y } ∈ 6 of probability space (�,6,P). If P(X ) 6= 0 then
we define conditional probability of Y given X as:

P(Y |X ) =
P(X ∩ Y )

P(X )

Definition 7 (Expected Value): Given a real-valued dis-
crete random variable X : �→ I with indicator set I =
{i0, i1, i2, . . . , in} ⊆ R based on (�,6,P), the expected
value E(X ), or expectation of X (where E can also be denoted
as EP in so-called explicit notation) is defined as follows:

E(X ) =
∞∑
n=0

in · P(X = in)

Definition 8 (Conditional Expected Value): Given a real-
valued discrete random variable Y : � → I with indicator
set I = {i0, i1, i2, . . .} ⊆ R based on a probability space
(�,6,P) and an event X ∈ 6, the expected value E(Y ) of
Y conditional on X (where E can also be denoted as EP in
so-called explicit notation) is defined as follows:

E(Y |X ) =
∞∑
n=0

in · P(Y = in| X ) (4)

A. ANCHORING ASSOCIATION RULE MINING IN
PROBABILITY THEORY
We follow the concepts and notation and their formaliza-
tion as originally introduced by Agrawal et al. in their
1993 paper [6] as closely as possible. First, there is a whole
itemset I = {I1, I2, . . . , In} consisting of a total number n
of items I1, I2, . . . , In. A subset X ⊆ I of the whole itemset
is called an itemset. Next, we introduce the notion of a set of
transactions T (that fits the itemset I) as a relation as follows:

T ⊆ TID× {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(5)

Here, TID is a finite set of transaction identifiers. For the
sake of convenience, we assume that it has the form TID =
{1, . . . ,N }. Actually, we need to impose a uniqueness con-
straint on TID, i.e., we require that T is right-unique, i.e.,
a function given as,

T ∈ TID −→ {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(6)

Given (6), we have that N in TID = {1, . . . ,N } equals
the size of T , i.e., N = |T |. Henceforth, we refer to T inter-
changeably both as a relation and as a function, according
to (5) resp. (6). For example, we use t = 〈i, i1, . . . in〉 to
denote an arbitrary transaction t ∈ T ; similarly, we use T (i)
to denote the i-th transaction of T more explicitly etc. Given
this formalization of the transaction set T , it is correct to say
that T is a binary relation between TID and the whole itemset.
In that, I1, I2, . . . , In need to be thought of as column labels,
i.e., there is exactly one bitmap column for each of the n
items in I, compare with (5) and (6). Similarly, Agrawal et al.
have called the single transaction a bit vector and introduced
the notation t[k] for selecting the value of the transaction
t in the k-th column of the bitmap table (in counting the
columns of the bitmap table, the TID column is omitted, as it
merely serves the purpose of providing transaction identi-
ties), i.e., given a transaction 〈tid, i1, . . . in〉 ∈ T , we define
〈tid, i1, . . . in〉[k] = ik . Less explicit, with the help of the
usual tuple projection notation πj, we can define t[k] =
πk+1(t). Let us call a pair 〈I,T 〉 of a whole itemset I and a set
of transaction T that fits I as described above an ARM frame.
Henceforth, we assume an ARM frame 〈I,T 〉 as given.
We have said that a transaction is a bit vector. For the sake

of convenience, let us introduce some notation that allows us
to treat a transaction as an itemset. Given a transaction t ∈ T
we denote the set of all items that occur in t as {t} and we
define it as follows:

{t} = {Ik ∈ I | t[k] = 1} (7)

The {t} notation provided by (7) will prove helpful later,
as it allows us to express properties about transactionswithout
the need to use bit-vector notation, i.e., without the need to
maintain item numbers k of items Ik .
Given an Ij ∈ I and a transaction t ∈ T , Agrawal et al.

says [6] that Ij is bought by t if and only if t[j] = 1. Similarly,
we can say that t contains Ij in such case. Next, given an
itemset X ⊆ I and a transaction t ∈ T , Agrawal et al. says
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that t satisfies X if and only if t[j] = 1 for all Ij ∈ X . Similarly,
we can say that t contains all of the items of X in such case.
Next, we can see that t satisfies X if and only if X ⊆ {t}.
Henceforth, we use X ⊆ {t} to denote that t satisfies X .
Given an itemset X ⊆ I, the relative number of all transac-

tions that satisfy X is called the support of X and is denoted
as Supp(X ), i.e., we define:

Supp(X ) =
|{t ∈ T | X ⊆ {t}}|

|T |
(8)

Again, it makes perfect sense to talk about the support of
an itemset X as the relative number of all transactions that
each contain all of the items of X .
An ordered pair of itemsets X ⊆ I and Y ⊆ I is called an

association rule, and is denoted by X ⇒ Y . Now, the relative
number of all transactions that satisfy Y among all of those
transactions that satisfy X is called the confidence of X ⇒ Y ,
and is denoted as Conf(X ⇒ Y ), i.e., we define:

Conf(X ⇒ Y ) =
|{ t ∈ T | Y ⊆{t} ∧ X⊆{t} }|

|{t ∈ T | X ⊆ {t}}|
(9)

Usually, the confidence of an association rule is introduced
via support of itemsets as follows:

Conf(X ⇒ Y ) =
Supp(X ∪ Y )
Supp(X )

(10)

It can easily be checked that (9) and (10) are equivalent.

B. SEMANTIC CORRESPONDENCE BETWEEN
ARM AND SR)
Next, we map the concepts defined in ARM to probability
theory. Given an ARM frame F = 〈I,T 〉 next we map the
concepts defined in ARM to probability space (�F , 6F ,PF ).
First, we define the set of outcomes �F to be the set of
transactions T . Next, we define6F to be the power set of�F .
Finally, given an event X ∈ 6F , we define the probability of
X as the relative size of X , as follows:

�F = T (11)
6F = P(T ) (12)

PF (X ) =
|X |
|T |

(13)

In the sequel, we drop the indices from �F , 6F , and
PF , i.e., we simply use �, 6, and P to denote them, but
always keep in mind that we actually provide correspon-
dence from ARM frames F to corresponding probability
spaces (�F , 6F ,PF ). The idea is simple. Each transaction
is modeled as an outcome and, as usual, also a basic event.
Furthermore, each set of transactions is an event.
We step forward with item and itemsets. For each item

I ∈ I we introduce the event that item I is contained in a
transaction, and we denote that event as [[I ]]. Next, for each
itemset X ⊆ I, we introduce the event that all of the items
in X are contained in a transaction and we denote that event
as [[X ]]. We define:

[[I ]] = { t | I ∈ {t} } (14)

[[X ]] = ∩
I∈X

[[I ]] (15)

As usual, we identify an event [[I ]] with the characteristic
random variable [[I ]] : � −→ {0, 1} and use P([[I ]]) and
P([[I ]]=1) as interchangeable.

1) FORMAL CORRESPONDENCE OF ARM SUPPORT AND
CONFIDENCE TO PROBABILITY THEORY
Based on the correspondence provided by (11) through (15),
we can see how ARM Support and Confidence translate into
probability theory.
Lemma 1 (Mapping ARM Support to Probability Theory):

Given an itemset X ⊆ I, we have that:

Supp(X ) = P([[X ]]) (16)

Proof: According to (15), we have that P([[X ]]) equals

P( ∩
I∈X

[[I ]]) (17)

Due to (14), we have that (17) equals

P
(
∩
I∈X
{ t ∈ T | I ∈ {t} }

)
(18)

We have that (18) equals

P({ t ∈ T | ∧
I∈X

I ∈ {t} }) (19)

We have that (19) equals

P({t ∈ T | X ⊆ {t}}) (20)

According to (13), we have that (20) equals

|{t ∈ T | X ⊆ {t}}|
|T |

(21)

According to (8), we have that (21) equals Supp(X )
Lemma 2 (Mapping ARM Confidence to Probability The-

ory): Given an itemset X ⊆ I, we have that:

Conf(X⇒Y ) = P
(
[[Y ]]

∣∣ [[X ]] )
Proof: Omitted.

In Table 7, we provide one to one mapping in between the
operations of ARM and SR, i.e., probability theory. A set of
items in ARM I = {I1, I2, . . . , Im} are equivalent to the set
of events I = {I1 ⊆ �, . . . , Im ⊆ �} in probability theory.
Transactions T in ARM are equivalent to the set of outcomes
� in probability space (�,6,P). Support of an itemset X in
ARM is equivalent to the relative probability of the itemset X .
Confidence of an association rule X⇒Y is equivalent to the
conditional probability of Y in the presence of X .

C. ANCHORING OLAP IN PROBABILITY THEORY
Decision-makers are using OLAP to explore data in a multi-
dimensional view. It helps to compute different aggregate
summaries using various OLAP operations (COUNT, SUM,
Drill-Down, Roll-up, Slice, Dice, etc.). For example, Fig. 4
demonstrates age and salary records in a two-dimensional
space. In OLAP, data exploration starts from a high gran-
ularity level to a lower granularity level or vice versa. The
sample data cube is given in Fig. 3 consists of time, location
and product dimensions. An OLAP dimension comprises
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TABLE 7. Semantic correspondences between association rule mining and statistical reasoning (probability theory).

organized attributes in a hierarchical structure to show the
different data granularity levels. For example, the time dimen-
sion in Fig. 3 may have the following hierarchy: Month →
Quarter → Year . Here, the dimension attribute Year shows
a high level of granularity, andMonth shows a lower level of
granularity. Based on the sample OLAP cube given in Fig. 3,
first, we provide standard notions and definitions and then
provide semantic correspondence between OLAP and SR,
i.e., probability theory.

1) OLAP CUBE: BASIC NOTATIONS AND DEFINITIONS
Let an OLAP cube C be a multi-dimensional data cube with
four-tuple C = {1,D,H ,M} where1 represents the OLAP
cube domain, D is a non-empty set of n dimensions, H is
a set of dimension hierarchy and M is a non-empty set of
quantitative measures, i.e., numerical or additive values of a
cell. We have considered the following properties concerning
the OLAP cube.
• In an OLAP cube C , dimension set D = {D1,D2 . . .

Di . . .Dn}, dimension Di consists of a set of different
hierarchy levels Hi, where i ≤ n.

• Ahierarchy levelH i
j ∈ Hi is a non-empty set ofmembers

Aij. H i
j(j ≥ 0) is the jth hierarchical level in Di. E.g.,

in Fig. 3, the set of hierarchical level of dimension D1 is
H1 = {H1

0,H
1
1,H

1
2} = {Location,Continent,Country},

and in the dimension D1, the set of members at level H1
2

is A12 = {India,USA,Estonia,Finland}
Definition 9: Sub Cube: A sub cube C ′ is part of the main

OLAP cube with a non-empty set D′ of m dimensions. D′ =
{D1,D2 . . .Di . . .Dm} and m ≤ n. According to D′, a tuple
{21 . . . 2m} is a sub cube C ′ if D′ ⊆ D and 21 ⊆ Aij for all
i ∈ {1 . . .m} and 2i 6= null.
E.g., If in Fig. 3, a dimension set D′ = {D1,D2} ∈ D is

a sub cube then (21,22) = {Europe, x1, x2} will be a sub
cube.
Definition 10: AggregateMeasure: AMeasureM in a data

cube C is the SUM of measureM of all facts in the cube.
E.g., ‘‘Total Sales’’ in Fig. 3 can be evaluated by its

sum-based aggregate measure. The aggregate expression

FIGURE 4. A sample representation of age and salary records in two
dimensional space.

TotalSales(India, {x1, x2, y1}) represents the SUM of total
sales turnover for the products (x1, x2, y1) in India.
Definition 11: Intra Dimension Predicate: A dimension

predicate Ai in a dimension Di is its member as a value
represented as ai ∈ Aij .
E.g., In Fig. 3, a dimension predicate a1 in dimensionD1 is

a1 ∈ {Asia,America,Europe}.
Definition 12: Inter Dimension Predicate: Let data cube

C have a sub cube C’ with a non empty set of dimensions
D′ = {D1,D2 . . .Di . . .Dm} and D′ ⊆ D. When the value
of dimension predicates {A1 . . .Am} belongs to two or more
dimensions where (2 ≤ m ≤ n), then it is referred to as inter
dimension predicates.
E.g., In Fig. 3, dimension predicate {a1, a2} ∈ {D1,D2}

then a1 ∈ {Asia,America,Europe} and a2 ∈ {X ,Y ,Z }.

2) SEMANTIC CORRESPONDENCE BETWEEN OLAP AND SR
As discussed in Sect. III-C, an OLAP cube consists of various
operations (Roll-Up, Drill-Down, Slice, Dice, Pivot, SUM,
AVG, MIN, etc.). We have that the OLAP conditional opera-
tions (Slice, Dice, Drill- Down, Roll-up) on bitmap (Binary)
columns correspond to conditional probabilities. Those con-
ditional operations on numerical columns correspond to con-
ditional expected values in probability theory. For example,
we model a sample OLAP Table 8 in probability theory.
We consider that Table 8 is equivalent to the set of outcomes.
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TABLE 8. A sample OLAP table.

� in probability space (�,6,P), a row r is an element of
�, i.e. r ∈ � and each column c is equivalent to a random
variable R. We consider numerical columns as finite real-
valued random variables (For Example: Salary ∈ � ⊆ R)
and bitmap columns are considered as events (For Example:
Freelancer ⊆ �). The following is a probabilistic interpreta-
tion of the OLAP Table 8.

• City: � −→ {Boston, L.A., New York. . . . . . .}
• Profession: � −→ {Chef, Construction. . . ..}
• Education Level: � −→ {High School. . . ..}
• Age Group: � −→ {18–20, 25–30. . .>65}
• Freelancer: � −→ {0, 1}
• Salary: � −→ ISalary ⊆ R(|ISalary| ∈ N)

3) SEMANTIC CORRESPONDENCE BETWEEN
OLAP AVERAGES AND SR
In many cases and as per Codd et al. [5], decision-makers
use SQL queries to interact with OLAP. Therefore, we start
with simple OLAP queries mapped with probability the-
ory. We have a simple OLAP average query; (SELECT
AVG(Salary) FROM Table 8). If the number of rows of
Table 8 is represented by |�| and the number of rows that
contain a value i in column C are equivalent to #C (i) then
AVG(Salary) FROM Table 8 will compute the average of all
the salaries, i.e., a fraction of the sum of the column (Salary)
and the total number of rows in the table.
In probability theory, the average of a random variable X is

the Expected Value of X = E[X ]. We compare the expected
value of X , i.e., E(X ) with the output of the AVG query in
OLAP. We have OLAP Query:

(SELECT AVG(Salary) FROM Table 8) (22)

Expected Value: E(Salary) =
∑

i∈ISalary

i · P(Salary = i) (23)

=

∑
i∈ISalary

i ·
#Salary(i)
|�|

=

∑
r∈�

Salary(r)

|�|
(24)

As per (23) and (24), the average of a random variable X
in probability theory and simple averages of an OLAP query
provide the same outcome. Hence, we say that an average
query in OLAP corresponds to expected values in probability
theory.

4) SEMANTIC CORRESPONDENCE BETWEEN OLAP
CONDITIONAL AVERAGES AND SR
The conditional average queries in OLAP calculate averages
of a column with a WHERE clause. For example, we have
an average SQL query with some conditions where the target
column is numerical and conditional variables have arbitrary
values. We have OLAP Query:

SELECT AVG (Salary) FROM Table 8

WHERE City = Seattle AND Profession = IT ; (25)

In probability theory, we compute the conditional average
of a random number using its conditional expectation. For
example, as per Def. 8, the conditional expectation of a
random number Y with condition X is given as:

E(Y |X ) =
∞∑
n=0

in · P(Y = in| X )

f (i) = E(Y = in|X ) (26)

Here, the value E(Y = in|X ) is dependent on the value of i.
Therefore, we say that E(Y = in|X ) is a function of i, which
is given in (26). We compare the conditional expected value
of E(Y = in|X ) with the output of the conditional AVG query
in OLAP. We have OLAP Query:

SELECT AVG (Salary) FROM Table 8

WHERE City = Seattle AND Profession = IT ;

Conditional Expected Value: E(Salary|City
= Seattle ∩ Profession= IT) (27)

E(Y |X ) =
∑
i∈IC

i · P(Y= i | X) (28)

As per (27) and (28), the average of a random variable Y
with condition X (Conditional Expected values) and the con-
ditional average of an OLAP query provide the same out-
come. Hence, we can say that a conditional average query
in OLAP corresponds to the conditional expected values in
probability theory. In Fig. 5, we demonstrate the seman-
tic correspondence between the features of SR, OLAP, and
ARM. At the top level, we consider OLAP and its features.
In the middle, we have probability theory and its features,
which work as the middle layer between OLAP, ARM and
at the bottom layer, we provide ARM and its measures.
In OLAP, we have conditional averages over binary columns,
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FIGURE 5. Demonstration of semantic correspondence between statistical reasoning, OLAP and association rule mining.

TABLE 9. Semantic correspondence between statistical reasoning, OLAP and association rule mining.

FIGURE 6. A high level abstraction of the framework for the unification of decision support techniques.

conditional averages over numerical columns, and differ-
ent other conditional aggregates like Max, Min, Sum, etc.
In OLAP, conditional averages on binary columns correspond

to conditional probability, and they also correspond to confi-
dence in ARM. However, conditional averages on numerical
columns in OLAP correspond to conditional expected values
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FIGURE 7. A detailed overview of the framework for the unification of decision support techniques.

in probability theory. Based on these semantic correspon-
dences between SR, OLAP, and ARM, we are convinced that
DSTs have common features with different names. However,
they are being used differently. Therefore, the unification of
SR, OLAP, and ARM will provide an advanced novel frame-
work for next-generation decision support tools. In Table 9,
we provide a list of semantic correspondence between the
features of SR, OLAP, and ARM.

V. THE FRAMEWORK, EVALUATION AND EXPERIMENTS
In this section, the framework for the unification of three
DSTs is presented. As a data science process provided by
Schutt andO’Neil [66], the proposed framework ismodular in
design and every module in the framework can be displaced.
In Fig. 6, we illustrate the high-level abstraction of the frame-
work and based on the process of knowledge discovery in
databases (KDD) [36], a detailed overview of the proposed
framework is given in Fig. 7.
The framework consists mainly of seven major compo-

nents. The Graphical User Interface (GUI) allows decision-
makers to communicate with the framework to process the
raw data. The data pre-processing includes various operations
and checks, including discretization, cleaning, e.g., checking
for corrupt data, reviewing the types of data, transforming
and integrating data in useful formats, etc. The ACIF gen-
erator in the framework is developed for decision-makers to
select the target columns and influencing factors to generate
different combinations of data items. The decision support
engine is a set of multiple DSTs, allowing decision-makers
to select one or more techniques to process the data and get
insights. The Pattern evaluation is used to find interesting
information using different methods from SR, OLAP, and
ARM. The semantic mapper is a manual process to map the
results of DSTs and reports different semantic correspon-
dences between them. A brief description of all the significant
components of the proposed framework is given in Table 10.

A. IMPLEMENTATION OF THE PROPOSED FRAMEWORK
To demonstrate the usability of the proposed framework,
an instance of the framework is developed using ASP.NET,
an open-source framework for developing web applications.

The resulting tool is an example of a next-generation decision
support tool implemented by adopting the proposed frame-
work. A summary of technologies and framework used for
the implementation of the tool is given in Table 11. The
programming code and other instructions on how to use the
proposed tool are available in the GitHub repository [15].
The AJAX request methods are used throughout the tool’s
implementation to establish a connection between the client
and server. JSON serialization and deserialization functions
convert .NET objects (strings) to JSON format and JSON for-
mat to .NET objects. We use Oracle database and Microsoft
Excel as databases and for OLAP, we have used relational
algebra in the tool.
The tool first recognizes different kinds of data

(discretized, numerical, categorical) and then develops gen-
eralized association rules for the various combinations of
influencing factors and target columns. In the tool, if the
selected target column is numerical, then the aggregate func-
tion is used, and the average value of the target column
is calculated against the chosen influencing factors by the
following SQL query; Select AVG (target column) from table
group by influencing factors. If the specified target column is
numerical, the aggregate function is employed in the tool, and
the average value of the target column is determined against
the chosen influencing factors using the SQL statement;
Select AVG (target column) from table group by influencing
factors. If the selected column is categorical, the tool uses the
following SQL query to determine the conditional probability
of the target column; Select conditional probability of target
column under influencing factor from table group by target
column and influencing factors. Both support and lift are
calculated for numerical and categorical target columns. For
the numerical target column, the order of columns is support,
lift, an average value of the target column, and then influenc-
ing factors. For the categorical target column, the columns
are listed in the following order: support, lift, conditional
probability, target column, and influencing variables.

1) ACIF GENERATOR
In the tool, we have developed a function for ACIF gen-
erator and implemented it in the proposed framework.
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TABLE 10. Summary of the components used to develop the framework
for the unification of DSTs.

TABLE 11. Summary of the technologies and framework used for the
implementation of the tool.

The ACIF generator is developed to select the target column
and influencing factors to generate all possible combinations
of the selected target column and influencing factors. First,
the generator identifies the column combinations from the
dataset and generates reports for the target column and influ-
encing factors. The pseudo-code for the ACIF generator and
ACIF report generator is given in Listing 1. In the pseudo-
code, the CREATE_COMBINATIONS function is defined
to pass the information of influencing columns and the
number of columns. This function calculates the possible
combinations of the selected influencing factors. In line 15,
the GENERATE_REPORT function is defined to generate
the reports for various combinations of influencing factors
against target columns. This function passes the informa-
tion about the table name, target columns and influencing
columns. In this function, the SQL statement is used to
retrieve the support, lift, conditional averages and influencing
factors from the data source.

2) MATHEMATICAL DESCRIPTION OF THE ACIF GENERATOR
Let T be a database Table with multiple columns C = {X1 :
T1, . . . ,Xn: Tn}, where X1 . . .Xn represent column names
and T1 . . . Tn represent column types. To calculate various

operations of SR, OLAP and ARM for T ,

∀1 ≤ ψ ≤ n

∀D = {X ′1: D1, . . . ,X ′ψ−1: Dψ−1} ⊆

C(Di = d1, . . . , dni)

∀d ′1 ∈ D1, . . . , d ′ψ−1 ∈ Dψ−1

Here, D is the subset of C and the influencing factor.

∀Y : R ∈ C or Y = Xij: B,Xi: di ∈ C

Y is the target column, R is the real-valued numbers then.
Support:

P(Y ,X ′1=d1, . . . ,X
′

ψ−1=dψ−1) (29)

Average:

E(Y | X ′1=d1, . . . ,X
′

ψ−1=dψ−1) (30)

Lift:

E(Y | X ′1=d1, . . . ,X
′

ψ−1=dψ−1)

E(Y )
(31)

B. EXPERIMENTS ON THE PROPOSED FRAMEWORK
The experiment section demonstrates the potential of the
introduced framework. The tool is evaluated on two real
datasets and one synthetic dataset. The tool is tested on a com-
puter with an Intel(R) Core(TM) i5-8265U CPU@ 1.60GHz,
1800 Mhz, 4 Core(s), 8 Logical Processor(s), 16 GB RAM
and Windows 10 x 64 operating system. The programming
code, datasets, and other necessary instructions about the tool
are available in the GitHub repository [15].
The datasets are summarized in Table 12, in which

we highlight the number of records, number of attributes,
and number of numeric attributes. The first Dataset, New
Jersey (NJ) School Teacher Salaries (2016) [67] contains
138, 715 records and 15 attributes, while another real
dataset, DC public government employees [68] contains
33, 424 records, which are huge in numbers to check the
performance of the tool. In the table, we have described the
dataset attributeswith their types. Dataset NJ Teacher Salaries
(2016) consists of salary, job, and experience data for the
teachers and employees in New Jersey schools. The data are
sourced from the (NJ) Department of Education. The second
real dataset is a list of DC public government employees and
their salaries in 2011. The second data set is sourced from
the washington times via freedom of information act (FOIA)
requests. We have also tested the proposed tool on the sam-
ple dataset UDS1 [69]. This dataset contains 1, 470 records
with different combinations of numerical, categorical, and
discretized attributes. A feature list obtained by parsing the
UDS1 dataset is summarized in Table 13.
In the datasets, the target column is the one for which

we are computing ARM operations, i.e., support, confi-
dence, lift and OLAP averages with respect to an influenc-
ing factor. An influencing factor is an attribute that impacts
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FIGURE 8. A sample report comparing the results of OLAP and ARM measures is as follows: the ARM operations (support, confidence, lift)
and OLAP operations (averages) are displayed. A sample dataset is used to generate the report, which includes all possible combinations
of influencing factors and numerical target columns.

Listing 1 Pseudo-Code to Find the ACIF and Generate ACIF Reports

1: function CREATE_COMBINATIONS(influencing_Columns[], numberofColumns)
2: if numberofColumns == \text{0}~then
3: return []
4: return_Values = []
5: for i = \text{1}~to LENGTH(influencing_Columns) do
6: colName = influencingColumns[i]
7: partialLst = REMOVE_COLUMN(i,influencingColumns)
8: for each: j in CREATE_COMBINATIONS(partialLst, numberofColumns - 1) do
9: APPEND_TO(return_Values,ADD_FIRST(colName,j))
10: end for
11: end for
12: return return_Values
13: end function
14:
16: function GENERATE_REPORT(table_Name, target_Column, influencing_Columns[])
16: for i = \text{1}~to LENGTH(influencing_Columns) do
17: column_Combination = call:CREATE_COMBINATIONS(influencingColumns,i)
18: for each: Combinations in column_Combination
19: "SELECT COUNT(*)/ (SELECT COUNT(*) FROM "+table_Name+") AS SUPPORT, (SELECT AVG("+target_Column+") FROM "+table_Name+")/
AVG("+target_Column+") AS LIFT,
AVG("+target_Column+") AS AVG_targetColumn, "+ Combinations +"
FROM "+table_Name +"
GROUP BY "+ Combinations +"
ORDER BY "+ Combinations;"
20: end for
21: end for
22: end function

the target columns. Therefore, we also denote the WHERE
clause as an influencing factor for the target column in OLAP
computations. The UDS1 dataset consists four columns with

different data types; age is discretized, gender is categorical,
education is categorical and DailyRate is numerical. The
column Age has the age groups as 20 − 30, 30 − 40, etc.,
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TABLE 12. Summary of datasets used to evaluate performance of the proposed tool.

TABLE 13. A summary of different attributes obtained by parsing the
datasets.

FIGURE 9. Running time and performance variation of the proposed tool
induced by the number of records in the datasets.

and gender has two categorical values; Male and female.
Education has five categorical levels A, B, C, D, and E.
For example, if we select education as the target column
and its values are A, B, C, D, and E. Here, education is
a factor and its values are instances of the factor. The tool
calculates the conditional probability for each instance in the
generated report. For example, suppose we select DailyRate
as the target column and age, gender and education as influ-
encing factors. In this case, all possible combinations of the
target column are generated against all selected influencing
factors.
At the first step, the tool checks for the types of input data.

Then it generates generalized association rules concerning
the possible combinations of influencing factors and target
columns. In the second step, the tool provides aggregate
values, the conditional probability of the target column for
each combination of influencing factors and target column.
For SR, the tool calculates conditional probability and the
mean value for the numeric target column concerning the
influencing factors. For ARM operations, the tool calculates

FIGURE 10. Number of records in datasets.

the support, confidence, and lift. For OLAP operations, the
tool computes conditional averages. An overview of the com-
putation of different SR, OLAP, and ARM operations is given
in Fig. 8. In the report, the blue color code shows ARM
operations. The green color code displays the target column,
and the red color code indicates the influencing factors.
We have analyzed the performance of the proposed tool

with three datasets. The performance of the tool varies with
the number of records. If the number of records in a dataset
is high, the tool has higher running time and slow per-
formance. In Fig. 9, the performance variation induced by
the number of records in a dataset is shown. The Dataset
NJ Teacher has a huge number of records; therefore, its
running time is 36, 650 milliseconds. Dataset DC Public
Employees has 33, 424 records. Therefore, its running time
is 22, 090 milliseconds, and the sample dataset UDS1 has a
small number of records, i.e., 1, 470; therefore, its running
time is 2, 030 milliseconds. Running time and performance
variation of the proposed tool induced by the number of
records in the datasets is shown in Fig. 10. A summary of
records in datasets and performance variation of the tool with
the datasets is given in Fig. 11.

C. ADVANTAGES OF THE PROPOSED TOOL OVER
EXISTING DECISION SUPPORT TOOLS
In this section, we compare the capabilities of the proposed
tool with one of the state of the art decision support platforms,
i.e., RapidMiner [70].
Unlike any other decision support tool, the proposed

tool altogether computes SR operations, i.e., conditional
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FIGURE 11. Performance summary of the tool under two real datasets and one synthetic dataset.

FIGURE 12. In the proposed tool: a sample project for generating all possible combinations of influencing factors against target
columns.

probability, OLAP operation, i.e., conditional averages,
and ARM operations, i.e., support, confidence, and lift,
see Fig. 12. In addition, the tool computes the aver-
age value of a numerical target column against all pos-
sible combinations of influencing factors. In Fig. 8, a
sample report is given for generating all possible com-
binations of influencing factors against the target col-
umn. However, in RapidMiner, to calculate the average

value of a numerical target column against all possible
combinations of influencing factors, a decision-maker needs
to create multiple connections for all the possible combina-
tions of influencing factors.Moreover, a decision-maker must
create a new project for each dataset and repeatedlymodify its
columns and combinations. Therefore, in Fig. 13, we provide
a sample use case to generate all possible combinations of
influencing factors against the target column in RapidMiner.
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FIGURE 13. In RapidMiner: a sample project for generating all possible combinations of influencing factors against target columns.

TABLE 14. A sample list of premises and conclusions generated by
RapidMiner for the influencing factors and target column.

Additionally, in RapidMiner, the influencing factors and
their values are stored in a single column called the ‘con-
clusion’ column as ‘‘influencing factors=value’’. The target
column and its values are stored in the ‘premises’ column as
‘‘Target Column=value’’. A sample list of premises and con-
clusions generated by RapidMiner for the influencing factors
and target column is displayed in Table 14. The representation
of the target factors and influencing factors is difficult to
understand. It is hard for decision-makers to identify each
factor and its instance from the multiple tables. However, the

proposed tool creates a separate column for each factor to
identify the target column and influence factors quickly. In the
tool, a decision-maker can select the target column and all
influencing factors at once to generate all combinations of
target factors and all influencing factors.

VI. FUTURE WORK
This paper provides a foundation for uncovering the semantic
correspondences betweenDSTs and utilizing them to develop
a framework for the unified usages of DSTs. However, the
research is yet limited in scope to find the semantic corre-
spondences between the three DSTs only; therefore, in the
near future, more DSTs can be investigated to identify the
semantic correspondences between them to develop cutting-
edge frameworks for next-generation decision support tools.
The unified usage of DSTswill not only be helpful in building
robust frameworks for a variety of decision support tools but
also open a new domain of research for hybrid DSTs.
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Furthermore, we intend to build an advanced platform by
implementing additional features in the proposed tool, e.g.,
Pearson correlation, regression, etc. We are also working on
a new measure to identify any instance of Simpson’s paradox
in Big Data. Implementing these measures in the proposed
platform will enable decision-makers to determine the gen-
uine and unbiased impact factors.
The proposed tool has some performance issues with

large datasets momentarily; therefore, we plan to scale up
the performance of the tool by utilizing high-performance
computing (HPC) infrastructure and making it available to
the decision-makers. We intend to build it as a trustworthy
platform and grow as a service provider in the near future.

VII. CONCLUSION
In this paper, we analyzed a series of approaches to over-
come the divide between the three most popular DSTs, i.e.,
SR, OLAP and ARM. We contributed by elaborating the
semantic correspondences between the foundations of SR,
OLAP and ARM, i.e., probability theory, relational algebra
and the itemset apparatus, respectively. The support of an
itemset corresponds to the probability of a corresponding
event and the confidence of an association rule corresponds
to the conditional probability of two corresponding events.
Furthermore, the OLAP average aggregate function corre-
sponds to conditional expected values, which closes the loop
between ARM, OLAP and probability theory with respect to
the most important constructs in ARM and OLAP. We have
proposed a novel framework for the unification of DSTs and
implemented a tool to validate the concept of unification. The
tool provides unified usage of DSTs in a classical decision
support process and clarifies in how far the operations of SR,
ARM, and OLAP can complement each other in understand-
ing data, data visualization and decision making. The tool
was developed on the basis of an open-source framework and
tested with two real datasets and one synthetic dataset. The
results and performance of the tool show valuable contribu-
tions towards developing the next-generation DSSs.
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Abstract. Over the last decades, various decision support technologies
have gained massive ground in practice and theory. Out of these tech-
nologies, statistical reasoning was used widely to elucidate insights from
data. Later, we have seen the emergence of online analytical process-
ing (OLAP) and association rule mining, which both come with specific
rationales and objectives. Unfortunately, both OLAP and association
rule mining have been introduced with their own specific formalizations
and terminologies. This made and makes it always hard to reuse results
from one domain in another. In particular, it is not always easy to see the
potential of statistical results in OLAP and association rule mining appli-
cation scenarios. This paper aims to bridge the artificial gaps between
the three decision support techniques, i.e., statistical reasoning, OLAP,
and association rule mining and contribute by elaborating the seman-
tic correspondences between their foundations, i.e., probability theory,
relational algebra, and the itemset apparatus. Based on the semantic
correspondences, we provide that the unification of these techniques can
serve as a foundation for designing next-generation multi-paradigm data
mining tools.

Keywords: Data mining · Association rule mining · Online analytical
processing · Statistical reasoning

1 Introduction

Nowadays, decision-makers and organizations are using a variety of modern and
old decision support techniques (DSTs) with their specific features and limited
scope of work. However, in the era of big data and data science, the huge volume
and variety of data generated by billions of internet devices demand advanced
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DSTs that can handle a variety of decision support tasks. Currently, no single
DST can fulfill this demand. Therefore, to provide advanced decision support
capabilities, this paper contributes by elaborating the semantic correspondences
between the three popular DSTs, i.e., statistical reasoning (SR) [13], online ana-
lytical processing (OLAP) [3] and association rule mining (ARM) [1,11]. These
correspondences between SR, ARM and OLAP, and vice versa, appear to be
easy, but none of these have been implemented in practice, nor they have been
discussed in the state of the art. However, substantial research has been done over
the years to enhance OLAP, data warehousing, and data mining approaches [7].
In particular, in data mining, Kamber et al. [8], Surjeet et al. [2] have presented
different ways to integrate OLAP and ARM together. Later, Han et al. [5] have
proposed DBMiner for interactive mining. In the state of the art, the adoption
of concepts in between OLAP and ARM (and vice versa) are referred to as auto-
matic OLAP [14] and multi-dimensional ARM [8]. We appraise all approaches
for the integration of the OLAP and ARM. However, the concept of semantic
correspondences between DSTs is yet to be elaborated in the state-of-the-art.
To establish semantic correspondences between the three DSTs, we use proba-
bility theory and conditional expected values (CEVs) at the center of our con-
siderations. CEVs correspond to sliced average aggregates in OLAP and would
correspond to potential ratio-scale confidences in a generalized ARM [4]. Elab-
orating these concepts between DSTs will enable decision-makers to work with
cross-platform decision support tools [6,10] and check their results from different
viewpoints.

The paper is structured as follows: In Sect. 2, we elaborate semantic mapping
between the SR and ARM, i.e., between probability theory and itemset appa-
ratus. In Sect. 3, we discuss the semantic mapping between the SR and OLAP,
i.e., between probability theory and relational algebra. Conclusion is given in
Sect. 4.

2 Semantic Mapping Between SR and ARM

We stick to the original ARM concepts and notation provided by Agrawal et
al. [1]. However, ARM is also presented for numerical data items as quantitative
ARM [12], numerical ARM [9].

In classical ARM, first, there is a whole itemset I = {I1, I2, . . . , In} consisting
of a total number n of items I1, I2, . . . , In. A subset X ⊆ I of the whole itemset
is called an itemset. We then introduce the concept of a set of transactions T
(that fits the itemset I) as a relation as follows:

T ⊆ TID × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(1)

Here, TID is a finite set of transaction identifiers. For the sake of simplicity,
we assume that it has the form TID = {1, . . . , N}. In fact, we must impose
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a uniqueness constraint on TID, i.e., we require that T is right-unique, i.e., a
function given as,

T ∈ TID −→ {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(2)

Given (2), we have that N in TID = {1, . . . , N} equals the size of T , i.e.,
N = |T |. Henceforth, we refer to T interchangeably both as a relation and as
a function, according to (1) resp. (2). For example, we use t = 〈i, i1, . . . in〉 to
denote an arbitrary transaction t ∈ T ; similarly, we use T (i) to denote the i-th
transaction of T more explicitly etc. Given this formalization of the transaction
set T , it is correct to say that T is a binary relation between TID and the whole
itemset. In that, I1, I2, . . . , In need to be thought of as column labels, i.e., there
is exactly one bitmap column for each of the n items in I, compare with (1)
and (2). Similarly, Agrawal et al. have called the single transaction a bit vector
and introduced the notation t[k] for selecting the value of the transaction t in
the k-th column of the bitmap table (in counting the columns of the bitmap
table, the TID column is omitted, as it merely serves the purpose of providing
transaction identities), i.e., given a transaction 〈tid, i1, . . . in〉 ∈ T , we define
〈tid, i1, . . . in〉[k] = ik. Less explicit, with the help of the usual tuple projection
notation πj , we can define t[k] = πk+1(t). Let us call a pair 〈I, T 〉 of a whole
itemset I and a set of transaction T that fits I as described above an ARM
frame. Henceforth, we assume an ARM frame 〈I, T 〉 as given.

A transaction, as previously stated, is a bit vector. For the sake of simplicity,
Let’s start with some notation that makes it possible to treat a transaction as
an itemset. Given a transaction t ∈ T we denote the set of all items that occur
in t as {t} and we define it as follows:

{t} = {Ik ∈ I | t[k] = 1} (3)

The {t} notation provided by (3) will prove helpful later because it allows us
to express transaction properties without having to use bit-vector notation, i.e.,
without having to keep track of item numbers k of items Ik.

Given an Ij ∈ I and a transaction t ∈ T , Agrawal says [1] that Ij is bought
by t if and only if t[j] = 1. Similarly, we can say that t contains Ij in such case.
Next, given an itemset X ⊆ I and a transaction t ∈ T , Agrawal says that t
satisfies X if and only if t[j] = 1 for all Ij ∈ X. Similarly, we can say that t
contains all of the items of X in such case. Next, we can see that t satisfies X
if and only if X ⊆ {t}. Henceforth, we use X ⊆ {t} to denote that t satisfies X.

Given an itemset X ⊆ I, the relative number of all transactions that satisfy
X is called the support of X and is denoted as Supp(X), i.e., we define:

Supp(X) =
|{t ∈ T | X ⊆ {t}}|

|T | (4)

It’s perfectly reasonable to discuss an itemset’s support once more. X as the
relative number of all transactions that each contain all of the items of X.

An ordered pair of itemsets X ⊆ I and Y ⊆ I is called an association rule,
and is denoted by X ⇒ Y . Now, the relative number of all transactions that
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satisfy Y among all of those transactions that satisfy X is called the confidence
of X ⇒ Y , and is denoted as Conf(X ⇒ Y ), i.e., we define:

Conf(X ⇒ Y ) =
|{ t ∈ T | Y ⊆{t} ∧ X ⊆{t} }|

|{t ∈ T | X ⊆ {t}}| (5)

Usually, the confidence of an association rule is introduced via supports of
itemsets as follows:

Conf(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X)
(6)

It can easily be checked that (5) and (6) are equivalent.

2.1 Semantic Mapping Between Association Rule Mining and SR
(Probability Theory)

Here, we compare probability theory to the concepts defined in ARM. Given an
ARM frame F = 〈I, T 〉. next we map the concepts defined in ARM to probability
space (ΩF , ΣF ,PF ). First, we define the set of outcomes ΩF to be the set of
transactions T . Next, we define ΣF to be the power set of ΩF . Finally, given
an event X ∈ ΣF , we define the probability of X as the relative size of X, as
follows:

ΩF = T (7)

ΣF = P(T ) (8)

PF (X) =
|X|
|T | (9)

In the sequel, we drop the indices from ΩF , ΣF , and PF , i.e., we simply use
Ω, Σ, and P to denote them, but always keep in mind that we actually provide a
mapping from ARM frames F to corresponding probability spaces (ΩF , ΣF ,PF ).
The idea is simple. Each transaction is modeled as an outcome and, as usual,
also a basic event. Furthermore, each set of transactions is an event.

We step forward with item and itemsets. For each item I ∈ I we introduce
the event that item I is contained in a transaction, and we denote that event as
[[I]]. Next, for each itemset X ⊆ I, we introduce the event that all of the items in
X are contained in a transaction and we denote that event as [[X]]. We define:

[[I]] = { t | I ∈ {t} } (10)

[[X]] = ∩
I∈X

[[I]] (11)

As usual, we identify an event [[I]] with the characteristic random variable
[[I]] : Ω −→ {0, 1} and use P([[I]]) and P([[I]]=1) as interchangeable.
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2.2 Formal Mapping of ARM Support and Confidence to
Probability Theory

Based on the mapping provided by (7) through (11), we can see how ARM
Support and Confidence translate into probability theory.

Lemma 1 (Mapping ARM Support to Probability Theory) Given an
itemset X ⊆ I, we have that:

Supp(X) = P([[X]]) (12)

Proof. According to (11), we have that P([[X]]) equals

P( ∩
I∈X

[[I]]) (13)

Due to (10), we have that (13) equals

P
(

∩
I∈X

{ t ∈ T | I ∈ {t} }
)

(14)

We have that (14) equals

P({ t ∈ T | ∧
I∈X

I ∈ {t} }) (15)

We have that (15) equals

P({t ∈ T | X ⊆ {t}}) (16)

According to (9), we have that (16) equals

|{t ∈ T | X ⊆ {t}}|
|T | (17)

According to (4), we have that (17) equals Supp(X) ��

Lemma 2 (Mapping ARM Confidence to Probability Theory) Given
an itemset X ⊆ I, we have that:

Conf(X ⇒Y ) = P
(
[[Y ]]

∣∣ [[X]]
)

(18)

Proof. Omitted.

With these mappings, we provide that a set of items in ARM I =
{I1, I2, . . . , Im} are equivalent to the set of events I = {I1 ⊆ Ω, . . . , Im ⊆ Ω} in
probability theory. Transactions T in ARM are equivalent to the set of outcomes
Ω in probability space (Ω,Σ,P). Support of an itemset X in ARM is equivalent
to the relative probability of the itemset X. Confidence of an association rule
X ⇒Y is equivalent to the conditional probability of Y in the presence of X.
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3 Semantic Mapping Between SR and OLAP

As per our findings, conditional operations on bitmap (Binary) columns corre-
spond to conditional probabilities, whereas conditional operations on numerical
columns correspond to conditional expected values, e.g., we model a sample
OLAP Table 1 in probability theory. We consider that Table 1 is equivalent to
the set of outcomes Ω in probability space (Ω,Σ,P ), a row r is an element of
Ω, i.e. r ∈ Ω and each column c is equivalent to a random variable R. We con-
sider numerical columns as finite real-valued random variables (For Example:
Salary ∈ Ω ⊆ R) and bitmap columns are considered as events (For Example:
Freelancer ⊆ Ω). The following is a probabilistic interpretation of the OLAP
Table 1.

Table 1. A sample OLAP table.

City Profession Education Age group Freelancer Salary

New York Lawyer Master 25–30 0 3.800

Seattle IT Bachelor 18–25 1 4.200

Boston Lawyer PhD 40–50 1 12.700

L.A Chef High School 30–40 0 3.700

. . . . . . . . . . . . . . . . . .

3.1 Semantic Mapping Between OLAP Averages and SR

Generally, decision-makers use SQL queries to interact with OLAP [3]. Therefore,
we use OLAP queries to be mapped with SR, i.e., probability theory. We have
a simple OLAP average query; (SELECT AVG(Salary) FROM Table 1). If the
number of rows of Table 1 is represented by |Ω| and the number of rows that
contain a value i in column C are equivalent to #C(i) then AVG(Salary) FROM
Table 1 will compute the average of all the salaries, i.e., a fraction of the sum of
the column (Salary) and the total number of rows in the table. In probability
theory, the average of a random variable X is the Expected Value of X = E[X].
We compare the expected value of X, i.e., E(X) with the output of the AVG
query in OLAP. We have:

OLAP − Query (SELECT AV G (Salary) FROM Table 1) (19)

Expected Value: E(Salary) =
∑

i∈ISalary

i · P(Salary = i) (20)

=
∑

i∈ISalary

i · #Salary(i)

|Ω| =

∑
r∈Ω

Salary(r)

|Ω| (21)



602 R. Sharma et al.

As per Eq. 20 and Eq. 21, the average of a random variable X in proba-
bility theory and simple averages of an OLAP query provides the same out-
come. Hence, we say that an average query in OLAP corresponds to expected
values in probability theory. The conditional average queries in OLAP cal-
culate averages of a column with a WHERE clause. For example, we have
an average SQL query with some conditions where the target column is
numerical and conditional variables have arbitrary values. We have: SELECT
AVG(Salary) FROM Table 1 WHERE City = Seattle AND Profession=IT;.
In probability theory, we compute the conditional average of a random number
using its conditional expectation. Therefore, the conditional expectation of a
random number Y with condition X is given as:

E(Y |X) =

∞∑

n=0

in · P(Y = in|X) (22)

f(i) = E(Y = in|X) (23)

Here, the value E(Y = in|X) is dependent on the value of i. Therefore, we
say that E(Y = in|X) is a function of i, which is given in Eq. 23. We compare the
conditional expected value of E(Y = in|X) with the output of the conditional
AVG query in OLAP. We have:

OLAP Query : SELECT AV G(Salary) FROM Table 1

WHERE City = Seattle AND Profession = IT ; (24)

Conditional Expected Value: E(Salary |City=Seattle ∩ Profession=IT) (25)

E(Y |X) =
∑

i∈IC

i · P(Y = i |X) (26)

As per Eq. 25 and Eq. 26, the average of a random variable Y with condition
X (Conditional Expected values) and the conditional average of an OLAP query
provides the same outcome. Hence, we can say that a conditional average query
in OLAP corresponds to the conditional expected values in probability theory.
Based on these mappings in OLAP, conditional averages on binary columns
correspond to conditional probability and they also correspond to confidence in
ARM.

4 Conclusion

In this paper, we elaborated semantic correspondences between the three DSTs,
i.e., SR, OLAP and ARM. We identify that SR, OLAP, and ARM operations
complement each other in data understanding, visualization, and making indi-
vidualized decisions. In the proposed mappings, it is identified that OLAP and
ARM have common statistical reasoning, exploratory data analysis methods and
offer similar solutions for decision support problems. Based on these findings, we
can review current obstacles in each of SR, OLAP and ARM. Furthermore, the
semantic correspondences between the three DSTs will be helpful in designing
certain next-generation hybrid decision support tools.
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Abstract. The size of data collected around the world is growing expo-
nentially, and it has become popular as big data. The volume and velocity
of big data are facilitating the transition of machine learning (ML), deep
learning (DL) and artificial intelligence (AI) from research laboratories
to real life. There are numerous other claims made about Big Data. Can
we, however, rely on data blindly? What happens when a dataset used
to train ML models has a hidden statistical paradox? Data, like fossil
fuels, is valuable, but it must be refined carefully for accurate outcomes.
Statistical paradoxes are hard to observe in classical data cleaning and
analysis techniques. Still, they are required to be investigated separately
in training datasets. In this paper, we discuss the impact of Simpson’s
paradox on categorical data and demonstrate its effects on AI and ML
application scenarios. Next, we provide an algorithm to automatically
identify the confounding variable and detect Simpson’s paradox within
categorical datasets. The algorithm experiments on datasets from two
real-world case studies. The outcome of the algorithm uncovers the exis-
tence of the paradox and indicates that Simpson’s paradox is severely
harmful in automatic data analysis, especially in AI, ML and DL.

Keywords: Big data · Artificial intelligence · Deep learning · Machine
learning · Data science · Simpson’s paradox · Explainable AI

1 Introduction

Human decision-making has always relied on data, but with the advancement
of big data technologies, artificial intelligence (AI), data science, machine learn-
ing (ML), and deep learning (DL) have gained significant traction in artificial
decision-making. These techniques are now widely used in medical sciences, social
sciences, and politics, and they substantially impact human life and decisions,
either directly or indirectly. In most AI use cases, ML-based trained artificial

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Strauss et al. (Eds.): DEXA 2022, LNCS 13426, pp. 323–335, 2022.
https://doi.org/10.1007/978-3-031-12423-5_25
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systems are used to provide quick and precise results. Still, in some cases, the
existence of statistical paradox, causal inference and uneven data distribution
can mislead an AI application. Statistical paradoxes are not new to being dis-
cussed in statistics and mathematics. These terms are widely used in statistics
and have been around for over a century. Expert mathematicians and statisti-
cians adequately discussed various statistical paradoxes (e.g., Simpson’s Para-
dox, Berkson’s Paradox, Latent Variables, Law of Unintended Consequences,
Tea Leaf Paradox, etc.) and addressed their severe impacts on classical data
analysis. However, in modern decision support techniques, specifically AI, ML
and DL, causal relationships, data fallacies and statistical paradoxes are not yet
appropriately addressed.

A statistical paradox can exist in a wide variety of data. Kügelgen et al. [33]
recently emphasized the importance of statistical analysis of real data and
demonstrated evidence of Simpson’s paradox in COVID-19 data analysis. They
claim Italy’s overall case fatality rate (CFR) was higher than China’s. However,
in every age group, China had a higher fatality rate than Italy. These obser-
vations raise numerous concerns about data accuracy and analysis. Heather et
al. [20] have addressed the existence of Simpson’s paradox. In psychological sci-
ence, Kievit et al. [17] examined the instances of Simpson’s paradox. In [14],
Kaushik et al. have discussed some measures to find the impact of one numerical
variable on another numerical variable. Alipourfard et al. [2] have discovered
the existence of Simpson’s paradox in social data and behavioural data [3]. The
instances Simpson’s paradox have also been discussed in various data mining
techniques [10,11,13], e.g., association rule mining [1] and numerical association
rule mining [15,16,31]. Therefore, understanding data, especially big data, is
more critical than processing.

Most of the statistical paradoxes are fundamentally linked to various statis-
tical challenges and mathematical logic, including causal inference [22,23], the
ecological fallacy [19,26], Lord’s paradox [32], propensity score matching [27],
suppressor variables [8], conditional independence [9], partial correlations [12],
p-technique [6], mediator variables [21], etc.

In this paper, we concentrate on a specific case of a statistical paradox called
Simpson’s paradox in categorical data and demonstrate its impact with some
real-world case studies. Next, we provide an algorithm to detect Simpson’s para-
dox and identify the confounding variables in categorical values. In statistics, a
confounder is described as a statistic variable that influences both the dependent
and independent variables, resulting in a spurious relationship. The algorithm is
experimented on two datasets to detect confounder and the paradox. The paper
is organized as follows.

In Sect. 2, we discuss Simpson’s Paradox. In Sect. 3, we propose an algo-
rithm for automatically detecting the Simpson’s Paradox in categorical values.
In Sect. 4, two real-life datasets are used to demonstrate the impact of the para-
dox experimentally. Finally, a discussion and conclusion is provided in Sect. 5
and Sect. 6, respectively.
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2 Simpson’s Paradox

In the year 1899, Karl Pearson et al. [24] demonstrated a statistical paradox in
marginal and partial associations between continuous variables. Later in 1903,
Udny Yule [35] explained “the theory of association of attributes in statistics”
and revealed the existence of an association paradox with categorical variables.
In a technical paper published in 1951 [29], Edward H. Simpson described the
phenomenon of reversing results. However, in 1972, Colin R. Blyth coined the
term “Simpsons Paradox” [5]. Therefore, this paradox is known by different
names and is famous as the Yule-Simpson effect, amalgamation paradox, or
reversal paradox [25]. Simpson’s paradox can exist in any dataset irrespective
of its size and type [18]. The paradox demonstrates the importance of having
human experts in the loop during an automatic data analysis.

Table 1. Original Simpson’s example with 2 × 2 contingency table [29]: the type of
association for the entire population (N = 52) reverses at the level of sub-populations
of men and women.

Population N = 52 Men (M)= 20 Women (F) = 32

Success (S) Failure
(¬S)

Success
rate %

Success Failure Success
Rate %

Success Failure Success
rate %

T 20 20 50% 8 5 ≈61% 12 15 ≈44%

¬T 6 6 50% 4 3 ≈57% 2 3 ≈40%

We start the discussion on the paradox by using the original example and
numbers from Simpson’s article [29]. In this example, analysis for medical treat-
ment is demonstrated. Table 1 summarises the effect of the medical treatment
for the entire population (N = 52) as well as for men and women separately in
subgroups. The treatment appears effective for both men and women subgroups
(Men: 61% vs 57% and Women: 44% vs 40%); however, the treatment seems
ineffective at the whole population level.

We can demonstrate the above example via probability theory and con-
ditional probabilities. Let T = treatment, S = success, M = Men and
F = Women then,

P(S | T ) = P(S | ¬T ) (1)

However, the probability for men and women is:

P(S | T,M) > P(S | ¬T,M) (2)

P(S | T, F ) > P(S | ¬T, F ) (3)
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Based on Eq. 1, 2 and 3, one should use the treatment or not? As per the
success rate for the men and women populations, the treatment is a success,
but overall, the treatment is a failure. This reversal of results between groups
population and the total population has been referred to as Simpson’s Paradox.
In statistics, this concept has been discussed widely and named differently by
several authors [24,35].

2.1 Impacts of Simpson’s Paradox

Simpson’s paradox exists in different types of data in different forms. However,
classically it is expressed via 2 × 2 contingency tables. Let a 2 × 2 contingency
table for treatment (T) and success (S) in the ith sub-population is represented
by a four-dimensional vector of real numbers D = (ai, bi, ci, di). Then

Table 2. 2 × 2 Contingency table with sub population groups D1 and D2.

Population D = D1 + D2 Sub-population D1 Sub-population D2

Success (S) Failure (¬S) Success (S) Failure (¬S) Success (S) Failure (¬S)

Treatment (T) a1 + a2 b1 + b2 a1 b1 a2 b2

No-Treat. (¬T ) c1 + c2 d1 + d2 c1 d1 c2 d2

D =
∑N

i=1
Di =

(∑
ai,

∑
bi,

∑
ci,

∑
di

)
(4)

is the aggregate dataset over N sub populations [30]. This can be read as given
in Table 2.

Definition 1. Consider n groups of data such that group i has Ai trials and
0 ≤ XAi

≤ Ai “successes”. Similarly, consider another similar n groups of data
such that group i has Bi trials and 0 ≤ YBi

≤ Bi “successes”. Then, Simpson’s
paradox appear if:

XAi

Ai
≤ YBi

Bi
for all i = 1, 2, . . . , n but

∑n
i=1 XAi∑n
i=1 Ai

≥
∑n

i=1 YBi∑n
i=1 Bi

(5)

We could also flip the inequalities and still have the paradox since A and B
are chosen arbitrarily.

XAi

Ai
≥ YBi

Bi
for all i = 1, 2, . . . , n but

∑n
i=1 XAi∑n
i=1 Ai

≤
∑n

i=1 YBi∑n
i=1 Bi

(6)
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We use the following example to show the working of the Eqs. 5 and 6.

10

20
=

XA1

A1
>

YB1

B1
=

30

70
and

10

50
=

XA2

A2
>

YB2

B2
=

10

60
yet

10 + 10

20 + 50
=

20

70
=

XA1
+ XA2

A1 + A2
<

YB1
+ YB2

B1 + B2
=

30 + 10

70 + 60
=

40

130

3 Detecting Simpson’s Paradox

Based on the type of trends reversed in various types of data, Simpson’s paradox
cases are explored into two categories: classification, which involves the relative
rates of binary outcomes in two groups, and regression, which involves the sign of
a correlation between two variables [34]. Here, we provide an algorithm to detect
the paradox in the first case, i.e. for categorical values. In the algorithm, the
Pearson correlation index is used to find the relationships between two variables
which allows for measuring the strength of the linear association between two
variables. The output value of the Pearson correlation lies between −1 and 1.
Values greater than 0 imply a positive correlation. The value 1 indicates the exact
positive association, while 0 means no correlation. Values less than 0 suggest a
negative association, and −1 indicates a clear negative association. The Pearson
correlation coefficient is represented by r In Eq. 7. Here, x and y are input
vectors, x̄ and ȳ are means of the variables, respectively.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(7)

3.1 Algorithm for Detecting the Simpson’s Paradox in Categorical
Data (Relative Rates)

We formally describe the algorithm for detecting the Simpson’s Paradox in linear
trends in Algorithm 1. In the algorithm, the primary step is to convert the values
of the categorical input variables to binary values. The first variable category is
substituted by 0, and the second category is replaced by 1. This conversion allows
the Pearson correlation index function to identify the relationship between cat-
egorical variables or between categorical and numerical (continuous) variables.
We input X - categorical variable by which we condition, X1 - the first category
of variable X, X2 - the second category of variable X, Y - continuous or cate-
gorical variable (with two categories) which is aggregated. Table 3 illustrates the
form of an example dataset before and after the pre-processing step.

Further, the algorithm calculates the correlation index between X and Y
variables with the values of the corresponding columns in the dataset. This way,
we obtain information on the sign of the relationship between the variables. Next,
we traverse the list of remaining categorical variables, calculate the Pearson index
conditioning on each subgroup (category), count the ratio of subgroups where
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the correlation index reversed relative to the index in aggregated data and store
the value key pairs in an array. Subsequently, we get the array element where
the value (ratio) is the highest. The maximal value 1 implies the Simpson’s
paradox occurrence with the corresponding key of the array element being the
confounding variable. Cases where the maximal ratio is less than 1 imply the
absence of Simpson’s paradox. However, they are also regarded as a partial
occurrence of the bias and are considered in the further steps. The performance
of the algorithm strongly correlates with the size of the datasets.

Algorithm 1: Identification of Simpson’s Paradox in Relative Rates

Input: A dataset D with categorical variable x and y
Output: a pair of confounding variable and ratio of reversed association
d[x] = Preprocess(d[x]) /*conversion of categorical column to binary */

d[y] = Preprocess(d[y])
aggreg index = Pearson(d[x] , d[y]) /*calculate correlation index between

columns */

indexes = [] /*initialize index array to store key value pairs: the

key is column and value is the number of reversed subgroups */

cols = columns(D) /*initialize array of all columns of D */

foreach column ∈ cols do
if Column Is Not Categorical(column) then

Continue
end
else

subgroups = Categories(column) // get the categories of a column
coefficients = [] // initialize empty array to store the correlation indexes
foreach subgroup ∈ subgroups do

disaggreg index = Pearson( D[x]: where D[column] = subgroup,
D[y]: where D[column] = subgroup) calculate corr. index between
columns for current subgroup

Add index of disaggregated to correlation indexes array
end

end
reversed subgroups = RatioReversedSubgroups(aggreg index, coefficients)
/*calculate ratio of the correlation indexes reversed with

respect to the correlation index for the aggregated data */

Add column, reversed subgroups values into indexes
end
Store the max values of indexes pairs into result
Return result
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Table 3. Illustration of the form of an example dataset before and after the pre-
processing step.

Gender Result

Male Success

Female Success

Male Failure

Gender Result

0 1

1 1

0 0

4 Experiments and Datasets

The Algorithm is implemented in Python on a personal computer with an
Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz, 1800 Mhz, 4 Core(s), 8 Logical
Processor(s), 16 GB RAM and Windows 10× 64 operating system. We evaluate
the algorithm with two real-world case studies with categorical data. The pro-
gramming code, datasets, and other necessary instructions about the algorithms
are available in the GitHub repository [28].

4.1 UC Berkeley Admissions Dataset Fall 1973

UC Berkeley admissions dataset [4] is a classic example of Simpson’s Paradox.
This dataset contained 12,763 graduate applicants (males and females) to UC-
Berkeley in Fall 1973. The dataset was provided by UC-Berkeley researchers to
investigate any possible cases of gender bias in the admissions. In the dataset,
the admission rate for females is less than for males when data is aggregated;
however, when we consider each major separately, female admission rates exceed
the rates for males in most subgroups.

The aggregate data given in Table 4 demonstrate significant bias in favour
of male applicants; however, data from each department given in Table 5 reveals
an opposite story and bias in favour of Female applicants. Figure 1 demonstrate
some hidden patterns in the dataset. As per the graph, it is clear that the overall
number of women applicants is significantly less than the total men applicants.
However, their rejection rate is high as compared to the male applicants. To ana-
lyze these hidden patterns and find the possible existence of Simpson’s paradox
in data, we use the original UC-Berkeley admission dataset having 12763 records
with four attributes: Student id, Gender, Major and Admission.

Table 4. Existence of Simpson’s Paradox: a case study from UC-Berkeley admission
dataset (fall 1973) [4].

Applications Admitted Rejected Admission %

Men 8442 3738 4704 44%

Women 4321 1494 2827 35%
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Table 5. UC-Berkeley admission dataset (fall 1973): Percentage of acceptance rate of
men and women in different departments.

Gender Departments

A B C D E F

Men 62.06% 63.04% 36.92% 33.09% 27.75% 5.90%

Women 82.41% 68% 34.06% 34.93% 23.92% 7.04%
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Fig. 1. Graphical representation of information in the UC-Berkeley admission dataset
demonstrates hidden patterns and unbalanced data distribution.

In the algorithm, Gender attribute is set as X variable and Admission
attribute is set as Y variable. To detect the paradox, the algorithm first cal-
culates the Pearson correlation between Gender and Admission variables. In
the prepossessing step, the values of gender variable, i.e., Female and Male are
categorised by the binary values 1 and 0, similarly, the values of admission vari-
able, i.e., Failure and Success are categorised by the binary values 0 and 1,
respectively. Next, the algorithm traverses the complete list of variables to iden-
tify the possible confounding variable and compute the ratio of the subgroup
reversals. The algorithm returns a confounder and the existence of Simpson’s
paradox in the dataset. As per the computation, the correlation index between
the Gender and Admission variable is negative for “B, F, A, D” majors, whereas
it is positive for the whole population.

4.2 Kidney Stone Treatment Dataset

We use another dataset from a real-world medical case study published by Charig
et al. [7] in “The British Medical Journal” in 1986. In this study, the success rate
of two different types of treatments to remove the large and small size of kidney
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stones are compared. In Table 6, Treatment A entails a classical open surgical
procedure and treatment B entails an advanced closed surgical procedure. For
both small kidney stones and large kidney stones, treatment A, i.e., open surgical
procedures (Success Rate Small Stone Size 93%, Large Stone Size 73%) performs
better than the treatment B (Success Rate: Small Stone Size 87%, Large Stone
Size 69%), However, when the data for both the treatments is combined, the
treatment B (Success Rate: 83%) outperforms the treatment A (Success Rate:
73%). Table 6 demonstrates the success rates of the treatments in detail.

Table 6. Kidney Stone Dataset: Information about the success rate of the treatments
with different sizes of stones. Treatment A outperforms treatment B for large and small
kidney stones, but for both kidney stones together, treatment B exceeds treatment A.

Stone size Treatment (A) = 350 Treatment (B) = 350

Success (S) Failure (F ) Success
rate %

Success (S) Failure (F ) Success
rate %

Small 81 6 ≈93% 234 36 ≈87%

Large 192 71 ≈73% 55 25 ≈69%

Both 273 78 ≈78% 289 61 ≈83%
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Fig. 2. Graphical representation of information in the kidney stone dataset demon-
strates the hidden patterns and unbalanced data distribution for treatments A and B.
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Figure 2 demonstrate the graphical representation of the hidden information
in the dataset. As per the graphs, it is a perfect case of uneven distribution
of sample data for both the treatments. Analyzing this dataset with the algo-
rithm returns a confounder and the existence of Simpson’s paradox. As per the
computation, the correlation index between the Treatment A and Treatment B
in groups is opposite to the correlation for both the treatments.

5 Discussion and Future Work

The existence of Simpson’s paradoxes in real-world studies provides a direc-
tion for understanding the impact of causality in artificial decision-making. We
noticed that data mining algorithms used in AI, ML and DL focus mainly on
identifying the correlations in aggregate data rather than identifying the gen-
uine causal relationships between all the data items. Therefore, understanding
statistical paradoxes and evaluating causality in each combination of data items
is an essential step toward fair ML models. In future, we plan to simplify the
impacts of Simpson’s paradox in different types of data (Continuous values) and
address various other statistical paradoxes (e.g., Berkson’s paradox) in datasets.
Further, we intend to develop a simple framework to identify the existence of
statistical paradoxes in various types of data.

6 Conclusion

In AI, ML and DL, dealing with causality and statistical paradoxes is still a chal-
lenging phenomenon. In most AI use cases, ML-based trained artificial systems
are used to provide quick and precise results. Still, in some cases, the existence of
statistical paradox, causal inference and uneven data distribution can easily mis-
lead the outcome of artificial systems. In this paper, we focused on addressing a
specific case of a statistical paradox called Simpson’s paradox in categorical data
and demonstrated its impact with some real-world case studies. We provided an
algorithm to detect Simpson’s paradox and identify the confounding variables
in categorical datasets. This algorithm can be utilized to develop a platform
that unifies most aspects related to detecting a confounding variable, Simpson’s
paradox. The algorithm is evaluated on two real-world case study datasets. The
algorithm performed well in each experiment, and its running time is propor-
tional to the size of a dataset.
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Abstract. In the last two decades, artificial intelligence (AI) and
machine learning (ML) have grown tremendously. However, understand-
ing and assessing the impacts of causality and statistical paradoxes are
still some of the critical challenges in their domains. Currently, these
terms are widely discussed within the context of explainable AI (XAI)
and algorithmic fairness. However, they are still not in the mainstream
AI and ML application development scenarios. In this paper, first, we dis-
cuss the impact of Simpson’s paradox on linear trends, i.e., on continuous
values, and then we demonstrate its effects via three benchmark training
datasets used in ML. Next, we provide an algorithm for detecting Simp-
son’s paradox. The algorithm has experimented with the three datasets
and appears beneficial in detecting the cases of Simpson’s paradox in
continuous values. In future, the algorithm can be utilized in designing
a certain next-generation platform for fairness in ML.

Keywords: Big data · Artificial intelligence · Machine learning · Data
science · Simpson’s paradox · Explainable AI

1 Introduction

The outcomes of artificial intelligence (AI) and machine learning (ML) appli-
cations are explicitly dependent on the correctness of algorithms and training
datasets. However, like statistics and mathematics, handling statistical para-
doxes, cause and effect together in datasets is still not in the mainstream AI
and ML application development. There are many cases where the outcome of
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AI applications is observed to be biased [13,18]. Like fossil fuels, data is consid-
ered a new fuel in the 21st century, but it needs to be properly cleaned for fair
results. Nowadays, increased usages of AI and ML in healthcare, social media,
digital advertising, search engines, etc., directly or indirectly impact human life
and their decisions. Therefore, understanding causal relationships and evaluating
the existence of statistical paradoxes should be an essential part of AI application
development scenarios for better, fair and unbiased AI applications.

Statistical paradoxes, causality, selection bias, confounding and information
bias have been debated in statistics and mathematics for a long time; expert
statisticians and mathematicians have effectively handled their severe conse-
quences. Several statistical paradoxes include Simpson’s Paradox, Tea Leaf Para-
dox, Berkson’s Paradox, Latent Variables, Law of Unintended Consequences,
etc. The term “paradox” denotes a fundamental link between several statistical
issues and mathematical reasoning, e.g., causal inference [19,20], Lord’s para-
dox [28], propensity score matching [24], suppressor variables [4], the ecological
fallacy [16,23], conditional independence [5], p-technique [3] and partial correla-
tions [9], mediator variables [17], etc.

Handling statistical paradoxes and causality will not only build trust in arti-
ficial applications but also serve as the foundation for fairness in AI. In this
paper, we explicitly focus on Simpson’s paradox, which has also been discussed
in various data mining techniques [10], e.g., association rule mining [1,6,7] and
numerical association rule mining [14,15,27]. The main aim of this article is to
develop an algorithm for detecting Simpson’s paradox in continuous values. The
algorithm is tested with the three benchmark datasets and appears beneficial in
detecting the cases of Simpson’s paradox in linear trends. In the future, the algo-
rithm may be used to create a specific next-generation platform for trustworthy
AI and fairness in ML.

The paper is organized as follows. In Sect. 2, we discuss the background of
Simpson’s Paradox. In Sect. 3, we discuss ways to detect Simpson’s paradox and
propose an algorithm for detecting the paradox in linear trends. In Sect. 4, three
benchmark datasets are used to experiment with the algorithm. Finally, a dis-
cussion on future work and conclusion is given in Sect. 5 and Sect. 6, respectively.

2 Yule-Simpson’s Paradox

In the year 1899, Karl Pearson et al. [21] demonstrated a statistical paradox in
marginal and partial associations between continuous variables. Further, in 1903,
Udny Yule [29] presented “the theory of association of attributes in statistics”
and revealed the existence of an association paradox with categorical variables.
Later in 1951, Edward H. Simpson [26] presented the concept of reversing results
and in 1972, Colin R. Blyth coined the term “Simpsons Paradox” [2]. Therefore,
this paradox is known by different names and is well-known as the Yule-Simpson
effect, amalgamation paradox, or reversal paradox [22].
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We have used a real-world dataset from Simpson’s article [26] to discuss the
paradox. In this example, analysis for medical treatment is described. Table 1
provides the number that shows the effect of the medical treatment for the entire
population (N = 52) as well as for men and women separately in subgroups. The
treatment is suitable for both male and female subgroups; however, the treatment
appears unsuitable for the entire population.

Table 1. A real life case of Simpson’s Paradox: The numbers in the table are taken
from Simpson’s original article [26].

Full population N = 52 Women (F) = 20 Men (M), N = 32

Success (S) Failure (¬S) Succ.% Success (S) Failure (¬S) Succ.% Success (S) Failure (¬S) Succ.%

T 20 20 50% 8 5 61% 12 15 44%

¬T 6 6 50% 4 3 57% 2 3 40%

The Simpson’s paradox scenario can also be described via probability theory
and conditional probabilities. Let T = treatment, S = successful, M = Male,
and F = Female then the P(S | T ) can be described as:

P(S | T ) = P(S | ¬T ) (1)

P(S | T,M) > P(S | ¬T,M) (2)

P(S | T, F ) > P(S | ¬T, F ) (3)

This reversal of results between the male, female population and the
entire population has been referred to as Simpson’s Paradox. In statistics,
these concepts have been discussed widely and named differently by several
authors [21,29].

3 Detecting Simpson’s Paradox

The Simpson’s paradox instances are investigated for both categorical and con-
tinuous values. However, we investigate the paradox in linear trends. The Pearson
correlation index is used in the algorithm to determine the correlations between
two variables and further define the function of the confounding variable. A
confounder can be defined as a factor that affects both the dependent and inde-
pendent variables, resulting in an incorrect association. The Pearson correlation
index allows us to measure the strength of the linear association between two
variables. In Eq. 4, Pearson correlation coefficient is represented by r and x, y
are input vectors, x and y are the means of the variables, respectively. The out-
put value always lies between −1 and 1. Values greater than 0 imply a positive
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correlation, while the values 1 and 0 indicate the exact positive association and
no correlation, respectively. Values less than 0 suggest a negative association,
and −1 indicates a clear negative association.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(4)

3.1 Algorithm

To identify an instance of the Simpson’s paradox in a continuous dataset with n
continuous variable and m discrete variables, we compute a correlation matrix
(n×n) for all the data. Then for m discrete variable with km levels, an additional
(n × n) matrix needs to be calculated for each level of variables. Therefore, we
need to calculate the 1 +

∑m
i = ki correlation matrices of size (n × n) and

compare it with the lower half of
∑m

i = ki for subgroup levels.
The algorithm’s initial step is to determine the correlation between x and y

variables with the values of the corresponding columns in the dataset. In this
way, we learn the direction of the relationship between the variables. We next
walk through the list of remaining variables, compute the Pearson index condi-
tional on each subgroup (category), count the percentage of subgroups where the
correlation index is reversed with respect to the correlation index in the aggre-
gate data, and store the value key pairs in an array. We further get the array
element where the value (ratio) is the highest. A value greater than 0 implies
the existence of Simpson’s paradox and the maximal value of 1 indicates a full
reversal effect.

4 Experiments

Python programming language is used to implement the algorithm on a personal
computer with the Windows 10× 64 operating system and an Intel(R) Core(TM)
i5-8265U CPU running at 1.60 GHz, 1800 MHz, 4 Cores, and 8 Logical Proces-
sors. We evaluate the algorithm with three benchmark datasets that are widely
used to train various ML models. The performance of the algorithm strongly
correlates with the size of the datasets. The programming code, datasets, and
other necessary instructions for the algorithm are available in the GitHub repos-
itory [25].

4.1 Datasets

Iris dataset, Miles per gallon (MPG) dataset and Penguin dataset are used to
demonstrate the presence of Simpson’s paradox in continuous data.
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Algorithm 1: Identification of the confounding variable in continuous val-
ues to identify Simpson’s paradox

Input: dataset D, variable x, variable y
Output: a pair consisting of confounding variable and ratio of reversed

association signs
aggreg index = Pearson(d[x], d[y]) // calculate corr. index between columns
indexes = [] // initialize index array to store key value pairs where the key is
column and value is the number of reversed subgroups

cols = columns(D) // initialize array of all columns of D
foreach column ∈ cols do

if Column Is Not Categorical(column) then
Continue

end
else

subgroups = Categories(column) // get the categories of a column
coefficients = [] // initialize empty array to store the correlation
indexes foreach subgroup ∈ subgroups do

disaggreg index = Pearson( D[x]: where D[column] = subgroup,
D[y]: where D[column] = subgroup) calculate corr. index between
columns for current subgroup

Add index of disaggregated to correlation indexes array
end

end
reversed subgroups = RatioReversedSubgroups(aggreg index, coefficients)
// calculate ratio of the correlation indexes reversed with respect to the
correlation index for the aggregated data

Add {column, reversed subgroups} values into indexes
end
Store the max values of indexes pairs into result
Return result

Fig. 1. Scatter plot with trend lines for Iris dataset.

Iris Dataset: In 1936 Ronald Fisher introduced the iris dataset in one of his
research papers [8]. In this dataset, there are 50 data samples for the three dif-
ferent iris species, i.e., ‘Setosa’, ‘Versicolor’, and ‘Virginicare’. In the dataset,
species names are categorical, while length and breadth are continuous values.
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We visualize the possible associations between the length and breadth of each
pair of candidate attributes to identify the instances of Simpson’s paradox.
Table 2 demonstrates the Pearson correlation index returned by the algorithm 1
between two continuous variables (‘sepal length’ and ‘sepal width’).

We identify the existence of Simpson’s paradox for three pairs of measure-
ments. 1. sepal length and width, 2. sepal width and petal length, and 3. sepal
width and petal width. In Fig. 1, the correlation between sepal width and sepal
length is positive (dashed line) for each species. However, the correlation between
sepal width and sepal length for the entire population is negative (solid red trend
line). Similarly, the pair of petal length and width and the pair of petal width
and sepal width have positive trends for each species. However, the overall trend
for the length and width for the entire population is negative in both cases.

Table 2. The Pearson correlation index for Iris dataset by the Algorithm 1.

Agg. correlation Variable 1 Variable 2 Sub group Group correlation

–0.1093 Sepal length Sepal width Iris-setosa 0.7467

–0.1093 Sepal length Sepal width Iris-versicolor 0.5259

–0.1093 Sepal length Sepal width Iris-virginica 0.4572

Fig. 2. Scatter plot with trend lines for MPG dataset.

The MPG Dataset: Ross Quinlan used the Auto MPG dataset in 1993 [22].
The dataset contains 398 automobile records from 1970 to 1982, including the
vehicle’s name, MPG, number of cylinders, horsepower, and weight. The dataset
includes three multi-valued discrete attributes and five continuous attributes.
We visualize the relationship between MPG, acceleration and horsepower for
two categorical attributes (number of cylinders and model year). The goal of
analyzing the dataset is to know the factors that influence each car’s overall
fuel consumption. The dataset consists of fuel consumption in mpg, horsepower,
number of cylinders, displacement, weight, and acceleration.
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Table 3. The Pearson correlation index for MPG dataset by the proposed algorithm.

Agg. correlation Variable 1 Variable 2 Sub group Group correlation

0.4230 mpg Acceleration Cylinders –0.8190

0.4230 mpg Acceleration Cylinders –0.3410

0.4230 mpg Acceleration Model year –0.0510

In the MPG dataset, the existence of Simpson’s paradox is discovered in
three pairs of measurements. 1. MPG with acceleration according to the engine
cylinders, 2. MPG with acceleration with respect to their model year, and 3.
MPG with horsepower according to the engine cylinders. In Fig. 2, it is visualized
that there is a negative correlation between MPG and acceleration for three-
cylinder engines and six-cylinder engines; however, the overall trend between
MPG and acceleration is positive (solid red line). Similarly, the overall trend is
the opposite for MPG with acceleration with respect to the model year and MPG
with horsepower according to the engine cylinders. Table 3 demonstrates the
Pearson correlation index returned by the Algorithm 1 between two continuous
variables (‘mpg’ and ‘acceleration’).

Penguin Dataset. Palmer penguins dataset [11,12] is also a well-known dataset
used as an alternative to the Iris dataset. The dataset contains the descriptions
of three species of penguins (Adelie, Chinstrap, Gentoo) in the islands of Palmer,
Antarctica. The dataset contains 344 data rows with columns: ‘species’, ‘island’
, ‘culmen length mm’, ‘culmen depth mm’, ‘flipper length mm’ , ‘body mass g’
and ‘sex’. To investigate the instances of Simpson’s paradox in the dataset, we
set x as ‘culmen length mm’ and y as ‘culmen depth mm’. As per the results
from the algorithm, there is an instance of Simpson’s paradox in data as the asso-
ciation between the culmen length and culmen depth reverses when data is dis-
aggregated by the species. Figure 3 demonstrates a positive correlation between
the culmen length mm and culmen depth mm of each species. However, it is
negative for the aggregate data.

5 Discussion and Future Work

The presence of Simpson’s paradoxes in benchmark datasets provides a direc-
tion to understand the causality in decision making. We noticed that most ML
and deep learning algorithms focus only on identifying correlations rather than
identifying the real or causal relationships between data items. Therefore, under-
standing and evaluating causality is an important term to be discussed in big
data, data science, AI and ML. In future, we plan to develop a framework to
simplify the impacts of Simpson’s paradox and address various other statistical
paradoxes (e.g., Berkson’s paradox) that have severe implications for big data,
data science, AI and ML.
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Fig. 3. Scatter plot with trend lines for Penguin dataset.

6 Conclusion

Handling statistical paradoxes is a complex challenge in automatic data mining,
specifically in AI and ML techniques. In this paper, we discussed a strong need
for statistical evaluations of datasets and demonstrated the impacts of Simpson’s
paradox on AI and ML via some benchmark training datasets. We argue that
if confounding effects are not properly addressed in automatic data mining, the
outcomes of data analysis can be completely opposite. However, with the right
tools and data analysis, a good analyst or data scientist can handle it in a
better way. Further, we provided an algorithm to detect Simpson’s paradox in
linear trends (continuous values). The algorithm is evaluated on three benchmark
datasets and performed well in each experiment. This algorithm can be a part of
developing a platform to detect Simpson’s paradox in different data (continuous,
categorical) and enable data scientists to explore the impacts of confounding
variables.
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Abstract. Big data is driving the growth of businesses, data is the
money, big data is the fuel of the twenty-first century, and there are many
other claims over Big Data. Can we, however, rely on big data blindly?
What happens if the training data set of a machine learning module is
incorrect and contains a statistical paradox? Data, like fossil fuels, is
valuable, but it must be refined carefully for the best results. Statistical
paradoxes are difficult to observe in datasets, but they are significant
to analyse in every small or big dataset. In this paper, we discuss the
role of statistical paradoxes on Big data. Mainly we discuss the impact
of Berkson’s paradox and Simpson’s paradox on different types of data
and demonstrate how they affect big data. We provide that statistical
paradoxes are more common in a variety of data and they lead to wrong
conclusions potentially with harmful consequences. Experiments on two
real-world datasets and a case study indicate that statistical paradoxes
are severely harmful to big data and automatic data analysis techniques.

Keywords: Big data · Artificial intelligence · Machine learning · Data
science · Simpson’s paradox · Explainable AI

1 Introduction

Data has always been critical in making decisions. Earlier, statistics and math-
ematics have been used to draw insights from data. However, in the last two
decades, with the emergence of social media and big data technologies, data
science, artificial intelligence (AI) and machine learning (ML) techniques have
gained massive ground in practice and theory. These decision support techniques
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are being used widely to develop intelligent applications and acquire deeper
insights from structured and unstructured data. In most AI use cases, ML based
trained artificial systems provide fast and accurate outcomes; however, it does
not guarantee accurate results for every use case in real life. Moreover, like statis-
tics, understanding causal relationships and evaluating the existence of statistical
paradoxes in the training dataset is not in the mainstream data science, AI and
ML application scenarios. AI, machine learning, and big data are now widely
used in medical sciences, social sciences, and politics, and they have a direct or
indirect impact on human life and decisions. Therefore, understanding causal
relationships and evaluating the existence of statistical paradoxes is essential for
fair decision making [13,14].

Statistical reasoning and probability theory are the foundation of many AI,
big data and data science techniques, e.g., random forest [7], support vector
machines [11], etc. Therefore, it is usual to have causal relationships and statis-
tical paradoxes in these decision support techniques. A paradox can be a state-
ment that leads to an apparent self-contradictory conclusion. Even the most
well-known and documented paradoxes frequently confound domain specialists
because they fundamentally violate common sense.

There are many statistical paradoxes (e.g., Simpson’s Paradox, Berkson’s
Paradox, Latent Variables, Law of Unintended Consequences, Tea Leaf Para-
dox, etc.). Statistical paradoxes are not new to be discussed in statistics and
mathematics; expert mathematicians and statisticians adequately addressed the
severe impact of paradoxes. However, in modern decision support techniques,
specifically AI and data science, causal relationships, data fallacies and statis-
tical paradoxes are not appropriately addressed. In this article, we discuss the
impact of Berkson’s Paradox, Yule-Simpson paradox and causal inference on big
data. We highlight several hidden problems in data that are not yet discussed
in big data mining. We use two benchmark datasets for machine learning and a
case study to demonstrate the existence of Simpson’s paradox in different types
of data.

The paper is organised as follows. In Sect. 2, we discuss why not trust data
science, AI, ML and big data. In Sec. 3, we discuss two statistical paradoxes
and discuss their impacts on big data mining. In Sect. 4, we use two benchmark
datasets for machine learning to demonstrate the effects of Simpson’s paradox.
In Sect. 5 we provide a case study to analyse the impact of Simpson’s paradox
in real life. Finally, a discussion and conclusion is provided in Sect. 6 and Sect. 7.

2 Why Not to Trust on Data Science, AI, ML
and Big Data

In AI, ML and Data Science, observing trends, mean and correlation between
two variables for making decisions is not always correct. E.g., suppose in a city,
the Covid-19 infection rate of smokers is less than the infection rate of the non-
smokers. Can we claim that smoking prevent Covid-19? It is a perfect case of
poor data science where all the variables and features in the dataset are not
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appropriately observed. In today’s world, data literacy may not seem exciting
when compared to machine learning algorithms or big data mining, but it should
be the foundation for all data mining processes.

Datasets, irrespective of their size and type, are not self-explanatory. It’s all
numbers and statistics responsible for creating stories out of datasets. Therefore,
it’s essential to validate a dataset statistically and evaluate the existence of
any statistical paradoxes. AI, ML, big data and data science based techniques
generate knowledge from data. Therefore, decision support techniques are easily
prone to statistical paradoxes and can not be trusted.

3 Statistical Paradoxes

Statistical paradoxes aren’t something that hasn’t been discussed before. These
terms are widely used in statistics and have been around for over a century. Sta-
tistical paradoxes are fundamentally related with various statistical challenges
and mathematical logic including causal inference [27,28], the ecological fal-
lacy [24,31], Lord’s paradox [36], propensity score matching [32], suppressor vari-
ables [10], conditional independence [12], partial correlations [16], p-technique [8]
and mediator variables [26]. The instances of statistical paradoxes specifically
Simpson’s paradox have been discussed in various data mining techniques [17],
e.g., association rule mining [2] and numerical association rule mining [20,21,34]

More recently, Kügelgen et al. [37] pointed out the importance of statisti-
cal analysis of real data and demonstrated instances of Simpson’s paradox in
Covid-19 data analysis. They provide that the overall case fatality rate (CFR)
was higher in Italy than in China. However, in every age group, the fatality rate
was higher in China than in Italy. These observations raise many questions on
the accuracy of data and its analysis. Heather et al. [25] have addressed the exis-
tence of Simpson’s paradox. In psychological science, Kievit et al. [22] examined
the instances of Simpson’s paradox. Alipourfard et al. [3] have discovered the
existence of Simpson’s paradox in social data and behavioural data [4]. There-
fore, understanding data, especially big data, is more critical than its processing.
In the following two sections, we discuss Berkson’s paradox and Yule-Simpson’s
Paradox to demonstrate their vast impact on big datasets.

3.1 Berkson Paradox

Berkson’s paradox can make it appear as if there is a relationship between two
independent variables when there is no relationship between the variables. In
1946, despite diabetes being a risk factor for cholecystitis, Berkson [5] observed
a negative correlation between cholecystitis and diabetes in hospital patients.
Berkson state that If at least one of two independent events occurs, they become
conditionally dependent. In other words, two independent events become condi-
tionally dependent, given that at least one of them occurs. Statistically, Berkson’s
paradox and Simpson’s paradox are very close to each other. Berkson’s paradox
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is a type of selection bias caused by systematically observing some events more
than others.

if 0 < P (A) < 1, 0 < P (B) < 1 and (1)

P (A|B) = P (A) then (2)

P (A|B,A ∪ B) = P (A) Hence (3)

P (A|B,A ∪ B) > P (A) (4)

As given in Eq. 1 to Eq. 4, P (A|B), a conditional probability, is the probabil-
ity of observing event A given that B is true. The probability of A given both
B and (A or B) is smaller than the probability of A given (A or B).

Fig. 1. Berkson’s paradox: two noticeable example of Covid-19 which introduce a
collider.

As we all know, smoking cigarettes is a well-known risk factor for respira-
tory diseases. However, recently Wenzel T. [9] observed a negative co-relation
between Covid-19 severity and smoking cigarettes. In another observation, Grif-
fith et al. [18] describe it as a Collider Bias or Berkson’s paradox. In Fig. 1,
we demonstrate an example of collider. Here Smoking cigarettes, Covid-19 are
two independent variables, but they collide with another random variable, hos-
pitalised. Here, the variable hospitalised is collider for both smoking cigarettes
and Covid-19.

3.2 Yule-Simpson’s Paradox

In the year 1899, Karl Pearson et al. [29] demonstrated a statistical paradox in
marginal and partial associations between continuous variables. Later in 1903,
Udny Yule [38] explained “the theory of association of attributes in statistics”
and revealed the existence of an association paradox with categorical variables.
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In a technical paper published in 1951 [33], Edward H. Simpson described the
phenomenon of reversing results. However, in 1972, Colin R. Blyth coined the
term “Simpsons Paradox” [6]. Therefore, this paradox is known with different
names and it is popular as the Yule-Simpson effect, amalgamation paradox, or
reversal paradox [30].

We start the discussion on the paradox by using the real-world dataset from
Simpson’s article [33]. In this example, analysis for medical treatment is demon-
strated. Table 1 summarises the effect of the medical treatment for the entire
population (N = 52) as well as for men and women separately in subgroups.
The treatment appears effective for both male and female subgroups; however,
the treatment seems ineffective at the whole population level.

Table 1. 2 × 2 contingency table with sub population groups D1 and D2.

Population D = D1 + D2 Sub-population D1 Sub-population D2

Success (S) Failure (¬S) Success (S) Failure (¬S) Success (S) Failure (¬S)

Treatment (T) a1 + a2 b1 + b2 a1 b1 a2 b2

No Treatment (¬T ) c1 + c2 d1 + d2 c1 d1 c2 d2

Definition 1. Consider D groups of data such that group D1 has Ai trials and
0 ≤ ai ≤ Ai “successes”. Similarly, consider an analogous D groups of data
such that group D2 has Bi trials and 0 ≤ bi ≤ Bi “successes” Then, Simpson’s
paradox occurs if

a1

A1
≥ b1

B1
and

a2

Ai
≥ b2

B2
for all i = 1, 2, . . . , n but

∑n
i=1 ai∑n
i=1 Ai

≤
∑n

i=1 bi∑n
i=1 Bi

(5)

we use the following example to show how this equation works.

10

20
>

30

70
and

10

50
>

10

60
but

10 + 10

20 + 50
<

30 + 10

70 + 60
, (6)

We could also flip the inequalities and still have the paradox since A and B
are chosen arbitrarily.

Classically the paradox is expressed via contingency tables. Let a 2 × 2 con-
tingency table for treatment (T) and success (S) in the ith sub-population is
represented by a four-dimensional vector of real numbers D = (a1, b1, a2, b2).
Then

D =
∑N

i=1
Di =

(∑
ai,

∑
bi,

∑
ci,

∑
di

)
(7)

is the aggregate dataset over N sub populations. This can be read as given
in Table 1.
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We can also demonstrate the Simpson’s paradox scenario via probability
theory and conditional probabilities. Let T = treatment, S = successful, M =
Male, and F = Female then,

P(S | T ) = P(S | ¬T ) (8)

P(S | T,M) > P(S | ¬T,M) (9)

P(S | T,¬M) > P(S | ¬T,¬M) (10)

Based on Eq. 8, 9 and 10, one should use the treatment or not? As per the
success rate for the male and female population, the treatment is a success,
but overall, the treatment is a failure. This reversal of results between groups
population and the total population has been referred to as Simpson’s Paradox.
In statistics, this concept has been discussed widely and named differently by
several authors [29,38].

4 Existence of Simpson’s Paradox in Big Data

Simpson’s paradox can exist in any dataset irrespective of its size and type [23].
The paradox demonstrates the importance of having human experts in the loop
to examine and query Big Data results. In this section, we present datasets to
analyse the presence and implications of Simpson’s paradox on big data.

To identify an instance of the Simpson paradox in a continuous dataset with
n continuous variable and m discrete variables, we can compute a correlation
matrix (n × n) for all the data. Then for m discrete variable with km levels, an
additional (n × n) matrix needs to be calculated for each level of variables as
follows. Therefore, we need to calculate the 1 +

∑m
i = ki correlation matrices

of size (n × n) and compare it with the lower half of
∑m

i = ki for subgroup
levels. We have also discussed the measures to find the impact of one numerical
variable to another numerical variable [19].

4.1 Datasets

We use the iris dataset and miles per gallon (mpg) dataset, the two benchmark
datasets for machine learning to demonstrate the presence of Simpson’s paradox
in data.

Iris Dataset: Ronald Fisher introduced the iris dataset in a research paper [15].
It consists three types of iris species (Setosa, Versicolor, Virginicare), each with
50 data samples. The species names are categorical attributes, length and width
are continuous attributes.

In order to identify the existence of Simpson’s paradox in the iris datasets,
we first visualise the relationship between the length and width of each pair
of candidate attributes. As shown in Fig. 2, in the iris dataset, we identify the
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Fig. 2. Simpson’s paradox in Iris dataset: there is a positive correlation between the
three pairs of sepal length and petal width for the Iris-setosa, Iris-versicolor and Iris-
virginicare (dashed lines). However, the overall trend for the length and width for the
entire population is negative (solid red line) in all three combinations. (Color figure
online)

existence of Simpson’s paradox for three pairs of measurements. 1. sepal length
and width, 2. sepal width and petal length, and 3. sepal width and petal width.

In Fig. 2, the correlation between sepal width and sepal length is positive
(dashed line) for each species. However, the correlation between sepal width and
sepal length for the entire population is negative (solid red trend line). Similarly,
the pair of petal length, width, and the pair of petal width and sepal width have
positive trends for each species; however, the overall trend for the length and
width for the entire population is negative in both cases. Therefore, this is a
clear case of Simpson’s paradox in the iris dataset.

Fig. 3. Simpson’s paradox in auto MPG dataset: there is a negative correlation between
MPG and acceleration for three cylinders engines and six cylinders engines; however,
the overall trend between MPG and acceleration is positive (solid red line). Similarly,
the overall trend is positive for MPG and acceleration with respect to the model year.
However, the overall trend between MPG and horsepower according to the engine
cylinders is negative. (Color figure online)
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The MPG Dataset: Ross Quinlan used the Auto MPG dataset in 1993 [30].
The dataset contains 398 automobile records from 1970 to 1982, including the
vehicle’s name, MPG, number of cylinders, horsepower, and weight. The dataset
includes three multi-valued discrete attributes and five continuous attributes.

In order to identify the existence of Simpson’s paradox in the MPG datasets,
we visualise the relationship between MPG, acceleration and horsepower for
two categorical attributes (number of cylinders and model year). The goal of
analysing the dataset is to know the factors that influence each car’s overall
fuel consumption. The dataset consists of fuel consumption in mpg, horsepower,
number of cylinders, displacement, weight, and acceleration.

In the MPG dataset, we identify the existence of Simpson’s paradox in three
pairs of measurements. 1. MPG with acceleration according to the engine cylin-
ders, 2. MPG with acceleration with respect to their model year, and 3. MPG
with horsepower according to the engine cylinders. In the Fig. 3, it is visualised
that there is a negative correlation between MPG and acceleration for three
cylinders engines and six cylinders engines; however, the overall trend between
MPG and acceleration is positive (solid red line). Similarly, the overall trend is
opposite for MPG with acceleration with respect to the model year and MPG
with horsepower according to the engine cylinders.

5 Analysis Simpson’s Paradox in Real Life: A Case Study

The case study is from the California Department of developmental services
(CDDS), United States of America [35]. As per the annual reports published
by the department, the average annual expenditures on Hispanic residents
were approximately one-third (1/3) of the average expenditures on White non-
Hispanic residents. According to the marginal analysis, it was a solid gender
discrimination case. However, a conditional analysis of ethnicity and age found
no evidence of ethnic discrimination. Furthermore, except for one age group,
the trends were completely opposite. The average annual expenditures on White
non-Hispanic residents were less than the expenditures on Hispanic residents.
Therefore, it is a perfect case of Simpson’s paradox in real life.

Table 2. Number of residents by ethnicity and percentage of expenditures.

Ethnicity Sum of Expend. ($) % of Expend. # of Residents % of Residents

American Indian 145753 0.81 4 0.4

Asian 2372616 13.13 129 12.9

Black 1232191 6.82 59 5.9

Hispanic 4160654 23.03 376 37.6

Multi Race 115875 0.64 26 2.6

Native Hawaiian 128347 0.71 3 0.3

Other 6633 0.04 2 0.2

White not Hispanic 9903717 54.82 401 40.1

Total 18065786 100% 1000 100%
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Fig. 4. Distribution of expenditure as per the ethnic groups.

5.1 The Dataset

We use the same dataset to analyse the original claims. The dataset is publicly
available at [1]. The dataset mainly consists various information of one thousand
disabled residents (DRs) under six important variables (ID, age group, gender,
expenditures, ethnicity). Each DR has a unique identification, i.e., “ID”. The
state department uses AGE to decide the financial needs and other essential
needs of DRs. The age groups of the residents are divided into six age groups.
(0–5 years old, 6–12 years old, 13–17 years old, 18–21 years old, 22–50 years old,
and 51 years old). These groups are based on the amount of financial assistance
required at each stage of age. E.g., The 0–5 age group (preschool age) has the
fewest needs and thus requires the least funding.

The“Expenditures” variable represents the annual expenditures made by the
state to support each resident and their family. Information about the expen-
ditures, the number of residents and their percentage as per ethnicity is given
in Table 2. The expenditures include all the expenses, including psychological
services, medical fees, transportation and housing costs such as rent (especially
for adult residents). As far as the case is concerned, “ethnicity” is the most
important demographic variable in the dataset. The dataset includes eight eth-
nic groups.

As demonstrated in Fig. 4, the population difference between the Hispanic
and the White non-Hispanic people is significantly less. However, there is a big
difference between the distribution of assistance to the Hispanic and the White
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non-Hispanic group. Therefore, these two populations are selected for the case
study for further investigation.

Fig. 5. 1. Average expenditure by age group, 2. Average expenditure by ethnicity.

Fig. 6. 1. Hispanic and white non Hispanic residents with their age groups, 2. Percent-
age of Hispanic and white non Hispanic residents according the age groups.

5.2 Data Analysis

We begin the data analysis by comparing the total amount of expenditure in
relation to different ethnic groups. As per the bar chart given in Fig. 5, It is clear
that the average expenditure on Hispanic residents is significantly lower than the
White non-Hispanic residents. Moreover, the analysis of average expenditure by
the age groups shows that the average expenditure was very high for the older
age groups. As per Fig. 5, it is also a clear case of age discrimination. However,
age is not considered a factor for the discrimination because older people are
eligible to get higher expenditures (Fig. 7).
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Fig. 7. Average expenditures by ethnicity and age groups.

The overall Hispanic population receiving assistance is younger than the
white non-Hispanic population receiving assistance. As the age is showing dis-
criminatory behaviour, therefore, we compare the average amount of funds
received by the two observed ethnic groups as per their age groups in Fig. 6.
It is clear that the number of beneficiaries from the Hispanic group is higher
in the lower age groups, while the number of beneficiaries from the white non-
Hispanic group is higher in the older groups. As white non-Hispanic are older
people, therefore, they are receiving more support.

Now we see an opposite picture of the case, in Fig. 6. The aggregated data
shows that white non-Hispanic people have more support from the department;
however, for most of the age groups except one age group, the average expen-
diture for the Hispanics was higher. So, we are witnessing Simpson’s paradox!.
The age group variable proved to be lurking in this case, without which we can
not show any results in marginal data.

6 Discussion

The existence of statistical paradoxes in benchmark datasets and in real-life case
studies provides a direction to understand the causality in decision making. We
noticed that most machine learning and deep learning algorithms focus only on
identifying correlations rather than identifying the real or causal relationships
between data items. Therefore, understanding and evaluating causality is an
important term to be discussed in big data, Data Science, AI and ML.

7 Conclusion

Handling statistical paradoxes is a complex challenge in AI, ML and Big Data.
Different paradoxes state the possibilities of errors in the outcomes of automatic
data analysis conducted for AI, Ml and big data based applications. In this
paper, we discussed the existence of Berkson’s paradox and demonstrate the
existence of Simpson’s paradox and in two real datasets. Statistical paradoxes
in data reflect the importance of probabilities and causal inference and seek
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a manual inspection of datasets. We argue that if confounding effects are not
properly addressed in datasets, outcomes of an data analysis can be completely
opposite. However, with the right tools and data analysis, a good analyst or
data scientist can handle it in a better way. The statistical paradoxes confirm
essential statistical evaluation for datasets and demonstrate the importance of
human experts in the loop to examine and query Big datasets.
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Abstract—In today’s world, artificial intelligence based smart
applications and smart medical devices are developed with big
data-based trained datasets. However, what if a training dataset
used to train a machine learning module is incorrect and has
a statistical paradox. Statistical paradoxes are complicated to
observe in data but are very important to analyze in every
training datasets. This article discusses Simpson’s paradox and its
effects on various datasets. We provide that Simpson’s paradox
is more common in a variety of data and it leads to wrong
conclusions potentially with harmful consequences. We provide
a mathematical analysis of Simpson’s paradox and analyse
its effects on continuous data. Experiments on real-world and
synthetic datasets clearly show that the paradox severely impacts
big data.

Index Terms—Simpson Paradox, Big Data , Artificial Intelli-
gence, Data Science, Explainable AI

I. INTRODUCTION

In artificial intelligence (AI) use cases, the machine learning
(ML) based trained artificial systems provide fast and accu-
rate outcomes for the trained data model. However, it does
not guarantee accurate outcomes for every use case in real
life. Therefore, understanding causal relationship in data is
essential for drawing the proper conclusions.

Data has always been critical in making any decision.
Moreover, processing petabytes of data manually in the age
of big data is impossible. Manual data analysis techniques are
becoming obsolete as the volume of data grows. As a result,
it is difficult to conduct statistical analysis on each dataset.
Recently, Kügelgen et al. [1] pointed out the importance of
statistical analysis of real data and demonstrated instances of
Simpson’s paradox in Covid-19 data analysis. They provide
that the overall case fatality rate (CFR) was higher in Italy
than China. However, in every age group, the fatality rate was
higher in China than in Italy. These observations raise many

This work has been partially conducted in the project “ICT programme”
which was supported by the European Union through the European Social
Fund.

questions on the accuracy of data and its analysis. Therefore,
understanding data, especially big data, is more critical than
its processing.

In statistics, understanding statistical paradoxes are essential
for drawing the proper conclusions from data. There are many
statistical paradoxes (e.g., Braess’s Paradox, Moravec’s Para-
dox, Law of Unintended Consequences and Tea Leaf Paradox).
However, Simpson’s paradox is one of the known statistical
paradoxes in statistics. The paradox is not a new concept
to be discussed in the statistics. It is available in different
forms and with several names [2] (Reversal paradox, Yule-
Simpson effect, Simpson’s paradox, amalgamation paradox).
This statistical phenomenon was first pointed out by Karl G.
Pearson in the year 1899 [3] and later in the year 1903 by
George U. Yule [4]. A similar phenomenon was discussed in
a short paper by Edward H. Simpson in 1903 [5]. In the year
1972, Colin R. Blyth [6] called it “Simpson’s paradox”. In this
article, we bring the impact of Yule Simpson’s effect in big
data and discuss its impact on a continuous dataset.

The paper is organized as follows. In Sec. II, an overview
of the background work is discussed. In Sect. III, we discuss
how data can lie. In Sec. IV, discussion on Simpson’s para-
dox, vector representation and mathematical interpretation of
Simpson’s paradox is given. In Sect. V, we use a dataset to
show the impact of Simpson’s paradox on big data. Discussion
and future work is presented in Sec. VI. Finally, a conclusion
is provided in Sect. VII.

II. BACKGROUND

Statistical paradoxes are not new to be discussed. In statis-
tics, they are discussed widely and exist since more than a
century. In a technical paper published in 1951 [5], Edward
H. Simpson described the phenomenon of reversing results, but
statisticians Karl Pearson et al. in 1899 [3] and Udny Yule in
1903 [4] had mentioned similar effects previously. Udny Yule
reported the existence of association paradox with categorical
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TABLE I
SIMPSON’S PARADOX: A SAMPLE DATASET FROM SIMPSON’S EXAMPLE [5]

Full Population Women (M), N=20 Men (M), N=32
Success
(S)

Failure
(¬S)

Succ.% Success
(S)

Failure
(¬S)

Succ.% Success
(S)

Failure
(¬S)

Succ.%

Treatment
(T)

20 20 50% 8 5 61% 12 15 44%

Control
(¬T )

6 6 50% 4 3 57% 2 3 40%

variables and Karl demonstrated the paradox in marginal and
partial associations between continuous variables. In 1972,
Colin R. Blyth coined the term “Simpsons Paradox” [6]. The
paradox is also known as the Yule–Simpson effect, amalga-
mation paradox, or reversal paradox [7].

Simpson’s paradox is conceptually related to many sta-
tistical challenges and techniques [8], including causal in-
ference [9], [10], the ecological fallacy [11], [12], Lord’s
paradox [13], propensity score matching [14], suppressor
variables [15], conditional independence [16], partial corre-
lations [17], p-technique [18] and mediator variables [19].

The implications of Simpson’s paradox are severe in various
ML techniques, e.g., in association rule mining (ARM) [20],
[21], the instances of Simpson’s paradox are discussed by
Dirk [22], [23]. He has discussed “Future perspectives of
association rule mining based on partial conditionalization”.

III. HOW BIG DATA CAN LIE

Data does not speak itself. It consists numbers and statistics,
which tell the story about the data. All datasets, irrespective of
their type and size, are somehow based on numbers and statis-
tics. Therefore, it is very much possible to have an instance of
statistical paradoxes in data. Simpson’s paradox is one of the
known statistical paradoxes; however, there are other statistical
paradoxes (e.g., Braess’s Paradox, Moravec’s Paradox, Law of
Unintended Consequences, Tea Leaf Paradox) that can be in a
dataset. Machine Learning models are susceptible to cognitive
paradoxes between training and testing because they create
knowledge from data. Compared to algorithms or big data
processing [24], data literacy may not seem exciting, but it
should form the basis for any every data processing [25].

IV. SIMPSON’S PARADOX

We start the discussion on the paradox by using the real-
world dataset from Simpson’s article [5]. In this example, anal-
ysis for medical treatment is demonstrated. Table I summarizes
effect of the medical treatment for the entire population
(N = 52) as well as for men and women separately in
subgroups. The treatment appears effective for both male and
female subgroups; however, the treatment appears ineffective
at the whole population level.

Definition 1: Consider D groups of data such that group
D1 has Ai trials and 0 ≤ ai ≤ Ai “successes”. Similarly,
consider an analogous D groups of data such that group D2

has Bi trials and 0 ≤ bi ≤ Bi “successes”. Then Simpson’s
paradox occurs if

a1

A1
≥ b1

B1
and

a2

Ai
≥ b2

B2
for all i = 1, 2, . . . , n but

∑n
i=1 ai∑n
i=1 Ai

≤
∑n

i=1 bi∑n
i=1 Bi

, (1)

We use the following example to show how this equation
works.

10

20
>

30

70
and

10

50
>

10

60
but

10 + 10

20 + 50
<

30 + 10

70 + 60
, (2)

We could also flip the inequalities and still have the paradox
since A and B are chosen arbitrarily.

Classically the paradox is generally expressed via contin-
gency tables. Let a 2 × 2 contingency table for treatment (T)
and sucess (S) in the ith sub-population is represented by a
four-dimensional vector of real numbers D = (a1, b1, a2, b2)
then;

D =
∑N

i=1
Di =

(∑
ai,

∑
bi,

∑
ci,

∑
di

)
(3)

is the aggregate dataset over N sub populations. This can
be read simply in Table II.

A. Vector Interpretation of Simpson’s Paradox

A simple case of the Simpson’s paradox can be illustrated by
a two-dimensional vector space [26]. We use a simple example
given in the Eq. 2 to draw the vector.

We have a vector
−→
V 1 = (A1, a1) with a slope of a1

A1
and

another vector
−→
V 2 = (A2, a2) with a slope of a2

A2
. If the

success rate of two vectors
−→
V 1 and

−→
V 2 are combined then

according to the rule of parallelograms, the results will be
sum of the vectors, i.e., (A1 +A2, a1 +a2) with slope a1+a2

A1+A2
.

The longer vectors represent a higher success rate.
Simpson’s paradox provides that although the vector

−→
V 1

has a smaller slope than the vector
−→
Z 1(B1, b1) , and

−→
V 2 has

a smaller slope than the vector
−→
Z 2 but the sum of two vectors−→

V 1 +
−→
V 2 can potentially have a larger slope than the sum−→

Z 1 +
−→
Z 2 . In Fig. 1, the vectors with smaller slopes are

represented in blue, and the vectors with a larger slope are
represented in red. The dashed lines represent the sum of the
vectors.
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TABLE II
A 2 × 2 CONTINGENCY TABLE WITH SUB POPULATION GROUPS D1 AND D2

Population D = D1 + D2 Sub-population D1 Sub-population D2

Success (S) Failure (¬S) Success (S) Failure (¬S) Success (S) Failure (¬S)

Treatment (T) a1 + a2 b1 + b2 a1 b1 a2 b2
No Treatment
(¬T )

c1 + c2 d1 + d2 c1 d1 c2 d2

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130

> > < 

Fig. 1. Vector representation of Simpson’s paradox. The dashed lines are showing the sum of the respective vectors

y = 0.6675x + 4.0595
R² = 0.4324

5

7

9

11

13

15

17

19

0 2 4 6 8 10 12 14 16 18 20

Y

X

Fig. 2. Trend in a population group: The solid red line is used to show the
overall trend

We also can demonstrate this Simpson’s paradox scenario
via probability theory and conditional probabilities. If we
assume; T = treatment, S = successful, M = Male,
and F = Female then;

P(S | T ) = P(S | ¬T ) (4)

P(S | T, M) > P(S | ¬T, M) (5)

P(S | T, ¬M) > P(S | ¬T, ¬M) (6)

Based on Eq. 4 and 5, 6, one can decide to use the treatment
or not use the treatment. As per the success rate for male
and female population, the treatment is a success, but overall,
the treatment is a failure. This reversal of results between
groups population and the total population has been referred
to as Simpson’s Paradox. In statistics, this concept has been
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y = -1.0389x + 30.604
R² = 0.7482
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y = -0.9801x + 21.755
R² = 0.6991
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y = -0.9342x + 17.416
R² = 0.7261
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Fig. 3. Reversal of trends while the total population is divided into sub groups

discussed widely and named differently by several authors [3],
[4].

V. EXISTENCE OF SIMPSON’S PARADOX IN BIG DATA

Simpson’s paradox can exist in any dataset irrespective of
its size and type. The paradox demonstrates the importance of
having human experts in the loop to examine and query Big
Data results. In this section, we present a dataset to analyse
the presence and implications of Simpson’s paradox on big
data.

A. Simpson’s Paradox in Continuous Data

The instances of Simpson’s paradox can be easily dis-
covered by a data scientists in categorical and continuous
data [27], [28]. Here, we consider the co-variance between
two variables σ(x, y) as an example to show the existence of
Simpson’s paradox in continuous data. We have also discussed
the measures to find the impact of one numerical variable to
another numerical variable [29]. We use a synthetic dataset to
calculate the co-variance between (xy). The data is publicly
available at [30]. The X and Y variables have different signs
for sub populations and the entire population.

As provided in Fig. 2, the correlation between X and Y
is positive in the complete dataset, but as per Fig. 3, the
correlation between X and Y is negative within each subgroup.

Therefore, this is a case of Simpson’s paradox in continuous
data. To identify the Simpson’s paradox in a continuous dataset
with n continuous variable and m discrete variables, we can
compute a correlation matrix (n × n) for all the data. Then
for m discrete variable with km levels, an additional (n × n)
matrix needs to be calculated for each level of variables as
follows. Therefore, we need to calculate the 1 +

∑m
i = ki

correlation matrices of size (n × n) and compare it with the
lower half of

∑m
i = ki for subgroup levels.

VI. DISCUSSION AND FUTURE WORK

Simpson’s paradox emerged as a well-known problem in
Big Data, AI and ML. It demonstrates a picture not to believe
in trends and rejects the trust surrounding the AI and ML
applications. Recently, some useful research on explainable
artificial intelligence (XAI) discussed various ways to handle
the confounding effects and Simpson’s paradox, which is the
utmost need for next-generation AI and ML applications.

VII. CONCLUSION

In this paper, a dataset for continuous data is used to
demonstrate the existence of Simpson’s paradox in continuous
data. We provide that if the confounding effects are not
addressed appropriately in a datasets then conclusions obtained
from that datasets may be totally wrong. Without enough
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statistical knowledge, it’s challenging to know which view of
the relationship between two variables makes more sense –
the one with or without the third variable. Simpson’s paradox
is a complex problem for Big data, AI and ML, but with the
right tools and data analysis, a good analyst or data scientist
can handle it in a better way.
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Abstract

In the past two decades, there has been tremendous progress in promoting vari-
ous decision support techniques (DSTs), e.g., data mining (association rule mining),
artificial intelligence (AI), machine learning (ML), and deep learning (DL) across
various fields, including healthcare, autonomous driving, personal assistant technol-
ogy, businesses, education, and justice. However, despite many success stories and
advantages, these techniques are often considered biased, unfair, and untrustworthy.
In this paper, we examine some of the well-known statistical paradoxes as witnesses
of expert system bias. Expert system bias challenges successful decision-making, as
it is a direct source of biased decisions. Unfortunately, statistical paradoxes are ex-
treme forms of bias, but their roles have not been discussed adequately in DSTs. In
this paper, we aim to discuss how to handle confounding effects and deal with the
severe impacts of statistical paradoxes in DSTs. Further, we outline a framework for
mitigating bias in training datasets. To provide evidence for the relevance of such
a framework, we conduct a series of experiments with three different measures on
multiple real-world and benchmark datasets. First, we utilise the stratification of
Pearson correlation for identifying potential confounders. Second, we utilize inverse
propensity weighting and generalise back-door adjustment techniques for continuous
data for adjusting the impact of confounders. To demonstrate the practical utility of
the proposed framework, we have developed a user-friendly web-based application.
The application incorporates the example measures discussed and integrates them
into the outlined framework for bias mitigation. We claim that this application can
serve as a valuable tool for data scientists and researchers by automatically detect-
ing and addressing confounding effects. We argue that the suggested framework and
application hold immense potential for further extensions beyond their current use.

Keywords: Decision support techniques, trustworthy artificial intelligence, machine
learning, statistical paradoxes, bias mitigation framework
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1. Introduction

Data-driven decisions have always required the correct assessment and analysis
of data. In the past, mathematical and statistical methods have been used broadly
to derive insights from data. However, in the last two decades, with the emergence of
big data, decision support techniques (DSTs) from data mining, artificial intelligence
(AI), data science, and machine learning (ML) have gained massive ground in practice
and theory. Nowadays, these techniques play an important role in politics, social
science, and medical sciences [1, 2] and significantly influence people’s lives and
decisions, either directly or indirectly [3, 4, 5].

Presently, in a majority of AI use cases, ML-based trained decision support sys-
tems deliver quick responses; despite many advantages and success stories, they are
still not fully reliable, fair and trustworthy. In several instances, the results of AI
applications have been found partially or fully biased [6, 7, 8]. There are many
such examples which have raised serious questions about classical data mining tech-
niques [9].

In 2021, Michael Gentzel [10] highlighted the use of biased facial recognition
technology by law enforcement in liberal democracies. In 2018, Joy Buolamwini [11],
a member of the MIT Media Lab’s Civic Media group, found that a commercially
available facial recognition system was significantly more likely to misidentify darker-
skinned individuals than lighter-skinned individuals. This was partly due to the fact
that the dataset used to train the system was overwhelmingly composed of lighter-
skinned individuals, which led to a bias in the system’s predictions. In 2016, Julia et
al. [7] from ProPublica found that a widely used algorithm for predicting recidivism
among criminal defendants was biased against African American defendants. The
algorithm was based on data from past criminal defendants, which included a large
number of African American defendants who had been arrested for low-level offences.
This led to the algorithm predicting that African American defendants were more
likely to re-offend, even when they were less likely to do so in reality. Many such
examples raise severe questions about the accuracy of AI applications and their
machine-learning models.

On the other hand, some of the DSTs, e.g., association rule mining, statistical
reasoning and OLAP, have a similar set of objectives. Still, they have been intro-
duced and are used with their own set of mathematical formalizations and have
developed their specific terminologies [12]. There are numerous reasons which affect
the performance and trustworthiness of DSTs, specifically AI applications [13].
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In Fig. 1, some common types of bias that generally impact AI applications are
given [14]. Here, we highlight statistical paradoxes as extreme forms of data-driven
bias in AI applications. We argue that the existence of statistical paradoxes has
not yet been addressed appropriately in the mainstream AI application development
scenario.

Data Driven Bias

Algorithmic Bias

Human Bias

Biased Samples

Statistical 
Paradoxes

Imbalanced 
Classes

Training Bias

Social Bias

Power Imbalances

Model

Biased 
Outcome

Other Possible 
Factors

Other Bias

Figure 1: Existence of bias in DSTs is a critical concern that requires extensive exploration. This
figure shows different types of biases [14] that are common in AI systems and emphasises statistical
paradoxes as extreme forms of data-driven bias

The research on overcoming the impact of bias in the development of various
DSTs is highly relevant due to the following reasons:

1. Existence of bias in DSTs can lead to bias and inequalities against certain
groups of people.

2. Addressing bias can lead to improved model performance and greater accuracy
in predictions. This can significantly improve the accuracy and reliability of
DST-based applications, making them more useful and effective in the real
world.

By shedding light on statistical paradoxes in several DSTs, we aim to ease the
development of strategies to mitigate bias, ultimately leading to more effective and
trustworthy decision support systems.

The role of statistical paradoxes and their impact has been discussed deeply
in classical data analysis by expert mathematicians and statisticians [15, 16, 17].

3



Table 1 presents a list of well-known statistical paradoxes that are already addressed
in statistics and currently are potential threats to DSTs. In more general, statistical
reasoning and probability theory is the foundation of AI and data science, e.g., Naive
Bayes classifiers, random forest [18], support vector machines [19], etc. Consequently,
causal relationships are usually accompanied by statistical paradoxes in AI and ML-
based applications. Therefore, understanding causal relationships hand in hand with
evaluating the existence of statistical paradoxes is an essential step forward towards
developing trustworthy and fair DSTs.

This paper aims to strengthen DSTs to develop fair and trustworthy decision
support applications, which can ultimately lead to an increase in trust and fairness
in the usages of DSTs in various areas such as healthcare, finance, and justice. The
paper contributes as follows:

1. We suggest a framework for mitigating bias in multivariate training datasets,
which elaborates stages of pre-processing, bias mitigation, evaluation, and ad-
justment of training data.

2. To provide evidence for the relevance of the proposed framework, we conduct
a series of experiments with three measures as follows:
(a) two measures (one for continuous data and one for categorical data) for

investigating confounders via detecting instances of Simpson’s paradox in
regard to stratification of Pearson correlation.

(b) a (novel) measure for adjusting the impact of confounders, which gener-
alizes standard back-door adjustment to continuous data.

The experiments are based on multiple real-world and benchmark datasets
to evaluate the efficacy and practicality of the measures and the proposed
framework.

3. To showcase the usefulness of the proposed framework, a web-based applica-
tion has been developed that automatically detects and provides possible ad-
justments to address the impact of potential confounders. We argue that this
web application can serve as a valuable tool for data scientists and researchers
by automatically detecting and addressing confounding effects to enhance the
fairness and trustworthiness of AI applications.

In future work, we plan to extend this research to address various other statistical
challenges, thereby increasing its potential impact.

The paper proceeds as follows. In Sect. 2, we discuss existing literature and its
usefulness to the proposed work. In Sect. 3, we discuss several statistical paradoxes
and explain Simpson’s paradox in more depth. Sect. 4 provides detailed information
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about the Stratification of Pearson correlation for identifying confounders in contin-
uous values. In Sect. 5, two measures for adjusting the confounders are discussed.
In Sect. 6, we elaborate the proposed framework. In Sect. 7, an instance of the pro-
posed framework is developed as a web-based application. Sect. 8 provides detailed
information about the conducted experiments. In Sect. 9, we provide an exhaustive
discussion in terms of relevance, implications, previous work, limitations and future
work. We finish the paper with a conclusion in Sect. 10.

2. Related work

Statistical paradoxes such as Simpson’s paradox and Berkson’s paradox imply
confounding effects, which occur when the relationship between two variables is influ-
enced by the presence of a third variable. This third variable is called the confounder.
Whenever such third variables are hidden factors, i.e., not present in the data, they
are called latent variables. In mathematical statistics, causality and confounding are
two related concepts which are widely discussed by established researchers [27, 28].
Causality refers to a cause-and-effect relationship between two events, where the first
event (cause) is responsible for the occurrence of the second event (effect). For ex-
ample, smoking (cause) can lead to lung cancer (effect). Therefore, in AI systems, it
is important to identify and control confounding variables in order to ensure that the
true causal relationship between the variables of interest is accurately determined.

In literature, Pearl [28, 16] had a significant impact on the development of proba-
bilistic reasoning and causal modelling for AI. He has provided an exhaustive frame-
work for causal inference, i.e., dealing with reasoning about causal relationships.
Otte [27] discussed the relationship between probabilistic causality and Simpson’s
paradox. His discussion relies on the concept of probabilistic causality, which refers
to the idea that a cause does not always produce a unique effect but rather alters
the probabilities of effects. Schield [29] discussed how Cornfield’s conditions could be
used to assess the presence of confounding variables that affect both the dependent
variable (target variable) and independent variables (impact factors).

Spellman et al. [30] presented a hypothetical scenario involving two possible
causes of a particular outcome and showed how the usage of several kinds of informa-
tion (conditional vs unconditional) could lead to different conclusions. Schaller [31]
discusses the role of “evidence, sample size, aggregation, and statistical reasoning
in social inference”. He discussed how people make judgments and inferences about
others based on limited information. Dawid [32] discussed the concept of conditional
independence and its implications for statistical inference. Cartwright [33] explored
the philosophical concept of causal necessity and its relationship to scientific laws.
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Table 1: List of statistical paradoxes which are particularly relevant to AI applications.

Statistical Paradox Explanation

Simpson’s paradox
[20]

Simpson’s Paradox (often also called: Yule-Simpon’s para-
dox) is named after British mathematician Edward Simp-
son, who explained a phenomenon in which an obvious
trend occurring in a multitude of data sets of a partition
reverses as soon as the data sets of the partition are com-
bined.

Berkson’s paradox
[21]

Berkson’s paradox (also called: collider bias, selection bias,
sampling bias or ascertainment bias) occurs when the pres-
ence of a third variable confounds the relationship between
two other variables.

Lord’s paradox [22] Lord’s paradox occurs when a machine learning model is
trained with too many features or variables, some of which
might be correlated with each other rather than with the
outcome variable.

Base rate fallacy
[23]

The base rate fallacy can manifest in machine learning
models when the prior probability of an event or outcome
is not taken into account in the model’s predictions.

Will Rogers
paradox [24]

The Will Rogers phenomenon describes a situation where,
as the rarity of an event increases, the accuracy of the
model in predicting that event decreases, even though the
overall accuracy of the model increases.

Accuracy paradox
[25]

The accuracy paradox in AI refers to the phenomenon that
a machine learning model may achieve high accuracy on a
dataset but still fails to perform well in the real world due
to a lack of precision and recall.

Braess’s paradox
[26]

Braess’s paradox is a domain-specific paradox that occurs
in transportation networks where adding an additional
route can actually increase congestion and travel time for
everyone.

Fiedler [34, 35, 36, 37] discussed sampling issues, pseudo contingencies, and inductive
reasoning in social psychology, including cognitive consistency, social cognition, and
implicit social cognition.
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Kievit et al. [38] examined the instances of Simpson’s paradox in psychological
science and proposed an R package for continuous data to check the confounding
effects. They argue that Simpson’s paradox may occur in a wide variety of research
designs, methods, and questions, in particular, within the social and medical sciences.
Alipourfard et al. [39] have discovered the existence of Simpson’s paradox in social
data and behavioural data [40]. Freitas et al. [41] proposed an algorithm for detecting
instances of Simpson’s paradox. In [42], Blyth discussed Simpson’s paradox and the
sure-thing principle as two essential concepts in decision theory. Blyth argued that
Simpson’s paradox and the sure-thing principle are related and that understanding
their principles can help decision-makers to avoid making incorrect decisions based
on incomplete or misleading data. Curley et al. [43] explained the role of Simp-
son’s paradox and its implications for decision-making. Greenland [44] explored the
relationship between Simpson’s paradox and Bayesian non-collapsibility, using an ex-
ample of adding constants in contingency tables. Hernán et al. [45] provided several
examples illustrating how Simpson’s paradox can arise in different contexts. The
author emphasises the importance of understanding confounding variables, selection
bias, and effect modification to interpret statistical results properly and draw accu-
rate conclusions. Tu et al. claimed that statistical paradoxes such as “Simpson’s
paradox, Lord’s paradox, and suppression effects are the same phenomenon – the
reversal paradox” [46].

The existing literature indicates that in statistics and mathematics, there have
been significant discussions addressing confounding, causality and several types of
statistical paradoxes. However, these concepts still need to be integrated with main-
stream DSTs.

3. Impact of statistical paradoxes on DSTs

3.1. Statistical paradoxes
In DSTs, the impact of statistical paradoxes refers to situations where a decision

support system or tool produces unexpected or counter-intuitive results that may
not align with human expectations or common sense. The existence of these para-
doxes in DSTs can have a significant impact on any individual or organization. For
example, Amazon’s AI-based recruiting tool [47] did not rate candidates for software
development positions in a gender-neutral manner. This was due to the fact that
the tool was trained on resumes from more than a decade ago, which favoured male
candidates since the tech industry had earlier been male-dominated.

Statistical paradoxes are fundamentally related to a range of various statistical
concepts such as partial correlations [48], p-technique [49], suppressor variables [50],
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conditional independence [32], propensity score matching [51], causal inference [16,
52], and mediator variables [53] as well as statistical challenges such as ecological
fallacy [54, 55] and Lord’s paradox [46]. Therefore, they are not only limited to
AI systems – they can occur in any field that deals with data analysis in terms
of a variety of factors, including confounding variables, measurement errors, non-
linear relationships and uneven distribution of data. A list of known statistical
paradoxes which are harmful to AI applications is given in Table 1. In the sequel,
we concentrate on explaining Simpson’s paradox as an example. Simpson’s paradox
presents an extreme case of confounding, has been widely studied in statistics and
has severe consequences in AI applications.

3.2. Simpson’s paradox
Simpson’s paradox is a statistical phenomenon that occurs when the relationship

between two variables appears to disappear or even reverse when analysed at different
levels of aggregation. This paradox can lead to incorrect conclusions about the
relationship between the variables and have significant implications in the design
and interpretation of ML and statistical models. The paradox was first discussed
in 1899 by Karl Pearson [56] between continuous variables. Later in 1903, Udny
Yule further explored the theory of associations in statistics [15] and discovered the
paradox in categorical variables. Further, Edward H. Simpson in 1951 [20] described
the theory behind the reversal of results. The term “Simpson’s paradox” was later
coined by Colin R. Blyth in 1972 [42]. This paradox is also known by other names
such as the Yule–Simpson effect, amalgamation paradox, or reversal paradox [57].

3.2.1. Most basic case of Simpson’s paradox: the 2× 2× 2 contingency table
We start discussing Simpson’s paradox by using the original dataset from Simp-

son’s article [20]. This data set presents the most basic case of a 2×2×2 contingency
table, which is the case of three events representing a target variable, an impact factor
and a confounding variable. This basic case can then be generalized in various ways
to two arbitrary random variables and we will discuss two of such generalizations in
Sects. 3.2.2, 3.2.3. The original data set of [20] is presented in Table 2. Simpon’s
paradox shows in the data as follows. In terms of both males and females (i.e., in
both strata Male and Female), the treatment shows a positive effect as follows:

61.5% ≈ PMale(Alive | Treated ) > PMale(Alive | Untreated ) ≈ 57.1% (1)
44.4% = PFemale(Alive | Treated ) > PFemale(Alive | Untreated ) = 40% (2)

Now, based on (1) and (2), we might tend to conclude that the treatment has
a positive effect all over – as it has a positive effect for both males and females.
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Table 2: Original data set from Simpon’s paper (N=52) [20]. The table layout has been re-arranged
as compared to [20] to ease the discussion: both independent variables (impact factor ‘treatment’
and confounder ‘gender’) are reflected as outermost rows resp. columns and the dependent variable
(target variable ‘alive/dead’) as innermost columns – the data is the same as in [20].

Male Female
Alive Dead Alive Dead

Treated 8 5 12 15
Untreated 4 3 2 3

However, when analyzing the whole population, we have that the treatment does
not have an effect as follows:

50% = P(Alive | Treated ) = P(Alive | Untreated ) = 50% (3)

Why? The reason for (1), (2) and (3) is in the fact that more than 50% of males
survive, in general, whereas less than 50% of females survive, in general. This fact
outbalances and effectively (exactly) erases the individual effects of the treatment in
the groups of males and females. We have that:

PMale(Alive) = 60% (4)
PFemale(Alive) ≈ 43.8% (5)

Each triple of the form (1), (2) and (3) is said to form an instance of Simpson’s
paradox.

We can easily construct more extreme instances of Simpson’s paradox, i.e., in
which the treatment effect is not only erased but even reversed, for example, Table 3,
which yields the following facts:

48.1% ≈ P(Alive | Treated ) < P(Alive | Untreated ) ≈ 51.9% (6)
76.9% ≈ PMale(Alive | Treated ) >> PMale(Alive | Untreated ) ≈ 14.3% (7)

48.1% ≈ PFemale(Alive | Treated ) >> PFemale(Alive | Untreated ) = 20% (8)

With the data in Table 3, the treatment effect has been reversed in the whole
population (negative) as opposed to the gender strata (positive), although the sig-
nificance of the positive treatment effect has increased significantly in both strata.
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Table 3: More extreme data set as compared to the original data of Simpon’s paper (N=52). The
perceived treatment effect is not only erased in the whole population but even reversed as compared
to the strata of males and females; also, the treatment effect in both strata is way more significant.

Male Female
Alive Dead Alive Dead

Treated 10 3 13 14
Untreated 1 6 1 4

Interestingly, the high significance of the positive treatment effect for males (mea-
sured, e.g., as lift [58] as used in association rule mining [58, 59], i.e., as the quotient
of success rates of treated males and untreated males: 5.4 ≈ 76.9%/14.3%), can
still be over-outbalanced by the relatively less significant treatment effect for women
(lift: 2.4 ≈ 48.1%/20%), which can be explained by the fact that in our concrete
population, we have relatively more women than men:

61.5% ≈ P(Female) > P(Male) ≈ 38.5% (9)

Again, each triple of the form (6), (7) and (8) is said to form instances of Simpson’s
paradox.

We summarize the discussion of Sect. 3.2 in Def. 1.

Definition 1 (Simpson’s paradox (basic case of 2× 2× 2 contingency table)). Any
triple of events Y,X,C (called target variable, impact factor, confounder) is called
an instance of Simpson’s paradox, given that the following holds:

P(Y |X) ≤ (≥) P(Y |X) (10)
PC(Y |X) > (<) PC(Y |X) (11)
PC(Y |X) > (<) PC(Y |X) (12)

3.2.2. Generalizing Simpson’s paradox: the case of 2× 2× n contingency tables
In [60], which is considered a standard example of Simpson’s paradox in the

literature, the paradox shows in a data set that generalizes the confounding variable
to arbitrary categorical data, resulting into a 2× 2× n contingency table. The data
is about student admission to the University of Berkeley. The target value is the
event of admission (vs. non-admission) of a student to a study program, the impact
factor is gender (male vs. female), and the confounding variable is the University
department (out of n possible departments).
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Given an event Y as target variable, an event X as impact factor, and a categorical
random variable C : Ω −→ C = {c1, . . . , cn} as confounding variable, we say that a
Simpson’s paradox is perceived in cases, where

P(Y |X) ≤ (≥)P(Y |X), (13)

however
PC=ci(Y |X) > (<)PC=ci(Y |X) (14)

for a sufficiently large number of categories ci ∈ C. Here, the notion of Simpson’s
paradox becomes more fuzzy. It is not clear what a sufficiently large number of
categories would be. In the extreme case, we would require that the trend changes
in each of the categories. Otherwise, we could define a threshold of categories (that
would be typically larger than at least 50%). It becomes clear that the notion of
Simpson’s paradox is more a perception and – as such – it might not be exactly
definable anymore. The whole situation rather longs for the definition of continuous,
gradual measures of degrees of impact.

3.2.3. Generalizing Simpson’s paradox: the case of continuous target variables
The notion of Simpson’s paradox can be generalized to examples with continuous

target variables. In [61], a data set of salaries (continuous target variable), and two
categorical factors, i.e., salaries and field of jobs, has been constructed – see Table (4).
Salaries and jobs can be considered interchangeably as either an impact factor or
a confounder. The data set can be considered as revealing Simpson’s paradox as
follows. The average salary in Seattle is the highest among all cities of the data set1.
However, with respect to each of the five fields of jobs (IT, law, commerce, medicine,
education), individually, people earn the least (on average) in Seattle. How comes?
Again, this is not a contradiction. It just means that in Seattle, relatively more
people are working in one of the high-paid job fields.

We consider an instance of Simpson paradox, such as expressed in the data set of
Table 4 as an extreme form of confounding. Ultimately we are interested in adjusting
impact factors for the influence of confounders as well as the development of impact
measures on the basis of such adjustments. In [61], two of such measures (one for
adjustment, one for measuring the effect of adjusted impact) have been introduced.

1Again, note that the data set is completely artificial
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Table 4: Artificial example data set with a continuous target variable (salary), and two factors
(cities, field jobs) that can interchangeably serve as either impact factor or confounder [61].

IT Law Commerce Medicine Education Avg. Salary
Seattle 7.000 3.700 3.600 3.500 3.400 5.100
Boston 7.400 3.900 3.800 3.700 3.600 3.900
Tucson 7.300 3.800 3.700 3.600 3.500 3.900

Washington 7.300 3.800 3.700 3.600 3.500 3.900
Philadelphia 7.300 3.800 3.700 3.600 3.500 3.900
Avg. Salary 7.149 3.797 3.707 3.616 3.504 3.900

4. Startification of Pearson correlation

Paradoxes can also manifest in correlations, leading to misleading or counterintu-
itive results. In 1899, Pearson [56] illustrated that marginal and partial associations
between continuous variables could diverge, leading to the emergence of spurious cor-
relations. These spurious associations can easily be identified by analyzing the trend
line, conducting correlation analysis, and inspecting scatter plots for each group and
the overall relationship observed in the aggregate data.

To identify confounding variables in categorical data, the relationship between
two variables in each group is compared to the aggregate association across all groups.
This can be done using multiple ways, e.g., logistic regression, chi-squared test for
independence and two-way tables. To better comprehend the relationship between
variables in each group, bar graphs or mosaic plots can be used to understand the
relationship between variables. In continuous values, confounding variables can be
identified by examining the trend line, correlation analysis and visual inspection of
scatter plots between each group and comparing it to the overall relationship in the
aggregate data. It can easily be accomplished by fitting a regression model to each
group’s data and then comparing the slopes and intercepts of these models.

In Fig. 2, we utilize a synthetic dataset to compute the covariance between the
two variables (X, Y ) to demonstrate the marginal and partial associations. The
scatter plots between X and Y display different signs within three sub-populations
A,BandC and across the entire population. The Pearson correlation between two
sets of data can be measured via Eq. 15. Here x and y represent the input vectors,
while x̄ and ȳ are the means of the corresponding variables. The value of r lies
between −1 to 1, values greater than 0 indicate a positive correlation, the value 1
represents a perfect positive correlation and value 0 indicates no correlation. Negative
values less than 0 suggest a negative correlation, and the value of −1 implies a clear
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negative association.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(15)
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Figure 2: Pearson correlations for two variables (X,Y ) demonstrating the opposite trends for the
marginal and partial associations

5. On the adjustment of the impact of confounders

The adjustment of the impact of confounders is claimed to be handled in various
ways. Donald Rubin et al. [51, 62] proposed propensity score weighting in estimating
the causal effect. Judea Pearl developed a framework for reasoning about causal
relationships, called causal inference [63, 64]. The regression model proposed by
Ronald Fisher et al. [65] is also used for controlling the causal effects. Similarly,
there are several other methods, e.g., stratification and meta-analysis, which are
used to adjust the impact of confounders [66].

In line with the proposed methods, In Sect. 5.1, we discuss some familiar ad-
justments in detail and provide a discussion on coerced categorical adjustment with
numerical target variables.
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5.1. Familiar Adjustments
In [67], Judea Pearl stated: “If we do have measurements of the third variable,

then it is very easy to deconfound the true and spurious effects. For instance, if the
confounding variable Z is age, we compare the treatment and control groups in every
age group separately. We can then take an average of the effects, weighting each age
group according to its percentage in the target population. This method of compensa-
tion is familiar to all statisticians; it is called »adjusting for Z« or »controlling for
Z.«” [67]

When we assume that the effect in this statement of Judea Pearl’s is binary,
we have that the described scenario is the case of 2 × 2 × n contingency tables as
discussed in Sect. 3.2.2.

Law of total probabilities. Given a random variable z : Ω −→ R and a partition
p1, . . . , pn of Ω, we have that

P(z) =
∑

i

P(pi)P(z|pi) (16)

(16) is called law of total probabilities. Given a random variable

y : Ω −→ {v1, . . . , vn},
we have that (y = v1), . . . , (y = vn) forms a partition of Ω. In terms of y, the law

of total probabilities, therefore, shows as:

P(z) =
∑

i

P(y = vi)P(z|y = vi) (17)

Together with a further event x, we have that

Px(z) =
∑

i

Px(y = vi)Px(z|y = vi) (18)

Due to the fact that Px(a|b) = P(a|x, b) for any events a and b, we can rewrite
(18) as

P(z|x) =
∑

i

P(y = vi|x)P(z|x, y = vi) (19)

Given an event z ⊆ Ω, called target variable (or dependent variable), an event
x, called impacting variable (or impact factor), and a categorical random variable
y : Ω −→ {v1, . . . , vn}, called the confounder (or confounding variable, or confound-
ing factor), we define the adjustment of the conditional probability P(z|x) to the
(impact of) the confounder y, denoted by P̂y(z|x), as follows:
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P̂y(z|x) =
∑

i≤n

P(y=vi)Px(z|x, y=vi) (20)

Again, note that the adjustment of P(z|x) is achieved by the coercion of P(y =
vi|x) in (19) to the value P(y = vi) in (20). This coercion is the only (but crucial)
difference between the probability P(z|x) and the adjusted probability P̂y(z|x).

5.2. Coerced Categorical Adjustment with Numerical Target Variable
Law of total expectations. Given a random variable z : Ω −→ R and a partition

p1, . . . , pn of Ω, we have that

E(z) =
∑

i

P(pi)E(z|pi) (21)

(21) is called law of total expectations. Given a random variable y : Ω −→
{v1, . . . , vn}, we have that (y = v1), . . . , (y = vn) forms a partition of Ω. In terms of
y, the law of total expectation, therefore, shows as:

E(z) =
∑

i

P(y = vi)E(z|y = vi) (22)

Together with a further event x, we have that

Ex(z) =
∑

i

Px(y = vi)Ex(z|y = vi) (23)

Due to the fact that Px(a|b) = P(a|x, b) for any events a and b, we can rewrite
(23) as

E(z|x) =
∑

i

P(y = vi|x)Ex(z|x, y = vi) (24)

Given a numerical random variable z : Ω −→ R, called target variable (or de-
pendent variable), an event x, called impacting variable (or impact factor), and a
categorical random variable y : Ω −→ {v1, . . . , vn}, called the confounder (or con-
founding variable, or confounding factor), we define the adjustment of the conditional
expectation E(z|x) to the (impact of) the confounder y, denoted by Êy(z|x), as fol-
lows:

Êy(z|x) =
∑

i≤n

P(y=vi)Ex(z|x, y=vi) (25)
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Again, note that the adjustment of E(z|x) is achieved by the coercion of P(y =
vi|x) in (24) to the value P(y = vi) in (25). This coercion is the only (but crucial)
difference between the expectation E(z|x) and the adjusted expectation Êy(z|x).

Often, a conditional expectation E(z|x) is denoted as µx, when z can be assumed
as granted from the context. In accordance with that, we also denote an adjusted
expectation Êy(z|x) as µ̂y

x or even shorter as µ̂x, when z (and y) are known from the
context.

Accordingly, given a numerical random variable z : Ω −→ R, an event x, and a
series y⃗ of confounding categorical random variables y1 : Ω −→ I1 to ym : Ω −→ Im,
we first define the multivariate random variable y : Ω −→ I1 × . . .× Im as usual,
i.e., P(y = ⟨v1, . . . , vm⟩) = P(y1 = v1, . . . , ym = vm); then, we define the adjustment
Êy⃗(z|x) as follows:

Êy⃗(z|x) = Êy(z|x) (26)

Note, that (25) is a generalization of (20) from a target event z to a numerical
target random variable. In [61, 68], partial conditionalization [69] has been general-
ized from partial conditional probabilities to partial conditional expectations. Then,
the adjusted expectation has been explained as a partial conditional expectation.
Then, the quotient of the adjusted expectation Êy(z|x) and the marginal expecta-
tion E(z) has been called the genuine impact of x (onto z). In terms of association
rule mining, the genuine impact could also be called adjusted lift, as the quotient
P(z|x)/P(x) is known as lift in association rule mining (for the specialized cases that
z and x are events).

5.3. Inverse Propensity Score Weighting
The propensity score, denoted as P (A|X), represents the conditional probability

of receiving treatment A (exposure) given a set of observed covariates X. It can be
estimated using a logistic regression model or other suitable models.

P (A = 1|X) = Pr(A = 1|X) (27)

Inverse Propensity Score(IPS) weighting involves assigning weights to each ob-
servation based on the inverse of its estimated propensity score. The weight assigned
to an individual i in the treatment group (A = 1) is given by 1/P (A = 1|Xi), and
the weight assigned to an individual j in the control group (A = 0) is given by
1/(1− P (A = 1|Xj)).

Wi =
1

P (A = 1|Xi)
(28)
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Wj =
1

1− P (A = 1|Xj)
(29)

Once the inverse propensity scores are calculated, the weighted estimation of the
treatment effect can be obtained by weighting the outcome variable Y by the inverse
propensity scores. For example, the weighted average treatment effect (W ) can be
calculated as follows:

W =

∑
[Yi · wi]∑

wi

(30)

Where Yi is the outcome variable for individual i, wi is the corresponding inverse
propensity score weight, and the summation is performed over all individuals in
the sample. By incorporating these probability equations into the IPS weighting
framework, confounding effects can be adjusted to derive unbiased treatment effect
estimates.

6. The proposed framework

Mitigating bias in DSTs requires a multi-faceted approach involving careful data
collection, analysis, modelling, ongoing monitoring, and refinement. There are sev-
eral frameworks [70, 71, 72, 73, 74] and best practices that can be used to mitigate
bias in AI systems. Table 5 provides an overview of some popular bias mitigation
frameworks together with their capabilities to utilise various bias mitigation tech-
niques.

6.1. Issues with existing bias mitigation frameworks
As shown in Table 5, all of these frameworks provide valuable tools for mitigating

bias in machine learning. However, most of them are developed to address specific
types of bias and have limited capabilities to handle confounding effects and statis-
tical paradoxes in classical DSTs, e.g. association rule mining. Therefore, to fully
address these challenges, it is crucial to incorporate domain expertise and supple-
ment these frameworks with additional capabilities to handle confounding effects and
statistical paradoxes in various DSTs. The following are the main challenges with
the current bias mitigation frameworks:

1. No framework perfectly identifies and adjusts the impact of different statistical
paradoxes.

2. Current frameworks are often designed to address specific types of bias, such
as gender or racial bias.
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3. Bias mitigation frameworks are not developed for large and complex multidi-
mensional datasets.

4. Current bias mitigation frameworks have limited capabilities to support clas-
sical DSTs effectively.

Table 5: Popular frameworks used to mitigate bias in AI systems as compared to our proposed
framework.

Framework Description Bias Mitigation Techniques

Google What-If
Tool[70]

Web-based tool for visualizing
and analyzing machine
learning models

Counterfactual analysis,
What-If scenarios

Microsoft
Fairlearn [72]

Python package for bias
mitigation

Preprocessing, in-processing,
and post-processing
techniques

IBM AI Fairness
360[71]

Comprehensive toolkit for
bias mitigation

Metrics for measuring bias,
preprocessing, in-processing,
and post-processing
techniques

Themis-ML [73] Python library for bias and
fairness in machine learning

Fairness metrics, bias
mitigation techniques for
classifiers

Aequitas [74] Python library for bias audit
and mitigation

Fairness metrics, bias
mitigation techniques for
classifiers

Observing paradoxical outcomes and handling statistical paradoxes is challeng-
ing for a bias mitigation framework, especially when working with different DSTs
with large and complex datasets. It requires combining technical expertise, domain
knowledge, and careful consideration of trade-offs between fairness and accuracy.
Therefore, improving current frameworks requires a continued focus on expanding
their coverage, improving flexibility, promoting collaboration with domain experts,
providing guidance on balancing trade-offs, and increasing transparency.

Thus, we suggest a framework to address these challenges in the current bias
mitigation frameworks. A graphical presentation of the proposed framework is given
in Fig. 3. The following are the three main and two sub-components of the proposed
framework.
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Figure 3: Framework for mitigating the impact of bias resulting from statistical paradoxes

1. Data pre-processing: This step involves identifying and addressing flaws or
inconsistencies in the data. This encompasses various procedures like data
cleansing, normalization, handling missing values, and outlier detection.

2. Bias mitigation techniques: To mitigate bias in the dataset, the second phase
involves employing a range of bias mitigation techniques. This involves various
data adjustment and augmentation methods to balance the representation of
different underrepresented classes or categories in the dataset.

3. Evaluation: The evaluation aims to validate the effectiveness of bias reduction
strategies in enhancing fairness and ensuring reliable outcomes. This can in-
volve employing various metrics or comparing the outcome of DSTs on biased
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and unbiased datasets.
(a) Domain knowledge integration: The step involves incorporating domain

expertise into the data analysis process. This includes employing adjust-
ment strategies and leveraging professional knowledge to guide the se-
lection of relevant variables and features. Understanding the underlying
causes of statistical paradoxes and implementing appropriate measures to
mitigate their impact can further enhance the quality and utility of the
dataset.

(b) Adjustments in datasets: uneven distribution of data between two or more
groups is one of the reasons for bias. Therefore, by balancing the input
variables across different groups in the data, an decision support tool is
less likely to make biased decisions. Balancing the dataset ensures that a
decision support tool is equally exposed to all groups.

The suggested framework is designed to show the following advantages:

• The framework specifically includes means to address bias resulting from unde-
tected statistical paradoxes, which arise when statistical relationships between
different groups in the data lead to unexpected and potentially biased results.
This particular aspect has not yet been incorporated into existing bias mitiga-
tion frameworks.

• Existing frameworks focus more heavily on one or a few specific strategies or
techniques for mitigating bias. However, the proposed framework takes a com-
prehensive approach to support different types of DSTs and address different
types of biases by supporting multiple bias mitigation techniques, evaluation,
balancing, and incorporation of domain knowledge.

• The proposed framework strongly emphasises balancing and adjustment of vari-
ables in training datasets to minimize the risk of statistical paradoxes.

• The proposed framework emphasizes the importance of incorporating domain
experts into developing and deploying AI systems. This helps in making in-
formed decisions aligned with social and ethical values.

7. The Web-based Application

Based on the proposed framework, a web-based application is further developed
to identify the impacts of confounding variables and to deal with the statistical para-
doxes. Currently, the application systematically identifies the impact of confounding
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Figure 4: The application’s graphical user interface offers a simple and straightforward experience.
With just a few simple steps, users can upload a dataset, specify input parameters (X, Y), select the
X1-Value and X2-Value variables, and identify confounding variables and instances of Simpson’s
paradox by clicking the "check confounding" button.21



variables in categorical datasets. Further, it also detects the existence of Simpson’s
paradox within the dataset.

The tool has been developed using Python 3.8 programming language and the
FastAPIframework, leveraging the benefits of its fast development and high-performance
capabilities. The tool comprises two endpoints, “confounder" and “dropdown," which
receive post requests containing corresponding parameters. These parameters are ex-
tracted from the user’s form submission on the web interface and sent to the endpoint
as requested. The backend service has been deployed on the Deta platform, provid-
ing a highly convenient solution for deploying microservices without needing server
configuration or permission management. The deployment and management of the
API are facilitated through the Deta CLI tool.

Figure 4 demonstrates the graphical user interface of the tool. The interface itself
is simple and user-friendly. It requires just a few straightforward steps; importing a
dataset, inputting parameters, and a few clicks to detect the presence of confounding
variables and identify the instances of Simpson’s paradox. The programming code
and usage guidelines for the proposed tool can be found in the GitHub repository 2.

8. Experiments

To identify the existence of confounding variables in machine learning datasets,
we conducted experiments on a range of both real-life and benchmark datasets that
included both categorical and continuous values. In this article, we use four popular
datasets, two of which are popular real-life case studies and the other two are bench-
mark datasets for machine learning. A piece of brief information about the datasets
is given in Table 6, and their usage and results are discussed in Sects. 8.1, 8.2, 8.3
and 8.4.

Table 6: Information about the datasets used in the experimentation.

Dataset Author Year Class

Iris Dataset Ronald Fisher [75] 1936 Continuous
Auto MPG Ross Quinlan [57] 1993 Continuous
UC Berkeley Admissions PC Bicel [60] 1973 Categorical
Kidney Stone Charig et al. [76] 1986 Categorical

2https://https://github.com/rahul-sharmaa/SimpsonP/

22



Table 7: Correlation analysis between variable X and variable Y with respect to a subgroups in
Iris dataset

SubGroup CatAttr Variable X Variable Y Corr. AggCorr.
Iris-Setosa class Sepal Width Sepal Length 0.7467 -0.1093
Iris-versicolor class Sepal Width Sepal Length 0.5259 -0.1093
Iris-virginica class Sepal Width Sepal Length 0.4572 -0.1093
Iris-setosa class Petal Length Sepal Width 0.1766 -0.4205
Iris-versicolor class Petal Length Sepal Width 0.5605 -0.4205
Iris-virginica class Petal Length Sepal Width 0.4010 -0.4205
Iris-setosa class Petal Width Sepal Width 0.2799 -0.3565
Iris-versicolor class Petal Width Sepal Width 0.6639 -0.3565
Iris-virginica class Petal Width Sepal Width 0.5377 -0.3565

8.1. Iris dataset
The Iris dataset is one of the well-known benchmark datasets used in machine

learning. Ronald Fisher introduced the dataset in a research paper [75]. It consists of
three types of iris species, i.e., Setosa, Versicolor, and Virginicare, each with 50 data
samples. The species names are categorical, and length and width are continuous at-
tributes. To identify the existence of confounding variables and statistical paradoxes
in the dataset, first, we check the type of variables and visualise the relationship
between the length and width of each pair of candidate attributes.

In our experiment, we calculate the Pearson correlation between the sepal length
and the sepal width variable and traverse the complete list of variables to identify
the possible confounders and compute the ratio of the subgroup reversals to learn
about the existence of Simpson’s paradox.

In the experimentation with the iris dataset, confounding effects in three pairs
of measurements have been reported, i.e., (1) sepal length and width, (2) sepal
width and petal length, and (3) sepal width and petal width. Table 7 and Fig. 5
demonstrate these effects via three scatter plots with regression lines. Figure 5
illustrates that each species has a positive correlation between sepal width and length
(dashed line). However, the correlation between the entire population’s width and
sepal length is negative (solid red trend line). Similarly, the pair of petal length,
width, the pair of petal width and sepal width have positive trends for each species;
however, the overall trend for the length and width for the entire population is
negative in both cases.
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Figure 5: In the Iris dataset, there is a positive correlation between the three pairs of sepal length
and petal width for the Iris-setosa, Iris-versicolor and Iris-virginicare (dashed lines); however, the
overall trend for the length and width for the entire population is negative (solid red line) in all
three combinations.

Table 8: Correlation analysis between variable X and variable Y with respect to a subgroups in
Auto-MPG dataset

SubGroup CatAttr Variable X Variable Y Corr. AggCorr.
3 cylinders mpg acceleration -0.8190 0.423
6 cylinders mpg acceleration -0.3410 0.423
3 cylinders mpg horsepower 0.621 -0.778
6 cylinders mpg horsepower 0.013 -0.778
75 model-year mpg acceleration -0.0510 0.423
79 model-year mpg acceleration -0.0510 0.423

8.2. The MPG dataset
Ross Quinlan used the Auto MPG dataset in 1993 [57]. The dataset contains

398 automobile records from 1970 to 1982, including the vehicle’s name, MPG, num-
ber of cylinders, horsepower, and weight. The dataset includes three multi-valued
discrete attributes and five continuous attributes. In MPG datasets, as provided in
Table 8, we analysed the relationship between MPG, acceleration and horsepower
for two categorical attributes (number of cylinders and model year). The goal of
analysing the dataset is to learn about the factors that influence each car’s overall
fuel consumption. The dataset consists of fuel consumption in mpg, horsepower,
number of cylinders, displacement, weight, and acceleration.

Similar to the Iris dataset, in the MPG dataset, the tool has reported confounding
effects in the three pairs of measurements, i.e., (1) MPG with acceleration according
to the engine cylinders, (2) MPG with acceleration with respect to their model year,
and (3) MPG with horsepower according to the engine cylinders. To demonstrate
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Figure 6: Scatter plot with trend lines for MPG dataset: In this dataset, Simpson’s paradox
has been observed in three sets of measurements; first, MPG and acceleration based on engine
cylinders, second, MPG and acceleration based on model year, and third, MPG and horsepower
based on engine cylinders

these effects, a scatter plot with regression lines is also given for all three pairs of
measurements in Fig. 6. This Figure demonstrates a negative correlation between
MPG and acceleration for three cylinders engines and six cylinders engines; however,
the overall trend between MPG and acceleration is positive (solid red line). Similarly,
the overall trend is the opposite for MPG with acceleration with respect to the model
year and MPG with horsepower according to the engine cylinders.

8.3. UC Berkeley Admissions Dataset Fall 1973
UC Berkeley admissions dataset is a categorical dataset; It is a classic exam-

ple of demonstrating confounding effects and explaining Simpson’s paradox. The
dataset was provided by UC Berkeley researchers to investigate any possible cases of
gender bias in admissions. The dataset contains 12763 records with four attributes
Student_id, Gender, Major, Admission.

As per the aggregate data given in Table 9 and demonstrated by the bar chart
given in Fig. 7, the overall number of women applicants is significantly less than the
total men applicants. However, their rejection rate is high compared to the male
applicants. Statistically, it clearly shows significant bias in the admission percentage
toward the male gender when we look at the data by gender. However, on the
other end, adding a third variable in the analysis reversed the results in most of the
departments. Fig. 8 and Table 10 display disaggregated data for each department
and demonstrates the percentage of admissions by gender and department: Here, the
information conditioned by the departments demonstrates the reason for bias, and
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Table 9: UC Berkeley admission dataset fall 1973: Aggregate information for both men and women
applicants. The overall number of women applicants is significantly less than the total men appli-
cants. However, their rejection rate is high compared to male applicants; this indicates a significant
bias towards Male applicants

Applications Admitted Rejected Admission
%

Men 8442 3738 4704 44%
Women 4321 1494 2827 35%

Admitted Rejected
Men 3738 4704
Women 1494 2827

3738

4704

1494

2827
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Figure 7: UC Berkeley admission dataset fall 1973: This figure demonstrates that the overall
number of women applicants is significantly less than the total men applicants. However, their
rejection rate is high compared to the male applicants; this indicates a significant bias towards
Male applicants

it reveals an opposite story and bias in favour of Female applicants. Notably, in our
analysis, we observed that female applicants tend to apply more for very selective
majors while males for the less selective ones, creating an unbalanced distribution of
males and females in applicants in the departments.

The dataset has been experimented with the web-based tool. In the tool, Gender
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Table 10: UC-Berkeley admission dataset (fall 1973): % of acceptance rate for both men and women
applicants in different departments

Gender Departments

A B C D E F
Men 72.49% 63.03% 36.92% 33.09% 27.74% 5.89%
Women 82.40% 68% 33.89% 34.93% 23.91% 7.33%
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Figure 8: This figure shows the percentage of admissions by gender and department, along with
the percentage of accepted and rejected female and male applicants in each department. Analysis
of the data reveals that the admission rate for female applicants was generally higher than that of
male applicants in most departments

attribute is set as X variable and Admission attribute is set as Y variable. Next,
in the prepossessing step, the values of gender variable, i.e., Female and Male are
categorised by the binary values 1 and 0, similarly, the values of admission variable,
i.e., Failure and Success are categorised by the binary values 0 and 1, respectively.

The application first calculates the Pearson correlation between Gender and Ad-
mission variables and traverses the complete list of variables to identify the possible
confounding variable and compute the ratio of the subgroup reversals to know about
Simpson’s paradox. The computed correlation coefficient between Gender and Ad-
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mission variables indicate a negative correlation for majors A, B, D, and F but a
positive correlation for the entire population.

8.4. Kidney Stone Treatment Dataset
We use another dataset with categorical values from a medical case study pub-

lished by Charig et al. [76] in “The British Medical Journal” in 1986. This study
compares the success rate of two different types of treatments to remove large and
small kidney stones.

In Fig. 9, the distribution of both of the treatments is given for small and large
kidney stones. At first, as demonstrated in Table 11, for both small kidney stones
and large kidney stones groups, treatment A, performs better than treatment B;
however, when the data for both treatments are combined, the treatment B (Success
Rate: 83%) outperforms the treatment A (Success Rate: 78%).

Upon experimenting with this dataset using the web-based tool, the tool reported
the presence of a confounding variable and a potential case of Simpson’s paradox.

Table 11: Kidney stone treatment dataset: Treatment A outperforms treatment B for large and
small kidney stones, but for both kidney stones together, treatment B exceeds treatment A

Treatment (A)= 350 Treatment (B) = 350
Stone
Size

Success
(S)

Failure
(F )

Success
Rate %

Success
(S)

Failure
(F )

Success
Rate %

Small 81 6 ≈ 93% 234 36 ≈ 87%
Large 192 71 ≈ 73% 55 25 ≈ 69%
Both 273 77 ≈ 78% 289 61 ≈ 83%

9. Discussion

9.1. Relevance and Implications
In this paper, we presented that handling statistical paradoxes is a significant

challenge towards developing fair and reliable AI applications. As discussed in Sect. 3,
the existence of statistical paradoxes in benchmark datasets provides a direction to
understand the vital role of confounders and statistical paradoxes in AI systems. To
develop capabilities to handle statistical paradoxes in AI frameworks, it is important
to take a systematic approach and incorporate diverse techniques for identifying po-
tential sources of bias, utilising causal inference techniques to account for confound-
ing variables and promoting transparency and open communication throughout the

28



A B
Small 87 270
Large 263 80

263

8087

270

50

150

250

350

PO
PU

LA
TI
O
N

Small Large

Figure 9: Kidney stone treatment dataset: The distribution of treatments A and B for small and
large kidney stones demonstrates that treatment A was mostly given to patients with large kidney
stones, and treatment B was mostly given to patients with small kidney stones

data analysis process. By integrating these components into a flexible and adaptable
framework, researchers can mitigate the impact of statistical paradoxes and ensure
that their results accurately reflect the true relationship between variables.

In this paper, an adaptable, multifaceted framework is presented. Additionally,
an instance of the proposed framework is developed by implementing a sample web-
based tool. The tool is evaluated by a series of experiments using several real and
synthetic data sets. In its current use, the tool can identify and adjust the impacts
of possible confounders in categorical and continuous datasets. Further, the tool also
identifies the instances of Simpson’s paradox and provides adjusted observations to
reduce the impacts of the paradox. A series of experiments validated the framework
and highlighted the importance of human experts in improving the accuracy of AI
systems. The experimental results, in general, suggest that a thorough understanding
of statistical concepts and paradoxes is necessary to alleviate the severe impacts of
statistical paradoxes effectively and to address several other paradoxes successfully.
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9.2. Limitations and future work
The proposed framework offers a comprehensive approach for mitigating bias

due to statistical paradoxes. However, the complex nature of statistical paradoxes
and related concepts poses a challenge in developing effective mitigation strategies.
Currently, the web-based tool developed using the proposed framework is highly
effective in identifying confounding variables and detecting instances of Simpson’s
paradox only in categorical and continuous datasets. However, further research and
a deeper understanding of statistical concepts are necessary to handle several other
statistical paradoxes. Moreover, mitigating statistical paradoxes in complex and
high-dimensional datasets, where the relationships between variables can be highly
non-linear and interactive, is another significant challenge. Therefore, developing a
bias mitigation framework that addresses several statistical paradoxes is still chal-
lenging. To address these challenges, interdisciplinary research efforts are required
that bring together experts in statistics, machine learning and social sciences. Over-
coming these challenges can lead to the development of trustworthy AI systems that
not only provide accurate and efficient decision-making but also promote fairness,
transparency, and accountability, thereby enhancing their trustworthiness and soci-
etal impact.

10. Conclusion

This paper demonstrated the importance of addressing statistical paradoxes in
DSTs and aimed to contribute towards developing fair and trustworthy DSTs. A
framework has been suggested for mitigating the impacts of statistical paradoxes in
DSTs. Furthermore, different measures for adjusting the impact of confounders are
discussed. Based on the discussed measures, a web-based application has also been
developed to validate the effectiveness and usefulness of the proposed framework.
The application, in its current state, allows for investigating possible confounders
via detecting instances of Simpson’s paradox and provides a feature for adjusted
observations. To provide evidence for the relevance of the framework and the appli-
cation towards developing fair and trustworthy DSTs, a range of experiments have
been conducted on real-world and benchmark datasets. The application serves as a
valuable artefact for data scientists and researchers in their theoretical and practical
endeavours. The potential of the application is not limited to its current use, for
example, we plan to extend it to address various other paradoxical challenges in AI
applications in the future.
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