

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Valentin Djomin 221543IAPM

Creating a Web Environment for the
Self-Practicing of Tasks for Creating UML

Class and Package Diagrams

Master's thesis

Supervisor: Erki Eessaar

 PhD

Co-supervisor: Priit Järv

 PhD

Tallinn 2025

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Valentin Djomin 221543IAPM

UML klassi- ja paketiskeemide loomise
ülesannete iseseisva lahendamise

veebikeskkonna loomine

Magistritöö

Supervisor: Erki Eessaar

 PhD

Co-supervisor: Priit Järv

 PhD

Tallinn 2025

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Valentin Djomin

Date: 12.05.2025

3

Abstract

This thesis focuses on the development of a web-based application aimed at improving

the process of teaching and learning Unified Modeling Language (UML) diagrams in

higher education. UML is a widely adopted standard for software modeling and plays

an important role in both education and software projects. However, existing UML tools

are often too complex for beginners, which makes learning more difficult or lack

essential features for effective learning and automated assessment. The goal of this

thesis is to create a web-based software, UML Solver, that allows students to practice

building UML class and package diagrams based on predefined tasks, while receiving

immediate feedback through an automated validation system. The tasks are not built-in,

i.e., the lecturer can specify an unlimited number of tasks.

The application is developed using PHP 8 and JavaScript. The database of the tool is

made by using PostgreSQL. Diagrams are stored as JSON objects in the database (in

columns with JSONB type). It is designed to be user-friendly and extensible, with the

possibility to support additional UML diagram types in the future. The system includes

a built-in validation mechanism that automatically checks student-created diagrams

against the reference diagram created by the lecturer and provides meaningful feedback

to support learning.

Key features of the software include an interactive diagram editor, configurable

validation settings, and environment that make both self-practice and formal assessment

possible. The development process follows a research-driven and iterative approach,

integrating pedagogical needs and technical constraints.

The result is a flexible and accessible educational tool that addresses current limitations

in UML learning environments. It improves student engagement and understanding of

UML syntax, semantics as well as modeled subjects and makes it easier for lecturers to

assess the skills and knowledge of students.

This thesis is written in English and is 87 pages long, including 7 chapters, 30 figures

and 5 tables.

4

Annotatsioon

UML klassi- ja paketiskeemide loomise ülesannete iseseisva
lahendamise veebikeskkonna loomine

Lõputöö eesmärk on luua veebipõhine rakendus UML-diagrammide õpetamiseks ja

õppimiseks kõrgkoolis. UML on populaarne ja standardiseeritud visuaalne

modelleerimiskeel, mis mängib olulist rolli nii hariduses kui ka tarkvaraarenduste

projektidess. Olemasolevad modelleerimisvahendid on sageli algajatele liiga keerulised,

mis pärsib õppimist või puuduvad neil vajalikud funktsioonid õppimise ja hindamise

toetamiseks.

Töös loodud tarkvara - UML Lahendaja - võimaldab üliõpilastel vastavalt etteantud

ülesannetele koostada klassi- ja paketidiagramme ning saada tänu sisseehitatud

automaatsele kontrollile kohest tagasisidet. Tagasiside andmiseks võrreldaks üliõpilase

loodud diagrammi õppejõu koostatud diagrammiga, mis on andmebaasis ülesande

juures salvestatud. Võrdlemisel arvestatakse diagrammi struktuuriga (millised on

elemendid, milliste teiste elementidega ja mis viisil on need seotud), kuid mitte

diagrammi kujundusega. Võrdlusmehhanism on süsteemi sisse ehitatud, sõltub

diagrammi tüübist ning uute diagrammi elementide või diagrammi tüüpide lisamisel

vajab täiendamist. Samas ülesanded ei ole süsteemi sisse ehitatud, mis tähendab, et

õppejõud saab lisada piiramatu arvu ülesandeid. Selle toetamiseks on loodud õppejõule

ka tarkvara võrdlusdiagrammide loomiseks ja JSON kujul esitatud diagrammide

vaatamiseks. Rakendus on loodud PHP 8 ja JavaScripti abil. Andmebaasi loomiseks

kasutatakse PostgreSQLi. Nii üliõpilaste loodud diagrammid kui õppejõu koostatud

võrdlusdiagrammid salvestatakse andmebaasis JSON tüüpi objektidena (veergudes, mis

on JSONB tüüpi).

Platvormi peamised omadused on interaktiivne redaktor ja võimaluste loomine selle

vahendi kasutamiseks nii iseseisvaks harjutamiseks kui ka formaalseks hindamiseks.

Arendusprotsess järgib teaduspõhist ja iteratiivset lähenemist. Rakenduse loomisel

peeti silmas, et seda oleks võimalik tulevikus laiendada teiste UMLi diagrammitüüpide

toega.

5

Lõpptulemuseks on kasutajasõbralik ja ligipääsetav tarkvara, mis aitab tudengitel

õppida paremini mõistma UML-i süntaksi, semantikat ning selle abil koostatud

mudeleid ja lihtsustab õppejõududel hindamist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 87 leheküljel, 7 peatükki, 30

joonist, 5 tabelit.

6

List of Abbreviations and Terms

AJAX Asynchronous JavaScript and XML. A web development
technique that allows sending and receiving data from a server
asynchronously, enabling page content updates without full
reloads.

API Application Programming Interface. A defined set of functions
and protocols that allow different software components or
systems to communicate and exchange data.

BPMN Business Process Model and Notation. A standardized
graphical notation for modeling and documenting business
workflows and processes in a clear and understandable way.

CASE tool Computer Aided System Engineering tool. Modeling software
where one can create models, validate models, and generate
new artifacts (different types of models, documentation, code,
tests) based on these.

CRUD Create, Read, Update, Delete. The four fundamental operations
used in databases and web applications to manage persistent
data.

CSRF Token Cross-Site Request Forgery Token. A unique, secret value
generated by the server to protect against unauthorized requests
by verifying that actions come from an authenticated user.

CSS Cascading Style Sheets. A stylesheet language used to describe
the look, formatting, and layout of HTML elements on web
pages.

EA Enterprise Architect. A professional tool for designing,
visualizing, and documenting software architecture using UML
and other modeling languages.

HTTP HyperText Transfer Protocol. The foundation of data
communication on the web, used to transfer HTML pages and
other resources between clients and servers.

HTTPS HyperText Transfer Protocol Secure. An extension of HTTP
that uses encryption (typically via SSL/TLS) to ensure secure
communication between web clients and servers.

JS JavaScript. A dynamic programming language that runs in
browsers and is used to create interactive and dynamic content
on web pages.

JSON JavaScript Object Notation. A lightweight, human-readable
format for structuring and exchanging data, commonly used in
web APIs.

7

LLM Large Language Model. A type of machine learning model
trained on massive text datasets to understand, generate, and
interact using human language.

LTS Long-Term Support. A software release type that receives
security updates and maintenance for an extended, predefined
period.

MDA Model-Driven Architecture. A development methodology that
focuses on creating system functionality through models that
can be transformed into executable code.

MVC Model-View-Controller. A software architectural pattern that
separates application logic into three interconnected
components: model, view, controller.

NPS Net Promoter Score. A metric used to measure customer
satisfaction and loyalty.

OO software Object-Oriented software. А type of software designed using
the principles of Object-Oriented Programming, where the
system is built around objects that represent real-world entities,
encapsulating data and behavior.

OOP Object-Oriented Programming. A programming paradigm
based on the concept of “objects”. It emphasizes principles like
encapsulation, inheritance, and polymorphism to create
modular, reusable, and maintainable software.

PHP Hypertext Preprocessor. A widely-used open-source scripting
language designed for server-side web development and
dynamic page generation.

PNG Portable Network Graphics. A raster image format that
supports lossless compression and transparency, often used for
web graphics.

REST Representational State Transfer. An architectural style for
designing stateless web services that use standard HTTP
methods for operations.

RSA Rational Software Architect. A professional tool developed by
IBM for software modeling and architectural design.

RUP Rational Unified Process. A structured software development
process framework that emphasizes iterative development and
well-defined roles and deliverables.

SSL Secure Sockets Layer. A cryptographic protocol that was
originally developed to secure data transmitted over the
internet.

SVG Scalable Vector Graphics. An XML-based vector image format
that can scale to any size without losing quality, ideal for web
graphics and diagrams.

8

TLS Transport Layer Security. A modern, more secure replacement
for SSL used to encrypt and protect internet communication.

UML Unified Modeling Language. A standardized modeling
language used to specify, visualize, and document the design of
software systems.

URL Uniform Resource Locator. The standardized address used to
locate and access resources on the internet.

XMI XML Metadata Interchange. A standard format for exchanging
metadata information via XML. It is commonly used to
represent UML models in a structured, machine-readable way.

XML eXtensible Markup Language. A markup language used to
encode documents and data in a structured, machine- and
human-readable format.

9

Table of Contents

1 Introduction...16

1.1 Background..16

1.2 Problem Statement...17

1.3 Research Objectives.. 19

1.4 Structure of the Thesis...20

2 Methodology..22

2.1 The Object... 22

2.2 The Development Process... 25

2.3 Tools and Technologies Used.. 27

3 Related Works...31

3.1 Teaching and Assessing UML Knowledge..31

3.2 Model Quality..35

4 Existing Tools.. 37

4.1 UML.. 37

4.1.1 Class Diagrams... 38

4.1.2 Package Diagrams.. 40

4.2 UML Diagramming Software..40

4.2.1 Enterprise Architect..41

4.2.2 StarUML...42

4.2.3 UMLet.. 42

4.2.4 yEd Live... 43

4.2.5 Creately...43

4.2.6 Lucidchart...43

4.2.7 Evaluation of UML Diagramming Tools..44

4.3 UML Сomparison Tools..45

4.3.1 EMF Compare.. 46

4.3.2 Visual Paradigm..46

10

4.3.3 IBM Rational Software Architect...47

4.3.4 Enterprise Architect..47

4.3.5 UMLDiff...47

4.3.6 DiffMerge... 47

4.3.7 Evaluation of UML Comparison Tools.. 48

4.4 Code Practicing Software.. 48

4.4.1 LeetCode...49

4.4.2 HackerRank.. 49

4.4.3 CodeSignal..50

4.4.4 CodeChef.. 50

4.4.5 Evaluation of Code Practicing Tools.. 50

5 System Development...52

5.1 System Requirements.. 52

5.1.1 Functional Requirements..52

5.1.2 Non-Functional Requirements..57

5.2 The Technology Stack... 58

5.2.1 Used Tools.. 58

5.3 Web Application Architecture... 60

5.3.1 Server-side Structure.. 60

5.3.2 Client-side Structure... 62

5.4 User Interface.. 64

5.4.1 Student-Oriented Interface... 64

5.4.2 Lecturer-Oriented Interface.. 69

5.5 Diagram Validation..70

5.5.1 LLM Based Validation..71

5.5.2 Rule-based Algorithmic Validation.. 73

6 Analysis and Results...79

6.1 Analysis of Students Survey Responses..79

6.2 Discussion..81

11

6.3 Limitations...81

6.4 Reflection of the Work Done...82

6.4.1 Things that Went Well.. 83

6.4.2 Things that Went Poorly... 84

6.4.3 Things to Do Differently if Repeating the Work.. 84

6.5 Further Work..85

7 Summary... 87

Appendix 1 – Non-Exclusive Licence for Reproduction and Publication of a

Graduation Thesis... 92

Appendix 2 – Figma Prototype Views..93

Appendix 3 – Database Structure.. 95

Appendix 4 – Kanban Board.. 100

Appendix 5 – Existing Tools..101

Appendix 6 – Three Tier Architecture...105

Appendix 7 – REST API Endpoints List... 106

Appendix 8 – Web Pages URL List..107

Appendix 9 – User Interface... 108

Appendix 10 – Validation Errors..114

Appendix 11 – Task Example..116

Appendix 12 – Students Testing Survey...117

12

List of Figures

Figure 1. UML Diagram Types Overview Page..93

Figure 2. Class Diagram Task Solving Interface... 94

Figure 3. Task Collections Database Schema Designed in DataGrip..............................95

Figure 4. Feedback Database Schema Designed in DataGrip... 96

Figure 5. Language Classificators Database Schema Designed in DataGrip..................97

Figure 6. Problem of Task Attempts Database Schema Designed in DataGrip.............. 98

Figure 7. Task Database Schema Designed in DataGrip...99

Figure 8. Kanban Board Displaying Task Management..100

Figure 9. Three Tier Architecture Diagram... 105

Figure 10. REST API Endpoint List..106

Figure 11. Web Pages URL List.. 107

Figure 12. Task Overview Page...108

Figure 13. Solving a Class Diagram Task... 108

Figure 14. Validation Errors Sidebar View.. 109

Figure 15. Solving a Package Diagram Task...109

Figure 16. Attempt History View...110

Figure 17. Detailed Task Attempt View...110

Figure 18. Statistics View.. 111

Figure 19. Feedback View..111

Figure 20. Lecturer Class Diagram Sidebar View... 112

Figure 21. Lecturer Package Diagram Sidebar View...113

Figure 22. Example of Task Description... 116

Figure 23. Example of Constructed Reference Diagram...116

Figure 24. Ease of Creating and Modifying Diagram Elements....................................117

Figure 25. Clarity of Task Descriptions...117

Figure 26. Clarity of Automatic Feedback.. 118

13

Figure 27. Perceived Improvement in UML Skills... 118

Figure 28. Likelihood of Recommending UML Solver...119

Figure 29. Negative Feedback Question..119

Figure 30. Positive Feedback Question... 119

14

List of Tables

Table 1. Comparative Overview of UML Tools (Part 1)...101

Table 2. Comparative Overview of UML Tools (Part 2)...102

Table 3. Comparative Сharacteristics of UML Diagram Comparison Tools................ 103

Table 4. Comparison of Software Platforms for Code Practice and Learning.............. 104

Table 5. UML Diagram Validation Error Types.. 114

15

1 Introduction

This chapter presents the background of the work, states the problem and research

objectives, and lays out the structure of the thesis.

1.1 Background

The Unified Modeling Language (UML) was developed in the mid-1990s as a response

to the growing complexity of software systems and the need for a standardized way to

represent software designs. Before UML, many different modeling languages already

existed (and to be fair, still exist), which caused confusion and inconsistency in software

documentation and communication. To solve this, the Object Management Group

(OMG) introduced UML as a unified standard in 1997. Since then, UML has become

the most widely used modeling language in software engineering.

UML is a general purpose visual language that can be used to model many different

domains, including domains that have nothing to do with IT. However, UML diagrams

are mostly used to provide a way to visualize the structure and behavior of information

and software systems. They allow developers, architects, and stakeholders to understand

requirements, how the system is designed, how its components interact, and how data

flows throughout the system. The visual nature of UML makes it easier to communicate

ideas, detect potential design flaws early, and ensure consistency between requirements

and implementation. Over the years, UML has become an important part of the software

development lifecycle, especially in large-scale and complex projects where

documentation and planning are critical. UML is used in a variety of IT domains

including software engineering, systems engineering, business process modeling, and

database design [1]. According to recent industry surveys, around 88% of software

development specialists use some form of UML in their workflows [2]. It is especially

common in enterprise environments, embedded systems development, and

model-driven engineering. Popular software development methodologies like Rational

Unified Process (RUP) and Model-Driven Architecture (MDA) are based on UML

diagrams [3]. However, in modern software development, even teams that follow agile

16

methods often use simple UML diagrams to help plan and discuss the system

architecture.

UML 2.4 specifies 14 different types of diagrams [4], each serving a different purpose.

These diagram types fall into two categories - diagram types to specify the static

structure of the system and diagram types to specify the behaviour of the system. For

instance, class diagrams describe the static structure of a system, use case diagrams

show functional requirements from a user’s perspective, and sequence diagrams

illustrate object interactions over time. The ability to create, interpret, and validate these

diagrams is considered an important skill for software engineers. Understanding UML

is also frequently a requirement in academic programs, job descriptions, and technical

interviews.

In the context of higher education, teaching UML has become a common part of

computer science and software engineering curricula. However, many students struggle

with mastering diagram syntax and semantics without practical tools that offer guidance

and feedback. As a result, there is a growing need for interactive platforms that help

students practice creating UML diagrams and receive immediate validation of their

work. Such systems not only improve learning outcomes but also support lecturers by

automating the assessment process.

1.2 Problem Statement

In the field of information technology and software engineering, educational platforms

have evolved significantly, providing students with automated tools to enhance their

learning experience. This thesis argues that teaching and assessing the creation of visual

models for software and information systems is an area where automation can be

effectively applied. Models are simplifications of the world that help us to better

understand the modeled domain. Models capture knowledge about the domain and

models could be used for the efficient communication about the subject matter. Models

could be a basis for manual code creation, or at the age of Large Language Models

(LLMs) could be used as the direct input for the LLMs to generate implementations

(code, tests).

17

One of the most popular modeling languages is UML (Unified Modeling Language).

UML is a general purpose visual modeling language that allows us to create different

types of diagrams. Being general purpose means that this language could be used in

many domains and for many tasks. The most often used diagram type is the class

diagram that is used for specifying the static structure of the system [2]. This type of

diagram can, for instance, be used for creating concept maps, models of website

structure, domain models, which are the input for finding software classes,

entity-relationship diagrams, database design models, and software design models. The

survey [2] also showed that in various contexts where UML diagrams are used to model

software architecture, class diagrams are frequently chosen by practitioners as the

primary tool for describing functional structures, data structures, concurrency structures,

and even software code structures. Similarly, package diagrams are heavily favored for

modeling software module structures. This importance highlights how widely used and

valued class diagrams and package diagrams are among software professionals for

showing and organizing complex software designs. Both class diagrams and package

diagrams are static structure diagrams [5].

Many UML tools are designed for professionals and can be too complex for students.

Educational tools like StudentUML are easier to use but still have several limitations

[6]. StudentUML does not have a web version, which makes it less accessible. It lacks

features for lecturers to give feedback directly on diagrams, and it doesn't allow viewing

of student past attempts, which could help in learning from previous mistakes.

Additionally, the user can export diagrams to different image formats, but it cannot

export diagrams in XMI format, which is a standard format used for transferring models

between different modeling tools [6]. Moreover, StudentUML does not support

exporting models in PlantUML textual format, which is much more compact, simpler,

and better human readable compared to XMI. It further limits its use with other tools

and platforms for diagram sharing.

This thesis aims to develop a web-based application that enables students to practice

creating UML class and package diagrams, incorporating an automated validation

system to assess their correctness. We will call the software UML Solver. The

application will be built entirely from scratch using PHP 8 and JavaScript, incorporating

open-source libraries for diagram creation and visualization. Although the first

18

implementation of the tool only supports class diagrams and package diagrams, it will

be designed in a manner that the support for other UML diagram types could later be

added.

The research focuses on developing and evaluating a web-based system that automates

UML class and package diagram assessment. It builds upon existing methodologies

related to UML notation, comparison algorithms, feature-matching techniques, and the

impact of web-based educational tools on learning effectiveness. UML class and

package diagrams will serve as the primary focus due to their fundamental role in the

analysis of software systems and design of object-oriented software systems.

1.3 Research Objectives

The primary objective of this research is to develop and evaluate a web-based

application that allows for the interactive creation and automated validation of UML

class and package diagrams, which are crucial in software system analysis and design.

The research aims to explore the effectiveness of automated systems in validating these

diagrams and to define optimal approaches for comparing diagrams created by students

with reference diagrams provided by lecturers. The tool will implement an algorithmic

validation approach of submitted diagrams. This will involve the use of

feature-matching algorithm to assess the structural and syntactical correctness of the

diagrams.

The ultimate goal is to provide immediate and meaningful feedback to students,

improving their understanding and skills in UML diagramming while also addressing

the gap in current educational tools regarding validation capabilities.

Depending on the configurations made by the lecturer, the tool could be used for

self-practicing as well as for grading and collecting points. With the help of this tool a

lecturer should be able to familiarize students with UML syntax and semantics and

possibly introduce to students some common modeling (in this case analysis and data

modeling) patterns.

19

1.4 Structure of the Thesis

The thesis is structured into several chapters, each focusing on different aspects of the

project. It begins with an Introduction that includes the background, statement of the

problem, research objectives, and the overall structure of the thesis. This sets the stage

for understanding the need for the research and what it aims to achieve.

In the Methodology chapter, the research object and process are described as well as

used tools are shortly mentioned.

The Related Works chapter reviews academic literature and previous research focused

on the teaching of UML, software modeling tools, and validation techniques in

educational environments. It highlights existing approaches to modeling education,

discusses challenges faced in diagram-based learning, and outlines prior attempts to

automate the assessment of UML diagrams. Subsections explore methods for teaching

and assessing UML knowledge, as well as the criteria for evaluating model quality,

which are directly relevant to the validation logic implemented in this thesis.

The Existing Tools chapter provides a comprehensive overview of current technologies

relevant to UML modeling, comparison, and practice. It begins with a short discussion

of UML diagram types, followed by an in-depth review of widely used UML

diagramming tools such as Enterprise Architect, StarUML, UMLet, yEd Live, Creately,

and Lucidchart. The section also explores UML comparison tools like EMF Compare,

Visual Paradigm, and UMLDiff, evaluating their capabilities for analyzing model

differences. Finally, it examines code practicing platforms such as LeetCode and

HackerRank, highlighting how they support interactive learning. This analysis forms a

basis for identifying functional gaps and areas for innovation that the proposed UML

Solver system aims to address.

The System Development chapter outlines the technical foundation and implementation

process of the UML Solver. It begins with an overview of system requirements,

distinguishing between functional and non-functional needs such as performance,

maintainability, and browser compatibility. The chapter then presents the chosen

technology stack and tools that support development. The architecture of the application

is analyzed through the separation of server-side and client-side components. Following

that, the user interface is discussed in terms of both student and lecturer perspectives,

20

each tailored to their respective roles. Finally, the chapter explores the diagram

validation subsystem, covering both rule-based algorithmic checks and LLM-based

validation. Although LLM-based validation was explored, the system outlines clear

reasons why this method is currently not suitable for automated assessment in this

context.

The Analysis and Results chapter presents an evaluation of the UML Solver system

based on real user feedback and development reflections. It begins with an analysis of

student survey responses, demonstrating the system’s usability, clarity of instructions,

and effectiveness in improving UML skills. The discussion summarizes how well the

tool meets its intended goals and addresses the specific needs of learners. Identified

limitations are acknowledged, along with their impact on the overall system experience.

Reflections on the development process highlight strengths, difficulties, and insights

gained throughout the project. The chapter concludes with suggestions for future

improvements and directions for ongoing development.

Finally, the Summary captures the main findings and results of the thesis, providing a

concise wrap-up of the research and development process. This allows readers to

quickly grasp the contributions of the thesis and its impact on the field of UML

diagramming platforms.

21

2 Methodology

The research follows the Design Science methodology, which emphasizes the design

and creation of an artificial artifact and validates its effectiveness through proper

evaluation [7]. The approach ensures that the developed artifact (in this case a novel

software system) is both necessary and practically useful, aligning with best practices in

the field and addressing real-world requirements.

2.1 The Object

During academic journey, the author had the opportunity to closely work with UML

diagrams studying the subject IDU1550 (Software Architecture and Design). This

course provided a solid foundation in understanding key concepts such as software

reliability, interoperability, and the principles of architecture and design. The course

highlighted the connection between design, code, and testing, introduced agile

documentation practices, and emphasized the role of UML diagrams in clearly

expressing architectural ideas [8]. The learning process included both theoretical

understanding and practical exercises, where students were expected to create various

UML diagrams and explain their use in different phases of software development. The

author used a StarUML to create all required UML diagrams, as he was working on a

Linux-based system and faced technical difficulties installing Enterprise Architect

through Wine. StarUML has support for Linux and provides the necessary functionality.

It was fully sufficient to meet the course requirements. All diagrams were built based on

the assignment description by the lecturer. The evaluation process took place during

practical sessions, where each student presented and defended their diagrams in an oral

format, explaining the structure, purpose, and correctness of their solutions.

Personal experience of the author with UML diagrams extends beyond academic

studies. In his professional work, he has frequently used various types of UML

diagrams to model the architecture of web-based systems. One of the most valuable

applications was the use of package diagrams to represent the structure of Gradle

modules in complex enterprise Java applications. Since his projects often involved

22

multiple microservices, each with its own internal architecture, it became essential to

document these structures accurately. These diagrams served as a powerful tool for

knowledge sharing within development teams and were particularly useful for

onboarding new team members. Visualizing the relationships between packages helped

team members gain a faster and deeper understanding of how different parts of the

system were organized and connected. In addition to package diagrams, the author

regularly used class diagrams to support the design and development of systems. These

diagrams allowed developers to better understand the structure of objects, their

attributes, methods, and the relationships between them. This made it easier to

implement solutions aligned with the design principles discussed during planning.

Moreover, the author had practical experience creating sequence diagrams to illustrate

the flow of logic across services in a distributed microservice environment. These

diagrams helped clarify the order of operations and interactions, especially when tracing

complex business logic that spanned several components of the system.

Based on this background and practical need, the vision of UML Solver is focused on

helping university students learn and practice creating UML diagrams. The first release,

which is planned to be the result of this work, covers class diagrams and package

diagrams. The platform is aimed at providing an educational environment where

students can improve their understanding of UML by drawing diagrams and receiving

automated feedback based on predefined correct solutions provided by the lecturer. This

tool will allow students to explore the logical structure of systems through visual

modeling, aiding both their conceptual knowledge and technical skills. Its web-based

nature means students do not need to install additional software and can access the

application from any location with an internet connection. Moreover, it means that the

system is available 24/7, thus allowing students to select the most suitable time for them

for practicing.

The software does not aim to replace professional modeling environments because it

has different goals. The first version of the software does not aim to support the entire

scope of UML. The software is specifically tailored for educational purposes, designed

to address the most common types of diagrams used in introductory and

intermediate-level software engineering courses. The result of the software is not only

the ability to create diagrams but also to validate them against lecturer-defined models,

23

giving students immediate insights into mistakes and encouraging self-improvement.

The software is intended to be used (at least) in the database courses. There are many

resources that present analysis- and data modeling patterns that encapsulate the best

practices in modeling and designing a database for a particular domain [9]-[14].

Moreover, there are many object-oriented design patterns that present suitable structures

of software classes [15]. If a task for a student is to create a diagram that corresponds to

a pattern, then it not only introduces and familiarizes UML but also introduces to the

learners these patterns.

From a validation perspective, the tool will control the structural correctness of

diagrams by comparing the student’s created version with the lecturer’s reference. At

this stage of development, the system includes restrictions in the user interface that

prevent common errors from being made, such as connecting incompatible elements or

omitting required fields. Whether it is a flaw (some mistakes from which one can learn

cannot happen) or a feature (this kind of behavior is also in better modeling tools) is

debatable. When an error is detected, the user is notified through a clear and informative

message, which contributes to the learning process by guiding students toward the

correct approach. However, the current version of the software does not validate

pragmatic aspects, such as design style, color, font, or layout aesthetics. These features,

which fall under the domain of visual presentation rather than logical correctness, are

excluded from the current scope of validation. The focus remains on helping students

understand and apply the structural rules of UML diagrams, ensuring they can express

architectural and design ideas effectively using standardized notation.

The object of this thesis is the development of an educational software UML Solver that

supports the creation and validation of UML diagrams for university students. It draws

from academic experience, real-world practices, and a focused educational goal. The

platform will guide students in constructing correct diagrams, provide meaningful

feedback, and serve as a practical supplement to traditional learning methods in

software architecture and design education.

The expected outcomes of the research include a fully functional web-based system for

students, enabling UML class and package diagram construction and automated

validation. In addition, the result includes a web-based user interface for lecturers for

constructing reference diagrams and viewing diagrams submitted by students.

24

Although existing web-based UML modeling tools offer diagramming functionality,

few provide automated validation, particularly with AI integration (e.g., Lucid.app).

This research primarily implements an algorithmic validation model but also explores

LLM capabilities. In practice, while LLMs can provide quite accurate responses, it

yields inconsistent results when the same question is posed multiple times, and the

answers may not always be correct. The rule based algorithmic approach makes the

system a valuable tool for software engineering education. The developed system has

the potential to be extended to other types of UML diagrams and other visual modeling

languages, serving as a foundation for future research in automated assessment

technologies for various educational fields. The software offers syntax and semantics

validation of models, with the possibility of expanding to pragmatic evaluation in the

future using LLM.

The software intends to repeat the success of SQL Solver that was developed in Tallinn

University of Technology in 2024 and has been successfully employed in database

courses [16]. The tool is able to automatically assess solutions to SQL tasks (i.e., SQL

statements) submitted by students. The tool allows an unlimited number of tasks and

over the last year more than 400 tasks have been added to it. UML Solver uses the ideas

of user interface and database structure of SQL Solver as the basis for its own user

interface and database structure, allowing the author to concentrate on the functionality

that is specific to this tool. The software will be developed using PostgreSQL, PHP8,

and JavaScript/jQuery in accordance with non-functional requirements, and will include

functionality for supervisors to define reference UML diagrams.

2.2 The Development Process

The development process for the UML diagram practicing platform was methodically

organized and closely matched the guidelines provided by the thesis supervisors. Firstly,

preliminary research was conducted on existing UML diagramming tools, automated

validation techniques, and coding-practicing tools.

Next, a prototype of the application user interface was created using Figma [17]. This

prototype served as a visual draft for discussions about the system's functionalities and

design, ensuring that both the student and supervisors had a clear understanding of the

25

project's direction from the beginning. Selected views from the prototype are presented

in Appendix 2, including the UML diagram types overview page in Figure 1 and the

class diagram task solving interface in Figure 2.

During these discussions, the supervisors proposed an initial structure for the database

that was intended to support the application's functionalities efficiently. As the project

progressed, the database schema was changed based on further analysis and feedback to

ensure it could handle data more effectively. The final revised version of the database

structure is composed of several interconnected schemas, which are presented in

Appendix 3. These include the task collections schema Figure 3, feedback schema

Figure 4, language classificators schema Figure 5, problem of task attempts schema

Figure 6, and the task schema Figure 7, all designed in DataGrip.

To manage the development process effectively, a Kanban board on KanbanFlow was

used [18]. This tool proved invaluable for tracking progress and organizing tasks related

to the project. All feature requests and suggestions for improvements from the

supervisors were logged into the Kanban board. This approach ensured transparency in

task management, allowed for clear prioritization, and helped maintain a steady

development pace. It also made it easier to monitor the overall project status and

identify potential bottlenecks. An example of the Kanban board setup is shown in

Appendix 4 Figure 8.

This approach not only helped in maintaining a clear overview of the project status at

any given time but also facilitated the prioritization and scheduling of tasks. Weekly

calls in the MS Teams were an integral part of the workflow, during which the work

completed over the week was reviewed. These sessions provided an opportunity to

demonstrate new functionalities, discuss the status of ongoing tasks, and receive direct

feedback from the supervisors. During these meetings, we also updated the Kanban

board with new tasks and planned the goals for the next week.

This structured weekly review and planning cycle ensured that the project remained on

track and aligned with the supervisors expectations. The iterative nature of this process,

combined with the agile management approach provided by KanbanFlow, allowed for

flexibility in development and responsiveness to changes in project requirements.

26

Regular updates and the clear visualization of progress on the Kanban board helped

maintain a lively and effective development environment, significantly enhancing the

final product's quality. This organized yet adaptable approach to project management

made sure the development of UML Solver was well-managed and aligned with the

academic supervisors educational and functional specifications.

The system was tested with students to measure its usability [19]. User feedback was

collected through web-based surveys to evaluate usability and system performance. The

accuracy of the system in automatically validating diagrams was evaluated by solving a

set of tasks and comparing the results produced by the system with the expected results.

The evaluation was done by the author and by the supervisors. To do that a set of tasks

was created that cover all the model element types that the software currently supports.

The evaluators provided correct answers to the tasks to make sure that these are

accepted by the system and also provided incorrect answers (incomplete, the use of

wrong types of model elements, the creation of wrong model elements) to make sure

that these are rejected by the system.

Based on received feedback from these evaluations some changes were made to the

software.

2.3 Tools and Technologies Used

Throughout the development of the platform, a set of supporting tools and technologies

was used to organize the workflow in writing, testing and debugging the code, and to

ensure the quality and maintainability of the system. These tools were essential in

facilitating the development process, improving productivity, and supporting

collaboration with supervisors. In this section, each tool is described along with its

specific role and contribution to the project:

● IntelliJ IDEA is used as an integrated development environment (IDE). It is

chosen for local development due to its robust features that support both

front-end and back-end development. IntelliJ IDEA provides comprehensive

tools for code writing, editing, and debugging, enhancing developer productivity

and making it easier to manage large codebases.

27

● Figma: Used for designing the user interface. Figma is a web-based tool that

enables designers to create interactive and visually appealing UI prototypes. In

the initial stages of development, a prototype was implemented in Figma, which

was instrumental in defining the system requirements. Figma's collaborative

features make it easy for designers and developers to work together and iterate

on the UI design, ensuring that the final product is both functional and

user-friendly. This early prototyping in Figma clarified what needed to be

implemented, making the development objectives more understandable and

straightforward.

● Git + GitLab: Git is employed as the version control system to manage the

application's codebase, while GitLab serves as the online platform for repository

hosting. This setup is particularly useful for a thesis project as it makes it

convenient to track changes and update the codebase efficiently, facilitating

smooth progress and collaboration. The final archived source code will be sent

to the supervisors.

● Enterprise Architect: This tool is used to conceptualize and visualize how UML

diagrams are implemented within the software. Enterprise Architect supports the

design and modeling of software and information systems architecture, making

it invaluable for planning and documenting the application structure.

Additionally, using this tool has enabled the identification of necessary elements

and functionalities required for constructing UML class diagrams as well as

package diagrams. It also plays an important role in creating models for the

application's architecture and implementation.

● Postman: Postman is utilized to test the web API's endpoints, ensuring that they

behave as expected and handle various types of requests correctly. It allows

developers to quickly verify the functionality of the RESTful services and debug

them when necessary, improving the quality and reliability of the application.

● Ubuntu 22.04.5 LTS: The application is developed and tested on Ubuntu, a

widely-used Linux distribution known for its stability and support. Using

Ubuntu as the development platform ensures that the application is stable and

performs well in a Linux server environment, which is commonly used in

production. The final version of the application will be deployed in a similar

environment, ensuring compatibility and optimal performance in real-world

settings.

28

● KanbanFlow is a lightweight task management tool based on the Kanban

methodology. It allows users to visualize tasks, manage priorities, and monitor

progress in a structured and intuitive way. In the context of this research,

KanbanFlow was used to track the development process, organize tasks, and

record ideas for future improvements. It helped maintain a clear overview of the

project status and supported time management throughout the development

cycle.

● DataGrip is a professional database management tool developed by JetBrains. It

provides an intuitive interface for working with SQL databases, enabling users

to browse data, run queries, and visualize relationships between tables. DataGrip

was used to directly manage the PostgreSQL database to make CRUD

operations against database schema. It also served as a visual reference for

understanding the relationships between tables and constraints.

● Microsoft Teams is a collaboration platform designed for communication and

teamwork, offering video meetings, chat, and file sharing in one environment.

Within this research, Microsoft Teams was used for weekly meetings with

supervisors, which took place every Monday. It also hosted a dedicated group

chat where supervisors provided feedback, answered questions, and shared

relevant academic materials, supporting continuous communication and

supervision.

● Google Docs is a cloud-based word processing application that allows multiple

users to edit documents in real time and leave comments for collaborative

writing and reviewing. In the context of the thesis project, Google Docs was the

primary tool for writing the thesis text. Supervisors were able to follow updates,

suggest edits, and provide structured feedback directly in the document. This

ensured consistency, correctness, and progress in the written part of the work.

● Google Forms was used to conduct a student survey after the application launch

in order to gather feedback on the usability and effectiveness of the system. This

allowed for structured data collection and analysis of user experience to inform

evaluation and further development.

● ChatGPT is a LLM that can assist with writing, coding, debugging, and

language correction tasks across various domains. ChatGPT was used to support

programming in JavaScript and PHP, which are not author’s primary

29

programming languages. It helped resolve technical issues more efficiently and

served as a grammar and clarity checker for the English text of the thesis.

This section has provided an overview of the tools that supported the development

process and helped ensure effective implementation and collaboration. Detailed

information about the technology stack of the system is presented in the section The

Technology Stack.

30

3 Related Works

This chapter refers to scientific research that is related to the topic of the current thesis.

The ideas from these papers were used as an input for designing the web-based UML

practicing tool.

3.1 Teaching and Assessing UML Knowledge

The integration of automated assessment systems into educational environments has

gained considerable attention in recent years, particularly in the domain of

object-oriented software engineering. UML remains a core element in the instruction of

systems analysis and design courses, serving as a universal visual modeling language

used to represent the structure and behavior of software systems. Due to the increase in

student numbers and the demand for personalized feedback, several solutions have been

proposed to automate the evaluation of UML diagrams produced by students, thereby

improving efficiency and consistency in the grading process.

One of the recent directions explored in research focuses on systems that compare

student diagrams to a predefined lecturer’s solution. The study presented in “Assessing

Students’ UML Class Diagrams: A New Automated Solution” [20] describes an

approach that relies on transforming both tutor and student diagrams into XMI format,

parsing them into structured elements, and matching them using a developed algorithm.

This system enables scoring based on identified mismatches and generates detailed

feedback, which not only assists tutors but also supports self-assessment by students.

The solution is scalable and well-suited for remote and large-group learning

environments, emphasizing automated feedback and time efficiency in grading.

However, this solution requires using an open-source modeling environment to

construct the diagram, which is then converted to XMI for validation.

A complementary approach is presented in “A Tool to Automate Student UML Diagram

Evaluation” [21]. This research describes a Java-based standalone tool capable of

evaluating several types of UML diagrams - such as class, use case, activity, sequence,

31

and state machine diagrams - by comparing the XMI representations of student and

reference models. The tool performs both strict and relaxed comparisons, and outputs

scores along with detailed feedback files for students and lecturers. The study highlights

the tool’s effectiveness in reducing the time required for grading and increasing

consistency, especially in courses with large enrollment numbers.

In the context of educational software tailored for UML learning, the tool described in

“StudentUML: An Educational Tool Supporting Object-Oriented Analysis and Design”

[22] addresses the challenges of using professional-grade CASE tools in academic

environments. The study outlines how general-purpose UML tools, while powerful, are

often too complex for beginners due to their feature-rich interfaces and strict adherence

to UML syntax. StudentUML was developed specifically to meet educational needs,

focusing on simplicity, ease of use, and consistency checking. It allows students to

construct diagrams incrementally, ensures logical correctness, and helps them

internalize modeling concepts. The tool supports project-level management and

distinguishes between analysis and design diagrams, which is essential for teaching

proper software development methodology.

In addition, the study concludes that many tools available on the market, including

MinimUML [23], UMLet, and Ideogramic UML, lack comprehensive support for model

validation, project consistency, and feedback generation. While these tools aim for

simplicity, they often fail to guide students in creating semantically correct models or in

understanding the distinctions between different types of UML diagrams. This

highlights the need for tools like StudentUML, which combine ease of use with

educational rigor.

The practical application and evaluation of StudentUML in a university-level course is

further discussed in “Learning and Practicing Systems Analysis and Design with

StudentUML” [24]. This research presents a real-world case of integrating the tool into

lab sessions of a Systems Analysis and Design course. According to the study,

StudentUML enhanced students' understanding of UML concepts, reduced confusion

caused by complex interfaces, and provided immediate, valuable feedback. The tool’s

validation capabilities and project consistency checks were found to be particularly

useful for beginners, reinforcing correct modeling practices.

32

Another solution targeted at educational environments is described in “QuickUML: A

Tool to Support Iterative Design and Code Development” [25]. This tool supports

drawing UML class diagrams, generating Java code, and reverse engineering diagrams

from existing source code. While limited in scope compared to other systems,

QuickUML is praised for its minimalistic interface and ability to help students

understand object-oriented design through iterative modeling and coding cycles. The

research emphasizes that introducing such tools early in education helps promote design

thinking and aligns well with the principles of incremental software development.

Another relevant study describes the DIAGRAM environment by Py, Auxepaules, and

Alonso [26]. This tool aims to teach students the basics of object-oriented modeling

using UML Class Diagrams. DIAGRAM uses a diagnostic module. This module

compares the student's diagram to a reference diagram provided by the teacher. The

comparison is done using a graph-matching algorithm. The tool identifies different

types of errors, such as missing or extra elements. It then provides feedback at different

levels (e.g., notifying, questioning, suggesting) to help the student. Like UML Solver,

DIAGRAM provides automated feedback by comparing diagrams. However, there are

several differences between the two tools. DIAGRAM seems to be a standalone desktop

application (built with Java). In contrast, UML Solver is a web-based tool that does not

need installation. Also, DIAGRAM only supports Class diagrams. UML Solver

supports both Class and Package diagrams and is designed to be extendable to other

diagram types in the future. The comparison methods are different: DIAGRAM uses

graph matching, while UML Solver uses a rule-based comparison of JSON data. The

specific ways feedback is given also differ. DIAGRAM's description does not explicitly

mention features like persistent storage of attempts, detailed student statistics, or export

formats like PlantUML, which are part of UML Solver.

Web service UMLGrader also gives automated feedback on UML class diagrams by

comparing them to a standard solution. It checks for common errors and was initially

for diagrams from IBM Rational Rose [27]. UMLGrader differs from UML Solver

because it only handles class diagrams and is tied to a specific tool. UML Solver is

web-based, uses its own JSON format for diagrams made in the tool, supports both class

33

and package diagrams, and focuses on structural correctness in its rule-based

comparison, not just name matching. UML Solver also tracks attempts and statistics.

The MinimUML tool [23] offers a simple way to learn UML diagramming for

beginners. It provides basic UML features for class diagrams in a simple desktop app,

focusing on design exploration. While minimUML is easy to use, it does not

automatically check student work against a correct example, which is a key feature of

UML Solver. MinimUML helps with creating diagrams, while UML Solver also helps

by validating them.

The examined research collectively demonstrates that while professional UML tools

offer full-featured environments, their complexity can hinder learning. Educational tools

that provide real-time validation, manageable interfaces, and targeted feedback are more

effective for academic purposes. Automated assessment systems must go beyond simple

structural comparison. They must facilitate learning by allowing students to understand

and correct their mistakes. Feedback, both formative and summative, plays a crucial

role in this process.

Existing tools for UML education either simplify diagram creation (like minimUML),

offer general feedback (like DIAGRAM), or provide assessment for specific tool

formats (like UMLGrader). However, there is a need for a tool like UML Solver. UML

Solver is a web-based platform that doesn't require installation. It supports key UML

diagrams (class and package) with an interactive editor and, most importantly,

automatically checks student diagrams against teacher-defined examples using rules.

This checking uses a standard JSON format. Features like saving attempts, showing

progress, and exporting diagrams make UML Solver a complete learning tool. It aims to

solve common problems in UML education by being easy to use while providing

strong, immediate feedback.

In conclusion, the reviewed works provide a foundation for the development of the

proposed platform, which aims to combine the strengths of automatic evaluation and

pedagogical effectiveness. Students will construct their own solutions, which will be

automatically evaluated based on structural and semantic alignment with the reference

model. The system will generate immediate, detailed feedback, thus contributing to a

34

more interactive, scalable, and effective learning environment for software design

education. The system developed in this thesis differs from existing solutions by being

fully web-based and integrating both an interactive diagram area and schema validation

logic. Additionally, as all data is stored in the cloud, lecturers can easily create and

update the database with new information.

3.2 Model Quality

Good model quality means that the model is built correctly, shows the right meaning,

and can be used easily in real situations. When analyzing models created by drawing

UML diagrams, it is important to consider three main aspects: syntax, semantics, and

pragmatics [28]. These aspects define how well a model is constructed, how accurately

it represents the intended meaning, and how useful it is in practice. Understanding these

three elements is essential for evaluating the quality of models in both software

development and educational settings. They provide a clear framework for checking

whether a model is correct, meaningful, and suitable for its purpose.

Syntactic correctness is the only syntactic goal. A syntactically correct model expresses

statements only with symbols that are defined in the language and provides all the

required constructs and information to follow the grammar of the language. Thus, each

UML diagram must adhere to certain rules about what types of elements can be used,

what elements can be connected and what association types could be used to connect

what types of elements. For instance, in the context of relationships like association,

aggregation, and composition, it is possible to connect a class to itself to show different

roles or responsibilities within the same entity. However, in the case of relationships like

implementation and generalization, such self-connections are not allowed. These

syntactic rules ensure that the diagrams are structurally consistent and understandable.

Syntactic rules in case of visual models also prescribe how the elements should look

like on diagrams.

Semantics is about the meaning of the elements in the model. There are two semantic

goals - validity and completeness. Validity means that all the statements made by the

model should be correct and relevant. Completeness means that the model should

contain all the statements about the domain that are correct and relevant. Statements

35

should not have any collisions in the logic and should be certain. What model is

complete depends on the task for which the model is used.

Pragmatics, the third aspect, means that the model should be comprehensible, i.e., all

interested parties should be able to understand it. Thus, models should be presented in a

manner that makes them as easily understandable as possible. In case of diagrams it

means, for instance, that diagrams should avoid long lines, crossing lines, font size

should be appropriate, coloring of elements is consistent and avoids too bright colors.

Moreover modeling conventions should be followed, e.g., in the context of

generalizations in a class diagram a more general concept (class) is placed above a more

specific concept (class).

36

4 Existing Tools

The tool that is produced as the result of the thesis combines the aspects of UML

diagramming tools, coding-practicing environments that give automated feedback, and

tools that allow us to find the difference between textual artifacts. It is used to practice

creating UML diagrams and checking these against the reference provided by the

lecturer. Thus, the overview of existing software should cover all these aspects.

Investigating the tools allowed the author to collect ideas for making UML Solver. We

provide a compact comparison of the tools in the form of comparison tables as well as

present a short section about the main features of each tool. Moreover, because the

current thesis is about making an educational software for learning UML, we firstly

provide a short overview of relevant aspects of UML.

4.1 UML

The Unified Modeling Language (UML) is an industry-standard modeling language

widely adopted in both academic and professional settings for designing and visualizing

software systems. Maintained by the Object Management Group (OMG), UML is

comprehensive and structured, with its latest specification (version 2.5.1 as of April

2025) spanning over 790 pages [29]. This extensive scope reflects UML's flexibility in

modeling complex systems across different domains, encompassing both static and

dynamic aspects of software architecture. Due to its standardized nature and visual

clarity, UML is especially useful in educational contexts, where it aids students in

understanding the architecture, components, and interactions within object-oriented

systems.

To meet the functional and educational goals of the software under development, it was

decided to implement support for two key UML diagram types: class diagrams and

package diagrams. These diagrams are fundamental in the structural modeling of

software systems. Class diagrams describe the blueprint of object-oriented components,

while package diagrams provide an overview of the modular organization of a system.

Class diagrams can be used to model requirements to a database (i.e., entity-relationship

37

diagrams), database data structures (e.g., structure of tables), and concepts/relationships

in the real world that would be the basis for determining what the classes should be in

an Object-Oriented software (OO software).

By modeling class and package diagrams, it becomes possible to represent both the

internal details and the architectural organization of a system. Class diagrams focus on

internal class structure and interactions, while package diagrams abstract these into

higher-level organizational units. These two diagram types complement each other and

form a complete picture of the system’s static structure. Their inclusion ensures that

learners can explore both micro and macro perspectives of information system- or

software architecture, facilitating better comprehension, clearer analysis, and improved

system analysis and design capabilities.

Through this structured approach based on the UML 2.5.1 specification, the model

delivers an educationally effective and technically sound representation of software

systems, providing an essential foundation for teaching principles of object-oriented

modeling and system architecture.

4.1.1 Class Diagrams

Class diagrams are arguably the most widely used form of UML diagrams, particularly

in the context of object-oriented development. They provide a static structural

representation of a system, showcasing its classes, attributes, operations, and the

relationships between different entities. In object-oriented programming (OOP) , each

class acts as a template for creating objects. On a UML diagram a class is typically

visually composed of three sections: its name, a list of attributes, and a set of operations.

Attributes denote the properties or fields of a class, such as variables holding specific

data, while operations define the behaviors or methods that objects of the class can

perform. Each attribute and operation is associated with a visibility modifier:

● “+” for public,

● “-” for private,

● “#” for protected.

Each visibility modifier controls accessibility and encapsulation, reinforcing principles

of object-oriented design.

38

Beyond regular classes, UML allows the definition of abstract classes. An abstract

class cannot be instantiated directly; instead, it serves as a base from which other

classes inherit. The main characteristic of an abstract class is the presence of abstract

operations, e.g., method declarations without implementations. These operations must

be concretely implemented in the derived subclasses. Abstract classes provide a

mechanism to define general behaviors while deferring specific implementations,

encouraging code reuse and polymorphic behavior in system design.

Another critical structural element in UML class diagrams is the interface. An interface

represents a contract that other classes must fulfill. It defines a set of operations without

implementations, ensuring that any class implementing the interface provides concrete

definitions for all declared methods. Interfaces are essential for achieving modularity

and decoupling in software systems, allowing for more flexible and interchangeable

components.

In addition to structural elements, class diagrams also capture a variety of relationships

that describe the nature of interaction between classes. These include association,

aggregation, composition, implementation, and generalization.

Association denotes a basic link between two classes, indicating that objects of one

class are connected and may interact with objects of another class. This connection can

be bidirectional or unidirectional. Associations can also be self-referential, meaning a

class can be linked to itself, which is useful in modeling hierarchical relationships like

employee-supervisor structures. Multiplicity can be defined at each end of an

association to specify how many instances of a class may be involved in the

relationship.

Aggregation represents a "whole-part" relationship where the part can exist

independently of the whole. For example, a university may consist of multiple

departments, but those departments can exist independently as organizational units.

Aggregation is visually represented with an empty diamond at the aggregate (whole)

end of the association.

Composition is a stronger form of aggregation, where the lifecycle of the part is strictly

tied to the whole. If the whole is destroyed, its parts are also destroyed. This is typically

used when modeling scenarios such as a building and its rooms, where rooms cannot

39

exist independently without the building. A solid diamond at the composite (whole) end

is used to represent composition.

Implementation relationship describes how a class implements an interface. It indicates

that the class agrees to fulfill the contract defined by the interface by providing concrete

implementations of its methods. This relationship is represented using a dashed line

with a hollow arrow pointing to the interface.

Generalization reflects inheritance between a subclass and a superclass. It implies that

the subclass inherits all properties and operations of the superclass and may also

override them or introduce new ones. This relationship is visualized with a solid line

and a hollow triangle pointing toward the superclass.

4.1.2 Package Diagrams

In contrast to class diagrams, package diagrams provide a high-level view of the system

by organizing model elements into packages. This modular representation is especially

useful when dealing with large-scale systems, as it improves clarity and maintainability.

Packages in UML are used to group related classes, interfaces, and even other packages

under a common namespace. Each package is represented as a folder-like symbol,

typically labeled with its name. The primary role of a package is to encapsulate

functionality and promote organized code structures, helping developers and students

understand the boundaries and dependencies of various components.

Package diagrams also include relationships that define how different packages interact.

The most commonly used relationship is the usage dependency. This indicates that one

package relies on another to function correctly, without implying ownership or

inclusion. A usage relationship is often used to model situations where one component

makes use of types or operations defined in another module. It allows the modeling of

dependencies across different parts of the system and supports modular development

practices.

4.2 UML Diagramming Software

The landscape of UML diagramming tools varies significantly, covering both offline

and online platforms that provide a variety of functions and access models. Many of

40

these tools provide both free and paid versions, where the free versions might come

with a trial period or have significant functional limitations. For our system, having an

online capability is essential, allowing students to work not only from the university but

also from home and other remote locations. This section will shortly analyze some

tools, focusing particularly on features relevant to creating UML class diagrams and

UML package diagrams, noting any unique characteristics of each tool.

Some modeling tools (i.e., tools that are not only meant for drawing diagrams) have

functionality to check models against predefined rules. On the other hand one can see

the absence of built-in functionality for diagram validation against a reference model.

This is not a limitation of these tools because this is not a part of intended functionality

of the tools.

However, the lack of the functionality points to a significant gap between the

capabilities of available UML tools and the specific needs of educational institutions.

This necessitates custom development or adapting open-source tools, creating a

significant opportunity for educational technology innovation in platforms with

integrated, advanced validation capabilities.

Many existing UML tools are closed-source, which makes it difficult to add features

like automatic validation or comparison with a reference model. While some tools, such

as Enterprise Architect or StarUML, offer strong modeling capabilities, they do not

support direct model comparison. Simpler online tools like UMLet or yEd Live are

easier to use but also lack built-in validation. As a result, there is a clear gap between

the needs of educational institutions and the functionality of current tools.

4.2.1 Enterprise Architect

Enterprise Architect (EA) is a robust offline modeling tool that supports a

comprehensive array of modeling languages including UML, BPMN, and ArchiMate

[30]. Primarily designed for enterprise architects and software developers, EA is utilized

for detailed software design, business process modeling, and system integration. It

includes both a paid version and a 30-day free trial, which provides full functionality

temporarily. The paid version is essential for ongoing large-scale projects due to its

advanced features like database modeling, code generation, and reverse engineering

capabilities. The software is intended for complex projects where detailed

41

documentation and strict adherence to standards are crucial. EA provides advanced

validation functionalities, though automated validation against a user-defined standard

requires custom scripts or specialized setups or use a third party extension like Model

Expert [31].

There are few studies about the popularity of UML modeling tools. We have found two

studies according to which EA is the most popular UML modeling tool [2], [32]. This is

the reason why EA is used as a basis for designing the user interface of UML Solver.

There are many third party extensions to EA [33]-[34]. Thus, hypothetically it would be

possible to create an extension that compares a model against a reference. However,

such a tool will require installing additional software (by a potentially inexperienced

user), EA is Windows software (i.e., making it difficult to use by Linux and Mac users),

and such tool cannot be used to assess students (because students will have to have a

reference model).

4.2.2 StarUML

StarUML is an agile offline UML tool aimed at software engineers and educational

environments focusing on quick and efficient modeling [35]. It supports essential UML

diagrams and offers extensions for additional functionality. StarUML provides a free

version with basic features and a paid version that includes more advanced

functionalities, such as model validation, diagram themes, and export options (e.g., PDF

and HTML). This tool is designed for simplicity and speed, making it ideal for students

and professionals who need to produce UML diagrams quickly without the overhead of

more comprehensive tools. While it includes model validation features, it does not

natively support comparison of models to find the difference without further

customization (external plugins).

4.2.3 UMLet

UMLet is an open-source, web-based UML tool designed for fast diagram creation

[36]-[37]. It is free to use, with no paid version, focusing instead on providing a

straightforward platform for users to quickly draw UML diagrams. UMLet is

particularly used in educational settings where students need to learn the basics of UML

efficiently. Its design philosophy is about simplicity and speed, allowing for rapid

42

diagramming with minimal learning curve. UMLet is ideal for educational workshops

or classes that require a tool for illustrating UML concepts without the complexity of

more feature-rich environments. The main disadvantage, it does not support automated

validation.

4.2.4 yEd Live

yEd Live is a versatile graph and diagramming online tool that offers both free and paid

versions [38]. The free version allows basic diagramming suitable for personal or

educational use, while the paid version provides enhanced features like high-quality

exports, advanced layout algorithms, and more extensive customization options.

Originally designed to cater to both casual and professional users, yEd Live supports a

broad range of diagram types beyond UML, including network diagrams, flowcharts,

and more. This tool is used for both educational purposes and corporate settings where

visual representation of data and systems is required. yEd Live does not include specific

features for UML diagram validation or comparing models with each other to find the

differences.

4.2.5 Creately

Creately is a user-friendly diagramming and design online tool that facilitates

collaboration and simplicity in creating diagrams [39]. It offers a limited free version

primarily for trial purposes and individual users, while the paid versions cater to teams

and enterprises with features like real-time collaboration, extensive shape libraries, and

full access to its desktop version. Creately was designed to enhance teamwork on visual

content, making it suitable for educational groups, business teams, and remote

collaborations. It is widely used in schools, universities, and businesses where

collaborative creation of diagrams is essential. Creately does not specifically offer

functionality for comparing models but does provide tools for consistency checking

within diagrams.

4.2.6 Lucidchart

Lucidchart, known for its clean interface and extensive diagramming capabilities, offers

both a basic free version and advanced paid subscriptions [40]. The free version is

suitable for personal use with some limitations on features and the number of

documents, whereas the paid versions offer advanced features like team collaboration,

43

revision history, and integration with other tools (e.g., Google Drive, Slack). Lucid.app

is designed to support a wide range of users from students to professionals across

various industries, facilitating complex diagramming needs including network

diagrams, process maps, org charts, and UML diagrams. It is particularly valued for its

ability to support collaborative work environments and integrate seamlessly with

various online platforms. Each tool is tailored to meet specific needs, ranging from

simple educational purposes to complex enterprise requirements. The choice between

free and paid versions typically depends on the user’s need for advanced features,

support, and scalability. These tools are not only used for educational purposes but also

in professional settings where detailed modeling, documentation, and collaboration are

important. Lucid.app integrates AI features that simplify collaboration and automate the

diagram creation process. These AI tools offer suggestions for diagram improvements,

assist in data analysis, and automatically generate visualizations based on textual

descriptions. Lucid.app does not natively support automated comparison of two models

but is highly adaptable for collaborative and detailed diagramming.

4.2.7 Evaluation of UML Diagramming Tools

Before beginning the implementation of the application, it was important to evaluate

existing UML diagramming tools. This evaluation served two main purposes. Firstly, it

helped to define a concrete set of functional and non-functional requirements for the

system. By studying existing tools, the author was able to identify commonly used

features, interface solutions, and workflow patterns that users expect in UML

diagramming environments. This made it possible to ensure that the developed system

would offer a competitive and relevant feature set.

Secondly, the evaluation provided valuable insight into user needs in the domain of

diagram creation. Users of UML tools often have different expectations depending on

their goals. For example, quick sketching of ideas or formal documentation. By

analyzing how current tools address these use cases, the author could better understand

what features are most valuable in practical usage. In particular, attention was paid to

usability, support for different diagram types, export options, and the balance between

flexibility and simplicity. This analysis helped shape the vision of the application and

guided design decisions throughout development. A comparison of existing UML

diagramming software is presented in Table 1 and Table 2.

44

4.3 UML Сomparison Tools

As software modeling has become a key aspect of object-oriented design education, the

need for specialized tools to compare UML diagrams has increased. In modern

educational and industrial environments, students and developers often produce

multiple versions of UML diagrams for the same problem. This creates a practical need

for comparing these diagrams in order to identify structural and semantic differences.

Tools designed for UML comparison help automate this process, making it easier to

review changes, validate correctness, and assess diagram quality.

UML comparison tools serve various purposes. In education, they support automatic

grading and feedback by comparing student diagrams to reference models provided by

lecturers. In collaborative development, such tools help teams track changes in system

design over time. A typical UML Diff tool analyzes diagrams at different levels: some

focus on purely structural elements such as classes, relationships, and attributes, while

others also consider naming, and diagram semantics. Advanced tools even evaluate the

impact of changes between versions, helping users understand not just what changed,

but why the change matters.

Most UML comparison tools operate by converting diagrams into an intermediate

format such as XMI (XML Metadata Interchange), which allows structured parsing and

element-by-element comparison. The resulting differences can be displayed visually or

reported in text form. Visual feedback is especially helpful in educational settings, as it

allows learners to directly see where their diagrams deviate from correct solutions.

Although the general goal of these tools is the same, their capabilities, integration

options, and complexity may vary significantly. Some tools are built into professional

CASE environments, while others are stand-alone applications or research prototypes.

Below is a short review of the most relevant and widely known UML Diff tools

available today.

Every UML comparison tool has certain limitations that affect flexibility or

accessibility. Some tools work only inside specific modeling environments like Eclipse

or IBM RSA, which makes them hard to use in other systems. Commercial tools, such

as Visual Paradigm and IBM RSA, require paid licenses. They are often large, complex,

and expensive, which makes them less practical for simple tasks or student use. Free or

45

academic tools are easier to use but often have limited features. They may not show

visual differences or support deep semantic comparison. These limitations show that

building a good and flexible UML comparison tool is a complex task.

4.3.1 EMF Compare

EMF Compare is a powerful and widely used tool built on the Eclipse Modeling

Framework (EMF) [41]. It supports model comparison for a variety of formats,

including UML diagrams defined via Ecore and XMI. This tool offers detailed

structural and semantic comparison features. Users can visualize model differences

within the Eclipse IDE, making it suitable for software development and academic

environments. EMF Compare is especially effective when used in combination with

other modeling tools like Papyrus or Sirius. It supports both two-way and three-way

comparisons and integrates with version control systems. It is important to note that

EMF Compare is not a standalone application. It requires installation and use within the

Eclipse IDE environment. This dependency means that users unfamiliar with Eclipse

may face a learning curve, and the tool is better suited for technically proficient users or

those already working with Eclipse-based modeling workflows.

4.3.2 Visual Paradigm

Visual Paradigm includes an integrated versioning and diagram comparison feature

within its Teamwork Server module [42]. It supports visual side-by-side comparison of

UML diagrams and highlights differences in model elements, including class structures,

relationships, and attributes. This feature is useful in collaborative settings where

multiple users work on the same project. It provides clear change tracking and historical

comparisons. Visual Paradigm is a professional-grade tool, and its comparison features

are intuitive and well-documented. However, all advanced features, including diagram

comparison and version diff tools, are only available in the paid versions. The free

Community Edition offers limited functionality and does not support Visual Diff for

diagram comparison or comparing a diagram in different revisions. Additionally, in the

Community Edition, all printed or exported diagrams contain a visible watermark,

which is unsuitable for formal academic and professional use.

46

4.3.3 IBM Rational Software Architect

IBM Rational Software Architect (RSA) provides extensive support for modeling and

model management [43]. It includes built-in tools for comparing UML diagrams,

detecting structural and semantic changes, and managing multiple model versions. The

comparison results are displayed visually, making it easier for users to identify and

understand changes between models. RSA is aimed at enterprise environments and

integrates well with IBM's ecosystem, including version control systems and automated

development pipelines. However, it is a paid commercial product and could be

considered heavy for educational use.

4.3.4 Enterprise Architect

Enterprise Architect supports model comparison using its “Baseline” functionality [44].

This feature allows users to capture a snapshot of a UML package at a certain point in

time and later compare it with the current version. Differences are shown through a

visual interface, including changes in classes, associations, and attributes. Comparison

is limited to diagrams created and stored within a single project on the same user’s

computer. It does not support comparing diagrams across different projects or between

different users. While this method is somewhat limited compared to dedicated diff tools,

it is still effective for small-to-medium projects and individual work sessions.

4.3.5 UMLDiff

UMLDiff is a research-based algorithm that implements semantic and structural

comparison algorithms for UML diagrams [45]. It has been proposed in academic

literature as a way to improve understanding of diagram evolution. UMLDiff analyzes

class diagrams by comparing not only syntax but also the roles and relationships of

elements within a model. Though not widely used in commercial products, this tool

plays an important role in research and educational experiments related to automatic

grading and model consistency checking.

4.3.6 DiffMerge

DiffMerge is a general-purpose text comparison tool that can be used to compare XMI

files, which represent UML diagrams [46]. However, it does not provide any

understanding of UML structures or model semantics. The tool simply highlights

textual differences line by line, without interpreting elements like classes, relationships,

47

or attributes in a meaningful way. It lacks any built-in support for UML or

diagram-specific visualization, which makes it unsuitable for users who need visual

feedback or structure-aware comparison. Due to these limitations, DiffMerge may only

be used in basic or experimental scenarios where a quick textual comparison is

sufficient, such as debugging or testing simple student submissions in a prototype

environment.

4.3.7 Evaluation of UML Comparison Tools

In evaluating existing UML diagram comparison tools, two key questions were

considered.

The first was whether these tools address the specific tasks set in this thesis. It was

observed that while some tools provide basic validation capabilities, they do not fully

support the goals defined in this work. Most existing software is limited to

general-purpose syntax checks and lacks the ability to perform domain-specific

validation or semantic analysis. These limitations prevent them from being used

effectively in educational environments where specific modeling constraints must be

enforced. As a result, they cannot fully satisfy the functional requirements identified in

the early stages of this project.

The second question was focused on how the solution developed in the thesis differs

from the available alternatives. The solution developed as part of this thesis introduces

key advantages that are not present in the reviewed tools. The main distinction lies in

the flexibility and extensibility of the validation system. The developed application

allows the creation and editing of custom validation rules that take into account the

context of the diagram (rule based validation). This includes not only checking for

structural correctness but also evaluating the semantic relationships between elements.

The comparative characteristics of UML diagram comparison tools are presented in

Table 3.

4.4 Code Practicing Software

Although current platforms do not specifically target UML diagram construction, many

coding-practice systems offer valuable insights into effective teaching and skill

48

evaluation techniques. These platforms engage users through structured exercises,

immediate feedback, and supportive guidance - principles that are highly applicable to

the design of a UML learning environment. In such systems, the goal is not limited to

validating correctness but extends to actively supporting learning through hints, detailed

feedback, and progress tracking.

By examining how popular platforms implement features such as task variety, real-time

validation, personalized suggestions, and user motivation strategies, we can identify

best practices that can enhance both the usability and pedagogical value of a

UML-focused tool. The comparison below highlights how each platform addresses

these educational aspects and offers a foundation for designing interactive and effective

UML training experiences.

4.4.1 LeetCode

LeetCode is a popular platform focused on algorithmic problem-solving [47]. It presents

users with coding challenges and offers an immediate evaluation of their solutions.

LeetCode provides test cases and identifies edge cases where the user's code fails. The

platform highlights the incorrect output and offers the ability to compare it with the

expected result. These features promote self-directed learning and help students focus

on specific issues in their solutions. For our project, LeetCode is relevant in terms of

how feedback is structured - precise, focused, and directly tied to user input. This style

of feedback will inform how UML validation messages are presented to students in the

platform.

4.4.2 HackerRank

HackerRank offers a broad set of challenges across various domains, including

algorithms, databases, artificial intelligence, and more [48]. What makes HackerRank

notable is its structured learning paths, which combine theory with interactive tasks.

The platform provides a smooth learning curve, combining difficulty scaling with

immediate feedback on progress. Its user interface clearly separates task description,

code editor, and output validation, creating a clean and focused workspace. The

platform also supports hints and explanations that are gradually revealed. These features

are valuable for our UML learning platform, where structured progression, clean task

presentation, and optional hints can improve the learning experience.

49

4.4.3 CodeSignal

CodeSignal is another modern platform used by both learners and employers to evaluate

programming skills [49]. Its strength lies in creating real-world-like coding

environments and producing clear scoring metrics based on performance. CodeSignal

tracks accuracy, speed, and efficiency, and provides results in a structured report format.

For our case, its relevance lies in how performance feedback is presented in a

user-friendly and motivating way. CodeSignal’s feature of tracking the time taken to

solve a task can be especially useful, as it encourages efficiency and helps monitor

student progress over time.

4.4.4 CodeChef

CodeChef is an open platform that hosts programming contests and practice problems

for users at all skill levels [50]. One of its most educational features is its discussion

section, where users share solutions, ask questions, and learn from one another. It

promotes a learning community that is not only supported by automated validation but

also by peer interaction. The concept of discussion is particularly interesting, as it

provides students with the opportunity to ask questions and receive feedback from the

teacher on specific assignments.

4.4.5 Evaluation of Code Practicing Tools

As part of the preliminary work for the development of the UML Solver application, an

evaluation of existing code practicing platforms was carried out. The main purpose of

this analysis was to understand the user experience offered by such systems. Particular

attention was paid to how these platforms handle task validation, deliver feedback to

users, and manage timing constraints during exercises. These aspects are critical in

learning environments, where immediate and clear interaction with the system plays a

key role in user motivation and understanding.

The analysis focused on the way systems present validation results, whether they

provide instant feedback or delayed evaluation, and how they notify users about errors

or successful submissions. Additionally, the presence of features such as time tracking,

task deadlines, and interface responsiveness was examined. These elements were

important for shaping the presentation layer of the UML Solver application. By

studying existing solutions, it was possible to identify which interaction patterns are

50

intuitive and effective for educational use cases. The insights gained through this

comparison directly influenced the design of user feedback, submission status

messages, and interface responsiveness in the developed system.

The comparison of software platforms for code practice and learning is presented in

Table 4.

51

5 System Development

This chapter provides an overview of the development process of the UML Solver

platform, a web application designed to help students build UML diagrams and receive

automated validation based on reference models created by lecturers. The system aims

to support learning and streamline evaluation in academic environments.

The chapter outlines key requirements that shaped the project, describes the

technologies used, and explains the general architecture of the application. Special

attention is given to how the platform handles diagram validation, ensuring both

correctness and feedback for users. The development process followed established

software engineering practices to ensure that the system is functional, reliable, and easy

to use.

5.1 System Requirements

This section outlines the specific requirements for the UML Solver platform. It covers

both functional and non-functional aspects that define how the system should operate

and perform.

5.1.1 Functional Requirements

This section presents the functional requirements of the UML Solver system. These

requirements define the core features and actions that the platform must support in order

to fulfill its educational purpose. They describe how students interact with tasks, create

diagrams, receive validation, view statistics, and communicate with lecturers.

Additionally, they cover the tools available for lecturers to create and manage reference

models. The listed functions ensure the platform operates effectively as a learning and

evaluation tool within the academic environment.

Student

1. Can log in by using his/her username and password in Maurus environment.

○ Login function returns student number if he/she can enter and NULL

otherwise.

52

2. Can switch the language between Estonian and English. Switching the language

changes not only the user interface language but also the presented content

because each task is associated with exactly one natural language.

3. Can see a list of active tasks (name, diagram type, difficulty, state of solving

(solved, unsolved, untried))

○ solved - at least one correct attempt (it is irrelevant if there are incorrect

attempts after the correct attempt),

○ unsolved - at least one attempt but no correct attempts,

○ untried - no attempts.

4. Can sort (ascending or descending) and filter the list of active tasks based on all

the fields.

○ By default the tasks are sorted by name.

5. Can see ordered sets of tasks (name, number of tasks in it, number of solved

tasks) that have state active.

○ The sets are sorted by name.

6. Can select a set and see:

○ all the tasks in it (including the sequence number of the task in the

ordered set),

○ the description of the set,

○ the number of solved tasks in the set.

7. Can select a task and see:

○ name,

○ diagram type (name + if exists, then diagram type description and

documentation; the latter could contain references, i.e, URLs to outside

resources),

○ difficulty,

○ state of solving,

○ description.

8. Can see hints (one-by-one or all together) based on the system-level

configuration that determines how many attempts one must make to see hints (-1

would mean that hints are never shown).

9. Can see a clock that shows how much time in seconds he/she has already spent

at the task page.

53

10. If a student has selected a set and then selected a task from the set, then at the

task page he/she can move to the next or to the previous task in the set.

11. Can solve a task by creating a class diagram or a package diagram.

○ In case of class diagrams at least the following elements should be

supported:

■ class,

■ attribute,

● visibility,

● type,

● multiplicity

■ operation,

■ undirected association:

● name,

● multiplicities,

● roles

■ aggregation:

● name,

● multiplicities,

● roles

■ composition:

● name,

● multiplicities,

● roles,

■ generalization,

■ abstract class,

■ interface

○ In case of package diagrams at least the following elements should be

supported:

■ package,

■ usage relationship (with possibility to give name).

12. Can submit the answer for automatic assessment.

13. Can see the automatic feedback of the system.

○ Task is solved if there is 100% conformance to the reference model

provided by the lecturer with the following exceptions:

54

■ placement of elements on a diagram is irrelevant,

■ order of attributes/operations in a class is irrelevant,

■ the names are case insensitive, e.g., “Client”, “client”, and

“cLiEnT” would be considered equal,

● On the other hand, “Client” and “Customer” are not

considered to be the same thing because the terminology

is determined by the task.

■ spaces before and after names are removed before the evaluation,

■ within the class name a single _ and a single space are considered

equal.

14. Can give feedback (write a question/remark) to a lecturer regarding a specific

task. Feedback is personalized, i.e., not visible to other students.

15. Can see answers to the feedback.

○ From a task page feedback related to this particular task.

○ From a general menu all feedback (time, task name, answering time).

Clicking on it opens the actual answer.

16. Can see past task attempts of a particular task (time, state of solving, submitted

solution).

17. Can select a past task attempt to continue working with the diagram that was

produced as a result of this.

18. Can export the created diagram in PlantUML format.

19. Can save the screenshot of a diagram.

20. Can see the history of all task attempts (time, name, diagram type, difficulty,

state of solving).

21. Can sort (ascending or descending) the history based on all the fields.

22. Can see statistics of his/her task attempts:

○ number of task attempts,

○ number of successful task attempts + percentage from total attempts,

○ number of failed task attempts + percentage from total attempts,

○ total spent time,

○ total spent time to get the right answer,

○ for each difficulty level:

■ number of tasks,

■ number of solved tasks,

55

■ percentage of solved tasks.

○ for each diagram type:

■ number of tasks,

■ number of solved tasks,

■ percentage of solved tasks.

○ for each set of tasks:

■ number of tasks,

■ number of solved tasks,

■ percentage of solved tasks.

23. In case of statistics only the tasks that have state “active” or “visible for

statistics” are considered.

24. Can delete history, i.e., make it anonymous. It means that feedback and task

attempts of the student are not associated with him/her any more. Whether this is

possible depends on the system-level configuration (1 - possible; 0 - not

possible).

25. The system should log all task attempts, including time, student-ID, submitted

diagram, and given feedback.

26. The number of task attempts that a student can make should be unlimited.

However, all the attempts should be logged.

27. Can let the system select a random task.

Lecturer

1. Can log in by using his/her username and password in Maurus environment

(Login function returns TRUE if he/she can enter and FALSE otherwise).

2. Can construct a reference model and see/copy its representation in JSON format.

3. Can give a model in JSON format as an input and see its visual representation.

4. Can save a model in PlantUML format.

5. Can save the screenshot of a diagram.

The functional requirements knowingly lack the management of grading. The system

should allow students to solve the tasks. It should collect detailed information about

task attempts. Grading or receiving points depends on a particular course and keeping it

outside the system makes both the system and the grading more flexible. In the system

the student knows what he/she has done and the course determines how it translates to

points or to a grade.

56

5.1.2 Non-Functional Requirements

This section defines the non-functional requirements of the UML Solver system. These

requirements describe the quality attributes that ensure the platform is secure,

accessible, maintainable, and performs efficiently under expected workloads. They

include standards for the database, user interface, technology compatibility, language

support, and security practices. While they do not define specific functionalities, these

constraints are essential for delivering a stable, user-friendly, and scalable system suited

for academic use.

Tools

● Database Management System: PostgreSQL.

○ It must be assumed that always the newest version of it will be used.

● Application: PHP 8, CSS, JavaScript, jQuery, Bootstrap.

Database

● All declarative constraints that can be enforced at the database level (PRIMARY

KEY, UNIQUE, NOT NULL, FOREIGN KEY, CHECK) should be enforced at

the database level regardless of whether a corresponding validation takes place

at the application level as well.

User interface

● The general look and feel of the user interface should resemble SQL Solver [16],

to deploy ideas that have proven themselves in practice, and leave more time to

design the automated assessment module of the system.

● The user interface should also reuse ideas from the Enterprise Architect CASE

tool in order to be familiar to students.

● The user interface should follow the requirements of the European Standard for

ICT Accessibility EN 301 549 [51].

● It should work with all major web-browsers (Chrome, Firefox, Edge, Opera,

Safari).

Multiple language translations

● Translation files of user interface elements should be separate files.

○ It should also be possible to translate the feedback to a task attempt.

● The software should be developed in a manner that it would be easy to add

additional languages to Estonian and English.

57

Security

● The application should use the database as a user with minimal possible amount

of privileges, i.e., not as a superuser.

● In the PostgreSQL database PUBLIC should be stripped from all the default

privileges.

● SQL injection and cross-site scripting attacks should be prevented.

5.2 The Technology Stack

This section describes the technologies used in building the application, including tools

for both front-end and back-end development.

5.2.1 Used Tools

The development of UML Solver utilizes a carefully chosen set of technologies, each

playing a critical role in creating an efficient, scalable, and user-friendly system. This

section provides an overview of each component of the technology stack:

● PostgreSQL (ver. 17 at the time of creating the thesis) is chosen for its reliability

and robust feature set, serving as the database management system for the

application. It is a popular open-source software that offers extensive

capabilities for handling complex queries and ensuring data integrity [52]. The

use of PostgreSQL in this project is essential for managing complex data

efficiently and securely. Additionally, it meets a non-functional requirement

specified by the supervisor due to PostgreSQL's cost-effectiveness as a free tool,

its large and active community, and continuous updates. In addition, PostgreSQL

has a widespread use in many other projects at the Tallinn University of

Technology. It ensures compatibility and support within the existing

technological ecosystem.

● PHP (version 8) is chosen as the primary server-side scripting language for its

robust support and notable performance improvements compared to earlier

versions of PHP. The preference for PHP was guided by the supervisor's

recommendation, emphasizing its ease of maintenance and the potential for the

future enhancements. The supervisor's prior experience with PHP and its

widespread adoption in other projects at the Tallinn University of Technology

58

were key factors in this choice. This experience ensures a consistent approach

across projects and allows for efficient use of existing knowledge and resources.

● JavaScript with jQuery. JavaScript, supplemented with jQuery, is employed to

enhance the client-side functionality of the application. This combination allows

for creating a dynamic and responsive user interface by handling events,

performing AJAX calls to the server, and manipulating the DOM. jQuery

simplifies many common tasks in JavaScript, making the code more manageable

and less prone to errors.

● JointJS – the JavaScript library is utilized to provide advanced diagramming

capabilities. JointJS allows for the easy creation and manipulation of the

graphical elements that make up UML diagrams, offering extensive

customization options to fit the specific needs of the application. Compared to

other libraries, JointJS was chosen due to its flexibility, open-source availability,

active community, and strong support for UML-like structures. Structure could

be serialized to JSON format. GoJS was not selected because it is a commercial

library, which means limited functionality and visible watermarks without a paid

license. bpmn-js is a suitable library for creating diagrams, but It is focused on

BPMN format and has limitations in serialization and deserialization (exports to

BPMN format or SVG picture). Mermaid was excluded due to its complexity of

markdown-inspired text definitions and styling limitations.

● Bootstrap is used to improve the front-end framework of the application.

Bootstrap is well-known for its responsive design templates and reusable

components, which include buttons, forms, and other user interface elements.

This framework makes it easier to develop a visually appealing and consistent

interface across different screen sizes and devices. By using Bootstrap, the

application ensures a high level of usability and accessibility, making it easier

for users to interact with the system. Bootstrap's grid system and responsive

design capabilities are especially helpful in creating a layout that adjusts

dynamically, providing an optimal viewing experience both on desktop and

mobile environments. Using Bootstrap not only helps keep the user interface

clean and modern but also speeds up the front-end development process by

using its extensive pre-built components.

● Docker is used to containerize the application in the development environment,

ensuring that it runs consistently across local development environments.

59

Docker Compose allows for defining and running multi-container Docker

applications. In this project, Docker is particularly useful for managing the

application's infrastructure, such as the PostgreSQL database, in a way that is

both scalable and isolated from the host system.

This comprehensive technology stack provides a robust foundation for developing and

maintaining the UML Solver application. Each technology was selected for its specific

benefits, ensuring that the final product is capable of meeting the complex requirements

of educational and professional environments where UML diagramming is essential.

5.3 Web Application Architecture

The web application utilizes an architecture designed to provide a reliable and

responsive user experience while efficiently handling complex data interactions for

UML diagramming. It is structured according to Martin Fowler's three-tier architectural

pattern [53], which splits the logic into clear layers for presentation, business logic, and

data management. This structured approach enhances the system’s maintainability and

allows for simpler modifications in the codebase as development needs evolve.

The server-side implementation employs PHP to manage both static page rendering and

dynamic API requests effectively. Routing mechanisms distinguish between these

functions: requests to the root or specific endpoints trigger page rendering, while

requests prefixed with /api are directed to the API handlers. This clear separation

simplifies the organization of the codebase, facilitating easier code management and

enhancing the readability and supportability of the system.

The architecture is designed to improve maintainability, making it easier for developers

to introduce modifications or enhancements. By separating different functionalities into

distinct sections, the system not only becomes more manageable but also improves

other critical aspects such as code readability and the ease of ongoing maintenance.

An overview of this architectural structure is illustrated in Appendix 6 Figure 9, which

presents the UML Solver Three-Tier Architecture Diagram.

60

5.3.1 Server-side Structure

The server-side structure of the web application is built to handle a variety of

operations, from rendering web pages to processing API requests, effectively ensuring

that the system is robust and responsive. This part of the application is crucial for the

security, efficiency, and scalability of the UML Solver.

The PHP server is configured to distinguish between content rendering and API service

requests based on the URL structure. Standard requests to the root or specific page

endpoints are processed for page rendering. The server checks if the requested page

exists; if it does not, it returns a 404 error and redirects the user to a custom 404 error

page. This ensures a smooth user experience by managing invalid routes gracefully.

To complement this structure, all REST API endpoints used in the UML Solver

application are documented in Appendix 7 Figure 10, while all available web page

routes are outlined in Appendix 8 Figure 11.

The API interaction is used in the web-application. When the server receives a request

that starts with /api, it recognizes this as a call to the application's API. These requests

are handled by a designated controller optimized for API interactions. The API plays a

critical role in the application's functionality, handling several essential operations:

● Authentication. Verifying the identity of the user to ensure that responses are

secure and personalized.

● Validation. Checking the integrity and correctness of the data received from the

front end. This step is vital to prevent issues related to data format and content,

which can affect database operations and business logic execution.

● Business Logic. Once the request data is validated, the server processes it

through the business logic layer. This layer is where the application’s core

functionalities are implemented, including data manipulation and logic

processing that form the backbone of features of the UML Solver.

● Database Interaction. The server interacts with the database through the database

layer, which abstracts the data storage and retrieval mechanisms. This layer

facilitates communication with the database, ensuring that data queries and

updates are performed efficiently and securely. The use of prepared statements

61

and parameterized queries helps prevent SQL injection attacks and ensures data

integrity.

This multi-layered server-side structure supports not only the current functionalities but

also provides a foundation for future enhancements. The separation of concerns among

different layers increases the system's maintainability and allows for easier updates and

scalability. Each layer can be modified or improved independently based on future

requirements, ensuring that the application remains robust and adaptable as new

features are developed or existing ones are refined.

Additionally, as the application faces increased load, particularly during concurrent

validation of UML diagrams by students, the architecture is designed to enhance

scalability. This scalability allows the system to distribute the load across multiple

nodes effectively. As a result, the application can handle higher traffic and processing

demands without degrading performance, ensuring that it continues to operate smoothly

and efficiently even under stress. This capability is particularly important in educational

environments where many students might be using the system simultaneously, requiring

the application to manage large volumes of requests and data interactions in parallel.

5.3.2 Client-side Structure

The client-side structure of the web application is designed to deliver an interactive and

user-friendly interface, crucial for both students and lecturers. It utilizes a combination

of HTML, CSS, JavaScript, jQuery, and Bootstrap to create a responsive and intuitive

environment. HTML structures the content, CSS and Bootstrap handle the styling and

responsive design, ensuring the interface is attractive and functional across different

devices and screen sizes. JavaScript, enhanced by jQuery, facilitates dynamic

interactions and behaviors, streamlining operations such as DOM manipulation, event

handling, and AJAX calls for efficient communication with the server-side REST API.

The AJAX interactions are important for the seamless operation of the application,

particularly when students submit UML diagrams for validation or when data needs to

be fetched without refreshing the webpage. This setup allows for the smooth and

continuous interaction with the server, where data can be sent and received

asynchronously, enhancing the user experience by maintaining a dynamic and

responsive interface.

62

Real-time interactivity is a key feature of the client-side implementation, with

JavaScript and jQuery providing immediate feedback on the user's actions, such as

validating UML diagram elements directly in the browser. This instant feedback is vital

for educational tools, as it helps students correct errors and learn more effectively

through immediate responses. Additionally, the use of Bootstrap enhances the

client-side architecture by providing a robust framework for developing responsive

layouts and components that are visually appealing and easy to use. This integration

ensures that the application not only functions well but also looks good and is accessible

on a variety of devices.

The client-side also includes a routing mechanism that efficiently manages the display

of different views and states of the application without server-side page loads. This

client-side routing helps in reducing the load on the server and speeds up the user

interaction with the application, making the system more scalable and efficient. The

combination of technologies creates a powerful and effective user interface that

supports the educational goals of the UML diagram application. To enhance the

functionality and interactivity of UML Solver, the application uses JointJS, a powerful

open-source library (Mozilla Public License 2.0) that facilitates the creation and

management of diagrams. JointJS is integrated into the client-side architecture to enable

robust diagramming capabilities directly within the web browser. To fulfill the detailed

needs of comprehensive UML diagrams, all diagram elements and their relationships

were designed and coded from scratch based on the Enterprise Architect elements

design. These components are defined in a dedicated JavaScript file - uml_elements.js.

This setup ensures that each element is confirmed to UML standards and is fully

functional for educational purposes. The features of each element and relationship have

a custom design that aligns with best practices in diagramming tool design, enhancing

the visual clarity and usability of the diagrams. The aesthetics and functionality of these

designs are important as they contribute significantly to the learning experience.

For diagram validation and management, JointJS provides a built-in mechanism for

serializing diagrams into JSON format. This serialization captures all aspects of the

diagram, including element designs and positioning. The JSON format is particularly

advantageous as it allows diagrams to be saved and later retrieved, maintaining their

original layout and design. This functionality is important for scenarios where a student

63

would like to review a previous attempt or a lecturer needs to review a student's work.

The ability to serialize and deserialize diagrams ensures that users can seamlessly

validate and save their progress and reopen their diagrams without any loss of data.

This integration of JointJS into the client-side structure enriches the application’s

capabilities, making it a powerful tool for creating, managing, and validating UML

diagrams in an educational setting. By combining HTML, CSS, JavaScript, jQuery,

Bootstrap, and JointJS, the application not only provides a dynamic and user-friendly

interface but also a technically robust platform for UML diagramming that meets

educational needs effectively.

5.4 User Interface

This section provides an overview of the web application's user interface, which

includes various pages available to end users. The screenshots are presented in the

Appendix 9. The UML Solver is built with PHP and serves both as a web page renderer

and a RESTful API provider. The available pages with business logic related to diagram

construction and validation include:

● /tasks

● /tasks/class-diagram/{id}

● /tasks/package-diagram/{id}

● /attempts

● /task-attempts/{id}

● /statistics

● /feedback

● /lecturer/class-diagram

● /lecturer/package-diagram

The following subsections describe the user interface structure and functionalities

provided for the two main user roles: students and lecturers. Particular focus is placed

on pages that implement business logic related to diagram construction and validation.

5.4.1 Student-Oriented Interface

Access to the student interface requires authentication using valid credentials from the

in-house Maurus system. The authentication process is handled by invoking a

64

predefined function in the external database service, where the student's username and

password are submitted. If the credentials are valid and access is permitted, the function

returns a unique student identifier. This identifier is stored in the session and is used to

associate user-specific data with actions performed within the system, such as diagram

submissions and feedback entries.

Following successful authentication, a CSRF token is generated by the application with

a validity period of three hours. This token is attached to all authorized API requests,

and the system performs token validation on each request to secure restricted endpoints.

The authentication function used is externally provided and was made available to the

system developers. After logging in, students gain access to protected pages, including

those for viewing available tasks, solving diagram-related exercises, reviewing attempt

history, analyzing personal statistics, and submitting feedback.

Tasks Page (/tasks)

The tasks page presents students with a comprehensive overview of all available UML

diagram exercises Figure 12. Tasks are grouped into collections, which are displayed on

the left side of the interface. Each collection includes a progress indicator that shows

how many tasks have been completed out of the total available in that group.

In the main section, tasks are listed in a table format with several filtering and sorting

options. Students can search tasks by name, filter by diagram type (e.g., class diagram,

package diagram), by difficulty level (e.g., beginner, advanced) or by state of solving

(e.g., not started, solved). The table displays key information for each task, including:

● Name - the title of the task;

● Diagram Type - the type of diagram that is practiced with the task;

● Difficulty Level - the intended skill level;

● Status - the current solving status, such as “Not started,” “Started but not

solved,” or “Solved.”

There are also two action buttons: Reset filters clears all applied filters, and Select

random task chooses a random task for the student to attempt.

This interface helps students navigate and manage their progress through the

diagram-solving exercises.

65

Class Diagram Task Page (/tasks/class-diagram/{id})

This page provides an interactive environment for solving UML class diagram tasks

Figure 13. The workspace displays the initial state of a diagram, which may include

predefined elements and relationships. In many cases, the workspace may be empty,

requiring the student to construct the entire solution from scratch. The task description

is presented on the left, containing a set of textual constraints that the diagram must

fulfill. These statements define relationships between classes, cardinality, and other

structural rules. Students also see a short description of the diagram type and references

to the documentation about the diagram type.

The central canvas allows users to build or modify the class diagram visually.

Available actions are grouped into the following categories:

● Elements of the class diagram:

○ Class - insert a standard class;

○ Abstract Class - insert an abstract class;

○ Interface - insert an interface element.

● Relationships of the class diagram:

○ Association - creates a general link (association) between elements;

○ Aggregation - defines a "whole-part" relationship where there is no

existential dependency between the whole and its parts;

○ Composition - represents strong ownership with existential dependency

between the whole and its parts;

○ Realization - indicates implementation of an interface;

○ Generalization - define inheritance between classes.

● Features

○ Check Solution - validate the diagram against the reference model;

○ Load Attempt - restore a previously saved attempt;

○ Export to PlantUML - generate a textual PlantUML representation of

diagram;

○ Save Screenshot - download a visual snapshot of the current diagram;

○ Clear Workspace - remove all elements from the canvas.

Additionally, a student can ask a question from the lecturer about the specific task. After

submitting the diagram for validation, a results panel slides out from the right. It

displays the following information: attempt number, time used, status of the attempt

(e.g., Solved/Unsolved), hints and validation errors Figure 14.

66

Package Diagram Task Page (/tasks/package-diagram/{id})

It is similar to the class diagram task page, except that it has different elements

(Package) and Relationships (Usage) Figure 15.

Attempts Page (/attempts)

The attempts page provides an overview of all task-solving attempts made by the

student Figure 16. It is presented in a tabular format and supports filtering by diagram

type, difficulty level, solving state as well as keyword-based search.

Each row in the table contains the following information:

● Task Name - the name of the task attempted.

● Diagram Type - the UML diagram type.

● Difficulty Level - the intended complexity of the task.

● Result - whether the attempt was Solved or Unsolved.

● Time of Attempt - a timestamp showing when the solution was submitted.

This page allows students to track their activity, review their progress over time, and

identify which tasks remain unsolved. It serves as a personal task history log, supporting

reflective learning and time management.

Task Attempt History Page (/task-attempts/{id})

This page allows students to review their previous solution attempts for a specific task

Figure 17. The central canvas displays the result of the selected attempt, including the

submitted UML diagram. On the left side, the original task description is shown,

outlining the requirements the student was expected to fulfill.

The right panel provides detailed information about the selected attempt:

● Task Status - indicates whether the overall task is solved.

● Attempt Result - shows whether the specific attempt was successful.

● Attempt Number, Time Used, and Submission Timestamp.

● Feedback - displays system-generated feedback if available.

Below this, a chronological list of all previous attempts is shown. Students can select

any attempt to view its content and status, enabling reflective analysis of their progress

and mistakes. This page supports self-assessment and encourages iterative improvement

in diagram construction.

67

Statistics Page (/statistics)

The Statistics page provides a personalized summary of the student's performance

across all completed attempts Figure 18. The top section displays general metrics,

including:

● Total number of attempts

● Number and percentage of successful and unsuccessful attempts

● Total time spent solving tasks (in minutes)

● Average time taken to reach a correct solution

Below the general overview, the page presents detailed breakdowns:

● Difficulty Level Statistics - shows the number and percentage of solved tasks

by difficulty category (e.g., beginner, advanced).

● Diagram Type Statistics - aggregates performance by diagram type, such as

class diagrams and package diagrams.

● Collection Statistics - summarizes performance for each task collection used

in the system.

This page allows students to reflect on their progress, identify areas for improvement,

and monitor their activity within the diagram-solving environment.

Feedback Page (/feedback)

The Feedback page allows students to see all the feedback that they have received based

on their questions Figure 19. On the left side, a list of tasks with available feedback is

displayed. Selecting a task opens a conversation view in the center of the screen, where

messages between the lecturer and the student are shown in chronological order.

Students can read comments, submit replies, and continue the discussion if clarification

is needed. Each message includes a timestamp to track the feedback process.

On the right side, a task summary is presented, which includes:

● Task Status (e.g., Solved/Unsolved/Untried)

● Total Attempts

● Task Name and Description (including class structure requirements, attributes,

and constraints).

This feature promotes individual guidance and supports formative feedback, helping

students understand their mistakes and improve their solutions based on direct input.

68

5.4.2 Lecturer-Oriented Interface

Access to the lecturer interface is granted through authentication using the Maurus

system, similarly to student login. In this case, the application invokes a separate

external function, which verifies whether the user has lecturer privileges. Upon

successful verification, boolean value TRUE is returned and the logged in role stored in

the session. This identifier not only supports request personalization but also serves as

the basis for role distinction within the system. A CSRF token with a three-hour validity

is also issued, and it is required for all authenticated API interactions.

The role flag assigned during login determines both the availability of interface pages

and access to protected backend endpoints. While students are directed toward learning

tasks, the lecturer interface is designed primarily for supporting the preparation of tasks,

and occasional manual checking of those tasks.

Lecturer-specific tools allow users to visually construct reference diagrams and define

initial diagram states directly in the browser. These diagrams can be exported or

imported as JSON objects. Additionally, lecturers can review student-submitted

diagrams to assist with manual evaluation when needed. Built-in PlantUML export

functionality further supports rapid diagram to task description conversion using LLM,

making task authoring more efficient. Lecturer interface is not connected with a

database. It is assumed that the lecturer has his/her own software for the task

management where among other things serialized diagrams can be saved and read.

Lecturer Class Diagram Editor Page (/lecturer/class-diagram)

This page provides lecturers with a browser-based environment for manually

constructing UML class diagrams. It is primarily intended to support the creation of

reference solutions and initial diagram states for use in student tasks. The interface

replicates the student diagram editor but includes additional features relevant for task

preparation and review Figure 20. Available tools are grouped as follows: Elements

(Class, Abstract Class, Interface), Relationships (Association, Aggregation,

Composition, Realization, Generalization). As for the features, they are different

compared with student class-diagram page:

● Export to PlantUML – generate a textual representation for documentation or

task descriptions.

69

● Export JSON – serialize the current diagram for saving or reuse.

● Import JSON – load a previously saved diagram from a JSON structure.

● Save Screenshot – download a visual capture of the diagram.

● Clear Workspace – remove all content from the canvas.

The editor also supports keyboard shortcuts to streamline editing. This page is

especially useful for quickly creating, previewing, and modifying UML diagrams in

preparation for task configuration or manual student evaluation.

Lecturer Package Diagram Editor (/lecturer/package-diagram)

It is similar to the class diagram editor page except that it has different elements

(Package) and Relationships (Usage) Figure 21.

5.5 Diagram Validation

In the user interface, built with the JointJS library, students create UML class or

package diagrams that represent their solution to a given modeling task. These solutions

are then subject to automated evaluation to provide feedback and guide the learning

process. Thus, diagram validation is one of the core features of the application.

Although the internal validation logic remains hidden from the student, the output of

this process plays a central role in the learning experience. The student interacts directly

with the results of validation, using this feedback to assess their understanding and

improve their modeling skills. Each validation outcome reflects the comparison between

the student's attempt and the reference diagram created by the lecturer. Based on the

identified differences and reported issues, students are expected to analyze their

mistakes and adjust their diagrams accordingly. As such, validation acts not only as a

technical mechanism but also as a learning tool that supports comprehension of UML

semantics and structure.

This section outlines two approaches considered during development: validation using

LLMs validation and a rule-based algorithmic validation method. In the early stages of

the project, attempts were made to apply LLM-based validation to compare and

evaluate diagrams. However, after testing and analysis, it was decided to rely entirely on

the algorithmic approach. The reasons for this decision, as well as the results of LLM

validation experiments, are discussed in the corresponding subsection.

70

5.5.1 LLM Based Validation

At the early stages of system design, one of the explored directions for diagram

validation was the use of LLMs. The idea was to leverage the reasoning capabilities of

LLMs to compare a student-created UML diagram with a predefined reference diagram

prepared by the lecturer.

The proposed validation workflow involved serializing both the student's attempt and

the lecturer's reference diagram into a structured JSON format. This format captures all

relevant diagram elements, such as classes, attributes, relationships, and positions. A

predefined prompt template was constructed, which included the serialized content of

both diagrams along with instructions for comparison. The intention was to have the

LLM generate a validation report describing the differences and evaluating the

correctness of the student's solution based on expected modeling rules:

“ # Role

Thorough and detail-oriented university lecturer, who validates UML diagrams made by

students.

Guidelines

Compare the following two UML diagrams provided in JSON format: one is a student

attempt, and the other is the reference solution. Identify key differences in classes,

attributes, and relationships. Evaluate whether the student diagram correctly

implements the structure and semantics of the reference.

Format

Provide a clear and concise validation report.”

A manually defined set of validation criteria was established in collaboration with a

lecturer. These criteria described typical modeling mistakes and semantic violations that

should be detected during the comparison. For example, the presence or absence of

classes, incorrect associations, missing inheritance relations, or naming mismatches

were among the expected validation targets. The goal was for the LLM to analyze the

two diagrams and provide a human-readable explanation of whether the student’s

solution met the expectations, including a description of specific errors. The use of a

locally installed LLM gives total control over the software and avoids costs associated

with cloud-based services.

71

Several LLMs were tested locally for this task:

● mistral-7b-instruct (Q4_K_M quant method),

● phi-2 (Q4_K_M quant method),

● tinyllama (Q4_K_M quant method),

● deepseek-coder-6.7b-instruct (Q4_K_M quant method).

All models were run on a local machine to simulate realistic performance in a

constrained environment, similar to what might be encountered in institutional or offline

use cases. During these experiments, it was observed that some models occasionally

produced coherent and useful feedback. However, there were significant limitations that

ultimately led to the decision to abandon LLM-based validation as the primary

mechanism.

One of the main issues encountered was the non-deterministic nature of LLM outputs.

Sending the same input prompt to the model multiple times could yield slightly or even

significantly different responses. This made it difficult to ensure consistency and

reliability in validation, which are critical in educational systems. Students relying on

LLM feedback might receive varied explanations for identical submissions, which could

lead to confusion or mistrust in the system.

Another challenge was related to the clarity and precision of the output. In many cases,

the generated validation feedback lacked logical structure or actionable insights. Some

responses were vague or overly generic, making it difficult to determine whether the

student’s solution was correct or not. Additionally, LLMs occasionally misinterpreted

the structure or intent of the diagrams, leading to incorrect conclusions in the generated

validation report.

Performance was also a factor. Unlike rule-based validation, which can be executed

almost instantly, LLMs require additional time to process the input and generate a

response. Even with smaller models, this delay posed a risk of degrading the user

experience, especially when scaled to multiple concurrent users in a classroom

environment.

72

It is important to note that while the LLM-based approach demonstrated some potential

especially in generating natural language descriptions and comparisons. It lacked the

robustness, reliability, and transparency needed for precise validation. Furthermore, the

inability to directly enforce or explain custom validation rules limited its applicability in

contexts where strict grading and consistent feedback are essential. However, LLMs

could be well-suited for evaluating pragmatic quality, e.g., naming consistency and

placement of elements on diagrams. They may also be useful for assisting in basic

syntactic validation by identifying obvious structural errors or suggesting corrections in

a human-readable format.

Based on these findings, the decision was made to transition fully to a deterministic,

rule-based algorithmic validation approach. The LLM validation experiments

nevertheless provided valuable insights into the challenges of using AI models for

semantic comparison and confirmed the need for a more predictable and structured

evaluation method in the context of educational UML modeling.

5.5.2 Rule-based Algorithmic Validation

To ensure consistent and reliable feedback for students, the system adopts a rule-based

algorithmic approach to diagram validation. This method was chosen over probabilistic

or AI-based alternatives to guarantee determinism, transparency, and full control over

the validation logic. The goal of this validation approach is to identify and classify

mistakes in UML diagrams submitted by students, comparing them to a reference

diagram created by the lecturer. The process is fully automated, precisely defined, and

provides students with structured and localized feedback, supporting their learning and

helping them improve their modeling skills over time.

The core validation algorithm can be conceptualized as a deterministic, rule-based

comparator that operates in multiple phases. Its primary input is a student-submitted

UML diagram serialized in JSON format, paired with a task identifier used to retrieve

the corresponding reference model. The purpose of the algorithm is to perform an exact

syntactic and semantic comparison between the student’s submission and the reference

solution, thereby identifying all deviations that violate the expected model. The process

is structured as follows:

1. Normalization Phase. Both the student and reference diagrams are parsed and

internally normalized. This ensures consistent formatting and prepares data for

73

precise comparison. Normalization includes unifying naming conventions (e.g.,

case-insensitive comparison) and extracting key model elements such as classes,

packages, relationships, attributes, and methods.

2. Structural Integrity Phase. The algorithm verifies that the overall count and

structure of diagram components match the reference. Functions involved:

● checkNodesForDuplicate(),

● checkRelationshipsForDuplicate(),

● checkPackagesForDuplicate(),

● checkTotalCounts().

3. Element-wise Comparison Phase. In this phase, the algorithm performs a

systematic comparison across multiple dimensions. Functions involved:

● compareNodes(),

● compareRelationships(),

● comparePackages(),

● compareAttributesAndMethods().

4. Error Aggregation Phase. All mismatches are categorized into predefined error

types and returned in a structured format for further interpretation. Unlike

probabilistic or heuristic-based systems, this algorithm guarantees deterministic

output: the same input will always produce the same result. It is exhaustive,

non-interruptible, and strictly aligned with the reference model, providing a full

diagnostic overview to support student learning.

The validation process begins when a student opens a task on the /task/{taskId} page.

Each task is predefined and stored in the PostgreSQL database in the task table. The

task definition includes the diagram type (e.g., class or package), a difficulty level, the

description of the assignment, and optionally an initial diagram state. If an initial state is

provided, it is automatically deserialized and rendered in the browser using the JointJS

library. This serves as a starting point for the student’s work. Otherwise, the student

begins with a blank canvas and builds the diagram from scratch based on the

instructions provided.

At any point during his/her work the student may initiate validation. At this point, the

diagram constructed in the browser is serialized into a JSON format. This JSON

contains all relevant diagram data (classes or packages, relationships, attributes, and

74

methods) as well as the visual layout of elements. The diagram is then submitted to the

backend for validation. Each attempt is stored in the Task_attempt table, along with

metadata such as the task ID, timestamp, time spent, student ID, and the full serialized

solution Figure 6.

On the backend, the validation logic retrieves the lecturer’s reference diagram for the

corresponding task. This reference is also stored in the database as part of the Task table

in the solution field. The type of validation that will be applied is automatically selected

based on the diagram type associated with the task. For example, tasks involving class

diagrams invoke the class diagram validator, while package diagram tasks trigger a

different, specialized validator.

The validation procedure is broken into multiple precise steps, each addressing different

structural and semantic aspects of the diagram. For class diagrams, the following core

steps are executed:

● checkNodesForDuplicate() identifies duplicate class definitions. This step

verifies that each class appears only once in the diagram and that no two classes

share the same name, which could otherwise cause ambiguity or logical errors in

interpretation.

● checkRelationshipsForDuplicate() detects repeated associations or

generalizations between the same classes. Redundant relationships of the same

type and direction are not allowed, as they clutter the diagram and do not

provide additional meaning.

● checkTotalCounts() ensures the total number of key elements in the diagram

(classes, relationships, attributes, and methods) matches the expected values

defined in the reference model. This helps detect models that are structurally

complete but may contain extra or missing components not caught in earlier

checks.

● compareNodes() compares the presence and naming of class elements. This

includes checking whether all required classes from the reference diagram exist

in the student's solution and whether their names match. It also detects extra

classes that are not part of the expected model.

● compareRelationships() checks the correctness of all relationships between

classes. This includes verifying the type of relationship (e.g., association,

75

aggregation, generalization), the source and target classes, and additional

properties such as role names, multiplicities, and labels.

● compareAttributesAndMethods() verifies the correctness of all class attributes

and methods. It checks for the presence of required fields and operations,

validates data types, multiplicities, and visibility modifiers (e.g., public, private),

and ensures that method signatures match the reference solution.

Similarly, for package diagrams, the validation follows a parallel structure with

functions tailored to the semantics of packages and their relations:

● checkPackagesForDuplicate() checks for duplicate package definitions based on

name and identity. Each package in a diagram should be uniquely named and

defined only once. Duplicate packages often indicate redundant or unintended

modeling actions and must be resolved before the diagram can be considered

valid.

● checkRelationshipsForDuplicate() identifies any repeated relationships between

packages. A valid package diagram should not contain multiple identical links

between the same pair of packages with the same type and label. This check

helps enforce the clarity and minimalism of the model, avoiding redundant or

ambiguous associations.

● comparePackages() compares the list of packages in the student’s diagram to

those in the reference solution. It detects both missing and extra packages. This

step is critical to ensure that all required structural components of the model are

present and that no unintended elements were added.

● compareRelationships() verifies that the relationships between packages match

the expected set in both direction, type, and labeling. It ensures that

dependencies, nesting, and usage relationships are all correctly represented. The

validator also checks for semantic correctness in the role names and relationship

labels, when applicable.

Each validation step may produce one or more errors, all of which are strictly typed and

linked to a comprehensive taxonomy of error types. This taxonomy is maintained in the

Problem_type table, and each error type is associated with multilingual translations

stored in the Problem_type_translation table. These translations ensure that students

76

receive feedback in their selected language (Estonian or English) without loss of

specificity or meaning. Detailed explanations for errors are stored separately in i18n

localization files (est.php - for Estonian language, eng.php - for English language) and

rendered on the frontend after validation.

Errors detected during validation are collected, grouped by category, and returned to the

frontend. Each error includes a type identifier, a brief message summarizing the issue,

and a more detailed description. All this data is prepared based on the selected UI

language before being returned to the user. Errors are displayed as a list besides the

diagram area. While the system does not currently support visual highlighting of

erroneous elements within the diagram itself, the structured error list allows students to

read, interpret, and correct their models accordingly.

Validation results are also saved in the database for historical reference. Each

submission is recorded in the Task_attempt table with submitted_solution field

(containing the serialized JSON), a text about errors, and a boolean flag

is_result_correct indicating whether the solution was fully correct. Students can view

the history of all their attempts across all tasks on a dedicated page. Additionally, the

system allows a student to reload any previous attempt and use it as a starting point for a

new solution.

To avoid overwhelming the student with excessive feedback, the number of visible error

messages is configurable. By default, all errors are displayed, but lecturers can adjust

the max_number_of_result_errors parameter in the system’s configuration file. This

allows showing only the most important issues, which may help students focus on key

problems first before diving into more detailed refinements.

Alongside formal validation, the system includes a configurable hint mechanism.

Lecturers can prepare hints in advance and store them in the hint table. These hints are

tied to specific tasks and are revealed to the student only after a certain number of

incorrect attempts. This behavior is controlled by the min_count_to_see_hints setting.

For example, setting this value to 5 means that a student must submit five incorrect

solutions before receiving a contextual tip. This approach is intended to encourage

self-directed problem solving while still offering support if progress stalls.

77

By relying on a deterministic, rule-based validation framework, the system ensures

consistency, fairness, and transparency in automated evaluation. Unlike probabilistic or

AI-driven systems, every rule is explicitly implemented and returns reproducible

results. This makes the system particularly well-suited for educational contexts, where

clear and repeatable feedback is crucial for effective learning. The combination of

structured validation logic, typed error definitions, localized explanations, and gradual

guidance through hints provides a complete ecosystem for UML diagram practice,

analysis, and iterative improvement. All defined error types with descriptions are

presented in Table 5.

78

6 Analysis and Results

This chapter analyzes the results that were achieved as the result of writing the thesis

and reflects the work that was done.

6.1 Analysis of Students Survey Responses

To evaluate the practical effectiveness and usability of the UML Solver system, a survey

was conducted. It collected 17 answers. 12 answers were given by students of

“Databases I” course (i.e., the target audience of the tool) who used the application as

part of their coursework. The responses provide insight into the overall user experience,

including the clarity of instructions, effectiveness of feedback, and perceived

educational value. The students firstly had to solve six tasks in UML Solver. These

tasks covered both class and package diagrams and used all the model element types

that would be used in the tasks in “Databases I” course (they did not cover methods,

interfaces, and realize relationships). Most of the tasks listed a set of statements and

asked students to create a diagram based on these (see an example from Figure 22).

Based on these students had to draw a diagram. Firstly, the lecturer (the supervisor) had

to construct reference diagrams (see an example from Figure 23) and thus also test the

interface that is meant for the lecturers. Students had to solve all six tasks and answer

the questions to get some extra points in the “Databases I” course. Thus, they had to use

the tool quite thoroughly. In average they made 32 attempts to validate their models and

spent 45 minutes with all the tasks. The findings are summarized below.

The first question addressed the usability of the diagram editor, specifically how easy it

was to create and edit diagram elements such as classes, packages, and relationships

Figure 24. The results show that the vast majority of users rated the experience

positively, with 52.9% selecting 4 and 29.4% selecting 5 on a 5-point Linear scale.

Notably, no respondents chose ratings below 3, indicating general ease of use and user

satisfaction with the diagramming interface. This suggests that the system's core

interaction design is effective and requires only minor refinements, if any.

79

The second question examined the clarity of task descriptions Figure 25. Here too, the

responses were largely positive, with 76.5% of students rating the descriptions either 4

or 5. Only one respondent gave a score of 2, which might reflect an isolated issue or a

user-specific misunderstanding. The majority view confirms that task instructions are

generally well-structured and accessible, though some marginal improvements in

wording or contextual support could further enhance comprehension.

An essential feature of the UML Solver system is its automated feedback mechanism.

The third question assessed whether this feedback was clear and understandable Figure

26. Responses were overwhelmingly favorable, with 64.7% giving the maximum score

of 5, and 23.5% selecting 4. No respondents rated this aspect below 3. This indicates

that the system successfully communicates feedback in a manner that supports student

learning, reinforcing correct modeling practices and guiding users toward improvement.

Next, students were asked whether their UML diagramming skills had improved as a

result of using the system Figure 27. The responses showed a positive trend, with 64.7%

choosing 4 or 5. However, 29.4% selected a neutral score of 3, and one student chose 2,

suggesting that while most users experienced some level of learning gain, the system's

pedagogical impact could vary depending on the user’s engagement level or prior

knowledge.

Finally, participants were asked how likely they would be to recommend UML Solver to

other students Figure 28. The results were highly encouraging, with 88.2% giving a

score of 7 or above, and 41.2% selecting the maximum score of 10. This high level of

endorsement underscores the system’s practical value and its perceived benefit in a

learning environment. The last question allowed us to calculate the Net Promoter Score

(NPS) [54]-[55]. NPS is calculated as the percentage of Promoters (ratings 9–10) minus

the percentage of Detractors (ratings 0–6). In this survey, 58.8% of respondents were

Promoters, and 0% were Detractors, resulting in an NPS of 59 (58.8% − 0% = ~59%).

The NPS value is 59% and it is considered a strong score, showing that the majority of

users are not only satisfied but also willing to recommend the system to others. In

practical terms, this means the tool meets user expectations and performs well in its

educational context.

80

In conclusion, the survey responses validate that UML Solver is an effective and

educational suitable tool for practicing UML modeling. Users found the interface

intuitive, the instructions clear, and the automated feedback mechanism helpful. It was

reflected with answers on “Positive Feedback Question” Figure 30. Moreover, the

majority of respondents reported an improvement in their skills and indicated a strong

willingness to recommend the tool to others. Survey’s results clearly demonstrate that

the tool fulfills its intended purpose and effectively addresses the specific needs within

its niche. It fully meets the previously defined functional requirements, confirming its

practical value and reliability in real use cases. These findings support the tool’s

continued development and integration into educational contexts. The feedback also

pointed to the minor mistakes or usability issues with answers on “Negative Feedback

Question” Figure 29 that the author has already solved or plans to solve immediately.

6.2 Discussion

The implementation of checking syntax and semantics in our platform highlights its

capabilities and limitations. While the existing modeling tools excel in facilitating the

creation, editing, and visualization of UML diagrams, their limitation lies in the

automated validation of these diagrams against predefined standards or reference

models. This feature is especially important in educational settings where the accuracy

of diagrams and adherence to specific diagramming conventions are critical for

effective learning and assessment. However, commercial UML tools do not include

built-in functionalities for such in-depth validation with reference models. Although the

scientific literature describes tools with goals similar to UML Solver (see section 3.1),

none of these offer a set of functionalities as complete as UML Solver provides.

6.3 Limitations

The developed system has certain limitations that were defined by the scope of the

current thesis. One of the key limitations is the support for only two types of UML

diagrams - class diagrams and package diagrams. While these are among the most

commonly used diagram types in software modeling and education, the UML

specification includes other diagram types such as activity diagrams, use case diagrams,

sequence diagrams, and state machine diagrams. These were not included in the current

81

implementation due to time constraints and the focus on delivering a functional and

stable foundation.

In addition, the UML specification itself is extensive and includes a wide range of

structural and behavioral features. Some of these features are rarely used in practice and

are more relevant in highly specific modeling scenarios. For example, class diagrams

support advanced constructs such as association classes, which represent associations

that also have attributes or operations. These advanced features were not implemented

in this project, as the primary objective was to focus on widely adopted elements that

are most relevant for typical use cases in learning environments. Based on these

priorities, a specific subset of UML functionality was selected, and the system

requirements were defined accordingly.

6.4 Reflection of the Work Done

This section presents a reflective analysis of the development process, highlighting the

strengths, challenges, and key lessons learned throughout the project. The goal is to

critically assess the quality of the implemented work, identify areas of success, and

recognize aspects that could have been handled more effectively. By doing so, it

becomes possible to draw meaningful conclusions about the author’s professional

development and to outline practical improvements for similar projects in the future.

The reflection is structured into three sections. The first section, Things that Went Well,

focuses on the practices and decisions that positively influenced the project. It covers

elements such as communication, technology choices, implementation techniques, and

user feedback. The second section, Things that Went Poorly, describes specific

difficulties encountered during the project. It highlights the technical and organizational

aspects that limited efficiency or caused complications during development and

deployment. The third section, Things to Do Differently if Repeating the Work,

provides an evaluation of what should be improved if the project were to be done again.

This includes practical recommendations based on the challenges faced and emphasizes

the importance of early planning, automation, and architectural foresight.

82

Together, these sections provide a comprehensive and balanced view of the work done

and support a deeper understanding of the development process from both a technical

and organizational perspective.

6.4.1 Things that Went Well

Several aspects of the project were executed successfully and contributed positively to

the overall outcome. One of the key strengths was the regular and structured

communication with the supervisors. Weekly meetings were held to review the progress

made by the author and to plan the tasks for the upcoming week. This iterative approach

allowed for constant monitoring and ensured that the project remained on track. The

communication itself was efficient and responsive. The supervisors provided timely

feedback and support, which helped maintain alignment throughout the development

process. This synchronization not only minimized misunderstandings but also served as

a strong motivational factor for the author, encouraging consistent and high-quality

work.

The choice of technologies was another element that went well. The technology stack

was defined at the beginning of the project, which allowed for stable development

without the need for major changes. Although the stack was predefined, the author was

responsible for designing the system architecture. This architectural plan was reviewed

and approved by the supervisors before implementation, ensuring both technical

feasibility and alignment with project goals.

From a functional perspective, the application successfully met all of the initial system

requirements. The system was completed in time and demonstrated its practical

applicability within the context of a database course. This confirmed that the

implemented functionality was both relevant and usable in a real academic

environment.

In terms of implementation quality, the author focused on creating reusable components,

which was especially important due to the need to support both class diagrams and

package diagrams. Shared elements of the system were abstracted and reused

effectively. As a result, the codebase remains flexible and can be easily extended to

support additional diagram types in future development phases.

83

Lastly, the application received feedback from a wide group of users. The responses

were collected, analyzed, and used to evaluate user satisfaction. Survey statistics

showed a generally positive assessment of the web application. This feedback

confirmed that the system was not only functional but also well-received by its target

audience.

6.4.2 Things that Went Poorly

One of the problems that emerged during the project was related to the localization of

the user interface. In the early stages of development, the design was created in English.

The author did not have prior experience with multilingual interfaces and did not

anticipate the challenges that would follow. When the Estonian translation was added

later, it became clear that the layout did not adapt well to text variations. Phrases in

different languages can have different lengths, and this has a direct impact on the visual

structure of the application.

In many cases, buttons, labels, and other elements became misaligned or visually

distorted. Some text fields overflowed or were cut off entirely. These problems affected

both the usability and the appearance of the system. As a result, several parts of the

interface had to be redesigned after localization was introduced. This reactive redesign

required extra development time and effort. The situation clearly demonstrated the

importance of planning for localization from the very beginning. If the layout had been

built with flexibility in mind, such as by using dynamic sizing and content-aware

containers, many of these issues could have been avoided.

6.4.3 Things to Do Differently if Repeating the Work

One of the key lessons learned during the development and deployment of the

application was the underestimated complexity of localization. At first, it seemed like a

simple task. However, in practice, adding multilingual support to a web application

takes at least one week. In most cases, two weeks is a more realistic estimate. Each

language version must be carefully tested. It is important to check if all content is

visible and correctly displayed. User interface elements should remain properly aligned.

Translated strings can be longer or shorter depending on the language. This affects the

layout and positioning of page elements. The author had no prior experience with

84

localization. As a result, the number of required adjustments was unexpected. These

adjustments were necessary to maintain a consistent and functional design across all

supported languages.

The deployment process also had its difficulties. These could have been avoided

through automation. The production server contained sensitive user data. Because of

this, the author did not have direct access. The initial setup was difficult. This was due

to differences between the development and production environments. Configuration

inconsistencies appeared as a result. A GitLab CI/CD pipeline could have helped. It

would have made the deployment process faster, safer, and more reliable. In this project,

the code was sent as an archive. It was deployed manually by the supervisor. This

approach caused delays and created risks of human error.

Another issue came from the hosting environment. The application was deployed on a

server that already hosted another PHP-based system (SQL Solver [16]). Both systems

used the same Apache server. This caused session collisions and affected the platform’s

stability. Fortunately, the issue was easy to fix once it was identified. However, it was

not discussed at the beginning of the project. This led to avoidable complications.

During development, the application was accessed through http://localhost:8000. In

production, the URL changed. This difference required extra adjustments. In particular,

routing and asset linking had to be modified. Proper planning at the start could have

prevented these problems.

6.5 Further Work

At the time of writing the thesis LLMs already showed a great potential in processing

both images and text, reasoning based on these, and generating all kinds of things based

on these. However, small-scale tests on checking diagrams with LLMs revealed

inconsistent results (e.g., the same LLM can yield different outcomes for the same

diagram) and the possibility of both false positives (identifying non-existent mistakes)

and false negatives (missing actual mistakes). Thus, it was decided that in the first

version of the software the LLMs will not be utilized as assessment assistants. However,

we envision that in the future LLMs could be used to assess the answers. This approach

will leverage LLMs to enhance the validation process by comparing textual

85

representations of student-generated diagrams against those provided by lecturers. This

would have at least two advantages:

1. It would be possible to evaluate the pragmatics aspect of models, i.e., their

comprehensibility.

2. It would simplify the enhancement of the system. Current algorithmic approach

of evaluating models means that addition of each new model element type or

diagram type would require the changes and extensions in the algorithm.

However, if the system uses a LLM for the assessment, then after changing the

diagram editor it should be possible to change prompts that the system sends to a

LLM. Ideally, it could be done without changing program code at all.

If the system would support both algorithmic and AI based assessment, then the system

should incorporate flexible validation settings, allowing lecturers to configure and

toggle between validation methods. This adaptability will cater to different learning

environments and teaching methodologies, thereby enhancing the educational impact of

the tool. Furthermore, logging all the task attempts of students, including types of

mistakes, makes it possible after some time (to collect a reasonable amount of task

attempts) to analyze these answers to find things that are difficult for students in terms

of UML. This information can be used to adjust teaching strategies.

Currently the system does not support Uni-ID digital identity of the university to log in

because this functionality was not considered to have the highest priority. Future work

could include adding the support of Uni-ID because it will reduce the number of

passwords that a student has to remember.

In addition to supporting additional model element types of class and package diagrams

and supporting additional types of diagrams, another possible functionality would be

highlighting incorrect model elements.

Feedback of potential users pointed to the small functionality changes (like

implementing undo functionality, creating elements with copy/paste method, changing

the relationship type without deleting and recreating it) that improve user experience but

might be quite complicated to implement.

86

7 Summary

As a result of the work, a web-based software called UML Solver was developed using

PHP-8 and JavaScript, integrating JavaScript diagramming library JointJS for UML

diagram creation. UML Solver features interactive tools that enable students to create

UML class and package diagrams based on tasks defined by the lecturer while

incorporating automated validation. In the tool an algorithmic approach for validation

was implemented although AI-based evaluation employing LLMs to analyze textual

representations of diagrams was also considered. PostgreSQL is used for database

storage, maintaining records of diagram structures, user interactions, and validation

results. Reference diagrams as well as diagrams created by students are saved in

columns with JSONB type. Creating the interface for managing tasks and analyzing

answers was outside the scope of the work but it has already been implemented by the

supervisor of the work, making the system fully functional.

The choice of PHP-8 and pure JavaScript ensure compatibility with a broad range of

web environments, provides scalability, and maintains a lightweight yet robust

infrastructure for real-time interaction. By avoiding reliance on heavy front-end

frameworks, the system remains adaptable and efficient in handling diagram rendering

and validation tasks. The use of these languages makes the system as easily

maintainable and portable as possible for its future maintainer. Frontend behaviour was

created using plain JavaScript and jQuery without additional frameworks.

UML Solver includes a user interface that ensures a seamless experience for students.

Feedback mechanisms were embedded to assist learners in identifying and correcting

errors. Additionally, progress analytics and statistics views for students were

incorporated, allowing students to track their progress. The web-based nature of the

system ensures accessibility, allowing students to practice UML diagramming from any

location with an internet connection through the browser. The system was validated by a

set of interested persons, most of whom were students who were learning the course

“Databases I” at the time (i.e., the target audience of the tool) and received in general

positive feedback.

87

References

[1] R. S. Pressman and B. R. Maxim, Software engineering: a practitioner’s
approach, 8. ed. in McGraw-Hill series in computer science. New York, NY:
McGraw-Hill Education, 2015.

[2] M. Ozkaya and F. Erata, “A survey on the practical use of UML for different
software architecture viewpoints”, Information and Software Technology, vol. 121,
p. 106275, 2020.

[3] M. Fowler, Ed., UML distilled: a brief guide to the standard object modeling
language, 3. ed, 16. printing. in The Addison-Wesley object technology series.
Boston, Mass.: Addison-Wesley, 2010.

[4] “Intro to UML 2.5 diagram types and templates,” Nulab. Accessed: Apr. 20,
2025. [Online]. Available:
https://nulab.com/learn/software-development/intro-uml-diagram-types-templates/

[5] “How to create static diagrams in Unified Modeling Language.” Accessed: Apr.
20, 2025. [Online]. Available:
https://www.redhat.com/en/blog/static-UML-diagramming

[6] E. Ramollari and D. Dranidis, “StudentUML: An Educational Tool Supporting
Object-Oriented Analysis and Design”.

[7] “Võimalikud uurimistöö meetodid. Disainiteadus.” Accessed: Apr. 20, 2025.
[Online]. Available: https://maurus.ttu.ee/loputoo.php

[8] “Software Architecture and Design - IDU1550.” Accessed: Apr. 20, 2025.
[Online]. Available: https://ois2.taltech.ee/uusois/aine/IDU1550

[9] The Data Model Resource Book, Volume 1. Accessed: Apr. 20, 2025. [Online].
Available: https://learning.oreilly.com/library/view/the-data-model/9780471380238/

[10] The Data Model Resource Book, Vol. 2: A Library of Data Models for Specific
Industries. Accessed: Apr. 20, 2025. [Online]. Available:
https://learning.oreilly.com/library/view/the-data-model/9780471353485/

[11] The Data Model Resource Book, Volume 3: Universal Patterns for Data
Modeling. Accessed: Apr. 20, 2025. [Online]. Available:
https://learning.oreilly.com/library/view/the-data-model/9780470178454/

[12] Data Model Patterns. Accessed: Apr. 20, 2025. [Online]. Available:
https://learning.oreilly.com/library/view/data-model-patterns/9780133488654/

[13] Patterns of Data Modeling. Accessed: Apr. 20, 2025. [Online]. Available:
https://learning.oreilly.com/library/view/patterns-of-data/9781439819906/

[14] Analysis Patterns: Reusable Object Models. Accessed: Apr. 20, 2025. [Online].
Available:
https://learning.oreilly.com/library/view/analysis-patterns-reusable/9780134271453/

88

[15] Design Patterns: Elements of Reusable Object-Oriented Software. Accessed:
Apr. 20, 2025. [Online]. Available:
https://learning.oreilly.com/library/view/design-patterns-elements/0201633612/

[16] L. Demidov, V. Suprun, and E. Eessaar, “Creating a Web Environment for the
Self-Practicing of SQL Tasks,” Jun. 2024, Accessed: Apr. 20, 2025. [Online].
Available:
https://digikogu.taltech.ee/et/item/b5d1ec7f-c49d-4299-bddc-b1c84e77e10d

[17] “Figma: The Collaborative Interface Design Tool,” Figma. Accessed: Apr. 20,
2025. [Online]. Available: https://www.figma.com/

[18] “KanbanFlow - Lean project management. Simplified.” Accessed: Apr. 20,
2025. [Online]. Available: https://kanbanflow.com/

[19] “Lõputöö soovitused - 5.6.2 Kasutatavuse hindamine.” Accessed: Apr. 20, 2025.
[Online]. Available:
https://staff.ttu.ee/~erki.eessaar/loputood_soovitused.html#5_6_2

[20] R. Jebli, J. E. Bouhdidi, and M. Y. Chkouri, “Assessing Students’ UML Class
Diagrams: a New Automated Solution,” in 2023 7th IEEE Congress on Information
Science and Technology (CiSt), Dec. 2023, pp. 431–435. doi:
10.1109/CiSt56084.2023.10409936.

[21] S. Modi, H. A. Taher, and H. Mahmud, “A Tool to Automate Student UML
diagram Evaluation,” Acad. J. Nawroz Univ., vol. 10, no. 2, pp. 189–198, Jun. 2021,
doi: 10.25007/ajnu.v10n2a1035.

[22] E. Ramollari and D. Dranidis, “StudentUML: An Educational Tool Supporting
Object-Oriented Analysis and Design”.

[23] S. A. Turner, M. A. Pérez-Quiñones, and S. H. Edwards, ‘minimUML: A
minimalist approach to UML diagramming for early computer science education’,
Journal on Educational Resources in Computing, vol. 5, no. 4, p. 1, Dec. 2005.

[24] D. Dranidis, I. Stamatopoulou, and M. Ntika, “Learning and Practicing Systems
Analysis and Design with StudentUML,” in Proceedings of the 7th Balkan
Conference on Informatics Conference, in BCI ’15. New York, NY, USA:
Association for Computing Machinery, Sep. 2015, pp. 1–8. doi:
10.1145/2801081.2801104.

[25] C. Alphonce and P. Ventura, “QuickUML: a tool to support iterative design and
code development,” in Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, in
OOPSLA ’03. New York, NY, USA: Association for Computing Machinery, Oct.
2003, pp. 80–81. doi: 10.1145/949344.949359.

[26] D. Py, L. Auxepaules, and M. Alonso, ‘Diagram, a Learning Environment for
Initiation to Object-Oriented Modeling with UML Class Diagrams’, Journal of
Interactive Learning Research, vol. 24, no. 4, pp. 425–446, 2013.

[27] R. W. Hasker, ‘UMLGrader: an automated class diagram grader’, J. Comput.
Sci. Coll., vol. 27, no. 1, pp. 47–54, Oct. 2011.

[28] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in

89

conceptual modeling,” IEEE Softw., vol. 11, no. 2, pp. 42–49, Mar. 1994, doi:
10.1109/52.268955.

[29] “The Unified Modeling Language Specification Version 2.5.1.” Accessed: Apr.
20, 2025. [Online]. Available: https://www.omg.org/spec/UML/

[30] “Enterprise Architect 12.” Accessed: Apr. 20, 2025. [Online]. Available:
https://sparxsystems.com/products/ea/12/

[31] “Model Expert Homepage,” eaTeamWorks. Accessed: Apr. 20, 2025. [Online].
Available: https://www.eateamworks.com/modelexpert/

[32] D. Carr and S. Else, “State of enterprise architecture survey: Results and
findings,” Enterp. Archit. Prof. J., vol. 13, no. 05, 2018.

[33] “Third Party Extensions for Enterprise Architect | Sparx Systems.” Accessed:
Apr. 20, 2025. [Online]. Available: https://sparxsystems.com/products/3rdparty.html

[34] A. Valtna and E. Eessaar, “A Software to Generate Human Language Sentences
from Enterprise Architect CASE Tool\s UML Class Diagrams,” Jan. 2022,
Accessed: Apr. 20, 2025. [Online]. Available:
https://digikogu.taltech.ee/et/item/6f8ed2e4-5adb-4944-9249-3860eab1ae1c

[35] “StarUML.” Accessed: Apr. 20, 2025. [Online]. Available: https://staruml.io/
[36] “UMLetino - Free Online UML Tool for Fast UML Diagrams.” Accessed: Apr.

20, 2025. [Online]. Available: https://www.umletino.com/umletino.html
[37] UMLet, UMLet - github. (Apr. 15, 2025). JavaScript. Accessed: Apr. 20, 2025.

[Online]. Available: https://github.com/umlet/umlet
[38] “yEd Live,” yWorks, the diagramming company. Accessed: Apr. 20, 2025.

[Online]. Available: http://www.yworks.com/yfh
[39] “Creately | Visual Collaboration & Diagramming Platform,” Creately. Accessed:

Apr. 20, 2025. [Online]. Available: https://creately.com/
[40] “Lucid visual collaboration suite.” Accessed: Apr. 20, 2025. [Online]. Available:

https://lucid.app/
[41] “EMF Compare | Overview.” Accessed: May 10, 2025. [Online]. Available:

https://eclipse.dev/emf/compare/overview.html
[42] “Ideal Modeling & Diagramming Tool for Agile Team Collaboration.”

Accessed: May 10, 2025. [Online]. Available: https://www.visual-paradigm.com/
[43] “Rational Software Architect Designer | IBM.” Accessed: May 10, 2025.

[Online]. Available:
https://www.ibm.com/products/rational-software-architect-designer

[44] “Baselines in Enterprise Architect | Sparx Systems.” Accessed: May 10, 2025.
[Online]. Available: https://sparxsystems.com/resources/baseline/

[45] Z. Xing and E. Stroulia, “UMLDiff: an algorithm for object-oriented design
differencing,” in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, in ASE ’05. New York, NY, USA: Association
for Computing Machinery, Nov. 2005, pp. 54–65. doi: 10.1145/1101908.1101919.

[46] “SourceGear | DiffMerge.” Accessed: Apr. 20, 2025. [Online]. Available:

90

https://www.sourcegear.com/diffmerge/
[47] “LeetCode - The World’s Leading Online Programming Learning Platform.”

Accessed: May 10, 2025. [Online]. Available: https://leetcode.com/
[48] “HackerRank - Online Coding Tests and Technical Interviews.” Accessed: May

10, 2025. [Online]. Available: https://www.hackerrank.com/
[49] “CodeSignal - Discover and Develop In-Demand Skills,” CodeSignal. Accessed:

May 10, 2025. [Online]. Available: https://codesignal.com/
[50] “CodeChef | CodeChef: Practical coding for everyone.” Accessed: May 10,

2025. [Online]. Available: https://www.codechef.com/
[51] S. Dahmen-Lhuissier, “EN 301 549 V3 the harmonized European Standard for

ICT Accessibility,” ETSI. Accessed: Apr. 20, 2025. [Online]. Available:
https://www.etsi.org/human-factors-accessibility/en-301-549-v3-the-harmonized-eu
ropean-standard-for-ict-accessibility

[52] “DB-Engines Ranking,” DB-Engines. Accessed: Apr. 20, 2025. [Online].
Available: https://db-engines.com/en/ranking

[53] M. Fowler, Patterns of enterprise application architecture, Nineteenth printing.
in The Addison-Wesley Signature Series. Boston San Francisco New York Toronto
Montreal London Munich Paris Madrid Capetown: Addison-Wesley, 2013.

[54] “Beyond the NPS: Measuring Perceived Usability with the SUS, NASA-TLX,
and the Single Ease Question After Tasks and Usability Tests,” Nielsen Norman
Group. Accessed: May 11, 2025. [Online]. Available:
https://www.nngroup.com/articles/measuring-perceived-usability/

[55] “Net Promoter Score: What a Customer-Relations Metric Can Tell You About
Your User Experience,” Nielsen Norman Group. Accessed: May 11, 2025. [Online].
Available: https://www.nngroup.com/articles/nps-ux/

91

https://www.nngroup.com/articles/nps-ux/

Appendix 1 – Non-Exclusive Licence for Reproduction and

Publication of a Graduation Thesis1

I Valentin Djomin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Creating a Web Environment for the Self-Practicing of Tasks for Creating

UML Class and Package Diagrams”, supervised by Erki Eessaar and Priit Järv.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the

non-exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

12.05.2025

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the

graduation thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes

only. If a graduation thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set

deadline, the student defending his/her graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and

1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the period.

92

Appendix 2 – Figma Prototype Views

Figure 1. UML Diagram Types Overview Page.

93

Figure 2. Class Diagram Task Solving Interface.

94

Appendix 3 – Database Structure

Figure 3. Task Collections Database Schema Designed in DataGrip.

95

Figure 4. Feedback Database Schema Designed in DataGrip.

96

Figure 5. Language Classificators Database Schema Designed in DataGrip.

97

Figure 6. Problem of Task Attempts Database Schema Designed in DataGrip.

98

Figure 7. Task Database Schema Designed in DataGrip.

99

Appendix 4 – Kanban Board

Figure 8. Kanban Board Displaying Task Management.

100

Appendix 5 – Existing Tools

Table 1. Comparative Overview of UML Tools (Part 1).

 Enterprise Architect
12

StarUML UMLet 15.1

Main Use Enterprise modeling,
large systems

Education,
software
development

Education,
sketches

Platform Desktop (Windows) Desktop
(Windows, Linux,
MasOS)

Web

Free Version Limited Limited Yes

Paid Version Yes Yes No

License Type Commercial Commercial Open-source

Supported
Languages

UML, BPMN,
ArchiMate, SysML,
etc.

UML 2.x UML 2.x
(limited
subset)

Third-party
Extensions

Yes (many available) Yes No

Built-in Extension
Mechanism

Yes (scripting and API) Yes
(JavaScript-based
plugins)

No

Model Validation
Support

Yes (rules via
scripting/plugins)

Yes No

Validation Against
Predefined Rules

Possible (via
setup/extensions)

Limited No

Model Comparison
(Built-in)

Limited (requires
extension)

No No

Integrated AI
Features

No No No

101

Table 2. Comparative Overview of UML Tools (Part 2).

Feature yEd Live Creately Lucidchart

Main Use General-purpose
visualization

Collaborative
modeling

Professional
collaboration

Platform Web Web/Desktop Web

Free Version Limited Limited Limited

Paid Version Yes Yes Yes

License Type Freemium
(limited functionality
for free, premium for
full access)

Freemium
(limited
functionality for
free, premium for
full access)

Freemium
(limited
functionality
for free,
premium for
full access)

Supported
Languages

Generic diagrams (not
UML-focused)

UML, BPMN. UML,
flowcharts,
BPMN.

Third-party
Extensions

No No Yes (via
integrations)

Built-in Extension
Mechanism

No No No

Model Validation
Support

No Partial
(consistency
checks only)

Yes (AI-based
suggestions
only)

Validation Against
Predefined Rules

No No No

Model Comparison
(Built-in)

No No No

Integrated AI
Features

No No Yes (auto
suggestions,
improvements,
layout)

102

Table 3. Comparative Сharacteristics of UML Diagram Comparison Tools.

EMF

Compare
Visual

Paradigm
IBM
RSA

Enterprise
Architect UMLDiff DiffMerge

Environment Eclipse
IDE only

Visual
Paradigm
environment

IBM
Rational
Software
Architect

EA Research.
academic
prototypes

Generic
text diff
tool

License Free Paid Paid Paid Limited Free

Visual UML
Comparison

Yes Yes Yes Limited
(via
Baseline)

Yes
(prototype)

No
(XMI-level
only)

Structural
Comparison

Yes Yes Yes Yes Yes Partial

Semantic
Comparison

Yes Yes Yes Partial Yes No

103

Table 4. Comparison of Software Platforms for Code Practice and Learning.

 LeetCode HackerRank CodeSignal CodeChef

Target
Audience

Intermediate to
advanced
developers

Students, job
seekers,
educators

Job seekers,
universities,
employers

Beginner to
competitive
programmers

Task Types Algorithms, data
structures,
coding
interviews

Coding
challenges,
SQL, AI,
databases

Coding tasks,
assessments,
games

Programming
problems,
contests

Feedback Style Instant feedback
with test case
breakdowns

Immediate test
results, detailed
scoring

Score reports,
real-time test
validation

Basic validation
and leaderboard
feedback

Validation
Approach

Automatic test
execution and
scoring

Auto-evaluation
with custom test
cases

Live execution
with system
tests

Test case
execution and
runtime results

Hint System Premium users
get hints and
solutions

Built-in hints
and solution
discussions

Hints available
in guided modes

No structured
hints, discussion
forums only

Progress
Tracking

Progress
dashboard and
rankings

Skill score and
certificate
tracking

Personal
dashboard and
readiness scores

User profiles
and contest
history

Competitive
Mode

Yes (Contests,
Rankings,
Leaderboards)

Yes (Contests,
Hackathons)

Yes (Arcade,
Coding Battles)

Yes (monthly
contests, ranking
system)

Free/Paid
Access

Freemium (some
tasks free,
premium for full
access)

Free for
individuals, paid
for employers

Freemium (pro
features for
companies)

Free
(educational and
open source
model)

Integration
Potential

Good (APIs,
widely used in
technical prep)

High (used in
education and
recruiting)

Moderate to
High (enterprise
& academia use)

Limited (mostly
self-contained
platform)

104

Appendix 6 – Three Tier Architecture

Figure 9. Three Tier Architecture Diagram.

105

Appendix 7 – REST API Endpoints List

Figure 10. REST API Endpoint List.

106

Appendix 8 – Web Pages URL List

Figure 11. Web Pages URL List.

107

Appendix 9 – User Interface

Figure 12. Task Overview Page.

Figure 13. Solving a Class Diagram Task.

108

Figure 14. Validation Errors Sidebar View.

Figure 15. Solving a Package Diagram Task.

109

Figure 16. Attempt History View.

Figure 17. Detailed Task Attempt View.

110

Figure 18. Statistics View.

Figure 19. Feedback View.

111

Figure 20. Lecturer Class Diagram Sidebar View.

112

Figure 21. Lecturer Package Diagram Sidebar View.

113

Appendix 10 – Validation Errors

Table 5. UML Diagram Validation Error Types.

Error type Description

Missing Classes Classes that are expected but missing.

Extra Classes Classes that are not expected but found.

Missing Package A required package is missing.

Extra Package An extra package is present.

Missing Relationships
Relationships that are expected but
missing.

Extra Relationships
Relationships that are not expected but
found.

Duplicate Elements
Duplicate elements are not allowed in the
diagram.

Duplicate Relationships
Duplicate relationships are not allowed in
the diagram.

Wrong Relationship Type The relationship type is incorrect.

Wrong Multiplicity in Relationship
Multiplicity in the relationship is
incorrect.

Missing Multiplicity in Relationship Multiplicity is missing in the relationship.

Wrong Role in Relationship The role in the relationship is incorrect.

Missing Role in Relationship The role is missing in the relationship.

Wrong Name in Relationship The name in the relationship is incorrect.

Missing Name in Relationship The name is missing in the relationship.

Wrong Generalization Set The generalization set label is incorrect.

Missing Generalization Set Expected generalization set is missing.

Missing Constraints (Generalization Set)
Expected constraints are missing from the
generalization set.

114

Wrong Constraints (Generalization Set)
Constraints of the generalization set do
not match the expected ones.

Attribute Count Mismatch Mismatch in the number of attributes.

Attribute Count Mismatch (Object)
Mismatch in attribute count on object
level.

Missing Attribute
An expected attribute is missing from the
class definition.

Multiplicity Format Error
The multiplicity format is incorrect or
invalid.

Attribute Multiplicity Format Error
Multiplicity for attributes is incorrect or
badly formatted.

Wrong Attribute Data Type The data type of the attribute is incorrect.

Wrong Attribute Multiplicity
The multiplicity of the attribute is
incorrect.

Missing Attribute Type The data type of an attribute is missing.

Invalid Attribute Visibility
Attribute has an invalid or missing
visibility modifier.

Method Count Mismatch Mismatch in the number of methods.

Method Count Mismatch (Object)
Mismatch in method count on object
level.

Missing Method
An expected method is missing from the
object.

Missing Method Type The return type of a method is missing.

Wrong Method Parameters Mismatch in method parameter list.

Invalid Method Visibility
Method has an invalid or missing
visibility modifier.

115

Appendix 11 – Task Example

Figure 22. Example of Task Description.

Figure 23. Example of Constructed Reference Diagram.

116

Appendix 12 – Students Testing Survey

Figure 24. Ease of Creating and Modifying Diagram Elements.

Figure 25. Clarity of Task Descriptions.

117

Figure 26. Clarity of Automatic Feedback.

Figure 27. Perceived Improvement in UML Skills.

118

Figure 28. Likelihood of Recommending UML Solver.

Figure 29. Negative Feedback Question.

Figure 30. Positive Feedback Question.

119

	
	1Introduction
	1.1Background
	1.2Problem Statement
	1.3Research Objectives
	1.4Structure of the Thesis

	
	
	2Methodology
	2.1The Object
	2.2The Development Process
	2.3Tools and Technologies Used

	
	3Related Works
	3.1Teaching and Assessing UML Knowledge
	3.2Model Quality

	4Existing Tools
	4.1UML
	4.1.1 Class Diagrams
	4.1.2 Package Diagrams

	4.2UML Diagramming Software
	4.2.1Enterprise Architect
	4.2.2StarUML
	4.2.3UMLet
	4.2.4yEd Live
	4.2.5Creately
	4.2.6Lucidchart
	4.2.7Evaluation of UML Diagramming Tools

	4.3UML Сomparison Tools
	4.3.1EMF Compare
	4.3.2Visual Paradigm
	4.3.3IBM Rational Software Architect
	4.3.4Enterprise Architect
	4.3.5UMLDiff
	4.3.6DiffMerge
	4.3.7Evaluation of UML Comparison Tools

	4.4Code Practicing Software
	4.4.1LeetCode
	4.4.2HackerRank
	4.4.3CodeSignal
	4.4.4CodeChef
	4.4.5Evaluation of Code Practicing Tools

	
	5System Development
	5.1System Requirements
	5.1.1Functional Requirements
	5.1.2Non-Functional Requirements
	5.2The Technology Stack
	5.2.1Used Tools

	5.3Web Application Architecture
	5.3.1Server-side Structure
	5.3.2Client-side Structure

	5.4User Interface
	5.4.1Student-Oriented Interface
	5.4.2Lecturer-Oriented Interface

	5.5Diagram Validation
	5.5.1LLM Based Validation
	5.5.2Rule-based Algorithmic Validation

	
	
	6Analysis and Results
	6.1Analysis of Students Survey Responses
	6.2Discussion
	6.3Limitations
	6.4Reflection of the Work Done
	6.4.1Things that Went Well
	6.4.2Things that Went Poorly
	6.4.3Things to Do Differently if Repeating the Work

	6.5Further Work

	7Summary
	Appendix 1 – Non-Exclusive Licence for Reproduction and Publication of a Graduation Thesis1
	
	Appendix 2 – Figma Prototype Views
	Figure 1. UML Diagram Types Overview Page.
	Figure 2. Class Diagram Task Solving Interface.

	
	Appendix 3 – Database Structure
	Figure 3. Task Collections Database Schema Designed in DataGrip.
	Figure 4. Feedback Database Schema Designed in DataGrip.
	Figure 5. Language Classificators Database Schema Designed in DataGrip.
	
	Figure 6. Problem of Task Attempts Database Schema Designed in DataGrip.
	Figure 7. Task Database Schema Designed in DataGrip.

	
	Appendix 4 – Kanban Board
	Figure 8. Kanban Board Displaying Task Management.

	
	Appendix 5 – Existing Tools
	Table 1. Comparative Overview of UML Tools (Part 1).
	Table 2. Comparative Overview of UML Tools (Part 2).
	
	
	Table 3. Comparative Сharacteristics of UML Diagram Comparison Tools.
	
	
	Table 4. Comparison of Software Platforms for Code Practice and Learning.

	
	
	Appendix 6 – Three Tier Architecture
	
	Figure 9. Three Tier Architecture Diagram.

	
	Appendix 7 – REST API Endpoints List
	Figure 10. REST API Endpoint List.

	
	Appendix 8 – Web Pages URL List
	Figure 11. Web Pages URL List.

	
	Appendix 9 – User Interface
	Figure 12. Task Overview Page.
	Figure 13. Solving a Class Diagram Task.
	Figure 14. Validation Errors Sidebar View.
	Figure 15. Solving a Package Diagram Task.
	Figure 16. Attempt History View.
	Figure 17. Detailed Task Attempt View.
	
	
	
	
	Figure 18. Statistics View.
	Figure 19. Feedback View.
	Figure 20. Lecturer Class Diagram Sidebar View.
	Figure 21. Lecturer Package Diagram Sidebar View.

	
	
	Appendix 10 – Validation Errors
	Table 5. UML Diagram Validation Error Types.

	
	
	
	Appendix 11 – Task Example
	
	Figure 22. Example of Task Description.
	Figure 23. Example of Constructed Reference Diagram.

	
	Appendix 12 – Students Testing Survey
	Figure 24. Ease of Creating and Modifying Diagram Elements.
	Figure 25. Clarity of Task Descriptions.
	
	Figure 26. Clarity of Automatic Feedback.
	Figure 27. Perceived Improvement in UML Skills.
	Figure 28. Likelihood of Recommending UML Solver.
	Figure 29. Negative Feedback Question.
	Figure 30. Positive Feedback Question.
	

