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Introduction
Recommender systems are software applications designed to connect people with ob-
jects and activities they are interested in. The overabundance of information, products
and services available can make it difficult and time-consuming to find goods, travel
destinations or entertainment. Recommender systems determine the interests of the
user and deliver a shortlist of recommendations.

While their purpose is to improve user experience, recommender systems also serve
business interests. The system anticipates what users may wish to purchase or view
and increases the likelihood of purchases or other use of services by displaying such
content. For this reason, recommendations are often given without the user specifically
requesting them.

The traditional platforms for recommender systems are online retail and entertain-
ment websites. Amazon.com adopted recommendation technology early on. Features
such as "users who bought this item also bought ..." made the general public aware
of recommender systems and rapidly became common on other e-commerce sites.
Amazon’s success, however, can be attributed to integrating recommendations through-
out the shopping experience and scaling the recommendation technology to its large
customer base [71]. Netflix used personalized recommendations in online DVD rental.
Both their and Amazon’s recommendations relied on relatively simple models to pre-
dict the ratings of items based on the ratings that similar users had given. Netflix
attracted significant attention to recommender systems by offering a $1000000 prize
for improving their recommendation algorithms [41].

Due to the early successes and publicity of recommender systems, it was expected
that they would become ubiquitous wherever users faced making choices from a large
set of options. The adoption of recommender systems, however, has not spread as
quickly as initially expected. This is because producing recommendations that users
perceive as experience-enhancing can be difficult depending on the application.

This thesis describes approaches for recommending tourist destinations and trip
itineraries. Research on complete tourist recommender systems was published as early
as 2004 and included favorable evaluations [121]. Machine-generated recommendations
for tourists, however, have not been as widely adopted as social recommendations.
People still prefer the advice of other people when going on a trip. In case their own
social group has no previous experience with the intended destination, travel advice can
be looked up online, for example using TripAdvisor1 or Foursquare2. These applications
allow users to browse and discover travel destinations and see how other users rate
them. The widespread use of TripAdvisor ratings on websites that feature travel content
provides evidence that users perceive peer recommendations as trustworthy.

Automated recommender systems have some advantages as they can provide fea-
tures such as context awareness and planning automation. However, the issue of build-
ing user trust still needs to be tackled. One requirement for this is that the recommender
output must be accurate. This means that users must consider the recommendations
plausible and the result of accepting a recommendation must be satisfying.

The first challenge in developing tourist recommenders is that, unlike recommen-
dation scenarios for retail or video content, the recommendation is not a single item.
The trip itinerary is a list of multiple places that must fit together as a sequence.
Recommending sequences is an active direction of ongoing research.

1http://tripadvisor.com
2http://foursquare.com
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Figure 1: Workflow from crowd-sourced data to recommendation. At each stage, errors can
accumulate and affect the quality of the recommendation.

To build successful behavioral models for recommendation, additional challenges
include integrating heterogeneous data sources, context awareness and personalization.
A recommender system must solve the problem of obtaining knowledge on places to
recommend as well as how those places relate to different users and contexts.

This thesis focuses on improving the accuracy of recommender systems by improving
the quality of the data used to build recommendation models. The availability of geo-
tagged, time stamped and annotated information on social networks makes it possible
to extract traces of individual movements and learn the behavior of tourists. Geo-
tagged photos are available on large scale, enabling us to target many geographic areas
and obtain enough information to learn behavioral patterns. In the thesis, we develop
and evaluate methods that ensure the accuracy of the extracted behavioral patterns.

Figure 1 describes the typical recommendation flow using geo-tagged photos. Because
the photos have associated time stamps and coordinates, it is possible to trace the
movement of the users that posted the photos. This allows extraction of movement
trajectories, which can be used to infer the places that the users visited. The visit-
ing patterns obtained this way are used to build behavioral models that can predict a
suitable place to visit, given the history of previous visits of the user.

At each stage, there are potential errors that reduce the quality of the final recom-
mendation. The information shared by users is noisy. Due to a multitude of factors,
photos may have invalid coordinates or time stamps. The data is sparse and not anno-
tated. To transform the sequences of photos to place visiting histories, the photos have
to be annotated with place names. In the thesis, we develop noise filtering heuristics
and new methods for accurate semantic annotation of tourist trajectories to transform
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them into sequences of place visits.
While many proposals of complete recommender solutions using geo-tagged photos

have been published, the existing literature has focused on the performance of the
predictive models and there has been no systematic evaluation of the accuracy and
impact of the methods used in the data preparation stage. Our contribution includes
this evaluation that shows the impact of data quality.

We evaluate the techniques we propose both by their performance at their spe-
cific task, as well as by measuring their effect on the outcome of recommendation.
Throughout the thesis, we assume that the task of place recommendation is sequen-
tial. The recommended places have to form or fit in a coherent sequence. Additionally,
we assume that not much information is available or required from the users themselves,
which allows recommendations without specific queries made by the user or without
requiring the user to identify themselves.

Predictive models for recommendation have received a lot of attention in the re-
search community, so we apply existing well known models and compare their output
when given training data prepared using different methods. Assuming that the quality
of the training data affects the predictive performance of recommenders, we additionally
introduce a model-agnostic predictability metric for datasets.

Recommender System Concepts
In the literature about recommender systems it is conventional to use the following
terminology. Throughout the thesis we will use these conventional meanings of recom-
mendation concepts.

• Users are the consumers of recommender systems. They interact with the system
to receive recommendations. At the same time, the system collects information
about the users and includes it in the recommendation model. The informa-
tion collected usually includes either explicit or implicit preferences of the user.
Explicit preferences are choices or selections about the content the user wishes
to receive. Implicit preferences are derived from the behavioral or interaction
history of the user.

• Items are what is being recommended and can include goods for sale, media for
entertainment or places to visit.

• The recommendation model usually includes both users and items and describes
the relations between them, such as what items the user has liked earlier and
what other users the user interacts with or is similar to. Advanced models may
contain contextual information about the location, time, weather, events and
more. The task of the model is to predict which items the user would be most
interested in.

• Collaborative filtering (CF) is the technique where the behavior of similar users
is used in recommending items. An intuitive model for this is a user-item graph,
where edges connect users and items. Similar users can then be found by looking
for users that have in the past preferred similar items. For example, if user A
has liked the movie "Titanic" then users B and C who have liked "Titanic" are
considered similar. If B and C both also watched "The Beach", that A has not
watched yet, this movie could be recommended to user A. Collaborative filtering
may be enhanced with including content and contextual information, for example
the genre and the lead actors of a movie or the weather, time and season in place
recommendation.
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Trip and Next Place Recommendation
We define trip recommendation as the task of recommending a sequence of places
in an area, such as a city or geographic region. Real-world applications need to deal
with additional aspects, such as travel and accommodation logistics, monetary and
time budgets and group recommendation. In the thesis we focus on core challenges
that any recommender system would need to solve: data acquisition and knowledge
engineering. High quality knowledge about the places and the interests of the users
are the basis of building a recommendation model.

The same core challenges need to be solved in next place recommendation - the
task of recommending the next place to visit based on the user’s recent history. Some
research has also focused on recommending locations in general, usually in the context
of social networks like Foursquare.

We also consider the scenario where the user is not well known to the system and the
recommendation has to be done based on the information the user has implicitly given
by their current interaction with the recommender system. Recently, more attention in
recommender systems research has focused on this problem as it is important to reach
users who may consider it inconvenient to provide their full interests or simply wish to
interact with the system anonymously.

Finally, we consider trip and next place recommendation to be a sequence-aware
task: both the user’s visiting history and the way recommended places fit together,
should be taken into account.

We use the following common terminology for concepts in trip and next place rec-
ommendation.

• Place is the item to be recommended: a shop, landmark, museum, ride, activity
and similar small-scale objects. In the literature these are also frequently called
locations or points of interests. Our approach also involves larger-scale objects
such as parks, lakes and neighborhoods. We use the term area to refer to such
larger-scale features when it is necessary to differentiate them from small-scale
objects.

• Point of interest (POI) is a place defined by its geographical coordinates, name
and additional metadata, such as place category or opening times. Points of
interests are ubiquitously used with location related applications and databases
of POIs are commonly used to recommend nearby places or identify the location
of the user.

• Region of interest (ROI) is defined by its spatial extent, such as a polygon on
the map, combined with metadata similar to points of interest. In some of the
literature, the term area of interest (AoI) or zone of interest (ZOI) is used. We
use ROIs similarly to POIs as they capture the geographical features of places
and areas more accurately.

• Stay point is a point or a small area where the movement along the trajectory
has slowed down. In the context of the digital traces of the tourists moving in
cities, these indicate places they have visited. We use spatial clustering along
the path of the trajectory to find stay points, but other methods exist such as
detecting trajectory segments of low movement speed.

• Sequence-aware recommendation is the approach to recommendation where both
the previous sequence of the items the user has interacted with, and the sequence
of items to be recommended are important.
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• Session-aware and session-based recommendation is the task of recommendation
where the system may have very limited information about the user (session-
based) or makes a distinction between long-term and short-term history of the
user (session-aware).

Problem Statement
Place recommendation relies on two main components: knowledge engineering and
the recommendation model. In the knowledge engineering stage, data is collected and
processed so that it represents our knowledge about the places to recommend and how
these places relate to the users. The recommendation model is then built using the
processed data. While the design and evaluation of recommendation models is a staple
of recommender system literature, the quality of the output of the recommenders is
dependent on the quality of the data produced in the knowledge engineering stage.
There is currently a lack of quantitative evaluation and comparative study of data
preparation methods, and the most common methods used in data preparation ignore
the geographical features of the urban space.

In this thesis we focus on knowledge engineering in sequential and session-based
place recommendation systems. To make behavioral models it is necessary to obtain
sufficient amount of data both on individual level so that sequences of actions can be
found, and in total quantity, so that we have a good representative sample of tourist
behavior. The data should be expected to contain errors, which must be corrected or
removed. Finally, we need an interpretation of actions on a certain level of abstraction,
meaning that we describe the behavior as sequences of place visits. We examine the
following questions:

• Where do we get the data about the places to recommend and how users interact
with these places? What are the strengths and weaknesses of using various geo-
tagged data available from public sources for this purpose?

• Assuming geo-tagged photos as the data source, how reliable is this data? What
are the potential ways that the data can misrepresent the actual behavior of the
users and what causes these errors? How accurately can we detect and filter
incorrect values in geo-tagged photo traces and does filtering the data improve
the predictive performance of the recommender?

• To transform movement traces to sequences of visits, we need to add place
semantics to trajectories. The conventional method is to use a database of
known POIs and infer place visits by finding POIs close to the locations that the
user spent some time in. How accurate is this semantic enrichment method?

• The convention of representing the geographical location of POIs as a single point
is not well suited for inferring place visits, because real-world objects have different
shapes and sizes. How to represent the spatial extent and relations of places in
the urban space, how can this information be automatically discovered and does
this representation of places improve the quality of semantic enrichment?

• What is the inherent predictability of place visiting sequences from information
theoretical perspective and how is this affected by the data preparation methods?

Several of these questions have not been thoroughly studied in the existing literature.
The performance and impact of filtering errors in geo-tagged photos, when described
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at all, has not been quantitatively evaluated in the place recommendation context.
While describing urban space as regions of interest (ROIs) is not a novel concept, the
accuracy and impact of this approach in semantic annotation of movement traces has
not been evaluated compared to the prevalent approach of using POI databases. We
are used to seeing quantitative evaluations of predictive recommendation models, but
there has been no systematic approach to evaluate the data itself to better interpret
the model performance.

Contribution of the Thesis
We develop a set of methods for building behavioral knowledge used in recommending
places and trip itineraries. The approach allows mostly unsupervised extraction of data
from open sources. We specifically focus on geo-tagged photos which provide a source
for worldwide discovery of places and visiting behavior.

The thesis makes the following contributions:

• We assess the applicability of using geo-tagged photos as the source of behavioral
data by analyzing different types of open source data qualitatively. We review the
literature to compare geo-tagged social media (photo sites, Twitter, Foursquare),
GPS trajectories and mobile phone data in terms of spatial and temporal accuracy,
sparsity and ability to represent visiting behavior. We summarize the results of
our research paper presenting the Sightsmap.com application that successfully
integrated open source data to map visiting behavior worldwide and used geo-
tagged photos as the primary source (Chapter 1).

• We describe the two main types of errors in location or sequence of place visits
in geo-tagged photos. We develop simple heuristics to filter out both types of
errors and measure the effect of filtering on a synthetic ground truth dataset
(Chapter 2.2). We additionally evaluate the impact of the filtering heuristics
on recommender model training data preparation by comparing the accuracy of
models trained with filtered and unfiltered data (Chapter 4). There are two out-
comes: we show that the method we developed is effective in filtering individual
incorrect locations, but we also show that our filtering heuristic is insufficient
to have a positive impact on recommender model accuracy and needs to be
improved further.

• We develop a method to extract stay points, or trajectory segments that consti-
tute a visit to one place, in a way that is aware of the geographical features that
direct and restrict movement (Chapter 2.3). We evaluate the accuracy of the
method on small scale and find that it is over 95% accurate and of the remaining
errors, 4% are correctable by a simple post-processing step. There are currently
no comparable results in the literature, but our contribution has a qualitative
advantage (geography awareness) and establishes the baseline for accuracy.

• We develop a new set of methods for semantic enrichment of tourist trajectories
with hierarchical regions of interest (HROI), including:

– A new method to discover the spatial extent and hierarchical relations of
places with semantic and geographical awareness (Chapter 3.2).

– A new method to create cluster hierarchies with an arbitrary number of levels
by extending an existing density based hierarchical clustering algorithm.
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Our new method is general purpose and adapts to local density variation
(Chapter 3.3).

– A semi-automatic method to assign place names to hierarchical ROIs by
using latent space embedding to measure similarities between themes men-
tioned in photo captions and tags; and candidate names that come from
known POIs or are synthesized from photo captions (Chapter 3.5).

• By using our proposed HROI approach, we annotate trajectories semantically
by adding place names and measure the impact of this method, compared to
using an open source POI database and a baseline association method. To
measure the impact, we train recommender models with data prepared using the
HROI approach, and the best POI association method known to us. We then
compare which set of training data results in better predictive performance of
the recommender models (Chapter 4). The experiments show that the HROI
method outperforms the methods used in current literature.

• We introduce a metric for recommendation datasets. We adapt information
theoretic methods for symbol sequence predictability to measure the predictability
of item sequences in user behavioral data. We assess the impact of our HROI
semantic annotation method, compared to a baseline POI method using this
predictability metric (Chapter 4.3–4.4). The HROI approach results in higher
predictability of the training and testing splits, compared to the baseline.

The combination of the trajectory and stay point extraction methods, noise filtering
and semantic annotation with hierarchical regions of interest (HROI) is a framework
designed for extracting behavioral knowledge from geo-tagged photos. The novelty
compared to existing literature is that our methods are designed to be aware of the
structure of urban space by modeling places as spatial regions at different scales and
taking into account the geographical features that restrict or direct movement.

We quantitatively evaluate each stage separately and by cumulative impact in
preparing data for the recommendation model. To the best of our knowledge, the
existing literature contains no quantitative evaluation of noise filtering and semantic
annotation in the context of place recommendation. Hence we provide new knowledge
about the accuracy of the currently established methods. The performance of our new
methods for geography-aware stay point detection and error filtering sets baselines for
evaluations in these tasks that future publications can build on. Finally, our proposed
HROI method for semantic annotation outperforms the current methods both by the
coverage of annotated data as well as the impact on the accuracy of recommendation
models.

Related Work
Knowledge discovery from big data and recommender systems are constantly growing
fields of research with a large number of publications from the last two decades. In 2007,
the 1st ACM Conference on Recommender Systems (RecSys) was held. The RecSys
Conference Series3 with both academic and industry presence contributes many influen-
tial papers yearly. Other important annual series include the World Wide Web (WWW)
and the ACM Special Interest Group of Computer-Human Interaction (SIGCHI) con-
ferences, the ACM Conference on Knowledge Discovery and Data Mining (KDD) and

3https://recsys.acm.org/
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ACM Conference on Information and Knowledge Management (CIKM). Geospatial data
mining and tourist recommendation topics are also covered in high impact factor jour-
nals, such as Tourism Management, ACM Transactions on Intelligent Systems and
Technology (TIST) and GeoInformatica. With the wealth of research available we only
review selected papers that bear the most direct relevance to the topics of the the-
sis. On several occasions we refer to comprehensive survey papers for more detailed
overviews of the literature.

Trajectory Extraction
Recommending itineraries using crowd-sourced data begins with collecting information
about tourist mobility. We will use the term trajectory extraction to mean the discovery
of information about the movement or visited places of individual users. In this thesis,
the purpose is to find behavioral patterns of individual users for building predictive
statistical models that can make personalized recommendations. The applications
for such trajectories are much wider, related to urban planning, large-scale mobility
patterns in tourism, disaster management and more. A general overview of trajectory
data mining is given in [144] and [93].

Choudhury et al. describe the process of extracting trajectories from geo-tagged
photos that is widely used in subsequent research. They arrange photos in time-sorted
sequences called streams and split these streams at longer gaps, resulting in trajectories
representing day trips. This approach requires the user names, coordinates and time
stamps of photos, which were downloaded through the Flickr API4 [23]. An example
of the same technique can be found in Li et al. [64]. They extract trajectories from
Panoramio5 photos to analyze tourist flows.

With sparse trajectories, it is also possible to first annotate each data point, then
collapse sub sequences that have the same annotation [96, 61, 69, 12]. Lu et al.
also cluster photos before connecting trajectories, but use this to discover internal
trajectories of larger destinations like the Forbidden City in China [76].

With location-based social networks (LBSN), trajectories are formed from sequences
of check-ins. The semantic information can be extracted directly, without the need for
a separate annotation step. Noulas, et al. extract a wide range of mobility features
from Foursquare data where transitions between places make up just one feature. The
rich metadata of places also allows separately distinguishing activity transitions [97].
LBSNs both as a data source and as an application domain are surveyed by Zhao et
al. [142].

GPS trajectories as a source of individual mobility data were investigated in the
GeoLife project of Microsoft Research Asia. The GPS recordings of the movements of
volunteers were used for developing techniques of extracting behavioral models. The
central concept is the stay point which is detected by a sufficiently long stay in a
predefined radius. Zheng et al. give a description of the stay points in the context of
location recommendation in [145]. A similar technique is used by Kulkarni et al., except
that they use spatio-temporal density based clustering to form regions of arbitrary size
[59]. Lima et al. use GPS traces to study individual route choices, so trajectories
are treated as routes between two significant locations (for example, home and work).
They discover significant locations by clustering end points of trajectories and routes
by clustering trajectories aligned with dynamic time warping [70].

Instead of individual trajectories, it is also possible to directly extract frequent
4https://www.flickr.com/services/api/
5Website closed in 2016
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behavioral patterns. The T-pattern mining (TPM) method was introduced by Giannotti
et al. [39] and finds similar fragments of trajectories that pass through the same regions
of interest (ROI). This approach was adopted to Flickr photos by Cai et al. [13].

Going even further from raw trajectories, Jiang et al. derive a generative probabilistic
model from cell phone data, where the parameters of the model are latent features of
individual behavior. The model can then be used to infer individual trajectories. [56]

Some techniques for reducing the errors in trajectory extraction have been described
in prior work. Invalid time stamps may be detected in Flickr photos by comparing
them to the upload dates [23, 89]. Lim et al. use prior information about geolocation
accuracy [69].

Among applications that require classifying the users, we look at cases where the
behavior of tourists is extracted. The span of time that the user was in a given city or
region can be used to classify users into tourists and residents. By taking the oldest
and newest time stamps of user photos in a bounding box, the duration of their stay
can be inferred [23, 40]. Flickr users can also disclose their home city and country to
other users [40, 124].

Semantic Annotation
Trajectories that are sequences of coordinate and time stamp pairs are not directly
usable in behavioral models. The activities or visited locations must be added to the
trajectories. Such trajectories are called semantically annotated or enriched. A review
of semantic trajectories topics is given in [99].

Some types of annotations are possible using only the trajectory data. GPS tra-
jectories can be segmented to identify locations of interest ("stay points" or "stops")
[4, 98]. In some applications, such as law enforcement and wildlife behavior studies,
determining only the geographical coordinates where a moving object has stopped can
be sufficient.

For place recommendation, visited locations need to be identified by name as dis-
tinct, human-recognizable places. The simplest method of annotation of place vis-
its is to associate the stay points on trajectories with the closest point of interest
[96, 23, 12, 76, 69].

Since the spatial distance from the user alone cannot accurately represent the prob-
ability that a place was visited, Furletti et al. expand this by annotating activities with
a "gravity" model. They use a model where the popularity of a POI determines the
probability that it was visited by the user [35]. Maeda et al. use a similar model to
estimate place transition probability in mobile phone traces [86].

While POI databases are available, independent methods of automated POI discov-
ery are still important. Pre-existing POI data can be integrated with application-specific
relevance data, such as popularity in tourist applications, or automatically discovered at-
tributes, like the type of activity associated with the POI. Crandall et al. demonstrated
that popular places can be discovered by spatial clustering. They applied mean-shift
clustering [26], which has also been adopted in several later studies that use geo-tagged
photos [76, 61, 55] and Twitter [87].

In addition to working around the ambiguity caused by spatially representing places
as points, it is also possible to use a more descriptive spatial representation. Regions
of interest (ROIs) represent the spatial extent of places as polygons. Annotating with
ROIs can be accomplished by finding spatial overlap of the stay point and a ROI
[130]. The visit of a place can also be defined as the intersection of a trajectory and
a ROI with a long enough duration [4]. To the best of our knowledge, there are no
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public databases with wide geographical coverage that would describe the spatial extent
of places relevant to tourists, so methods that use ROIs also require automatic ROI
discovery.

Giannotti et al. introduced the TPM method [39] for extracting regions from trajec-
tories. Their method matches regions to known POIs. The regions that do not match
known POIs are interpreted as new knowledge about places that are frequently visited.
The method of Giannotti et al. has been enhanced later, for example by improving
ROI boundary detection by pre-filtering stay points with low local density [20].

Extracting interesting regions by applying density-based clustering to individual stay
points in GPS traces has been proposed in several papers [66, 16]. The regions are
represented as a set of stay points which effectively correspond to an arbitrary shape.
Uddin et al. describe an efficient method to find regions as the set of points that have
many trajectories of slowly moving objects passing nearby [119].

Discovery of ROIs from geo-tagged photos has been mainly explored in the context
of sightseeing recommendations. Kisilevich et al. adapted DBSCAN [32] specifically
for this purpose, by defining density as the minimum number of distinct users in the
neighborhood and introducing adaptive density threshold for splitting high density clus-
ters by local variations. The modified algorithm is called P-DBSCAN [57] and is one
of the more popular methods of ROI discovery [129, 89, 124].

Liu et al. modify density based clustering by introducing a predefined order in which
photos are processed, so that points are assigned preferentially to clusters where there
are also more popular Foursquare venues nearby [73]. Laptev et al. proposed a grid-
based method, related to the Gaussian smoothing and watershed segmentation image
processing techniques [62]. Their method takes the desired region size as a parameter
and automatically adjusts the kernel bandwidth used in Gaussian density estimation to
produce the clustering. Cai et al. use a grid-based method where the density of cells is
defined as the number of intersecting trajectories [14]. Shirai et al. include the angle
of view and orientation in extended photo metadata to infer the shapes of places [108].
Kulkarni et al. use online updating in a real-time application scenario and propose a
method based on combining stay points that can capture the evolution of ROIs in time
[59].

The discovery of functional regions [135] is usually not connected to tourism rec-
ommendation, but the applications are similar enough to consider the techniques in
ROI discovery. For example, by using topic modeling, the regions are characterized by
the latent properties of the places that reside within the region. This can be used to
combine individual places into wider level regions [36, 135].

The POI discovery method of Brilhante et al. can also produce regions with high
place density. They query geo-referenced Wikipedia pages within a given bounding box
and apply density-based clustering to group objects that are closely together [12].

Along with our ROI discovery method we also introduce a method of extracting a
cluster hierarchy with a given number of layers. General purpose methods that select
significant clusters while maintaining the hierarchy relation have not been studied ex-
tensively. Sander et al. present a method that recursively splits the points to clusters
at significant local maxima of a reachability plot. Trees formed by conventional hierar-
chical clustering are handled by converting them to reachability plots [106]. Campello
et al. describe both a simplification of the cluster tree by setting a minimum cluster
size and an optimal method of creating a flat clustering based on cluster stability [15].
By functionality, the most similar method to our work is the Auto-HDS algorithm by
Gupta et al.[43], with results equivalent to sampling of the cluster tree [15].
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A hierarchical model of the urban space has previously been studied in the GeoLife
project. The GeoLife recommender uses a hierarchical model to discover similarities
between users and recommend friends and locations. The hierarchy is created by
iterations of density based clustering [66, 145].

When using automatically discovered ROIs, the problem of finding the semantics of
the ROIs has to be solved. Crandall et al. showed that for a place represented by a
set of photos, simply selecting the most distinctive tags can generate accurate labels
[26]. Yin et al. apply a generative mixture model using the sets of Flickr photo tags
in a location and the overall distribution of tags to find the most likely names [131].
Majid et al. annotate ROIs using textual tags from photos and POI names from Google
Places [89]. For POI names, catalogs of POIs, or gazetteers, have been used [76, 55].

In addition to place name annotations, trajectories may be enriched in other ways
that can enhance recommendation. Arase et al. use a TF/IDF approach to find the
theme of each trip after extracting and annotating the trajectories [8]. Liao et al.
combine geographical data and temporal parameters of trajectories in a probabilistic
model to infer activities performed at visited places [67]. Skoumas et al. use natural
language processing to generate a knowledge base of POIs that includes their relations
(e.g. "in", "near") [109]. Falher et al. introduce a method of describing regions in
terms of similarity to other, known regions. This can be used to recommend new regions
to users based on their previous activities [34]. Quercia et al. collected crowd-sourced
ratings for street scenes to evaluate aesthetics of routes. They complement this with
a method to scale up by rating new places by their similarity to the human-rated ones
[102]. Zhao et al. introduce a method to associate tweets with POIs to annotate them
with dynamic and real-time information [141].

Semantic annotation may be performed interactively using visual analytics tools
[5, 6] that assist the user by clustering closely located places and displaying distributions
of POI types and visit times. The user assigns the semantic label to the ROIs and
trajectories are annotated automatically by finding ROIs that the stay points intersect.

Sequence Prediction and Recommendation
We view the place recommendation as a sequence-aware recommendation problem.
The recommendations should take into account the previous places that the user has
visited and when several places are being recommended, they should fit together and
be ordered in the way that best serves the user. Quadrana et al. review the applications
and methods of sequential recommendation [101].

We first briefly review the literature of trajectory-based location prediction. Similarly
to place recommendation, it deals with modeling or predicting the "intent" of users.
Giannotti et al. introduced the formalism of temporally annotated sequences [38], which
has been used in later research for frequent pattern mining [13] and prediction [95].
Several techniques to improve location prediction have been proposed in this context
that could also have uses in next place recommendation. Grouping of similar objects can
improve detecting common behavior [137]. With the assumption that related activities
happen close in time, clustering of events to minimize intra-cluster time differences can
be used to improve pattern discovery [72]. Liu et al. study sequential decisions from
the point of view of learning the reward functions that motivate the decisions [74].

There have been by two research directions in itinerary recommendation that until
recently had little overlap. In operations research literature, the problem has been
treated as one of combinatorial optimization, related to logistics problems such as
vehicle routing. In the mainstream of recommender systems publications, the focus
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has been on behavior modeling and knowledge discovery.
An influential paper by Vansteenwegen and Van Oudheusden [122] formulated the

tourist trip design problem (TTDP) as an operations research opportunity, becoming a
foundation to the body of research that models trip recommendation as a generalization
of the orienteering problem (OP). The generalizations extend the problem with various
constraints, such as multi-day visits and time windows, but also max-n type constraints
[42]. Recently, TTDP has been studied in the group recommendation setting [46]. An
overview of the TTDP literature is given in [37].

The orienteering problem (OP) representation is also applicable to machine learning
based approaches to recommendation. In this case, the extracted routes are used to
make a connectivity graph which is then used to search for itineraries [23, 69]. The
TripCover problem which is similar to the OP is formulated in [12]. The solution is a
set of trajectory fragments which is then arranged into an optimal sequence.

Treating itinerary and place recommendation as a sequence prediction problem is
the other major direction. Recommenders that follow this paradigm often rely on min-
ing crowd-sourced data and using machine learning to build recommendation models.
Because other sequential prediction tasks, like music playlist recommendation or pre-
dicting the next visited location are similar, we include papers from these application
domains in the review.

Probabilistic approaches learn generative hierarchical probability models, usually
through maximum likelihood estimation. Latent topics are used to capture the taste
or preference of the users. Kurashima et al. build a probabilistic model that predicts
the likelihood of a transition to a place. They combine a 1st order Markov model
with a personalizing topic model [61]. An updated version called the Geo Topic model
was designed to improve the personalization of the recommendations [60]. Probabilistic
models can be enhanced by including temporal [75], activity category [107] and context
information [129, 143].

Latent space embedding is a related approach, popularized by Chen et al. They
fit a dataset of song transitions into a space of latent features. The distance in this
space represents transition probabilities between any combination of songs, overcoming
sparsity of training datasets [19]. Zhang et al. use a joint embedding of location, time
and text content of geo-tagged social media posts to predict locations and activities of
users [138].

Matrix factorization methods aim to solve typical problems in recommendation, data
sparsity and generalization. In the simplest form, they represent both users and items
in a latent, lower dimensional space and the preference for items is found by the dot
product of user and item vectors. Since this method relies on user and item similarities
to capture preference, it is a form of collaborative filtering (CF). Matrix factorization
was adapted to a sequential model by Rendle et al. in predicting the next action of the
user based on recent actions [103]. The Factorized Personal Markov Chains, or FPMC
model of Rendle et al. has inspired further adaptations [21].

General purpose supervised learning models have been successfully applied in se-
quential recommendation. Noulas et al. describe a supervised learning approach to
predicting users’ next venues. The learning features include behavioral history and
spatial characteristics. They achieve best results with decision trees [97]. Muntean et
al. model next place prediction as a learning to rank problem, using support vector
machine and gradient boosted regression tree methods. They rely on a rich feature
set extracted from geo-tagged photos and Wikipedia [96]. Wang et al. propose a
two-layer hierarchical neural network structure for next-basket recommendation [126].
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With the rising popularity and successful applications of deep learning, various artificial
neural network (ANN) approaches have been proposed. Recurrent neural networks are
particularly well suited to learn sequential relations and are the basis of the GRU4REC
method of Hidasi et al. [47]. Attention mechanisms in neural networks were success-
fully employed by Yin et al. [132]. Relevant ANN methods are too numerous to list
here explicitly so we refer the reader to a recent survey [139].

Neighborhood-based methods have received attention recently in sequential and
session-based settings [84]. k-nearest neighbors methods adapted to sequential rec-
ommendation were proposed by Jannach et al. [49] and a similar technique based on
playlist similarity by Turrin et al. [118].

A large number of publications in recent research focus on the predictive performance
of recommendation models. Because sequential and session-based recommendation is
a quickly developing direction of research, concerns about neglect of practices that
promote unbiased evaluation and reproducible research have been raised [83, 28]. For
example, Rendle et al. argue that method tuning plays a major role in benchmark
results [104]. Recommendation methods should therefore currently not be judged
only by reported performance evaluations, but by their general suitability for a given
application domain.

We also examine the sequential recommendation task from the perspective of the
predictability of behavior. Predictability of human movement based on the Shannon
entropy of sequences was investigated by Song et al. [112]. Their method has been the
subject of later publications that offer additional proofs, clarifications and experimental
validation [110, 128]. Li et al. use similar techniques to estimate the lower and upper
bounds of the predictability of check-in behavior of LBSN users [65].

Human-Centric Aspects of Recommendation
In the thesis we have taken the simplified approach of using the prediction accuracy as a
proxy measure of expected user satisfaction. There is a significant body of research that
deals with a more user-centric approach to the quality of recommendations. Mostly, the
discussion involves the closely connected topics of recommender system optimization
and evaluation.

The traditional accuracy metrics do not always distinguish between significant dif-
ferences in recommendations between different algorithms. For example, accuracy may
be improved by bias towards popular items, but this is not always the desirable result
[94, 50]. Metrics for measuring diversity, as well as novelty, are given in [123, 48].
Measuring the satisfaction with a sequence of items is described by Masthoff and Gatt
[92].

In recommender systems research it is recognized that recommending a sequence of
items is a different problem than rating single items [91]. Adamopoulos suggests that
in recommendation of sets of items, interaction between individual items plays an im-
portant role [1]. Hansen and Golbeck [44] define main criteria for evaluating sequences:
individual item ratings, order interaction effects and co-occurrence interaction effects.
Their work does not formulate any solutions, but an example conforming to the above
criteria is given in [22], where collaborative filtering (CF) is used to recommend item
sequences. Interaction effects are further studied in [125].

A fundamental problem in recommending sets of items is the dilemma of accuracy
versus diversity [111, 134, 146, 58, 24]. The recommended items should by dissimilar
to each other and at the same time relevant for the user. Diversity can be considered
a co-occurrence interaction effect, falling under Hansen and Golbeck’s three criteria.
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Table 1: Comparison of recommenders by type, knowledge sources and sequential recommen-
dation criteria

Reference Type Pers. Behavior POI Seq. Sess.
source source aware aware

Choudhury et al.[23] itinerary no Flickr Lonely yes no
Planet

Kurashima et al.[61] itinerary yes Flickr Flickr[26] yes yes

Lu et al.[76] itinerary yes Panoramio, gazetteer yes yes
travelogues (unspecified)

Brilhante et al.[12] itinerary yes Flickr Wikipedia yes no

Lim et al.[69] itinerary yes Flickr Wikipedia yes yes

Chen et al.[18] itinerary yes GPS traces Foursquare yes yes

Cheng et al.[21] next yes Foursquare Foursquare yes yes
place Gowalla Gowalla

Liu et al.[75] next yes Foursquare Foursquare yes yes
place Gowalla Gowalla

Majid et al.[89] top-n yes Flickr Google no no
Places

Zheng et al.[145] top-n yes GPS traces unspecified no no

The concept of item list diversity was introduced by [147].
In the context of route or itinerary recommendation, some papers have explored

these topics. Yin et al. include diversification of patterns in the context of ranking
extracted patterns [131].

Recommender Systems
Several complete tourist recommender solutions that make use of the geo-tagged photos
of Flickr [23, 61, 12, 69, 89] and Panoramio [76] have been proposed. Recommenders
that use GPS traces [18, 145] share some similarities, as they are also required to solve
the tasks of trajectory extraction and semantic enrichment. Another relevant class is
the location-based social network(LBSN) next place recommenders [18, 21, 75]. They
represent sequence-aware systems that deal with sparse check-in histories similar to
photo traces.

Table 1 classifies the recommender systems from the sequence recommendation
and knowledge discovery perspective. Type describes the type of output that the
recommender produces (a single place, a trip itinerary or top-n locations). The recom-
mender is personalized when it can produce recommendations tailored to the specific
user. Behavior source describes the source of behavioral data for creating the recom-
mendation model. POI source gives the provider or method of place data. Sequence
aware recommenders fit their recommendation into a prior sequence of items or give
a recommendation that is a coherent sequence. Session aware recommenders tailor
the recommendation to current session. We have extended this category to include
recommenders that fill itineraries between the designated end and start items, or with
mandatory place visits.
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The most common method of recommendation in the papers we review is represent-
ing the transitions between places as a graph. Rewards based on matching with the
users’ preferences or overall popularity are associated with the vertices of the graph.
The recommendation is computed by finding the most rewarding path on the graph
within given constraints [76, 23, 12, 69]. Kurashima et al. [61] build a probabilistic
model that predicts the likelihood of a transition to a place. They combine a 1st order
Markov model with a personalizing topic model. An updated version called the Geo
Topic model was designed to improve the personalization of the recommendations [60].

FPMC-LR of Cheng et al. uses a matrix factorization method where recommen-
dations are personalized using collaborative filtering (CF), leveraging the behavior of
similar users [21]. A similar approach to address the sparsity of user-item interactions
is taken by Liu et al. [75] who construct a low-rank graph representation of the inter-
actions through a hierarchical probabilistic model. Their model also captures evolving
preferences.

Individual place recommendations are similar to the problem of item recommenda-
tions in e-commerce or entertainment and k-nearest neighbors collaborative filtering
model has been proposed by multiple authors [145, 89]. Majid et al. describe a
context-aware recommender, where the set of places available for recommendation
is pre-filtered using the current context [89]. Zheng et al. additionally recommend
friends. While they use sequences in similarity calculation, the recommendations are
not sequence-aware [145].

New trip and next place recommendation approaches are being proposed constantly.
Additional information and references can be found in a more detailed survey on recent
advances, with a focus on geo-referenced social media, compiled by Lim et al. [68].

Study of Tourist Recommenders in our Research Group
Prior work on tourist recommenders by our research group is based on content-based
filtering, where recommended items are matched to user profiles by their similarity to
user interests. Tammet et al. outlined the architecture of the rule-based recommender,
where knowledge about items and users is assigned a confidence rating that expresses
the reliability of the information. Knowledge is integrated from online sources and
new knowledge can be deducted through inference rules [82]. The item ranking and
itinerary planning algorithms were further detailed by Luberg et al. [81]. In this paper
we also described the in-memory database architecture used for inference, item ranking
and planning tasks.

Subsequent work concentrated on creating and maintaining the knowledge base
with sufficient quality for practical applications. When integrating data from multiple
sources, repeated occurrences of the same item need to be recognized and merged
[78, 80]. A machine learning approach to increase the accuracy of item deduplication
was introduced by Luberg et al. [77]. The recommender system must also derive
object properties from sources in different languages and store object descriptions for
a multi-language interface [78, 80].

The rule-based architecture and the knowledge discovery techniques were used to
implement a prototype tourist recommender system for Tallinn and Riga. We also
developed a trip planning application for the national tourism promotion website, Visit
Estonia6.

6http://www.visitestonia.com
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Figure 2: sightsmap.com heat map of Venice. The reverse "S" shape of the Grand Canal
is clearly visible (A-Rialto bridge). A scenic walking route into the Cannaregio district that
many tourists arriving in Venice take is marked with B. Map data by Google.

1 Destination Discovery from Geo-Tagged Photos
To build a recommendation model, we are interested in two types of data: the items to
recommend and the behavior of users regarding those items. In destination recommen-
dation the items are points of interest (POIs) which the users then visit. The sequence
of visits is relevant in trip itinerary recommendation, both logistically and in terms of
the themes and content of the trip.

While there are publicly accessible databases of points of interest, such as Google
Places, information about the travel behavior of individuals is not directly available in
sufficient amount to build accurate models. We therefore have to extract this implicit
information from other data the users have shared publicly. In this thesis we focus
on geo-tagged photos which can be used to extract both behavioral data (user-item
interactions) and find destinations (items) to recommend.

1.1 Geo-Tagged Photos as an Ubiquitous Data Source
The sightsmap.com7 application [114] demonstrated that it is possible to build a world-
wide database of places from crowd-sourced data. The primary focus of the application
was to browse hot-spots of interest in any region using an interactive map.

The map displayed two types of information: the heat map representing the ge-
ography of tourist visits; and the individual places including their names, photos and
popularity ranks. Users were able to zoom in to view higher resolution heat maps
(Figure 2) and browse places from the worldwide scale to city block scale. Through
integrating multiple sources and analyzing textual metadata of images, the application
was also able to categorize places (Figure 3).

The application was built using photos from Panoramio (now closed). Using the
geographic location of each photo, spatial density of photos taken implicitly show the
popularity of locations. The spatial density of the photos was used both for creating
the heat maps and discovering individual locations. By clustering hotspots on the
heat map and matching them with nearby places from Wikipedia and Foursquare, the
application linked the hotspots to geographical objects and sightseeing places.

7http://sightsmap.com
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Figure 3: sightsmap.com places matching the filter "beach" in Northern Estonia. Map data
by Google.

In the context of knowledge discovery for destination recommendation, the most im-
portant categories of data are the names and popularity of places. The sightsmap.com
application showed that geo-tagged photos can provide:

• names and locations of the most visited places;

• spatial distribution of tourist interest, including areas between and around points
of interest;

• data integration with heterogeneous sources;

• worldwide coverage.

The most obvious benefit for this approach is that destination data for almost
anywhere in the world can be obtained using the same process and automated tools.

Panoramio photos were perfectly suited for this application for two reasons: first,
they were geo-tagged as accurately as possible and second, the primary focus of the
site was to provide interesting photos of places and scenery. The users uploaded the
photos that they considered worthwhile for other users to browse. Each photo can be
therefore be considered as an implicit recommendation of the specific place that was
photographed.

Besides being able to cover a particular geographical area, how well the method
performs within the given area is also important. We consider two metrics: 1.) how
many out of the notable points of interest in an area does the method discover; and 2.)
out of places that the method has associated with the names, how many have correct
names.

We performed an experiment with the sightsmap.com data from the United Kingdom
and France to measure how many notable places were discovered. For both countries,
56% of places with a Wikipedia entry were found. The total number of places with
Wikipedia entries was approximately 10000 in both cases, with more than 5000 places
correctly located [114]. While these places, by definition, all have correct names, the
experiment did not measure the accuracy of name association over all of the hotspots
that the method identified. We will address the accuracy of place name association in
Chapters 2–3.

With the use of geo-tagged photos as data source also come specific problems
related to data availability, privacy and bias. The closure of Panoramio in 2016 is
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a prime example that the business interests of data provider companies are the major
factor in deciding whether open data platforms are developed and maintained for public
use. The use of such commercial services then has risks when planning sustainable
applications.

Data licenses of currently existing providers like Flickr and Foursquare have require-
ments that their data is not retained for a long period of time. This effectively prevents
distributing benchmark datasets that are based on the data from those sources, which
limits the reproducibility of studies done using the data. By terms of use, users of these
platforms have the right to have their data deleted, which would be impossible in case
the data is openly redistributed. Furthermore, EU legislation considers location and
photo data personal, meaning that geo-tagged photos fall under data protection laws
even if the data does not contain, for example, names or e-mail addresses of the users.
Under EU legislation the users also have the right to object to processing of their data
for scientific research.

Finally, recommender systems should strive towards unbiased representation of their
user base, while social media is well understood to have demographic bias. For example,
Hecht and Stephens [45] identify demographic bias towards urban users in various geo-
tagged information and bias towards urban areas which affects the quality of coverage.

1.2 Alternative Data Sources
There are several alternatives to geo-tagged photos that are suitable for mining desti-
nations and travel behavior:

• location based social networks (LBSN);

• geo-tagged social media posts;

• mobile phone positioning data and call records;

• card payments or validations;

• recorded movement trajectories.

Location based social networks (LBSN) can be used as sources of travel destination
information. For example, Foursquare can provide coordinates, names, fine-grained
categories and popularities of places worldwide. Therefore it is a viable alternative to
geo-tagged photos for finding destinations to recommend. Foursquare does not allow
access to user’s individual histories and cannot be directly used to infer a personal-
ized behavioral model. The users may "leak" their check-ins intentionally via Twitter
which can produce sufficient volume of data for some modeling purposes [97, 17, 100].
Another issue that affects the ability to extract behavioral information is that the incen-
tives offered by the social media platform cause the users to misrepresent their behavior
[140].

Twitter is the primary example of social media where posts optionally include geo-
tags. Tweets that have precise location geo-tags have been associated with known POIs
with up to 60% accuracy [141]. Given that individual user histories can be extracted
from Twitter, it is a potential source for developing behavioral models. Similarly to other
platforms, where users share information through social use of applications, geo-tagged
tweets represent a biased sample of the population [90, 105]. Many empirical studies
on geo-tagged tweets use data from before April 2015 [25, 87, 138, 3]. From April
2015, Twitter changed its policy regarding precise location geo-tags to opt-in instead
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of opt-out, drastically reducing the ratio of posts having geo-tags [31]. Similarly to
geo-tagged photos, the sparsity in time needs to be taken into account when extracting
personal trajectories from Twitter.

Mobile phone data is typically available to telecom providers. Excluding applications
developed by the telecom providers themselves, use of the data would require some
incentive for the data provider while not violating the legislative measures and public
trust related to privacy [2]. Some providers make aggregate, such as k-anonymity
protected data available as a paid service. This type of data is suitable for discovering
destinations but not for personalized models, as the preferences of several people are
aggregated.

Mobile phone positioning data is temporally sparse. The position of the phone is
recorded when the user actively uses the phone or moves from the range of one cell
tower to another. The network may periodically record the position of the phone, with
the typical period being about 30 minutes to one hour [127]. The spatial resolution
depends on the distance between the cell towers, which can be as low as 50m in dense
urban areas [54]. Unlike LBSN check-ins and to a lesser extent, sightseeing photos,
the locations of positioning events are not related to specific places but rather to call
events and the geographical placement of cell towers.

Smart card transactions, such as the RFID cards commonly used in public trans-
portation fare collection provide individually traceable human mobility records [88].
Since the card transactions normally take place when the user boards or exits a trans-
port service, their sparsity and connection to infrastructure rather than points of interest
makes them less applicable to destination mining.

In contrast to the previously mentioned data, recorded movement trajectories using
technologies such as GPS provide both very high temporal resolution and high spatial
resolution. Users normally do not record their daily movements and there are few
datasets with substantial number of trajectories available. The well-known examples
include the GeoLife dataset of the daily activities of 167 volunteers, mostly based in
Beijing [145, 133] and the New York City taxi dataset [30]. Well-designed applications
can however generate enough data to cover smaller areas [120].
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2 Trajectory Mining from Geo-Tagged Photos
The first step in making a predictive statistical model for place recommendation is to
extract the trajectories of tourists from the data. We begin with a set of photos, where
each photo has the following attributes:

1. user identifier;
2. geographical coordinates;
3. time stamp;
4. image caption.

In Section 2.1, we describe how to extract the movement trajectories of individuals
from the set of photos and to separate tourists from residents. The trajectories are
initially noisy, both due to users entering invalid data manually and because of incom-
patibilities and inconsistencies in the way digital photos are transferred from the camera
to the database of the social photo platform. We describe common types of noise and
how to cope with these types in Section 2.2. Detecting place visits, also called "stay
points", is described in Section 2.3.

We evaluate the methods described in this chapter on photos from Panoramio.
Because the ground truth about the location and time of the Panoramio photos is not
available, we test the efficiency of the noise filtering on a synthetic dataset (Section 2.4).
The synthetic data is created by sampling distributions estimated from a small manually
verified subset of the real world data. We also report the statistical results of applying
the preprocessing described in this chapter on real world datasets.

2.1 Extraction of Raw Trajectories
The extraction of trajectories of tourists follows the commonly used heuristics intro-
duced by Choudhury et al. [23]

1. We group photos by user and sort them by time stamps, producing photo streams.
With Flickr, API data is sufficient. Panoramio API did not provide time stamps,
so EXIF metadata had to be scraped separately from the website and integrated
with the API data.

2. We filter the photo streams to remove users that behave differently from tourists.
This is accomplished by examining the length of stay period in the area and
removing users who stay longer than 15 days. We also remove streams consisting
of only one photo.

3. We split photo streams into sub-sequences at places where a gap between two
photos is 8 hours or more.

This process produces sequences of photos, typically taken within one day, where
each photo has the contextual attributes of time and geographical coordinates. We
will refer to these sequences as trajectories of tourists.

2.2 Noise Filtering
Public geo-tagged photos as a data source have distinct features that call for methods
specifically adapted for the problem. While the resolution of the spatial coordinates
is comparable to GPS traces, the data is noisier due to altered coordinates and time
stamps. The data is also much sparser and irregular.
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Figure 4: Time stamp noise. Erratic trajectory resulting from original time stamps being
overwritten. Map data by Google.

Figure 5: Coordinate noise. Invalid coordinates of photograph A can be detected here because
the time interval between A and B is only 26 seconds. The likely cause is the user taking a
photo of the bridge from the park and assigning the coordinates of the bridge to the photo A.
Map data by Google.

The location and the time a photo was taken is present in the auxiliary metadata tags
of the EXIF image format used by digital camera makers and supported by Flickr and
Panoramio. This metadata is sometimes referred to as "EXIF data". Image processing
software and tools provided by the photo-sharing social networks can however arbitrarily
alter this information both in the EXIF format and after storing it as separate metadata.

Because of the image processing and uploading workflow, the time stamps of images
can represent any of the following: the time the photo was taken, the time the photo
was edited on the user’s computer, or the time the photo was uploaded. The cases
where the original time stamps are not preserved result in trajectories that cannot be
used to reconstruct original visit histories (Figure 4). We refer to these cases as "time
stamp noise".

Many cameras do not have GPS receivers. While consumer GPS also may have
positioning difficulties due to signal reception that result in invalid coordinates being
recorded, a much more prevalent problem is user errors in cases the user enters the
coordinates manually. A case we observed frequently is that when photographing a
remote object, the user enters the coordinates of the object, not where the photo was
taken from (Figure 5). Users also confuse similar-looking buildings that are not major
landmarks. In the thesis we refer to this as "coordinate noise".

There are two main approaches to noise filtering in trajectories: smoothing filters
and removal filters. Smoothing filters can be purely statistical (mean or median filters)
or model a physical process (Kalman filters) [144]. While these methods have strong
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theoretical foundations and are widely used, they are not appropriate for filtering photo
sequences. Each photo represents a potentially legitimate place visit and displacing
them through smoothing would change their semantics.

In trajectory preprocessing, ad hoc heuristics that detect movement speeds over a
given threshold can be used as removal filters [144]. We have adopted this approach to
develop a simple heuristic filter. We measure the speed of transition between consec-
utive photos. If this speed is over a given threshold, one of the two points is classified
as noise. While this approach can also use statistical detection of outliers, we did not
observe any improvement over a simple hard threshold.

To compute the transition speeds, we use OpenStreetMap8 and the Open Source
Routing Machine (OSRM) router [85] to find realistic distances between places in the
urban environment. Bodies of water, buildings and major roads all form obstacles
which make straight line distance inaccurate. In some tourist destinations, historic
fortifications may cause pedestrians and vehicles both make long detours.

The OSRM router works by calculating distance along discrete objects called road
segments, so it is not accurate on very small scale. For distances below 30m, we
instead calculate straight line distance. The speed filter must also be desensitized
to cases where photo time stamps are truncated. When photos are taken in close
proximity, this can result in transition times of 0. We use additive smoothing of time
intervals where the distances between photos are small.

The noise filter uses the cut-off parameter vcut to detect transitions between photos
where the estimated movement speed is too high. For consecutive photos i and i+ 1,
if vi,i+1 > vcut then either photo i or i+ 1 could have invalid coordinates. The filter
then calculates, which of the i and i+1 should be removed so that the new transition
that is formed by the removal would have lower estimated speed. After the removal,
the next filter iteration starts with the newly formed transition, so it is possible for both
photos to be removed.

To detect time stamp noise, we use a heuristic of based on the notion of trajectory
reliability. For each trajectory of length n, if the ratio of removed photos ncut

n > rnoise
then the trajectory is considered unreliable and discarded. rnoise is the tolerance level
for noise in a trajectory.

2.3 Stay Point Detection
To prepare the trajectories for semantic annotation, we need to detect locations that
the user has visited. In trajectory data mining, these locations are called "stay points"
[144]. Because of the sparsity of photo traces, the basis of stay point detection is that
each photo represents a legitimate place visit. However, it is not reasonable to treat
photos that are taken closely together as separate places. The suitable method of stay
point detection is then to cluster the photos based on their spatiotemporal proximity.

The general method for spatiotemporal density clustering is ST-DBSCAN [9, 10]
that uses discrete time and expands spatial neighbors in one time window with those
in adjacent time windows. However, the heterogeneity of space and time dimensions
and density variations are not well addressed by this approach [9].

Since the purpose of stay point detection is to partition trajectories into episodes
of stops and moves, the clustering only needs to group points that follow each other
in the sequence. This observation has been used in trajectory-specific methods [136]
that require specifying separate time and distance thresholds for inter-cluster density.

8https://www.openstreetmap.org
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We developed a new stay point detection method that also exploits the sequential
nature of the trajectories. However, our approach allows us to both include geographical
information in realistic distance estimation and addresses the different scale of space
and time dimensions. We convert the trajectory points into one-dimensional space
by the following procedure: the first point in the trajectory is placed at coordinate
0. The coordinate of each subsequent point i is the cumulatively increasing distance
di = di−1 + δi−1,i. We use the travel distance calculated using OSRM as δi−1,i. This
allows us to omit the time dimension, because the routing distance reflects cases where
one location is in close proximity to another, but cannot be reached directly. While
street network routing distance is not metric, the resulting space after the conversion
is metric and standard density-based clustering can be applied to group the photos.

2.4 Noise Filtering on Synthetic Data
The ground truth about the coordinates and times of the photos of real users is not
available. To measure the accuracy of the noise filtering heuristic that we propose, we
created a synthetic dataset of 9910 trajectories where the noisy photos were labeled.

We simulated movement between known POIs in Budapest to create movement
trajectories. We then sampled distributions estimated from manually annotated trajec-
tories to generate photos that would be taken when tourists move along the simulated
trajectories. Finally, we created time stamp noise by changing the times of some tra-
jectories; and coordinate noise by adding photos that simulate the scenarios of setting
coordinates to a remove object and misidentifying a location. [51]

The noise filter was evaluated by the precision and recall metrics. Denoting true
positives as TP and false positives as FP , precision is the ratio of real noise among
the photos that are filtered out:

Precision= TP

TP +FP
(1)

Recall represents the ratio of real noise detected by the filter:

Recall = TP

TP +FN
(2)

where FN is false negatives. We measured the effect of parameters vcut and rnoise
by fixing one parameter and varying the other. The left graph in Figure 6 shows the
effect of changing the cut-off speed with the fixed rnoise = 0.15. The precision of the
filter has a "knee" shape with a rapid drop where the cut-off parameter comes close
to the median of movement speeds in the dataset. At the same time, recall improves
slowly with the decrease of the cut-off speed, reaching only 0.6 near the "knee" point.
This shows that nearly 40% of noise is associated with speeds below 10 km/h.

In the right graph in Figure 6 we show the effect of the noise tolerance parameter,
with vcut = 10km/h. Surprisingly, the precision of the filter forms a similar knee shape,
showing that the there is a threshold of the ratio of removed photos in a trajectory
where the probability of the trajectory being "noisy" increases rapidly. However, recall
is still low even where the filter is clearly too aggressive (rnoise < 0.1).

In our original publication we reported that the filter is successful in detecting co-
ordinate noise, with 97% of the coordinate noise removed at the filter settings of
vcut = 10km/h and rnoise = 0.15 [51]. This can be interpreted as a positive outcome.
The recall was much lower when all types of noise were included (Figure 6), resulting in
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Figure 6: The performance of our proposed noise filter on the synthetic dataset. Selecting the
cut-off speed (left plot) and the noise ratio threshold (right plot) involves a compromise of
precision and recall. In both cases there is a sharp drop off in precision when the filter becomes
too aggressive. The gray background represents the cumulative distribution of speeds in the
dataset.

approximately 60% of the noise detected. Nevertheless, one type of noise was success-
fully removed. However, this interpretation of the result does not consider the overall
low precision of the filter, which causes the removal of valid records. We investigate
the effectiveness of the filter again from the perspective of its impact on the training
quality in Chapter 4.

2.5 Preprocessing on Real World Datasets
We have extracted tourist trajectories in metropolitan areas that are popular tourist
destinations. From Panoramio, we downloaded photos taken in Budapest, Vienna
and Venice. Since the Panoramio API was closed, and to diversify the selection of
destinations, we downloaded photos from Flickr for a total of 7 cities.

Table 2 reports the statistics for the destinations. The columns source and city
specify the API that the photos were downloaded them and the target area. Photos
with EXIF gives the number of photos that had sufficient metadata (location and time)
available. This is relevant in case of Panoramio where the time had to be scraped
separately from the website. Users is the total number of users in the dataset and
tourists is the number of users classified as tourists, as described in Section 2.1. After
filtering with vcut = 10km/h and rnoise = 0.15 and stay point detection, the number
of trajectories extracted from the dataset is given in the column trajectories.

There are some common characteristics across all datasets in Table 2. About one
third to half of users posting photos are classified as tourists. Those users contribute
on average from 0.88 to 1.5 trajectories each. The most important questions regarding
these results are whether they form a good representative sample and whether there
is enough data to build accurate predictive models. The first question is not possible
to answer without a secondary data source about tourist visits in the same region.
We argue that by posting photos of scenic locations the users make implicit recom-
mendations, which makes it suitable in place recommendation. This view has been
supported e.g. by Crandall et al. [26]. However, the sample size is relatively small.
While millions of tourists visit Estonia and Tallinn yearly [63], we only collected data
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Table 2: Number of geo-tagged photos, tourists and movement trajectories in cities.

source city photos with EXIF users tourists trajectories

Panoramio
Budapest 177496 10688 3244 3240
Vienna 93912 7197 3237 3619
Venice 61200 8426 3985 3488

Flickr

Tallinn 112336 3974 2073 2531
Budapest 450967 13401 6161 8559
Vienna 649154 14062 6688 9447
Venice 516570 25495 13199 16198
Tokyo 1827114 23666 8418 12800
Los Angeles 2128551 39943 13445 14350
Paris 1945023 61652 25765 35515

about approximately 2000 users over a period of 15 years. At the same time, mobile
phone positioning data covered approximately one third of the visitors [2]. This implies
that despite wide adoption of photo sharing sites, geo-tagged photos are able to cover
only a small minority of visitors.

Due to the workload of manual annotation and validation, not all of the trajectory
sets in Table 2 have been used in further experiments covered in Chapters 3–4. Since
different experiments were performed over a period from 2016 to 2019, they use a
different subset of trajectories, with early experiments being based on Panoramio data
and later ones on Flickr or combining both sources.

We did a small-scale qualitative validation of the tourist classification method that
was adopted from the literature and the new stay point detection method that we
introduced in Section 2.3. We reviewed 303 trajectories extracted from Flickr photos
taken in Budapest and 58 trajectories in Tallinn, also from Flickr photos.

To evaluate tourist classification, we counted users who did not visit at least two
typical tourist attractions and whose photos explored artistic themes or were more
oriented towards portraits instead of scenery. Out of 234 users, 23 or 9.8% were
possibly non-tourists. This does not include an event on October 25th and 26th in
2011, when 52 one-time users participating in a T-Mobile 4G promotional game posted
photos from predetermined locations in Budapest.

For clustering quality, we counted clusters that a.) should have been merged with
the previous cluster; or b.) should have been split. Out of 1716 stay points on the
trajectories, we found 67 (3.9%) clusters that should have been merged with others
and 8 (0.4%) that included photos from obviously distinct stay points.

We analyze the results of trajectory extraction evaluation the context of using the
trajectories in recommendation. Non-touristic users whose trajectories are disjoint from
tourists do not contribute to recommendations. Those who have visited moderately
popular hotspots, do contribute. It is not necessary to exclude this contribution from
the recommendations, as it adds some local diversity and the majority of the recom-
mendation knowledge still comes from the tourists.

Undesired splitting of single stay points to multiple clusters that was observed in 4%
of clusters causes apparent repeated visits to the same place or area. This introduces
some bias in the recommender towards predicting the same place multiple times in a
row, which is not useful in typical tourist recommendations. However, this effect is
easy to work around after the annotation stage by merging subsequent stay points with
the same annotation.
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3 Place Identification and Trajectory Annotation
Semantic annotation of trajectories has various applications, such as predicting the
route of moving objects and social network discovery [93]. It is also an important
intermediate step in transforming the histories of users in raw form (GPS traces, se-
quences of geo-tagged photos or other forms of trajectories) to sequences of place visits
that can be used as an input in building a recommendation model.

In this chapter we assume that the source data comes from geo-tagged photos,
preprocessed as described in Chapter 2. We begin with trajectories where stay points
have been annotated by photo clustering, but do not have names. The goal is to identify
which places each stop corresponds to and annotate the stops with place names.

This task is commonly accomplished by using a database of POIs and associating
each stop with a nearby POI [96, 23, 12, 76, 69]. In the common case where there are
several nearby POIs, the heuristic of choosing the correct one can be as simple as select-
ing the nearest, or using some weight function that expresses preference towards places
that the user is more likely to visit (such as popularity or place category). We present
an experiment with a popularity-based heuristic that we developed in Section 3.1.

While the heuristics of POI selection can improve accuracy by integrating additional
information, the POIs themselves are represented as pinpoint coordinates. Figure 8
illustrates how the extent and shape of an object can complicate associating photos
with POIs. The coordinates of the football stadium in a POI database are located in
the middle of the pitch, while the photos are mostly taken from the stands.

We propose that instead of POIs, the photos taken by tourists, possibly augmented
from other sources like Flickr, should be mined for regions of interest (ROIs). The
regions are defined by their geographical boundaries and are represented by closed
polygons on the map. Such regions have hierarchical structure, with larger areas (a
park, an island) embedding smaller places (a museum, a chapel).

In Section 3.2 we describe the method of extracting such regions from geo-tagged
photos using density-based clustering. We have developed a method to extract a
hierarchy of clusters which is presented in Section 3.3. We extract region names by
integrating Foursquare and Flickr data. In additional to individual places, such as
buildings, monuments or other attractions, we are able to annotate larger areas like
parks, neighborhoods or islands (Section 3.4). Finally, we describe how trajectories are
annotated using the hierarchy of named regions of interest (ROIs) and evaluate their
performance in this task in Section 3.5.

3.1 Place Semantics with Points of Interest
The most common method of stay point identification is to use a POI database, some-
times called a gazetteer, and select a POI that is within some distance r from the stay
point, for example r= 100m. When there are multiple POI candidates, the closest one
is chosen [96, 23, 12, 76, 69].

The main problem with this association method is that POI databases typically are
not designed for tourist trajectory annotation. They may contain local businesses, sport
clubs, academic buildings and other types of places, often with ambiguous and sparse
metadata. It is therefore necessary, at minimum, to build a database specifically for
annotation. If the place category metadata is fine-grained and accurate enough, POIs
can be filtered to include only the ones relevant to the application. An example of
such a database with rich category metadata is Foursquare. Querying Wikipedia for
geo-referenced pages within a bounding box and clustering objects very close to each
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Figure 7: A cluster of photos (green) on a
trajectory (blue) associated with a POI (red
marker). Map data by Google.

Figure 8: Associating photos (green markers)
with places by proximity to coordinates (in
red) disregards the actual extent and shape
of the location. Map data by Google.

other to find POIs was proposed by Brilhante et al. [12]. In their definition, a POI
can group nearby objects and therefore has some overlap with our concept of a ROI.
For the Sightsmap.com application we integrated photo density information with other
sources, for example Wikipedia where the editing policies are aimed toward including
only generally notable places [114].

Even when the database of POIs is customized for semantic annotation, ambiguity is
still possible when there are several candidate POIs nearby. We propose to differentiate
between places by their importance in the application. For tourist recommendations,
we measure the importance by popularity. Let l ∈ L be a place in the set of places L
within a given radius r. The distance between a place and the stay point is rl and the
popularity of the place is popularityl. We choose the associated place by

argmax
l∈L

popularityl
r2
l

(3)

The same formula but with the application of estimating place transition probability
was simultaneously proposed by Maeda et al. [86]. In both our work [51] and by other
authors [86, 35] this model of place "attraction" has been called the gravity model.

The stay point in our application of trajectory annotation is the centroid of the
cluster of photos. Equation 3 tends to select the most popular place close to the
centroid. Figure 7 illustrates the result of semantic annotation with POIs, where a
cluster of photos (green empty markers) on a trajectory is associated with a nearby
POI (red dotted marker).

The gravity model that we propose for POI based annotation was validated in a
small scale experiment. We manually annotated 100 trajectories of Panoramio users
in Budapest to use as the ground truth. We then annotated the trajectories with both
the proximity and gravity based methods and compared the results to to the ground
truth. Both the manual and automated annotations were done using the POI database
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of Sightsmap [114]. For the baseline proximity method, we set r=max(100m,dmax+
10m) where dmax is the maximum distance between the cluster centroid and a cluster
photo. For the proposed gravity method, we set popularityl = nl+1 where nl was the
number of place visits in the ground truth data and r = 2max(100m,dmax+ 10m).

The methodology in this experiment was designed to automatically validate the
results against the ground truth and has some important differences to the experiments
presented in Section 3.5. The annotation accuracy in this experiment and the later
ones cannot be compared directly.

To allow different clusterings, we compared annotations for each individual photo.
The annotation was considered correct, if it matched the ground truth. However, we
additionally considered the photos with no associated place correct if the ground truth
also had no place associated. This method was chosen because we preferred that in
areas where the Sightsmap POI database had poor coverage, no place visits would be
inferred, instead of invalid place visits. In later experiments we abandoned this method
in favor of total trajectory coverage.

Out of the total of 4360 photos, the baseline proximity method annotated 2595
(60%) photos correctly, while our proposed gravity method had 2981 (68%) correct
annotations. Since this was a small scale experiment, we also calculated the p-value
p� 0.001 [51, 33] confirming that the result was statistically significant.

With the popularity measure used as a weight, the gravity method obviously has
popularity bias. While this is not a flaw, the question arises whether a performance
metric that rewards popularity bias is appropriate in this experiment. The popularity
bias is mainly a concern in the output of the recommender that the user is directly
exposed to. The output of the annotation is not yet a recommendation, but is used as
the input of the recommender for the purpose of modeling user behavior. If we consider
a metric such as item coverage more important here, we emphasize correctly identifying
the "long tail" but would not differentiate between missing a place with 1 visit from a
place with 20 visits. The resulting statistical model could more easily misrepresent the
place visiting distribution. Therefore the use of accuracy metric is appropriate here and
the experiment confirms that the proposed gravity method outperforms the commonly
used proximity association in tourist trajectories.

3.2 Region Discovery
The ambiguities in place association that the heuristics in Section 3.1 attempt to
address are related to poor spatial description of places in POI databases. Real world
geographical features have size and shape, as illustrated in Figure 8. The stands of
a football stadium, where most photos would be taken from, form an "O" shape. In
the illustration, with r = 100m most of the photos would be too far from the central
marker that belongs to the POI. Tuning the value of r inevitably means balancing trade
offs, since increasing r would mean lowered accuracy with smaller spatial features due
to more potentially irrelevant POIs being included.

In Sections 3.2–3.4 we introduce a new method we developed for semantic annota-
tion. We represent places as geographical regions of interest (ROIs). The novelty of
the method is the hierarchical, or layered structure of the ROIs which allows describing
both small features which we call places, and larger features we call areas. Areas may
contain multiple places. Our proposed method that includes region extraction, naming
and trajectory annotation, is called the hierarchical ROI (HROI) method. The method
also includes an algorithm that extends the HDBSCAN density-based clustering to ex-
tract hierarchical layers of clusters. We evaluate our proposed HROI method, compared
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to POI based annotation, in Section 3.5.
The hierarchical regions of interest (ROIs) are extracted from geo-tagged photos as

clusters. This identifies areas where photos are taken more frequently. The density of
the photos can be thought of as a proxy indicator of the popularity of any given area
[26].

There are both general-purpose (DBSCAN[32], OPTICS[7]) and specialized algo-
rithms (P-DBSCAN[57]) that can be used to create a single clustering of photos. The
main drawback of general purpose methods is that they are either unable to cope
with local density variation (DBSCAN) or require manual intervention to produce the
best clustering (OPTICS). This problem is addressed in P-DBSCAN that automatically
adapts to local changes of density. P-DBSCAN still cannot cope with extreme variation
of density, but in our experiments produced competitive results [53].

Using any algorithm that creates a single clustering requires parameter tuning to
produce a multi-layered hierarchy of clusters such that each layer contains clusters of
appropriate size. We therefore approach the problem by using hierarchical clustering,
where the formation of multiple layers is data driven. We use the HDBSCAN algorithm
to create a tree of clusters and develop a new algorithm called HDBSCAN/n to com-
press the tree to a given number of layers such that the hierarchy is preserved. The
details of the algorithm are given in Section 3.3.

The distance between geographical coordinates does not always represent accurately
how related two points are to each other in segmented urban spaces. For example, wide
motorways that are present in most cities form obstacles for pedestrians. In historic
cities, places that are separated by walls or fortifications may not be well connected.
Wider rivers separate regions that may have different historical demographics, were
developed in different eras and therefore have different appeal and features.

The points that are being clustered are photos that have associated metadata. The
photo tags can indicate, whether the two photos belong to the same physical place
or area. Finally, because our experiments are being conducted using Flickr data, the
photos also have Flickr’s "Where on Earth" (WoE) identifier that is associated with
the name of the neighborhood or part of the city.

To include additional geographical (natural and artificial obstacles) and semantic
(photo tags, WoE id) information we introduced a linear combination distance function
between points xi and xj :

ds(xi,xj) = dosrm(xi,xj) +βdWoE(xi,xj) +γdJ (xi,xj) (4)

The parameters α, β and γ are chosen empirically. dosrm is the routing distance
between the two points. We use OpenStreetMap and Open Source Routing Machine
(OSRM) [85] to calculate pedestrian walking distance. This makes it more difficult for
points separated by obstacles to be included in the same cluster.
dWoE in our proof of concept implementation is 0 when the points have the same

"Where on Earth" identifier and 1 otherwise.
The semantic similarity between two points is calculated by the Jaccard distance

between the sets of tags Ti, Tj of the two photos:

dJ = 1− |Ti∩Tj |
|Ti∪Tj |

(5)

Our proposed distance function with semantic components (Equation 4) has side ef-
fects that would not be a concern with a simple spatial distance function. The function
does not have the properties of a true metric, most notably it does not have the triangle
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Figure 9: Spatially overlapping regions, caused by clustering with a distance function that
includes semantic distance. Two points at the same geographical location may appear as
apart from each other to the clustering algorithm. Map data by Google.

inequality property. This complicates spatial indexing, which makes clustering slower.
We have addressed the technical aspects of implementing the clustering efficiently in
[53].

The second side effect is that clusters that do not have a parent-child relationship
may overlap in map coordinate space (Figure 9). The effect is undesirable, because it
complicates semantic annotation. Having several unrelated clusters covering a point
makes the choice of which ROI the point belongs to ambiguous.

3.3 Hierarchical Clustering
In this section we give an overview of the HDBSCAN density-based clustering algorithm
and then describe the extension to the algorithm that we developed for extracting
a layered hierarchy of clusters. We use the new extended algorithm together with
the semantic distance function we introduced (Equation 4) to find the hierarchy of
frequently visited spatial regions.

The HDBSCAN Algorithm
In density-based clustering, the data points can be thought of as leaf nodes in a tree.
Interior nodes represent the clusters that include all the leaves under the interior node.
Each interior node corresponds to a specific density threshold where all the leaves under
it are close enough to be within the threshold according to some definition of density.
The cross-section of the tree at some density threshold represents a clustering of the
data points (Figure 10, a.).

Some algorithms, like DBSCAN, define the density threshold but do not explicitly
create the tree or even require the concept [32]. Others, like OPTICS, create the
tree and leave the task of choosing the appropriate threshold to the user [7]. The
innovation of HDBSCAN by Campello, et al. was the way to automatically find the
optimal clustering by introducing the concept of cluster stability [15].

Campello et al. proposed that we choose the clusters in such a way that the sets
of points belonging in a cluster remain relatively unchanged across as wide a range of
density as possible. They measure this by stability. As the density required to form a
cluster is decreased, clusters appear and are gradually joined together. The lifetime of
the cluster Ci over the continuously decreasing range of density is defined by the two
parameters of HDBSCAN. The cluster is created when it contains at least mpts points
or when two clusters are joined together each containing at least mclSize points. The
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cluster ceases to exist at the density threshold where it is joined into a new cluster.
Let xj ∈ Ci be a point in a cluster Ci. The density level function λmax(xj ,Ci) is

the maximum density at which xj still belongs to Ci. The function λmin(Ci) is the
minimum density level where Ci exists as an independent cluster. The cluster stability
is then [15]:

w(Ci) =
∑
xi∈Ci

(
λmax(xj ,Ci)−λmin(Ci)

)
(6)

In HDBSCAN, the cluster is defined as a maximal set of density-connected points.
These are points that have at least mpts neighbors closer than the core distance ε and
each pair of points is either at most the distance ε from each other, or connected by a
path through the cluster members where each step is less than ε. The density level in
Equation 6 is defined through the core distance by λ= 1

ε .
HDBSCAN creates the optimal clustering C∗ that maximizes

∑
Ci∈C∗ w(Ci) such

that for ∀Ci,Cj ∈ C∗ the cluster Ci is not on the path from Cj to the root of the
tree (Figure 10, b.). The latter ensures that each point belongs to a single cluster, but
does not require that the clusters have the same density. This property is important
for finding ROIs, where local density can vary considerably between busy tourist hot
spots and larger recreational areas.

Our Extension to the HDBSCAN Algorithm
Briefly, HDBSCAN forms a single layer of clusters that persist over a range of densities
and allow local density variations. This can be used to extract a single layer of ROIs
by using only a single parameter mpts = mclSize. For the concept of the hierarchical
representation of the city space, we require the creation of multiple layers. To take
advantage of the automated density selection through cluster stability and the support
for local density variation, we developed an extension to HDBSCAN to produce a n-
layered clustering, called HDBSCAN/n. It is a general purpose algorithm and has
applications going beyond the scope of this thesis.

We define the n-layered optimal clustering as the set of clusters C∗n such that∑
Ci∈C∗

n
w(Ci) is maximized and for all Ci ∈C∗n there are no more than n clusters on

the path from Ci to the root of the cluster tree (Ci included). Because the following
discussion uses the concept of tree depth, we define the depth of the root node as 0
and the depth of the tree d as the depth of its deepest node.

When d < n, creating the clustering is trivial, because all of the clusters need to be
included. For example, to make a two-layered clustering for a tree with d = 1, both
the root node and its children have to be included to maximize the sum of w(Ci).
Assuming n= 1,2, . . . any tree will contain subtrees with d < n and for such subtrees
the optimal clustering is the complete subtree.

In Figure 10, c., the subtree {C4,C6,C7} is trivially solved for two-layered clustering.
An optimal single layer clustering would be the set {C6,C7}, because these clusters
can be selected together. If C4 is selected, C6 and C7 have to be discarded, because
C4 shares a path with both of them. The stability of C4 is lower than the combined
stability of C6 and C7.

Observing that subsets of clusters are mutually exclusive due to being on the same
paths, we designate S1 = {C6,C7} and S2 = {C4}. The solution C∗1 = S1 and the set
S2 is the clusters we can add if another layer is allowed, so C∗2 = S1∪S2.

For disjoint trees, the optimal solution is the union of the optimal solutions of indi-
vidual trees. Any other solution would necessarily have lower total stability. Therefore,
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Figure 10: Hierarchical density based clustering. For simplicity, clusters at the same depth are
assumed to have the same density. The nodes with thick outline indicate the chosen clustering.
a.) Clustering by a cross-section at a density threshold. b.) Clustering with HDBSCAN that
maximizes

∑
w(Ci). The stability w(Ci) is the number inside the nodes. The graphs c.–f.

show the steps of forming the cluster hierarchy with our proposed extension to HDBSCAN.
c.) Beginning of the solution to maximize

∑
w(Ci) when two layers are allowed. The subtree

{C4,C6,C7} is solved. Deeper fill is the set S1 and lighter fill is S2. S1 ∪ S2 is the solution
for the completed subtrees at any given time. d.) Solution after joining subtree {C5} at the
node C2. e.) Both subtrees of the root have been solved from leaves up. f.) Final solution
after joining the subtrees at the root C1. Set S1 is the same as the HDBSCAN solution.
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we can simply grow our intermediate solution over already-solved trees with no connect-
ing parent. In Figure 10 the subtree {C5} also has a trivial solution, so S1 = S1∪{C5}
and S2 = S2∪∅ for the children of C2.

However, when we include the cluster C2 and look at the entire subtree starting
from that node, some paths from the leaves to the root have more than two nodes, so
some clusters cannot be part of the optimal solution. It turns out that in this case it is
not necessary to examine all possible combinations of clusters as solution candidates.
Let S′ = {C2} be the new set of clusters including only the root node of the subtree
we have examined so far. S1 will always be part of the solution, because we know that
if we need to discard clusters to reduce the number of nodes on each path, we should
discard those in S2 first. However, if the total stability of S′ is lower than that of S2,
we should keep the current solution.

In Figure 10, d. the subtree starting from C2 is solved, as the new parent node
replaces the old S2. To solve the entire tree, we traverse it in depth first order. Each
time we go up a level, we first join the solutions from sibling subtrees (Figure 10, e.)
and then make a decision about the parent (or root) node. Figure 10, f. gives the
complete solution C∗2 = S1∪S2 where S1 is the same as the solution for HDBSCAN.

Algorithm 1 gives the general procedure that we developed for creating n-layered
clusterings by keeping track of sets S1 . . .Sn as a priority queue. Each time we encounter
a new parent node that joins already solved subtrees, we compare the stability of the
set containing the new parent S′ to each of S1 . . .Sn. If it exceeds the total stability
of any of the existing sets, it will be placed into the priority queue at that position,
and the currently last set Sn will be discarded. While the problem of maximizing the
stability is combinatorial, by using the priority queue we can solve it in a single depth
first traversal, with time complexity O(N) where N is the number of clusters. The
correctness proof for this algorithm has been sketched in our conference paper [53].

Algorithm 1 The proposed extension of the HDBSCAN density based clustering algo-
rithm to form a n layer clustering (HDBSCAN/n).
1: function max_weight_subset(n,Croot)
2: Initialize Sj ←∅, j ∈ 1, . . . ,n
3: for each child Ci of Croot do
4: Si1 . . .S

i
n←max_weight_subset(n,Ci)

5: for j← 1,n do
6: Sj ← Sj ∪Sij
7: end for
8: end for
9: Find smallest k such that w(Croot)>

∑
C∈Sk

w(C)
10: Sj+1 = Sj for j ≥ k
11: Sk = {Croot}
12: Return S1 . . .Sn
13: end function
14: S1 . . .Sn← max_weight_subset(n, root of cluster tree)
15: C∗n←

⋃nSj
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3.4 Region Naming
Regions of interest represent hot spots that people visit and photograph, as well as larger
areas that have sufficiently high density of photos. To make use of them in semantic
annotation, we need to match each region to an appropriate real world object. In other
words, we need to name the regions.

In this section, we describe the region naming stage of our proposed HROI method
in detail. We integrate two types of information for region naming – known POIs from
a database and the textual information the users uploading the photos have provided.
The process of naming consists of the following stages:

1. Name candidate extraction. We find the names of Foursquare POIs nearby and
also generate possible names from the titles and tags of the photos within the
regions, by selecting n-grams of words used by the greatest number of distinct
users.

2. Vectorized representation of regions. We represent each region as a vector of tag
counts. We then use the latent semantic indexing (LSI) [29] transformation to
create a matrix of region semantic vectors with reduced dimensions.

3. We find name candidates that are semantically similar to regions. Each region
will be assigned the most similar name automatically, but we also use ad hoc
heuristics to detect ambiguous cases and flag these regions. We record the
confidence (semantic similarity) we have that the name is correct.

4. Human assisted resolution of a subset of cases. We use an application that
displays the region, selected name and other similar names for heuristically chosen
problematic cases, allowing the human expert to verify and correct the name
assignments.

The similarity of name candidates and regions is done by comparing them in reduced
dimensionality latent space. The idea behind using latent semantic indexing is that it
will combine similar tags together into one dimension. By combining semantically
similar tags, or terms, we allow themes, or topics of the regions and names to emerge
automatically. This allows us to determine if the name is connected to similar topics
as the tags combined from the pictures of the region.

We also use popularity weighting to prefer names that were used by more users.
Denoting the number of users whose pictures contributed to the name (i.e. the name
appears in their titles or tags) Ncandidate and the total number of distinct users in the
region N , we calculated the weighted similarity as

s= (1−α)scandidate+αscandidate
lnNcandidate

lnN (7)

where scandidate is the cosine similarity between the name vector and the region
vector. In case of POI names, the user counts are taken from check-in counts, so
the weighted similarity prefers more popular POIs. The parameter α ensures that only
names that are already similar to the region tags are considered, popularity weighting
helps to decide between them. We empirically chose α= 0.5.

There are several ways of detecting whether a name assignment based on semantic
similarity could be problematic. In case of POI names, we can check if the POI is
within the region, near it or very far. Many similar candidates with no clear winner
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Figure 11: Trajectory annotation using regions of interest (ROI) layers. The higher layers
allow annotation of the middle trajectory segment and provide context to individual place
visits.

indicates that the program had to make a guess. Low similarity between the best name
candidate and the region tags also suggests that the chosen name could be irrelevant.

Based on the above heuristics, we choose a subset of ROIs to be validated by a
human expert. Additionally, we select regions that are large and dense, because these
regions often contain one or several individual places that are frequently photographed.
There is a tendency that larger regions are automatically named after these smaller
scale places because of the high proportion of the tags related to then in the photos
taken within the region. In our experiments we chose 90 regions for the human-assisted
name resolution.

The human expert reviews the region boundaries and automatically assigned names.
For each of the reviewed regions, they may select another name from the list of name
candidates ranked by similarity, manually type the name or choose to keep the auto-
matically assigned name. Using this process, the expert was able to decide the names
of 90 regions in approximately 2 hours.

While human assisted annotation may not fit well within the paradigm of automatic
knowledge discovery from big data, it is a pragmatic solution to a practical problem
and similar approaches have been described in the literature [6]. In this process, the
automatic and human resolution complement each other. The human expert con-
tributes the most important knowledge to the process, while the mechanical processing
of large amounts of photos and trajectories is left to the software. Two main problems
remain, however. The automatically discovered boundaries of regions may not give the
best results for semantic annotation. In our application, the expert can not adjust the
boundaries. The method also does not scale beyond individual cities, and local expert
knowledge is required.

3.5 Semantic Annotation with Regions of Interest
Named ROIs provide a straightforward way of semantic annotation. For each stay point
on a trajectory, we find the region it lies within (Figure 11). The name of that ROI is
then assigned to the point. In case there are multiple overlapping regions, we use the
following tiebreak criteria:

• For a pair of regions, the one on the lower layer of the hierarchy is preferred, as
it is expected to be a more accurate, finer-scale object.
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• For a pair of regions that reside on the same layer, we compare the distance of
the point to the centroid of the cluster forming the region and the confidence of
the assigned name (semantic similarity of the name to the region).

We evaluated the proposed HROI method of semantic annotation by an experiment
designed to answer two research questions:

1. Does the annotation with ROIs perform better than heuristic matching against
POI databases commonly used in published studies?

2. Does the HDBSCAN/n algorithm, designed to produce multi-layer hierarchies,
perform better than simply stacking layers created with an existing clustering
method?

The task in the experiment was to annotate trajectories extracted from Panoramio
photos in four European cities: Budapest, Tallinn, Venice and Vienna. For ROI shape
discovery we used geo-tagged photos from Flickr and for ROI naming Flickr metadata
and Foursquare places.

For comparison, we included three POI-matching baselines. The first was to query
Google Places for nearby POIs and choose the closest one (GP proximity). The second
method also used Google Places, but used Google’s opaque "most prominent" sorting
method to find the most relevant POI nearby (GP prominence). In both cases, we
attempted to use Google’s POI categories to filter out irrelevant places. The third
POI based method (4sq gravity) used Foursquare places that we associated with the
"gravity" method described in Section 3.1. Foursquare has a fine-grained category
system that we used in filtering out places that are typically not tourist attractions.

To evaluate region shape discovery, we added the P-DBSCAN algorithm as another
baseline. We formed a 3-layered clustering using P-DBSCAN to compare HROI against
an alternative method of ROI shape formation. P-DBSCAN is designed for region
discovery from geo-tagged photos and has an adaptive mechanism for coping with
differences in local density [57]. For each layer, we empirically found parameters that
formed place, larger feature (park, beach) and neighborhood level features [53]. Region
naming was done according to Section 3.4.

The summary results of the experiment are shown in Figure 12. HROI is short for
the proposed hierarchical ROI method with the HDBSCAN/n clustering.

We measure accuracy on two levels of granularity. If the place was correctly iden-
tified, then we consider the annotation correct on place level. Since the hierarchical
approach is designed to explain parts of trajectories that may lie in areas between
hotspots, we separately count annotations that are correct on area level. Some POI
based annotations also received names which represented larger objects so we counted
the correctness of those on area level.

The ability to annotate on area level gives a clear advantage to hierarchy-based
methods in terms of overall points annotated correctly. This satisfies one of the initial
goals of designing the ROI method, namely to increase the coverage of annotations.
However, there was no overall advantage in place level accuracy. The Foursquare
gravity POI association by gravity performed slightly better (49%) than the proposed
HROI method (46%) in assigning place level annotations.

Comparing the results of HROI and P-DBSCAN, the trade off between place level
and area level accuracy is apparent. With P-DBSCAN, hand-tuning the parameters by
visually examining the cluster boundaries appears to have been unsuccessful in terms
of discovering place level structure, which highlights the advantage of the data driven
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Figure 12: Overall annotation accuracy. The bars represent the percentage of places anno-
tated accurately at place level and at area level. Our proposed HROI method provides the
best compromise between covering a higher ratio of stay points and maintaining place level
accuracy.

approach of HROI. At the same time, annotations on area level were the most accurate
overall.

For POI based methods, the source of the POIs plays a major role in annotation
accuracy. For the cities that were part of the experiment, the quality of place metadata
in the Google Places API was so poor that we could not perform accurate filtering. In
many cases the stay points were annotated with the names of locally registered small
businesses which are irrelevant to the tourist.

The accuracy results give us an indirect measure of the quality of region shape
formation. We also designed another experiment where over 300 survey participants
were asked to rate the quality of region shapes on the map in terms of how well they
represent known objects. The survey established that the participants rated the regions
created by hierarchical approaches more highly, preferred in 51% of the cases where
a hierarchical and non-hierarchical clustering were shown side by side. Flat, or non-
hierarchical clustering was rated better in 36% of the cases. The survey showed no
significant differences between the clustering algorithms [53].

In conclusion, hierarchical ROIs give better trajectory coverage than using public
POI databases. We observed a small decrease in place level accuracy, but its effect
depends on the application. If it is acceptable in the application to recommend more
general areas, such as neighborhoods, historical parts of the cities or recreational areas,
the loss of place level accuracy is not important. The hierarchical representation of the
urban space resulted in more accurate region boundaries than a single layer of ROIs,
according to the region shape evaluation survey.

In terms of clustering methods, the proposed HDBSCAN/n outperformed P-DBSCAN
in place level annotation accuracy. This is explained by the practical difficulty of tun-
ing the P-DBSCAN clustering for the annotation task. Therefore, the advantage of
HDBSCAN/n appears to be mainly in automation of the creation of multiple layers.
In area level accuracy and region discovery, HDBSCAN/n did not perform better.
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4 Evaluation of Impact on Recommendations
In Chapters 2 and 3 we have introduced methods of noise filtering and semantic an-
notations of tourist mobility data extracted from geo-tagged photos. In these chapters
we evaluated how well these methods performed in their designated task. Ultimately,
the purpose of developing these methods was to improve the recommendations. In
this chapter we evaluate the impact the filtering and annotation methods have on the
recommendation.

We experiment with a set of recommenders that have been widely used in applica-
tions and thoroughly described in the literature. In the evaluation, we are interested
in the changes the training data preparation cause for each individual recommender.
Hence, in the evaluations it is not important which recommender model performs the
best, but rather, which training dataset causes the recommenders to perform the best.

In Section 4.1 we describe the sequential and session-based scenario of recommen-
dation that we have assumed. We use recommendation models that include both
well-known baselines and methods that have been shown to have high performance in
the session-based scenario. The experiments use offline evaluation metrics. We define
the metrics as well as explain their place in wider context of recommender evaluation
in Section 4.2. In Section 4.3 we introduce predictability, a new metric specifically
designed for sequential datasets. The results of the evaluation are given in Section 4.4.

4.1 Making Recommendations
The task of place recommendation is sequential in nature. Many tourist recommenda-
tion systems [23, 61, 76, 12, 69, 18, 21] and models of recommendation [122, 37, 42]
focus on building trip itineraries. In a simpler but still relevant case of next-place rec-
ommendation, we typically assume that there is a previous history of places that the
recommendation can be based on.

We have assumed a session-based scenario where no information is known about
the user. There are two reasons for this - first, we consider the session-based approach
of practical value because it does not require the system to collect and store personally
identifiable data. Second, in our city-scale evaluation datasets, tourists rarely return
for another visit and therefore including the user in the recommendation model adds
little value. We treat trajectories annotated with place visits as sessions and individual
stay points as session items.

Predictive Models
The recommenders we use are designed to build a predictive model using a set of
training sessions in order to predict the next item in an incomplete test sessions.

Markov chain(MC) learns the transition probabilities between session items from
observations in the training data. Denoting the set of sessions where location lj follows
li in a sequence with Sli,lj and the set of locations with L,

P (lj |li) =
|Sli,lj |∑
k∈L |Sli,k|

(8)

gives the probability of transition from li to lj . The ranked list of recommendations
is the list of all transitions with a non-zero probability, in descending order of probability.

Unless otherwise noted, we use a first order Markov chain defined above. A second
order Markov chain is defined similarly by
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P (lk|li, lj) =
|Sli,lj ,lk |∑
k∈L |Sli,lj ,k|

(9)

where Sli,lj ,lk is the set of sessions where lk was visited after the sequence li, lj .
In case the current session is shorter or the preceding sequence was not present in the
training set, the recommender is allowed to fall back to 1st order Markov chain.

Association rules(AR) similarly learns transition probabilities from co-occurrences
in the training data, but does not consider the sequence of items. The more often an
item has been in the same session with another, the more likely is the transition to that
item. This is useful when we do not wish to emphasize the order of user actions. For
location li, we give the recommendations in descending order of the ranking score rk
for items k ∈ L. For a particular transition lj , the ranking score is

rlj = |Sli ∩Slj | (10)
where Sk is the set of sessions where an item k ∈ L occurred. The transition

probability is

P (lj |li) =
rlj∑
k∈L rk

(11)

Session-based k-nearest neighbors(SKNN) is a neighborhood-based method that,
unlike the above baselines, addresses the sparsity in training data. Possible transitions
include items that not only occurred together with the current item, but those that
occurred in sessions similar to the current session. Denoting the current session s and
the set of nearest neighbors N , the ranking score is computed as

rlj =
∑
n∈N

sim(n,s)1n(lj) (12)

where sim(n,s) is the binary cosine similarity calculated by representing sessions as
vectors in item space. The 1n(k) is the function indicating the membership of item k
in the session n. The set of nearest neighbors consists of sessions most similar to s,
determined using the binary cosine similarity function. [11]

Vector Multiplication SKNN(VSKNN) is a sequence-aware modification of SKNN
that places more importance on more recent items in the current session [83]. The
similarity function is modified to include a decaying weight for items earlier in the
session:

sim(n,s) =
∑
inisi

pos(i)
|s|√∑

n2
i

√∑
(si pos(i)

|s| )2
(13)

Where ni and si are elements of the vector representation of sessions n and s and
pos(i) is the position of the item corresponding to index i in the current session s, or
0 if not in the session. The ranking function is also modified [83]:

rlj =
∑
n∈N

sim(n,s) 1
|s|−pos(lj) + 11n(lj) (14)

The MC and AR methods are included as baselines that represent the opposites in
terms of emphasis on sequence. The SKNN and VSKNN methods represent the state
of the art performance in session-based recommendation [83, 84], at the same time
remaining simple and transparent models that are space and time efficient.
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4.2 Performance Metrics
Evaluation of recommenders is usually done using offline, user study or online meth-
ods. Offline methods use benchmark datasets to measure recommender performance
in terms of accuracy of predicting user actions, but also metrics such as diversity and
coverage. User studies collect feedback from a test group of users of the recommender.
The online methods collect metrics from a deployed recommender application.

Offline methods, especially those that focus on prediction accuracy have been rec-
ognized to have limitations [94, 113]. Their widespread use is mostly due to being
the least expensive method to do extensive evaluations. In some cases, the accuracy
of predicting user actions has also correlated strongly with direct user feedback [27].
Offline methods also have better reproducibility when following good research practices
[28].

We use offline accuracy metrics in our impact evaluation. The results should be
viewed and interpreted with the consideration that they reflect how predictable are
user actions using our metrics. The utility in an actual recommender application may
involve other factors. For instance, the evaluation does not reflect how well the semantic
annotation copes with practical issues such as place name deduplication and language
[77, 78].

In our experimental setup the recommender is given the task to predict the next
item in an incomplete sequence of visited places. The recommenders produce a ranked
list of items P with the most likely item in the first position. The hit rate (HR@n)
metric measures the ratio of tests where the correct item appeared in the top n of the
ranked list:

HR@n= 1
|S|
∑

1Pn(l) (15)

Where S is the set of test cases and 1Pn(l) a function that indicates whether the
correct item l is in the top-n set of predictions Pn for each test case. Since the HR@n
metric does not differentiate between item positions inside the top-n, in more recent
experiments we opted for the mean reciprocal rank (MRR@n):

MRR@n= 1
|S|
∑

1Pn(l) 1
rl

(16)

Where rl is the rank of l in the ranked list P .

4.3 Predictability Metric for Datasets
The datasets used in sequential recommendation have regularities, introduced for ex-
ample by human habits, personal preferences and trends. Despite these regularities
there are always unknowns. We do not know the true causes behind user decisions; ad-
ditionally in session-based recommendation the users are anonymous. Such unknowns
manifest themselves as uncertainty, meaning that from the point of view of recom-
mender systems user actions are a stochastic process.

The prediction accuracy of recommenders varies greatly between different datasets.
The question is then, how much the dataset itself contributes to the prediction error.
We introduce the metric of dataset predictability for the sequential recommendation
task that numerically measures the randomness in datasets.

We define predictability as the probability that the recommender will correctly pre-
dict the next item, given an unfinished session and a history of other sessions. The
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probability can be understood as the average ratio of tests where the recommender
succeeds in delivering the correct prediction in relation to some metric, for example
HR@n. In the simplest case, the prediction is correct if the recommender places the
correct item first in the ranked output list.

Song et al. developed a method of finding maximum predictability of human mobility
traces [112]. They derived Equation 17 that gives the relation between the entropy
rate H(X ) of a stochastic process and the maximum predictability of the sequences
produced by the process.

H(X ) =−Π max log2 Π max − (1−Π max ) log2
1−Π max

m−1 (17)

where m is the number of unique items in the sequences. A thorough explanation of
the derivation and an example of refining the predictability limit by adding contextual
information was given by Smith et al. [110]

Equation 17 can be applied to find the upper bound on predictability for recom-
mender system datasets that contain many sequences, by making simplifying assump-
tions, a.) that the sessions in the datasets are generated by the same stochastic process;
and b.) even if the sessions sometimes occur in parallel in the real world, we treat them
as if they had occurred strictly sequentially, i.e. we define an ordering on the parallel
sessions based on the time stamps of items in sessions.

For practical purposes, the theoretical H(X ) is replaced with an estimate of entropy
rate [128]:

S =
(

1
n

∑
i

Λi

)−1

log2n (18)

Where S ≈H(X ) is the estimate over a sequence of length n. Λi = k
(i)
max+ 1 and

k
(i)
max is defined as the length of longest sub-sequence starting from position i that

appears as a continuous sub-sequence between positions 1 . . . i−1. The quantity S can
be plugged into Equation 17 which can then be solved for the estimate of the upper
bound on predictability, Π max .

The estimated predictability is a limit on recommender performance measured by
the HR@1 metric. It applies to any algorithm, however individual algorithms may have
different and lower limits, caused by factors such as the lack of sufficient training sam-
ples required by the algorithm [52]. Since the aim in this chapter is to compare dataset
preparation methods, we only use the predictability limit determined by randomness as
an algorithm-independent measure.

4.4 Experiments
The experiments were designed to measure the impact of filtering and annotation
techniques on the performance of the recommenders. We assume a session-based
recommendation scenario, where the recommenders learn from a set of anonymous
annotated trajectories. The recommender is then tasked with predicting next place
visits in incomplete trajectories.

We begin with unannotated trajectories extracted from geo-tagged photos in differ-
ent cities. We then prepare training sets using different combinations of the evaluated
methods and measure recommender accuracy using each training set. In general rec-
ommender system terminology, trajectories are sessions and place visits correspond to
items.
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The experiments should confirm three hypotheses: 1.) Filtering improves recom-
mender accuracy due to removing noise in the training data; 2.) Semantic annotation
using our proposed popularity heuristics improves recommender accuracy by differen-
tiating between actual tourist destinations and irrelevant places; 3.) The semantic
annotation method with hierarchical regions that we developed improves recommender
accuracy by covering more of the trajectories and avoiding unnecessarily high annota-
tion granularity in places where interesting objects are densely located.

Datasets
We used the following datasets as the source of tourist trajectories for annotating. The
visit sequences in annotated trajectories (except the testing subset) were used to train
predictive models.

• Panoramio photos from Budapest (October 2002–July 2016, 4061 sessions with
more than one photo).

• Flickr photos from Budapest (January 2003–November 2017, 10277 sessions).

• Flickr photos from Tallinn (March 2006–September 2017, 2883 sessions).

As sources for information about POIs and regions, we used the following data:

• The dataset of Sightsmap [114] that includes coordinates and popularities of
points of interest (POIs) worldwide. The data is derived from Panoramio, Four-
square and Wikipedia.

• POIs from the Foursquare API. The popularity is estimated from the number of
check-ins.

• ROI shapes and names generated from Flickr and Foursquare data using the
Hierarchical ROI method, as described in Sections 3.2–3.4.

Evaluation of the Gravity Model
In this experiment, we compared semantic annotation with the widely used proximity
heuristic (closest POI in some radius r) [96, 23, 12, 76, 69] and the gravity heuristic
we proposed [51]. The gravity heuristic is described in Section 3.1 and uses POI
popularities as weights in annotation candidate selection. We also measured the effect
of noise filtering heuristics as introduced in Section 2.2.

In the experiment we prepared four training datasets, combining filtered and unfil-
tered traces of Panoramio users in Budapest with two annotation heuristics. The POI
data from Sightsmap was used for annotation. Additional 100 sessions were manually
annotated to form the test dataset of sessions.

We let a 2-nd order Markov chain recommender predict the next item after each
item in the test sessions iteratively. Total number of transitions to predict in the
experiment was 805. In our earlier publication [51] we only reported results with
unfiltered trajectories using the HR@3 metric. Table 3 gives the complete results of the
experiment. The gravity heuristic outperforms the proximity heuristic. This indicates
that including popularity information allows more accurate annotation, as the model
was better able to anticipate the transitions in manually annotated trajectories. There
is no obvious positive or negative effect from noise filtering.
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Table 3: Prediction accuracy on tourist trajectories in Budapest, from Panoramio.

Filtered Annotation HR@3 HR@1
no gravity 0.371 0.222
yes gravity 0.365 0.227
no proximity 0.250 0.148
yes proximity 0.237 0.157

Evaluation of Annotations with Hierarchical ROIs
To test the hypothesis that using ROIs improves the quality of annotated trajectories
as the input data for recommender training, as well as obtain more conclusive results
about the noise filtering in trajectories, we measured the impact of these preparation
methods on model prediction accuracy. We experimented on three datasets: Flickr
photos from Budapest and Tallinn, and Panoramio photos from Budapest.

For each dataset, we split the data to training and test splits. The training splits
were prepared using four different methods, while there was only one version of the
test split in each case. We trained well-known sequence prediction models (MC, AR,
SKNN, VSKNN) using each differently prepared training set and evaluated them on
the testing set. If our proposed HROI method produced higher quality training data
than the POI annotation method, then the predictive accuracy of the models should
increase when trained with the trajectories annotated with HROI. Similarly, if noise
filtering improves training data, models trained on filtering data should have higher
prediction accuracy. We also directly the measured predictability of the training/test
splits.

The selection of training and test trajectories was done temporally. We divided
each set of trajectories by time stamps into five roughly three-year training windows,
interleaved with 30-day testing windows. This emulates the deployment scenario where
the recommenders are trained on past sessions and give recommendations for current
sessions. The five-way split reduces selection bias.

The four methods to prepare the training data were as follows:

• Unfiltered and annotated with the gravity heuristic and Foursquare POIs (abbre-
viated as raw 4sq).

• Unfiltered and annotated using the region data derived with the HROI method
(raw HROI).

• Filtered with vcut = 10km/h and rnoise = 0.15, as described in Section 2.2 and
annotated with the gravity heuristic and Foursquare POIs (filt 4sq).

• Filtered as above and annotated using the region data derived with the HROI
method (filt HROI).

To create ground truth data, we manually annotated the test set of trajectories
and converted them to testing sessions. The annotation was done in parallel using
both Foursquare POIs and ROIs. Because neither method could cover each place visit
correctly, we only accepted sessions where there was at most one consecutive place
that did not have a correct annotation using either method, and no places that were
left completely unidentified. Since that would have resulted in discarding a number of
long trajectories, we allowed splitting trajectories into multiple sessions at points that
could not be correctly annotated.
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Figure 13: Prediction accuracy with different training data preparation methods. The graphs
illustrate how our proposed filtering method and annotation with hierarchical regions (HROI)
impact the quality of the training data, compared to unfiltered data and annotations with a
POI database. We measure the impact by training and testing with different predictive models.
Compared methods: unfiltered data annotated with Foursquare POIs ( raw 4sq); filtered data
and Foursquare POIs (filt 4sq); unfiltered data annotated with hierarchical ROIs ( raw HROI);
filtered data and HROIs (filt HROI).
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Figure 13 reports the result of the experiment measuring the impact of data prepa-
ration methods on model prediction accuracy. We report the next item prediction
accuracy results using the MRR@5 metric over each dataset, tested with four different
models.

For the Budapest datasets, when the training data is annotated with our proposed
hierarchical regions (HROI) the prediction accuracy is increased, compared to the POI
based methods (4sq). However, this result is not reproduced on the Tallinn dataset.
We hypothesized that this is due to lower quality region boundaries, specifically regions
that are fragmented into small pieces. Since the HROI method as described in our
earlier publication [53] and in this thesis does not include place name deduplication,
these fragments were treated as different places. To test this hypothesis, we applied
simple deduplication by merging places with exactly matching names together. The
results are shown in Figure 15 and confirm that the lowered performance was caused
by duplication of places.

The results of the prediction accuracy experiments imply that our proposed rep-
resentation of places as hierarchical regions has a positive impact on the output of
predictive models. However, the accuracy of region boundaries and naming is critical
here. Both boundary and naming accuracy can be improved by place deduplication for
which methods were presented in the earlier publications of our research group [77].

Filtering has no significant positive or negative impact on prediction accuracy. This
could be caused by the filter failing to detect all types of noise (see Figure 6) as well
as the filter being too aggressive, resulting in removal of valid training samples.

In Figure 14 we report the upper bound on the theoretical predictability for each
of the training datasets. Again, the HROI annotation method gives an increase in
predictability, while filtering has a small effect that fluctuates between increasing and
decreasing the predictability. Due to region fragmentation in ROI extraction for Tallinn,
the predictability is not increased on that dataset with the HROI method.
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Figure 14: The impact of filtering and annotation stage on information theoretical predictabil-
ity Π max of the visit sequences derived from geo-tagged photos.
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Figure 15: Comparison of data preparation methods on the Tallinn dataset using simple place
deduplication. The accuracy of the predictive model is improved by deduplication when the
semantic annotation is done using the hierarchical ROI method (HROI) that we developed. raw
4sq - unfiltered data annotated with Foursquare POIs, filt 4sq - filtered data and Foursquare
POIs, raw HROI - unfiltered data annotated with hierarchical ROIs, filt HROI - filtered data
and HROIs.
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5 Conclusions
We have described a framework of place and trip recommendation systems that provides
the workflow from data acquisition to recommendation (Figure 16). The workflow uses
geo-tagged photos as a data source, although it is possible to use other sources in
specific stages. For example, trajectories from accurate positioning devices like GPS can
be used instead of traces generated from photos. This would require using appropriate
stay point detection and noise filtering techniques.

We divide the workflow in two stages: knowledge engineering and creating a pre-
dictive model. The contributions of this thesis include both enhancements to the
knowledge engineering stage, with the aim to improve the performance of the predic-
tive models through higher quality training data, as well as quantitative evaluations of
the methods used in the knowledge engineering stage. To the best of our knowledge,
there has been no systematic study of the effects and performance of data preparation
methods in the context of place recommendation.

The first step in the knowledge engineering stage is trajectory extraction. In the
trajectory extraction step, we used existing methods to select tourists and their photo
traces. We developed a simple threshold-based heuristic to filter erroneous data in
these photo streams that uses geography-aware estimates of movement speeds. We
also proposed a new clustering technique to find stay points. This technique is aware of
the geographical features and therefore will not attempt to cluster together points that
are separated by obstacles that prevent movement. We did small-scale quantitative
evaluation of the tourist selection and our stay point detection algorithms, as well as a
quantitative evaluation of the noise filtering method on a synthetic dataset.

We found the tourist selection method to be 90.2% accurate on a validation set
of 234 users. Our proposed stay point detection method produced accurate clusters
representing a visit to a single place in 95.7% of 1716 evaluated stay points. Because
there are no baselines to compare these measurements, we cannot draw definite con-
clusions about whether this level accuracy is sufficient. Whether we correctly capture
the behavior of our target group of users could only be measured in a user study or
online evaluation.

In the experiment with synthetic data, the noise filter was very effective in detecting
invalid coordinates. The filter detected 97% of the photos with invalid coordinated in
the synthetic dataset. Incorrect time stamps still present a challenge. The distribution
of noise is such that overall the filter detects around 60% of the noise with the settings
we used in the experiments.

The second step in the knowledge engineering state is semantic annotation, where
place names get assigned to stay points in trajectories. Typically, proximity to known
POIs, represented as single points on the map, has been used, although the more
spatially accurate representation of places as regions of interest (ROIs) has also been
employed in the literature. We proposed that because the urban space forms a hierarchy
of places, a layered hierarchy of regions should be used in semantic annotation. We
developed new methods to extract the layered hierarchy of places represented as ROIs
in a data-driven manner, as well as semantic similarity based methods to find the names
for the places.

We asked over 300 residents of Tallinn to rate the ROI boundary accuracy by letting
them compare region boundaries produced with single and multi-layered methods and
to judge how well these match to actual geographical objects. The responses to the
survey indicated that the hierarchical representation produces more accurate region
boundaries.
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Figure 16: Architectural view of the workflow from photos to recommendation.

We evaluated the annotation accuracy of our proposed method using hierarchical
regions (HROI) by comparing it to baseline POI-based methods. We separately mea-
sured accuracy on area and place level, to determine both how the addition of larger
areas improves annotation and how the method performs on the finer granularity place
level. The aggregate results showed that on place level (building, statue, establish-
ment) the accuracy of HROI was close to the best POI based method. At the same
time HROI increased coverage of trajectories by adding area level (park, neighborhood,
island) annotations, with overall 76% of stay points receiving correct place labels. The
only negative aspect of HROI was its high computational cost, caused by the choice
to use a semantic distance function instead of more conventional spatial distance.

Our proposal of introducing the human expert into the ROI naming process may
seem controversial in the big data era. However, we argue that pragmatic decisions
are required in applications. In industry applications that integrate recommenders, it
is common to use content editors and curators in various fields such as entertainment,
fashion and news. Therefore the human expert should not be viewed as the band-
aid for the method, but rather that the two complement each other. The automated
processes can prepare and filter the data in a way to minimize the cost of the work of
the human expert. The main concern with this approach is scalability when we move
to a worldwide scale.

As part of the hierarchical ROI boundary extraction, we developed an extension
to the existing HDBSCAN spatial clustering algorithm. The extended algorithm can
automatically produce a multi-layered hierarchy that represents the most stable con-
figuration of clusters. The stability in this context means that even if we change the
requirements of how densely the data points should be located to form a cluster, the
cluster boundaries change relatively little. Our proposed extension called HDBSCAN/n
is a general purpose algorithm that can be applied in applications other than place rec-
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ommendation or semantic annotation.
In the main evaluation experiment, we measured the overall impact of the methods

we developed to recommendation. We chose the session-based scenario of recommen-
dation that has many practical advantages in place and trip recommendation. Namely,
by adopting this model we can develop applications that do not require much input from
the user towards receiving recommendations. The session-based model accommodates
anonymous users which is of interest in the privacy-conscious era.

We evaluated the impact of our proposed data preparation methods using prediction
accuracy metrics. We found that the choice of annotation method has significant
impact on the recommender performance. We achieved better prediction accuracy
with training data annotated using HROI, compared to a POI-based heuristic, however
this required that the cluster boundaries corresponded to the places that were typical
visit destinations. In one case, cluster fragmentation required name-based merging of
discovered places to get a measurable benefit from the HROI method.

We measured no significant positive effect from the noise filtering method that we
proposed. The failure of the noise filter in impact evaluation can be attributed to
the overall low performance of the filter - the cost of achieving approximately 60%
recall resulted in the trade off of precision also dropping close to 60% on the separate
synthetic dataset filter set. Assuming that the distribution of noise in the synthetic
dataset is close to the real world data used in evaluation, similar numbers of both
invalid and valid samples get removed and the effect becomes indistinguishable from
random sampling noise. We can therefore conclude that the high detection rate of
coordinate noise alone is not sufficient to have a positive impact.

We additionally measured the predictability of training and testing splits created
for the impact evaluation experiments. For this, we used an information theoretic
predictability estimation method that we adapted for session-based recommendation.
The adapted method is model agnostic and designed specifically to evaluate datasets.
The predictability measurements confirmed all the results from the model accuracy
experiments: 1.) HROI improved the predictability of the datasets; 2.) HROI requires
accurate region boundaries or deduplication heuristics to have impact; 3.) our proposed
noise filtering method does not have positive impact.

The results of the experiments show that the hierarchical ROI representation of the
urban environment we have proposed for semantic annotation is an improvement com-
pared to naive methods in annotation accuracy, coverage of input data and predictive
model accuracy. The early results we published regarding noise filtering [51] were not
confirmed to have practical benefit in a different experimental setting. However, this
should not be interpreted as the invalid data having no detrimental effect. Rather, the
noise filtering needs to be improved.

Our research represents small steps forward in several of the stages involved in
building a good model for place and trip itinerary recommendation. Substantial work
remains to be done.

In noise filtering, we did not develop a good heuristic to detect cases where photo
time stamps are spaced apart realistically, but the trajectories themselves are not real.
For example, the user might upload travel photos slowly over a day in an arbitrary
order, with the upload or editing time stamps being assigned to photos. Increasing the
detection rate of such cases may be required to get a measurable benefit from noise
filtering.

Semantic annotation with regions aims to represent real-world places more accu-
rately, hence avoiding issues like designing heuristics to select the correct POI from
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among multiple candidates. However, the process as outlined has two variables that
can both be sources for error - the region shape and region name. Additionally, the
name selection is dependent on the shape. While the region shape is the intuitive
representation of spatial extent of places and useful in visualization, it is not strictly
necessary. Methods that do consider the spatial extent of places but do not depend on
exact shape should be evaluated. One possibility is to use a grid structure similar to a
quadtree where names are found for grid cells at different spatial resolution.

Perhaps the most significant shortcoming of our proposed HROI method is that the
version described here does not address two important practical issues: deduplication
of places and support of languages. In the one experiment we performed with dedu-
plication, it improved the accuracy of the trained recommendation models, so there is
also quantitative evidence that this step is essential in data preparation.

We also developed an algorithm to extract multi-layered clusterings from the tree
produced by HDBSCAN. Since it is a general purpose spatial clustering algorithm it
should be evaluated in the context of other potential applications.

The research presented in this work began before 2013 when public APIs allowed
easy access to various social networks and other applications that had a large user
base contributing geo-tagged data. In the following years data breaches, as well as
waning interest from large data providers have caused closures and limitations of APIs.
Public distrust and privacy concerns have motivated tighter legislation in terms of not
only distributing, but even storing personally identifiable information. In this light we
should not only ask the question, what else can we do with geo-tagged data in place
recommendation, but also, how can we move further when we have limited possibilities
to use this data.
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Abstract
Place Recommendation with Geo-tagged Photos
Place and trip itinerary recommenders assist users in planning visits to unfamiliar des-
tinations. Unlike in online retail and media, where users interact with applications
and data about consumption is accumulated directly, data about place visits is not
readily available. To build recommender models, data acquisition methods need to be
developed. We focus on the implicit place visit histories in geo-tagged photos.

The user photos are sparse in both space and time and the way the data is created
introduces specific types of noise. We describe trajectory extraction with awareness
regarding these issues. To determine place names, we introduce a hierarchical repre-
sentation of areas and places that captures their shapes and sizes, called hierarchical
regions of interest (HROI). We mine region data by combining geo-tagged photos and
Foursquare venues.

We approach the recommendation of places and trips as a sequential recommenda-
tion problem, where the order of places visited is considered important. Also, we adopt
a session-based model that places low demands on the amount of data required from
the user to make recommendations. Within this context, we evaluated the impact of
the proposed methods, compared to naive approaches. The experiments confirmed that
recommenders trained with data prepared by the HROI method had better prediction
accuracy. We also confirmed that the HROI method has approximately similar annota-
tion accuracy compared to the best POI based method, but annotates more places by
including larger areas. These results mean that semantic annotation using ROIs is an
improvement compared to the commonly used POI based methods. We were unable to
confirm any positive effect from filtering, suggesting that further development of the
filtering technique is needed.
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Kokkuvõte
Geomärgistega fotode kaevandamine reisisoovitusteks
Reisisoovitussüsteemid aitavad kasutajatel planeerida reise sihtkohtadesse, mida kasu-
tajad ise piisavalt ei tunne. Erinevalt veebipoodidest ja Interneti vahendusel meedia tar-
bimisest ei teki turismirakenduste kasutamise käigus tingimata andmeid kasutajate te-
gelike külastuste ja eelistuste kohta. Seetõttu vajatakse soovitusmudelite koostamiseks
eraldi andmekaevemeetodeid. Käesolevas doktoritöös keskendutakse geomärgistega fo-
tode kaevandamisele kasutajate käitumise modelleerimiseks.

Fotod paiknevad ajas ja ruumis hõredalt ning viisid, kuidas neid märgendatakse, põh-
justavad asukoha- ja ajaandmetes vigu. Kirjeldame kasutajate liikumiste ja külastuste
kaevandamise viise, mis arvestavad nimetatud probleemidega ning suudavad filtreerida
vigadest põhjustatud müra. Kasutajate tegevuste kirjeldamiseks on vaja neid seosta-
da kohtade nimedega, mille leidmiseks esitame hierarhilise esitusviisi linnaruumi kirjel-
damiseks, kus kasutatakse kohtade esitusena erineva suurusega regioone. Regioonide
leidmiseks analüüsime geomärgendatud fotode tihedust ning nende seost Foursquare
andmebaasis kirjeldatud kohtadega.

Kohtade ja reisikavade soovitamine on ülesanne, kus kohtade ja tegevuste järje-
kord on oluline. Me eeldame ka sessioonipõhist soovitusmudelit, mis ei nõua kasutajate
poolt eelistuste sisestamist ega kasutajate isikustamist. Selles kontekstis hindasime töös
kirjeldatud andmekaeve meetodite mõju soovituste täpsusele. Doktoritöös kirjeldatud
hierarhiliste regioonide põhine andmete rikastamise meetod omas selget positiivset mõ-
ju soovitajate täpsusele, võrreldes varasemas kirjanduses kasutatud tehnikatega mis ei
kirjelda kohtade ruumilist ulatust ja seoseid. Meetod suurendab ka õigesti kirjeldatud
kasutajate külastuste hulka, kuna suudab kirjeldada külastusi suurematesse aladesse,
nagu pargid, linnajaod jne. Tulemuste põhjal võib järeldada, et linnaruumi kirjeldamine
hierarhiliste regioonidena annab kasutajate tegevuste modelleerimisel olulist lisaväär-
tust.

Katsete käigus ei tuvastanud me olulist positiivset efekti töös kirjeldatud mürafiltri
kasutamise korral. See viitab, et müra filtreerimine nõuab praktiliste rakenduste jaoks
täiendavat edasiarendust.
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Abstract 

We analyse and combine a number of world-wide crowd-sourced geotagged databases with the 
goal to locate, describe and rate potential tourism targets in any area in the world. In particular, 
we address the problem of finding representative names and top POIs for popular areas, with 
the main focus on sightseeing. The results are demonstrated on the sightsmap.com site 
presenting a zoomable and pannable tourism popularity heat map along with popularity-sorted 
POI markers for concrete objects. 

Keywords: crowd-sourced mapping; popularity analysis; heat map; entity disambiguation  

1 Introduction 

The goal of this work is to build a world-wide database of the sightseeing popularity 

of concrete places (POI-s) and wider areas in the world, using purely crowd-sourced 

data. By sightseeing popularity we mean the estimate of number of people visiting the 

place and considering it as an interesting place for sightseeing, as opposed to very 

popular places with no or very little potential for sightseeing, like hospitals, schools, 

gas stations, bus stops and airports.  

Obviously, some of the abovementioned popular non-sightseeing places like schools 

and railroad stations may in some exceptional cases be sightseeing places as well: 

famous old colleges, Grand Central Terminal of New York, etc. Two separate 

extremely important categories of objects in tourism industry – hotels and restaurants 

– are ambivalent as well: on one hand, utilitarian and not necessarily a target or cause 

for travelling, on the other hand, an important source of emotions and sometimes also 

an important partial motivation for travel. 

As said, our work is focused on popular sightseeing places regardless of their 

category. Hence we are not using any data sources like TripAdvisor 

(http://www.tripadvisor.com/), Expedia (http://www.expedia.com/), UrbanSpoon 



 

(http://www.urbanspoon.com) or Zagat (http://www.zagat.com) which are primarily 

focused on specific categories, typically hotels and/or restaurants. Clearly, the hotels 

and restaurants are among the best crowd-described, -mapped, -reviewed and -rated 

tourism objects already. 

 

 

 

 

 

 

Fig 1. A screenshot of the heat map for most of the world on a single picture, with 10 

top spots (1. New York, 2. Rome, 3. Barcelona, 4. Paris, 5. Istanbul) marked. Europe, 

especially the belt from Netherlands to Italy as well as the mountainous areas and the 

Spanish coastal areas dominate. In U.S. the mountainous areas in Utah and Colorado 

are well marked, in addition to coastal cities. The original picture is colour-coded as a 

proper heat map. 

The sightseeing popularity database we build is used in the sightsmap.com site for 

showing a zoomable and pannable touristic popularity heat map for any area in the 

world as an overlay on the standard Google maps (http://maps.google.com/). Popular 

areas on the map will be labelled with an appropriate crowd-sourced name. Concrete 

popular places will be also shown on the map with colour-coded markers in the order 

of the relative popularity in the currently visible map area. 

There are numerous application possibilities for such a database. First, it is already 

used for showing map overlays geared towards finding interesting POI-s to visit in 

any region, large or small, in a uniform manner anywhere in the world. Second, the 

database can be used as an input for a tourism recommender like Sightsplanner 

(Luberg et al., 2011; Luberg et al., 2012). Third, the database can be used for doing 

popularity analyses for the tourism industry. 

There are also several advantages to using crowd sources as contrasted to POI 

databases and guides already created by experts in the tourism business. The crowd-

sourced approach guarantees that there are no significant holes, i.e. interesting places 

and areas unmarked, and that the popularity estimates are, despite inevitable  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. A screenshot of the heat map for the north-western France, with 10 top spots (1. 

Paris. 2. Versailles, 3. Euro Disneyland, 4. Mont Saint Michel, 5. Honfleur) marked. 

The castles of the Loire Valley form the central belt. The original picture is color-

coded as a proper heat map. 

 

Fig 3. A screenshot of the heat map for Manhattan, with 10 top spots marked. The 

open marker popup window links to the Wikipedia and Foursquare pages of the 

Metropolitan Museum of Art. The original picture is color-coded as a proper heat 

map. 



 

fluctuations, relatively objective, which is very hard to achieve by a small number of 

experts. Last not least, the popularity measurements can be done uniformly and 

comparably all over the world. 

In the next section we will provide a brief overview of the data sources and the main 

algorithms employed in our system. In the section 3 we will describe the relations 

between the data sources and the aspects of merging and enriching data in more 

detail. Section 4 will present experimental results and we will end our paper with 

related work and conclusion. 

2 Different kinds of popularity and data sources 

Although our methods focus on detecting sightseeing popularity, the notion is 

ambiguous and contains several different subcomponents (visual 

beauty/interestingness, general public awareness about the place, the number of actual 

physical visitors etc.). Each of the data sources used covers some components much 

better than the others; hence they complement each other well. The data sources have 

been harvested using their public web API-s (Panoramio (www.panoramio.com/) and 

Foursquare (https://foursquare.com/)) or downloaded in the already converted 

semantic format (Wikipedia (http://en.wikipedia.org) downloaded in the form of 

DBpedia RDF database, later complemented with the public Wikipedia logfiles). 

Harvesting and downloading has been performed during 2012. 

 Our main data source Panoramio.com represents the visual component of 

sightseeing: something beautiful or interesting to see. Panoramio contains ca 

44 million geotagged photos uploaded by users. For several reasons, the 

Panoramio photos are dominated by these with touristic and sightseeing 

interest (in contrast to more private photos on Flickr 

(http://www.flickr.com/)). Google maps and Google earth 

(http://www.google.com/earth/) use the Panoramio photos as their photo 

layer. We have downloaded only the metadata (location, photographer, title), 

not the actual photo files. 

 The second data source Wikipedia represents the general public awareness 

about the place. We could safely say that all the interesting places, historic 

events, people etc. with public interest above a certain threshold do have a 

Wikipedia article. Places and historic events are normally geotagged in 

Wikipedia. The popularity – the exact number of readings in a selected time 

period – of each Wikipedia article can be obtained from the publicly 

available logfiles. We are using ca 700 000 geotagged Wikipedia articles 

with types which do not indicate noninterestingness for touristic purposes 

(like articles about plants, animals, people). We use full logfiles for two days, 

one selected from summer, the other from winter. 

 The third data source Wikitravel (http://wikitravel.org/) essentially 

complements Wikipedia: places: above a certain touristic interestingness 



 

threshold normally have a Wikitravel article corresponding to some 

Wikipedia article. We are using the list of existing Wikitravel article names 

to detect whether a Wikipedia article has a complementing Wikitravel article 

as well. 

 The fourth data source Foursquare gives an estimate of the number of people 

actually visiting the place. A large percentage of visits (and a large 

percentage of Foursquare places) are done and created by local people 

visiting offices and eating lunch. Foursquare, differently from all the above 

sources, has a fairly detailed and well-used system for the crowd-sourced 

typing of places. We have downloaded not the whole Foursquare places 

database, but only ca 2 000 000  places, taking the places Foursquare 

presents when asked for a circle around some of the top hotspots we have 

previously found out from the analysis of the Sightsmap photos. We harvest 

several concentric circles around each place previously determined to be 

visually popular enough: small circles for objects in the cities and large 

circles outside or around the cities. In the other words, we have only 

downloaded the more popular Foursquare places in the neighbourhood of the 

more visually popular (world-wide) places.  

3 Heat map generation, basic labelling and data merging 

The heat map generation has two separate outcomes. First, it generates the visual heat 

map overlays for the map. We use the browser-based Google maps as the underlying 

map. Second, it generates a detailed popularity data for each small rectangular area (a 

pixel on the heat map) for each zoom level, which is later used for labelling, 

harvesting additional information etc. 

The heat map generation is done separately for six different zoom levels of the world, 

each with each own granularity. Additionally, the seventh layer is a set of high-

resolution heat maps, each typically covering one city, created for ca 15000 top spots 

in the world. The resolution of these high-resolution heat maps depends on the 

popularity rank of the hotspots: the more photos, the higher the resolution, up to the 

street level for the top 500. 

Our algorithm takes into account both the number of photos and the number of 

separate photographers in the Panoramio database for each area. The colour of each 

pixel on the heat map is calculated by a logarithm-like root function, different for 

each zoom layer. We use one byte for the colour information, with the the top popular 

places being bright yellow, followed by orange, red, purple and blue hues. 

3.1 Basic labelling with Wikipedia 

The pure visual popularity heat map lacks a clear indication of what exactly is there in 

a hot area. In short, the top spots in each view have to be marked and the markers 



 

should ideally contain the name and the pointers to the most relevant information 

about the places.  

Our basic solution for creating these markers, finding the titles and providing pointers 

is to look for a most popular geotagged Wikipedia article at or very close to each top 

hotspot at each heat map grid. Articles with an obviously unsuitable type (like plants, 

animals, and people) are excluded. This method guarantees that, for example, on the 

whole-world view where each hotspot pixel corresponds to a relatively large area, we 

automatically get the Wikipedia city articles as the most popular, but as we zoom in, 

the area for each pixel becomes smaller and we will start getting markers and articles 

about villages, beaches, castles etc.  

The actual algorithm is the following. First we cluster the heat map dots to avoid 

showing lots of markers very close to each other. Then we look for the most popular 

Wikipedia articles near the hotspots: the higher-ranked a heat map spot is, the larger 

the area to search. If nothing is found or the found article has a much lower popularity 

than the heat map spot, we do not attach anything to the hotspot. Otherwise we 

connect a hotspot to the Wikipedia article plus the corresponding Wikitravel article, if 

available. 

As mentioned before, in order to generate the popularity data and a popularity-sorted 

list of Wikipedia articles we use the logfiles mentioned before plus an additional 

coefficient giving a significant bonus to Wikipedia articles with a type suitable for 

sightseeing, for example, world heritage sites. 

It is worth noting that knowing a highest-ranked Wikipedia article for an area helps 

users to google for more, since the article always gives us a title of the place to look 

for. 

3.2 Basic merging with Foursquare 

The ultra-high-res heat maps for which we do load Foursquare data is populated with 

the combined Wikipedia and Foursquare markers for top spots in the heat map, using 

an algorithm which – similarly to the Wikipedia labelling algorithm from the previous 

chapter – first tries to associate Wikipedia and Foursquare objects to the most popular 

places on the map and finally interleaves the remaining, unmatched top Wikipedia and 

Foursquare articles to the mix, even if they are not located near a visually attractive 

spot.  

Foursquare places merging with Wikipedia articles is performed using an algorithm 

which takes into account both the geographical distance and a similarity of the names 

of the place vs. the article. In order to be merged, both of these parameters must be 

sufficiently similar. 

Foursquare locations are ordered based on the combination of different users ever 

checked in and the type of the place. First, we exclude both geotagged Wikipedia 

articles and Foursquare locations with obviously non-geographic or non-sightseeing 



 

type (homes, offices, bus stops etc.). Second, we add bonuses to articles and locations 

based on the suitability of their type: for example, castles, churches and public 

squares get different bonuses. 

In most cases the geographical coordinates of the underlying visually popular spot, 

the closest popular Wikipedia article and the corresponding Foursquare location 

(close both by coordinates and the name), as well as the name of the article/location 

are noticeably different. We use a relatively complex heuristic algorithm to determine 

the most suitable name and coordinate to present for the user as a marker. The 

percentage of errors our algorithm makes varies a lot for different zoom levels and 

regions and has not been measured with a sufficient quality to present it in the paper. 

4 Labelling areas and merging objects: issues and improvements 

The general idea behind labelling visual hotspots was briefly described above. Here 

we will present some main problems we have encountered and propose ways to 

improve our system. 

For every visual hotspot we try to to find a matching Wikipedia article. A significant 

percentage of popular hotspots will get a match from Wikipedia. We try to find the 

name for non-matching objects by looking at Panoramio pictures nearby. We take a 

certain area around the hotspot (for example, 1 km radius) and look at the titles of 

pictures within that area. Based on this information we try to get the name of the 

object in the hotspot. 

Table 1. An example of candidate list for pictures near Cliffs of Moher. The best 

match is has rank 1 and n 3 (marked with italics). Some less frequent candidates are 

omitted. 

Candidate n Rank Pos Total %  

moher 1 1 656 859 76.4  

of 1 2 631 859 73.5  

cliffs 1 3 587 859 68.3  

of moher 2 1 595 859 69.3  

cliffs of 2 2 559 859 65.1  

moher ireland 2 3 67 859 7.8  

cliffs of moher 3 1 534 859 62.2  

of moher ireland 3 2 64 859 7.5  

cliffs of moher ireland 4 1 60 859 7.0  

The title of the picture is tokenised into lower case words. We ignore commas, full-

stops etc. For every tokenised title we will find the word n-grams for n being from 1 

to 4. An n-gram is combined by taking n consecutive words from the title. A simple 

example: given a title "A picture of Big Ben", we will end up with tokens: "a", 

"picture", "of", "big", "ben". All 1-grams are: "a", "picture", "of", "big", "ben". And 

all 4-grams are: "a picture of big", "picture of big ben". 



 

After finding n-grams for every picture in the area of interest, we take the 5 most 

frequent n-grams for every n. We will end up having up to 20 n-grams (5 most 

frequent for every n=1..4) for a hotspot which we consider name candidates. 

An example candidate list for "Cliffs of Moher" (pictures near Lahinch, Galway in 

Ireland) is presented in Table 1. The column n stands for n used in n-gram (how many 

tokens is used to form up a candidate), Rank stands for rank in current n (1 being the 

most frequent n-gram), Pos ("positive" pictures) is a number of pictures which 

contain the given n-gram, Total represents the total number of pictures near by and % 

shows the percentage of "positive" pictures. We have marked the correct candidate in 

the table. 

The given example illustrates already some problems we have with this methodology. 

After generating a list of candidates, we have to pick the correct candidate. Finding 

the correct one is not so straightforward. It is obvious that we cannot use the most 

frequent candidate as the final name, because it may-be just part of our final name. If 

our final name consists of 3 words, then every word alone in this name has at least the 

same or even higher frequency. This is very clear in the example: “cliffs”, “of” and 

“moher” all have higher frequency than “cliffs of moher” together. 

The idea we have with the candidate selection is to find the longest candidate which 

has frequency above a certain threshold. For example, if the threshold is 30%, then we 

would find “cliffs of moher” to be the best candidate. To improve the precision, we 

are planning to apply machine learning to find the best threshold (or may-be even 

have additional indicators for the best pick in addition to frequency and term count). 

Another problem is more related to the concept of taking pictures. It often happens 

that bigger (high) objects can be captured only from distance. It is very hard to take a 

picture of Eiffel Tower when being right in front of it. The same applies for our 

example “Cliffs of Moher”. The candidate list we presented earlier is actually taken 

from about 2 kilometres from the object itself (object location based on Wikipedia). 

Wikipedia location for the cliffs has about 400 pictures and 267 mention “Cliffs of 

Moher”, while 2 kilometres away the count of pictures is about 800 and 534 of those 

mention the correct object. 

For our system, we actually need both those places. If later we want to have a 

recommendation of the best sightseeing places, we can prefer the distant location to 

take pictures. The 2 kilometre gap between the objects makes it harder to merge them 

into one. Currently we will have two separate objects (even though the name of two 

places could be the same). 

In the next section we will present some experiments with Panoramio picture titles. 

All the work presented is based on the methodology described in the current section. 



 

5 Experiments and Results 

We use two different datasets for our tests: pictures from United Kingdom and 

pictures from France. For every popular place we have found up to 20 possible 

candidate titles. In order to evaluate our simple approach, we use Wikipedia to extract 

titles of popular objects. For every popular object we find a Wikipedia article with the 

same or close geocoordinates. In case there are several Wikipedia pages for one 

location, we try to take the most appropriate (popular and type-wise suitable). 

Obviously, not all visually popular locations have a Wikipedia entry. In our evaluation 

we only consider those locations which have a linked Wikipedia article. After 

generating all the n-gram candidates for a location we will see whether the Wikipedia 

name is within those candidates. Statistics about the datasets can be found in Table 2. 

Table 2. Statistics about the datasets for UK and France. 

Property UK France 

Hotspots 14 768 13 621 

Wikipedia objects 9753 9931 

Panoramio picture count 1.4M 1.5M 

Wikipedia object match 5458 5531 

Match % 56% 56% 

As shown in the Table 2, we were able to find about 56% Wikipedia objects from the 

Panoramio pictures. This means that the Wikipedia name matches (we allowed 

Levenshtein distance (Levenshtein distance, edit distance, 

http://en.wikipedia.org/wiki/Levenshtein_distance) up to 3) with one candidate. We 

outline several reasons why some objects are not found/matched: 

 The number of pictures in the close vicinity is very low (or even zero). If 

we have an object and only 3 pictures mention that object, we want to look 

at pictures from the bigger area. We can extend the search area, and end up 

with 20 new pictures, but none of those mention the object we were looking 

for (all the new pictures mention some other object). 

 Wikipedia and Panoramio coordinates do not match. We look only those 

matches which are close to each other. For our matching evaluation we need 

Wikipedia and Panoramio pictures to be very close. It may happen that the 

source data has somewhat rounded coordinates (0.01 difference in latitude 

or longitude number can mean 1 km distance). Another possibility is that 

some objects are usually pictured from a distance. A good example was 

given in the previous section about Cliffs of Moher. 

 Different name variants. In Wikipedia, some objects have additional 

information like county or country in their titles. For the Wikipedia place 



 

"Lincoln, England" we have found an n-gram "Lincoln", which is a correct 

match. These kinds of matches are not counted in our "match" number. 

 The Panoramio title is too general. For some objects, there are a lot of 

pictures which indicate the name of the city or county where the object is 

located. For example, the case where there are 100 pictures near a certain 

Wikipedia object and only 3 mention the object itself. Other pictures 

mention the city, the county etc. It can easily happen that  more general n-

grams push the correct object out. 

Our dataset for the described experiments has about 14 000 "hotspot" objects and 

about 10 000 Wikipedia objects. For the objects with Wikipedia articles, we could 

combine Panoramio and Wikipedia data to validate the title of the object. For the rest, 

we have to rely on Panoramio pictures (or on some additional external data source). 

Usually the title generated from the Panoramio title n-grams is not wrong, but it might 

be too general or a slightly different variation than Wikipedia article would have. We 

estimate that the Panoramio based object titles are correct in at least 56% of cases. If 

we add different name variations and more general objects, we might end up with 70-

80 %. 

6 Related Work 

Heatmaps are used in various domains in order to visualise intensity of a certain 

values. We mention few which are also related to tourism. Fisher (2007) uses tile 

download statistics from Microsoft map server to present popular areas. He calls the 

system Hotmap. Every time a user looks a map, she downloads visible tiles from the 

server. Objects (and tiles) which are watched more often, have higher download 

numbers and they will become more popular for Hotmap. They present different ways 

to use heatmaps mentioning also a possibility to draw users' attention to prominent 

objects. 

Kurata (2012) presents a potential-of-interest map based on Flickr pictures in 

Yokohoma. He present an interesting approach for finding popularity of objects where 

only pictures from non-local users are taken into account. Users who live in the city, 

are considered as non-tourists and their pictures do not add popularity. In our case, to 

find the name and the type of the object, we have to use pictures from local people. 

And it may happen, that those are even more accurate than tourist pictures, as a tourist 

may not know the exact name of the object. Kurata presents user evaluation which is 

very valuable and something we still have to organise for our recommender system. 

Crandall et al. (2009) describe their system which uses image textual and visual 

features to group pictures into popular objects. They find a name and a descriptive 

picture for every popular object. Processing image textual information is very close to 

what we have presented in our paper. They use distinctiveness to order name 

candidates instead of using candidate name ratio to all pictures near-by the object. 

They present a machine learning technique usage for solving the problem of naming 



 

the objects (where the photo is taken). Although they present that combining textual 

and visual features yield the best results, we keep our focus on using only textual 

information. 

Alves et al. (2009) present KUSCO system which deals with enriching POI data. 

They extract information from search engine to gather web pages about a certain POI. 

Then they use natural language processing to extract concepts for objects. An 

interesting idea is to use WordNet (http://wordnet.princeton.edu/) concepts matched 

with words from the web pages. We have started working on something similar: we 

try to extract words from Panoramio picture titles and find similarity or distance 

between found words and WordNet concepts. We only consider certain concepts from 

WordNet which represent categories of POI: museum, restaurant, hotel, church etc. 

Popescu et al. (2008) present a system which integrates Wikipedia and Panoramio in 

order to identify geographical names, categorise objects, find geographical 

coordinates and rank objects. They use Panoramio picture count as one possible rank 

for objects (more pictures means higher rank). They also try to find categories for 

objects where they use language processing from the first sentence of Wikipedia and 

web search. They compare their system with Geonames (http://www.geonames.org/), 

but they do not use Geonames as a source for their data. A lot of our ideas align with 

their proposed solutions: using Panoramio for ranking objects, merge objects with 

Wikipedia, try detecting categories from web search (something we are currently 

working on). 

Popescu et al. (2009) present a multilingual geographical gazetteer creation based on 

Flickr, Panoramio, Wikipedia and web search. They detect place names using a 

vocabulary with geographical concepts. They also present object ranking and 

categorisation. They have improved some of the methods compared to their paper 

from 2008. They use Flickr instead of Panoramio. They have also published their 

gazetteer which can be downloaded (http://georama-

project.labs.exalead.com/gazetiki.htm). We could evaluate our system against this 

dataset. However, we need to implement some additional functionality before doing 

the evaluation, in order to perform full range comparison. 

Zheng et al. (2009) describe a system for building a world-wide landmark database. 

They use pictures from Picasa (http://picasa.google.com) and Panoramio along with 

Google Image Search (http://images.google.com) to download picture files. They also 

use textual information from Wikitravel to complement objects which are not present 

in pictures. They use picture and Wikitravel text information to find the name for the 

popular object. Image processing helps to detect different pictures about the same 

object which can be clustered into one group. In addition to image processing they use 

picture title word n-grams – the most frequent n-gram is used as the title for the 

group. 



 

7 Conclusions and Future Work 

We have presented the Sightsmap system with a goal to build a world-wide database 

of the sightseeing popularity of concrete POI-s. We are using purely crowd-sourced 

data: Panoramio, Wikipedia, Wikitravel, Foursquare. While the main goal is to detect 

popularity, first we have to tackle different data extraction and integration problems. 

We have presented experiments on finding an object name from the Panoramio 

picture titles. We have also described the way to gather information and to use 

different sources to calculate popularity for objects in the world. We have presented a 

heat map solution sightsmap.com, where all our data is put to use. 

One of the future plans is to be able to recommend objects all over the world. The 

recommendation should be based on the interests of the tourist, hence we need to find 

a category for every object in the world. We have already started working on this goal 

and have briefly mentioned our ideas on the subject.  
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ABSTRACT

Photos shared by users on public websites (Flickr, Panoramio)
provide a resource for mining behavioural data. When the
photos are associated with locations and time stamps, we can
reconstruct the trajectories of the users and use the resulting
mobility traces for learning behaviour patterns. In this paper
we focus on two aspects of mobility traces: noise filtering and
semantic annotation.

The extracted trajectories are initially noisy due to er-
rors in geographical coordinates and time stamps. We show
how such noise can be partially filtered and evaluate the
performance of the filtering on a synthetic dataset.

To make use of the mobility traces, an essential step is
semantic annotation. Places or activities are associated with
segments of the traces. This is frequently performed by inte-
grating a database of relevant places and associating them by
proximity. We demonstrate that the popularity of the places,
if available, can improve the association accuracy. In our
experiment, the accuracy of automatic annotation increases
from 60% to 68%.
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1 INTRODUCTION

Public geo-tagged photos from sites like Flickr and (until
2016) Panoramio provide a readily available source for human
mobility data. We can learn behaviour patterns by taking
the locations and time stamps of individual photos and re-
constructing the movement trajectory of the photographer.
Such trajectories are called mobility traces. To make them
more useful, mobility traces are semantically annotated by
adding the names of visited places or performed activities.

Geo-tagged photos as a source of mobility traces have dis-
tinct characteristics when compared to GPS and cell phone
traces. People generally take photos in interesting locations.
This helps in applications like tourism recommendation, mak-
ing each individual data point more significant and compen-
sating for the sparsity of data.

Time stamps and coordinates of photos do not always
represent the time and place the photo was taken. Either
human error or the software workflow from the camera to
the photo sharing website can make the metadata of the
photo inaccurate. To truthfully represent the movement of
the person, such noise should be removed from mobility
traces.

We solve this problem by finding ”noisy” photos or groups
of photos. Noise can be identified by sudden high speed
”jumps” from one place to another, that would be unlikely
by usual means of sightseeing on foot or in a vehicle. We
determine heuristically which photos cause the speed anomaly
and remove them. The remainder is a ”clean” mobility trace.

A common challenge in working with mobility traces is
semantic annotation. To extract common patterns of activ-
ities, the trace that is initially a sequence of coordinates
is enriched with annotations like the movement of the per-
son (”stopping”, ”moving”), interpretation of the activity
(”work”, ”home” and ”lunch”) or the name of the place the
person visited.

In this paper we focus on adding place semantics. A com-
mon method is to integrate points of interest (POIs) from a
pre-existing database. If there are POIs within a given radius
from a point being annotated, the closest POI is chosen. If
there are no such POIs, the point is left without annotation.
The drawback of this method is that whenever there is a
choice of multiple nearby places, there is the possibility that
some of them attract much more visitors than the others.

When the data about the popularity of places is available, it
can be used to improve the annotation accuracy in such cases.
We describe a method of combining popularity with proximity
that borrows from the concept of gravity in physics. More
popular places extend their influence at a spatially wider
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area. We give a simple probabilistic interpretation of the
popularity that allows scaling it properly for the calculation.
We experiment with this concept using a manually verified
ground truth dataset of photos.

The rest of the paper is organized as follows. In Section 2
we review related work. In Section 3 we describe the process of
creating semantically annotated traces from individual photos.
Section 4 discusses the experiments made with synthetic and
real-world Panoramio datasets. In Section 5 we summarize
the results and outline the direction of future work.

2 RELATED WORK

Human mobility data can be harvested from various public
sources. Li et al. extract trajectories from EXIF metadata
of photos and coordinate/username records from Panoramio
[16]. Girardin et al. analyse EXIF information and annota-
tions from Flickr to extract tourist flows [11]. Recommender
systems that learn mobility patterns from geo-tagged pho-
tos have been designed using Panoramio [20] and Flickr
[4, 7, 15, 19]. Location based social networks (LBSN) check-
ins and geo-located tweets in Twitter are less frequently used
to mine trajectories, but a large body of research exists on
exploiting them for behavioural pattern analysis [22, 25].
Non-public, but frequently used sources of human mobility
include GPS traces [29] and data collected by mobile phone
operators [14].

Choudhury et al. outline the basic procedure of extracting
mobility traces where the waypoints are individual photos.
They identify the subset of photos taken within the subject
area and the subset of users that matches their application
of itinerary recommendation. They arrange the photos into
streams ordered by time stamps. The streams are split at
large gaps into daily tours. [7]

Alternatively, the extraction process may be integrated
with identifying important locations. Lu et al. cluster the pho-
tos by their location before extracting mobility traces. Paths
that connect clusters, representing the densest photographed
locations, are then extracted [20]. Brilhante et al. first build
a database of points of interest (POIs) in the region. They
associate photos with POIs by proximity, creating paths that
connect POIs [4].

Noise filtering in photo-derived mobility traces has been
addressed in specific cases. Invalid time stamps may be de-
tected in Flickr photos by comparing them to the upload
dates [7]. Lim et al. use prior information about geolocation
accuracy [19]. Other social networks may be affected by dif-
ferent sources of noise, for example Zhang et al. found that
75% of Foursquare check-ins were forged in their study, to
receive in-system rewards [30].

For trajectories in general, there are three main noise filter-
ing methods: detecting noise by absolute speed threshold or
smoothing by statistical (median filter) or physical (Kalman
filter) modelling [31]. Smoothing techniques are not appro-
priate for photo-based traces, because relocating individual
trajectory points would change their semantics. In this paper,
we use the speed threshold heuristic adapted to sparse traces.

Semantic annotation adds labels to trajectory waypoints
or segments that assist in utilizing the trajectories. Some
type of annotations are possible using only the trajectory
data. GPS trajectories can be segmented to identify locations
of interest (”stay points” or ”stops”) [17, 23]. Liao et al.
annotate GPS traces with activities using a probabilistic
model called conditional random fields [18].

Place semantics require integrating additional sources. A
common method is to use a database of POIs and associate
the nearest POI within a given radius to trace segments or
trace points [4, 7]. Furletti et al. present a gravity model where
the association probability is proportional to the relevance
of POIs and inversely proportional to their squared distance.
They use the method to infer activities instead of associating
individual POIs [9].

A promising approach to adding place semantics is using
regions of interest (ROI) that represent the spatial extent
of places [10, 28]. Chen et al. review different methods and
apply a technique based on stay points, dense areas of trace
points that span a sufficient interval in time [6].

Semantic annotation has wider applications and perspec-
tives. For example, Skoumas et al. mine geographic and
semantic information from user generated texts using natural
language processing [26]. They apply the semantic annotation
to paths in a routing application. Arase et al. classify and
label entire traces by theme. They use spatial, temporal, be-
havioural and textual features [2]. Andrienko et al. deal with
a wide range of place semantics issues, such as privacy and
scalability. They provide a method based on temporal visit
patterns in trajectories. However, their visual-aided method
is interactive. The authors state that it is not viable to solve
the problem fully automatically [1]. A review of semantic
trajectories topics is given in [24].

Semantic trajectories and human mobility are part of
a wider subject defined as urban computing [32]. A more
comprehensive overview of technical aspects in mobility traces
can be found in trajectory data mining reviews [21, 31].

3 METHODS

3.1 Data acquisition and preparation

We will briefly outline the tasks in the acquisition and prepa-
ration stage, as the details depend on the application. The
mobility data is collected by downloading the metadata of
the photos: coordinates, time stamps and user identifiers. To
extract the mobility of individuals, the photos are grouped
by users.

Our approach works on a sequence of photos representing
a contiguous tour of a single user of a photo sharing website
during a single day. Such sequences can be extracted by
sorting photos by time stamps and partitioning it at places
where the user is presumed to be sleeping or resting. This can
be determined either by length of time gaps or by absolute
values of time stamps.
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Figure 1: Correctable noise in a trajectory con-
structed with photo coordinates and time stamps.
The photographs A and B were taken only 26 sec-
onds apart, resulting in relatively high estimated
travel speed from A to B. Removing A results in
a smooth trajectory. Map provided by Google.

3.2 Noise filtering

Three factors contribute to the noisiness of mobility traces.
The coordinates of photos are sometimes altered by the
user to represent the actual location of the subject of the
photograph, if it is taken from a distance. In addition, when
the camera is not equipped with a positioning device, the
users may misidentify photo subjects. Finally, another kind
of noise is introduced if the time stamps in image metadata
are changed.

Our filtering method is suited to address the noisiness of
the position of single photographs (Figure 1). The incorrect
time stamps can result in a very erratic trajectory and make it
unfeasible to reconstruct the movement of the user (Figure 2).

The filter works by calculating the speed of transition
between consecutive points in the mobility trace. If the speed
is too high, one of the points is likely to be ”noisy” and should
be removed. Low extremes of speed are always acceptable,
as they represent staying at a location.

We calculate realistic distances between photos using Open-
StreetMap (https://www.openstreetmap.org) and the Open
Source Routing Machine (OSRM) router (http://project-osrm.
org/). For distances below 30m we use straight line distance.
When calculating speeds, we must also consider that for pho-
tos taken in close proximity intervals in time stamps can
be small or even 0. We desensitize the filter to such micro-
movements by compensating very small intervals when the
distances are also small to reduce the variance of speed.

The filter has two parameters. The cut-off speed 𝑣𝑐𝑢𝑡 de-
termines, which transitions between consecutive photos are
considered ”noisy”. The noise ratio threshold 𝑟𝑛𝑜𝑖𝑠𝑒 sets the
maximum allowed ratio of noise per single trace.

When the estimated transition speed 𝑣𝑖,𝑖+1 between two
photos 𝑖 and 𝑖+1 is above the cut-off 𝑣𝑐𝑢𝑡, we use the following
heuristic to remove one of the photos:

∙ If 𝑖 is the first photo in the trace, compare 𝑣𝑖,𝑖+2 and
𝑣𝑖+1,𝑖+2. Whichever of these is smaller corresponds
to a better candidate as the first photo. Note that

Figure 2: Time stamp noise. The erratic trajectory
suggests that the original visit times have not been
preserved. Map provided by Google.

either of the speeds may still be above the threshold
and subsequently cause another removal.

∙ If 𝑖+1 is the last photo in the trace, compare 𝑣𝑖−1,𝑖+1

and 𝑣𝑖−1,𝑖 to determine, whether 𝑖 or 𝑖 + 1 will be
a better candidate for the last photo in the trace.
Again we prefer the lower speed.

∙ In other cases, determine which removal would result
in a lower speed trajectory by comparing 𝑣𝑖−1,𝑖+1

and 𝑣𝑖,𝑖+2.

For each trace we calculate the ratio of the number of
photos cut 𝑛𝑐𝑢𝑡 to the number of photos in the trace 𝑛:
𝑟𝑐𝑢𝑡 =

𝑛𝑐𝑢𝑡
𝑛

. If 𝑟𝑐𝑢𝑡 ≥ 𝑟𝑛𝑜𝑖𝑠𝑒, the trace is considered unreliable
and discarded. The high amount of noise may be an indication
of incorrect time stamps. The removals also make it less likely
that the original visit sequence of places is preserved after
filtering.

3.3 Place semantics

Before associating points of interest (POIs) with the trace,
the individual photos are clustered by proximity to each other.
This partitions the trace into ”stop” and ”move” episodes,
although we do not add these annotations explicitly. Places
are associated with ”stops”, clusters of photos. Figure 3
illustrates the result of semantic annotation, with photos
on the trajectory being clustered and the cluster associated
with a nearby POI (marker with the dot). For the purpose
of finding candidate POIs we assign a radius to each cluster
that represents how spread out are the photos that form the
cluster.

Even a single photo potentially represents a legitimate visit
of a place. Therefore, the role of the clustering is only to group
adjacent photos. Because we are dealing with trajectories, it
is only meaningful to cluster photos that directly follow each
other in the trace timeline.

Using the above observations, clustering can be simplified
by converting the data into one-dimensional space: we place
the start of the trace at coordinate 0 and each subsequent
point 𝑖 at a cumulatively increasing distance 𝑑𝑖 = 𝑑𝑖−1+𝛿𝑖−1,𝑖

where 𝛿𝑖−1,𝑖 represents the actual travel distance between two
points calculated using OSRM. After the space conversion,
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Figure 3: A cluster of photos on a trajectory as-
sociated with a POI (the dotted marker). Bank of
Danube, Budapest. Map provided by Google.

clustering can be performed with a standard density-based
method and a standard Euclidean distance metric.

We associate POIs with clusters by the formula

argmax
𝑙∈𝐿

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙
𝑟2𝑙

where 𝑙 is a POI in the set of locations 𝐿 that fall within
the cluster radius and 𝑟𝑙 is the distance between the POI and
the centroid of the cluster. In areas with high POI density,
this tends to associate the cluster with the most relevant POI
close to its centroid. If we set 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙 = 1 for all POIs,
the method degenerates to proximity based association.

The ”attraction” of the POI decreases proportionally to
the square of the distance, but some POIs initially have higher
attraction. We propose the following geometric interpretation
to assist in normalizing and scaling 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙. Assume that
𝑙1 is visited 4 times more frequently than 𝑙2. If we draw
circles on the map representing the places, with the area of
𝑙1 4 times larger and select a point at random, the random
point is 4 times more likely to be inside 𝑙1-s circle. Therefore,
𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙 should be proportional to the likelihood that 𝑙 is
visited by a user.

To normalize popularities, we assign 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙 = 1 to
the least popular places (or those for which there is no data
available). A more popular place should take precedence
over a less popular one if they are equally distanced. As the
distance to the more popular place increases, at some point
the less popular place should be chosen, as it is much closer.
We then consider the distances at which the most popular
places should dominate least popular places. For example, if
the unpopular place is at a distance of 50m and we prefer
that the popular place should be chosen instead, if it is up to

200m away, the maximum value of 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙𝑚𝑎𝑥 =
(︀
200
50

)︀2
.

4 RESULTS

We tested the methods with three datasets:

∙ A set of 177496 photos of Budapest from Panoramio.
∙ A subset of traces from above with manually verified

place annotations.
∙ A synthetic dataset with simulated noise.

We separately measured the performance of the noise
filtering depending on the filter parameters and the accuracy
of our proposed association method, when compared to the
proximity based association. The noise filter was tested on
the synthetic dataset. Place association was tested against
the manually verified ground truth dataset. The experiments
were done with the assumption that the application of the
mobility traces is to train a tourist recommender system.
This affects some decisions taken in data processing.

4.1 Data preparation

We downloaded the real-world dataset of photos of Budapest
through the Panoramio API. The time stamps of photos were
obtained by scraping the EXIF metadata of photos from the
Panoramio website. Prior to splitting to traces, we removed
users that took photos within a period longer than 21 days,
because they are less likely to be tourists. Users that posted
only a single photo were also removed. The rest of the photos
were sorted by time stamps and split into daily mobility
traces, with splitting points at gaps of 8 or more hours. Total
of 4061 traces with more than one photo were produced.

We created a ground truth dataset of 100 of the longest
traces by manually annotating them with visited points of in-
terest (POIs). The visited places were identified using Google
maps, the contents of the photos and user provided captions.
In the few cases where the best fitting POI was still ambigu-
ous, we consistently chose the same POI in all traces that
visited the location.

To make the synthetic dataset we created clean traces
that represented realistic visitor behaviour. We generated
sequences of places to visit by using a 1st order Markov
model trained from the ground truth dataset of 100 real-
world traces. For each place, we then generated photos, with
their number and placement drawn from the distributions
representing the ground truth dataset. Due to the bias of
selecting long traces into the ground truth dataset, the length
(number of places visited) of generated traces was randomly
drawn from the distribution representing the full unvalidated
real world dataset.

To simulate movement between consecutive places, we used
speed estimates from datasets representing real traffic. We
used normal distribution with 𝜇 = 4.4 , 𝜎 = 0.75 for urban
walking speed [5] and 𝜇 = 22, 𝜎 = 9.0 for urban vehicle speed
[13]. 3% of the traces were simulated as movement by vehicle,
the rest as movement on foot.

We then added three types of noise to the synthetic dataset.
The distribution of noise was estimated by applying the filter
to a real dataset, but in several cases we have artificially
increased the probability of the noise appearing. This is to
counter the possible bias caused by the filter not detecting
some photos.

Time stamp noise was generated by randomly overwriting
time stamps in 8% of the traces. In each case the time stamps
were replaced with simulated ”uploading” time stamps in 5
levels of detection difficulty. The longer the interval between
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the time stamps, the more difficult it is to detect the noise,
as resulting estimated speeds become lower.

We added new photos to 20% of the traces to simulate two
types of coordinate noise, both as an isolated photo and inside
a dense group of photos. The isolated photo may be caused by
the user being mistaken about what the photograph depicts,
or taking a photo of a remote object and modifying the
coordinates so that they no longer represent the user’s actual
location. The noisy photo grouped together with others is
due to the user adjusting the coordinates manually, usually
because the photograph is of a remote object.

In the first case we added a photo with larger positional
displacement (𝜇 = 1𝑘𝑚), with the time stamp at roughly
equal intervals from the previous photo and the next photo.
In the second case we used smaller displacement (𝜇 = 300𝑚),
and the photograph is taken at the same time with other
photos (with an interval of no more than 100 seconds).

To compute distances we used both the foot and car

routing profiles of OSRM. A route was computed for both
modes of movement and the shorter distance chosen.

4.2 Noise filtering

We applied the noise filter to the synthetic dataset of 9910
traces. To measure the effect of parameters, we fixed the
noise ratio 𝑟𝑛𝑜𝑖𝑠𝑒 = 0.15 and speed cut-off 𝑣𝑐𝑢𝑡 = 10𝑘𝑚/ℎ in
turn and varied the other parameter. We then calculated the
precision (how many of the removed places were real noise)
and recall (how clean was the resulting dataset). In both
cases, choosing the parameter involves a trade-off between
precision and recall (Figure 4).

The precision of the filter is directly dependent on the
distribution of estimated speeds in the dataset (left plot, grey
area). When 𝑣𝑐𝑢𝑡 becomes closer to the median of the speed,
precision starts dropping rapidly as the rate of false positives
increases. Meanwhile, recall increases steadily. Selecting 𝑣𝑐𝑢𝑡
should then be done based on how much reduction of the
original dataset is acceptable in the application.

The precision is also lowered when the accepted noise
ratio threshold becomes more aggressive (right plot). This
is because 𝑣𝑐𝑢𝑡 is fixed at a value that causes some false
positives. As 𝑟𝑛𝑜𝑖𝑠𝑒 is lowered, more of the traces become
affected, even though the number of false positives stays
fixed.

The filter is more successful in detecting coordinate noise.
At 𝑣𝑐𝑢𝑡 = 10𝑘𝑚/ℎ, 𝑟𝑛𝑜𝑖𝑠𝑒 = 0.15, 97% of the coordinate
noise and 50% of the time stamp noise was detected. Even
at 𝑣𝑐𝑢𝑡 = 50𝑘𝑚/ℎ, 78% of the coordinate noise was detected,
while detection ratio of time stamp noise was only 21%.

Choosing the filter parameters can be guided by their
physical meaning. For example, if the application focuses
on pedestrian movement, 𝑣𝑐𝑢𝑡 = 10𝑘𝑚/ℎ is quite reasonable
and leaves some headroom for map routing inaccuracies. The
choice of 𝑟𝑛𝑜𝑖𝑠𝑒 is dependent on how important is preserving
the exact sequence of visited places in the application. 𝑟𝑛𝑜𝑖𝑠𝑒

can be relaxed if avoiding false positives is more important
than preserving sequence information.

4.3 Place semantics

We measured place association accuracy by taking the 100
traces that belong to the ground truth dataset and applied
clustering and automatic POI association. No filtering was
applied. We measured the accuracy by comparing each image
in the annotated traces with the same image in the ground
truth dataset. If the association was the same POI, the
annotation was considered correct. If no POI was associated
automatically and the image in ground truth dataset also
had no POI associated, the annotation was again correct. In
other cases the annotation was considered incorrect.

For clustering we used an implementation of DENCLUE
2.0 [12] with truncated Gaussian kernel, with the bandwidth
parameter ℎ = 30𝑚. We chose the truncated kernel as a
simplification to ignore very weak attraction by points sepa-
rated by a large distance. The threshold parameter 𝜏 = 1.0
was straightforward to choose by recalling that even a single
photo (with local density 1.0) is considered a cluster.

To associate the clusters with place names, we used the
dataset of POIs from Sightsmap [27]. For the baseline prox-
imity based association, the radius in which the POIs are
searched is the cluster radius 𝑟 = 𝑚𝑎𝑥(100𝑚, 𝑑𝑚𝑎𝑥 + 10𝑚)
where 𝑑𝑚𝑎𝑥 is the maximum distance between a photo in the
cluster and the cluster’s centroid. For the gravity association,
we searched for POIs in the radius 2𝑟.

The popularity data for the POIs was derived by counting
the number 𝑛𝑙 of visits to each place in the ground truth
dataset. We set 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙 = 𝑛𝑙 + 1, because the maximum
number of visits in the dataset was 21, so no further normal-
ization was required. For places not appearing in the ground
truth dataset we assigned 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑙 = 1. Using this scale,
the ”radius of influence” of the most popular place was 4.6
times larger than that of the least popular places

The baseline proximity based method annotated 60% of
the 4360 photos in 100 traces correctly. The ”gravity” based,
or combined proximity and popularity method, improved the
accuracy to 68%.

We evaluated the effect size of the proposed method and
the statistical significance of the result with McNemar’s test.
Table 1 shows how the chosen method affects individual
associations. In 666 cases the ”gravity” method changed an
incorrect association into a correct one (column 2, bottom

Table 1: Estimated effect size of using combined prox-
imity and popularity (”gravity”) association by Mc-
Nemar’s test. The results of the association were
compared pairwise. The proposed method corrects
666 associations of the baseline method, while failing
in 280 cases where the baseline method is correct.

Proposed: Proposed:
correct failed Row total

Baseline: correct 2315 280 2595
Baseline: failed 666 1099 1765
Column total 2981 1379 4360
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Figure 4: The performance of the noise filter on the synthetic dataset. Selecting the cut-off speed (left plot)
and the noise ratio threshold (right plot) involves a compromise of precision and recall. In both cases there
is a sharp drop off in precision when the filter becomes too aggressive. The grey background represents the
cumulative distribution of speeds in the dataset.

row). In 280 cases the opposite effect was observed (column
3, top row). We evaluated the statistical significance with the
mid-p-value method [8]. The estimate 𝑝 ≪ 0.001 suggests that
the measured increase in accuracy is statistically significant.

5 CONCLUSIONS

We outlined methods that produce semantically annotated
human mobility traces fro geo-tagged photos. We focused
on two stages on this process: how the extraction of mobil-
ity traces can be improved by noise filtering and applying
popularity data in semantic annotation.

Photos from sites like Flickr and Panoramio contain noise
in the form of incorrect coordinates or time stamps. We have
described a method that filters the noise by estimating the
movement speed of the photographer. Whenever speeds above
filter cut-off value are detected, the photo that is causing
the effect is found heuristically and removed. While the filter
attempts to detect time stamp noise, it performs much better
on noise in coordinates. Until better methods are developed,
we suggest external indicators to be considered for detecting
time stamp noise.

We also showed that using a gravity-inspired method of
place association, where more popular places exert their in-
fluence further, improves semantic annotation accuracy. We
compared the method to the simpler association by proximity
and measured a 9% improvement in accuracy on a real-world
dataset. However, the absolute value of 68% accuracy of the
automated annotation is still low. In future work, we aim to
improve this area. Actual visited places are not pinpoint co-
ordinates. We propose that instead of POIs, the photo traces,
possibly integrated from multiple sources, should be mined
for regions of interest (ROIs). This would allow semantic
annotations with the extent and shape of the geographical
features like buildings, bridges, parks or stadiums taken into
account.
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Franco Maria Nardini, Raffaele Perego, and Chiara Renso. 2015.
On planning sightseeing tours with TripBuilder. Inf. Process.
Manage. 51, 2 (2015), 1–15. http://dx.doi.org/10.1016/j.ipm.
2014.10.003

[5] Satish Chandra and Anish Kumar Bharti. 2013. Speed Dis-
tribution Curves for Pedestrians During Walking and Crossing.
Procedia - Social and Behavioral Sciences 104 (2013), 660 – 667.
https://doi.org/10.1016/j.sbspro.2013.11.160

[6] Xihui Chen, Jun Pang, and Ran Xue. 2014. Constructing and
Comparing User Mobility Profiles. TWEB 8, 4 (2014), 21:1–21:25.
http://doi.acm.org/10.1145/2637483

[7] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia,
Nadav Golbandi, Ronny Lempel, and Cong Yu. 2010. Automatic
construction of travel itineraries using social breadcrumbs. In
HT’10, Proceedings of the 21st ACM Conference on Hypertext
and Hypermedia, Toronto, Ontario, Canada, June 13-16, 2010,
Mark H. Chignell and Elaine G. Toms (Eds.). ACM, 35–44. http:
//doi.acm.org/10.1145/1810617.1810626

[8] Morten W. Fagerland, Stian Lydersen, and Petter Laake. 2013.
The McNemar test for binary matched-pairs data: mid-p and
asymptotic are better than exact conditional. BMC Medical
Research Methodology 13, 1 (2013), 91. https://doi.org/10.1186/
1471-2288-13-91

[9] Barbara Furletti, Paolo Cintia, Chiara Renso, and Laura Spin-
santi. 2013. Inferring human activities from GPS tracks. In
Proceedings of the 2nd ACM SIGKDD International Work-
shop on Urban Computing, UrbComp@KDD 2013, Chicago,
Illinois, USA, August 11, 2013, Yu Zheng, Steven E. Koonin,
and Ouri E. Wolfson (Eds.). ACM, 5:1–5:8. http://doi.acm.org/
10.1145/2505821.2505830



Extracting Human Mobility Data from Geo-tagged Photos PredictGIS’17, November 7–10, 2017, Redondo Beach, CA, USA

[10] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi.
2007. Trajectory pattern mining. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Jose, California, USA, August 12-15,
2007, Pavel Berkhin, Rich Caruana, and Xindong Wu (Eds.).
ACM, 330–339. http://doi.acm.org/10.1145/1281192.1281230

[11] Fabien Girardin, Filippo Dal Fiore, Carlo Ratti, and Josep
Blat. 2008. Leveraging explicitly disclosed location informa-
tion to understand tourist dynamics: a case study. J. Location
Based Services 2, 1 (2008), 41–56. http://dx.doi.org/10.1080/
17489720802261138

[12] Alexander Hinneburg and Hans-Henning Gabriel. 2007. DEN-
CLUE 2.0: Fast Clustering Based on Kernel Density Estimation.
In Advances in Intelligent Data Analysis VII, 7th Interna-
tional Symposium on Intelligent Data Analysis, IDA 2007,
Ljubljana, Slovenia, September 6-8, 2007, Proceedings (Lec-
ture Notes in Computer Science), Michael R. Berthold, John
Shawe-Taylor, and Nada Lavrac (Eds.), Vol. 4723. Springer, 70–80.
https://doi.org/10.1007/978-3-540-74825-0 7

[13] Erik Jenelius and Haris N. Koutsopoulos. 2013. Travel time
estimation for urban road networks using low frequency probe
vehicle data. Transportation Research Part B: Methodological
53 (2013), 64 – 81. https://doi.org/10.1016/j.trb.2013.03.008

[14] Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele
Veneziano, Shounak Athavale, and Marta C. Gonzlez.
2016. The TimeGeo modeling framework for urban mo-
bility without travel surveys. Proceedings of the Na-
tional Academy of Sciences 113, 37 (2016), E5370–E5378.
arXiv:http://www.pnas.org/content/113/37/E5370.full.pdf
http://www.pnas.org/content/113/37/E5370.abstract

[15] Takeshi Kurashima, Tomoharu Iwata, Go Irie, and Ko Fujimura.
2010. Travel route recommendation using geotags in photo sharing
sites. In Proceedings of the 19th ACM Conference on Informa-
tion and Knowledge Management, CIKM 2010, Toronto, On-
tario, Canada, October 26-30, 2010, Jimmy Huang, Nick Koudas,
Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson, and
Aijun An (Eds.). ACM, 579–588. http://doi.acm.org/10.1145/
1871437.1871513

[16] Chunming Li, Yang Zhao, Xiaoze Sun, Xiaodan Su, Shuanning
Zheng, Rencai Dong, and Longyu Shi. 2011. Photography-based
analysis of tourists temporalspatial behaviour in the Old Town
of Lijiang. International Journal of Sustainable Development &
World Ecology 18, 6 (2011), 523–529. http://dx.doi.org/10.1080/
13504509.2011.601471

[17] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and
Wei-Ying Ma. 2008. Mining user similarity based on location
history. In 16th ACM SIGSPATIAL International Symposium
on Advances in Geographic Information Systems, ACM-GIS
2008, November 5-7, 2008, Irvine, California, USA, Proceedings,
Walid G. Aref, Mohamed F. Mokbel, and Markus Schneider (Eds.).
ACM, 34. https://doi.org/10.1145/1463434.1463477

[18] Lin Liao, Dieter Fox, and Henry A. Kautz. 2007. Extracting Places
and Activities from GPS Traces Using Hierarchical Conditional
Random Fields. I. J. Robotics Res. 26, 1 (2007), 119–134. http:
//dx.doi.org/10.1177/0278364907073775

[19] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika
Karunasekera. 2015. Personalized Tour Recommendation Based
on User Interests and Points of Interest Visit Durations. In Pro-
ceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, Qiang Yang and Michael Wooldridge (Eds.).
AAAI Press, 1778–1784. http://ijcai.org/papers15/Abstracts/
IJCAI15-253.html

[20] Xin Lu, Changhu Wang, Jiang-Ming Yang, Yanwei Pang, and
Lei Zhang. 2010. Photo2Trip: generating travel routes from geo-
tagged photos for trip planning, See [3], 143–152. http://doi.acm.
org/10.1145/1873951.1873972

[21] Jean Damascène Mazimpaka and Sabine Timpf. 2016. Trajectory
data mining: A review of methods and applications. Journal of
Spatial Information Science 2016, 13 (2016), 61–99.

[22] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Ce-
cilia Mascolo. 2012. Mining User Mobility Features for Next
Place Prediction in Location-Based Services. In 12th IEEE In-
ternational Conference on Data Mining, ICDM 2012, Brus-
sels, Belgium, December 10-13, 2012, Mohammed Javeed Zaki,
Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb,
and Xindong Wu (Eds.). IEEE Computer Society, 1038–1043.

https://doi.org/10.1109/ICDM.2012.113
[23] Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and

Luis Otávio Alvares. 2008. A clustering-based approach for dis-
covering interesting places in trajectories. In Proceedings of the
2008 ACM Symposium on Applied Computing (SAC), Fort-
aleza, Ceara, Brazil, March 16-20, 2008, Roger L. Wainwright
and Hisham Haddad (Eds.). ACM, 863–868. http://doi.acm.org/
10.1145/1363686.1363886

[24] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady L.
Andrienko, Natalia V. Andrienko, Vania Bogorny, Maria Luisa
Damiani, Aris Gkoulalas-Divanis, José Antônio Fernandes de
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Abstract—Mining crowd-sourced movement trajectories is a
useful tool in urban computing. Common mobility patterns of
the visitors or residents of a city can be exploited in applications
such as disaster management, transportation planning and ad
placement. In recommendation systems, individual behaviour
is of special interest. To extract the visiting behaviour of
individuals, the trajectories need to be semantically annotated.

We describe how hierarchical regions of interest (ROIs)
can be used for semantic annotation. By combining multiple
layers of smaller and larger regions we can flexibly detect
both visits to dense hotspots and trajectory segments visiting
larger areas, such as an old town, a park or an island.
Extending the annotation beyond common hotspots captures
more information about the behaviour.

I. INTRODUCTION

Inferring human activities from crowd sourced data can
provide valuable data about behaviour. Studying mass move-
ment of people, for example, is relevant when planning trans-
portation networks, optimizing ad placement or preparing
for disaster mitigation. The individual behaviour is useful in
recommender systems. To recommend a place to visit or a
sequence of activities, the system needs to be able to find
those that the user would find interesting based on the user’s
earlier activities. We can make such predictions from the
behaviour patterns that the previous visitors have exhibited.

Crowd sourced mobility data, such as GPS traces or
geotagged social media contributions, are usually in the
form of raw trajectories. Semantic annotation transforms
sequences of points into sequences of activities. This can
be done by assigning place names like ”Eiffel Tower” or
descriptive tags like ”tower, view, ...” to points. In this paper
we will focus on describing trajectories in terms of what
places they visit. Understanding the visitors activities then
depends on the ability to connect an arbitrary location to a
known place name.

We loosely define the terms ”place”, ”area” and ”region”
as they will be used in the paper. When we refer to
”places” we mean geographical objects in general that are
used, visited and recognized by people. Similarly, ”place
name” is something that universally identifies the place.
We use ”places” and ”areas” in the same context when
we want to make the distinction in between smaller and
larger geographical objects. Finally, the term ”region” is
used exclusively to mean a map polygon.

The most common spatial representation for the interest-
ing places is a point, such that the term ”point of interest”
sometimes can be synonymous with a coordinate pair at-
tached to a place name. In geographic information systems,
various geometric shapes, including lines and polygons are
used. Data mining human mobility data can reveal regions,
also representable by polygons, which do not necessarily
coincide with geographic information and are called regions
or areas of interest. Throughout the paper, when we use the
term points of interest (POIs), we mean the representation
of interesting places as named x, y coordinate pairs. When
we use the term regions of interest (ROIs), we mean the rep-
resentation of the same places or areas as named polygons.

The basic method of associating trajectories with visited
places is to find a suitable nearby POI for each segment
or stay point. When there are multiple POIs nearby, se-
lecting the correct one is complicated, because the POI
representation does not encode any information about the
shapes and sizes of places. In contrast, with ROIs we can
find the place name of an arbitrary location by checking
whether the coordinates intersect any ROI (Fig. 2). In case
of multiple intersections, the decision is still straightforward
if the ROIs have a clearly defined relationship (such as one
being contained in another). Such relationship is described
by a hierarchy of ROIs.

Places form a natural hierarchy. A church may belong to
a historic area that in turn is a part of some city district. A
sculpture may be located in a park with multiple attractions
and the park itself may be part of a thematic neighbour-
hood. Studies about ROIs are generally either about popular
hotspots or larger thematic areas. In recommender system
papers, the focus has been on hotspots, but this would
mean that part of the information that could be available
is consciously removed in the semantic annotation process.
In other words, the areas where stay points are sparse are
treated as ”nothing to see here”. In case of geotagged photos,
this contradicts the usual purpose of sharing photos on social
media - the person who uploaded the photo has considered
the place to be visually interesting to other people.

We propose to extend the notion of a flat representation
of the city space into a natural one, where multiple layers
of ROIs are arranged hierarchically. This retains the ability
to recognize hotspots vital to recommender systems, but
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Figure 1. Trajectory annotation using regions of interest (ROI) layers. The higher layers allow annotation of the middle trajectory segment and provide
context to individual place visits.

Figure 2. Expressive power of representing places as regions of interest
(ROI; shown left) compared to points of interest (POI; right). Pictured
here is a scenic lookout at the top of Budapest Funicular (A), Buda Castle
courtyard (B), Buda Castle (C) and Rondella (D). The regions designated
by polygons allow determining the place name for an arbitrary point by
finding which region it intersects. Map data by Google, CNES/Airbus,
DigitalGlobe.

also allows recognizing generalizations, thematic areas or
simply large features like parks or nature reserves that could
remain undetectable to data mining techniques due to the
spatial sparsity of visitors’ activities. This flexibility is the
main motivator for designing the proposed approach and
also results in a directly measurable effect of being able
to meaningfully annotate more stay points on trajectories.

ROI naming is as important as ROI discovery. While the
hierarchy of ROIs itself already contains valid information
about the behaviour, it is difficult to produce generally useful
output unless the ROIs represent real-world places. For
example, when using ROIs to recommend a place to visit,
the output should be something that can be enriched with
external descriptions, pictures and that the user recognizes or
can look up easily. Naming ROIs is not trivial, as we will
illustrate by our experiments. Therefore, we propose that
the naming process will let a human expert review the most
important decisions. The majority of regions will still be

named fully automatically, but those that affect the accuracy
of the annotation most and/or are most difficult to decide
will be presented to the human expert.

In the paper, we describe the approach from a general
perspective and also give a technical overview of a proof
of concept application - annotating individual movement
trajectories of sight-seeing trips, extracted from geotagged
photos (Fig. 1).

The remainder of the paper is organized as follows. In
Section II we review the related work. In Section III we
describe how hierarchical ROIs can be formed and used to
semantically annotate trajectories. In Section IV we show
how the accuracy of the semantic annotation is improved
using our implementation of the hierarchical ROIs. We use
Flickr photos to find the ROIs and then annotate sightseeing
trajectories extracted from a different source – Panoramio
photos – with suitable place or area names. We also give
the results of a survey conducted to evaluate the quality of
the region shapes. Section V summarizes the findings and
suggests directions for future research.

II. RELATED WORK

One of the earliest works to describe both the discovery
of ROIs and their use in extracting behavioural data from
trajectories was by Giannotti et al. They represent ROIs
as rectangular shapes [1]. The method of Giannotti et al.
has been enhanced later, for example by improving ROI
boundary detection by pre-filtering stay points with low
local density [2]. Extracting interesting regions by applying
density-based clustering to individual stay points in GPS
traces has been proposed in several papers [3], [4], [5].
The regions are represented as a set of stay points which
effectively correspond to an arbitrary shape. Uddin et al.
describe an efficient method to find regions as the set of
points that have many trajectories of slowly moving objects
passing nearby [6].

Discovery of ROIs from geotagged photos has been
mainly explored in the context of sightseeing recommen-
dations. Kisilevich et al. adapted DBSCAN specifically for
this purpose, by defining density as the minimum number of



distinct users in the neighbourhood and introducing adaptive
density threshold for splitting high density clusters by local
variations. The modified algorithm is called P-DBSCAN [7].
Liu et al. modify density based clustering by introducing
a predefined order in which photos are processed, so that
points are assigned preferentially to clusters where there are
also more popular Foursquare venues nearby [8]. Laptev et
al. proposed a grid-based method, related to the Gaussian
smoothing and watershed segmentation image processing
techniques [9]. Their method takes the desired region size as
a parameter and automatically adjusts the kernel bandwidth
used in Gaussian density estimation to produce the cluster-
ing. Cai et al. use a grid-based method where the density
of cells is defined as the number of intersecting trajectories
[10]. Shirai et al. include the angle of view and orientation
in extended photo metadata to infer the shapes of places
[11].

The concept of hierarchical ROIs was introduced in the
GeoLife application for finding similar users and making lo-
cation recommendations [3], [4], [12]. The method is based
on GPS traces and shares many similarities to the approach
we describe in this paper. The main difference is that their
ROIs represent latent features of the visitor behaviour, while
we attempt to ultimately explain trajectories as sequences of
known place names.

Semantic annotation involves enriching the trajectory
segments with various labels, such as ”stop” and ”move”
episodes, mode of transportation, place visit or activity [13].
In the following we review papers related to place associa-
tion, particularly in the context of recommender systems.

The simplest technique of annotating photo based traces
is to associate each stay point with the nearest POI within
a given radius [14], [15], [16], [17]. This method requires
however, that only POIs relevant to the application are
included. A variation of this method is to include POI
popularity when estimating the likelihood that it was visited
[18].

Annotating with ROIs can be accomplished by finding
spatial overlap of the stay point and a ROI [19]. In case of
GPS traces, the visit of a place can also be defined as the
intersection of a trajectory and a ROI with a long enough
duration [20].

When using automatically discovered ROIs, the problem
of finding the semantics of the ROIs has to be solved.
Crandall et al. showed that for a place represented by a
set of photos, simply selecting the most distinctive tags can
generate accurate labels [21]. Yin et al. apply a generative
mixture model using the sets of Flickr photo tags in a
location and the overall distribution of tags [22].

In this paper, we also discuss extracting a hierarchy of
significant clusters from a dendrogram representation. To the
best of our knowledge, general purpose methods that select
significant clusters while maintaining the hierarchy relation
have not been studied extensively. Sander et al. present

a method that recursively splits the points to clusters at
significant local maxima of a reachability plot. Dendrograms
are handled by converting them to reachability plots [23].
Campello et al. describe both a simplification of the den-
drogram by setting a minimum cluster size and an optimal
method of creating a flat clustering based on cluster stability
[24].

III. METHODS

Conceptually, describing places as a hierarchy of regions
of interest (ROIs) and semantic annotation of trajectories
can be based on different kinds of spatial data, such as
GPS traces. The requirement is that we can establish both
frequently visited places and stay points on individual tra-
jectories.

In this paper, we use geotagged photos for both finding
ROIs and individual trajectories. The crowd-sourced photos
from Flickr (http://flickr.com) and Panoramio (closed in
2016) are attractive for this purpose because of universal
availability and rich semantic meta data – tags and titles.

Semantic annotation with ROIs consists of three stages:
finding the boundaries of ROIs, associating each ROI with
a place or an area and annotating trajectory segments based
on which ROIs they intersect. We will refer to the proof of
concept method presented in this paper that includes all three
stages as the ”Hierarchical ROI”, or HROI method. While
we present a specific implementation, there is flexibility in
choosing the exact technique used in each stage.

A. Region shape formation

We start with the assumption that interesting places are
those where the density of photos is higher. The assumption
relies on the data being sourced from an application where
the focus is on presenting interesting imagery to the general
public (Flickr, Panoramio).

We find the ROIs by clustering the photos. The simplest
approach to creating a hierarchy of ROIs, or layers of larger
and smaller ROIs would be to apply a clustering algorithm
once for each layer, adjusting the parameters so that clusters
of appropriate sizes and densities are created. The main
challenge with this approach is determining the parameters
and coping with local density variations. The difference in
density between the tourist attractions in a city can be big.

To address the issue of local density we chose HDB-
SCAN as the clustering method. HDBSCAN is a hierarchical
method and produces a dendrogram of clusters. In the
dendrogram, clusters of varied densities can co-exist in
separate branches. To extract a hierarchy with a fixed number
of layers we use a similar approach as described in [24]. We
will refer to the method of creating n levels of clusters as
HDBSCAN/n.

Let G = (V,E), where V is the set of nodes and E is the
set of edges, represent the simplified dendrogram as defined
by Campello et al. We set the node weight w(v) for all



v ∈ V to be the stability of the cluster represented by the
node. We define the n-layered clustering as the tree Gn =
(Vn ⊂ V,E′) such that the maximum depth of Gn < n
and

∑
v∈Vn

w(v) is maximised. In other words, we make a
tree with n levels by selecting the nodes in G so that we
get the maximum total cluster stability. The set Vn can be
constructed by recursive depth first search.

1: function MAX WEIGHT SUBSET(n, vroot)
2: Initialize Sj ← ∅, j ∈ 1, . . . , n
3: for each child vi of vroot do
4: Si

1 . . . S
i
n ← MAX WEIGHT SUBSET(n, vi)

5: for j ← 1, n do
6: Sj ← Sj ∪ Si

j

7: end for
8: end for
9: Find smallest k such that w(vroot) >

∑
v∈Sk

w(v)
10: Sj+1 = Sj for j ≥ k
11: Sk = {vroot}
12: Return S1 . . . Sn

13: end function
14: S1 . . . Sn ← MAX WEIGHT SUBSET(n, root of G)
15: Vn ←

⋃n
Sj

The depth first traversal builds Vn recursively by using
sets S1 . . . Sn to simultaneously keep track of nodes that
would be included in V1 . . . Vn. The algorithm relies on
the idea that for any n less than the current maximum
depth, when a parent node is encountered, either the parent
is included in Vn and some nodes from each subtree are
removed from Vn, or the parent is excluded and the results
from the subtrees are joined to make the new Vn. The
decision is made depending on which results in the new
Vn with a larger total weight.

This algorithm runs in linear time O(|V |) as each node
in G needs to be visited once and n is constant. To find E′,
we do a second depth first traversal and add an edge from
each node in Vn to the next node on the path from root in
G that is also in Vn. This will reconnect the hierarchy in
places where lower stability nodes were removed.

Proof sketch. We show that the constructed set Vn has the
maximal total weight for a given G and n.

1) Assume that there is a tree G with maximum depth d.
This tree is trivially the same as Gd+1. Divide the set
of nodes V into disjoint subsets Sj , j = (1 . . . d+ 1)
such that (a) none of the sets contain two nodes that
lie on the same path from the root node; and (b) each
Sj forms a maximal set such that we can construct the
maximal Vn =

⋃n
Sj .

2) Show that the properties from Step 1 are maintained
when we connect m parallel subtrees of maximum
depth d − 1 satisfying the conditions in Step 1, to
a root node vroot to form a new tree of maximum
depth d. We find new sets Sk =

⋃m
i Si

j where if∑
v∈Sk

w(v) > w(vroot) then k = j, otherwise

k = j + 1. Property (a) is maintained because the
sets Si

j come from disjoint subtrees and the new
shared root will be assigned to its own set {vroot}.
Assume vroot is part of Vn. In this case, property (b)
is maintained because if we construct V i

n−1 separately
for each subtree it will be maximal. If vroot does not
belong in Vn then property (b) is again maintained
because each subset V i

n in Vn =
⋃m

i V i
n is also

maximal so
∑

v∈Vn
w(v) is maximal.

3) For d = 1, Step 1 and Step 2 can be demonstrated
trivially.

To assist in finding larger semantically similar regions,
we use a distance function which combines spatial dis-
tance, similarity between the Flickr tags of photos and
the geographical area (Flickr’s ”Where on Earth” (WoE)
id). Additionally, to facilitate cluster boundary formation at
physical obstacles, such as cliffs, city walls, bodies of water
or motorways, we use the Open Source Routing Machine
(OSRM) [25] to calculate spatial distance.

The distance between two photos xi and xj is a linear
combination of spatial distance with routing dosrm, Jaccard
distance between the sets of tags Ti, Tj of the two photos
dJ = 1− |Ti∩Tj |

|Ti∪Tj | and the distance between the WoE ids of
the two photos dWoE ,

ds(xi, xj) = dosrm(xi, xj) + βdWoE(xi, xj) + γdJ(xi, xj)

In this paper, we simplify dWoE so that it is 1 when the two
photos share the same lowest level WoE id and 0 otherwise.
The parameters β and γ determine the influence of the
geographic region and tag similarity, respectively.

Because of the distance function, the clustering happens
in a non-metric space, meaning that spatial indexes are not
available for efficient neighbourhood queries. In practice,
to avoid repeated computation of pairwise distances, we run
the Python implementation of HDBSCAN algorithm [26] on
a k-neighbourhood graph. The complete pairwise distance
matrix would require O(n2) storage, which is impractical
for even modest size input datasets (100000-650000 photos).
The neighbourhood graph reduces the storage requirement
to O(kn). To reduce the computation time of the neigh-
bourhood graph, we only consider spatially close points
as neighbour candidates. We use a ball tree index with
haversine metric. The haversine distance dh is effectively
a lower bound on our distance function ds, meaning that for
each point xi, assuming that some point xj is currently the
k-th closest neighbour, we only need to compute pairwise
distances to points where dh(xi, xcandidate) < ds(xi, xj).

We create the boundaries of ROIs by drawing an alpha
shape (concave hull) [27] around the set of points, or photos,
in each cluster. Since it is reasonable to assume that the
object extends somewhat beyond the outermost photos, we
move each boundary point in the direction opposite to the
cluster centroid, such that it is 10% further away from the
centroid.



B. Region names

Before the ROIs can be used in semantic annotation, we
must discover what real-world places they represent. We use
both the meta data of the photos that formed a region and
geographical information – a POI database. The tags and
titles of photos may contain information about the place.
Additionally, we must consider all POIs located within the
region boundary and nearby as potential sources for the place
name.

We base the method of name finding on information
retrieval techniques. We treat the regions as documents,
semantic meta data as terms and possible name candidates
as queries. We can then use latent semantic indexing (LSI)
[28], which calculates term-based similarity between queries
and documents, to find the similarity between name can-
didates and regions. We create a shortlist of semantically
related name candidates for each region and then do final
name resolution using several ad hoc heuristics. The name
resolution process attempts to detect non-ambiguous cases
where, for example, a local POI is better than other name
candidates.

Larger and denser regions are difficult to name automat-
ically because of abundance and diversity of places and
themes within. At the same time, from the perspective of
semantic annotation, accurate naming of these regions is
most important, since the trajectories will intersect these
regions most often. Because a small number of region
names can be validated with little effort, we complete the
name resolution with a human-assisted process, where our
program displays the region boundary, name candidates with
semantic similarity and other meta-data and allows a human
expert to either accept or change the name. This is done for a
subset of regions, the remainder will keep their automatically
assigned names.

The technical description of region naming process is as
follows:

1) Download POIs located in areas covered by the re-
gions. We create a grid of points and use Foursquare
venue search for each point. We use coarse category-
based filtering to only include places relevant to the
application (in the context of our experiment, annotat-
ing sightseeing trips).

2) Create a list of terms appearing in photo tags, titles
and POI names. We filter irrelevant terms, such as
common words, image file names and terms used by
only a single user. We create a translation dictionary
for words that are similar by Jaro-Winkler distance
[29] to further reduce the set of terms.

3) Create a term-document matrix by representing each
ROI as a vector where each element is the number of
distinct users who tagged their photos with the term.
We then apply the TF-IDF and LSI transformations
from the Gensim package [30] to create a term-

Figure 3. Heat map of the distribution of photos tagged with parliament,
or a synonymous term. Several locations across the Danube river provide a
view of the building and the corresponding regions have a strong semantic
similarity to the actual parliament area. In this case, such regions can be
correctly described as ”view points”, but in general semantic similarity to
a remote object may also occur if there are no distinctive local features in
the region. Map data by Google.

document representation with reduced dimensions.
4) Create name candidates from photo titles and from all

POIs in the area of regions. In each region, we find
all n-grams of words in photo titles where 1 ≤ n ≤ 5
and select one with the most distinct users for each
value of n. We select a few additional n-grams where
n > 1 that are sufficiently different from the already
selected ones (edit distance of word sequences of at
least 2). All POI names are also added to the set of
name candidates.

5) We calculate the similarity of between each name can-
didate and ROI. Each name candidate is normalized
using the translation dictionary. The words that do not
appear in the dictionary are removed. Candidates from
POI names have the venue’s main category appended.
We then convert each candidate to a vector in the term-
document space and find cosine similarity scandidate
to each ROI using the Gensim package.

6) Apply several ad hoc heuristics to detect non-
ambiguous cases, where a single candidate is much
better than other names. In case there is no single
preferred name candidate, the one with the high-
est weighted semantic similarity (1 − α)scandidate +
αscandidate

lnNcandidate

lnN to the region is chosen. In
case of title-derived names, Ncandidate is the num-
ber of distinct users of the n-gram, while N is the
maximum number distinct users for any n-gram over
the entire set of ROIs. In case of Foursquare POI
names, these values instead represent the number of
users checking in the venue. The name resolution
procedure also attempts to flag cases where there is



a potential problem with the name candidate. Flagged
cases include when the selected name is a 1-gram,
when there was no single preferred name candidate
and also when the name was taken from a POI not
within the region boundary (Fig. 3).

7) Perform human-assisted name resolution for the fol-
lowing cases: the ROIs with most photos, ROIs that
are both large and dense (sorted by rM where r is
the distance between region centroid and its furthest
point and M is its number of photos) and finally
remaining ROIs with high number of photos that have
been flagged by the automatic name selection process.

We find that the human-assisted name resolution is not
labour intensive, and has a high impact on the accuracy of
the semantic annotation. We chose 30 each of popular, large
and flagged ROIs (as described in step 11). For an expert
familiar with the city, the name resolution took less than 2
hours. However, this approach does not scale beyond city
scale.

C. Semantic annotation

The named regions created in previous two stages allow
mapping any point within their boundaries to a place name
trivially. The annotation of trajectories involves finding the
stay points on trajectories and selecting the best matching
region for each. In case of trajectories derived from geo-
tagged photos, we consider clusters of spatio-temporally
close photos as stay points. For GPS trajectories, various
methods have been discussed in a trajectory data mining
review by Zheng [31].

If the stay point lies within multiple regions, we choose
the region from the lowest possible layer in the cluster
hierarchy. In other words, we always attempt to find a place-
level region, but if that is not available we fall back to an
area-level region.

Since the region boundary is formed around the outer
points in the region and then expanded further outward, it
is possible that regions on the same layer overlap. In this
case we have two tie-break criteria – the confidence that
the ROI has a correct name (represented by the weighted
semantic similarity as described in III-B) and the distance
of the annotated point to the centroid of each region.

The overlapping can also occur, when we have multiple
”themes” in a region, which increases separation in the
space defined by the distance function ds. This may cause
geographically adjacent points to be assigned to different
clusters. While this corresponds to the reality that same
regions may have different uses and attractions for different
visitors, the simple annotation approach described here does
not exploit this information (Fig. 4).

IV. RESULTS

We evaluated the viability of the hierarchical ROIs by
testing the following:

Figure 4. Spatially overlapping regions belonging to a single layer in
regions of interest (ROI) hierarchy. This is partially caused by clustering
with a distance function that includes semantic distance. Two points at
the same geographical location may appear as apart from each other to the
clustering algorithm. The effect is undesirable, unless semantic similarity to
the region is also considered in trajectory annotation. Map data by Google.

1) How well does the method perform in its intended
application, semantic annotation of trajectories? We
measured quantitatively the accuracy of place name
association to sightseeing trajectories extracted from
Panoramio photos.

2) How accurate are the formed regions and how well do
they cover interesting places? We conducted a survey
and asked the participants to qualitatively judge the
region shape and placement.

A. Annotation accuracy

The annotation experiment was performed in four Euro-
pean cities: Budapest, Tallinn, Venice and Vienna. We used
Flickr photos taken in the area of these cities to find the
ROIs, Google Places and Foursquare venues services as POI
databases.

We downloaded photograph metadata from Flickr, gen-
erated hierarchical clusters and assigned region names as
described in Section III. We adjusted the distance function
for each city by visually inspecting the resulting clustering
and checking that both individual places and important
larger areas are represented. While this approach does not
guarantee optimal performance, numerically optimizing the
parameters is not viable, because the accuracy of the fi-
nal results depends also on region naming, which in turn
depends on cluster sizes and shapes. The chosen distance
function parameters are given in Table I. The same process
was also used to qualitatively determine the suitable number
of layers. We chose 3 layers, as this was the minimum
number to obtain both fine detail and larger area formation in
the clustering. After creating the ROI boundaries, we found



Table I
DISTANCE FUNCTION AND CLUSTERING PARAMETERS

HROI P-DBSCAN
β γ cluster size ε MinOwners Addt

Budapest 30 10 25 50 5 0.8
Tallinn 20 10 10 70 10 0.8
Venice 8 5 60 30 15 0.9
Vienna 20 10 60 30 15 0.9

the place and area names they represent as described in
Section III-B.

We compared the method to four other techniques. For
a naive baseline method, we implemented proximity based
association, where the closest POI is always selected. For
each annotated stay point, we made a Google Places query
in the 200m radius of the point. The Google Places service is
general purpose and therefore returns many POIs irrelevant
in the context of sightseeing. We added type-based filtering,
but this is not enough to work around this issue because the
type metadata provided by the API is not accurate enough.

Google Places service also offers ranking places by
prominence. For the second baseline method, we used this
parameter in the nearby places query and picked the top-
ranked POI after type filtering. This method preferentially
picks a point of interest type POI, unless none are present
in the first page of results.

The Google Places POI association methods represent
minimum effort approaches using a public database. We also
implemented a method that, to the best of our knowledge,
represents the state of the art in annotating trajectories
using a general purpose database of POIs. We queried the
Foursquare API for venues in 200m radius of the stay point.
We filtered the venues by high-level categories to remove
non-sightseeing places and chose a venue l that had the
highest ”gravity” – measure of local influence proportional
to the popularity of the venue and decreasing proportionally
to the square of the distance to the venue rl. We calculated
the ”gravity” by usersg

l

r2
l

where usersl is the number of users
that have checked in to the venue. We used g = 0.5 as a
normalization parameter, guided by the relative radius of
influence the most popular venues were expected to have
[18].

Finally, we implemented a non-hierarchical ROI based
method to measure how much the proposed use of multiple
layers contribute to the results. We chose P-DBSCAN as
it is specifically designed to extract ROIs from geotagged
photos. We chose MinOwners and ε parameters such that
ROIs also appear in lower density areas, and a high adaptive
density threshold Addt to achieve segmentation of dense
groups of places. In some cities, we had to lower the
neighbourhood size parameter ε to break apart dense central
areas, because raising Addt very high would make the
algorithm very sensitive to variations in local density. Table I
gives the chosen parameters. We used the method described

Table II
ANNOTATION ACCURACY

Budapest Tallinn Venice Vienna
Sample size 517 553 511 522

place level, %
GP proximity 31 29 24 34
GP prominence 27 7 6 38
4sq gravity 56 51 36 51
P-DBSCAN 37 6 27 57
HROI 50 46 35 52

place or area level, %
GP proximity 41 32 31 49
GP prominence 35 9 10 54
4sq gravity 68 67 60 68
P-DBSCAN 83 94 76 78
HROI 74 82 69 78

in Section III-B to add place or area names to each ROI
created by the P-DBSCAN algorithm.

We measured the annotation accuracy by generating sight-
seeing trajectories in each of the cities by filtering users
who only took photos during a short period (no more
than 21 consecutive days). The photos were split into daily
trips based on their timestamps. Each trip was then filtered
to remove photos with detectably invalid coordinates or
timestamps and transformed into a sequence of stay points
[18].

For Budapest, Venice and Vienna we used Panoramio
photos as the source for trajectories to annotate. This avoids
possible over fitting bias with the regions and trajectories
originating from the same photos. For Tallinn we used Flickr
photos as a suitable Panoramio dataset was not available,
due to the closure of the service. In each city we annotated
all stay points using all five compared methods. We then
manually checked the correctness of annotations. Manual
validation requires examining the relevant photos, local map,
online travel guides, aerial imagery and other information.
We validated a randomly chosen sample of stay points in
each city.

For each stay point we rated each algorithm as ”inaccu-
rate”, ”area level accurate” or ”place level accurate”. We
considered the annotation accurate, if the named place was
the subject of the photo(s), the name was used in the photo ti-
tle(s) or at least one photo was taken very close to the named
place. In case of photo subjects, we also assessed whether
the subject was close and accessible to the photographer on
foot. If the annotation allowed identifying the surrounding
area rather than the exact location, we rated the annotation
”area level accurate”. In case of missing annotations, the
rating was automatically ”inaccurate”. Table II gives detailed
results for both categories of accuracy. Sample size is the
number of randomly selected annotations that were manually
validated. We abbreviate the sources of POI data as follows:
Google Places as ”GP” and Foursquare as ”4sq”.

Examining the results by city, some features of the al-
gorithms are revealed. The Google Places based methods
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Figure 5. Overall annotation accuracy. The bars represent the percentage
of places annotated accurately at place level and at area level. The HROI
method provides the best compromise between covering a higher ratio of
stay points and maintaining place level accuracy.

depend on the spatial distribution and type of POIs in the
city, the ”prominence” method additionally on the unknown
algorithm for ranking prominence. Differences by country
or city cause a lot of variance in the result.

P-DBSCAN generally performs well, but the results for
Tallinn show that it can sometimes be difficult to find a good
clustering with just one layer. Here the reason may be that
most of the sightseeing activity in Tallinn is concentrated in
just one area, the Old Town, which is much denser than the
other sightseeing places. Hence the clusters in Old Town are
either too large or the clusters outside of Old Town mostly
disappear.

In Venice photogenic places fill a high density area of
roughly 10km2, which is challenging both in terms of
clustering and finding terms distinctive to a region. We also
found that several Foursquare POIs had incorrect coordi-
nates, which was not observed in other cities. This impacts
the gravity-based method directly, but ROI based methods
also relied on Foursquare. Finally, unlike other cities, many
photos were taken from waterways. From a sightseeing point
of view, water-based visits and land-based visits cannot be
mixed arbitrarily in annotations. Because our method does
not distinguish between visiting modes, we had to count
stay points on water as incorrect, unless the annotated name
stated both the correct location and that it was on water.

We summarize the results over all cities in Fig. 5. The
gravity based POI association method achieved the highest
annotation accuracy where the correct place name was
chosen. The P-DBSCAN single layer ROI method was able
to add a correct annotation the most points. However, the
HROI method does exhibit the flexibility that was the main
goal of developing the hierarchical approach. It performed
well in terms of both finding accurate place names and
annotating more stay points.

Figure 6. Application to compare the shapes and placement of regions.
The participants were presented random map views with a random pairing
of algorithms and asked to choose which of the two maps had better region
boundaries. Map data by Google.

B. Region shapes

To evaluate different methods of discovering ROI bound-
aries, we asked survey participants to qualitatively assess
coverage and accuracy of regions when displayed on the
map. The participants were presented with regions created
by two algorithms side by side (Fig. 6). The map view and
the algorithms were selected randomly. The participants then
had to select, which map had more places marked accurately.
To do so, they were instructed to count the places by using
the following accuracy scale:
• (count as 1) a region roughly matches one place.
• (count as 1) a region matches one place and has smaller

subregions inside
• (count as 0.5) a region covers a place but extends far

away from it
• (count as 0.5) a place is partially covered by one or

more small, fragmented regions
• (count as 0) even after investigation, you are unsure

what the region covers
Each time there was also the option to select ”Don’t know”.

In this experiment, we compared the HDBSCAN/3 clus-
tering method with P-DBSCAN and the region discovery
method of Laptev et al. [9]. With both of these algorithms,
we generated a set of ROIs with a single layer and a set
of ROIs with three layers. The regions were generated from
geotagged Flickr photos in Tallinn.

We used ε values 110, 50 and 30; MinOwners values 7,
7 and 30; and Addt values 0.5, 0.5 and 0.85, respectively,
to create three layers with the P-DBSCAN algorithm. The
parameters were chosen empirically to achieve coverage
of the less dense map periphery and segmentation of the
dense centre. We chose the settings of the middle layer
for the single layer version. We used haversine distance in
clustering.

The Laptev et al. algorithm has an intuitive area parameter
that controls the size of generated regions. We used area of
0.01km2, 0.1km2 and 1km2 for the three-layered version
and 0.1km2 for the single layer, as in the original paper. The



grid size K = 1024. Because this algorithm is grid based,
defining a distance function is not required.

Over 300 residents of Tallinn participated in the survey,
with 17352 comparisons being included in the final results.
The results did not establish a clear dominance of any single
method. The following list gives the ratio of ”wins” in a
pairwise comparison for each algorithm:

1) P-DBSCAN, 3 layers: 0.48
2) HDBSCAN/3: 0.48
3) Laptev et al., 3 layers: 0.46
4) Laptev et al., 1 layer: 0.41
5) P-DBSCAN, 1 layer: 0.35
The participants rated hierarchical methods higher than

single-layered ones. In cases where a 3-layered method was
paired against a 1 layer method, the hierarchical method
was chosen in 51% of the cases. In 13% of the cases, the
participant selected ”Don’t know” and in 36% of cases they
preferred the flat method.

Both state of the art algorithms performed well in this
experiment so we also discuss the practical aspects of
their potential use in generating hierarchical ROIs. The
Laptev et al. algorithm is easy to implement with Python
SciPy and scikit-image libraries. It was fast, completing
the computation in under 1 minute for all datasets (here
and in the following, we report the runtime of a Python
implementation running on a single core of a Xeon E5-
2690). There is one parameter that directly controls final
cluster size. However, it has not been established yet how
well this algorithm performs with different values of the area
parameter.

P-DBSCAN is also straightforward to implement and the
runtime was approximately 2 minutes on the largest dataset.
The adaptive density threshold is well suited for breaking
apart dense areas with many places. Its weakness is that it
will require three parameters that need to be chosen for each
layer, although there are some guiding principles. There are
also limits to the variation in local density it can cope with.

The main advantage of HDBSCAN/3 compared to the
other two algorithms is that the creation of multiple layers
is data driven. While it did not outperform other methods
in this experiment, in Section IV-A the performance was
among the most stable across different datasets. The chosen
distance function however made practical use difficult. Over
95% of computation time was spent in calculating the sparse
neighbourhood graph, with total run times ranging from 5
to 10 hours. The distance function has parameters that are
not easily interpreted.

V. CONCLUSION

Associating trajectory segments with visited places using
POIs (as represented by points) is a common approach in
research papers, but the problem of selecting the correct
POI is not trivial. The popularity of the places, as indicated
for example by Foursquare check-ins, is a heuristic that

performs well, but still does not take into account the shape
and size of the physical places.

We proposed that the annotation is done using regions
of interest, or ROIs, that are capable of representing these
aspects of places. The natural extension of this approach is
that the ROIs are arranged as a hierarchy, so that both large
areas and individual places can be represented simultane-
ously. This allows explaining additional parts of trajectories
that do not match any hotspots and finding cases where
individual visits belong to a single theme (such as a historic
area).

We described an implementation of the hierarchical ROI,
or HROI method. It consists of finding region boundaries,
selecting names for the regions and finally matching ap-
propriate regions to trajectory segments. While the region
naming is an additional obstacle that is not encountered with
pre-existing POI databases, human assisted name resolution
of the most important ROIs is a low effort, high positive
impact improvement in this task. Our method transforms
sequences of stay points into sequences of known places.

We used the HROI method to annotate sightseeing tra-
jectories with place names. We showed experimentally that
place level accuracy with HROI was similar to the best
POI based method, but thanks to the additional area level
annotations HROI was consistently able to explain more stay
points correctly. Overall we were able to annotate 76% of the
stay points on sightseeing trajectories in Budapest, Tallinn,
Venice and Vienna.

We also arranged a survey to qualitatively judge the size
and placement of regions generated in the first stage of the
HROI process. We compared the data driven hierarchical
method HDBSCAN/n with state of the art methods of
discovering ROIs from geotagged photos. The survey par-
ticipants preferred hierarchical regions to flat ROIs in terms
of how many interesting places they covered accurately.

The semantic- and street network aware distance function
used with HDBSCAN/n was found to be slow and complex
to use due to introducing additional parameters. Future
work should examine whether a conventional spatial dis-
tance function with metric properties would achieve similar
results.

While GIS data is less suitable for semantic annotation on
detailed level (i.e. the name of a museum is more descriptive
than its street address), using reverse geocoding to assist
in discovering the names of large scale features should be
investigated.
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[30] R. Řehůřek and P. Sojka, “Software Framework for Topic
Modelling with Large Corpora,” in Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks.
ELRA, May 2010, pp. 45–50.

[31] Y. Zheng, “Trajectory data mining: An overview,” ACM TIST,
vol. 6, no. 3, pp. 29:1–29:41, 2015.



Appendix 4

Publication IV
P. Järv. Predictability limits in session-based next item recommendation.
In T. Bogers, A. Said, P. Brusilovsky, and D. Tikk, editors, Proceedings
of the 13th ACM Conference on Recommender Systems, RecSys 2019,
Copenhagen, Denmark, September 16-20, 2019., pages 146–150. ACM,
2019

117





Predictability Limits in Session-based Next Item 
Recommendation 

Priit Järv 
Tallinn University of Technology, Estonia 

priit@whitedb.org 

ABSTRACT 
Session-based recommendations are based on the user’s recent 
actions, for example, the items they have viewed during the cur-
rent browsing session or the sightseeing places they have just vis-
ited. Closely related is sequence-aware recommendation, where the 
choice of the next item should follow from the sequence of previous 
actions. 

We study seven benchmarks for session-based recommendation, 
covering retail, music and news domains to investigate how accu-
rately user behavior can be predicted from the session histories. 
We measure the entropy rate of the data and estimate the limit of 
predictability to be between 44% and 73% in the included datasets. 

We establish some algorithm-specifc limits on prediction accu-
racy for Markov chains, association rules and k-nearest neighbors 
methods. With most of the analyzed methods, the algorithm design 
limits their performance with sparse training data. The session 
based k-nearest neighbors are least restricted in comparison and 
have room for improvement across all of the analyzed datasets. 
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• Information systems → Recommender systems; Test collec-
tions; • Mathematics of computing → Information theory. 
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1 INTRODUCTION 
Recommender systems aim to improve the user experience in shops, 
entertainment or travel apps and targeted advertising, by fnding 
items or activities that the user is interested in. From the business 
point of view, the user is also more likely to make purchases when 
the recommender is able to anticipate what the user likes. However, 
the preferences of the user may not be readily available. The user 
may interact with the system anonymously or have no previous 
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history. The user may be looking for place recommendations in a 
country or area they have not previously been to. 

From practical perspective, being able to make recommendations 
in such scenarios is highly relevant. The problem of making recom-
mendations tailored to user sessions, rather than established users, 
is called session-based recommendation. For the remainder of the 
paper, we will refer to any sequence of user actions as a session 
and the elements of the sequence as items. The items may refer 
to listened songs, visited sightseeing places or actual items in an 
online store. 

In a related scenario, recommendations may themselves con-
sist of a collection or a sequence of items. Music playlists and 
trip itineraries are examples where both the individual items and 
transitions between them are important for the quality of recom-
mendations. Even when the goal is to recommend a single next 
item, such as the next song to listen, the sequence of previous items 
is often relevant. Recommender systems that consider the sequence 
of items are called sequence-aware. 

The ability to predict the next item in a sequence correctly is 
commonly used to evaluate algorithmic approaches in session-
based scenarios. While the quality in recommendations goes beyond 
just being able to fnd the most likely item, this is still an important 
indicator in determining whether the model has captured user 
interests accurately. 

Diferences in methodology, baselines and evaluation datasets 
in session-based recommendation research have made compari-
son and analysis of diferent algorithmic approaches difcult. To 
establish a common baseline for evaluating next item predictions, 
Ludewig and Jannach published a set of benchmark datasets and a 
standardized methodology [5]. They measured the performance of 
various methods and concluded that there are no major diferences 
between simple methods like k-nearest neighbors and sophisticated 
methods like matrix factorization approaches that are intended to 
overcome the difculties with simpler methods, such as data spar-
sity and ability to generalize. In fact, the simpler methods performed 
better on majority of the datasets. 

In this paper, we examine properties of seven public datasets 
included in the benchmarks of Ludewig and Jannach [5]. To under-
stand what kind of expectations could be placed on the accuracy of 
future improvements in algorithms, we estimate the predictability 
of the item sequences in the datasets. We defne predictability as the 
probability that the recommender will correctly predict the next 
item, given an unfnished session and a history of other sessions. 
Assuming we knew the most likely item each time, the prediction 
can still be wrong when other items have a non-zero probability 
of appearing. When discussing the predictability of a dataset, we 
mean the probability that a perfect predictor will guess correctly, 
averaged over the dataset. 
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Figure 1: Items available for recommendation. Given a ses-
sion to recommend for, the algorithms we analyze restrict 
the possible responses to co-occurrences in the training set 
with the session items {B, C, F} (marked with color fll). 

For simpler algorithms, the design of the algorithm places an 
upper limit on the ability to predict the next item. For example, 
when modeling the sessions as a Markov chain, the probability 
distribution of the next item can only include the items that imme-
diately followed the current item in a session in the training data. 
The method’s accuracy is then limited to how often the known item 
pairs occur in the testing data, relative to previously unknown item 
pairings. 

Figure 1 illustrates typical cases where the co-occurrence in the 
training data determines which items are available for recommen-
dation. For a session {B, C, F}, considering only the continuations 
seen in training data leads to recommending G. Methods that look 
at entire sessions could also rank E and H. Neighborhood-based 
methods that fnd similar sessions can also recommend the item D. 

We determine co-occurrence relations that afect the perfor-
mance of Markov chains, association rules and k-nearest neighbors 
(k-NN) in all included datasets. These relations are highly dependent 
on datasets and training-testing splits, but are useful in explaining 
and further evaluating the performance of the afected methods in 
the reference benchmark of Ludewig and Jannach [5]. 

The remainder of the paper is organized as follows. In Section 2 
we review the related work. In Section 3 we estimate two types 
of limits on prediction accuracy - upper limits due to the inherent 
randomness in the benchmark datasets and limits due to algorithm 
design. Section 4 summarizes the fndings and suggests directions 
for future research. 

2 RELATED WORK 
This paper relies extensively on the evaluation of session-based 
recommenders by Ludewig and Jannach [5]. Recognizing the lack 
of unifed methodology, they collected datasets and performed 
evaluation of multiple classes of methods. The public datasets and 
testing framework have also been published online, to facilitate 
building future research on this platform. They found that with their 
methodology and an increased variety of datasets there was no sig-
nifcant diference between naive baselines and latest sophisticated 
approaches. Ludewig and Jannach concluded that more research is 
required into the circumstances that afect algorithm performance 
in diferent datasets. We have made an initial investigation into this 
question in this paper. 

Session-based recommendation can be seen as a subset of sequence-
aware recommendation. Quadrana et al. review the applications, 
types and methods of sequence-aware recommenders [7]. In re-
cent years, the attention has turned to deep learning approaches to 
recommendation, reviewed by Zhang et al. [19]. 

The entropy method to estimate predictability of sequential in-
formation was popularized by Song et al. They used mobile phone 
usage logs to calculate the predictability of trajectories of individual 
mobile phone users [10]. An explanation of the theoretical basis 
and additional proofs were given by Smith et al. [9]. The details of 
the entropy estimation of the original method of Song et al. can 
interpreted in diferent ways. To address that Xu et al. published a 
clarifed method with experimental evaluation [15]. 

Substantial prior work exists on making next-item predictions 
using the datasets included in our evaluation [2–4, 11, 12, 14, 16, 17]. 
These papers generally use diferent methodology so we do not 
compare their results directly to our estimated predictability. They 
also cover a wider range of recommendation scenarios, including 
established user histories and leveraging content information [2, 4, 
12, 14, 16, 17]. 

3 LIMITS ON PREDICTION ACCURACY 
In this section we determine the limits on prediction accuracy due 
to inherent randomness in data and due to algorithm design. We 
consider only the limits on the hit rate (HR) metric, which can be 
directly estimated with our approach. The hit rate metric measures 
whether the item to predict was included in the top-n recommended 
items (abbreviated as HR@n). We cover 7 public datasets included 
in the benchmark of Ludewig and Jannach[5]: 

• RSC15 - item views and purchases in online retail, published 
for the ACM RecSys 2015 Challenge[1]; 

• TMALL - online purchasing history from Tmall.com; 
• RETAILR - user browsing histories from Retail Rocket[8]; 
• AOTM - music playlists from the Art of the Mix platform[6]; 
• 30MUSIC - listening histories from last.fm[13]; 
• NOWPLAYING - "currently listening" tweets[18]; 
• CLEF - news article reads by users, a subset of the data used 
in the 2017 CLEF NewsREEL challenge[5]. 

We calculate the estimates on training and test splits created 
with the same methodology and settings as used by Ludewig and 
Jannach[5] and compare our limit estimations to the performance 
of algorithms as measured in their benchmark. The programs to 
reproduce the calculations and instructions to access the data are 
available online1. 

3.1 Limit on predictability 
We use the method of Song et al. [10] to estimate the upper bound 
on predictability of sequential data through estimating the entropy 
rate on the sequences. To determine predictability in the benchmark 
setting, we treat the training and test splits as a single joint sequence. 
This simplifcation is safe as long as we do not consider the efects 
of sessions overlapping or having taken place in parallel important. 

1https://github.com/priitj/recsys19 
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Let the next item in a sequence be Xi and the items preceding it 
hi . The entropy associated with the next item Xi , as a measurement 
of how predictable its possible values are, is: 

Õ 
H (Xi |hi ) = − P(Xi = x |hi ) log2 P(Xi = x |hi ) (1) 

x 

The probability distribution P(Xi |hi ) is the true probability dis-
tribution of the next item Xi . While we do not know the true 
distributions and cannot calculate the quantity H (Xi |hi ) directly, it 
will form the theoretical basis of determining the maximum pre-
dictability of the sequence. The entropy rate of a sequence is[9]: 

Õ1 H(X) = lim H (Xt |ht ) (2)
t →∞ t 

Given the entropy rate, the bound on maximum predictability 
Π max can be found by numerically solving 

1 − Π max H(X) = −Π max log2 Π max − (1 − Π max ) log2 (3) 
m − 1 

where m is the number of unique items. The full derivation of 
Eq. 3 is given by Smith et al. [9]. Finally, we substitute the theoretical 
H(X) with the estimate S ≈ H(X) over a sequence of length n: 

1 
S = Í log2 n (4)1 

i Λin 

This is the corrected estimate by Xu et al.[15], where Λi = 
(i) (i)

kmax + 1 and kmax is defned as the length of longest sub-sequence 
starting from position i that appears as a continuous sub-sequence 
between positions 1 . . . i − 1. Because we use an estimate of the 
entropy rate, the calculated predictability should be treated as an 
approximation. Furthermore, the experiments of Xu et al. show that 
while the corrected method we use is more accurate, it can also 
underestimate predictability [15]. 

We include training and test sets because we are interested in 
determining the entropy rate of the same stochastic process that 
"produced" the sessions in both sets. The sets are represented by 
arranging the sessions sequentially and introducing a session end 
marker e , which is placed between individual sessions. The appear-
ance of the marker in sequence is then the event that the session 
ends, given all the previous sessions and the content of the current 
session, with probability P(Xi = e |hi ). Similarly, the probability that 
the next session starts with item x , given all the previous sessions, 
is P(Xi = x |e, hi−1). Therefore, the sequence can still be viewed as 
events produced by a stochastic process and Equations 1–2 apply. 

We report the average Π max over fve evaluation splits for each 
dataset in Table 1. The estimated predictability Π max is a limit 
on the HR@1 accuracy metric, the ratio of tests where the recom-
mender is able to recommend the correct item as frst in a ranked 
list. The limit is between 44% and 73%, depending on the dataset. 
Purely session-based recommendation algorithms should not be 
expected to improve above these values. The state of the art results 
(column best known) are signifcantly below the limit. 

The practical implications of this result depend on the applica-
tion. In many cases, ofering more than one recommendation is 
useful, so HR@1 is a too strict measure and performance with n > 1 

Table 1: The estimate of predictability from entropy. Π max 

is the upper limit on the HR@1 metric. Best known – HR@1 
benchmark performance of the best algorithm on the same 
data [5]. 

Π max best known[5] 
HR@1 

RSC15 0.65 0.18 
TMALL 0.58 0.13 
RETAILR 0.59 0.27 
AOTM 0.44 0.0096 
30MUSIC 0.73 0.20 
NOWPLAYING 0.71 0.076 
CLEF 0.64 0.12 

is more informative. On the other hand, where the exact prediction 
or the top position in a ranked list of recommendations is important, 
the performance will be directly bound by these limits. Finally, the 
tools we have developed allow calculating predictability estimates 
on other datasets. 

3.2 Limits due to algorithm design 
In this section we evaluate the algorithmic limits of the following 
methods: 

• MC - Markov Chain, where the transition probabilities are 
direct statistical probabilities learned from item-to-item tran-
sitions in training data; 

• SR - Sequential Rules: like Markov Chain, but items indi-
rectly following the current item are included as possible 
transitions with a decaying weight; 

• AR - Association Rules: transition probabilities are learned 
statistically by counting item co-occurrences in training ses-
sions, regardless of sequence; 

• IKNN - Item-based k-NN, where nearest neighbors are found 
by comparing item vectors; 

• SKNN - A family of session-based k-NN, where the common 
feature is that the nearest neighbors are found by comparing 
session vectors. 

We use the method defnitions of Ludewig and Jannach. Further 
details on the specifc implementation choices can be found in 
their paper [5]. We do not include matrix factorization and neu-
ral network methods. While similar analysis of their performance 
would be highly relevant, it would require a more sophisticated 
mathematical approach than we have taken here. 

With several of the analyzed methods, direct statistical learning 
from the training data is applied. For example, if the training set 
included sessions {A, B}, {B, A} and {C, A} then with the associ-
ation rule method we would predict the item B after A with the 
probability 23 and item C with probability 13 . The method would 
not be able to predict any other items as it has no grounds to do so 
based on the training data. 

With simple recommendation approaches we can directly deter-
mine the limit of prediction accuracy since the algorithm design 
itself restricts which items can be recommended. By determining 
how the algorithm fnds the items to recommend, we count the 
test instances where it is impossible to give the correct prediction 
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because the required association has not occurred in the training 
data. The ratio of such cases gives us an exact upper bound on the 
HR@n metric. The limit applies for any n. We give the results by 
algorithm, averaged over fve training and test splits, in Table 2. 

These results apply to the testing scenario where the recom-
mender is given an incomplete session and has to predict the next 
item in the session correctly. In the following analysis, we refer to 
the incomplete session as the current session, and the last known 
item as the current item. The item that the recommender is expected 
to fnd, is referred to as the next item. 

Figure 2 shows the limits of prediction accuracy for the most 
restricted algorithms, compared to their HR@20 performance and 
the best HR@20 result (state of the art), as measured by [5]. For the 
MC method, the limit is the ratio of test cases where the next item 
occurred directly after the current item in training data. The SR 
and AR methods can recommend the next item if there is a session 
in training data where the next item occurs somewhere after the 
current item, or anywhere in the session, respectively. 

Overall, Figure 2 suggests that these three algorithms have simi-
lar dataset-dependent behaviour. The limits are higher in the RSC15 
and especially the CLEF dataset. On the e-commerce and music 
datasets they are low enough to directly infuence the performance. 
On the RETAILR dataset, all three algorithms have a hard limit on 
the HR@n performance that has already been exceeded by the best 
known benchmark result at HR@20. With SR, this extends to the 
AOTM and 30MUSIC datasets and with MC to all e-commerce and 
music datasets. 

The signifcance of the limits decreases when more training data 
is available. The CLEF and RSC15 datasets have on the average 
2200 and 48 sessions per unique item in the training splits used, 
making them relatively least sparse in terms of training samples 
per item. The music datasets are the most sparse, having 0.36 or 
fewer sessions per unique item. 

k-NN methods fall under two diferent categories. The IKNN 
method fnds the items to recommend by calculating the cosine 
similarity of binary item vectors where the elements correspond to 
sessions. If the next item has not occurred in the same session with 
the current item, the dot product of the vectors will be 0. The IKNN 
method therefore has the same hard limit on the performance in 
HR@n metrics as AR. 

In contrast with the other analyzed methods, the family of SKNN 
methods is much less restricted by design. They fnd the neighbor-
hood by comparing session vectors, where the elements correspond 
to items. Whenever the next item has co-occurred with any of the 

Table 2: Limits on prediction accuracy (HR@n) for simpler 
approaches. 

MC SR AR, IKNN SKNN 
RSC15 0.79 0.86 0.90 0.97 
TMALL 0.25 0.40 0.45 0.90 
RETAILR 0.36 0.44 0.57 0.80 
AOTM 0.015 0.042 0.079 0.92 
30MUSIC 0.29 0.36 0.48 0.91 
NOWPLAYING 0.17 0.28 0.40 0.90 
CLEF 0.96 0.98 0.99 0.995 
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Figure 2: Performance (HR@20 metric, colored bars) and re-
maining gap to limit due to algorithm design (clear bars). 
State of the art is the top result for the dataset (any algo-
rithm). The performance measurements were taken from 
[5]. 

items in the current session, it can potentially be recommended. In 
the datasets we analyzed, this covers over 80% of test cases each 
time and in particular, 92% for AOTM where other approaches are 
severely restricted. 

4 CONCLUSIONS AND FUTURE WORK 
We gave estimates between 44% and 73% on the predictability 
of session-based recommendation scenarios with the analyzed 
datasets. The accuracy of the exact prediction of the next user 
action is limited by these values. 

Algorithm-specifc limits have a practical efect on the perfor-
mance of the Markov chain, sequential rule, association rule and 
IKNN methods. While these methods were found to perform well 
in an earlier study [5], in several cases they cannot be improved 
signifcantly due to self-imposed restrictions. With sparse training 
data, their maximum theoretical performance is already below of 
what has been demonstrated in practice by other algorithms in the 
analyzed benchmark. 

Session-based k-NN methods have room for improvement in all 
of the evaluated datasets. As they are already competitive with the 
more sophisticated approaches, more efort should be devoted into 
developing the SKNN algorithm family. 

The methods presented in this paper have several limitations that 
should be addressed in future work. The estimates of predictabil-
ity for other metrics that consider multiple recommendations and 
ranking positions, like the mean reciprocal rank (MRR) would be 
of practical value. The algorithm-specifc analysis should be ex-
tended to important sequential recommendation methods – matrix 
factorization and neural networks. 
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