
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Ilja Vasilenko 206136IADB

Application for Monitoring and Administering

Network-based Applications on a Windows

Operating System

Bachelor's thesis

Supervisor: Mohammad Tariq

Meeran

PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Ilja Vasilenko 206136IADB

Rakendus võrgupõhiste rakenduste jälgimiseks

ja haldamiseks

Windowsi operatsioonisüsteemis

Bakalaureusetöö

Juhendaja: Mohammad Tariq

Meeran

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Ilja Vasilenko

24.04.2023

4

Abstract

This thesis aims to develop an application for network monitoring and administration on

Windows Operating System, designed specifically for non-advanced users. Existing

solutions often lack important features or are too complex for beginners. In this study, the

author compares and analyses similar third-party and built-in solutions, identifying their

limitations, usability, and feature sets. Based on this analysis, the author develops an

application with the most relevant features and a simple UI/UX design that is accessible

to beginner-level users.

The theoretical part of this work presents a comprehensive analysis of existing solutions

and identifies gaps in feature sets and usability. Based on literature review findings and

analysis the general and functional requirements for the application are defined.

The practical part of the thesis describes the development process of the application,

including code patterns and algorithms used in implementing the major features.

The contribution of this study is an application design with a user-friendly interface and

relevant features that address the limitations of existing solutions. It provides insights into

the design and development of efficient and effective network monitoring and

administration tools and is particularly relevant for non-advanced users.

This thesis is written in English and is 56 pages long, including 6 chapters, 17 figures and

2 tables.

5

Annotatsioon

Rakendus võrgupõhiste rakenduste jälgimiseks ja haldamiseks Windowsi

operatsioonisüsteemis

Selle lõputöö eesmärk on luua rakendus Windowsi operatsioonisüsteemis võrgu

jälgimiseks ja haldamiseks, algaja taseme kasutaja jaoks. Olemasolevad lahendused

võivad sageli puududa olulistest funktsioonidest või olla liiga keerulised tavakasutajatele.

Uuringus võrdleb ja analüüsib autor sarnaseid kolmandate osapoolte ja sisseehitatud

lahendusi, tuvastades nende piirangud, kasutatavuse ja funktsioonide kogumi. Analüüsi

põhjal töötab autor välja asjakohaste funktsioonide ja lihtsa UI/UX disainiga rakenduse,

mis on ligipääsetav tavakasutajatele.

Töö teoreetiline osa esitab olemasolevate lahenduste põhjaliku analüüsi ning tuvastab

lüngad funktsioonide kogumis ja kasutatavuses. Kirjanduse ülevaate leidude ja rakenduse

üldiste ning funktsionaalsete nõuete analüüsi põhjal on määratletud.

Lõputöö praktilises osas kirjeldatakse rakenduse arendusprotsessi ning koodimustreid ja

põhifunktsioonide realiseerimisel kasutatavaid algoritme.

Uuringu panus on kasutajasõbraliku liidese ja asjakohaste funktsioonidega rakenduse

disain, mis käsitleb olemasolevate lahenduste piiranguid. See annab ülevaate tõhusate ja

tulemuslike võrgujälgimis- ja haldustööriistade kavandamisest ja arendamisest, olles eriti

oluline tavakasutajatele.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 56 leheküljel, 6 peatükki, 17

joonist, 2 tabelit.

6

List of abbreviations and terms

API Application Programming Interface – the connection between

different applications

CPU Central processing unit – computer processor

DNS Domain Name System - a hierarchical and distributed naming

system for computers, services, and other resources in the

Internet

Driver Computer program that controls a particular type of device -

enabling operating systems and other computer programs to

access hardware functions

ERD Entity relationship diagram – visualization of entity relationship

sets stored in a database

Ethernet Technology for connecting devices in a wired local area

network (LAN) or wide area network (WAN)

GUI Graphical user interface

IP address A unique address that identifies a device on the network

MVVM Model-View-ViewModel - software design pattern

NIC Network interface card or network interface controller - a

hardware component that connects a computer or other device

to a network

ORM Object Relational Mapping - a technique used to communicate

between object-oriented programs and databases

OS Operating System - system software that manages computer

hardware

Pcap Abbreviation of packet capture - application programming

interface (API) for capturing network traffic

Repository Abstraction, which provides default functionalities and can be

selectively changed by the developers

Thread Single sequential flow of execution of tasks of a process

UI User interface

UX User experience

Wi-Fi Wireless networking technology

XAML Extensible Application Markup Language - declarative markup

language

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Packet_capture
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Packet_sniffer

7

Table of contents

1 Introduction ... 11

1.1 Problem statement .. 12

2 Background .. 13

2.1 Main concepts of network traffic monitoring and administration 13

2.1.1 Network traffic monitoring .. 13

2.1.2 Network administration ... 14

2.2 Existing solutions comparison .. 14

2.2.1 Selection of the solutions to compare .. 15

2.2.2 Comparison criteria ... 15

2.2.3 Comparison .. 15

2.2.4 Comparison Summary ... 19

2.3 Choice of technologies ... 21

2.3.1 Choice of programming language ... 21

2.3.2 Choice of framework ... 23

2.3.3 Choice of network capture library ... 24

3 Methodology .. 26

3.1 Application Requirements .. 27

3.2 Functional requirements ... 27

3.2.1 Non-functional requirements ... 28

3.2.2 Limitations ... 28

4 Development of the application ... 29

4.1 Project structure .. 29

4.2 Backend .. 31

4.2.1 Active network processes capture ... 31

4.2.2 Packet capture .. 33

4.2.3 Using the active network processes capture and packet capture 34

4.2.4 Blocking Internet access .. 34

4.2.5 Database .. 35

4.3 Layers communication ... 36

8

4.4 Frontend .. 37

4.4.1 Application Views ... 38

4.5 Results and analysis .. 40

4.5.1 Testing ... 41

4.5.2 Possible improvements .. 41

6 Conclusion ... 42

References .. 43

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 46

Appendix 2 – “netstat -on” output sample.. 47

Appendix 3 – Active network process capture implementation 48

Appendix 4 – Active network process capture implementation 50

Appendix 5 – Active network processes capture as a background task 51

Appendix 6 – Implementation of Blocking internet access functionality 52

Appendix 7 – Implementation of AppInfo Repository ... 53

Appendix 8 – Implementation of Graph View ... 55

9

List of figures

Figure 1. MVVM Architecture communication pathways [36]. 30

Figure 2. Simplified project folder structure .. 31

Figure 3. Application name extraction from Process ... 32

Figure 4. Application icon extraction from Process ... 33

Figure 5. Database ERD scheme .. 35

Figure 6. Repository Interface .. 36

Figure 7. Layers communication .. 37

Figure 8. XAML tags ... 37

Figure 9. Application Graph view .. 39

Figure 10. Application Statistics View ... 40

Figure 11. “netstat -on” output sample ... 47

Figure 12. Active network process capture implementation .. 49

Figure 13. Active network process capture implementation .. 50

Figure 14. Active network processes capture as a background task 51

Figure 15. Implementation of Blocking internet access functionality............................ 52

Figure 16. Implementation of AppInfo Repository .. 54

Figure 17. Implementation of Graph View .. 56

10

List of tables

Table 1. Existing applications comparison summary ... 20

Table 2. Programming languages comparison ... 22

11

1 Introduction

The Internet and network-based applications have become an essential part of our daily

lives, making it necessary to manage and monitor network usage efficiently. Monitoring

network traffic can provide insights into internet usage patterns, optimize network usage,

and improve productivity. Administering network traffic can also be helpful. Users can

restrict access to the internet for certain applications, for example to disable ads and

automatic updates, or reduce overall internet traffic consumption. Additionally, closely

monitoring network traffic can help to detect any malicious software and prevent security

breaches and potential data loss.

The market offers a variety of solutions for administrating and monitoring network traffic.

For smartphone users, these features often come as built-in functionalities, which provide

powerful monitoring and administration capabilities. Users can access detailed statistics

and restrict Wi-Fi access to app. Unfortunately, for Windows OS users it is not too simple.

Most of the provided solutions are either too basic and offer limited functionality or too

complex, designed primarily for advanced users. These solutions are often separated into

different settings menus or other parts of the user interface, making it difficult for users

to find and access the necessary features. Moreover, third-party solutions are mostly

designed for advanced users, with complex or outdated design. This lack of user-friendly

and accessible network monitoring and administration solutions for Windows OS users

is a significant issue that can lead to overall frustration and unwillingness to deal with

their use of the Internet.

This thesis is divided into two main parts. In the first, background part, author will analyse

and compare existing solutions with similar functionality to the application being

developed in this thesis. Next, author will provide a detailed overview of the chosen

frameworks, libraries, and technologies used in the development of the application. The

author will explain the reasoning behind the technology choices. In the second, the

practical part, author will demonstrate the development progress and implementation of

the core application parts. The author will present the implementation of the application's

12

features, discuss any challenges faced during development, and provide solutions to

overcome these challenges.

1.1 Problem statement

According to article - “A Methodical Review on Network traffic monitoring and Analysis

tools” by Prabhjot Kaur and Neeti Misra [1] third-party network traffic monitoring and

administration applications offer a vast and distinctive range of functionality in

comparison to built-in solutions. However, these solutions are primarily designed for

advanced users, which results in overcomplication and may not be suitable for ordinary

users.

In addition, according to multiple articles [2, 3, 4] Windows has been criticized for having

inconsistent UI/UX designs, which are characterized by multiple design patterns and

outdated designs from previous versions of Windows. Examples of such inconsistent

design can be found in Windows Task Manager, Resource Monitor, and Firewall

Manager. These inconsistencies can lead to user’s confusion, poor user experience,

difficulties in navigating and understanding the interface. In addition, third-party

solutions designed for administrators generally have a steep learning curve.

The goal of this thesis is to solve these problems by developing an application for

monitoring and administering network traffic for Windows operating systems. Despite

the administrative nature of the theme, this project will focus on the development aspects,

with a particular emphasis on creating a user-friendly interface and providing only

essential features. It should be noted that while some of the functionalities can be found

in existing applications or tools, the intention is to create a solution that is both

streamlined and approachable for the end user.

13

2 Background

In this section of the thesis, the author will explore the general concepts of network traffic

monitoring and administration. Explaining the general concepts of monitoring and

administration is necessary as it provides a foundational understanding of the core

functionality that the developed application will aim to implement.

Next, author will analyse and compare existing applications with similar functionality to

the application being developed in this thesis. Analyses will assist in guiding the

development of the application and will address the thesis problems such as decision of

user-interface and user-experience design implementation, as well as selection of the

feature set.

Finally, author will overview the analyse and select technologies used to create the

desired application.

2.1 Main concepts of network traffic monitoring and administration

In order to develop a desired application with monitoring and administrating

functionality, it is essential to understand network traffic and administrating concepts

technological basics: how they work, perform, and how to use them. The two concepts

are the core features that the application will implement, and the critical role it plays in

ensuring applications security and efficiency. In this section author will delve into these

concepts in some detail and analyse their importance in the context of the application

being developed.

2.1.1 Network traffic monitoring

Network traffic is defined as something arisen from the bidirectional flow from Origin to

Destination. Network traffic monitoring is observation of the inflow and outflow of traffic

moving in-across the network. Network traffic analysis is the technique of extracting the

features from the traffic to understand its behaviour. Through the analysis process, it is

14

possible to gather meaningful data that can be used to draw a wide range of conclusions

or generate statistics. [1]

A network is a group of two or more than two connected computers. The Internet is a

network of networks — multiple networks around the world that are all interconnected

with each other. In networking, a packet is a small segment of a larger message. Data sent

over computer networks, such as the Internet, is divided into packets. These packets are

then recombined by the computer or device that receives them. Packets consist of two

portions: the header and the payload. The header contains information about the packet,

such as its origin, destination IP addresses (an IP address is like a computer's mailing

address), packet length, priority, and information about the payload or content of the

packet. The payload is the actual data. [5, 6].

Network packet capture is the act of recording packets that traverse a computer network,

including every packet header and packet payload. Once packets have been captured,

analyzation software can view the header and payload of any captured packet [6].

2.1.2 Network administration

Network administration is a process of managing, monitoring, maintaining, and securing

a computer network [7]. In Windows Operating Systems network administrating is

typically referred to as a Windows Firewall manipulation.

A Firewall is a network security device that monitors and filters incoming and outgoing

network traffic based on an organization’s previously established security policies. At its

most basic, a firewall is essentially the barrier that sits between a private internal network

and the public Internet. A firewall’s main purpose is to allow non-threatening traffic in

and to keep dangerous traffic out. [8]

2.2 Existing solutions comparison

In this section, various existing solutions for network monitoring and administration will

be explored and compared. The author will select a range of applications to reflect

different feature sets, target audiences, and price points. To ensure a fair comparison, the

author will establish general criteria for evaluation. The author will analyse each

application based on these criteria and summarize its strengths and weaknesses.

https://www.cloudflare.com/learning/network-layer/what-is-the-network-layer/
https://www.cloudflare.com/learning/network-layer/how-does-the-internet-work/
https://www.cloudflare.com/learning/dns/glossary/what-is-my-ip-address/

15

Additionally, a table will be created to highlight the differences and similarities among

existing solutions. After conducting this comparison, the author will list the observations

based on the experience using the different applications. These observations will help

guide the development of the application, particularly with user interface and user

experience design, and decide the feature set.

2.2.1 Selection of the solutions to compare

The choice of applications to compare is based on the popularity of the app, its target

audience, its list of features, and its design. The main focus was to cover a wide range of

applications that can potentially have a similar functionality as the solution being

developed. The selection is limited to include only those solutions that are widely used

and have the potential to offer valuable insights into the best implementation approaches.

The selection incudes both, build-in and third-party solutions. Based on the selection

criteria 4 application were chosen: Windows Task Manager, Windows Resource Monitor,

Wireshark and GlassWire.

2.2.2 Comparison criteria

In order to better compare applications, different criteria have been defined to make it

easier to categorize and evaluate network monitoring and administration applications.

The criteria for the comparison is based on article - “A Methodical Review on Network

traffic monitoring and Analysis tools” by Prabhjot Kaur and Neeti Misra [1] as well

importance for the development process.

▪ Feature set – application functionality and its limitations

▪ UI/UX design and overall user-friendliness – usability of the application

▪ Target audience – for whom application is designed to and who uses it

Additionally, the author will provide a personal perspective on the compared applications,

including experience using them.

2.2.3 Comparison

This part consists of existing solution comparison based on criteria described above.

16

Windows Task Manager

Windows Task Manager is a built-in application in Microsoft Windows operating systems

that allows users to monitor system performance and manage running applications [9].

The feature set of the Windows Task Manager includes monitoring system performance

metrics such as CPU usage, memory usage, disk usage, and network activity.

Additionally, the Task Manager provides a list of running applications and their resource

usage, allowing users to manage and terminate processes as needed. [9]

The interface of Windows Task Manager is also straightforward, with a tabbed layout that

allows users to navigate between different sections of the application easily. While the

design may not be visually appealing, it is functional and easy to use. It is worth noting

that Windows Task Manger received the major design update in 11th version of Windows

Operating System. Despite visual appearance improvement, application core

functionality and overall user experience remained the same. [9]

The target audience of Windows Task Manager is primarily individual users and IT

professionals who need to monitor system performance and manage running processes.

As a built-in application, it is available to all users of Microsoft Windows operating

systems at no additional cost [9].

Overall, Windows Task Manager provides a basic set of features for monitoring system

performance and managing running processes. While it may not have the advanced

features of other third-party applications, its simplicity and accessibility make it a useful

tool for many users.

In the author's opinion, Windows Task Manager is a useful and reliable tool for

monitoring and managing system resources, but it may lack the additional features and

visual appeal of other dedicated applications. However, for users who do not require

advanced network monitoring or security features, Windows Task Manager is a suitable

option with a straightforward interface and no cost associated with its use.

Windows Resource Monitor

Windows Resource Monitor is a built-in Windows utility that provides more in-depth

information about system resources and processes than Windows Task Manager. It

17

displays real-time data on CPU, memory, disk, and network usage, as well as detailed

statistics on individual processes. [10]

One of the most useful features of Windows Resource Monitor is the ability to monitor

bytes sent and received by individual processes in a given time frame. This is particularly

helpful for identifying applications that may be using excessive network bandwidth.

Additionally, users can restrict network access for individual processes from within

Windows Resource Monitor. However, this restriction is not permanent and will be lifted

if the application is opened again. [10]

The interface is similar to Windows Task Manager, but with more detailed information

and graphs to aid in analysis. While not as visually appealing as some third-party

applications, the design is functional and easy to navigate. Windows Resource Monitor

is used by IT professionals and advanced home users who require more in-depth

information about system resources and processes. As a built-in application, it is available

to all users of Microsoft Windows operating systems at no additional cost. [10, 11]

Overall, Windows Resource Monitor is a powerful tool for monitoring and managing

system resources, particularly for advanced users. While it may not have the same visual

appeal as third-party applications, its extensive feature set and no-cost availability make

it a valuable tool for many users.

In authors opinion application, while Windows Resource Monitor does provide more

information about network than Task Manager, it does have its limitations. One limitation

is that it does not allow users to see statistics for a specific time range. Additionally, the

ability to restrict internet access for a process is not permanent and will be granted again

if the application is opened again. From a UI standpoint, the author finds the graph

provided by the application to be useful in visualizing network activity. However, the UI

design of Windows Resource Monitor is outdated and can be improved.

Wireshark

Wireshark is a network protocol analyser, or an application that captures packets from a

network connection, such as from your computer to your home office or the internet.

Packet is the name given to a discrete unit of data in a typical Ethernet network [12].

18

The application has a wide range of features, including live packet capture from a network

interface, displaying, filtering and searching packets with very detailed protocol

information, statistics generation, and network troubleshooting tools [12, 1].

The design of the application is straightforward and functional, with a focus on providing

detailed technical information. However, the interface can be overwhelming for

beginners, as there are numerous settings and options available. [12]

In terms of cost, Wireshark is open-source software and is available for free. This makes

it a popular choice for network administrators and security professionals who want an

effective network analysis tool without the high cost of commercial alternatives. [12, 11]

Overall, Wireshark is a powerful and feature-rich application that is ideal for advanced

users who require detailed network analysis. However, its complexity may make it less

suitable for casual users or those with limited technical knowledge.

In authors opinion, Wireshark is extremely powerful software that offers extensive

network monitoring and analysis capabilities, making it an essential tool for advanced

users or network administrators. However, its complex user interface and steep learning

curve may be daunting for beginners or casual users. Additionally, its focus on packet-

level analysis may not be necessary for all users, and its detailed network data may require

some technical knowledge to interpret. Overall, Wireshark is a valuable tool for its

intended audience, but may not be the best choice for all users.

GlassWire

GlassWire is a network security tool that visualizes your past and present network activity

on an easy-to-understand graph. The GlassWire tool alerts you to possible threats,

manages your firewall, monitors remote servers, and helps anyone understand their

network activity [13].

GlassWire's feature set includes real-time visual network monitoring, a first network

activity alert, network security monitoring, an application usage tracker, firewall profile

management, anomaly detection, and a network time machine [13].

The application has an intuitive and user-friendly interface, with clear graphs and charts

that make it easy to understand network activity. It has a sleek and modern design that is

visually appealing and easy to use.

19

In terms of the target audience, GlassWire is marketed toward individual users and small

businesses [11]. Its cost is relatively affordable, with a free version and paid options that

offer additional features [14].

Overall, GlassWire is a powerful network monitoring and security tool with a user-

friendly interface and a variety of features for both home and business users.

In the author's opinion, GlassWire is a robust application that achieves a balance between

advanced features and is highly effective user-friendliness. In addition, GlassWire stands

out for its high level of usability, making it accessible to a broad range of users. However,

many features are only accessible through a paid subscription, which may be a

disadvantage for some users. Although the design is aesthetically pleasing, some of its

features may provide minimal practical information and primarily serve as visual

embellishments.

2.2.4 Comparison Summary

Based on the analyses conducted in the previous section, the author has created a table

summarizing the most important comparison criteria for Windows Task Manager,

Windows Resource Monitor, Wireshark, and GlassWire. It is important to note that the

comparison summary does not consider the entire scope of the applications functionality,

but only the features that relate to the two thesis problems.

20

Table 1. Existing applications comparison summary

App Name Network

Monitoring features

Network

Administrating features

Author’s opinion

Windows

Task

Manager

Basic network

monitoring

functionality: Live

app network usage

monitoring

Basic administration

features: Suspend

network processes

Useful and reliable tool

for, but it lacks the

additional features, visual

appeal and statistics.

Windows

Resource

Monitor

Live process network

usage monitoring,

graph visualization

Block internet access to

the process (not

permanent)

More advanced than

Windows Task Manager,

but has it’s limitations

and UI drawbacks

Wireshark Extremely advanced

network monitoring

functionality:

Live network packet

capture, with the

ability to create

detailed statistics

No network

administration

functionality

Feature rich and powerful

tool, but designed for

advanced users, lacks

visual appeal and learning

curve is very steep.

GlassWire Advanced network

monitoring

functionality:

Live app network

usage monitoring,

live statistics, app

network usage history

and statistics

Advanced network

functionality:

Suspend network

processes, block DNS

addresses, establish group

policies

Application aligns with

the functionality and

design being developed in

this thesis; however some

graphs and statistics

provide minimal practical

information

After analysing and comparing Windows Task Manager, Windows Resource Monitor,

Wireshark, and GlassWire, it can be concluded that each of these network monitoring

applications has its own strengths and weaknesses. Windows Task Manager provides

basic functionality and is only useful in certain cases. Windows Resource Monitor is more

advanced than Windows Task Manager but has its limitations and UI drawbacks.

Wireshark, on the other hand, is an extremely powerful tool but has a complex design and

steep learning curve, making it only suitable for advanced users. GlassWire has a user-

friendly interface and is highly effective in monitoring and administration network traffic.

However, some of its features are only available through a paid subscription.

21

Additionally, some of its design choices, for example in showing statistics, may provide

minimal practical information and, in authors opinion, primarily serve as visual

embellishments.

Despite its limitations, GlassWire will be taken as the main example and inspiration in

this thesis. The author will try to overcome its issues, such as the limited functionality

available in the free version and the visual embellishments that may not provide practical

information.

2.3 Choice of technologies

The selection of appropriate technologies for the development is a critical task that

significantly affects the success of the project. Information technologies, which are used

in the development of digital platforms, are commonly called technology stacks. The

system performance depends on the efficiency of each of the components of the

technology stack and on the effectiveness of their interaction. [15]

When considering technology stack choices certain criteria should be considered [16]:

▪ Author expertise – usage of experience and skills that author already have.

▪ Project requirements – technology effectiveness in solving project problems.

▪ Trendiness – technology popularity, usability amongst other developers and

companies.

2.3.1 Choice of programming language

The choice of programming language is often tied to the choice of framework because

many frameworks are designed to work with specific programming languages [17]. Due

to that programming languages will be analysed considering their choice of frameworks.

Most popular programming languages for the desktop development are C#, Java, C++

and JavaScript [18].

C# is a modern, object-oriented, and type-safe programming language. C# enables

developers to build many types of secure and robust applications that run in .NET [19].

.NET is an open-source platform for building desktop, web, and mobile applications that

can run natively on any operating system. The .NET system includes tools, libraries, and

languages that support modern, scalable, and high-performance software development.

22

An active developer community maintains and supports the .NET platform. [20] .NET

offers a lot of UI frameworks for developing the desktop application such as WPF,

WinForms and MAUI [18]. The main advantage of using the C# for Windows desktop

application development is the fact that C# has a great integrated Windows OS support

out of the box [21].

Java is a multi-platform, object-oriented, and network-centric language that can be used

as a platform in itself. It is a fast, secure, reliable programming language for coding

everything from mobile apps and enterprise software to big data applications and server-

side technologies. Java is a widely-used programming language it has been a popular

choice among developers for over two decades, with millions of Java applications in use

today. [22] Selection of desktop development frameworks is limited to main 3 ones:

Swing, JavaFX and Spring [18].

JavaScript is lightweight scripting language mainly used for creating dynamic web pages

and web applications. However, JavaScript can also be used in creating desktop, mobile

applications using Node.js. Node.js is a server-side, open-source JavaScript framework

that runs JavaScript code outside a browser. [23] Popular framework choices for desktop

development include Electron JS, Node GUI, NW.js [18, 24].

Table 2. Programming languages comparison

Language Author’s experience Suitability Difficulty

Java Average Average High

C# High High High

JavaScript High Low Average

Based on the evaluation of different programming languages and their suitability for the

development of the application in this thesis, the author has decided to use C# as the

primary programming language. This choice was made due to the language's robustness

and large community, as well as its close ties to Windows Operating system, which aligns

with the application's target platform and will be useful in network features

implementations. Furthermore, the author has good experience with C#, making it a

suitable choice for the project.

23

2.3.2 Choice of framework

Framework is a software platform that provides a foundation for building desktop

applications. Frameworks simplify the development process by providing developers

with pre-built components, libraries, and tools that can be used to build robust and

scalable applications. [25]

When it comes to developing in C#, .NET is the main and most suitable choice due to its

close integration with the language. C# is designed to work seamlessly with the .NET

framework, which provides a wide range of libraries and tools for desktop application

development. In addition, .NET offers extensive support for Windows development and

is regularly updated and maintained by Microsoft. [26]. .NET have 2 implementations:

.NET Framework and .NET Core. .NET framework was the first software framework

introduced by Microsoft, and it was built only for Windows. .NET Core is a newer version

of the .NET domain that addresses the limitation of the .NET Framework, such as

different OS compatibility and performance issues. However, .NET Core focuses mostly

on Web applications development and does not provide support for most desktop

development UI frameworks, such as WinForms and WPF. [27]

In .NET desktop development, there are several popular UI frameworks, including

Windows Presentation Foundation (WPF), Windows Forms (Win Forms), and Multi-

platform App UI (MAUI) [18]. Each of these frameworks has its own set of advantages

and disadvantages, and choosing the right one for a particular project is crucial for its

success. In this section, author will evaluate these frameworks and decide on which one

to use for the development of the application in this thesis.

WPF, stands for Windows Presentation Foundation is a development framework and a

sub-system of .NET Framework. WPF is used to build Windows client applications that

run on Windows operating system. WPF uses XAML as its frontend language and C# as

its backend languages. [28] This means that WPF provides more flexibility and control

over the layout and appearance of the UI. WPF features great Templating, Binding, and

Styling capabilities [26]. WPF is the most popular and stable framework for the building

the GUI, it has great community support [29]. However, WPF can be resource-intensive,

impacting performance on lower-end systems, and may be more challenging to learn and

integrate with legacy systems [30].

24

Windows Forms or WinForms is graphical user interface (GUI) class library included as

a part of Microsoft's .NET Framework. WinForms uses a more traditional approach for

designing layout which is based on forms and controls. This means that WinForms is

simpler to use for basic UI design. WinForms lacks the advanced features of WPF, which

can make it difficult to create modern UIs without custom code. However, it is generally

more lightweight and performant, and has an established ecosystem that makes it easier

to integrate with legacy systems and find resources and support for development. [30]

MAUI stands for Multi-platform App UI, which is a UI framework in .NET 6 for making

Windows, iOS, Android, and macOS applications with one project, one codebase. It is an

evolution over Xamarin.Forms and takes code reusability to the next level. However,

MAUI is a new framework, which currently lacks community support and extensive

documentation. [31]

Based on the evaluation of available frameworks for desktop development in .NET, the

author has decided to use Windows Presentation Foundation (WPF) as the primary GUI

framework for the application, and .NET Framework 7 accordingly. This choice was

made due to WPF's great binding functionality and its ability to build complex and

aesthetically pleasing user interfaces. Additionally, the author does not require cross-

platform compatibility as the application is intended to be developed solely for the

Windows operating system. Therefore, utilizing the specific features of WPF and .NET

Framework 7 will help ensure a robust and efficient application that meets the project's

requirements.

2.3.3 Choice of network capture library

The project requires the functionality of capturing network packets. This is essential to

provide the network traffic monitoring and administration features that are the focus of

the application. Capturing packets requires low-level access to network traffic [32]. For

this reason, the author will be utilizing a special driver API for capturing packets.

Npcap is the packet capture and sending library for Microsoft Windows. It implements

the open Pcap API using a custom Windows kernel driver alongside libpcap library. This

allows Windows software to capture raw network traffic (including wireless networks,

wired ethernet, localhost traffic) using a simple, portable API. [32]

https://en.wikipedia.org/wiki/Pcap
http://www.tcpdump.org/

25

To use Npcap API in .NET desktop application, author will be using the SharpPcap

library. SharpPcap is a fully managed, cross platform (Windows, Mac, Linux) .NET

library for capturing packets from live and file-based devices. [33]

26

3 Methodology

The research method has three components. The first part consists of the application

requirements gathering. Throughout the process of comparing the existing solutions, a

comparative analysis has been made based on the articles, surveys, and statistics which

were gathered by the author. The criteria for the comparison is based on article - “A

Methodical Review on Network traffic monitoring and Analysis tools” by Prabhjot Kaur

and Neeti Misra [1] as well importance for the development process. The development of

the application consists of a functional analysis and a UI analysis. The functional analysis

helps to define the features and requirements necessary for the application to meet the

needs of the users. The UI analysis, on the other hand, helps to ensure that the application

is user-friendly and provides a good user experience.

In the second part, based on the findings of the comparative analysis, the functional and

non-functional requirements for the application are defined. The analysis provides

insights into the strengths, weaknesses, and limitations of existing applications with

similar functionality, which in turn helps to identify the necessary features and design

elements for the new application. The application requirements are defined in such a way

so that it addresses the identified issues and shortcomings, as well as to provide solutions

to the identified problems.

Three main features have been defined for the application based on the findings of the

comparative analysis. The first feature is the ability to view network statistics over a

specific period of time, showing how much data was sent and received by all applications

installed on the system. The second feature is the ability to view network statistics for

specific applications over a specific period of time. None of the compared solutions

offered this feature, making it an important addition to the new application. The third

feature is the ability to block internet usage for specific applications, a paid function in

some compared solutions and generally difficult to achieve in Windows without third-

party tools. This feature is necessary for users who wish to restrict an application's access

to the internet.

In terms of the user interface, data visualization is an important aspect for better user

experience. Graphs are one of the best visualization methods [34], making it an important

design element for the new application. A table view with detailed statistics will also be

27

included in the UI, along with a list of all applications that use the internet for easy

reference.

Third part describes application development process. To solve the problems described

in the thesis, the author developed a prototype for the desktop application. The technology

stack was decided through the process of technologies comparison. The development part

also presents detailed overview of implementation of the core application functionality

and user interface, outlines the architectural design, coding practices and addresses

identified problems and the corresponding solutions.

Application will be tested using the functional testing approach. Each function and UI

element of the application will be tested, by providing appropriate input, verifying the

output against the Functional requirements.

In the end, the results of the application development will be analysed, and a summary of

the development results will be provided.

3.1 Application Requirements

In this section, the author defines the functional and non-functional requirements of the

application being developed in this thesis, based on the background analysis. Functional

requirements are the features and capabilities that the application must have, while non-

functional requirements refer to the performance, security, and other aspects that are not

directly related to functionality.

Application main functions are receiving user’s network traffic and visualize it; block and

unblock application access to network.

Network traffic information is received by intercepting the user’s main network interface

traffic flow.

Restricting application access to the network is achieved via writing the firewall rules.

3.2 Functional requirements

The following are application functional requirements:

28

▪ As a user I want to see overall network statistics over a specific period of time:

how much data was sent and received by all application installed on the system.

▪ As a user I want to specific application network statistics over a specific period of

time: how much data was sent and received by specific application installed on

the system.

▪ As a user I want to block access to the internet to the specific application installed

on the system.

▪ As a user I want to unblock access to the internet to the specific application

previously blocked by this application.

3.2.1 Non-functional requirements

The following are application functional requirements:

▪ Network statistics is displayed in the form of graphs

▪ Network statistics is displayed in the form of tables

▪ The user can use the application without authorization

▪ Traffic interception does not modify the packet in any form

▪ Application does not read packet payload, but only information in traffic header

▪ Application works in Windows 10 and Windows 11 Operating Systems

▪ Captured data in stored in database

3.2.2 Limitations

Due to the author's limited time frame to complete the thesis, certain requirements

mentioned earlier have some limitations as follows:

▪ Application will collect network traffic only while application is running

▪ Application requires admin permission access

▪ Application won’t collect data in the background

29

4 Development of the application

In this section, the process of creating the app is described in depth. This section is divided

into three parts: project structure, the backend and the frontend. Project structure

describes architectural pattern usage and general application structure. Backend part

describes the process of implementing features functionality such as working with the

active network processes, methods for capturing packets and retrieving necessary

information, and linking captured packets with the active processes. Frontend part

describes the process of creating the UI components, showing aggerated statistics and

information, and communicating with backend.

4.1 Project structure

The project architectural structure follows MVVM pattern. MVVM (Model – View -

ViewModel) is an architectural pattern that cleanly separates the business logic of an

application from the user interface. The goal of MVVM is to make the view completely

independent from the application logic.

The model represents the app’s domain model, which can include a data model as well as

business and validation logic. It communicates with the ViewModel and lacks awareness

of the View.

The View represents the user interface of the application and holds limited, purely

presentational logic that implements visual behaviour. The View is completely agnostic

to the business logic. View never contains data, nor manipulates it directly. It

communicates with the ViewModel through data binding and is unaware of the Model.

The ViewModel is the link between the View and the Model. It implements and exposes

public properties and commands that the View uses by way of data binding. If any state

changes occur, the ViewModel notifies the View through notification events. [35]

A visual explanation of MVVM pattern can be seen in Figure 1:

https://en.wikipedia.org/wiki/Architectural_pattern
https://builtin.com/design-ux/user-interface-design

30

The project folder structure follows the packaging by feature layout logic. Packages

contain all classes that are required for a feature. The independence of the package is

ensured by placing closely related classes in the same package. This guarantees the high

cohesion within packages and low coupling between packages.

Cohesion refers to the degree of logical relationship of package members to each other.

High relationship between members ensures package independence. Low cohesion not

only reduces independence but also significantly reduces reusability and

understandability.

Coupling refers to the degree of interdependence between packages or classes. Low

coupling significantly increases maintainability. [37]

A simplified visualisation of the project folder structure can be seen in Figure 2:

Figure 1. MVVM Architecture communication pathways [36].

31

4.2 Backend

In the context of this project, backed refers to main features implementation in the form

of services. Main features of the project are getting information about active processes

and application behind them, capturing application packets, disabling and enabling

application access to the internet.

4.2.1 Active network processes capture

When an any installed application needs to connect to the network or communicate with

other devices on the network, it creates a network process. This network process is

responsible for handling network traffic, sending and receiving data packets, and

managing network connections. The network process is created by the application when

it calls the appropriate network APIs provided by the operating system. [38]

In the context of this thesis, retrieving information about the active processes on a system

is useful for two main reasons. Firstly, it allows for the display of all the currently active

applications that utilize the network at any given moment, providing a comprehensive

Figure 2. Simplified project folder structure

32

view of network activity. Secondly, this information is necessary for binding captured

packets to the actual applications responsible for generating them.

For retrieving information about active network processes, application runs the

PowerShell command “netstat -on”. Netstat is a command-line tool that displays active

network connections, routing tables, and other network interface information [39].

▪ Parameter “o” displays active network connections and their status, as well as the

process ID of the program that is using each connection [39].

▪ Parameter “n” displays active network connections and their status without

resolving hostnames or port names [39].

▪ Parameter “on” is a conjunction of these two parameters [39].

Appendix 2 displays sample output of “netstat -on” command.

The result of the command execution gives basic information about the process, such as

▪ PID - process identification code [39].

▪ Local address - the network address of the endpoint that the application is listening

on or connected to. It includes the IP address of the local machine and the port

number of the application. [39]

From PID the information about parent process and associated application name and icon

could be retrieved to display it in the UI. Local address is useful for the packet and process

binding, which would be shown in the next sections.

To get the necessary information about the process, firstly process is found based on the

PID. Then, using the FileViresionInfo class the application name is retrieved, see figure

3. Using the Icon class application icon is retrieved, see figure 4.

private string? GetProcessAppName(Process process)
{
var processModule = process.MainModule;
var filename = processModule?.FileName;
if (filename == null) return null;
var versionInfo = FileVersionInfo.GetVersionInfo(filename);
return versionInfo.ProductName ?? versionInfo.FileDescription ??
Path.GetFileNameWithoutExtension(filename);

}

Figure 3. Application name extraction from Process

33

private BitmapSource GetProcessIconPath(Process process)
{
var processModule = process.MainModule;
if (processModule?.FileName == null) return null;
Icon? icon =
Icon.ExtractAssociatedIcon(processModule.FileName);
BitmapSource? res = null;

if (icon != null)
{
res = Imaging.CreateBitmapSourceFromHIcon(icon.Handle,
Int32Rect.Empty,
BitmapSizeOptions.FromEmptyOptions());

}
else
{
res = new BitmapImage
(new Uri(@"/Images/noimage.png", UriKind.Relative));

}
res.Freeze();
return res;

}

Figure 4. Application icon extraction from Process

Appendix 3 displays active network process capture implementation in code.

4.2.2 Packet capture

For capturing the network packets, the author is using SharpPcap library.

Firstly, the main network interface that the Windows Operating system is using to send

and receive network packages is found. The NIC provides the physical interface between

the device and the network, enabling the device to send and receive data over the network.

[40]

Next, using the SharpPcap library device is marked as open to be read by Pcap API. For

receiving the packages, the callback function is assigned to the on packet receive event.

Callback handles the received network packets; it filters only the necessary ones and

passes it for the information retrieval function.

Next, from the network packet extracted only necessary information: total packet size and

source or destination port. Then, the packet port binds together the process port, which is

34

received during the active network processes capture. Process port is extracted from the

Local Address.

Appendix 4 displays the packet capture implementation in code.

4.2.3 Using the active network processes capture and packet capture

This section explains how the active network processes capture and packet capture is used

in the application.

Those two features run as a continuous background task through the process of the

application lifespan. Running background processes or tasks in a separate thread from the

UI is important because it can help prevent the application from becoming unresponsive

or freezing while the process is running. This is because the UI (Foreground) thread is

responsible for handling user input and updating the display, so if a long-running process

is executed on the UI thread, it can cause delays or crashes. By executing the process in

a separate thread, the UI remains responsive, and the user can continue to interact with

the application while the process is running. [41]

The process of tasks execution starts with crating the Timer with a set interval. When the

timer ticks, the new Task sequence instance is created, and the task execution starts

immediately. First, executed the task in Background thread that retrieves necessary

information. Once the task completes, another task is created in the Foreground thread to

update the UI with the results of the previous task execution. The created tasks are

managed using CancellationToken to ensure proper execution and cancellation if needed.

Cancellation token is responsible for cancelling the task in any given moment [42].

Appendix 5 displays the execution of active network processes capture as a background

task.

4.2.4 Blocking Internet access

In order to block Internet access for an application, the author is using the NetFwTypeLib

library. NetFwTypeLib enables to communicate with Windows Firewall API [43]. The

code creates a firewall rule object and sets its properties, such as the rule name,

application name, and direction. The action is set to block access, and the rule is enabled.

Finally, the rule is added to the Windows Firewall using the INetFwPolicy2 interface.

35

This allows the application to programmatically block Internet access for the specified

application.

Appendix 6 displays the implementation of Blocking internet access functionality.

4.2.5 Database

In order to efficiently store and manage information about application internet activity

and to check if the user has blocked access to an application, a database is required. For

this purpose, the author has chosen SQLite, which is a popular choice for desktop

applications. SQLite is an embedded database, which means that it is integrated into the

application and does not require a separate server [44]. This provides several advantages,

such as simplicity, ease of use, and lower resource consumption [45].

Figure 3 shows database ERD scheme.

Figure 5. Database ERD scheme

The "app_info" table in the database is responsible for storing relevant application

information such as the application name, state of application restriction to the internet,

and the name of the corresponding firewall rule that blocks internet access for the

application.

The "data_info" table is responsible for storing packet capture data, including the date

and time of the capture, total packet length, and a reference to the corresponding

application table.

The author utilizes an ORM solution, specifically the Entity Framework, for the

management and connection to the database. This provides a simplified and efficient

approach to interact with the database, enabling the author to easily manipulate data and

use the database migrations [46]. The communication between the database and

application services is established via repositories. Repository pattern creates an

36

abstraction layer between the data access and the business logic layer of an application.

By using it, we are promoting a more loosely coupled approach to access data from the

database [47]. Repositories follows pattern which can be seen in figure 6.

public interface IRepository<TEntity> where TEntity: class
{

List<TEntity> GetAll();
TEntity Get(int id);
TEntity Add(T entity);
TEntity Update(T entity);
void Delete(int id);

}

Figure 6. Repository Interface

Appendix 7 displays the implementation of AppInfo Repository.

4.3 Layers communication

The communication between different layers in the application follows a structured

approach. The data captured by the application is stored in a database, and the services

are responsible for capturing the data and processing the information about the packets

and processes. The database is automatically updated with the new information received

by the services through repositories.

The model views can communicate with the services to start the capture, perform an

action or get the required information. The services act as an intermediary between the

model views and the database, providing the necessary data to the views for processing.

Once the data is retrieved from the services, it is bound to the view for display to the

user. This approach ensures that the layers of the application are loosely coupled and

can communicate with each other efficiently. Additionally, it enables the application be

easily maintainable and extensible in the future.

37

Figure 7. Layers communication

4.4 Frontend

Frontend displays backend information in a form of visual representation. Throughout the

application requirements gathering it was decided to first create a graph view

representation of user’s network as well as detailed statistics about the specific

application.

To implement the user interface in the developed application, the author utilized WPF

XAML. XAML is a declarative markup language that allows developers to define the

user interface of a WPF application. The XAML file contains a hierarchical structure of

elements represented by tags, which can include attributes and nested elements. These

elements can define various parts of the UI, such as controls, layouts, and styles [26].

Figure 8 shows the example of XAML tag.

<StackPanel Grid.Row="2" HorizontalAlignment="Center"
Orientation="Horizontal">
<Label FontSize="15" FontWeight="Bold" Content="Total: "/>
<Label FontSize="15" Content="{Binding Total}"/>

</StackPanel>

Figure 8. XAML tags

38

One of the advantages of using XAML is that it supports data binding, allowing for the

separation of UI design and code-behind logic. Data binding enables the UI elements to

be automatically updated when the data changes, and vice versa, which enhances the

application's responsiveness and reduces the amount of code required [26]. Figure 8

shows the example of data binding.

4.4.1 Application Views

On the left-hand side of the application, a navigation bar is located, which displays the

list of active applications that are currently using network connections, see figure 9. This

information is immediately available to the user upon opening the application, as the

process capture tasks are initiated automatically. By default, no application is selected,

but the user can choose an application to perform specific activities in the view layout

located on the right-hand side of the application.

This design allows users to easily access and navigate the application's features without

any unnecessary steps. The navigation bar's intuitive layout ensures that the user can

quickly locate and select the application they wish to monitor or administer, while the

view layout provides a clear and concise overview of the selected application's network

activity.

On the content page, the user can switch between the graph view and the detailed statistics

view. The buttons to switch between the views are located at the top of the content page.

The graph view displays a real-time visualization of the network activity of all

applications. The y-axis of the graph represents the amount of data sent or received by

the application. The x-axis represents the time of the capture. The graph is automatically

updated every minute, and the user can zoom in or out by using mouse scroll wheel.

Detailed information about the capture time is displayed when the user clicks on a specific

graph point. In the detailed information, there is information about every application

captured during that specific period of time, including the amount of data sent or received.

The graph is initiated automatically when the capture process tasks are started.

Additionally, the user can enter a specific date and jump to that date on the graph.

Appendix 8 displays the implementation of Graph View in XAML.

39

On the statistics content view, detailed statistics are presented to display valuable

information, see figure 10. The user must first select an application before the statistics

are shown. If the user has not yet chosen an application, the text "Choose the application

first" will be displayed instead of the statistics. The statistics view includes a button that

allows the user to enable or disable the internet usage of the selected application. The

total amount of captured data is displayed, as well as a data selection feature where the

user can choose a specific date range to view the data usage within that time frame.

Figure 9. Application Graph view

40

4.5 Results and analysis

In result of the development, using C# programming language, .NET and WPF

frameworks author successfully created a prototype of application that fulfils the

objectives of monitoring and administering network traffic.

To capture network traffic, the author implemented a dedicated service that utilizes low-

level network APIs to intercept and analyse packets. To capture active processes author

integrated usage of the PowerShell application functionality. To block internet access

author used library that provides API access for communicating with Windows Firewall.

To store and manage the captured data, a database was designed and implemented using

SQLite. The database serves as a reliable and efficient repository for storing information

about application identification, its network usage, and other related metadata.

The user interface of the application consists of various views and components to present

the captured information effectively. This includes graphical representations such as

Figure 10. Application Statistics View

41

graphs, providing visual insights into network statistics over time. Additionally, detailed

tables are utilized to present specific application details, allowing users to explore and

analyse network usage in a structured manner.

4.5.1 Testing

To conduct a review, the author launched the application locally on both Windows 10 and

Windows 11 devices. The author was able to successfully see how much data was sent

and received by specific application installed on the system, navigate between the

application views, and block internet access to selected applications. The application met

the functional and non-functional requirements specified in the previous chapters,

including the ability to capture network statistics over a specific period of time, block

internet usage for selected applications, and display data in a visually appealing manner

using graphs and tables.

In addition to locally testing the application's functionality and user interface, the author

also verified the validity of the captured data by comparing it to data obtained from other

applications such as GlassWire and Windows Task Manager. The captured data was

consistent and accurate, confirming the effectiveness of the implemented capture process

and database management.

4.5.2 Possible improvements

Initially, the author had contemplated incorporating additional functionalities; however,

they had to be postponed for later for the sake of time management. Possible future

improvements are as follows:

▪ Enhance the viewing of total network usage by providing an alternative to the

current method of combining graph data.

▪ Implement a feature that displays the total network load.

▪ Provide users with the ability to remove unused apps from the app list, which will

contribute to a more streamlined interface.

▪ Implement a feature that displays the real-time network status of applications,

indicating whether they are currently active or not. This would enhance the user's

ability to manage and monitor their network usage.

▪ Implement a feature that allows users disabling the DNS addresses.

42

6 Conclusion

After conducting a thorough comparative analysis and defining the functional and non-

functional requirements, the author developed an application for monitoring and

administering network traffic for Windows operating systems. The developed application

provides essential features and a user-friendly design, which was achieved by

implementing graph and table views, that aims to make network monitoring and

administration easier for users.

The development process included implementing the necessary functionalities such as

capturing network traffic data, providing users with the ability to view network statistics

over a specific period of time, blocking the internet access to the installed applications.

In authors opinion, the user interface was designed to be intuitive and easy to use,

featuring both graph and table views for displaying network statistics. The graph view

provides a visual representation of network activity, allowing users to easily identify

trends and patterns in their network usage.

Although the application meets the defined requirements, there is still potential for further

improvements and features, such as implementing more advanced network analysis tools,

adding the ability to remove unused applications from the app list, and displaying the

network status of specific applications.

In conclusion, the thesis contributes by introducing a functional and user-friendly

application for monitoring and administering network traffic on Windows operating

systems. The application addresses the identified issues and shortcomings of existing

solutions while providing essential features and a straightforward user interface.

43

References

[1] N. M. Prabhjot Kaur, “A Methodical Review on Network Traffic Monitoring & Analysis

Tools,” A Journal of Composition Theory, vol. 12, no. 9, p. 5, 2019.

[2] M. K. A. S. Mehwish Umer, “Usability and Accessibility Evaluation of,” International

Journal of Innovative Research in Computer, vol. 5, no. 11, p. 17, 2017.

[3] R. KUMAR, “Why User experience of windows 10 is getting bad?,” UX Planet, 2019 Jul

19. [Online]. Available: Why User experience of windows 10 is getting bad?. [Accessed

10 May 2023].

[4] P. Thurrott, “Windows 10 at 3: The Good, the Bad, and the Ugly,” Thurrott, 05 Jul 2023.

[Online]. Available: https://www.thurrott.com/windows/windows-10/162506/windows-

10-3-good-bad-ugly. [Accessed 10 May 2023].

[5] Cloudflare, Inc., “What is a packet? | Network packet definition,” Cloudflare, Inc.,

[Online]. Available: https://www.cloudflare.com/learning/network-layer/what-is-a-

packet/. [Accessed 21 March 2023].

[6] Endace , “What is Network Packet Capture?,” [Online]. Available:

https://www.endace.com/learn/what-is-network-packet-capture. [Accessed 21 March

2023].

[7] Staff Contributor, “Network Administration,” DNSstuff, 22 December 2022. [Online].

Available: https://www.dnsstuff.com/network-administration. [Accessed 21 March 2023].

[8] Check Point, “What is a Firewall?,” [Online]. Available:

https://www.checkpoint.com/cyber-hub/network-security/what-is-firewall/. [Accessed 21

March 2023].

[9] Minitool, “Introduction to Task Manager [MiniTool Wiki],” [Online]. Available:

https://www.minitool.com/lib/task-manager.html. [Accessed 8 April 2023].

[10] D. Parchisanu, “How to use the Resource Monitor in Windows,” Digital Cititzen, 17

January 2019. [Online]. Available: https://www.digitalcitizen.life/how-use-resource-

monitor-windows-7/. [Accessed 4 May 2023].

[11] G. Bidasaria, “6 Best Network Monitoring Tools for Windows 10/11,” 8 December 2022.

[Online]. Available: https://techwiser.com/network-monitoring-tools-for-windows/.

[Accessed 1 May 2023].

[12] Wireshark Foundation, “Wireshark User’s Guide,” [Online]. Available:

https://www.wireshark.org/docs/wsug_html_chunked/. [Accessed 23 March 2023].

[13] GlassWire, “The official user guide for GlassWire.,” [Online]. Available:

https://www.glasswire.com/userguide/. [Accessed 23 March 2023].

[14] GlassWire, “Glasswire Pricing,” [Online]. Available: https://www.glasswire.com/pricing/.

[Accessed 2 April 2023].

[15] Evgeny Nikulchev, Dmitry Ilin and Alexander Gusev, “Technology Stack Selection

Model for Software Design of Digital Platforms,” mdpi, vol. 1, pp. 1-2, 2020.

44

[16] E. Altynpara, “How to Choose Technology Stack for Web Application Development: Tips

To Follow,” CLEVERROAD, [Online]. Available: https://www.cleveroad.com/blog/web-

development-stacks/. [Accessed 10 April 2023].

[17] K. Horne and M. Levanduski, “Languages and Frameworks for Programming in 2023,”

Digital, 3 February 2023. [Online]. Available: https://digital.com/best-web-

hosting/languages-and-frameworks/. [Accessed 10 April 2023].

[18] P. Khatun, “A Guide to Desktop Application Development in 2021,” Squash apps, 4

September 2021. [Online]. Available: https://squashapps.com/blog/desktop-application-

development-guide-2021/. [Accessed 11 April 2023].

[19] Microsoft, “A tour of the C# language,” February 02 2023. [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/. [Accessed 8 April 2023].

[20] Amazon, “What Is .Net?,” [Online]. Available: https://aws.amazon.com/what-is/net/.

[Accessed 2023 April 2023].

[21] D. Karczewski, “The State Of C# Development In 2022,” Ideamotive, 18 October 2021.

[Online]. Available: https://www.ideamotive.co/blog/the-state-of-csharp-development.

[Accessed 10 April 2023].

[22] Amazon, “What Is Java?,” [Online]. Available: https://aws.amazon.com/what-is/java/.

[Accessed 9 April 2023].

[23] Mozilla Foundation, “JavaScript,” Mozilla Corporation, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript. [Accessed 11 April 2023].

[24] R. Senaratne, “JavaScript Frameworks for Building Desktop Applications,” JavaScript in

Plain English, 11 May 2020. [Online]. Available:

https://javascript.plainenglish.io/javascript-frameworks-for-building-desktop-applications-

35ee2370f25d. [Accessed 11 April 2023].

[25] B. O'Grady, “What is a Framework? Why We Use Software Frameworks,” [Online].

Available: https://codeinstitute.net/global/blog/what-is-a-framework/. [Accessed 11 April

2023].

[26] Soft source solutions, “.Net Desktop Application Development: Things To Know,”

[Online]. Available: https://www.sourcesoftsolutions.com/net-desktop-application-

development-things-to-know/. [Accessed 10 April 2023].

[27] A. Lomas, “.NET Core vs .NET Framework: An In-depth Comparison,” net solutions, 27

June 2022. [Online]. Available: https://www.netsolutions.com/insights/net-core-vs-net-

framework/. [Accessed 10 April 2023].

[28] M. Chand, “What Is WPF,” C# Corner, 13 June 2019. [Online]. Available: https://www.c-

sharpcorner.com/blogs/what-wpf-is1. [Accessed 10 April 2023].

[29] Microsoft, “Why modern desktop applications,” [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/architecture/modernize-desktop/why-modern-

applications. [Accessed 12 April 2023].

[30] ByteHide blog, “WPF vs WinForms – Which One is Right for Your Project?,” 13 January

2023. [Online]. Available: https://www.bytehide.com/blog/wpf-vs-winforms. [Accessed

11 April 2023].

[31] M. Delleci, “Meet .NET MAUI, the Technology Replacing Xamarin.Forms,” cellenza

blog, 6 April 2022. [Online]. Available: https://blog.cellenza.com/en/mobile/meet-net-

maui-the-technology-replacing-xamarin-forms/. [Accessed 10 April 2023].

45

[32] Npcap, “Npcap Reference Guide,” [Online]. Available:

https://npcap.com/guide/index.html#npcap-description. [Accessed 9 April 2023].

[33] C. Morgan, “sharppcap,” [Online]. Available: https://github.com/dotpcap/sharppcap.

[Accessed 9 April 2023].

[34] M. M. Gomes, “Data Visualization: Best Practices and Foundations,” Designers, [Online].

Available: https://www.toptal.com/designers/data-visualization/data-visualization-best-

practices. [Accessed 1 May 2023].

[35] E. G. Gallardo, 09 January 2023. [Online]. Available: https://builtin.com/software-

engineering-perspectives/mvvm-architecture. [Accessed 14 April 2023].

[36] Wikipedia, “Model–view–viewmodel,” [Online]. Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel.

[Accessed 10 May 2023].

[37] M. E. Oral, “Package by Layer vs Package by Feature,” Medium, 1 June 2021. [Online].

Available: https://medium.com/sahibinden-technology/package-by-layer-vs-package-by-

feature-7e89cde2ae3a. [Accessed 14 April 2023].

[38] C. Tucker, “Free Code Camp,” [Online]. Available:

https://www.freecodecamp.org/news/osi-model-networking-layers-explained-in-plain-

english/. [Accessed 12 April 2023].

[39] Daisy, “What Is Netstat Command and How to Use It,” EaseUS, 22 March 2023 .

[Online]. Available: What Is Netstat Command and How to Use It. [Accessed 16 April

2023].

[40] tutorialspoint, “What is network interface card (NIC)?,” [Online]. Available:

https://www.tutorialspoint.com/what-is-network-interface-card-nic. [Accessed 11 April

2023].

[41] Microsoft, “Foreground and background threads,” [Online]. Available:

https://learn.microsoft.com/en-us/dotnet/standard/threading/foreground-and-background-

threads. [Accessed 11 April 2023].

[42] Microsoft, “CancellationToken Struct,” [Online]. Available:

https://learn.microsoft.com/en-

us/dotnet/api/system.threading.cancellationtoken?view=net-8.0. [Accessed 3 May 2023].

[43] H. DuPreez, “Windows Firewalls and .NET,” CodeGuru, 28 June 2018. [Online].

Available: https://www.codeguru.com/dotnet/windows-firewalls-and-net/. [Accessed 4

May 2023].

[44] GreenRobot, “Embedded databases explained,” [Online]. Available:

https://greenrobot.org/database/embedded-database/. [Accessed 4 May 2023].

[45] SQlite, “Appropriate Uses For SQLite,” 16 12 2022. [Online]. Available:

https://www.sqlite.org/whentouse.html. [Accessed 4 May 2023].

[46] I. V. Abba, “What is an ORM – The Meaning of Object Relational Mapping Database

Tools,” 21 October 2022. [Online]. Available: https://www.freecodecamp.org/news/what-

is-an-orm-the-meaning-of-object-relational-mapping-database-tools/. [Accessed 1 May

2023].

[47] M. Spasojevic, “ASP.NET Core Web API – Repository Pattern,” CodeMaze, [Online].

Available: https://code-maze.com/net-core-web-development-part4/. [Accessed 2 May

2023].

46

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Ilja Vasilenko

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Application for monitoring and administering network-based applications on

a Windows Operating Systems”, supervised by Mohammad Tariq Meeran

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

24.04.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

47

Appendix 2 – “netstat -on” output sample

Active Connections

Proto Local Address Foreign Address State PID

TCP 127.0.0.1:9010 127.0.0.1:58616 ESTABLISHED 27484

TCP 127.0.0.1:9010 127.0.0.1:58654 ESTABLISHED 27484

TCP 127.0.0.1:9010 127.0.0.1:58695 ESTABLISHED 27484

TCP 127.0.0.1:9100 127.0.0.1:58643 ESTABLISHED 36488

TCP 127.0.0.1:49823 127.0.0.1:49842 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:49856 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:49867 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:49868 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:58594 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:58595 ESTABLISHED 14780

TCP 127.0.0.1:49823 127.0.0.1:62771 ESTABLISHED 14780

TCP 127.0.0.1:49828 127.0.0.1:49864 ESTABLISHED 15068

Figure 11. “netstat -on” output sample

48

Appendix 3 – Active network process capture implementation

public List<AppInfo> CaptureNetworkProcesses()
{
var proc = new Process
{
StartInfo = new ProcessStartInfo
{
FileName = "netstat",
Arguments = "-on",
UseShellExecute = false,
RedirectStandardOutput = true,
CreateNoWindow = true

}
};

proc.Start();
var result = new List<AppInfo>();
while (proc.StandardOutput.ReadLine() is { } output)
{
var outputMatch = _netstatOutputRegex.Match(output);
if (!outputMatch.Success) continue;

var subProcessPid = int.Parse(outputMatch.Groups["pid"].Value);
var address = outputMatch.Groups["address"].Value;
var portMatch = int.TryParse(address.Split(":")[1], out var port);
if (!portMatch) continue;

var subProcess = Process.GetProcessById(subProcessPid);
if (subProcess.ProcessName == "Idle" || subProcess.ProcessName ==
"svchost") continue;

var parent = FindProcessParent(subProcess);
if (parent != null)
{
subProcess = parent;

}

var appName = GetProcessAppName(subProcess);
if (appName != null)
{
if (result.Any(ai => ai.Name == appName))
{
result.Find(ai => ai.Name == appName)?
.Pids.Add(subProcess.Id);

}
else
{
GetProcessIconPath(subProcess);
result.Add(new AppInfo(appName,
subProcess.ProcessName,
GetProcessIconPath(subProcess),

49

subProcessPid));
}

}
}
proc.Close();
return result;

}

Figure 12. Active network process capture implementation

50

Appendix 4 – Active network process capture implementation

public class PacketCaptureService
{
public void Start()
{
var devices = LibPcapLiveDeviceList.Instance;
var mainInterface = NetworkInterface.GetAllNetworkInterfaces()
.FirstOrDefault(ni => ni.OperationalStatus == OperationalStatus.Up
&& ni.NetworkInterfaceType != NetworkInterfaceType.Loopback);

using var device = devices.FirstOrDefault(x => x.Description ==
mainInterface!.Description);

if (device != null)
{
device.OnPacketArrival +=
new PacketArrivalEventHandler(device_OnPacketArrival);
int readTimeoutMilliseconds = 1000;
device.Open(mode: DeviceModes.Promiscuous
| DeviceModes.DataTransferUdp
| DeviceModes.NoCaptureLocal,
read_timeout: readTimeoutMilliseconds);
device.StartCapture();

}

}

public void device_OnPacketArrival(object sender,
SharpPcap.PacketCapture e)
{
var rawPacket = e.GetPacket();
Console.WriteLine(rawPacket.PacketLength);
if (rawPacket.LinkLayerType == LinkLayers.Ethernet)

{
var tcp = Packet.ParsePacket(rawPacket.LinkLayerType,
rawPacket.Data).Extract<PacketDotNet.TcpPacket>();
}

}
}

Figure 13. Active network process capture implementation

51

Appendix 5 – Active network processes capture as a

background task

public ICommand StartWorkCommand => new RelayCommand(async o =>
{
timer = new DispatcherTimer();
timer.Interval = TimeSpan.FromSeconds(5);
timer.Tick += OnTimerTick;
timer.Start();

});

public DispatcherTimer timer;

private void OnTimerTick(object? sender, EventArgs e)
{
RunTask();

}

public CancellationToken token = new CancellationToken();

public void RunTask()
{
var complete = true;
var bgTask = new Task(CaptureThread, token);
var uiTask = task.ContinueWith(x =>
{
foreach (var appInfo in res)
{
if (AppCards.Any(x => x.Name == appInfo.Name))
{
var appCard = AppCards.First(x => x.Name ==
appInfo.Name);
foreach (var appInfoPid in appInfo.Pids)
appCard.AppInfo.Pids.Add(appInfoPid);

}
else
{
BitmapSource? icon = null;
Dispatcher.CurrentDispatcher.Invoke(()=> icon = appInfo.Icon);
var model = new AppCardModel(appInfo.Name, appInfo,
appInfo.Icon);
Dispatcher.CurrentDispatcher.Invoke(() =>AppCards.Add(model));
Application.Current.Dispatcher.Invoke(() =>OnPropertyChanged());

}
}

}, CancellationToken.None
 TaskContinuationOptions.OnlyOnRanToCompletion,

TaskScheduler.FromCurrentSynchronizationContext());
 bgtask.Start();
}

Figure 14. Active network processes capture as a background task

52

Appendix 6 – Implementation of Blocking internet access

functionality

public class BlockInternetService
{
private readonly AppInfoRepository _appInfoRepository;
public BlockInternetService(AppInfoRepository appInfoRepository)
{
this.appInfoRepository = appInfoRepository;

}

public void Block(AppInfo appInfo)
{
var firewallRule = (INetFwRule)Activator
.CreateInstance(Type.GetTypeFromProgID("HNetCfg.FwRule"));

firewallRule.Name = $"NTM - {appInfo.path} Block Internet Access";
firewallRule.ApplicationName = appInfo.path;
firewallRule.Action = NET_FW_ACTION_.NET_FW_ACTION_BLOCK;
firewallRule.Direction=NET_FW_RULE_DIRECTION_.NET_FW_RULE_DIR_OUT;
firewallRule.Enabled = true;

var firewallPolicy = (INetFwPolicy2)Activator
.CreateInstance(Type.GetTypeFromProgID("HNetCfg.FwPolicy2"));

firewallPolicy.Rules.Add(firewallRule);
_appInfoRepository.AddFireWallRule(appInfo, firewallRule.Name);

}

public void Unblock(AppInfo appInfo)
{
var ruleName = _appInfoRepository
.FindByName(appInfo).FireWallRuleName;

var firewallPolicy = (INetFwPolicy2)Activator
.CreateInstance(Type.GetTypeFromProgID("HNetCfg.FwPolicy2"));
var firewallRule = firewallPolicy.Rules.OfType<INetFwRule>()
.FirstOrDefault(r => r.Name == ruleName);

if (firewallRule != null)
{
firewallPolicy.Rules.Remove(ruleName);

}
}

}

Figure 15. Implementation of Blocking internet access functionality

53

Appendix 7 – Implementation of AppInfo Repository

public class Repository : IRepository<AppInfo>
{
private readonly DbContext _dbContext;
protected readonly DbSet<AppInfo> RepoDbSet;

protected virtual IQueryable<AppInfo> CreateQuery
(bool noTracking = true)
{
var query = RepoDbSet.AsQueryable();
if (noTracking)
{
query = query.AsNoTracking();

}
return query;

}

public Repository(AppDbContext appDbContext)
{
_dbContext = appDbContext;
RepoDbSet = _dbContext.Set<AppInfo>();

}

public List<AppInfo> GetAll(bool noTracking = false)
{
return CreateQuery(noTracking).ToList();

}

public AppInfo? Get(int id, bool noTracking = false)
{
return CreateQuery(noTracking).FirstOrDefaultAsync
(a => a.Id.Equals(id));

}

public AppInfo Add(AppInfo appInfo)
{
return RepoDbSet.Add(appInfo);

}

public AppInfo Update(AppInfo entity)
{
return RepoDbSet.Update(entity);

}

public void Delete(int id)
{
var appInfo = Get(id);
if (appInfo != null)
{
throw new NullReferenceException($"Entity {typeof(AppInfo).Name}
with id {id} does not exist");

54

}
RepoDbSet.Remove(appInfo);

}
}

Figure 16. Implementation of AppInfo Repository

55

Appendix 8 – Implementation of Graph View

<UserControl x:Class="net_traffic_monitor.Components.Graph.GraphView"
xmlns:materialDesign="http://materialdesigninxaml.net/win
fx/xaml/themes"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/prese
ntation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/20
08"
xmlns:lvc="clr-
namespace:LiveChartsCore.SkiaSharpView.WPF;assembly=LiveC
hartsCore.SkiaSharpView.WPF"
xmlns:local="clr-
namespace:net_traffic_monitor.Components.Graph"
xmlns:b="http://schemas.microsoft.com/xaml/behaviors"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="300">

<UserControl.DataContext>
<local:GraphVM/>

</UserControl.DataContext>

<b:Interaction.Triggers>
<b:EventTrigger EventName="Loaded">
<b:InvokeCommandAction Command="{Binding StartWorkCommand}" />

</b:EventTrigger>
</b:Interaction.Triggers>

<Grid Background="{DynamicResource Secondary}">
<Grid.RowDefinitions>
<RowDefinition Height="50"/>
<RowDefinition/>

</Grid.RowDefinitions>

<lvc:CartesianChart Grid.Row="1" Series="{Binding Series}"
ZoomMode="X" XAxes="{Binding XAxes}"></lvc:CartesianChart>

<Grid Grid.Row="0">
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Label Grid.Column="0" Content="{Binding AppCardModel.Name}"
VerticalAlignment="Center" HorizontalAlignment="Right"
FontSize="20" Margin="10, 0"/>

<DatePicker Grid.Column="1" Grid.Row="0" Width="200" Height="50"
HorizontalAlignment="Left"
materialDesign:HintAssist.Hint="End date"

56

materialDesign:HintAssist.Foreground="white"
FontSize="20"
materialDesign:HintAssist.IsFloating="False"
Foreground="White"
Style="{StaticResource MaterialDesignFloatingHintDatePicker}" />

</Grid>
</Grid>

</UserControl>

Figure 17. Implementation of Graph View

