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PREFACE 

The Face identification using Capsul networks work was done at the Robotics Control 

Laboratory of the mechatronics and autonomous systems centre at the school of 

engineering at Tallinn university of technology in Tallinn, Estonia. 

The research had two academic supervisors, Researcher Saleh Alsaleh And Professor 

Mart Tamre of Tallinn University of Technology. 

The author would like thanks Taltech University for giving him the opportunity to pursue 

his dream.  He also would like to thanks his supervisor Engineer Saleh for being helpful 

and full of motivation during the time of the thesis. He also wants to thanks professor 

Mart Tamre for his guidance during the time of this thesis as well as during his studies. 

Finally, the author would like to thank his family and friends who have been by his side 

during hard and challenging times.  

 

This thesis explored the potential of using Capsule Network for face identification. 

Capsule Networks have shown that it could be a potentially efficient method in image 

classification as it had outperformed CNNs in the classification of the MNIST digit 

dataset.  The aim of this work is to apply this method to a more complex problem of 

face identification and to benchmark the results to other proven methods. 

 

The author benchmarked the performance of the Capsule Network algorithm in 

comparison with two other methods (FACE-NET and CNN). The classification accuracy 

was tested on a small dataset sampled from the (Labelled Faces in the wild and Faces94)  

datasets. 

 

Caps-net has shown better results in comparison with the CNNs model when both 

models were trained using a small data-set, however, still using a pre-trained model 

out-performed both models in the case of FaceNet. 

 

 

 

 

 

 

 

Keywords: Capsule Networks, Convolutional Neural Networks, FACE-NET,  

Image Classification, face identification, master thesis 
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List of abbreviations and symbols 

 

CNNs     Convolutional Neural Network 

SVM      Support Vector Machines 

ReLU     Rectified Linear Unit 

nan       Not a Number  
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INTRODUCTION 

In recent years many advancements in face identification methods have been made by 

researchers due to the vast amount of commercial applications especially in critical 

security-related areas such as Law enforcement and security access control, with the 

combination of the available big data and low-cost computational power machine 

learning methods have matured to a degree where we see their use in face identification 

in our daily lives.  

 

While the state of the art machine learning classification methods such as convolutional 

neural networks (CNN) are being widely used for face identification they still inherit 

some limitations and researchers are trying to address, One of the main limation of CNN 

is that it doesn’t capture the relation between the features of a mage what this translate 

to that if a CNN model was trained on a specific image and later we test the model on 

a rotated copy of that image CNN will fail to correctly classify the image, this will require 

a training the CNN on different rotate it copy of the same image which means the 

requirement of huge amount of data to get a well-trained model. 

 

in 2017 Hinton et al published Dynamic routing between capsules [1] which suggest a 

new method to overcome CNN's limitations where “A capsule is a group of neurons 

whose activity vector represents the instantiation parameters of a specific type of entity 

such as an object or an object part “ this method is called CapsNet. 

 

 The CapsNet doesn’t just extract and learn information about the features of an image 

it also learns the relationship between these features which in theory should result in a 

more accurate model, This was shown to be true when running on the model on the 

MNIST digit dataset where the CapsNet model outperformed the state of the art CNN 

models.  

 

this promising result is encouraging to try and apply CapsNet on more complex problems 

such as image identification, Although the method is recent and has not matured enough 

the aim of this work is to try and answer the following questions: 

• Can CapsNet outperform CNN in the face identification application when trained 

on both models are trained using a small data-set? 

• How does CapsNet perform compared to a more mature and pre-trained model? 

  

While in  [2] there CapsNet on has been applied on face identification it didn’t take into 

consideration the different levels of maturity of the methods being compared. If using 
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a large data set we can see the advantage of using CaspNet is not so clear, however, 

the author argues that CapsNet could be benefited from in cases where only a small 

dataset is available for training which is one of the limitations of CNN. 

 

So in this work, we will train and evaluate the performance of CapsNet compared to 

CNN using a small dataset, which should give us some insight to answer the first 

question and finally we will evaluate the CapsNet performance compared to a pre-

trained model to see if it still will outperform a more mature pre-trained model. 

 

The structure is divided into seven chapters where chapter 1 will provide a literature 

review on related work. Subsequently, chapter 2 will describe the data-set and libraries 

used in the implantation of the work. 

 

Chapters 3,4 and 5 cover the implantation part of the work where the three different 

methods, CapsNet, CNN and Facenet are detailed. The theory, architecture, and results 

of these methods are described with the use of graphs and tables to summarize the 

results. 

 

In chapter 6 we will analyze and compare the results of the three methods and try to 

give answers to the main questions behind this work. Finally, in chapter 7 a summary 

of the work is represented. 
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Problem Statement 

Convolutional Neural Networks (CNNs) dominate computer vision-related problems, and 

are the most effective in solving and performing, image classification, image 

identification and image recognition, from simple objects to complex objects. However, 

CNNs fail in some important areas, they don’t store the orientation and position and 

only recognize features rather than taking into account the spatial relationship between 

the features. 

 

So far CapsNet was tested on small datasets such as the MNIST (Mixed National of 

Standards and Technology) dataset, this dataset is a handwritten digit used for training 

image processing system, some call it the ‘Hello World’ of computer vision algorithms. 

 

By small dataset we mean, the number of classes and the pixel size. This thesis on Face 

identification using CapsNet with small dataset was motivated by the weaknesses of 

CNNs and that this algorithm had not been tested on larger datasets. Therefore we 

decided to test the CapsNet on Face identification problem with small (Limited Labels 

per Class) dataset and to train traditional CNNs and FaceNet model as a benchmark for 

analysing the performance and the potential of CapsNet.  

 

Contribution 

To run an unsupported dataset on the Capsule Network, we used [3] as an example. 

As we have expected, machine learning platforms don’t support the capsNet algorithm 

yet. To get our model running we had to take the following steps.  

 

• Writing a TensorFlow input pipeline:   

• Making communication channels for the dataset  

• Writing a squashing function to ensure the length of vectors to remain between 

0 and 1 

• Changing the architecture to suit our tasks, such as the number of capsules in 

the primary layer and the CapFace layer.  
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1 LITERATURE REVIEW 

1.1 Human vision 

For a human being to recognizing and perceiving faces is a vital must have the ability 

to coexist society. By perceiving faces we can distinguish and tell identity, mood, sex, 

and the race of an individual and thereby take a suitable decision. Our visual system 

can recognize and identify thousands of faces learned during our lifetime especially 

known and familiar faces by just a glance, even after a long time of separation. Human 

visual system mastered this skill even if there are big changes caused by viewing 

conditions, ageing, hairstyle and distractions caused by wearing eye-glasses, sun-

glasses, hats or even wearing make-up [4]. 

   

Humans are exceptional at perceiving faces, part of the reason for this is a specialized 

brain region called the Fusiform Face Area (FFA). The FFA is tiny and is located in the 

brain’s temporal cortex, which is generally responsible for object recognition.  

1.2 Computer vision 

Generally, we make and invent all types of technology to ease and speed up our daily 

tasks and needs, mostly, in such a way that it serves us as another human would. 

Taking that into account computer vision is the branch of science that deals with vision 

and mimics human visual system. We see things through the eyes with the help of light 

and then the brain processes the object and gives us a clue about what the object is 

based on previous experience. 

Larry Roberts from MIT whom a lot of people regard him as the father of computer vision 

proposed [5] the possibility of deducing 3-D geometrical information from a 2-D 

perspective view of blocks in his PhD. 

The first digital image was taken in 1959 when Russel kirsch and his colleagues had 

devised an instrument that can transform images into grids of binary numbers, a 

language computer could understand. Thanks to Russel and his team what we now can 

process, manipulate images to meet our needs so easily. Figure 1.1 shows the first-ever 

digitally scanned image [6].  

 

 

 

Figure 1.1 Kirsch's three months old song 
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1.3 Face detection 

Face detection is the first step of face recognition and there are different methods and 

each of these methods has its own advantages and disadvantages. Alignment and 

detection of faces are crucial to many face applications, such as face recognition and 

facial expression. Some of the popular methods are. 

 

1.3.1 Robust real-time object detection 

In 2001, Viola and Jones published [7] a breakthrough robust real-time object detection 

algorithm. This paper presents a visual object detection algorithm that can process 

images extremely fast while maintaining high detection rates. In this algorithm, there 

are three key important elements. The first is the introduction of “Integral Images” 

which computes the detected features super-fast. The second one is based on Adaboost 

and it selects the key features and the third method combines classifiers in a “cascade” 

which spends more time on promising features of the object. 

1.3.1.1 features  

Objects are classified based on the value of simple features. The authors have used [7] 

three kinds of features and they are as follows. 

• Two rectangle features 

The value of the two rectangle features is the difference between the sum of pixels 

within two rectangle regions, note that the regions have the same shape and size and 

are vertically or horizontally adjacent as shown in figure 1.2 [7] 

 

 

 

Figure 1.2 Two rectangular feature 

• Three rectangle features 

The three rectangle feature computes the sum within the two outside rectangles 

subtracted from the sum in the centre rectangle [7] 
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Figure 1.3 3 three rectangle feature 

 
• Four rectangle features 

The four rectangle feature computes the difference between diagonal pairs of rectangles 

[7] 

 

 

 

 

 

 

Figure 1.4 four rectangle feature 

 

1.3.1.2 Integral images 

Features of the targeted object are analysed very rapidly by using an intermediate 

rendition for the targeted object which the authors call it the integral image. The integral 

image located at x, y is the addition of pixels above and to the left of x, y. 

 𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤ 𝑦′≤𝑦

 (1.1) 

Where 𝑖𝑖(𝑥, 𝑦) is the output features (Integral image) and 𝑖(𝑥, 𝑦) is the input image 

(Original image) 

 s(𝑥, 𝑦) = s(x, y − 1) + 𝑖(𝑥, 𝑦) (2.2) 

 

 𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(x − 1, y) + 𝑠(𝑥, 𝑦) (3.3) 

 
s (x, y) is the accumulative raw sum, note that s (x, -1) = 0, and 𝑖𝑖 (-1, y) = 0. We can 

calculate the integral image in one pass over the original image [7]. 

Any rectangular sum can be calculated in four array references using the integral imag

e, see Figure 1-5. 

Four array references can be used to calculate the number of pixels within rectangle D. 

The integral image value at location 1 is the sum of rectangle A pixels. Location 2 value 

is A+B, location 3 value is A+C, location 4 value is A+B+C+D. 
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2 DATA-SET AND LIBRARIES AND HARDWARE 

A mixture of LFW (labelled faces in the wild) a public data set for face verification created 

by professor Erik learned miller et al and Faces94 [8] were used for training the 

networks namely, capsule network, convolutional neural network and face-Net. 

Labelled Faces in the wild [9].                                                                                                                                                                                                                                                                                                                                                                                                                                       

Table 2.1 Classes of the first training data-set 

001 002 003 004 005 006 

007 008 007 010 011 012 

 

After the first training was done, we wanted to experiment how well the capsNet will 

perform on a larger data-set. 

 

      
01 02 03 21 32 34 

 

For the second training, we used a data set called Georgia Tech Face Database [10]. 

Table 2.2 Data-set Description 

Method Data-set Number of 

Classes 

Images per 

class 

Total 

1. LFW + Faces94 5 7 10 120 

2. Georgia Tech Face Database 50 15 750 
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2.1 Platforms and libraries 

Anaconda is a platform which comes with different machine learning libraries like 

python, Jupyter notebook to develop programs quickly. It takes out the complex and 

time taking processes to easy and quick solutions. Anaconda is used in this project to 

spend more time on solving the problems rather than figuring out about libraries 

versions and their compatibility. Following libraries are mainly used in this thesis project. 

 

1. OpenCV: OpenCV is an open-source computer vision library which contains 

useful functions for computer vision applications in a simple language for image 

processing. In this thesis, OpenCV is used for reading input dataset from the 

path and resizing images to the required dimensions and visualizing samples of 

the dataset to make sure that the dataset is correctly fed into the network. 

2. Python Imaging Library: PIL or later known as pillow  

3. Matplotlib: Matplotlib is a plotting library that is included python packages and 

it’s used for plotting graphs. 

4. Numeric python: NumPy packages are used for scientific computing and storing 

data in the required format for such a way that computational becomes more 

efficient. 

5. OS library: This package is used for communicating with the different directories 

in the computer  

6. TensorFlow: Developed by Google and it’s mainly used to processes 

multidimensional arrays which are also known as tensors. 

7. Keras: is an API neural network that is written in python and it runs on top of 

TensorFlow, CNTK (Microsoft Cognitive Toolkit) or Theano. 

2.1.1 Hardware and Software  

2.1.1.1 Hardware 

For the training, we utilised two computers at the Robotics Control Laboratory of the 

mechatronics and autonomous systems centre at the school of engineering at Tallinn 

university of technology in Tallinn, Estonia.  

For training the CNNs and the Face-Net, we used desktop with the following properties. 

Table 2.3 Specifications for Desktop 1 

Operating System Processor Installed 
Memory 

Graphics 

Windows 10 64-bit Intel, i5, CPU 3.30GHz 8GB Nvidia Quadro 600 
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For training the Capsul Network, we used a desktop with the following properties 

Operating System Processor Installed 
Memory 

Graphics 

Windows 10 64-bit Intel, i5, CPU 3.30GHz 32GB Nvidia Quadro 600 

 

2.2 Data-set pre-processing for CAPS-Net  

As CapsNet is still a recent method it requires pre-processing of the data which unlike 

the FaceNet and CNN which have matured enough that most machine learning libraries 

are able to automatically pre-process the data, Every machine learning project starts 

with gathering training examples and then pre-processing that dataset. The following 

steps have been taken prior to building the network 

 

 

 

 

 

 

 

Figure 2.1 Data-set pre-processing flow chart 

 

So far CAPSNET was tested on small data-set images, such as CIFAR and MNIST. Due 

to the fact that this network requires a high computational power machine even for 

small data-set in terms of pixel size. Different pixel sizes were tested for the network, 

some of which are smaller than 80*80  and some of them greater than 80*80, after 

testing we concluded that the optimal size was 80*80. 
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3 CAPS-NET 

3.1 Capsule neural network  

3.1.1 Applications 

Capsule Network is one of the newest additions in the field of machine learning. The 

Capsule Network is still in its infant, research and development phase, as a result, there 

are no commercial applications that are based on the Capsule Network yet. Although 

this algorithm is in its testing phase, however, it has shown some advantages over the 

traditional neural networks [1]. 

 

Because of high sensitivity in real life and data limitations, self-driving cars is one of the 

possible application areas for capsule neural network. The capsule network model could 

be handy for application where the dataset is limited [11].   

 

In 2018 a group of Canadian researchers used capsule network for classifying brain 

tumours [12]  and they have compared the results of three models. And their results 

show that capsNet is truly becoming a trend in the field of image classification. Table 

1.1 shows the results of the experiment in comparison with CNN. One big advantage of 

the CapsNet in this experiment is the elimination of human-annotated images. In this 

experiment, they have used small dataset images generated from MRI (Magnetic 

Resonance Imaging) scan. This experiment supports the strength of CapsNet in a small 

dataset. 

Table 3.1 Comparison betweenCapsNet approach and CNN results 

 Approach Accuracy 

1. CapsNet given brain  image as input 78% 

2. CapsNet given segmented tumour as input as input 86.56% 

3. Proposed CapNet Architecture 90.89% 

4. CNN given brain image as input 61.97% 

5. CNN given segmented tumour as input as input 72.13% 

6. Modified CNN with brain image and tumour Boundry box as input 88.33% 
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3.2 Theory 

“A capsule is a group of neurons whose activity vector represents the 

instantiation parameters of a specific type of entity such as an object or an 

object part “ [1] 

 

In 2011 Geoffrey E.Hinton published Transforming auto-encoders [13] that introduced 

many of the key ideas of capsule networks, however, the author had a hard time making 

them work properly until 2017 when Hinton et al published Dynamic routing between 

capsules [1]. the authors managed to reach the state-of-the-art performance on the 

MNIST dataset and demonstrated considerably better results than the traditional 

convolutional neural networks on highly overlapping digits. 

 

In computer graphics, we start with an abstract of representation of an object and we 

call some rendering function and then we get an image. Each object or object part has 

some instantiation parameters and we call some functions then we get an image as 

illustrated in figure 3.1 

 

 

 

 

 

 

Figure 3.1 Computer graphics illustration 

 
In capsule networks, we start with an image and it finds what objects it contains and 

what their instantiation parameters are. Basically, a capsule network is a neural network 

that performs inverse graphics. 

 

 

 

 

 

Figure 3.2 Inverse graphics 
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Capsules try to predict the presence and the instantiation parameters of an object at a 

given location. 

 

 

 

 

 

 

 

Figure 3.3 Example of capsule network 

 
Capsule networks look for whether specific objects are present in the target image and 

accordingly there is a capsule which returns. 

• The probability an entity exists  

• The instantiation parameters of the detected entities. 

In figure 3.3 our imaginary capsule is made-up of 6 neurons each corresponding to 

certain area/part of the rectangle. The probability of the presence of the rectangle is 

determined by the length of the vector. So, in figure 3.3 the probability of a rectangle 

being present will be: 

 

√1 ⋅ 32 + 0.62 + 7 ⋅ 42 + 6 ⋅ 52 + 0.52 + 1 ⋅ 42 = 10.06 

 

Something is not right, if the output vector represents the probability of an entity exists, 

it should be less than or equal to 1 (0 ≤ P ≥ 1) and this is where the squashing function 

comes alive. 

 

The squashing function is used to make sure that short vectors get shortened to nearly 

zero length and long vectors get shortened to a length below 1. 

 
Vj =

‖𝑆𝑗‖
2

1+‖𝑆𝑗‖
2

   
 

𝑆𝑗

‖𝑆𝑗‖
 

 

3.0 

Where   Vj is the resulting vector of capsule j  

Sj is its total input. Except for the initial layer of the capsules,  
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3.3 The intuition behind CapsNet 

 

The implementation of capsNet is divided into three main parts. 

 

First, we will construct the primary capsules layer which consists of three subdivisions. 

• Convolution 

• Reshape 

• Squash 

Secondly, we will build the Higher layer capsules which primarily incorporates the. 

• Routing by agreement 

•  

Lastly, we will perform loss calculations. 

• Margin Loss 

• Reconstructions 

3.3.1 Primary capsules  

To understand the theory behind CapsNet we will show an illustrative example. In the 

first layer, we start the process of inverse graphics. Suppose we want to classify boat 

image and a house image shown in figure 3.4[14]. in the first layer, these images are 

broken down into their subparts.  

 

 

 

 

 

Figure 3.4 Left house, Right boat 

 

These images consist of triangular shape and rectangular shape as shown in figure 

3.5[15]. In the primary capsule layer, the representing capsules of the triangle and the 

rectangle are constructed. Let’ say that we assign 100 capsules, where 50 capsules are 

representing the triangle and 50 representing the rectangle.  
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In figure 3.5[16] black arrows are representing the output capsule for the rectangle and 

the blue arrow is representing the output capsule for the triangle. These arrows are 

placed every location of the image and they are indicating the presence of an object in 

a specific location.  

 

 

 

 

Figure 3.5 representation output capsules 

 

The length of the arrow is shorter where the object is not placed, and longer where it is 

placed. The orientation of the arrow shows the position and the scale in the given image. 

 

To achieve the representation output capsules, we feed the image two convolutional 

layers, and this will output some array of feature maps, suppose this outputs an array 

of 18 feature maps, and then we reshape these feature maps into two vectors of 9x9 

for all the locations in the image.  

 

 

 

 

 

 

 

 

 

Figure 3.6  Processing steps of the input image 
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The length of the arrows represent the probability of an object about a specific location, 

therefore we ensure that the length is always between 0 and 1. To achieve this we use the 

squashing function shown in equation 3.1.  

 

 
Vj =

‖𝑆𝑗‖
2

1+‖𝑆𝑗‖
2

   
 

𝑆𝑗

‖𝑆𝑗‖
 

 

3.1 

Now we need to figure out how these subparts are related to our example of the boat and the 

house. And which parts do belong to the triangle and the house  

3.3.2 Higher layer capsules 

Right after the squashing function in the primary capsule layer and before the higher 

layer capsule, every capsule in the primary layer will make predictions for every capsule 

in the higher layer capsules. In our example, we have two predictions to make, the boat 

and the house 100 capsules each. These capsules will make predictions depending upon 

the orientation of both classes. Figure 3.7 [17] illustrates this scenario. 

 

 

 

 

 

 

Figure 3.7 Predictions made by the primary layer 

 

As figure 3.7 shows, both the triangle capsule and the rectangle predicted the presence of a 

boat in the given image. 
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In figure 3.8 [18] both the triangle and rectangle are democratic and have agreed that 

the input image is more likely a boat. This process of agreeing is called routing by 

agreement. 

 

  

 

 

 

 

Figure 3.8 Routing By agreement illustration 

 
So far the higher layer has done nothing much, all the work was done by the primary 

layer. Now, the higher layer will need to compute its outputs and to check it’s predictions 

with its computations.  

 

For the higher layer to come up with its own outputs, it performs something called 

routing weights. At the moment the higher layer has the predictions made by the 

primary layer, for the first iteration it sets its routing weights to be zero for all and then 

we feed these weights into a softmax function. This process is shown in figure 3.9 [19] 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Weight  initialization 
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First, we defined two regular convolutional layers and then we fed the dataset. Every 

image in the dataset will be broken into small subparts in this layer. Capsules in this 

layer are placed in every location of the face images and the output vector of this 

capsules carries features that are located in the faces, these features could be a specific 

feature and the pose of the arrow represents the orientation of that specific feature in 

relation to other features. These arrows locate features in the face with its precise 

location. This is achieved by implementing three, Convolution layers, Reshaping the 

output function and then squashing by using equation 3.0 with small Epsilon value to 

avoid zero division, the shaped function to ensure that the length of each vector lies 

between 1 and 0, where 1 is indicating the presence of features in the given face 

image/images, and the 0 indicates that no detected features in that specific of the 

images. 

Now vectors carry features locations but we don’t know which features belong to which 

class, and label. To know the relation between features and labels, we will build the caps 

-face( Higher Layer Capsules). 

 

3.3.3 Caps-face  

Before the caps-face becomes functional, every function in the primary layer will output 

predictions for every capsule in the caps-face layer. The number of capsules in the caps-

face layer is determined by the number of classes that are needed to be predicted. 

Capsules in this layer will then make predictions about the classes based on their 

features orientation, but it has to agree with the predictions made by the primary 

capsules, and this method is where the name routing by agreement comes from. 

Basically, the predictions in the caps-face should match the predictions of the primary 

capsules layer.  

 

This method has several advantages, there is no need to send a signal to another 

capsule if the primary layer agreed to select a capsule in the caps-face layer and 

therefore will be made stronger and clearer for the prediction. We will need to set up 

routing weights for the caps-face to calculate its own output. For this, all the predictions 

given by the primary layer will be set to be zero. These weights are fed into a softmax 

function and the output is assigned to each prediction. 

 

 

 

 



26 

For each face, in the batch, the primary layer will output 32 maps each containing, 

32x32 grid of 8-dimensional vectors. 

Capsule 1 Number of Maps 32 

Capsule 1 Number of Caps Capsule 1 Number of Maps * 32 * 32 = 

32768 

Capsule 1 Dims 8 

 

The model structure mainly consists of six main parts as shown in figure 2-1. CNNs use 

deduced copies of learned feature detectors and this allows them to carry knowledge 

about good weights extracted from one position in an image to other   [1]. This has 

proven to be very useful in image processing.  

Although the authors are replacing max-pooling with routing by agreement and 

replacing scalar output feature detectors of CNNs with vector output capsule. However, 

authors still wanted to keep a copy of the learned features across space and to achieve 

this, all the layers except the capsule layer are CNNs layers. For this case, two 

convolutional layers are used to extract features.  

 

3.3.4 Activation for CNNs layer 

In neural networks, activation functions are used for mapping the output of nodes, 

usually, the resulting value is either 1 or 0, depending on the type of the activation 

function. Mainly activation functions are divided into two categories: 

• Linear Activation function  

The output of f(x) = x function is unlimited can be any range between [ -∞ to  

∞ ], figure 3.5 [20] illustrates. This is not a very useful function for complex and 

real data that is needed to feed to the neural network. 

Figure 3.10 Network flow chart 
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Figure 3.11 linear function 

 

• Non-linear activation Function  

 

Non-linear [21] activation functions are the most widely used activation functions 

due to the fact that they make for the model easily to generalize and adapt 

different datatypes and differentiating between outputs. 

 

 

 

 

 

 

 

 

 

Figure 3.12 Non-linear function 

 

In neural networks, we use activation functions to add our model non-linearity so the 

network can map more complex patterns and relationships in the given data. The most 

common non-linear activation functions are ReLU, Sigmoid and tanh. 

3.3.5 ReLU activation function 

The rectified linear unit, in recent years, has become one of the most popular if not the 

most popular activations function. 

 

Equation 2,0 returns 0 for all the values that are smaller than 0, and it returns x for the 

values equal to or greater than 0. Figure 3.7 shows the graphical representation of ReLU 

activation function 
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Figure 3.13 ReLU activation function 

 

 

 

 

 

𝐹(𝑥) {

  
    0 𝑓𝑜𝑟 𝑥 < 0

 
  𝑥 𝑓𝑜𝑟 𝑥 => 0 

 

 

                        3.1 

 

 

3.3.6 Loading data set  

Every machine learning project starts with gathering training examples and then pre-

processing that dataset. The following steps have been taken prior to building the 

network 

 

The first step was getting a dataset to work with and then reading it from the working 

directory. Due to the limitations of capsule networks, it was decided that to use 

reasonable size for the network, which has been so far tested on small datasets in terms 

of the pixel size. 

 

 

 

 

 

 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Data set loading steps 

 

Since capsule networks can be a substitute for conventional CNNs, it was decided to use 

quit limited dataset. One drawback of CNNs is that it requires very large input data in 

order to get reasonable results. However   

3.4 Primary capsule layer 

The primary layer which is the first layer is composed of 16 maps of 32x32 capsules 

each, therefore, there are 32768 primary capsules. 

Table 3.2 Parameter of the primary capsule layer 

Capsule 1 Number of Maps 32 

Capsule 1 Number of Caps Capsule 1 Number of Maps * 32 * 32 = 32768 

Capsule 1 Dims 8 

  

 

To compute the output of these primary capsules in the first layer, two conventional 

convolutional layers were used with the following parameters in table 3.2 
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Table 3.3 CNNs Parameters 

Conv_1 Parameters Conv_2 Parameters 

Filters 256 Filters 256 

Kernal Size 9 Kernal Size 9 

Strides 1 Strides 2 

Padding Valid Padding Valid 

Activation ReLU Activation ReLU 

 

Since we used kernel size of  9 and padding was Valid (no padding) and stride of 2, our 

input images got shrunk to 32x32 pixels that are because after each convolutional layer 

the input images loses 8 pixels (Kernal size-1=8) and stride of 2 in the second 

convolutional layer so the image size was divided by 2. Therefore, we end up with 32x32 

feature maps. 

 

The next step is to reshape the output of the primary capsules to get a bunch of 8D 

vectors. Conv2 outputs an array of 16x8 feature maps for each instance with each 

feature maps of 32x32, so we end up shape of (batch size, 32,32,80), let’s not forget 

that the first layer is fully connected to the primary capsule layer, so we need to reshape 

it to (batch size, 32x32x16, 8).  

 

We need to squash these vectors based on the squash function in equation 3.0 to ensure 

that the length of vectors is always between 0 and 1. 

 

Equation 3.0 will squash every vector in the given array along the given axis. We know 

that the derivative of  ‖𝑆𝑗‖
2
 is undefined if  ‖𝑆𝑗‖

2
= 0, so we can’t directly get norms of 

the vectors. Therefore, we need to get the norm manually (Custom made function: in 

the notebook) by calculating the square root of the sum squares plus a tiny number 

(0.00001) so we don’t get nan error. 

 

Now we are ready to get every output of the primary capsule by applying the squash 

function in equation 3.0 
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3.5 Face capsule 

In order to compute the output of the Face capsules, we need to get the predicted output 

vectors one for each primary capsule, then we can implement routing by agreement. 

Table 3.4 Face capsule parameters 

 

The number of caps of capsule 2 indicates the total number of labels we want to predict 

as shown in table 3.3 

We need to predict the output of each capsule in the second layer for each capsule in 

the first layer.  

 𝑠𝑗 = ∑ 𝑐𝑖𝑗

𝑖

�̂�𝑖|𝑗    �̂�𝑖|𝑗  = 𝑊𝑖 𝑗𝑢𝑖 
3.2 

To achieve this we need a transformation matrix  Wi, j  for the primary capsules and 

the face capsules, we can calculate the predicted output as equation 3.2 shows. We 

want to transform Capsule_1 Dims (8D vector) into 16D, therefore, we need each 

transformation matrix to have a shape of (16, 8). 

 

To calculate �̂�𝑖|𝑗  for every pair of the primary capsule and the face capsule, we need to 

multiply their arrays, and TensorFlow function [22] is used which lets us multiply two 

matrices and as well higher-dimensional array.  

 

the primary capsule layer has a shape of (?, 32768, 12, 8, 1) and capsule face layer has 

a shape of (?, 32768, 12, 16, 1). For the second layer, we need to create 12 copies of 

the first layer ( 32768 ), to achieve this a handy TensorFlow function [23] is used which 

allows us to copy arrays and then create a new array in any shape we want. Now we 

only need to multiply these two arrays. 

3.6 Routing by agreement 

Activation vectors of the Face cap send feedback signals to the capsules at the primary 

capsule layer. If the prediction vectors of the capsule of the primary layer and the 

capsules of the face cap layer are in agreement, their dot product should be high. 

First, we initialize weights of the routing bij to zero. We need to multiply routing weights 

and caps_2 predictions in an elementwise matrix multiplication way and they should 

have the same rank. Therefore we add two extra dimensions of size 1 to the routing 

Capsule 2 Number of Caps 12 

Capsule 1 Dims 16 
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weights. To get the outputs of the second layer capsules and we matched the rank of 

routing weights and caps_2 predictions, we can apply the squashing function 

 
𝑐𝑖𝑗  =  

exp (𝑏𝑖𝑗)

∑ exp (𝑏𝑖𝑘)𝑘
 

 

 

 

3.3 

bij indicates whether capsules in the primary layer and capsules in the face cap have 

strong coupling.  

 

3.7 Results 

3.7.1  Routing iteration (1) 

Figure 3.15 shows three predicted classes label 001, label 002, label 001 was 

misclassified for label 012, and label 004 got a high prediction rate than the correct 

label. Classifier got right all the examles of the label 002. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Example of predicted classes 
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Figure 3.16 Mixed Label predictions 

 

Table 3.5 Results 

Final training Accuracy Final validation 
Accuracy 

Test Accuracy Test Loss  

100% 90% 70% 0.259 

  

Table 3.6 Summary of test with 1 iteration 

Label Correctly Classified Miss-
Classified 

Success 
percentage 

001 5/6 1 83.300 % 
002 6/6 0 100 % 
003 3/6 3 50 % 
004 6/6 0 100 % 
005 6/6 0 100 % 
006 6/6 0 100 % 
007 6/6 0 100 % 
008 3/6 3 50 % 
009 6/6 0 100 % 
010 6/6 0 100 % 
011 6/6 0 100 % 
012 5/6 1 83.300 % 
Total 64 8 88.900 % 

 



34 

3.7.2 Routing iteration (2) 

For the final test 72 images were used for testing, 6 images per class. The following are 

the results of each class. Due to the scale of the test set, only a few of them will be 

presented here.  

Table 3.7 Results 

Final Training 
Accuracy 

Final Validation 
Accuracy 

Test Accuracy Test Loss  

100% 87.500% 90% 0.083 

 

Table 3.8 Summary of test with 2 iterations 

Label Correctly Classified Miss-
Classified 

Success 
Percentage 

001 6/6 0 100 % 
002 6/6 0 100 % 
003 4/6 2 66.670 % 
004 3/6 3 50 % 
005 6/6 0 100 % 
006 6/6 0 100 % 
007 6/6 0 100 % 
008 3/6 3 50 % 
009 6/6 0 100 % 
010 6/6 0 100 % 
011 6/6 0 100 % 
012 5/6 1 83.300 % 
Total 63 9 87.500 % 

 

 

3.8 Experimenting with larger data-set  

In this section, we will train the CapsNet with a larger data-set. Taking account of the 

results of the previous section, we decided to train the network with just one routing 

iteration. Because our model performed well on the training part with two routing 

iterations but underperform the test phase than the model with just one routing 

iteration. Also, the training time was longer with the 2 routing iterations. 
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Figure 3.17 Three correctly Classified Classes 

 

 

 

Table 3.9 Training results 

Final Training 
Accuracy 

Final Validation 
Accuracy 

 Test 
Accuracy 

Test Loss 

100% 100%  0.9380 0.115 
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Table 3.10 Results 

Label Correctly Classified Miss-
Classified 

Success 
percentage 

01 1/2 1 50% 

02 2/2 0 100% 

03 2/2 0 100% 

04 2/2 0 100% 

05 2/2 0 100% 

06 2/2 0 100% 

07 2/2 0 100% 

08 0 2 0% 

09 1/2 1 50% 

10 2/2 0 100% 

11 1/2 1 50% 

12 2/2 0 100% 

13 1/2 1 50% 

14 0 2 0% 

15 2/2 0 100% 

16 0 2 0% 

17 1/2 1 50% 

18 1/2 1 50% 

19 2/2 0 100% 

20 2/2 0 100% 

21 2/2 0 100% 

22 2/2 0 100% 

23 2/2 0 100% 

24 2/2 0 100% 

25 2/2 0 100% 

26 2/2 0 100% 

27 2/2 0 100% 

28 2/2 0 100% 

29 2/2 0 100% 

30 2/2 0 100% 

31 2/2 0 100% 

32 2/2 0 100% 

33 2/2 0 100% 

34 0 2 0% 

35 2/2 0 100% 

36 2/2 0 100% 

37 2/2 0 100% 

38 2/2 0 100% 

39 2/2 0 100% 

40 2/2 0 100% 

41 0 2 0% 

42 2/2 0 100% 

43 2/2 0 100% 

44 2/2 0 100% 

45 2/2 0 100% 

46 0 2 0% 

47 2/2 0 100% 

48 2/2 0 100% 

49 2/2 0 100% 

50 2/2 0 100% 
Total 82 18 82% 
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Conclusion  

For the first training, we have observed that the network was overfitting right from the 

beginning, the training accuracy relatively stayed at 100%, while the validation accuracy 

was fluctuating. For the final independent test, we have recorded a test accuracy of 

70%. Of course with so little dataset per class, our number one concern was overfitting. 

In the next section, we will see the results of two iteration steps.  

 

With two routing iterations, the network didn’t improve on the validation accuracy and 

went down 2.5%, while the test accuracy has improved by 20%, however, when we 

tested the network with a totally new dataset, the results were not as good as with the 

one routing iteration model and it went down 1.4% on the final test.  

 

With more classes, our models have improved on the validation accuracy, where it was 

overfitting in the first two models. Also, we have seen a 4% increase in test accuracy.  

 

We have learned that the test accuracy could be improved by using more classes as in 

the case of the last model, where the examples per class in the last models were smaller 

than the examples per class for the other two models.  

 

The reason is when the model learns some enough features about a class, it doesn’t 

improve the weights of the network, even if we have thousands of images of that class. 

 

With more classes, the network will be pushed to learn how to distinguish, human words, 

it will have more experience. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

4 CONVOLUTIONAL NEURAL NETWORK 

4.1 Theory 

Convolutional neural networks have seen unprecedented improvements due to the 

advancement of computational machines and the availability of data information and in 

some areas, it has already surpassed human accuracy. 

 

One weakness of convolutional neural networks is, it needs a lot of datasets or the need 

to use advanced techniques such as transfer learning and data augmentation if the 

dataset is too small. To have an affair comparison with the capsule network, which is 

yet to be standardized and many of the advanced techniques are not applicable. This 

model will almost have the same techniques with a larger dataset than the one the 

capsule network is trained; thus, it’s not expected this model to achieve or reach a state 

of the art accuracy. In addition to that, the aim of this thesis is not to improve the 

accuracy of CNNs in the domain of face recognition therefore, the results don’t reflect 

what CNNs can achieve when advanced techniques are used, such as using pre-trained 

weights. 

 

A convolution extracts tiles from the input feature map and uses filters to calculate new 

features, generating an output feature map, or transformed features which may have a 

size and depth different from the input feature map. Two parameters describe 

convolutions. 

• Tile size that is extracted (usually 3x3 or 5x5 pixels) 

• The depth (channels) of the map of the output feature (this corresponds to the 

number of filters) 

The filters effectively move over the grid of the input horizontally and vertically, one 

pixel at a time for extracting each corresponding tile.  

 

 

 

 

 

 

 

 

 

 

Input Feature Map 

     

     

     

     

     

     
 

   

   

   

 Output 

Feature  Map 
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In figure 4.1 there are nine possible locations to extract tiles from the input feature 

map, this convolution produces a 3x3 output feature map.  

 

Input Feature Map 

3 5 2 8 1 

9 7 5 4 3 
2 0 6 1 6 
6 3 7 9 2 

1 4 9 5 1 
 

Convolutional Filter 

 

 

 

 

1 0 0 
1 1 0 
0 0 1 

 

In CNN we apply element-wise multiplication of the convolution filter over the input 

feature map as figure 4.3 illustrates. The convolution filter slides on one pixel at a time 

to the right and then one pixel down starting from the most left pixel over the input 

feature map. 

 

Input Feature Map 

 

3x1 5x0 2x0 8 1 

9x1 7x1 5x0 4 3 
2x0 0x0 6x1 1 6 

6 3 7 9 2 
1 4 9 5 1 

 

 
     
 
3 + 0 + 0 + 9 + 7 + 0 + 0 + 0 + 6  

Output Feature Map 

 

 

 

25 18 17 
17 22 14 
20 15 23 

Figure 4.1 the convolution of the 3x3 filter is performed over the 5x5 input feature map, on the right is the 

resulting convolved feature 

 
The CNN “learns” during training the optimal values for the convolution filter matrices 

that allow it to extract meaningful and useful features such as textures, edges, shapes 

etc., from the input feature map. The number of features that CNN can extract increases 

with the number of filters (Output filter map depth) applied to the input. However, the 

trade-off is that filters make up most of CNN’s resources, thereby the training also 

becomes longer as more and more filters are introduced or added. In addition, each 

filter that is applied to the network outputs less incremental value than the previous 

one. So, we aim to build networks by using the minimum needed number of filters to 

extract the features that are important for accurate image classification.  
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4.2 Architecture 

To have a fair comparison, a conventional CNNs was designed without using advanced 

techniques such as transferring transfer learning and the same dataset is used for 

training the network. It may prove difficult to get good results with a shallow CNNs 

architecture. Therefore, the aim of this network is not to get good results but rather to 

see how it performs with a little dataset and without advanced techniques against the 

capsule network. This convnet will be a stack of alternating ReLU activation functions 

and MaxPooling layers. 

Table 4.1 CNNs Parameters 

Layers Filters stride Max Pooling activation 

1 32 3x3  ReLU 

2   2x2  

3 64 3x3  ReLU 

4   2x2  

5 128 3x3  ReLU 

6   2x2  

7 128 3x3  ReLU 

8   2x2  

Flatten  

Dropout 0.2 

9 Dense512   ReLU 

10 Dense12   Sigmoid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Model summary 
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4.3 Results 

The training accuracy until it reaches nearly 100%, while the validation accuracy stall 

at 75-77%. These are the characteristics of overfitting. This is because our training 

examples are few (120).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Training and Validation accuracy 

 

After only 5 epochs the validation loss reaches its minimum and then it stalls and 

fluctuates, while the training loss reaches almost zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Training and Validation loss 
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5 FACE-NET 

5.1 Theory 

In 2015 Florian Schroff et al published [24] a paper that was titled FaceNet: A Unified 

Embedding for Face Recognition and Clustering. Given an input face, the algorithm will 

extract high-quality features from the face and will predict 128 element vectors 

representation, these features are known as face embeddings. 

To measure the similarity of faces, FaceNet maps face images to a compact Euclidean 

Space, and the distance corresponds to the similarity of faces.  

5.1.1 Triplet loss  

In triplet loss, the squared distance between all faces, regardless of imaging conditions, 

of the same person is small, whereas the squared distance between two different 

persons is large [24]. 

 

 ‖𝑓(𝑥𝑖
𝑎) −  𝑓(𝑥𝑖

𝑝)‖
2

2
 + ∝ <  ‖𝑓(𝑥𝑖

𝑎) −  𝑓(𝑥𝑖
𝑛)‖2

2 5.0 

 

Where    𝑥𝑖
𝑎  is an anchor input image,  

 𝑥𝑖

𝑝
  positive image for the anchor,  

 𝑥𝑖
𝑛 is an image that doesn’t belong to the anchor image 

 ∝ is a margin that is enforced between positive and negative pairs.  

 

 

 ∀ ( 𝑓 (𝑥𝑖
𝑎), 𝑓(𝑥𝑖

𝑝
), 𝑓(𝑥𝑖

𝑛))  ∈ 𝑇 5.1 

 

 

 

 

 

 

 

 

In equation 5.1 for every function in it, belongs (T) to all possible triplets in the training 

set and has cardinality N. 

The minimized triplet loss can be calculated as shown in equation 5.0 

Figure 5.1 Before and after applying triplet loss  
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5.1.2 Triplet selection 

If we choose A, P, N (Anchor, Positive, Negative) randomly equation 5.0 can be easily 

satisfied. To prevent this from happening, the authors chose triplets that are hard to 

train on. This also increases computational efficiency. It’s time taking to compute the 

argmin and argmax for all the training set, and it’s possible that it might lead to poor 

training [24].   

5.2 Architecture 

FaceNet extracts high-quality features from the given image and these features are 

called face embeddings, the extracted face embeddings are used to train a face 

identification system. In this thesis project SVM (Support Vector Machines) classifier is 

used to do the classification. 

5.2.1 Support vector machines 

SVM (Support vector machines) is a linear model for classification. SVM can solve many 

classification problems, linear and non-linear.   

The SVM algorithm creates a hyperplane which separates the data into classes. 

 Separating two or more classes there are a number of possible hyperplanes as shown 

in figure 5.2[25]  that could be chosen. The objective is to find an optimal hyperplane, 

where the margin is maximum, in other words, the maximum distance between classes. 

The number of planes is directly proportional to the number of classes we want to 

predict. 

 

 

    

 

 

 

 

Figure 5.2  Possible hyperplanes 
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5.2.2  Face vector calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 shows labels in the Euclidean space where each class has a unique 

embeddings vector which distinguishes from other classes. By knowing the average 

distance of all labels we can set a logical threshold, such that any input image where 

the distance is greater than the decided threshold is unknown. Figure 5.5 illustrates the 

distance between class 001 and 002. The top left number is the distance between the 

two compared classes.  

 

 

 

 

 

 

 

 

Figure 5.4 Distance between label 001 and label 002 

 

Figure 5.3 Face embeddings in Vector space 
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In figure 5.5 two different examples belonging to the same class were compared and 

the distance is smaller than that one in figure 5.4. 

 

 

 

 

 

 

 

 

Figure 5.5 Label 001 vs  label 001 

 

 

In table 5.1 we can observe that the Euclidean distance between different classes is 1.42 on 

average, and is almost 50% more than that of the same class. 

 

Table 5.1 Euclidean distance between classes 

Class vs Class Distance 

001 vs 002 1.35 
 

003 vs 004 1.36 
 

005 vs 006 1.50 

007 vs 008 1.55 

009 vs 010 1.31 
 

011 vs 012 1.44 
 

001 vs 001 0.76 

 

5.3 Results 

These results are not state-of-the-art results. But it is satisfactory when compared to 

the training time of the Caps-Net and CNNs. We can easily increase the accuracy by 

using more examples of each class for training.  

Five images per class were used for the testing and all of them were predicted correctly  
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Figure 5.6 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 
 

Face-Net is yet by far one of the best solutions for face identification and recognition. 

This method is capable of learning all the features in the face from a single image. 

It doesn’t require a lot of training time, as there are pre-trained models available. 

 

This solution is more suitable for large companies which use face recognition access 

gates because you don’t need to train your model for every new employee that joins 

your company.  

Figure 5.7 Prediction examples 
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6 ANALYSIS 

First, we observed the  CNN The training accuracy increased linearly until it reached 

nearly 100%, while the validation accuracy reached its maximum after only 5 epochs 

and then it stalled at 75%, whereas the training loss decreased linearly to almost zero 

and the validation loss reached its lowest point after just 5 epochs. These characteristics 

are known as overfitting. Overfitting is mainly caused by a small data-set. This is exactly 

the main reason why we used a small dataset in the first place, the idea was to see if 

CAPSNET can overcome this performance using the same small data set. 

  

However, when using a more mature algorithm with a pre-trained model that allows us 

to overcome the challenge of overfitting we got a much better results, in the case of 

FACE-NET we used a pre-trained model and SVM for the classification, as the model is 

pre-trained we just had to get the data in the correct format, the network have correctly 

classified all the classes with an average confidence  76% and an average of 1.37 

Euclidean distance between each two consecutive classes. Whereas the average 

Euclidean distance between the same class was 0.76, this distance can be used for 

setting a threshold. 

these results were, as we have expected as such a well mature and pre-trained model 

should give. 

 

Finally, for the CAPS-NET first, we used a one-step routing iteration, the network 

managed to reach training accuracy of 100%, validation accuracy of 90% and test 

accuracy of 70%. Also, the network was tested on a total of 76 new faces belonging to 

the 12 classes, 6 faces per class. Of the 76, 64 faces were correctly classified while 8 

faces were miss-classified. On the new test data, we have achieved an accuracy of 

88.9%. we also tested two routing iteration, the training accuracy stayed the same while 

the validation accuracy decreased 2.5%, and we have recorded a 20% increase in the 

test accuracy and when testing with new data set there was a 1.4% decrease in the test 

accuracy.  

 

We also trained the Caps-Net model with a large data-set, it became evident the more 

training examples you have for training the better might results be. Training accuracy 

and the Validation accuracy were not overfitting,  
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Table 6.1 Test accuracy of the models 

Method Test Accuracy 

Caps-Net ( 1 step ) 70% 
Caps-Net ( 2 steps) 90% 

Face-Net 100% 
CNNs 75% 

Caps-Net 0.9380 

 

 

As we can see in Table 11 CAPSNET has shown better results in comparison with the 

CNNs model, although the two models overfitted, CAPS-NET managed to close the 

overfitting by 15%, this gives results help us to answer the first question we asked, Can 

CAPS-NET outperform CNN in the face identification application when trained on both 

models are trained using a small data-set? The answer is yes, based on the results we 

obtained we can clearly see the CAPS-NET outperformed CNN when using a small data-

set, however using a pre-trained model out-performed both models in the case of facet. 
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SUMMARY 

The current thesis explored the potential of using Capsule Network for face identification 

using a minimal dataset for training. 

  

The goal of the work was to answer two questions: 

The current thesis explored the potential of using Capsule Network for face identification 

using a minimal dataset for training. 

• Can CapsNet outperform CNN in the face identification application when trained 

on both models are trained using a small data-set? 

• How does CapsNet perform compared to a more mature and pre-trained model? 

  

We have implemented three models for face identification, CNNs model, Face-Net 

model, and Capsule network model, where the main focus was the capsule network and 

the two other models as a benchmark.  

For the training, we used 120 face images belonging to 12 different classes, 7 classes 

coming from the Faces94 data-set and 5 classes from the LFW data-set.  

The CNN model reached an accuracy of 75% after only 5 epochs and then it stalled. 

overfitting was observed as expected due to the small data size. the idea was to see if 

CAPS-NET can overcome this performance using the same small data set. 

  

The CAPS-NET model was tested on two configurations first, we used a one-step routing 

iteration, the network managed to reach a test accuracy of 70%. The second time we 

used two-step routing and we were able to get 90% test accuracy. 

 

We also experimented Caps-Net with a larger data set. The results we got were 

promising and the overfitting almost diminished. I have achieved a training accuracy of 

100%, validation accuracy of 100% and test accuracy of 0.9375. 

 

Finally the FACE-NET we used a pre-trained model and SVM for the classification, as the 

model is pre-trained, the network has correctly classified all the classes %100 test 

accuracy with average confidence 76%. 

 

CAPS-NET has shown better results in comparison with the CNNs model when both 

models were trained using a small data-set, however, still using a pre-trained model 

out-performed both models in the case of facet. 
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Some of the challenges during the building of the caps-net was getting the data into the 

right format and matching output vector shapes from the primary capsule layer 

In concluding the Caps-net  I believe that the CAPS-NET has great potential in the use 

of face identification when using a small data set and as it matures with time it could be 

the state of the art methods when it comes to image classification.  

 

 In the future more work should be done to get a better measure of the optional of using 

CAPS-NET, this can be done by training CAPS-NET on big available datasets and 

developing the method further to include features such as transfer learning.  
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See lõputöö uurib Capsule Network kasutamist näotuvastuses, kasutades treenimiseks 

minimaalset andmehulka. 

 

Töö eesmärk oli vastata kahele küsimusele: 

See lõputöö uurib Capsule Network kasutamist näotuvastuses, kasutades treenimiseks 

minimaalset koolitust. 

 

• Kas CapsNet võib näotuvastuses edestada CNN-i, kui mõlemat mudelit treenitakse 

väikeses andmehulgaga? 

• Kuidas CapsNet töötab küpsema ja eelkoolitatud mudeliga võrreldes? 

 

Oleme kasutnud kolm näotuvastuse mudelit: CNN-i mudeli, Face-Net-mudeli ja 

Capsule'i võrgumudeli, põhirõhk on kapselvõrgul ja veel kahel mudelil võrdluseks. 

Koolituseks kasutasime 120 näopilti 12 erinevast klassist, 7 Faces94 andmestikust ja 5 

LFW andmestikust. 

CNN-mudeli täpsus saavutas 75% täpsusega ainult 5 iteratsiooni järel ja siis see 

takerdus. Ootuspäraselt eeldati andmete puudumise tõttu ülesobitust. idee oli näha, kas 

CAPS-NET saaks sama andmehulgaga abil sellest ületada tulemuse. 

 

CAPS-NET mudelit testiti kõigepealt kahes konfiguratsioonis, me kasutasime 

marsruutide üheastmelist iteratsiooni ja võrgul õnnestus saavutada 70% -line katse 

täpsus. Teisel korral kasutasime kaheastmelist marsruutimist ja suutsime saada 90% 

testi täpsuse. 

 

Katsetasime Caps-Netiga ka suurema andmebaasi. Saadud tulemused olid paljulubavad 

ja ülesobitumine vähenes. Olen saavutanud treenimise täpsuse 100%, valideerimise 

täpsuse 100% ja testi täpsuse 0,9375. 

 

Lõpuks, FACE-NET, mida me kasutasime, on klassifitseerimise ja SVM-i jaoks 

eelkoolitatud mudel, kuna mudel on eelnevalt koolitatud, võrk on õigesti klassifitseeritud 

kõigi klasside jaoks 100% -lise testitäpsusega, keskmise usaldusega 76%. 

 

CAPS-NET on näidanud paremaid tulemusi kui CNN-mudel, kui mõlemat mudelit 

koolitati väikese andmemahuga, kuid kasutades eelkoolitatud mudelit, mõlemad 

tulemused ületati. 

 

Mõned caps-net'i loomise väljakutsed olid andmete korrektne vormindamine ja esmase 

kapsli kihi väljundvektori kuju sobitamine 
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Caps-net'i kokkuvõtteks usun, et CAPS-NETil on suur potentsiaal näotuvastuse 

kasutamiseks väikese andmekogumiga ja kuna see aja jooksul küpseb, võib see olla 

uusim kujunduse klassifitseerimise meetod. 

 

CAPS-NET-i selektiivsuse paremaks mõõtmiseks on tulevikus vaja veel rohkem ära teha, 

seda saab teha CAPS-NET-i väljaõppe kaudu olemasolevatest suurtest 

andmekogumitest ja edasi arendada selliste funktsioonide lisamise meetodit nagu 

ülekandekoolitus  



53 

LIST OF REFERENCES 

[1] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Adv. 

Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 3857–3867, 2017. 

[2] R. Mukhometzianov and J. Carrillo, “CapsNet comparative performance evaluation 

for image classification,” pp. 1–14, 2018. 

[3] “Example tutorial.” [Online]. Available: 

https://github.com/naturomics/CapsLayer/blob/master/docs/tutorials.md. 

[4] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces.” pp. 586–591, 

1991. 

[5] T. S. Huang, “Computer Vision: Evolution and Promise,” Report, 1997. 

[6] R. Kirsch, “The First Digital Image,” 1959. [Online]. Available: 

https://www.nist.gov/news-events/news/2007/05/fiftieth-anniversary-first-digital-

image-marked. 

[7] M. J. J. Paul Viola, “Robust object detection with real-time fusion of multiview 

foreground silhouettes,” Opt. Eng., vol. 51, no. 4, p. 047202, 2001. 

[8] Faces94, “Faces94.” [Online]. Available: https://cswww.essex.ac.uk/mv/allfaces/. 

[9] E. L.-M. et Al, “LFW.” [Online]. Available: http://vis-www.cs.umass.edu/lfw/. 

[10] “Georgia Tech Face Database.” [Online]. Available: 

http://www.anefian.com/research/face_reco.htm?fbclid=IwAR3bpQc0hJYhv4HWN

-qMZNhEErifxexxe_iRUy44n74vz-eCtha00nx70uk. 

[11] “Data limitation.” 

[12] P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain Tumor Type Classification 

via Capsule Networks,” Proc. - Int. Conf. Image Process. ICIP, pp. 3129–3133, 

2018. 

[13] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming Auto-Encoders,” pp. 

44–51, 2011. 



54 

[14] “Boat and house Example.” [Online]. Available: https://software.intel.com/en-

us/articles/understanding-capsule-network-

architecture?fbclid=IwAR2U_aBGsCTMBu3EVPINonqvypqu0BL2Ze-

YwvX4sW3BZfa7Fo_kJEqb_uY. 

[15] “Subparts.” [Online]. Available: https://software.intel.com/en-

us/articles/understanding-capsule-network-

architecture?fbclid=IwAR2U_aBGsCTMBu3EVPINonqvypqu0BL2Ze-

YwvX4sW3BZfa7Fo_kJEqb_uY. 

[16] “Arrow representation.” [Online]. Available: https://software.intel.com/en-

us/articles/understanding-capsule-network-

architecture?fbclid=IwAR2U_aBGsCTMBu3EVPINonqvypqu0BL2Ze-

YwvX4sW3BZfa7Fo_kJEqb_uY. 

[17] “Predictions.” [Online]. Available: https://software.intel.com/en-

us/articles/understanding-capsule-network-

architecture?fbclid=IwAR3Nkh1Sa9np6SCRzZSz2AmbGd0XSI_70yrpygXdGXR7

16GnQKW91J45SAc. 

[18] “Agreement.” . 

[19] “Weights to be zero.” [Online]. Available: https://software.intel.com/en-

us/articles/understanding-capsule-network-

architecture?fbclid=IwAR3Nkh1Sa9np6SCRzZSz2AmbGd0XSI_70yrpygXdGXR7

16GnQKW91J45SAc. 

[20] W. Vogt, “Linear Function,” Dictionary of Statistics & Methodology, 2015. 

[Online]. Available: https://towardsdatascience.com/activation-functions-neural-

networks-1cbd9f8d91d6. 

[21] R. Chapman, “Nonlinear Function,” Strange Attractors, 2008. [Online]. Available: 

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-linear-equations-

functions/linear-nonlinear-functions-tut/e/linear-non-linear-functions. 

[22] Tensorflow, “tensorflow Matmul Function.” . 



55 

[23] Tensorflow, “tf.tile().” [Online]. Available: 

https://www.tensorflow.org/api_docs/python/tf/tile?version=stable. 

[24] F. Schroff and J. Philbin, “FaceNet: A Unified Embedding for Face Recognition and 

Clustering.” 

[25] “SVM.” [Online]. Available: https://towardsdatascience.com/support-vector-

machine-introduction-to-machine-learning-algorithms-934a444fca47. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

APPENDICES 

  

def preprocessing_function(img): 
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