TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Dachi Mshvidobadze 201818IVSB

Case Study of Automated Vulnerability

Management of Microservices at Pipedrive OU

Bachelor Thesis

Supervisor: Kaido Kikkas
PhD
Co-Supervisor: Renno Reinurm

Bsc

Tallinn 2022

TALLINNA TEHNIKAULIKOOL

Infotehnoloogia teaduskond

Dachi Mshvidobadze 201818IVSB

Pipedrive OU Mikroteenuste Turvandrkuste

Automaathalduse Juhtumiuuring

Bakalaureusetoo

Juhendaja: Kaido Kikkas
PhD
Kaasjuhendaja: Renno Reinurm

Bsc

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Dachi Mshvidobadze

04.17.2022

Abstract

This thesis aims to analyze how the additional security checks recently implemented
against software source code updates at Pipedrive OU affect the efficacy of software
engineers. This is done by comparing time and effort needed to implement changes in the
code before and after the security checks have been enforced. Alongside this, the thesis
will look into ways of improving the effectiveness of tools used for 3rd party code package
management inside Pipedrive’s code repositories, with the aim of lowering the amount of

human supervision needed.

Deployment pipeline is a set of automated procedures that run against every new revision
of software, before the revision can make it into the live product. The procedures can
include automated compilation checks, automated software tests, static checks for code
style, etc. Such a pipeline has been present at Pipedrive for a long time, and the newest
addition to it, aimed at automating the management of vulnerabilities, is a set of security
checks that run against the software source code and the software packages that the code
uses. This creates additional requirements that the software engineers must fulfill before
their code can be pushed into production.

Additionally to the deployment pipeline, there are other tools that can automate vulnera-
bility management. Of interest to this thesis are a type of tools that help keep 3rd party
code free of vulnerabilities, by automatically suggesting which version of the code to
use. However it is not always clear how smoothly the different versions comply with the

existing codebase, thus requiring human supervision.

The thesis is in English and contains 26 pages of text, 5 chapters, 7 figures.

API

CI/CD

CPU

CRM
Deployment

Pipeline

E2E
Git
GPL
IDE
ISO

Microservice

PR
SAST
SemVer
SOC
SWE
VM

List of abbreviations and terms

Application Programming Interface

Continuous Integration/Continuous Delivery

Central Processing Unit

Customer Relations Management

a deployment pipeline is a system of automated processes
designed to quickly and accurately move new code additions
and updates from version control to production

End To End

A free and open source distributed version control system
Gnu Public License

Integrated Development Environment

International Organization for Standardization
Microservices are an architectural and organizational ap-
proach to software development where software is composed
of small independent services that communicate over well-
defined APIs

Pull Request

Static Application Security Testing

Semantic Versioning

Security Operations Center

Software Engineer/ing

Virtual Machine

Vulnerability

A weakness of an asset or group of assets that can be ex-
ploited by one or more threats, where an asset is anything
that has value to the organization, its business operations,
and their continuity, including information resources that

support the organization’s mission

Table of Contents

(I_Introduction| 8
(L1 Structure of the Thesisl oL 8
(1.2 Description of the problem, Scope of the thesis, and Formulation of possi- |

[ble solution| 9

[2° Background Information| 0 oo 10
2.1 Tools, technologies, conventions| 10

[2.1.1 Dependabot| 10
................................. 11
13 Githubl. 13
1.4 Jenkinsl 14
IS TSt . . o oo e 14
216 EndtoEndorE2ETestsl 15
[2.1.7 SemVer - Semantic Versioning| 15
[2.2 Vulnerability Management Concepts| 16
R3 _Motivation] . . . - .« . oo e 18

[3 Methodology| 20

4 Implications of the Results| 23
.1 Analysis of Github Repositories| 23

..................................... 26

Bibliography| 27

[Appendix 1 — Non-exclusive license for reproduction and publication of a graduation |

CHResS. . . o o 30

1 Introduction

Pipedrive is an Estonian late stage startup, founded in 2010[1]]. Its business model can be
characterized as Software as a Service, and the software it sells is a Customer Relations
Management (CRM) application, with a subscription-based business model. As recently
as in 2021 it was acquired by an investment firm[2] and secured 1 billion USD, thus
becoming a "unicorn". This marked the gradual transition out of being a startup, into a
more stable structure. This came with slow but noticeable changes, such as standardization

and stabilization of processes, many of them being security processes.

One of those security process changes has touched the deployment pipeline[3|] of microser-
vices[4]]. This pipeline is set up on the code repositories of all active microservices, it so
far involved only automated testing of software and checks on code styles and guidelines.
The change in question is the addition of security checks into the pipeline - which means
that the code now has to pass software tests that are written by the developers, the code
quality checks that are configured also by the developers, and also security checks need to
be satisfied - this is set up with the supervision of security team at Pipedrive. This is one of

the many automated vulnerability management processes in use at Pipedrive.

1.1 Structure of the Thesis

Chapter 1 describes the problem, the scope and the goals of the thesis. Chapter 2 provides
the background information about what vulnerability management, in general is, what is it
like in Pipedrive, and the technologies used for microservice vulnerability management in
Pipedrive. It also discusses the state of the art and how it relates to the process in Pipedrive.
Chapter 3 will formulate the methodology of the thesis, and talk about expected results.
Chapter 4 will focus on practical analysis, its results and their interpretation. Finally,
chapter 5 will conclude and summarize the thesis, as well as provide possibilities of further

improvement.

1.2 Description of the problem, Scope of the thesis, and Formulation of

possible solution

As it stands right now, Pipedrive is slowly improving the vulnerability management tool
belt that it uses for its microservice source code. The question this thesis asks and tries
to answer is: how much does the new processes improve the vulnerability management?
Does it have an effect on the speed of development? These questions in turn raise other
questions: By what metric will the process be more effective? Which internal teams will
have what parts of the process assigned to them? Is the process going to be able to discover
more vulnerabilities than the process before? What tools will be used? Will fixing a
vulnerability break the software? Can we detect such software breaks, and if yes, how
efficiently can that be done? Metrics need to be defined by which one can characterize
the effectiveness of developers and its possible changes. The vulnerability management

solution, and its parts, need to be described to understand why it is actually implemented.
The problem statement can formally be formulated as follows:

m RQ1: Did the additional security checks slow down the development?
» RQ2: How do automated tests help with detecting broken code, introduced by bots

that manage vulnerabilities?

Scope of the thesis

Scope of this thesis includes describing the microservice vulnerability management process
in Pipedrive, how the components of the process fit together and why are they chosen
the way they are chosen. The thesis will analyze Github code repositories and the pull
requests, through which changes are made in the microservices and will focus on feature
additions as well as automated dependency version updates. Out of scope are specifics
of vulnerabilities, services and any code on which the analysis is performed, other than
specifying the language and ecosystem in use. Also out of scope is maintenance of services
on individual basis and any sort of compliance enforcement. Thesis will not include raw

data that was used for analysis and won’t include details and specifics of any codebase.

2 Background Information

This chapter will give an overview of what are vulnerabilities, what is vulnerability manage-
ment, why should vulnerabilities be managed within Pipedrive, what are current automation
options and what might be the benefits of automating the vulnerability management pro-

CeESS.

This chapter will give an overview of what tools, technologies and conventions are used in
the vulnerability management process in Pipedrive, then describe what vulnerabilities are
defined as, according to the standards against which Pipedrive is certified, and then will
give an overview of vulnerability management in Pipedrive, as well as highlight where the

mentioned tools fit, and will justify the choices based on scientific literature.

2.1 Tools, technologies, conventions

2.1.1 Dependabot

Dependabot is a freely available vulnerability patching solution that every account on
Github can make use of[5]]. It uses several open source registries of vulnerabilities for
different languages that it covers, including two of the major ones used in Pipedrive -
Go and JavaScript, in which it stores which packages have what vulnerabilities and for
which versions. This information is used to detect the vulnerable versions of dependency
packages in git repositories hosted on Github, and updated. The update is made in a form
of a Pull Request. One caveat the pull request based contribution has is that sometimes
the pull requests are outright ignored, and Dependabot is largely configured to only create
a few branches, 2 by default, in order not to crowd the pull request list of the repository.
This creates a problem where a developer either needs to merge two Dependabot updates,

or attend to them separately, both of which require time.

10

fix(deps): [security] bump ini from 1

ENYEERED) dependabot-pre... merged 1commit into main-enter

@) Conversation 0 Commits 1 EL Checks 2 2 Files changed 1 +3 -3 mmmm

dependabot-preview bot commented on 10 Dec 2020 ® ** Reviewers
No reviews

Bumps ini from 1.3.5 t 1.3.7. This update includes a security fix.

.3.51t01.3.7 #69 Openits -
from dependabot-npm_and_yarn-ini-1.3.7 2} on 11 Dec 2020

> Vulnerabilities fixed Assi
> Commits

> Maintainer changes Labels

s compatibility 96%

You can trigger a rebase of this PR by commenting @dependabot rebase

cccccccc
eeeeeee

If all status checks pass Dependabot will automatically merge this pull request during working hours.
Milestone
‘‘‘‘‘‘‘‘‘‘‘

> Dependabot commands and options

Figure 1. Dependabot security Pull Request

2.1.2 Snyk

Snyk is a toolchain that includes several technologies in it. While some of them are not
used in Pipedrive due to other tools of the exactly same nature already being present and

in active use, they will still be mentioned for the sake of completeness.

Snyk Open Source Vulnerability Scanning

Much like Dependabot, Snyk open source scanning detects vulnerable dependency pack-
ages based on open source registries, and suggests updates. Dependabot has one advantage
over it - since Dependabot is owned by Github, it is well integrated into the ecosystem
and the updates can be configured easily, and troubleshooting is easy due to the larger
community. However, unlike Dependabot, it can be integrated into Pull Requests, hence
being able to detect vulnerable packages before they are merged to the main branch and
subsequently pushed to production. It also, unlike Dependabot, comes with proprietary
metric that helps with vulnerability prioritization, a web user interface that illustrates which
git repositories have vulnerable packages and at which level - dependencies have their own
subdependencies - and allows one to generate vulnerability reports, that contain vulnerabil-
ity scores, display which vulnerabilities from which vulnerability registries are going to be

fixed with the update and document the amount of possible breaking changes.[6]

11

danielberman79 / the-example-app.py @watch~ 0 %Star 0 n

forked from contentfulthe-example-app.py

Code [Pull requests 1 Actions Projects 0 Wiki Security Insights Settings

[Snyk] Fix for 2 vulnerabilities #1 et
WSl snyk-bot wants to merge 1commitinto master from snyk-fix-e7c51148243d0alab8aele2ff1977elb [

5 Conversation 0 - Commits 1 E Checks 0 [DFiles changed 1 +1-1mm
l“',j snyk-bot commented 11 hours ago First-time contributor | +@) +++ Reviewers

No reviews
Snyk has created this PR to fix one or more vulnerable packages in the "pip*

dependencies of this project.
Assignees

Changes included in this PR No one—assign yourself

« Changes to the following files to upgrade the vulnerable dependencies to a fixed version:

o requirements.txt Labels

None yet

Vulnerabilities that will be fixed

Projects
By pinning:
None yet
. Breaking Exploit
Severity Issue Upgrade 9 ploft
Change Maturity Milestone
Jinjaz: No milestone
2.7.2 =
Sandbox Escape = & oK
.10.1 lo Known
SNYK-PYTHON-JINJA2- No " Linked issues
174126 jinjaz: Exploit Successfully merging this pull request
2oz =4 may close these issues.
2.10.1
None yet

Figure 2. Sample Snyk vulnerability report

Snyk Open Source License Scanning

License scanning helps detect dependencies and subdependencies which might have
constrictive licenses, such as GPL 3.0, that need attention, since the breach of license can
be grounds for a legal action. Hence, the legal aspects can be brought to attention without

the need of manual inspection from humans.[7|]

Snyk SAST

Static Application Security Testing "is a vulnerability scanning technique that focuses
on source code, bytecode, or assembly code."[8] Used sometimes in the IDEs by the
developers, or in most cases in the Github Pull Requests. It detects insecure code by
statically analysing the code and highlighting it. Of course the detected code might be a
false flag, but that is negotiated with Information Security team, and if threat is not found

in the code, then the detection can be ignored.[8]

12

Snyk Container Image Scanning

This tool scans container images, that are meant for Kubernetes cluster, for vulnerabil-
ities that might come from packages used in the container, it might be a powerful tool
but Pipedrive is already using a free and open source alternative - Trivy[9]. Container

vulnerabilities will be discussed with it.[[10]
2.1.3 Github

Github is a git hosting platform that has a number of integrations and tools available. This
section is going to cover several of those integrations and tools that are used in vulnerability

management at Pipedrive.

Github Actions

Github actions are a git repository automation tool for repositories active on Github. It can
create, merge, delete branches, execute scripts, such as the above mentioned Snyk scans,
and in general is a Swiss army knife type of tool used for repository automation. Almost

every other tool’s presence and operation in a git repository is governed by this tool.

Pull Request

Pull requests are the tool through which incremental updates to repositories happen in
Pipedrive. Pull requests include the description of feature update, a list of diverging
commits from the main git branch, comments from developers and mainly automation run

by either Github Actions, Jenkins, or any other tool that does actions on the code.

Github API

A tool which is not a part of Pipedrive’s vulnerability management, but a tool used in this

thesis to analyze data about repositories. More on its use in the next chapter: Methodology.

13

2.1.4 Jenkins

Jenkins is a tool which is famous for being the quintessential Swiss army tool of automation,
it was used by nearly every engineering team in Pipedrive, however the developer teams are
slowly transitioning from Jenkins to Github Actions. Function of Jenkins that is relevant to
the thesis, is that it was able to run any kind of test suite, including the ones that required

building Kubernetes clusters, such as functional tests.
2.1.5 Tests

Tests are an integral part of microservice development in Pipedrive, as they help raise the
quality of the code by making sure that the code works as intended, help find breaks in
functionality during the development. Select test suites are run automatically at select
points in the continuous delivery process thus making the it more robust, and making sure
that there is no broken code in the live environment. There are several types of tests, and

the ones present in Pipedrive will be discussed.

Unit Tests

Unit tests cover execution of isolated methods and are the simplest tests that exist, hence
they require the least amount of resources to run. Because of this, they are run in pull

requests on every update.

Functional Tests

Functional tests are a type of integration tests used to test API calls within back-end
microservices. More often than not they require several components that need to be set
up, not only do parts of the application have to be mocked, but also mock services need
to be deployed, which respond to pre-determined responses to requests going in from the
tested microservice. This requires extra containers in which the mock services will live.
This means extra resources, due to which these kinds of tests are not automatically run like
the unit tests. In Pipedrive’s environment, the developers run these tests near the end of a

singular feature development round.

14

Integration Tests

Mentioned as courtesy, Integration tests have their purpose in the name - they test integra-

tion of several components together. Functional Tests are one such type of test.
2.1.6 End to End or E2E Tests

These are the most resource-intensive tests available - they test how a customer would
interact with the application as a whole. It simulates front-end interaction and expects the
application to react in a certain way, and reports the mismatches exactly. This requires the
presence of the entire microservice stack in an isolated environment. Due to the intensity

of the required resources,

Smoke Tests

Smoke tests are a subset of E2E tests which only test the "happy path interaction" or an
interaction of a user with an app which should, in theory, not cause any errors. These tests
are not a part of development process, and are ran separately and quite often, to ensure that

nothing is broken.

Code Coverage

Code Coverage is a metric which shows how many lines of code does a test suite cover.
This is one of the metrics that are going to be used during the practical part - expectation is

that higher code coverage levels should result in reporting broken code more often.
2.1.7 SemVer - Semantic Versioning

Not a tool, but a convention for versioning software. It is used in most of the dependency
packages used at Pipedrive. Brief synopsis of this convention is that versions take the
form X.Y.Z where X would stand for a "Major Version" - which means there are breaking
changes, such as removal of deprecated API methods. Y stands for "Minor Version" where
the changes made are backwards compatible. Z is "Patch Version" where bugs are fixed in

a backwards compatible manner, but no changes introduced.[11]

15

2.2 Vulnerability Management Concepts

As defined in ISO 27005EL a vulnerability is "A weakness of an asset or group of assets that
can be exploited by one or more threats, where an asset is anything that has value to the
organization, its business operations, and their continuity, including information resources
that support the organization’s mission".[[12, 13]] Vulnerability Management, in turn, is
defined as "the process in which vulnerabilities in IT are identified and the risks of these
vulnerabilities are evaluated. This evaluation leads to correcting the vulnerabilities and
removing the risk or a formal risk acceptance by the management of an organization."[14]
These are of course broad definitions, and they require more precise scoping, this thesis
looks at vulnerabilities in microservice source code, the 3rd party code (i.e. - dependencies)

used in the microservices, as well as the dependencies of the dependencies.

Aforementioned tools are used with a certain framework, to maximize the effectiveness of
the limited resources that the Information Security team has. The automatic Snyk SAST
and Open Source Dependency Vulnerability checks make sure that the code pushed to
production is as secure as possible, while Dependabot generates updates itself for the
repository owners. This step offloads a lot of burden to the developers, since Information
security team does not have to normally take part in these activities. This is already a strong
improvement over the baseline, as in 2017 a study has found that 81.5% of the studied
systems were keeping outdated dependencies because of the perceived extra workload and
responsibility. As a part of the same study, 69% of the surveyed developers claimed that
they were unaware of their vulnerable dependencies.|[15] However, it needs to be said that
this study was conducted on repositories with Java code, and while language differences
don’t usually matters, one of the study’s conclusions was that a project was more likely to
update if it had a dependency management tool, which most modern JavaScript projects,
and all JavaScript projects in Pipedrive, already have in the form of node package manager.
Further proof that this delegation of vulnerability management to the developers is a good
idea, is that according to a study done by Danny Dig, et al.[16]] 84-97% of breaking API
updates are refactorings, i.e. change of existing code. This is exactly the category under
which security updates to dependencies fall - they change, which means they refactor,
existing code, and if the changes in APIs actually breaks the code, then it will fall onto
the developers who are the owners of the microservice to fix the issue - hence, their
involvement is mostly inevitable. And while earlier described Semantic Versioning can
be used to differentiate between breaking and non-breaking API changes, a study done
by Bogart Christopher, et al.[17] that updates that do not respect SemVer, do happen -

this makes trusting the authors somewhat less risk-free. Another reason why it’s a good

IPipedrive is certified against ISO27001 which in term derives the definition from 1ISO27005, due to this
fact, this thesis takes the same definition

16

idea to let the developers handle vulnerability updates in such a way, was illustrated in
the study done by Laerte Xavier, et al.[18] which discovered that the more time passed,
the more breaking changes were introduced to an API, which meant that upgrading one’s

dependencies should be done somewhat often, in order to not accrue technical debt.

For the sake of completeness, the human-driven process will also be documented:

As stated above, the Snyk Open Source tool, along with Trivy, are used to monitor the
vulnerabilities in timely fashion - these are one of the tools that help Pipedrive stay
compliant with ISO27001, namely the 12.6.1 clause, which states that "Information about
technical vulnerabilities of information systems being used shall be obtained in a timely
fashion, the organization’s exposure to such vulnerabilities evaluated and appropriate
measures taken to address the associated risk."[[12]. Snyk reports, that include severity
and the maturity of the exploits, cut down on the time that is needed for the SOC team
to prioritize some vulnerabilities over others. Trivy reporting allows for visualizing
and pinpointing the container image vulnerabilities. The vulnerabilities that appear are
submitted to the developer teams, that own the microservice, in a form of an agile board
ticket with a priority label - the more severe the vulnerability, the higher the priority,
the sooner it has to be fixed. Development teams can discuss with information security
team the severity of the vulnerability and the priority can be changed, however all the
vulnerabilities are addressed, sooner or later.

The earlier mentioned Github Actions are used to automate the delivery of Dependabot
pull requests. The unit tests are run even for the Dependabot pull requests, and if the
project can be successfully built and the tests successfully pass, the project automatically
gets deployed to the pipeline, where the most resource-intensive tests, the End-to-End tests
are run, and if they are also successful, then the microservice with the code updated by

Dependabot is working in live environment.

Not to be overly dependent on just the automated tools, Pipedrive tries to insulate itself
from the threats by having another layer of vulnerability detection - in partnership with
HackerOne, Pipedrive runs a bug bounty program, through which security researchers can
submit vulnerability reports of exploits found in the Pipedrive’s product. It is not only
intuitive that leaving the vulnerability detection process to the automated tools, but is also
detected by security researchers at TU Crete[19]] that Snyk tests and npm audit might miss

some vulnerabilities in source code, such as zero-day vulnerabilities.

17

2.3 Motivation

"The only system which is truly secure is one which is switched off and unplugged, locked
in a titanium lined safe, buried in a concrete bunker, and is surrounded by nerve gas and
very highly paid armed guards. Even then, I wouldn’t stake my life on it..."

Gene Spafford - Director, Computer Operations, Audit, and Security Technology (COAST),
Purdue University.[20]

Implementing more tools into the workflow can of course improve security, but it has a
toll on the time of feature delivery, in that the workflow gets more complicated: each new
feature addition must comply with several kinds of tests, thus it can be assumed that they
require additional attention and time from the developers. Assessing monetary side of
developer time usage is beyond the scope of this topic, however the question of security
versus usability is of interest to all parties involved, so this thesis will look at this workflow
update from exactly that lens - how much is being added to the security and how much
does it complicate matters? The security versus usability is an ever-discussed topic within
the field of security.

Current workflow of software automated security testing and open source vulnerability
scanning undoubtedly require attention from the developers, therefore require their time.
This means that every single feature update will take more time, and what is more important
- it will take time that is not being accounted for while planning, since the feature is so new.
There were already checks in place for the developers to comply with information security
requirements. Those are in the form of a meeting with information security team, but
no automated code checks. This means that the possible time increment in development

process can be investigated.

Another aspect of the added tooling - Github Actions automated Dependabot updates
- has a small caveat. If several Dependabot updates are triggered at once, the internal
deployment tool[21] might get overloaded, since the infrastructure has limits. Also need to
be noted, that in 2021 study by Joseph Heidrup, et al.[22] that "that tests can only detect
47% of direct and 35% of indirect artificial faults on average." - This means that potentially,

there might be a change that slips into production that causes some sort of instability.

Improving security is often associated with heightened complexity of the process, due to
requirements that need to be first understood, then satisfied during the process, which needs
to be reviewed and addressed, resulting in more time being lost. A good example would
be passwords - the more complex a password is the harder it is to brute-force the access

to an account the password is protecting, but at the same time it’s harder to remember, so

18

humans tend to write them down, or use some other "lazy solution"[23]]. Although it can
be speculated that such effects can possibly be observed in Pipedrive’s microservice code,
there is a code quality assessment procedure in Pipedrive by a peer from the same team,
that distributes the responsibility onto the peer as well. This practice has been proven to

improve the overall quality.[24]

19

3 Methodology

To answer RQ1 and RQ2 earlier mentioned Github API is going to be used to collect
relevant data, paired with SPoT (Single Point of Truth)[21]] - it was not mentioned earlier
since it is not a part of vulnerability management process, but contains important informa-
tion about Pipedrive’s microservices, of interest to this research is code coverage. Since
SPoT contains data on all repositories of Pipedrive, it allows us to take those repositories
which do have code coverage in them, due to the presence of repositories (automation
tools, infrastructure code, etc.) which by their nature can not have the same kinds of tests
as microservice repositories.

Quantitative analysis of the repository data will be performed to assess how different

characteristics of a pull request are correlated to each other, such as:

m Total size of a pull request - lines added/removed, number of commits
m Total time open - time of creation, merging, closing

s Who opened the PR - was it a human, or a robot?

Correlation between these metrics can show how much effort was put into a feature update
- how much code was written? and over how many commits? It is also expected to infer
how quickly were the changes made from the amount of time that the pull request was
open. Of interest will be also the pull requests that are left open still, especially if they’re
opened by a bot - this would mean that a dependabot pull request was either not attended
to, or that there was already an update in the dependency and the pull request just timed
out - such cases have been recorded[25]]. Figure 3| Describes the flow of the data that is
used in this part of assessment.

It is expected that since the introduction of additional checks, the average time and effort
put into a pull request should increase. The dataset consists of 2477 pull requests and 52

repositories.

To suggest improvements, a qualitative study of select repositories can be done. In previous
chapter, Functional tests were described as being manually run - this means that they are
not automatically run in Dependabot pull requests, which means that if inconsistencies
are not caught at build or unit test stages, which do not cover the full spectrum of the
microservice’s operation, then a far costlier End-to-End tests, as opposed to functional tests,

are going to be run. This has both pros and cons: if the build passes, then a Dependabot pull

20

O =

\Colect
P Visualize

Retrieve
Store + Aggregate

Figure 3. Methodology diagram

21

Time

Build, unit tests E-2-E Tests

Build, unittests ~ Functional Tests E-2-E Tests

Case A: No errors

Error detected

Build, unit tests E-2-E Tests Build, unittests ~ Functional Tests E-2-E Tests

Error detected

Build, unittests ~ Functional Tests Functional Tests E-2-E Tests

Case B: Errors discovered

Figure 4. Approximation of the conjecture

request will be going live without any human supervision, and definitely with least amount
of resources spent on it, since every deployment needs to run through an end-to-end check.
However if it fails at the end-to-end stage, then developers most definitely will have to
run the entire test suites, functional tests included, in order to better illustrate where the
component might be failing, and once they identify the fault and queue the deployment,
e-2-e tests need to be run again. While this is potentially legitimate improvement to the
solution, difference is not expected to be too big, as seen on figure 4, However the option
might still be explored.

Pull requests can be identified from the first part of the practical analysis, where A:
Dependabot was the sole commiter in the PR, B: Dependabot needed supervision. E-2-E
and Functional tests are manually going to be run and timed. This will determine how
much time does the existing method win in the Case A - with no errors, and how much

does it lose, in case B - with errors.

22

4 Implications of the Results

4.1 Analysis of Github Repositories

The data drawn from Github API was analyzed in three ways - The amount of lines of
code that were changed per pull request, the amount of average number of commits in
pull requests, and the amount of merged, unmerged and total Pull Requests made by the

Dependabot.

In figure [5| we see an interesting trend, where the number of code, on average, has been
decreasing in Pipedrive’s repositories since the introduction of security tests. This can be
down to old code being reviewed, and what is not needed, deleted. The possibility that it is
some sort of mistake correction is small, since it does not make sense to correct git history
through a PR, rather than directly rewriting the history - one leaves trace of potentially
sensitive information, other does not. Overall, less code means less ways attackers can

breach the system, therefore it is net positive in terms of security for Pipedrive.

2000
z

3000 1 = Before

After

2000 ~

1000 A 818

669
481
I

Number of lines
o

—1000 4

—2000 A

Ad&ed Remloved Diffe;ence

Figure 5. Average number of Lines Added/Removed before and after the introduction of
security checks

Overall, from figure[6]it can be said that the number of commits has not changed too much

- upon close investigation even the maximum number of commits is only a bit inflated in

23

the older Pull Requests. There are only five more PRs with a commit number of 50 or
more. This means that average effort - in terms of commits - hasn’t changed. However,
if coupled with the figure 5] the "effort" argument might start to break down, and it can
be even said that "Pipedrive is getting better programmers", as some older programmers

prefer to remove code from software to make it simpler, more elegant[26].

100

100 A Il Before
[After

80 -

60 -

40

Number of lines

20 1

3

0 1

T
Average Maximum Minimum

Figure 6. Average number of commits in a PR before and after the introduction of security
checks

Most interesting for the next part is the comparison between merged and unmerged
Dependabot Pull requests - out of all the dependabot PRs that were opened, only 41%
were merged, and of the merged PRs, 58% had a single commit from Dependabot. The
distribution of these PRs between pull requests based on their test coverage is shown in
figure[7, While in the earlier chapters we’ve said that better code coverage implies more
merged dependabot PRs, it is absolutely clear from this figure that in Pipedrive’s case, this
is not the case. In fact, the repositories that are in the highest percentages of code, merge

less than one third of dependabot PRs.

24

Number of Dependabot PRs

153

160

140

Jury

N

o
L

=

o

o
1

[e]
o
1

()}
o
1

'
o
L

N
o
1

mm Total
B Merged
@ Unmerged

0to 20 20 to 40 40 to 60 60 to 80 80 to 100
Test coverage %

Figure 7. Distribution of Dependabot PRs

25

5 Summary

As can be seen from the research, improvements in security do not necessarily have to sac-
rifice usability or increase the effort bourne by the development teams - on average, number
of commits is the same. On the contrary, security checks seemed to have improved the
engineering quality in Pipedrive, e.g. removal of code. Meanwhile, the newly introduced

Dependabot PR auto-merging will surely decrease vulnerabilities in dependencies.

Further studies can try to look into the correlation of overall dependency number vs number
of commits and/or lines introduced to code, to verify the correlation that has shown itself in
this paper. Further studies can focus on implementing more types of tests before E2E tests
are going to be run in Pipedrive’s infrastructure, to lessen the load on it, and to hopefully

increase the overall throughput of it.

26

Bibliography

[1]

[9]

[10]

[11]

Pipedrive. About Pipedrive. [Accessed: 12-05-2022]. URL: https : / / www .

pipedrive.com/en/about.

Sten Hankewitz. Estonian-founded Pipedrive sells majority to an investment firm,
becomes a unicorn. [Accessed: 12-05-2022]. URL: https://estonianworld.
com/business/estonian—-founded-pipedrive—-sells-majority-

to-an—-investment—-firm-becomes—a—-unicorn/.

PagerDuty. What is a Deployment Pipeline. [Accessed: 15-05-2022]. URL:
https : / / www . pagerduty . com/ resources / learn / what —is —

a—deployment—-pipeline/l
AWS - Amazon Web Services. What are microservices. [Accessed: 25-04-2022].

URL: https://aws.amazon.com/microservices/.

Github. About Dependabot security updates. [Accessed: 12-05-2022]. URL:
https://docs.github.com/en/code-security/dependabot /
dependabot -security—-updates/about —dependabot —-security-+

updates.

Snyk Limited. Snyk Open source security management. [Accessed: 12-05-2022].
URL: https : / / snyk . 10 / product / open — source — security -+

management /.

Snyk Limited. Snyk Open Source License Compliance Management. [Accessed: 12-
05-2022]. URL: https://snyk.io/product/open-source—license-

compliance/l

Snyk Limited. Static Application Security Testing (SAST). [Accessed: 12-05-2022].
URL: https://snyk.io/learn/application—-security/static+

application-security-testing/.

Aqua Security. Trivy. [Accessed: 12-05-2022]. URL: https://github.com/

aquasecurity/trivyl

Snyk Limited. Snyk Container. [Accessed: 12-05-2022]. URL: https://snyk.

io/product/container-vulnerability-management/.

Tom Preston-Werner. Semantic Versioning. [Accessed: 25-04-2022]. URL: https :

//semver.orqg/.

27

https://www.pipedrive.com/en/about
https://www.pipedrive.com/en/about
https://estonianworld.com/business/estonian-founded-pipedrive-sells-majority-to-an-investment-firm-becomes-a-unicorn/
https://estonianworld.com/business/estonian-founded-pipedrive-sells-majority-to-an-investment-firm-becomes-a-unicorn/
https://estonianworld.com/business/estonian-founded-pipedrive-sells-majority-to-an-investment-firm-becomes-a-unicorn/
https://www.pagerduty.com/resources/learn/what-is-a-deployment-pipeline/
https://www.pagerduty.com/resources/learn/what-is-a-deployment-pipeline/
https://aws.amazon.com/microservices/
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/open-source-license-compliance/
https://snyk.io/product/open-source-license-compliance/
https://snyk.io/learn/application-security/static-application-security-testing/
https://snyk.io/learn/application-security/static-application-security-testing/
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/container-vulnerability-management/
https://semver.org/
https://semver.org/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

ISO/IEC. Information technology - Security techniques - Information security man-
agement systems - Requirements (ISO/IEC 27001 :2013,IDT). Switzerland, 2013.

ISO/IEC. ISO/IEC, "Information technology — Security techniques-Information

security risk management". Switzerland, 2008.

Tom Palmaers. “Implementing a Vulnerability Management Process”. In: (). [Ac-
cessed: 24-04-2022]. URL: https://www. sans.org/white—-papers/
34180/l

Do developers update their library dependencies? An empirical study on the impact
of security advisories on library migration. New York: Springer Science+Business
Media, 2017. DO1: 10.1007/s10664-017-9521-5.

How do APIs evolve? A story of refactoring. Urbana-Champaign, Urbana, IL 61801,
201 N Goodwin Avenue, United States, 2005. DOI: 10.1002/smr.328.

How to break an API: Cost negotiation and community values in three software
ecosystems. 2016. DOI1: 10.1145/2950290.2950325.

Historical and Impact Analysis of API Breaking Changes: A Large-Scale Study.
2017.D0I1: 10.1109/SANER.2017.7884616.

Demo: Detecting Third-Party Library Problems with Combined Program Analysis.
2021.p01:110.1145/3460120.3485351.

Gene Spafford. [Accessed: 25-04-2022]. URL: http://www.cs.ums1l.edu/

~sanjiv/sys_sec/security/sys_insecure.htmll

Jevgeni Demidov. “Our Custom-Built DevOps Tools Enable Us to Deploy Code
in Production in Just Two Clicks!” In: (). [Accessed: 22-04-2022]. URL: https:
/ /medium. com/pipedrive-engineering/our - custom-built +
devops—-tools—enable-us—-to-deploy—-code—-in—-production-
in—just-two-clicks—-d02edfe215e4.

Can we trust tests to automate dependency updates? A case study of Java Projects.
2021.D01:110.1016/7.3ss.2021.111097.

Saranga Komanduri et al. Of Passwords and People: Measuring the Effect of
Password-Composition Policies. [Accessed: 25-04-2022]. URL: https://users.
ece.cmu.edu/~lbauer/papers/2011/chi2011-passwords.pdfl

et al. Eduardo Witter dos Santos. “Investigating the effectiveness of peer code review
in distributed software development based on objective and subjective data”. In:
(2018). DOI1:110.1186/s40411-018-0058-0.

On the Use of Dependabot Security Pull Requests. 2021. DOI: 10 . 1109 /
MSR52588.2021.00037.

28

https://www.sans.org/white-papers/34180/
https://www.sans.org/white-papers/34180/
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1109/SANER.2017.7884616
https://doi.org/10.1145/3460120.3485351
http://www.cs.umsl.edu/~sanjiv/sys_sec/security/sys_insecure.html
http://www.cs.umsl.edu/~sanjiv/sys_sec/security/sys_insecure.html
https://medium.com/pipedrive-engineering/our-custom-built-devops-tools-enable-us-to-deploy-code-in-production-in-just-two-clicks-d02e4fe215e4
https://medium.com/pipedrive-engineering/our-custom-built-devops-tools-enable-us-to-deploy-code-in-production-in-just-two-clicks-d02e4fe215e4
https://medium.com/pipedrive-engineering/our-custom-built-devops-tools-enable-us-to-deploy-code-in-production-in-just-two-clicks-d02e4fe215e4
https://medium.com/pipedrive-engineering/our-custom-built-devops-tools-enable-us-to-deploy-code-in-production-in-just-two-clicks-d02e4fe215e4
https://doi.org/10.1016/j.jss.2021.111097
https://users.ece.cmu.edu/~lbauer/papers/2011/chi2011-passwords.pdf
https://users.ece.cmu.edu/~lbauer/papers/2011/chi2011-passwords.pdf
https://doi.org/10.1186/s40411-018-0058-0
https://doi.org/10.1109/MSR52588.2021.00037
https://doi.org/10.1109/MSR52588.2021.00037

[26] Pete Goodliffe. O’Reilly, 2014. 1SBN: 978-1491905531.

29

Appendix 1 — Non-exclusive license for reproduction and publi-
cation of a graduation thesi

I, Dachi Mshvidobadze

1. Grant Tallinn University of Technology free license (non-exclusive license) for my
thesis "Case Study of Automated Vulnerability Management of Microservices at
Pipedrive OU", supervised by Kaido Kikkas

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

04.17.2022

The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

30

	Introduction
	Structure of the Thesis
	Description of the problem, Scope of the thesis, and Formulation of possible solution

	Background Information
	Tools, technologies, conventions
	Dependabot
	Snyk
	Github
	Jenkins
	Tests
	End to End or E2E Tests
	SemVer - Semantic Versioning

	Vulnerability Management Concepts
	Motivation

	Methodology
	Implications of the Results
	Analysis of Github Repositories

	Summary
	Bibliography
	Appendix 1 – Non-exclusive license for reproduction and publication of a graduation thesis

