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FOREWORD 
 

This thesis topic was proposed by the Chair of Mechatronics. Research on moisture content 

estimation has received substantial attention in extant literature. This thesis work is an aspect of a 

robust solution developed by the Department of Electrical Power Engineering and Mechatronics to 

create a system able to measure all required parameters of biofuel pellets online without damage to 

the pellets or the need to take them off the production line. The measurements used for this thesis 

were taken at the Machine Vision Laboratory of the Department of Electrical Power Engineering and 

Mechatronics while reference value measurements were taken at the Department of Materials and 

Processes of Sustainable Energetics. 

The author would like to thank the supervisor Märt Juurma for the guidance and help given all through 

the process of completing this work.  
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EESÕNA 
 

Käesoleva lõputöö teema oli välja pakutud elektroenergeerika ja mehhatroonika instituudis 

mehhatroonika uurimisrühma poolt. Niiskuse sisalduse hindamisega seotud töid on ka varasemalt 

tehtud ning publitseeritud. Praegune töö siin aga on osa ühest robustsest lahendusest. Täpsemalt 

on tegu süsteemiga, mille välja töötamisega tegeleb eletroenergeetika ja mehhatroonka instituut. 

See süsteem oleks võimeline mõõtma kõiki vajalikke biokütuse parameetreid ilma graanuleid 

kahjustamata või neid tootmisprotsessidest kõrvaldamata. Mõõtmised, mis selle lõputöö kirjutamisel 

vajalikuks osutusid, on tehtud elektrotehnika ja mehhatroonika instituudi masinnägemise laboris. 

Kontrollmõõtmised on tehtud kütuste ja õhuemissioonide teadus- ja katselaboratooriumis. 

Autor soovib tänada Märt Juurmad suunamise ja juhendamise eest terve töö koostamise vältel.  
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LIST OF ABBREVIATIONS AND ACRONYMS 
 

AC – Ash Content 

CC – Carbon Content 

CEN – European Committee for Standardization 

GCV – Gross Calorific Value 

GLS Weighting – Generalized Least Squares Weighting 

HS - Hyperspectral 

HSI – Hyperspectral Imaging 
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SNV – Standard Normal Variate 

Vis-NIR – Visible-Near Infrared  
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1. INTRODUCTION  
 

 

1.1. General Overview 

 

Biofuel pellets are made by grinding biomass such as wood, hay, crops, plants or plant residue into 

sawdust. This sawdust is then compressed through hammer mills. Biofuel pellets have quality indices 

that must be shown on the packaged product by its manufacturer. Apart from moisture content, which 

is the focus of this thesis, calorific value, ash content, bulk density and biofuel dimension are 

important quality indices that must be known and explicitly stated by manufacturers.  

Interestingly, Estonia ranks first in the world in the production of biofuel pellets per capita. Hence, 

the overall objective of this thesis is to consolidate on this achievement and proffer better and faster 

ways of estimating the quality indices of biofuel pellets.  

Hyperspectral imaging has been used for moisture content estimation in various fields, especially in 

agriculture. This thesis therefore aims to apply the use of hyperspectral imaging to provide a better 

and faster way of estimating the moisture content of biofuel pellets.  

 

 

 

1.2. Problem statement  

 

One of the well-established methods of estimating moisture content is the oven dry method. This is 

buttressed by CEN 14774, which states that the standard procedure for estimating moisture content 

is the oven dry method [1].  However, this method has some setbacks.  The oven dry method involves 

taking 300 g of biofuel samples to an approved laboratory and drying at a stable temperature of 105 

°C until the mass remains unchanged. Apart from this process being destructive to the pellets, it is 

also time wasting, as the process cannot be incorporated into an online production system, hence 

the need for a faster system of estimation. 

As such, this study aims to use Hyperspectral imaging (HSI) to obtain both spatial and spectral 

information about biofuel pellets. This method gives the ability to acquire information not obtainable 

in spectroscopy only or in photography. HSI has been used for many different applications, ranging 

from cell biology to face recognition algorithms. Therefore, hyperspectral data were obtained at the 

machine vision laboratory of the Department of Electrical Power Engineering and Mechatronics. This 

was done using the Spectronon software and the acquisition camera used was Resonon PIKA II. 
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The approach taken for this study is to create a model using partial least squares regression (PLSR) 

for MC estimation. PLSR takes the spectral data, finds factors responsible for patterns in the moisture 

content, and then forms a model based on this prediction. PLS_Toolbox by EigenVector is a toolbox 

that works with Matlab. This toolbox was used for the calibration of the model. Before the model was 

calibrated, principal component analysis (PCA) was done on the data. Although PCA is mostly used 

to reduce data dimensionality, in this thesis, it was only used to observe clustering of data and to 

remove outliers in the data. 

The findings of this study will proffer a faster system of estimating MC of biofuel pellets using 

hyperspectral data which will enhance production outcomes.  

 

 

 

1.3. Objectives of the study 

 

The purpose of this thesis is to create a model capable of estimating biofuel moisture content from 

hyperspectral data. This is based on the understanding that water molecules have a distinct spectral 

signature and the stretching of O-H bond of water corresponds to the absorption band that is common 

to bio-organic materials [2]. The focal aim of this study is to calibrate the model using spectral data 

from the visible and NIR region.  

This thesis is part of a bigger project in the Department of Electrical Power Engineering and 

Mechatronics to create a machine vision system able to estimate the quality indices of biofuel pellets 

in one exposure during the production routine. 

 

 

 

1.4. Description of tasks involved 

 

The tasks that need to be undertaken to achieve the objective of estimating biofuel moisture content 

from hyperspectral data include: 

I. Review of literature to establish the best method of moisture content estimation. 

II. Creation of a model in the form of a flow chart to show the tasks to be undertaken.  

III. Setting up hyperspectral imaging environment to enhance data collection. 
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IV. Acquisition of both hyperspectral and reference data to estimate moisture content.  

V. Preprocessing of hyperspectral data. 

VI. Conduction of principal component analysis to study data and remove possible outliers. 

VII. Analysis with partial least squares regression to build a model that can predict moisture 

content with good accuracy. 

VIII. Testing of the PLSR model. 

 

 

 

1.5. Thesis structure 

 

This thesis report is organized into eight chapters.  

Chapter 1 provides an introduction and overview of the objectives of the thesis. The problem 

statement and tasks to be undertaken to achieve those objectives are explained. 

Chapter 2 presents a review of relevant literature. Specifically, the development of biofuel pellets 

over the years and hyperspectral imaging procedures are examined and discussed. Furthermore, 

this chapter highlights the existing methods according to EU standards and approaches for using 

HSI to estimate MC. Finally, based on the literature review, a flowchart is developed to show the 

order of progression of tasks to be undertaken for this thesis. 

Chapter 3 describes the process of acquiring spectral data, the test set up and the software used for 

the acquisition. The MC estimation carried out to obtain reference values using the dry oven method 

is also described in this chapter.  

Chapter 4 discusses the data analysis procedure, result and preliminary preprocessing of the data. 

Also, PCA and PLSR done in the PLS_toolbox environment are also described.  

Chapter 5 provides a view on future research works and recommendations based on the findings of 

the study.  

Chapters 6 and 7 provide summaries of the thesis in English and Estonian languages respectively. 

Chapter 8 lists the references used in this study.   
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2. THEORETICAL BASIS 
 

 

2.1. Background of work and literature review 

 

This section provides an overview of relevant literature on estimation of the moisture content of 

biofuel pellets using hyperspectral data. First, the history and use of solid biofuel will be discussed 

and the background to the study will be examined. Second, the moisture content of biofuel pellets 

will also be explained, and the required parameters for biofuel pellets will be discussed. Third, the 

existing procedures for estimating these parameters will be examined. Finally, Hyperspectral 

imaging, its evolution, wide applications, methods and prior efforts to use it for moisture content 

estimation will also be discussed. 

 

 

 

2.2. Development of biofuel pellets 

 

In order to understand the development of biofuel pellets and to see why they are needed, a brief 

overview of how they evolved over time is given. This is not exhaustive because the direction of the 

thesis is different, but it gives a little overview of the history of solid biofuels. 

 

 

2.2.1. Firewood 

 

Burning wood as fuel for fire has been the practice of man since the beginning of this age [3]. 

Firewood has been in use as the primary source of fuel before the advent of fossil fuel especially for 

domestic purposes [3]. Although it is not clear when humans began to use controlled fire for light and 

heat, it is assumed that the first fire igniting of wood must have been from lightening [4]. At a 

temperature of 220°C or higher temperature, most dry plant materials ignite in air to cause fire. Thus, 

their bioenergy is turned into heat and light [3]. 



14 
 

Firewood is usually tied and sold in bundles. Although the use of firewood as a source of fuel has 

significantly reduced over the years, its use is still prevalent in rural areas of Asia and sub-Sahara 

Africa [3]. 

 

 

2.2.2. Wood chips 

 

Burning firewood without refining it to any other form of biofuel gives the most efficient use of the 

bioenergy [3]. One disadvantage with firewood however, is that it is bulky. This has led to the use of 

wood chips which are easier to use, have smaller combustion units and are relatively more 

comfortable to handle [3]. 

Since the beginning of the 21st century, wood chips have been used for generating heat and 

electricity [5]. Dwellers of rural areas in developing countries find wood chippers unaffordable. Hence 

wood chips are not a popular choice of fuel in these areas [3]. 

 

 

2.2.3. Biofuel pellets 

 

Compared to wood chips, biofuel pellets are more processed and contain less moisture content 

usually between 5-10% [3]. 

Biofuel pellets are made by grinding biomass such as wood, hay, crops, plants or plant residue into 

sawdust. This sawdust is then compressed through hammer mills. They are forced through 6-8mm 

holes of a die pelletizer to form the pellets [3]. 

The resulting pellets of good quality should have an average length of 3.15 – 40mm with maximum 

length not exceeding 45mm, <1% fine powders and should be mechanically durable [1]. Figure 2.1 

below shows standard dimensions of 8 mm wood pellets with high quality. 
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Figure 2.1 Dimensions of 8 mm wood pellets according to EN 14961-1[1] 

 

The smooth cylindrical shape and the small size of the pellets allow them to be fed automatically at 

fine calibration [3]. Also, because they are grain-like and have low moisture content and high density, 

they can be compactly stored and transported over long distances [3]. However, because of the high 

cost of pellets, their use is still limited [3]. 

Biofuel pellets are usually produced from sawdust and wood shavings [6], and because of the 

growing demand for biofuel as an energy source, there has been increased demand for alternative 

feedstock [6]. These alternative feedstock include cereal straws, energy crops and animal residue 

[6]. With the wide range of feedstock also comes the wide range of physical properties of the pellets. 

Biomass usually has variations in physical properties due to differences in soil type, harvest date, 

cultivation techniques and weather conditions [2]. These factors greatly influence the moisture 

content of the pellets. 

Arshadi et al. found that moisture content of the raw material greatly influenced the moisture content 

of the pellets. They discovered that it was indeed possible to predict the moisture content of the 

biofuel pellet based on the raw material characteristics while taking into consideration other factors 

[7]. 

 

 

 

2.3. Background to the study 

 

According to the European Committee for Standardization, CEN under committee TC335, biofuel 

pellets are required to be produced and packaged according to the stipulated standards for normative 

and informative purposes [1]. To ensure that this standard is adhered to, there are parameters given 
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in the standard that must be communicated to the end user about biofuel pellets. The three most 

important pellets parameters are the moisture content (MC), ash content (AC) and pellet dimension. 

Other important parameters are mechanical durability, bulk density, calorific value and ashing value 

[1]. 

The European Union prescribed methods of obtaining these parameters in the FprEN 14774 

document. The moisture content is obtained by weighing the pellets before drying, and then drying 

the pellets to a constant mass. The weight loss is observed and the percentage of moisture content 

compared with the mass of the pellet [8].  

Hyperspectral imaging (HSI) is used to obtain both spatial and spectral information about an object. 

This gives the ability to acquire information not obtainable in spectroscopy only or in photography. 

HSI has been used for many different applications, ranging from cell biology to face recognition 

algorithms.  

There has been an attempt to estimate the parameters of biofuel pellets using HSI by Gillespie et al., 

the result of the experiment was good. With push broom line scan technique, they used near-infrared 

camera to obtain hyperspectral cube of pellets. The data were thereafter processed using partial 

least squares method to obtain the MC, AC, Calorific value (CV) and Carbon value [2]. 

Although not many researches have been conducted to obtain pellet parameters with HSI, there 

have been efforts to estimate MC of other objects, ranging from red meat to wood to the volume of 

water in the soil [9][10][11]. The distinct signature of water can be extracted from the HSI cube of the 

whole object to estimate the MC. All of these will be discussed in detail in this chapter. 

 

 

 

2.4. Required parameters for biofuel pellets 

 

CEN under committee TC335 is developing two important technical specifications for solid biofuels, 

the first deals with classification and specification (EN14961), and the second deals with quality 

assurance for solid biofuels (EN 15234) [1].  

The pellet standards are classified into three groups namely: 

- EN 14961 -1 for general use (includes pellets from different biomass raw materials) 

- EN 14961 -2 for wood pellets for non-industrial use 

- EN 14961 -6 for non-woody pellets for non-industrial use [1].  
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Though it is foreseen that the general requirements of EN 14961-1 will probably be used mainly in 

industry, it is meant for all solid biofuels and is targeted to all user groups [1]. Hence, following the 

requirements of EN14961-1 is adequate for research pursuits. 

Every solid biofuel is required to have a fuel product declaration. This declaration in addition to other 

contents must have the exact specification of properties according to the appropriate part of EN 

14961. There are two classes of specification. The first classification is the normative properties; 

which are mandatory to be given in the fuel specification. The most important normative properties 

are the moisture content, particle dimension and ash content. The second classification is the 

informative properties, which are optional and may be voluntarily added to the specification. An 

example of the informative characteristics is the bulk density [1]. 

The moisture content of biofuel pellets is a mandatory characteristic to be specified and it affects 

other characteristics of the biofuel pellets. Bridging property for instance which affects unloading and 

handling of the pellets is directly influenced by moisture content [12]. The moisture content also 

affects the net calorific value, as high moisture content will require higher heat to vaporize the 

moisture. The bulk density as well as the mechanical durability also known as the strength of the 

pellet are influenced by the moisture content of the pellet [13]. This relationship is illustrated in Figure 

2.2 below: 

 

  

 

 

 

 

 

 

 

Figure 2.2 Relationship between moisture content and other properties 
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2.5. Existing procedure for estimating moisture content of 

biofuel pellets 

 

The procedure for the determination of moisture content (oven dry method) is described in FprEN 

14774. In determining the total moisture, three methods can be used.  

These includeː the reference method, the simplified method and moisture in general analysis sample 

method. The reference method is used when a higher level of precision is necessary [8]. 

 

 

2.5.1. Reference method (EN 14774-1) 

 

For the reference method, a sample of minimum mass of 300g is dried in the oven at a temperature 

of (105 ± 2°C). The air atmosphere is required to change between 3 to 5 times per hour until constant 

mass is achieved. From the loss in sample mass, the moisture content is calculated. Because the 

sample has to be weighed when still hot, it gives a buoyancy effect. This effect must be compensated 

for when high precision is required [14]. Figure 2.3 below shows biofuel samples in an oven. 

 

 

Figure 2.3 Drying of biofuel samples [14] 
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2.5.2. Simplified method (EN 14774-2) 

 

This method is similar to the reference method, except that there is no buoyancy compensation. It 

may be used when the highest precision is not necessary [14]. 

2.5.3. Moisture in general analysis sample (EN 14774-3) 

 

For this method, the analysis sample is dried either in nitrogen atmosphere or in air atmosphere at a 

temperature of (105 ± 2°C). The moisture content is then calculated from the loss in sample mass. 

This method is applicable to all solid biofuels, and it is done in the dry oven as well [14]. 

 

 

2.5.4. Calculation of moisture content 

 

Using any of the above methods, the moisture content can be calculated using Equation 2.1 below. 

It is expressed as a percentage by mass and should be calculated to two decimal places and rounded 

to the nearest 0.1% for reporting. 

 

𝑀𝐶 =
(𝑚2 − 𝑚3) + 𝑚4

(𝑚2 − 𝑚1) + 𝑚4
∗ 100                                                                                                                                  (2.1) 

 

Where 

m1 is the mass in grams of the empty drying dish; 

m2 is the mass in grams of the drying dish and sample before drying; 

m3 is the mass in grams of the drying dish and sample after drying; 

m4 is the mass in grams of the moisture associated with the packaging [8]. 

 

 

  



20 
 

2.6. Hyperspectral image acquisition applications and methods 

 

Different molecular bonds hold biological materials together [15].  When light hits these materials, 

electromagnetic waves are transmitted through them.  

The vibrations and bending of the molecular bonds enable spectroscopy to provide the distinct 

fingerprint of the materials [15]. 

The food industry has made remarkable use of hyperspectral imaging for quality and safety 

assurance of agricultural products. Visual inspection has been used over the years to assess quality 

and safety of products [15]. However, visual inspection is not sufficient to determine chemical 

properties of products. As technology advanced, machine vision techniques, such as red-green-blue 

(RGB) colour vision system have been used to determine external properties of products [15]. To 

determine chemical characteristics however, normal machine vision system is not sufficient. Hence, 

Spectroscopy has been used for this purpose. However, the limitation of spectroscopy is that it is 

inefficient in accurately analyzing heterogeneous products [15]. 

Repeated detection is a proposed way to solve the problem, but the setback with this solution is that 

more errors will be introduced. The limitations of the machine vision and spectroscopic techniques 

led to the development of hyperspectral imaging [15]. Hyperspectral imaging is able to obtain spatial 

and spectral data over ultraviolet, visible and near-infrared spectral regions (300 nm - 2600 nm) [16]. 

Hyperspectral imaging has a large variety of applications, which have been described in extant 

literature with the methods of acquisition. The applications range from clinical diagnosis of diseases 

[17], to face recognition which involves dealing with low signal to noise ratio, high dimension of 

hyperspectral data and inter-band misalignment [18]. Point Spread Function (PSF) has also been 

used for hyperspectral data acquisition system for ground-based astrophysical observations [19]. 

Push broom method was used for remote sensing. This was done by Rogass et al. who worked on 

the reduction of uncorrelated stripping noise in hyperspectral data acquisition [20].  

Hyperspectral imaging system is made up of hardware and software parts. Although the configuration 

may vary depending on the object and purpose of the acquisition [15], some components are 

however common to the imaging system. These components includeː light source; light irradiation of 

samples either directly or delivered by optical fiber; a detector to take both spatial and spectral 

information simultaneously; hyper spectrograph to disperse the wavelengths of the transmitted, 

reflected or scattered light and deliver signals to photosensitive surface of the detector; an objective 

lens, an objective table and a computer [15].  An example of configuration of hyperspectral imaging 

system is shown in Figure 2.4 below. 
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Figure 2.4 Hyperspectral imaging system configuration [15]. 

 

 

 

2.7. Application of hyperspectral imaging to moisture content 

estimation 

 

Hyperspectral imaging has been used for moisture content estimation in various fields, especially in 

that of agriculture. Moisture content in red meat was estimated using hyperspectral imaging in the 

spectral range of 400-1000nm, the meat included beef, pork and lamb [9]. The moisture content of 

tealeaf was also estimated using HSI [21]. Kobori et al. also tested visible-near-infrared hyperspectral 

imaging for its suitability for monitoring the moisture content of wood samples during natural drying 

[10]. 

The most relevant literature to this research work however is that of Gillespie et al. They predicted 

quality indices of biomass pellet including moisture content using near infrared spectroscopy. The 

research findings showed good accuracy for moisture content prediction. However, the study was 
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not incorporated into an online monitoring system [2]. The Image was also processed with ENVI 

software (v4.4, Exelis Visual Information Solutions, Boulder, Colorado, USA). The work was however 

done using the NIR range of 880-1720 nm. At these wavelengths, they were able to observe 

absorbance band in the region of 1384 nm which is the first overtone stretching of O-H bonds of 

water molecules. 

However, in the case of this thesis, a wavelength range of 420-900 nm is to be used. It is more 

difficult to distinctively observe absorption of water at wavelengths bands of 420-900 nm as 

Kamruzzaman et al. described absorption points at these wavelengths as subtle [9]. Hence, 

generally, the larger the range of wavelengths, the better the calibration result [2]. 

The goal of this thesis is to build a model using the visible and near infrared wavelengths because 

this thesis is part of a bigger project. This project involves incorporating the results of models to 

estimate other quality indices of biofuel pellets using the Vis-NIR camera available in the department 

of electrical power engineering and mechatronics. 

A notable structure in previous studies, which was also explained in literature about predicting MC is 

the use of partial least squares regression (PLSR) method. The PLSR involves regressing the 

acquired spectral data against a reference data. The reference data in this case is the MC of each 

pellet sample manually estimated using an alternative method. 

With this method, R2 which shows the correlation between the predicted and the measured MC was 

gotten to be 0.85 while the root mean squared error of prediction (RMSEP) was gotten to be 0.727% 

by Gillespie et al. as shown in the figure below [2]. 

 

 

  

Figure 2.5 Previous result of predicted MC [2] 



23 
 

In order to establish the best flow of experiments, twenty-five previous studies where MC has been 

estimated using HSI were examined. The most important information needed are the object used for 

MC estimation, range of wavelength used, preprocessing technique used and the results. These are 

shown in Table 2.1. 

 

Table 2.1 General overview of previous works 

Reference Wavelength 

range (nm) 

Sample used Model 

used 

Preprocessing Result 

[9] 400-1000 Meat samples (beef, 

lamb and pork) 

PLSR ROI selection, 

Normalization, 

MSC, SNV, First 

and Second 

derivative 

R2 0,94 

RMSEP 

2,18% 

[21] 874,41-1733,91 Longjing tea PLSR ROI Selection, 

Noise reduction 

(3x3 window, 

MNF,LOG) 

R2 0,88 

RMSEP 

0,211% 

[2] 900-1700 Biofuel pellets PLSR MSC 

First derivative 

R2 0,85 

RMSEP 

0,727% 

[22] 400-2500 

400-750 

400-1100 

750-1100 

Bioenergy crops PLSR MSC, SNV, 

Savitzky Golay 

first and second 

derivative 

R2 0,99 

RMSCV 

0,13% 

[23] 780-2498 Stem and branch 

wood 

Bi-

orthogonal 

PLSR 

N/A Q2 = 0,997 

RMSEP 

0,726 

[24] 400-2498 Saw dust BPLS N/A Q2 = 0,93 

RMSEP 

0,53 

[25] 880-1720 Beef PLSR Normalization, 

SNV, MSC 

RMSEP 

1,77% 

 

R2 0,82 

[26] 400-1000 Grass carp 

(Ctenopharyngodon 

idella) 

PLSR MSC, SNV R2 0,91 

[27] 880-1720 Mango PLSR SNV, Mean 

Centering 

R2 0,995 

RMSCV 

2,010% 

RMSEP 

1,408% 

[28] 400 – 1000 Pork (longissimus 

dorsi) muscles 

PLSR N/A R2 0,9489 

RMSEP 

1,4736 

[29] 430 – 960  Acid Genetic 

algorithm 

and PLSR 

ROI Selection, 

Mean filter, SNV 

R2 0,8162 

RMSEP 

5,36 

 

[30] 900-1700 Potatoes Partial 

Least 

Square 

discriminant 

analysis 

Second 

derivative  

R2 0,902 
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Reference Wavelength 

range (nm) 

Sample used Model used Preprocessing Result 

[31] 951 -1630 Mangoes PLSR 

Multivariate 

linear 

regression 

Second 

derivative, Mean 

centering 

R2 0,993 

RMSEP 

1,282% 

 

[32] 415 - 2501 Grasslands OLSR, PLSR N/A R2 0,25 

RMSEP 

0,35 

  

R2 0,32 

RMSEP 

0,19 

 

[33] 400-1000 Pork (longissimus 

dorsi) muscles 

PLSR Savitzky–Golay 

(SG) smoothing 

and MSC 

R2 0,952 

RMSEP 

1,396 

  

R2 0,966 

RMSEP 

0,855 

 

[34] 400 - 1000 Lychee pericarp PLSR 

Successive 

progression 

Algorithm 

ROI Selection, 

SNV 

R2 0,946 

RMSEP 

0,80% 

  

R2 0,948 

RMSEP 

0,83% 

 

[35] 400 – 1000 

880 – 1720 

Mangoes  PLSR N/A R2 0,972 

RMSEP 

4,611% 

 

[36] 900 – 1700  Virgin Olive oil Genetic 
algorithms 
(GA), least 
absolute 
shrinkage 
and selection 

operator 

(LASSO), and 

successive 

projection 

algorithm (SPA 

SNV 

Savitzky Golay 

RMSCV 

0,0949 

R2 0,99 

 

[37] 400 - 1700 Iberian dry-cured 

ham slices 

PLSR SNV, Savitzky-

Golay, Mean 

centering 

RMSCV 

1,55 – 2,31 

[38] 1000 - 2500 Porcine meat PLSR 

Multiple Linear 

Regression 

(MLR) 

ROI selection, 

Masking 

R2 0,917 

RMSEP 

1,48% 

[39] 400 – 1000  Vegetable 

Soybean 

PLSR 

 

ROI selection RMSEP 

4,7% 

R2 0,971 
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Reference Wavelength 

range (nm) 

Sample used Model used Preprocessing Result 

[40] 900 - 1700 Turkey hams PLSR 

 

ROI selection R2 0,88 

RMSCV 

2.51 

[41] 400 – 1700  Atlantic Salmon 

(Salmo salar) 

PLSR 

 

ROI selection R2 0,893 

RMSEP 

1,517% 

 

R2 0,888 

RMSEP 

1,553% 

 

R2 0,884 

RMSEP 

1,578 

[42] 380 – 1100  Dehydrated prawns PLSR, least-

square support 

vector machine 

(LS-SVM) and 

Multiple Linear 

Regression 

(MLR) 

ROI Selection R2 0,948 

RMSEP 

4,394 

 

R2 0,950 

RMSEP 

2,684 

 

R2 0,955 

RMSEP 

2,585 

[43] 350 – 2500  Soil Linear and 

Multiple 

Regression 

Savitzky-Golay R2 0,57 

R2 0,65 

 

Most of the samples analyzed are agricultural produce. It can be seen from Table 2.1 that the most 

popular model used is the PLSR model and the result is expected to be greater than R2 of 0,50.  R2, 

which is the coefficient of determination, is the parameter that shows how well the variation of the 

samples is explained by the model built. It is the measure of the correlation between the predicted 

MC and the measured MC. 

It is also noteworthy that most of the studies used wavelength above 1000 nm because it is relatively 

easier to identify the absorption points of water at regions beyond 1000 nm [2]. 

The core of the predictions method is regressing the preprocessed spectral data against measured 

moisture content and predicting with the calibrated model.   

After reviewing existing literature and establishing the best approach to take for this thesis, a 

flowchart model giving an overview of the tasks to be solved was developed. This covers all the 

processes from the selection of pellet samples to the prediction of moisture content. This flowchart 

is given in Figure 2.6 below: 
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The tasks listed above will be executed in the following environments. 

 

Table 2.2 Environment for each of the main tasks 

No TASK ENVIRONMENT 

1 Sample Selection Available samples in department 

2 Hyperspectral Image Acquisition Machine Vision Lab, Spectronon Pro Software. 

3 Reference data Acquisition Laboratory of fuel and air emission, department of energy 

technology, Oven compliant with CEN 14774  

4 Spectral preprocessing ROI selection on spectronon pro, other preprocessing on 

Matlab (PLS_Toolbox) 

5 PCA model and outlier removal Matlab (PLS_Toolbox) 

6 PLSR model calibration and 

validation, MC prediction 

Matlab (PLS_Toolbox) 

  

Figure 2.6 Experiment flowchart for MC prediction 
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3. DATA ACQUSITION 
 

 

3.1. Required data for analysis 

 

Two sets of data were needed for estimating the MC of biofuel pellets as discussed above. For 

acquiring the spectral data, the machine vision laboratory of the Department of Electrical Power 

Engineering and Mechatronics was used. The moisture content was estimated using oven dry 

method at the Department of Energy Technology. Both experiments are described in the sections 

below. 

 

 

 

3.2. Hyperspectral data acquisition 

 

In order to obtain the spectral data of the pellets, the Resonon PIKA II camera was used, and the 

datasheet of the camera is attached in appendix 1. The stage upon which the camera was mounted 

was fastened to aluminum profiles provided in the laboratory. A halogen lamp was used to provide 

lighting for the capturing. A black felt background was used to provide maximum absorption of the 

incident light. The choice of this material was based on the result of the study of Marshall et al. [44]. 

Ideally the object to be scanned should be placed on a moving stage, but this was not possible due 

to the limited equipment available for this experiment. Hence, the Pika II camera was mounted on a 

stepper motor stage.  

The set up is shown in Figure 3.1 and the reasoning for the choice of this set up as well as the choice 

of lighting and field of view are discussed thereafter. 
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Figure 3.1 Hyperspectral data acquisition experimental set up. (1). Resonon PIKA II camera; (2). 

Stringray optics lens; (3). Black background; (4). Halogen lamp; (5). Test object.  

 

The camera specifications used are described with reference to Figure 3.1. The specifications are 

given in the table below and they are patterned after the description used in previous projects in the 

department of Mechatronics [45]. 

 

Table 3.1 Camera Specification for PIKA II  

Detail Value 

Lens Name Schneider Xenoplan 1.4/23 -0902 

Focal length 23mm 

Field of view Field of view along Y axis 103 mm 

Field of view along X axis 70 mm 

Working distance  330 mm 

 

 

 

1 

5 

4 

2 

3 

X

Y



29 
 

3.2.1. Lighting and field of view 

 

The reasoning behind the lighting source selected is to have uniform lighting. Due to the nature of 

the environment and camera used, halogen lamp having wavelength range of 400-2500 nm was 

considered. A major setback in achieving uniform lighting was that the area covered with uniform 

lighting is not large. The other alternative was to use two halogen lamps. This choice will however 

increase the heating of the stage, thereby compromising the accuracy of the MC prediction. However, 

since what is important to the task is the spectral data, much more than the spatial representation, 

the field of view was made to be as minimal as possible where enough information can be acquired 

while ensuring uniform lighting. Uniform lighting was achieved with field of view of 70 mm x 103 mm 

using a single halogen lamp. The focusing, calibration and aspect ratio setting were all done to suit 

this lighting choice. 

 

 

3.2.2. Focusing, calibrating and aspect ratio setting 

 

Spectronon pro software was used for both initial calibration and image acquisition. The camera was 

set to focus before acquiring spectral data. This was done by setting the f# level of the camera below 

2.4 as specified in the user manual. The integration time was then adjusted until the brightness was 

below 4090 (This is also specified in the user manual). The lens was adjusted until the image of the 

focusing sheet obtained was well defined and clear. The lens was fixed at the best focus. 

To calibrate the camera, a dark response was obtained by covering the lens with black cover to 

prevent light from falling on the lens. Thereafter, the reflectance was also calibrated by placing a 

white reference on the field of view of the camera. 

The final setting was the aspect ratio setting. This was done by scanning the aspect ratio sheet 

iteratively and correcting the distortion by changing the frame rate and scanning speed until the 

correct aspect ratio was acquired. After these settings, a white reference tile was placed on the black 

background to observe the spectral response to the black background. This will give more insight 

into how the background might affect the spectral data to be obtained. The acquired image is shown 

in the Figure 3.2 below. It can be seen from Figure 3.2 that the black background response was just 

around zero brightness while the white tile is well separated.  
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Figure 3.2 Mean spectra of white reflective tile and the black background. 

 

While setting the aspect ratio for the acquisition, other important parameters were also set. These 

include: the camera setting and the stage setting (The camera is mounted on the stage). These 

parameters are given in Table 3.2. 

 

Table 3.2 Acquisition parameters used 

Parameters Value 

Camera settings Frame rate (hz) 92,0 

Integration time (ms) 5,3 

Gain (dB) 19,4 

Stepper motor settings Angular velocity (deg/s) 1,35 

Homing speed (deg/s) 23,1 

Jog Speed (deg/s) 22,3 

 

 

 

3.2.3. Data capturing 

 

Biofuel pellets were grouped into 10 classes of 300 g each which is in accordance with EN 14774. 

In anticipation of the oven dry method of MC estimation, each of these classes were scanned with 
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the HSI camera and the acquisition file was saved in form of .bil file format. It was also necessary to 

select regions of interest by using the spectronon pro software and saving their mean spectrum. Ten 

regions of interest were identified on each set and their mean spectra were extracted. Spectral 

binning of 3 was initially used for the first sets of experiments in order to reduce data dimensionality. 

However, because the mean spectra are the data to be mostly used, the binning was removed and 

rather than having 80 wavelength points, 240 wavelength bands were used. Figure 3.3 shows the 

spatial and spectral data obtained for one class. 

  

 

  

 

 

 

 

 

 

 

 

 

In quick succession of approximately 15 minutes interval after obtaining a reliable hyperspectral data, 

the pellets were taken to the laboratory of fuel and air emission analysis at the department of energy 

technology for MC estimation. 

 

 

 

3.3. Reference data acquisition 

 

The reference data are needed for the calibration of a PLSR model. To acquire this data, there is a 

standard that must be followed. The FprEN 14774-2 gives the specifications of equipment to be used 

and the procedure that must be followed in using the oven dry method to estimate MC. 

The pellets are to be taken to the laboratory in sealed air-tight containers or bags. Test portions are 

required to be of nominal size 30 mm prepared in accordance with CEN/TS 14780. The drying oven 

Figure 3.3 Acquired data: Spatial image (left) and hyperspectral data (right) of pellet 

set seven 



32 
 

must also be capable of being controlled at a temperature within the range of (105 ± 2) °C in air 

atmosphere until constant mass is achieved. The air atmosphere is required to change between 

three and five times in an hour. Figure 3.4 shows the packed samples for MC estimation. 

 

  

Figure 3.4 Samples taken for MC estimation 

 

The Gallenkamp hotbox oven size 2 was used for the experiment, the specification of the oven is 

given in Table 3.3. 

 

Table 3.3 Specification of Gallenkamp hot box size 2 oven [46]. 

Parameter Value 

Temperature range (°C) 40 to 200 

Maximum power rating (W) 600 

Fluctuation (°C) ± 1,5 

 

The trays were weighed when empty and also when the samples have been placed in them. Pellets 

were allowed to dry for an hour. They were weighed and the weights were recorded until constant 

mass was achieved. The arrangement of the pellets was in such a way as to allow free circulation of 

air in the oven. This is shown in Figure 3.5 below. 
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Figure 3.5 Arrangement of samples in Gallenkamp oven 

 

After three hours of drying, the weight of all the samples became constant and were all recorded. 

Equation 2.1 was used to calculate the MC from the weights. Table 3.4 below shows the weights and 

calculated MC. MC of biofuel pellets are given in percentage of their mass written as (w-%), they are 

to be calculated to two decimal places and rounded to the nearest 0,1 % [8]. 

It is worth mentioning that not all the samples attained constant weight at the same time. Some of 

the samples reached constant weights after two hours while some others took three hours. The 

lowest weights were used for samples that began to re-moisturize.  
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Table 3.4: Result of MC estimation 

Sample 

Mass of drying 

dish (m1) g 

Dish + sample before 

drying (m2) g 

Dish + sample after 

drying (m3) g 

𝑴𝑪 =
𝒎𝟐 − 𝒎𝟑

𝒎𝟐 − 𝒎𝟏
∗ 𝟏𝟎𝟎 

        (MC) 𝒘 − % 

 Wood pellet 1 467,5 767,4 745,8 7,2 

 Wood pellet 2 465,8 766 744,4 7,2 

 Wood pellet 3 466,6 766,4 744,6 7,3 

 Wood pellet 4 472,1 772,2 751,1 7,0 

 Wood pellet 5 467,9 768 746,8 7,1 

 Wood pellet 6 470,8 770,5 750,3 6,7 

 Wood pellet 7 465,9 765,8 744,4 7,1 

 Wood pellet 8 471,4 771,3 749,6 7,2 

 Wood pellet 9 229,2 529,5 509,3 6,7 

 Wood pellet 10 227,9 527,8 507,9 6,6 

  

These values of moisture content were used as reference values for calibration and validation of 

the PLSR model.  
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4. ANALYSIS AND TEST RESULTS 
 

 

4.1. Overview of the analysis done 

 

This chapter describes the analysis of the data obtained in chapter 3 and the description of the test 

result for the prediction of MC. This is in accordance with the description given in chapter 2. The 

chapter is divided into four sections. These includeː data preprocessing, principal component 

analysis, partial least squares regression and prediction results. The analysis and prediction result 

were majorly done with Matlab R2015a using Eigenvector PLS Toolbox. The initial preprocessing 

was done in Spectronon pro environment – the same software used for the HSI data acquisition. 

 

 

 

4.2. Preprocessing 

 

One of the aims of the preprocessing is to isolate the needed data from the chunk of data obtained. 

HS data are quite huge, and attempting to run analysis on the entire data does not only take a lot of 

machine’s memory space but it also introduces many errors into the analysis. Different variations in 

data are usually captured which includeː variation due to lighting, camera error at the start of image 

acquisition and before homing. To take care of these errors, several preprocessing tools are available 

and some of these have been successfully used in extant literature. However, the best preprocessing 

techniques can only be ascertained by experiments. This is because experiments for which the 

preprocessing technique was suggested may vary considerably from the present experiment.  

The preprocessing techniques that were used in this task are ROI selection, MSC (mean), Mean 

centering, Autoscale, Standard normal variate, Savitzky Golay second derivative filter, GLS 

weighting, Normalization and Orthogonal signal correction. The ROI selection was done on 

Spectronon software while the rest of the preprocessing were done on PLS_Toolbox. On 

PLS_Toolbox, two main analysis were done (PCA and PLSR). For PCA, MSC, savitzky golay and 

mean centering were applied in that order. For PLSR on the other hand, SNV, GLS weighting and 

mean centering were applied respectively for the calibration while normalization, orthogonal signal 

correction and autoscale were used for the recalibration of the model. It is expedient to explain the 

purpose of each of these preprocessing techniques to indicate the reasons for their selection at 

different phases of the task. The sections below describe the purpose of these techniques and the 

effect they had on the spectral data obtained. 
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4.2.1.  ROI selection 

 

In acquiring the HS data of the pellets, there were some broken particles of the pellet on the black 

felt background. The main aim of the ROI selection was to isolate solid pellets from both the crumbled 

ones and the background. 

The Spectronon pro software was incorporated with ROI selection tool. This tool was used to select 

ten ROIs in each set of pellets and the aim of this is to obtain hundred ROIs in all. The mean spectra 

of each ROI was obtained and these were all exported as text files. 

Figure 4.1 below shows the ROI selected and the mean spectra for a class of sample. 

 

 

All of the mean spectra were combined into a matrix by transposing the data in Microsoft Excel with 

each row representing the mean spectra of a specific sample and every ten rows representing a set 

of samples with identical estimated MC. The resulting data was loaded into PLS_toolbox for further 

preprocessing. The loaded data contained a measure of irregularity in the form of noise at 

wavelengths below 420 nm. This noise has been observed in previous studies and is generated by 

the camera at the start of acquisition process. This is unwanted and it may greatly distort the accuracy 

of the model being calibrated. Hence, this part was excluded from the spectra data by selecting the 

needed wavelengths in the plot window and excluding the other parts. This is shown in Figure 4.2. 

Figure 4.1 Selection of ROI: an ROI - circled in red (left), mean spectra of ten ROI (right) 
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4.2.2. MSC (Mean) 

 

Multiplicative scatter correction (MSC) was used before the PCA analysis. It is a technique used in 

HSI to correct signals that contain some level of noise. It is ideally used to correct areas of spectrum 

that contain no chemical information, but because these areas do contain high noise to signal ratio, 

the MSC is usually applied to the whole spectrum. What the MSC does is that it sees the scattering 

in signal –the light scattering or change in path of the spectra, and fits it to an ideal spectrum that is 

estimated as a sample. 

The result is that the spectra are made to look like they have similar patterns. This has the possibility 

of distorting chemical properties of materials especially when the samples are of different chemical 

compositions. However, because all the pellets combined into this spectrum have similar chemical 

compositions, this preprocessing technique is justified, as the spectra would be fitted into a sample 

that fits the path of biofuel pellets acquired. 

Applying this preprocessing technique gave better results than the standard normal variate, 

probability quotient normalization and normalization techniques for the PCA analysis. 

Figure 4.3 below shows the effect of applying the MSC (mean) to the acquired spectral data. 

 

Figure 4.2 Removal of noisy wavelengths: Spectra with noisy wavelengths (left), cleaned 

up spectra (right) 
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The absorption and peak points are retained as seen in Figure 4.3. This is important, as it is essential 

for the PLSR process of identifying water’s O-H stretching.  

SNV is another type of scatter correction similar to MSC, it is the second most widely used scatter 

correction [47]. In this work, the effect of SNV on the calibration data was similar to that of the MSC. 

However, the MSC gave better PCA model while the SNV gave better PLSR model. Hence MSC 

was used for PCA while SNV was used for PLSR model.  

After the MSC, savitzky golay and mean centering were used before PCA analysis. The purpose and 

structure of savitzky golay are described in subsequent item. 

 

 

4.2.3. Savitzky golay (second derivative) 

 

Random noise and slow variation usually corrupt measured spectra. It was observed as earlier 

shown that the beginning and the ending of the acquired spectral data contained some level of noise. 

A major advantage of savitzy golay is its ability to identify absorption peaks in acquired spectral data. 

This was indeed the purpose for which the filter was designed [48]. In this work, the absorption peaks 

are central to identifying the presence of water and preserving this in the analysis is good for the 

model being calibrated. In the acquired data, some level of noise were observed. Though this was 

not much, the savitzky golay filter helped in filtering out the noise. The filter was used before PCA 

and it greatly improved the result obtained. 

 

 

Figure 4.3 Effect of MSC: Raw data- (left), preprocessed data with MSC (Mean)- (right) 
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4.2.4. Normalization 

 

This preprocessing technique corrects scaling and gain effects that vary across different samples. In 

spectroscopy, the causes of these effects include path length effect, scattering, detector variation 

and other instrumentation sensitivity effects [49]. The normalization preprocessing helps to give the 

same impact to all samples allowing them to contribute equally to the model.  

 

 

4.2.5. Mean centering 

 

This preprocessing technique was used for both the PCA and the PLSR in this task. Mean centering 

is one of the most common preprocessing techniques and the most common centering method. It 

takes every entry in a column and subtracts it from the average of the column. The effect is that the 

resulting data shows how different the entry is from the average of the original data. 

This preprocessing is usually required for PCA and PLSR. This is because mean centering eliminates 

the need for an intercept from the PLSR model, since lesser terms of the regression model need to 

be estimated. Estimation may be more precise after mean centering the data. However not all mean 

centered data yield results with good precision. Hence, both mean centered and non mean centered 

data must be tested to know the best result [50]. 

The effect of mean centering on the spectral data with MSC already applied is demonstrated in Figure 

4.4 

 

 

  

 

 

 

 

 

 

 

Figure 4.4 Effect of mean centering: (left) non-mean centered, (right) mean centered.  
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4.2.6. Autoscale 

 

This method uses the mean-centering and then divides each column by the standard deviation of 

the column [49]. This method is used if the source of the variation is the signal and not the noise. 

Hence when this technique is used, it is better to use it at the end of the preprocessing steps, after 

correcting the noise with other preprocessing techniques. This method was used in place of mean 

centering for some of the experiments as will be discussed later. 

 

 

4.2.7. Generalized least squares weighting (GLSW) 

 

GLS weighting is a filter gotten by finding the differences between samples which should otherwise 

be similar [51]. These differences are seen as interferences and as such are down-weighted. Simply 

put, when it is applied in regression, it checks the Y block and then filters out from the X block, 

sources of variance not caused by the Y block. This is essential in multivariate data because several 

factors are responsible for variations in the spectral data. This filtering allows the regression model 

to achieve better calibration and prediction. There is an adjustable parameter in GLS Weighting (α), 

when it has larger values, the effect of the filter is less and when it has lower values, the effect of the 

filter is more. The GLSW was used to improve the result of the calibration and consequently of the 

prediction. 

 

 

4.2.8. Orthogonal signal correction (OSC) 

 

The OSC is similar to the GLSW in that it tries to optimize the variance caused by the Y block. 

However, in achieving this, the OSC removes the variances from the X block that are orthogonal to 

Y block. It identifies the principal components in X block and then rotates the loading to make them 

orthogonal to the Y block. These are the scores not influenced by the Y block data. After this, a PLS 

model is built to predict the orthogonal scores. This model is eventually used to remove the 

orthogonal components. This method was intended to make improvements on the GLSW predictions.  
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4.3.  Principal component analysis (PCA) 

 

Principal component analysis (PCA) is a popular method used when dealing with large volume of 

data. Because of the large volume of the data, it is difficult to use graphical illustrations to understand 

the nature of the data. Therefore, PCA is able to find relationships between this data by establishing 

the major axes of the clustering of the data. A major use of PCA is the reduction of data 

dimensionality. PCA identifies patterns in data and it then expresses the data in such a way that the 

similarities and the differences are highlighted. When these patterns have been found, the data can 

then be compressed by reducing the number of its dimension without damaging the information. 

Although some details may be lost, important information is largely preserved.  

PCA was not used in this task to reduce the dimension, but to observe clustering of the data and to 

remove any possible outliers that may affect the quality of the model being built. This section gives 

a description of PCA and explains how it was implemented on the spectral data. The result is also 

discussed. The MatLab R2015a toolbox PLS_Toolbox was used for this PCA analysis. 

The PCA was done using Venetian blinds cross validation. The maximum number of principal 

components (PCs) was set at 20, the number of data splits at 10, and one sample per blind which is 

also referred to as the ‘thickness’. 

Cross validation explains how well the data fits into the created model and how other similar data not 

used in the calibration will fit as well. Cross validation also helps in choosing the number of PCs for 

the model calibration. The number of PCs chosen ultimately determines the accuracy of the model. 

As a rule, the number of PCs are chosen in such a way that the root mean square error of calibration 

(RMSEC) and root mean square error of cross validation (RMSECV) are least. A PC can also be 

chosen if the RMSEC and RMSECV improves in the next PC but the improvement is not significant. 

PCA was done for the pre-treated spectral data, and the choice of the PC is shown below. 

 

Table 4.1 Percentage variance, RMSEC and RMSECV of the PCA model 

No 
of 
PCs 

Eigenvalue 
of Cov(X) 

% 
Variance 
This PC 

% 
Variance 
Cumulative RMSEC RMSECV 

1 1.04e+03 60.00 60.00  1.779 2.215 

2 3.11e+02 17.92 77.92  1.322 1.922 

3 1.63e+02  9.39 87.31  1.002 1.738 

4 8.10e+01  4.67 91.98 0.7969 1.478 

5 3.67e+01  2.11 94.09  0.684 1.547 

6 2.55e+01  1.47 95.56 0.5931 1.529 

7 2.17e+01  1.25 96.80 0.5031 1.319 

8 1.26e+01  0.72 97.53 0.4426 1.454 

9 7.58e+00  0.44 97.96 0.4017 1.526 

10 6.66e+00  0.38 98.35 0.3619 1.636 
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Figure 4.5 RMSECV and RMSEC vs Number of PC 

 

Table 4.1 and Figure 4.5 show the PCs with their percentage of variance captured, the cumulative 

variance, RMSEC and RMSECV. The PLS_toolbox software suggested selecting seven numbers of 

PCs; this follows the explanation given above. It can be seen that below seven PCs, the RMSECV 

increased and if more PCs are selected, this will introduce more error into the model. Also at this 

point, 96,8% of the variance has been captured by the first seven PCs. The first PC captured 60%. 

It can also be seen from the RMSECV curve that this point is the lowest. The change in RMSEC from 

this point is also minimal. 

After reviewing this plot, the other plots that give the required information for this task is the Q 

residuals, hotelling T2 and the score plots. The Q residual and hotelling T2 plots show how the 

samples are similar to one another and how they are different from one another. The score plot also 

provides information about each of the samples. Furthermore, it is actually on the score plot that one 

can observe this clustering the best and identify possible outliers. 

These plots are given below and an explanation of the plots given thereafter. 

 

 

 

 

 

 

 

 

Figure 4.6 Plot of scores of PC2 against PC1 Figure 4.7 Plot of Q residuals against hotelling T2 
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It can be seen from Figure 4.6 that all but two of the samples fall within the circle, and this circle 

represents the 95% confidence limit. This is the level at which the model can explain the relationship 

between samples. There are two samples outside the 95% confidence limit, although one is close to 

this limit, the other is way off the limit. 

The Q residuals and Hotelling T2 plot give some information about the similarity of the model. Again, 

two samples (Sample 8 and Sample 2) are very dissimilar to other samples, although sample 2 has 

high Hotelling T2 value, its Q residual value is low. However, sample 8 has both high Q Residuals 

and Hotelling values. 

In other to take a good decision about these points, it is important to check them again on the score 

plot while colouring them with their Q residuals value. It would not matter if in spite of their high Q 

residual and hotelling values, they still fall within the 95% confidence limit. Hence, the plot with this 

colour is given in the figure below. 

 

 

Figure 4.8 Score plot with samples coloured with their Q residual values 

 

From Figure 4.8 it can be seen from the top right that sample 8 is indeed the sample that falls out far 

from the confidence limit. From the lower left corner, sample 2 is well explained by the model as it 

falls within the confidence limit of 95%. 
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Hence, since all the pellets were in the same package and ideally should be quite similar, the sample 

8 with high hoteling and Q residual value is considered as an anomaly and an outlier. This sample 

was removed from the data set and the model was recalibrated. 

The new calibrated model performed better. The first seven PCs covered 97,09% variance with 

RMSEC value of 0,4909 and RMSECV of 1,298. These values are better than those of the previous 

model which captured 96.80%, 0.5031, 1.319 of the respective parameters. The previous sample 79 

immediately outside the confidence limit now falls within the confidence limit as shown in Figure 4.9. 

PCA is reliable in identifying and removing outliers. It has been shown in literature that this process 

increases the accuracy of the model and removing a data sample through PCA does no harm to the 

model being built [37]. 

 

Figure 4.9 Score plot of the recalibrated model 

 

Because PCA uses linear transformation for the decomposition of spectral data, it forms several 

components that are uncorrelated which makes the reconstructed data from the model not ideal for 

PLSR [52]. However, after removing the outliers, the original data was retained and not the principal 

components. 

The new data from the PCA with the outlier removed was then used for PLSR which is the main 

analysis to create the model for MC prediction. This is described in the next section. 
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4.4. Partial least squares regression (PLSR) 

 

Partial least squares regression (PLSR) is a multivariate regression method [53] that takes a given 

number of components to predict the independent variable ‘y’ from dependent variable ‘x’ [51]. In 

order to use PLSR to predict MC, the data with the outliers removed from the PCA was used for this 

analysis. The first set of preprocessing techniques applied are the MSC (mean) and the mean 

centering. The SIMPLS algorithm, which is the default of the software, was used, other algorithms 

such as NIPALS gave similar results for this analysis. Figure 4.10 below shows the PLS_Toolbox 

interface used for PLSR and the explanation of the each of the steps taken to obtain the final 

predicted value are also discussed. It is worth mentioning that this interface is similar to what is used 

for the PCA analysis. However the difference is that the independent variable ‘Y’ used for PLSR is 

not used in the PCA analysis. 

 

  

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.10 the main icons are labelled in red, these are used for the analysis as explained below: 

1. X block data can be loaded and edited in 1. In the case of this thesis, the x block data is the 

spectral data with the outlier removed using PCA analysis. 

2. The Y block data is loaded in 2, the Y block data is the measured moisture content from the 

laboratory. It is mandatory for the Y block data to have the same number of rows as the X 

block data; otherwise, the cross validation and prediction cannot be done. 

2 4 
5 

7 
8 

9 

10 

1 3 6 

Figure 4.10 PLS_Toolbox Analysis Interface 



46 
 

3. This is for the preprocessing of the X block data. For the first set of analysis, MSC and mean 

centering were selected. 

4. For PLSR, the Y block data also needs to be centered and mean centering was used for the 

Y block data. 

5. After preprocessing, the model is calibrated using this button and a calibrated and cross 

validated model is created. For this task, the venetian blinds cross validation method was 

used, with maximum numbers of LVs at 20, number of data splits at 10 and the thickness at 

1. 

6. The validation/test spectral data is loaded into 6. It is with this data that the prediction is 

made, which is the main result of this task. 

7. The measured MC corresponding to the loaded spectral data is loaded into 7. The accuracy 

of the prediction depends on how close the predicted data is to this data. 

8. This generates the prediction based on the loaded data. 

9. The number of Latent variables is selected here based on the value with the least error of 

cross validation. 

10. Here different plots that give more information about the model can be generated. 

 

The number of latent variables which was selected was 6 as it covered 96,64% of the data and it has 

the least amount of root mean squared error of cross validation, as shown in Figure 4.11 below: 

 

 

 

 

 

 

 

Figure 4.11 RMSEC and RMSECV against LV 

 

The result gotten with the MSC filter was poor with coefficient of determination R2 of calibration at 

0,48%. Since there is no standard rule to follow in selecting preprocessing technique, the MSC was 

changed to SNV. After this modification, even though the RMSEC and RMSECV were good at 

0,13675 and 0,22108 respectively, the coefficient of determination R2  was 0,678 for calibration and 

0,239 for cross validation as shown in Figure 4.12. 
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R2 is a measure that shows the correlation between the predicted and the measured variable and 

explains how well the variance of the points can be explained by the model.  

 

 

  

 

 

 

 

 

Figure 4.12 Predicted moisture content against measured moisture content 

 

Usually in PLSR, there are possibilities that other factors such as variation in lighting and distortion 

due to camera movement have contributed to the prediction. Hence, a way to make sure that only 

the moisture content contributes to the prediction is to use the GLS weighting preprocessing 

technique. 

This was applied and the result significantly improved. The parameters used for this GLS weighting 

preprocessing are given in Table 4.2 GLS weighting parameters below: 

 

Table 4.2 GLS weighting parameters 

Declutter Settings 

Clutter source y-block gradient 

Algorithm GLS weighting 

Declutter threshold 1,3 

 

 This improved the result significantly with the correlation between measured moisture content and  

coefficient of determination R2 of cross validated moisture content increasing to 0,71 and that of 

calibration increasing to 0,99. This calibrated model is fair, considering the fact that with the limitation 

of few sample types and reduced wavelength range in Vis-NIR range comes the increased error. 

However, for the purpose and scope of this study, this result is sufficient. The results of the calibration 

are shown in figures below. The variance-captured table is provided in appendix 5. 
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The figures above show the result of the calibration of the PLSR model. This model’s correctness is 

pivotal to the accuracy of the prediction since the calibrated model in itself must have good accuracy 

in term of its cross validation and must also give a good result for the predicted MC. 

The result of the RMSEC in Figure 4.13 is notably different from RMSECV and RMSEP. This is 

because of the limited number of samples used for the calibration. This value may be higher with an 

increase in number of samples because with the increase in sample number also comes the 

possibility of increase in the accuracy of the model. Increasing the quantity of samples was not 

considered in this thesis because all the available pellets for the work have similar moisture content. 

Also, there is limited space in the laboratory for fuel and air emission analysis for the purpose of 

estimating reference data. 

This model was saved, and it was tested using 40 ROIs selected in a similar manner to what was 

described in item 4.2.1. The testing of the model is described in the section below:  

 

 

 

4.5. Testing of the PLSR model 

 

Using the calibrated model and the selected validation spectral data with their corresponding 

measured MCs, the model was tested by loading the testing data to the toolbox. The model predicted 

the MCs of the spectra with R2 of 0,732 and RMSEP OF 0,1411.  

The result of the prediction is shown in Figure 4.15 below. 

Figure 4.13 Predicted moisture content against 

measured moisture content 

Figure 4.14 Cross-validated moisture content 

against measured moisture content 
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Figure 4.15 Predicted MC against measured mc 

 

In literature, this prediction result is only considered fair and not a good model. Hence, there is a 

need to recalibrate the model to obtain at least a good prediction. 

Table 4.3 below shows different values of R2 and their interpretation according to Fagan et al. [22]. 

 

Table 4.3 Interpretation of coefficient of determination R2 

R2 Value Interpretation 

0,50 – 0,65 Discrimination can be made 

0,66 – 0,81 Approximate quantitative predictions 

0,82 – 0,90 Good predictions 

>0,91 Excellent predictions 

  

In order to get the coefficient of determination of prediction to at least a good prediction, the model 

was re-calibrated. This is in accordance with the flow of experiment laid out in Figure 2.6. 

 

 

4.5.1. Recalibration of PLSR model 

 

For the new model, new preprocessing methods were selected. Again, there is no hard and fast rule 

to selecting preprocessing techniques, so they are selected iteratively based on the understanding 

of their purpose and effects as previously explained in Section 4.2. 
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The normalization preprocessing was selected as the first technique for the spectral data with its 

variables set at 2-norm and length of 1. Thereafter, the orthogonal signal correction (OSC) was 

selected as against the GLS weighting that was previously used. Then the autoscale replaced the 

mean centering. 

For the measured MC values, autoscale was also used. The reasoning for selecting the OSC is that 

the GLS weighting gave more weights to the independent variables, which made it cover less of the 

variance of the dependent variables. This may be considered as a possible reason why the coefficient 

of determination of prediction was only fair. This reasoning however can only be justified 

experimentally. 

The model was re-calibrated and Table 4.4 shows the variance captured by the recalibrated model. 

 

Table 4.4 Latent variables and their variance captured 

No 
X-Block 
LV 

X-Block 
Cumulative Y-Block LV  

y-Block 
Cumulative 

RMSECV Moisture 
Content                      

1 20.0489 20.0489 63.9149 63.9149 0.20479           

2 42.8267 62.8756 15.8027 79.7176 0.18886           

3 11.1524 74.028 11.5443 91.2619 0.1468           

4 6.1232 80.1512 7.5927 98.8546 0.13633 suggested 

5 2.5471 82.6983 0.64206 99.4966 0.13831           

6 10.3315 93.0298 0.087875 99.5845 0.13212 current   

7 0.65858 93.6884 0.27637 99.8609 0.13047           

8 0.30885 93.9972 0.077799 99.9387 0.1311           

9 0.32758 94.3248 0.030861 99.9696 0.12998           

10 0.37076 94.6955 0.01361 99.9832 0.12978           
 

It can be seen from Table 4.4 that the software suggested using four LVs for the model. The 

reasoning for this suggestion is that the RMSECV does not significantly improve when more LVs are 

selected. However, this suggestion was not accepted because the major reason for recalibrating the 

model is to capture as much variance as possible within reasonable selection of LVs using the OSC 

preprocessing. It can be seen that by moving two steps downward in the table, 13% more variance 

can be captured with a better RMSECV. Hence, this model was calibrated with 6 LVs.  

Figure 4.16 shows the RMSEC and RMSECV curve against numbers of LVs. 



51 
 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Figure 4.16 that the RMSECV does not significantly improve with more LVs and 

the improvement in RMSEC is not worth selecting more LVs for. Hence, 6 LVs were retained based 

on Table 4.4 and Figure 4.16 RMSECV and RMSEC against LVs 

The re-calibrated and cross-validated results based on the 6 LVs selected are shown in the figures 

below: 

 

 

The calibrated model has RMSEC of 0,015686, RMSECV of 0,13212, R2 of calibration 0,996 and R2 

of cross validation of 0,710. It can be seen that the coefficient of determination of cross validation 

(R2) is a little lower than previous calibrations. In this calibration, more of the dependent variable 

were captured in this model, which is good for the purpose of prediction. 

Figure 4.16 RMSECV and RMSEC against LVs 

Figure 4.17 Prediction with calibration values Figure 4.18 Prediction with cross-validation 

values 
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With this model, the test data which were a total of 40 were loaded with their respective MC. After 

applying the prediction, one of the test data points was an outlier, this was removed and the 

remaining 39 test data were used to make the prediction. The result is given in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

The model predicted the MCs of the spectral data with R2 of 0,825 and RMSEP OF 0,11433. 

Additionally, the average of the predicted MCs for all the 39 samples is the same with the average 

of the measured MC at 7 w-% which is well below the stipulated MC by  CEN  (< 10 w-%). 

It has been explained in literature that the larger the range of wavelengths of spectral data used for 

the calibration, the higher the R2 value that can be achieved [6]. Since the aim of this thesis is to 

achieve results using the range of 420 -900 nm, this can be considered as a good result as the major 

absorption points of water are beyond these wavelengths. For this thesis, only one subtle absorption 

point was observed at 540 nm and this was what the regression was based on. Although water peaks 

were also observed at 620 nm, this was not well defined on all the samples, which did not make it a 

strong point for distinction. 

The predicted data plotted in Figure 4.19 is also given in appendix 3 with the average calculated 

which is 7 w -% (the same as the measured MC). The result shows little variations around the 

measured MC, majorly because of the restraints in wavelength used. 

In this chapter, the acquired spectral data and measured moisture contents have been used to 

calibrate a PLSR model which was able to predict moisture content of 39 samples of biofuel pellets 

with an RMSEP of 0,11433 and R2 of 0,825.  

With this calibrated and validated model, MC of biofuel pellets can be predicted using any set of HSI 

data with 240 wavelength bands. To do this, the script shown below can be written to matlab with 

the spectral data and the model already loaded to the workspace. 

Figure 4.19 Result with the new model 



53 
 

Pred = pls(‘my_data’,’my_model’) 

Where Pred is the new MC independent results 

 Pls calls the function ‘pls’ to predict ‘pred’ 

 ‘my data’ is the spectral data 

 And ‘my_model’ is the model earlier calibrated [51]. 

 

If there is a need however to use a dataset with a different dimension of wavelengths, there has to 

be another calibrated model. This limitation is indeed peculiar to PLSR as the saved model is in the 

form where each column is needed for prediction.  
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5. FUTURE WORKS 
 

This chapter discusses the possibilities for improvement for this work and suggestions of tasks to be 

undertaken on the robust solution needed for predicting all indices of biofuel pellets using 

hyperspectral camera. The findings discussed in chapter 4 show a good result of prediction, but the 

result can be improved upon and a better model can be calibrated. Various ways to achieve a better 

model will be discussed in this chapter. 

The first suggestion to create a better model is to increase the number of types of pellet samples 

used. The limitation to one type of pellet reduced the ability to regard the result as being a generalized 

model. A way to make the model more generalized is to include pellets from different sources of raw 

materials. There was an attempt to use sunflower pellets and somewhat darker wood pellets, but the 

quantity available was far lesser than the standard 300 g quantity specified by CEN, hence they were 

not included in the calibration data set. 

Another way of improving the model is by using camera with more bands in the NIR region. The fact 

that only one major absorption point was observed reduced the strength of the calibration and by 

implication the prediction. Only one out of the twenty five articles reviewed did not use wavelength 

band of 1000 nm or above. This reduces the accuracy of the model, hence a balance can be found 

between optimum camera price and efficient wavelength bands for MC prediction. It would have been 

ideal to search for cameras that take spectral data at just the important wavelengths for MC 

estimation. However, considering the need to combine other quality indices estimation into the final 

solution, a more reliable approach would be to select a camera with larger range of wavelengths, 

more into the NIR region. 

To further advance the bigger project, it is worthy of note that HSI has been proposed for other quality 

indices of biofuel pellets [2]. Gross calorific value (GCV) can be determined by using a similar method 

to the one used in this thesis. However, in obtaining the reference values to be used for the model 

calibration, CEN 14918 standard prescription should be followed. Bomb calorimeter, which is 

calibrated by combusting certified benzoic acid, should be used. The experiment must be done at 

constant volume with reference temperature  of 25°C [14]. This method has been used in literature 

and the calibrated model had good result [2][22]. 

In getting the values for ash content, the PLSR model can also be used as it was used in previous 

research works. Ash content (AC) is the mass of inorganic content remaining in the biofuel pellets 

after ignition under certain conditions [13]. The method used to obtain the reference value is to burn 

the pellets under rigidly controlled conditions of time, sample weight and equipment specifications. 

The temperature should be of (550 ± 10) °C. For this, Gillespie et al. used the furnace OAF 11/1, 

Carbolite, Hope, United Kingdom [2]. 

PLSR can also be used to calibrate model for Carbon content (CC). The carbon analyzer (Primacs 

SLC TOC Analyzer, Model CS22, Skalar Analytical B.V., Breda, The Netherlands) was used in 

literature to obtain the reference values for CC [2]. 
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The models built in literature for GCV, AC and CC by Gillespie et al. were excellent, good and fair 

respectively [2]. 

Apart from these indices, the dimension of the pellets can also be measured using the regular 

machine vision in the visible wavelength region. The most important part of the task however will be 

to combine all of these models into a single solution. Importantly, these solutions need to be 

incorporated into an online monitoring system. A suggestion by the Chair of Mechatronics is to build 

an application able to use all of the models on a mobile platform. This topic is an exciting future work 

to improve the solution further. 

Another possibility different from a mobile platform is to use a software provided by EigenVector 

called Solo Predictor[51]. This application is able to acquire data from an online monitoring system 

and apply a pre-calibrated model to this data to make predictions. Another interesting fact about the 

software is its ability to apply preprocessing techniques to data if required. 

As discussed above, this thesis can be a springboard leading to many other interesting topics, as 

the strengths and limitations of the work opens the way to other possibilities. Concisely, capabilities 

for protocol and methodology for hyperspectral imaging in the machine vision laboratory of Electrical 

Power Engineering and Mechatronics can be improved based on the findings of this thesis work. 
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6. SUMMARY 
 

Estonia ranks first in the world in the production of biofuel pellets per capita. Hence, the overall 

objective of this thesis was to consolidate on this achievement and proffer better and faster ways of 

estimating the quality indices of biofuel pellets. As such, this thesis has examined a novel way of 

determining moisture content in biofuel pellets. The oven dry method is the prevalent method used 

in estimating moisture content, however, it is time consuming, destructive and cannot be incorporated 

into an online production system. Therefore, a review of extant literature helped to establish that 

hyperspectral imaging technique is the best method to use in estimating the moisture content of 

biofuel pellets with an incorporated system to an online production system.  

Hyperspectral imaging was selected because of its widespread application in various fields such as 

agriculture to obtain both spatial and spectral information about objects. This gives the ability to 

acquire information not obtainable in spectroscopy only or in photography. Also, hyperspectral 

imaging technique has been used to estimate moisture content alongside other parameters in pork, 

mangoes, potatoes and prawns among others.  

In order to estimate moisture content of biofuel pellets, various steps needed to be undertaken. Data 

for this thesis was gotten from two departments within the university – Electrical Power Engineering 

and Mechatronics and Energy Technology. In order to get the right estimates, reference data needed 

to be gotten from department of Energy Technology. The pellet samples were first acquired. This 

was followed by the setting up of the hyperspectral imaging environment to collect the hyperspectral 

image data on one hand and the reference data acquisition on the other hand. A wavelength range 

of 420-900 nm was used in this thesis.  

Hyperspectral data were obtained at the Machine Vision laboratory of the Electrical Power 

Engineering and Mechatronics department. This was done using the Spectronon software and the 

acquisition camera used was Resonon PIKA II. Ten samples of biofuel pellet spectra were obtained 

and the average spectra of regions of interest saved for use as calibration data. In a quick 

succession, the samples were taken to the laboratory of fuel and air emission analysis at the 

department of energy technology. The moisture contents of the samples were obtained to serve as 

reference data for analysis. This was done in accordance with the CEN 14774 standard which 

involves delivering the samples to the laboratory in air tight bags. The pans used for drying were 

weighed when empty as well as weighed with the samples. After drying for one hour in an 

atmosphere where the air changes at 105°C for one hour, the samples were weighed again. This 

was repeated three times every hour until constant mass was achieved for all the samples. The MC 

was then calculated for all samples.   

Following the hyperspectral image acquisition, ROI was selected and then the extraction of raw 

spectral data was taken. Spectral preprocessing was done to determine outliers to be removed. The 

initial preprocessing was done in Spectronon pro environment – the same software for the HSI data 

acquisition. The preprocessing techniques that were used in this task are ROI selection, MSC 
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(mean), normalization, mean centering, autoscale, Standard normal variate, Savitzky-Golay second 

derivative filter, GLS weighting and orthogonal signal correction.  

The Principal Component Analysis model was developed to critically study the data and ensure that 

outliers are removed from the data. After the addition of the reference data, the partial least squares 

regression calibration model was developed. It was then validated and used to predict the estimation 

of moisture content. The initial calibrated model only achieved fair prediction results, hence, the 

model was recalibrated to achieve good prediction results. The analysis and prediction results were 

majorly done with Matlab R2015a using Eigenvector PLS Toolbox.  

The acquired spectral data and measured moisture contents were used to calibrate a PLSR model 

which was able to predict moisture content of 39 samples of biofuel pellets with an RMSEP of 

0,11433 and R2 of 0,825. With this calibrated and validated model, MC of biofuel pellets can be 

predicted using any set of HSI data with 240 wavelengths. In addition, the average of the predicted 

MCs for all the 39 samples is the same with the average of the measured MC at 7 w-% which is well 

below the stipulated MC by CEN (< 10 w- %). This is a good result because the aim of this thesis is 

to achieve results using the range of 420-900 nm and the major absorption points of water are beyond 

these wavelengths. In this thesis, only one subtle absorption point was observed at 540 nm. This 

was what the PLSR was based on. Although water peaks were also observed at 620 nm, this was 

not well defined on all the samples, which did not make it a strong point for distinction.  

The goal of this thesis was to build a model using the visible and near infrared wavelengths. 

Therefore, the findings of this thesis make significant contributions to the bigger project in the 

Department of Electrical Power Engineering and Mechatronics to create a machine vision system 

able to estimate the quality indices of biofuel pellets in one exposure during the production routine. 
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7. KOKKUVÕTE 
 

Eesti hoiab maailma esikohta biokütuse graanulite tootmises ühe elaniku kohta. Selle lõputöö 

eesmärk on pakkuda paremat ja kiiremat viisi kraanulite kvaliteedi tõstmiseks. Selleks on käesolevas 

lõputöös uuritud niiskuse mõõtmise viise biokütuse pelletites. Ahjus kuivatamise meetod on küll 

levinud, kuid on ajaklukas, hävitav ning seda pole võimalik tootmisliinis tootmisprotsesside ajal 

kasutada. Olemasoleva kirjanduse ülevaade näitab, et hüperspektraalset tehnikat on potentsiaalne 

viis, et määrata niiskusesisaldust biokütuse. 

Valituks sai hüperspektraalne pilditehnika tänu selle laialdasele rakendusele erinevates 

valdkondades. Näiteks kasutatakse seda põllumajanduses, et saada erinevatest objektidest nii 

ruumilist, kui ka spektraalset informatsiooni. Nimetatud viis võimaldab omandada infot mitte ainult 

nähtavas spektroskoopias, aga ka fototehnikas. Lisaks kasutatakse hüperspektraalset tehnikat 

niiskuse ning teiste parameetrite hindamiseks ka toiduainete puhul nagu näiteks sealiha, mangod, 

kartulid, krevetid jt.  

Niiskussisalduse hindamiseks biokütuse pelletites vajab mitmeid eelnevaid samme. Andmed 

käesoleva diplomitöö koostamiseks on hangitud kahest ülikooli osakonnast – elektrotehnika ja 

mehhatroonika instituudist aga ka energeetika instituudist. Selleks, et saada õiged andmed, oli vaja 

saada võrdlusandmed energiatehnoloogia intstituudi teadurite abiga. Esiteks oli vaja pelletite proove. 

Sellele järgnes hüperspektraalse hõive jaoks keskkonna loomine, hüperspektraalse pildi loomiseks 

ning võrdlusandmete saamiseks. Mõõtmiste lainepikkuste vahemik oli 420-900 nm. 

Hüperspektraalsed andmed saadi elektroenergeetika ja mehhatroonika instituudi masinnägemise 

laboris. Selleks kasutati Spectronon tarkvara ja Resonon PIKA II kaamerat. Koguti kümme biokütuse 

pelleti spektrit ning vajalike piirkondade keskmist kasutati kalibreerimisandmetena. Järgnevalt viidi 

proovid kütuse ja õhu emissiooni analüüsi teaduslaborisse energiatehnoloogia instituudis. 

Niiskuskeskkond püüti säilitada võimalikult sarnane eesmärgiga talletada võrdlusmaterial. Seda tehti 

vastavuses standardiga CEN 14774 õhukindlate kottide abil. Võeti ka kuivatamisel kasutatavate 

pannide tühikaal enne objektide kaalumist. Peale tunnist 105 °C juures kuivatamist kaaluti graanuleid 

uuesti. Viimast korrati kolm korda iga tunni jooksul kuni mass graanulite kaalumisel enam ei 

muutunud. Iga proovi jaoks koostati niiskussisalduse arvutus. 

Peale hüperspektraalse pildi võtmist valiti ROI, mille järel oli võimalik eraldada vajalikud 

spektriandmed. Ebavajalike andmete eemaldamiseks kasutati eeltöötlust. Esialgne töötlus tehti 

Spectronon Pro keskkonnas. Sama tarkvara kasutati ka HSI andmete puhul. Vajalikud 

funktsionaalsused olid ROI valik, MSC, normaliseerimine, keskmise tsentreerimine, automaatne 

skaleerimine, standardi kaudu normaliseerimine, Savitzky-Golay teise tuletise filter, GLS kaalumine 

ja ortogonaalse signaali korrektsioon.  

Loodi põhikomponentide analüüsil (PCA) põhinev mudel, et uurida andmeid ja tagada valeandmete 

eemaldamine. Peale võrdlusandmete lisamist loodi osalise vähimruutude regressiooni (PLS) 

kalibratsiooni mudel. Seejärel see valideeriti ja kasutati niiskuse sisalduse ennustamisel. Esialgsed 
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tulemused ei olnud piisavalt täpsed, mistõttu oli vajalik mudeli uuesti kalibreerimine. Viimane 

parandas ennustustäpsust. Analüüsid ja prognoosid olid põhiliselt Matlab R2015a keskonnas 

kasutades Eigenvector PLS ToolBoxi. 

Omandatud spektriandmeid ja niiskusesisalduse mõõtmisi kasutati, et kalibreerida PLSR mudel, mis 

võimaldas ennustada niiskussisaldust 39 biokütuse pelletite proovis, kus RMSEP = 0,11433 ja R2 = 

0,825. Selle kalibreeritud ja kontrollitud mudeliga võib prognoosida niiskussisaldust biokütuse 

pelletites kasutades mistahes HSI andmeid sarnastel lainepikkustel. Ennustatud niiskusesisaldus 

kõigil 39 proovil on keskmiselt 7 massiprotenti. See on sama kui keskmine mõõdetud 

niiskusesisaldus ja see tulemus on tunduvalt väiksem kui nõutud väärtust CEN, mis on <10 

massiprotsenti. See on hea tulemus, sest selle töö eesmärk on saavutada arvestatavad tulemused 

kasutades 420-900 nm piirkonda. Enamus vee spektaalseid neeldumispunkte on sellest piirkonnast 

väljaspool. Selles töös uuriti 540 nm piirkonnas vaid üht vee neeldumispunkti. See oli see, millel 

PLSR põhines. Vee neeldumispunktid esinesid ka 620nm pikkusel, kuid seda ei määratletud kõikides 

proovides, seega jäeti see suurema tähelepanuta.   

Selle töö eesmärk oli ehitada mudel kasutades nähtavaid ja lähisinfrapunaseid lainepikkusi biokütuse 

graanulite niiskuse sisalduse määramiseks. Töö järeldusi saab kasutada elektroenergeetika ja 

mehhatroonika instituudi mahukamas projektis, milel eesmärgiks luua masinnägemine süsteem, mis 

võimaldab hinnata biokütuse pelletite kvaliteeti jooksvalt graanulite tootmise käigus.  
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Appendix 1. Resonon Pika II datasheet 
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Appendix 2. Xenoplan 1.4/23 datasheet 
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Appendix 3. Measured MC and Predicted MC 

Table 9.1 Measured and predicted MC 

No Measured MC Predicted MC 

1 7.2 7.4 

2 7.2 7.3 

3 7.2 7.3 

4 7.2 7.4 

5 7.2 7.1 

6 7.2 7.2 

7 7.2 7.2 

8 7.2 7.3 

9 7.2 7.3 

10 7.3 7.3 

11 7.3 7.5 

12 7.3 7.2 

13 7 6.9 

14 7 7.2 

15 7 7.0 

16 7 7.0 

17 7 7.1 

18 7.1 7.1 

19 7.1 7.0 

20 7.1 7.1 

21 7.1 7.2 

22 6.7 6.5 

23 6.7 6.9 

24 6.7 6.8 

25 6.7 6.9 

26 7.1 7.1 

27 7.1 7.2 

28 7.1 7.0 

29 7.1 7.0 

30 7.2 7.3 

31 6.7 6.8 

32 6.7 6.6 

33 6.7 6.6 

34 6.7 6.7 

35 6.7 6.7 

36 6.6 6.7 

37 6.6 6.7 

38 6.6 6.6 

39 6.6 6.8 

Average 7.0 7.0 
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Appendix 4. Field of view used 

 

 

Figure 9.2 Field of view X direction 

  

Figure 9.1  Field of view Y direction 
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Appendix 5. Variance for GLS weighted calibrated    model 

 

Table 9.2 Variance Table after applying GLS weighting 

No 
X-Block 
LV 

X-Block 
Cumulative Y-Block LV  

y-Block 
Cumulative 

RMSECV 
Moisture 
Content                     

1 10.548 10.548 83.6368 83.6368 0.15021          

2 3.1926 13.7406 11.1345 94.7713 0.15098          

3 2.0014 15.742 3.8133 98.5845 0.14062          

4 1.936 17.678 0.93924 99.5238 0.13442          

5 1.6704 19.3485 0.33785 99.8616 0.13128 current* 

6 1.8271 21.1756 0.08566 99.9473 0.1318          

7 1.9408 23.1163 0.034149 99.9814 0.13109          

8 1.9196 25.0359 0.011644 99.9931 0.13081          

9 1.5275 26.5634 0.0047691 99.9978 0.13062          

10 2.0013 28.5647 0.0011518 99.999 0.13061          
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Appendix 6. Technical parameters of the pellets used 

 

 

Figure 9.3 Technical parameters of pellets used 
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Appendix 7.  Description of Included files 

 

A folder with the name of the thesis is submitted together with this work. The following files are 

contained in this folder: 

1. A folder named ‘hypercubes’ containing the obtained hypercubes for all ten classes, provided 

as .bil and .hdr files are provided. The RGB images are also added. 

2. A folder named ‘Mean spectra’ containing the mean spectra data used for both calibration 

and validation are provided in .xls files. 

3. A folder named ‘matlab files’ containing the calibration, validation datasets and 

preprocessing techniques used in .mat format as matlab files. 

4. The final PLSR model built, in .mat format 

5. A folder “Articles” containing all scientific papers used in the thesis. 

 


