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™
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ZeroPos

Fuzzy logic variable of membership function indicating low
amplitude
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Fuzzy logic variable of membership function indicating frequency of
300 Hz

Fuzzy logic variable of membership function indicating frequency of
350 Hz

Fuzzy logic variable of membership function indicating frequency of
400 Hz

Fuzzy logic variable of membership function indicating frequency of
450 Hz

Fuzzy logic variable of membership function indicating negative
acceleration

Fuzzy logic variable of membership function indicating positive
acceleration

Fuzzy logic variable of membership function indicating low speed

Fuzzy logic variable of membership function indicating minimum
speed (low low)

Fuzzy logic variable of membership function indicating medium
speed

Fuzzy logic variable of membership function indicating high speed
Fuzzy logic variable of membership function indicating low torque
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Fuzzy logic variable of membership function indicating medium
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Fuzzy logic variable of membership function indicating high torque
Fuzzy logic variable of membership function indicating close to zero
negative acceleration
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positive acceleration



Symbols

a Border of the triangle/trapezoid membership function in fuzzy logic
algorithm

b Border of the triangle/trapezoid function membership function in
fuzzy logic algorithm

c Center of the triangle / Maximum of the trapezoid / Middle of the
gaussian membership function in fuzzy logic algorithm

d Maximum of the trapezoid function membership function in fuzzy

logic algorithm
Acceleration of free fall

8
I Length of the of Z axis
k Number of iteration

k1 Coefficient representing weighting factors based on the specific
system dynamics and design criteria

k2 Coefficient representing weighting factors based on the specific
system dynamics and design criteria

m1 Weight of the Y and Z axes

ma Mass of the load

s Current system state

s’ Next system state

X2 Coordinate the mass center of the load in the initial position

X1 Coordinate the mass center of the load in the final position

A: Unknown constant 1 to be determined through further analysis

Az Unknown constant 2 to be determined through further analysis

As Unknown constant 3 to be determined through further analysis

F Braking force acting on the robot axis

w Strength of resistance of the robot axis

S Bellman function

a System impact

v Discount coefficient

o] Width of the gaussian function

w Natural frequency of the load oscillation

A(s) Impact sets in the current state

P(s’|s,a) Transient possibility to the next state after impact

R(s,a) Optimal criteria after impact

V(s) Optimal strategy in the current state

Vi(s) Optimal strategy in the current state of k-iteration
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1 Introduction

1.1 Motion Planning in Industrial Robotics Control System

Motion planning plays a significant role in robotics, it helps to determine a possible
trajectory for a robot to move from the initial state to a desired location while avoiding
obstacles and observing specific constraints [1], [2]. The motion planning control system
in robotics is based on three key components [2]: an actuator (electric, pneumatic,
or hydraulic) [3], [4], a control system configured according to the required parameters
(such as performance, accuracy, and operation in unpredictable conditions) [1], [5],
and a transmission that converts the actuator’s force into mechanical movement [6].
The primary actuator in nowadays robotics system is the electric motor [1], [7].

Electric motors have a wide range of uses and allow for the creation of new
technologies and the modernization of existing ones [8], [9]. Each type of electric motors
finds its application in robotics, allowing for greater efficiency, productivity, conservation
of material and energy resources, etc. However, achieving the necessary goals depends
not only on the use of specific types of electric motor but also on the correct selection of
their size and control methods, depending on the specified conditions. These factors such
as speed range, torque, accuracy, environmental and mechanical conditions play a
critical role in this decision [10], [11].

Additionally, unconventional motors designed for specific application (such as
industrial robotics) may require a completely different control method in certain
applications than the one they are adapted to. Electrical motor used in robotics and
automation enable the expansion of the range of applications with a high degree of
efficiency in transportation, manufacturing, assembly, and other areas [12]-[14]. Thus,
selecting a control method for operation in different conditions in various industrial
sectors is extremely acute and requires careful analysis. In addition, the impact of
mechanical factors, such as unexpected vibrations, misalignments, possible joints
damages, and transmissions issues, should also be considered when choosing a control
method. These factors can significantly affect the robot's performance and lifespan.

1.2 Control Methods of Industrial Robots

The choice of control method for industrial robots is based on achieving desired
parameters, such as control preciseness, system performance, energy consumption, etc.
Additionally, the control system should be resilient to disturbances, easily integrated into
a larger network, and adaptable to changing conditions [2], [5]. Various control methods
are used to reach the desired performance parameters of mechanisms. However,
maintaining system reliability and stability remains a central challenge. Robotic systems
operating in industrial environments are often subjected to various mechanical loads and
interferences, which lead to unintended vibrations, wear, and, ultimately, equipment
failure. Consequently, the choice of control method should also consider the monitoring
of the robotic system’s condition and the early diagnosis of issues.

To ensure efficient robot operation under varying conditions, the main control
methods are summarized in Table 1.1. This analysis highlights their applicability, benefits,
and limitations.
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Table 1.1. The main control methods in robotics with corresponding attributes.

Control method

Control algorithms

Benefits and limitations

Self-tuning regulators [22],
[23];

Adaptive fuzzy logic
control [24], [25];

type
PID-control Classical PID-control Benefits:
[15]-[17]; e Simple to implement and tune;
Autotuning PID-control e Well-suited for linear systems and stable processes;
[18], [19]; e  Widely used and applicable in most applications.
Limitations:
e Efficiency decreases with significant delays or rapidly changing conditions;
e Requires careful parameter tuning for good results, especially in complex systems;
e Sensitive to noise, which can cause instability.
Adaptive Gain scheduling control Benefits:
control [20], [21]; e  Ability to adjust to changing system parameters in real-time;

Improves control accuracy under uncertainty and variable conditions;

Applicable in systems where an accurate model cannot be created.
Limitations:

Complex to implement and computationally intensive;

May not handle fast or sharp changes in parameters effectively;

Requires mechanisms for real-time parameter estimation.

Optimal control

Pontryagin’s maximum
principle [26], [27];
Bellman’s dynamic
programming [28], [29];
Lagrange method [30];

Benefits:

Allows for minimizing or maximizing a target function;

Ensures efficient and economical trajectories and actions;

Useful for systems requiring high precision and cost minimization.
Limitations:

High computational complexity, especially for multidimensional tasks;

May require an accurate mathematical model, which is not always available;

Limited adaptability since optimal solutions are designed for fixed conditions.
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Control method
type

Control algorithms

Benefits and limitations

Robust control

Classic fuzzy logic control
[31];

Multi-model control [32];
Hee control [33];

Benefits:
Resilient to significant uncertainties and disturbances;
Ensures stability and predictability even when parameters change;
Effective in systems with substantial modelling errors.
Limitations:
Complex tuning requiring specialized knowledge;
Potentially high computational cost during design;
May lead to conservative solutions, reducing system efficiency.

Predictive
control

Predictive control with
finite horizon [34];
Predictive control with
infinite horizon [35];
Stochastic predictive
control [36]

Benefits:
Considers the future behavior of the system, allowing for prediction and optimization;
Takes constraints into account, important for complex systems;
Provides precise control and good response to external disturbances.

Limitations:
High computational requirements, especially for large prediction horizons;
Dependence on the accuracy of the mathematical model;

Complex implementation for tasks with rapidly changing parameters.

Discrete control

Finite state machine
control [37];

Timed finite state machine
control [38];

Benefits:
Simple to implement for tasks that can be represented as a sequence of states;
High reliability and predictability in simple systems;
Easy-to-understand logic that simplifies debugging and testing.
Limitations:
Limited flexibility and adaptability, unsuitable for complex or continuous processes;
Can become cumbersome as the number of states and logical conditions increases;
Poor fit for tasks with high uncertainty or unpredictability.




The chosen control method must effectively mitigate the consequences of
disturbances and also prevent their occurrence. However, vibrations in the moving parts
of the robot (transmission), caused by mechanical damage, often go unnoticed and tend
to be cumulative. This, in turn, leads to additional wear, repair, or failure of equipment.
Identifying signs at an early stage can not only be detected but also their impact on the
robotic system’s structure can be minimized with the proper control method.

When considering the control methods described above in terms of improving the
reliability and stability of a robotic system in the presence of undesirable disturbances,
the following advantages stand out: optimal, predictive and robust control.

1.3 Optimal Control Systems

Control systems are rapidly evolving, transforming, and adapting to modern conditions,
leading to an expansion of capabilities in controlling mechanisms. New control methods,
such as piecewise-linear control, the use of artificial intelligence, or machine learning,
enable achieving excellent control quality [9], [39]. However, alongside these new
methods, traditional approaches maintain their popularity and are being redefined for
new application areas, such as optimal control systems [40]—[42].

Optimal control systems are a combination of methods and algorithms designed to
achieve the best (optimal) management results for a dynamic system. The main goal of
optimal control systems is to maximize output parameters that determine the quality of
control and minimize undesirable criteria affecting performance. Optimal control systems
also consider most of the constraints imposed on the dynamic system. The key aspects
of optimal control include [43]-[45]:

. Formalization of the problem;

° Definition of performance criteria;
° Constraints;

. Determination of optimal strategy;

. Adaptation to changes.

Building an optimal control system starts with defining the dynamic system to be
controlled, the objective function, and the performance criterion for optimization.
The dynamic system is a mathematical model describing the system’s behavior over time.
The objective function takes various forms depending on whether the minimization or
maximization task is set.

Performance criteria are parameters that determine the quality of control. Choosing
an appropriate criterion allows monitoring how well the control objective is achieved.
Depending on the specific task and requirements of the dynamic system, the criterion
could involve minimizing time, cost, resource consumption, or maximizing performance
and profit.

When developing an optimal control system, it’s essential to consider the constraints
imposed on the dynamic system. Constraints include various physical parameters like
speed or time, as well as technical parameters depending on the system’s design, such
as maximum load [44].

The next aspect in developing an optimal control system is finding the optimal control
strategy to either maximize or minimize performance criteria. Various methods are used
for determining the strategy, such as Pontryagin’s maximum principle, Bellman’s dynamic
programming method, fuzzy logic-based algorithms, machine learning algorithms, etc
[46]-[48].
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In the case of unpredictable optimal control problems or working in stochastic
environments, optimal control systems must be sufficiently adaptive and flexible.
Achieving this result involves using various combinations of methods to react to changes
promptly and maintain the optimal control strategy.

Based on the literature analysis, Bellman’s dynamic programming method is suitable
for optimizing the control of a robotic system under mechanical disturbances for the
following reasons [49]-[51]:

1. Recursive approach to solving control problems.

By breaking the main task into smaller sub-tasks, Bellman’s dynamic programming
method increases its efficiency in decision-making under changing conditions. When
subjected to vibrational disturbances, the Bellman approach recalculates the optimal
solution at each step, allowing the control system to adapt to disturbances while
maintaining operational stability.

2. Lack of strict conditions and applicability to uncertain systems.

Unlike other methods, such as the Lagrange method or Pontryagin’s maximum
principle, the Bellman approach is better suited for systems with numerous dynamic
parameters. Vibration parameters, such as frequency and amplitude, as well as robotic
system parameters like speed, torque, precision, and acceleration, can change
unpredictably in the event of mechanical damage. The Bellman method ensures a more
reliable response by recalculating the optimal trajectory compared to other methods
that rely on a fixed optimal trajectory.

3. Adaptability to constraints and improved response efficiency.

Response time minimization is achieved through continuous searching for the optimal
solution, which, in turn, contributes to the stability of the mechanical system. Taking
constraints into account at each step, especially those related to variable disturbances,
eliminates the need for complex modeling of the robotic system.

4. Compatibility with other algorithms.

Bellman’s method can complement certain algorithms, introducing new dimensions
to control strategy development. For instance, combining it with fuzzy logic algorithms
can create a predictive diagnostic system, minimizing the impact of damage before its
destructive effects begin.

1.4 Predictive and Robust Control Strategies

Predictive and robust control strategies are key components in the fields of industrial
automation, robotics, and the aviation and automotive industries [52]. Predictive control
aims to forecast equipment failure and identify potential faults to prevent breakdowns
without adhering to a fixed schedule of maintenance tasks. In turn, robust control
strategies address uncertainties, noise, and disturbances, as well as changes in
environmental and operating conditions, ensuring stable operation of mechanisms under
various circumstances [53]. These methods are crucial in systems where environmental
conditions, processes, or external disturbances can be unpredictable [52], [54].

Together, predictive and robust control strategies can be broken down into key
components [55], [56]:

. Condition monitoring and uncertainty modelling allow to collect data from
sensors, measuring various process or mechanism parameters in real-time, allows for a
thorough study of system dynamics and potential uncertainties. This leads to the
development of a mathematical model describing system behavior under different
conditions.

15



. Data analysis and controller design provide to identify patterns, anomalies,
errors, and potential equipment failures. Controllers are then developed to maintain
system stability and performance in the presence of deviations. These controllers use
various algorithms, such as PID control, optimal control, fuzzy logic, and artificial
intelligence.

. Predictive modelling and sensitivity analysis identify key stages and determine
the possibility of equipment failure and the need for maintenance. At the same time,
sensitivity analysis of control system performance to uncertainties is conducted to
identify potential improvement opportunities.

. Preventive actions, simulation, and testing through analysis and prediction of
failures reliable operation of control systems and mechanisms is ensured under different
operating conditions.

In this context, predictive and robust control systems allow for reduced equipment
downtime, which would otherwise be required for maintenance and adjustment to new
operating conditions; cost savings due to high adaptability; and improved safety, quality,
and efficiency by reducing the impact of uncertainties, noise, and disturbances on
equipment.

Among the control methods presented above, fuzzy logic stands out for its
adaptability, robustness, and ability to predict events. Fuzzy logic possesses several key
features that make it particularly effective in handling mechanical damage in robotic
systems [57]-[60]:

1. Adaptive approach to uncertainties.

Fuzzy logic enables the management of imprecise data, which is especially crucial for
robotic systems affected by vibrational disturbances. The absence of a requirement for
prior parameter tuning for each event scenario allows a fuzzy logic-based control system
to adapt to changing conditions.

2. No requirement for a precise mathematical model.

This simplifies the process of designing, implementing, and configuring a fuzzy logic
control system, enabling generalization across various scenarios without excessive detail.

3. Rule-based control for predictive capabilities.

The use of a rule base enables the creation of predictive control systems to assess
future states, setting fuzzy logic apart from other algorithms. The use of empirical data
and a set of rules ensures high response speed.

4. Integration with other control methods.

Fuzzy logic can complement other control strategies, broadening control horizons and
achieving the required quality. The distribution of fuzzy sets to encompass various
scenarios enables a shift from focusing solely on the system's current state to building a
control strategy that adapts to changes.

5. Resistance to disturbances and adaptability to changes.

Fuzzy logic ensures robust control even in the presence of significant deviations in
system operation. Furthermore, its lack of reliance on extensive calculations saves
computational resources, enhancing system performance.

Thus, in terms of developing a robust and predictive control strategy, the fuzzy logic
algorithm excels due to its adaptability, precision, and computational efficiency.
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1.5 Hypotheses

The research field of the thesis in fault diagnosis and robust control strategies have taken
a turn with the optimal control system integration. This integration way is assumed to
increase the accuracy and performance of the robotic system and optimize the detection
of mechanical faults to eliminate their consequences. Based on the vibrational analysis
the thesis’s purposes present how to update the mathematical model of the robot to
achieve the desired performance characteristics under various conditions. Through
current research, the following hypotheses are proposed:

e Vibrational analysis of a robot’s moving parts, based on using accelerometers with
special placement, will allow for precise determination of the frequency
characteristics of specific mechanical damages.

e The data from the vibrational analysis can be used to develop optimal robot
control strategies based on Bellman’s dynamic programming and an algorithm
based on fuzzy logic.

e Using optimal control based on Bellman’s dynamic programming will reduce the
control system’s response time to disturbances caused by unwanted vibrations
and increase the stability of the mechanical system.

e The fuzzy logic-based algorithm may be capable of predicting and diagnosing
mechanical damages.

e The combination of vibrational analysis and the fuzzy logic algorithm can simplify
the task of predicting repairs of robotic systems and enhancing the stability of
control systems in the presence of mechanical damages.

1.6 Objectives of the Thesis

The main aim of the thesis is to design and develop an optimal control and diagnosis
system for an industrial robot. The system provides detection and prediction of faults,
also controls the robotic system behaviour using robust control strategies. The system
should be adaptive, flexible, accurate and analyse data in real-time. At the same time,
adaptive control and fault prediction diagnosis of the optimal control system are
important. The research questions consider different fault types and optimal control
strategies for interacting, predicting, and eliminating mechanical damages in robotic
systems. In this case, the goals of this thesis are:
e Development of a scaled demonstrator with a data acquisition system for vibration
analysis data collection.
e Design and modelling an optimal control system based on Bellman’s dynamic
programming method for eliminating oscillations.
e Development of a fuzzy logic algorithm for diagnosing mechanical faults in robotic
system.
e Implement a fuzzy logic algorithm to control a robotic system under mechanical
damage conditions.

1.7 Scientific Contributions

1.7.1 Scientific Novelty
e Vibration analysis method using strategically placed accelerometers to determine
vibration characteristics (frequency and amplitude) for both normal and damaged
transmission operation.
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e Methodology of application of Bellman’s dynamic programming optimal regulator
for eliminating undesirable oscillations in the robotic systems.

e Designing a novel adaptive and suitable application oriented on the fuzzy logic
algorithm for diagnosing mechanical faults and controlling the robotic system
under these conditions without using accurate mathematical models.

e An analysis of the control characteristics of optimal control system based on
Bellman’s dynamic programming method and a novel application oriented on the
fuzzy logic for eliminating consequences of mechanical damages.

1.7.2 Practical Novelty

e Development of a scaled demonstrator for vibration analysis data collection.

e Definition of the reference and faulty frequencies of the tooth belt transmission
and screw transmission of the robot system.

e Modelling of the Bellman’s dynamic programming optimal control regulator for
eliminating vibration based on vibrational spectrum.

e Modelling of the fuzzy logic diagnosis and control algorithm for detecting mechanical
faults and control robotic system under these conditions.

1.8 Outline of the Thesis

The thesis is structured into five chapters are as follows.

Chapter 2 covers the review of related works. This chapter focuses on gearbox faults,
types of control systems, and the description and analysis of Bellman’s dynamic
programming method and fuzzy logic method.

Chapter 3 describes the design of the experimental part for getting vibration signals.
This includes the description of the experimental test bench and its components,
measurement setup, and laboratory test parameters. Also, this chapter covers the
vibrational signal analysis by the fast Fourier transform method.

Chapter 4 focuses on designing the optimal control system. The first part of this
chapter includes the mathematical description of cartesian robots like two-mass system
and contains the mathematical derivation of the optimal controller. The second part of
the chapter covers modelling process of the optimal regulator in two ways are
eliminating and accelerating. The chapter analyzes and compares the modelling results
of the obtained optimal controllers.

Chapter 5 contains details of designing the fuzzy logic algorithm for diagnosis of
mechanical damages and control robot under these conditions. This algorithm is based
on the analysis of vibrational signals. The chapter provides a detailed description of the

algorithm’s derivation and output, as well as the results of its modeling using real data.

Chapter 6 presents the conclusion and future work of this research.
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2 State of the Art in the Industrial Robots Motion Field

Robotic systems are widely used in modern manufacturing. These systems increase
productivity while reducing the consumption of materials, energy, and human resources
[61]. Robots help ensure human safety by handling hazardous materials and operating in
unfavorable environments. However, despite their many advantages, robotic systems
require maintenance, repair, and replacement in the event of wear or damage [62].
To extend the lifespan of a robotic system, properly selected actuators (primarily electric
motors) are used. Control systems for robots are developed based on various algorithms
to achieve the desired quality of operation. Predictive maintenance and diagnostic
systems for moving mechanical parts of robots are being implemented and advanced to
ensure high productivity and reduce maintenance costs [63], [64].

2.1 Electrical Machines in Robotics as Actuators

One of the extensive areas of implementing electric machines is robotics. Servo motors
play a crucial role as actuators in robotics. This type of motor has found wide application
in this field due to its advantages, namely [l]:

v Precise control over angular position, velocity, and acceleration, enabling high
positional accuracy of robotic actuators [65], [66].

v Feedback in the form of potentiometers and encoders [67], [68]. These sensors,
integrated into the servo motor’s design, provide real-time feedback on position and
velocity, facilitating adjustments and corrections to deviations from desired parameters,
thereby enhancing precision and stability [69], [70].

v' Despite their small size, servo motor-drives can deliver high torque, making
them indispensable in applications with limited installation space or requiring lifting
heavy loads or applying significant force [71], [72].

v' Servo motor-drives can be easily integrated into various control systems due to
the versatility of control approaches. There are numerous methods for controlling servo
motors, allowing for the development of various applications [73]-[75].

The conversion of electrical energy into mechanical energy is achieved with minimal
losses when using servo motor-drives [76], [77].

Thus, servo motor-drives enhance the accuracy, versatility, and performance of
mechanisms and applications. However, the motor control system also significantly
influences operational characteristics [65], [78], [79]. The robot’s diagnostic and control
system are equipped with an adequate number of sensors to monitor the mechanism’s
behavior in real-time during work operations. However, these sensors only track
parameters in the power and control systems of the machines [80]-[82]. This leads to
the inability to prevent or predict the robot’s behavior in case of mechanical part failure.
As a result, damages such as wear, heating, or breakdown of parts in the robot’s
transmissions and connecting links go unnoticed and lead to serious consequences.
Consequently, mechanisms lose their efficiency, working characteristics decrease, or
they may completely fail.

Based on this literature review, discusses what faults in mechanical parts (e.g.
gearboxes, reductors, couplings, joints, etc.) may occur during work operations and how
a fuzzy logic-based control system can be used to create a predictive robust control
system capable of operating under specified conditions.
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2.2 Gearbox Analysis: Structure and Faults

Gearboxes play animportant role in robotic systems. They consist of various transmission
types, transfer force from the actuator to other parts of the robot, and coordinate the
movement of these parts [83]. The correct choice of transmission types in gearbox affects
the system’s efficiency, maneuverability, precision, and lifecycle. Depending on the
purpose, characteristics, and conditions, several types of transmissions are used in
robotic systems [83]-[85], [lI]:

1. Tooth transmission is used for working with high loads and minimal backlash. It is
popular in small systems due to its compactness.

2. Belt transmission is used to transmit force in more complex and larger robotic
systems. It is popular for its constant gear ratio, lightweight, and noiseless operation.

3. Chain transmission is used in large robotic systems where significant forces and
loads need to be transmitted.

4. Screw or worm transmission is used in linear systems requiring precise positioning.

An example of a robot gearbox is shown in Figure 2.1.

Screw transmission
Servomotor

Connector

Pulleys

Belt transmission
Figure 2.1. The example of the gearbox (previously published in article V).

Faults in the gearbox can significantly affect the performance, operational
characteristics, durability, and energy efficiency of robotic systems. Gearbox failures
develop gradually and don’t instantly lead to system failure [86]. This process can extend
over a long period, and even minor damage can result in serious consequences, disrupting
system operation and eventually leading to complete failure. The most common gearbox
damages include [II, 1lI]:

v' Wear and tear of wheels and pulleys.

All moving parts of the gearbox are subject to wear. Over time, gears and pulleys wear
out due to constant friction, resulting in increased clearance between them and
potentially reducing the system’s accuracy and performance [87], [88].

v Misalignment of pulley centers.

Misaligned pulleys cause excessive friction, noise, and wear on gears and transmission
belts. Improper pulley alignment can result from manufacturing defects, additional
vibration, and mechanical stress [89].

v Lubrication and contamination issues.

Insufficient lubrication and contamination accelerate wear, increase friction, and lead
to overheating and breakdown of transmission components. Lubrication is necessary to
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prevent metal-to-metal contact and reduce friction. Inadequate lubrication in the
gearbox can lead to frequent repairs and downtime [90], [91].

4 Overloading, vibrations, and impacts.

Subjecting the gearbox to loads beyond its design capacity, as well as shocks and
vibrations, accelerates wear, deformation, and stress on transmission parts [92], [93].
Overloading, along with additional vibration, arises from excessive loads, sudden
impacts, external forces, and mechanical imbalances [94].

Addressing gearbox issues requires a combination of servicing methods and the
installation of modern monitoring and control systems to prevent frequent inspections
and repairs. Reliable design solutions will ensure reliability and performance under
various operating conditions.

2.3 Control Systems for Eliminating Vibrations

When addressing the task of mitigating and preventing damage in transmissions, five
main types of control methods are distinguished based on system constraints and
environmental conditions [95], [96]:

. Regulation;

. Optimal control with a finite or infinite forecasting horizon;

° Optimal control with constraints;

° Adaptive and robust control;

. Stochastic control.

Regulation mainly aims to minimize the error between the output signal of the
dynamic system and the desired (specified) value [97]. Methods such as the least squares
method or PID control are used for this purpose [98], [99].

Optimal control with a finite or infinite forecasting horizon is used to determine the
control strategy based on the forecast of the system’s state and future conditions [100],
[101]. In the case of a finite horizon, the optimal control system aims to determine the
control strategy over a fixed time interval [102]. In the case of an infinite horizon,
the optimal control system determines the control strategy over an infinite time interval,
considering the subsequent states of the system and the conditions of influence [103].
Dynamic programming algorithms like Bellman’s equations are used to implement such
control strategies.

Optimal control with constraints creates a control strategy for a dynamic system
considering the presence of constraints to maximize or minimize performance criteria
under specified conditions [46], [104]. Algorithms such as Pontryagin’s maximum principle
or quadratic programming are used to solve constrained control problems [46], [105].

Adaptive and robust control combines some algorithms, which can adjust to changing
environmental conditions or control task requirements while maintaining the optimal
control strategy [106]-[108]. Algorithms based on adaptive regulation, fuzzy logic, and
machine learning are used to tune adaptive and robust control systems [109], [110].

Stochastic control systems are designed to operate in dynamic systems where random
processes occur [111], [112]. These control systems consider the probability distribution
and statistics of finding the optimal control strategy [113], [114]. To solve such problems,
algorithms like the Kalman filter or Markov decision processes are typically used.

Each of these methods is applied in various fields depending on the task at hand and
has its benefits and limitations. However, only three of them are often used in robotics
and their comparison is presented in Table 2.1.
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Table 2.1. Comparison of optimal control system types.

Control system
type

Applicable algorithms

Benefits and
limitations

Optimal control
with a finite or
infinite forecasting
horizon

Bellman’s dynamic programming
[47];

Linear quadratic regulation [115];
Model predictive control [116].

Benefits:
Forecasting. Ability to anticipate future changes and manage them.
Flexibility. Allows for determining optimal control strategy at any time interval.
Limitations:
Mathematical complexity. Working with large time intervals requires
significant computational resources.
Noise sensitivity. The presence of additional or unwanted noise that cannot
be eliminated leads to the destabilization of the control system.

Optimal control
with constraints

Pontryagin’s maximum principle
[46];

Constrained model predictive
control [117].

Benefits:
Safety. Ensuring compliance with imposed constraints on the mechanism
enhances control stability.
Adaptability. Allows for determining control strategy under any constraints.
Limitations:
Implementation complexity. Calculation and application of complex
algorithms are required to account for all constraints, which complicates the
design of the control system.
Probability of obtaining a suboptimal control strategy.

Adaptive and
robust control

Robust model predictive control
[118];

Adaptive neural network control
[119];

Fuzzy logic algorithm [48].

Benefits:
Forecasting. Working in variable conditions allows for predicting system states
and adapting to changes without full reconfiguration of the control system.
Flexibility. The ability to adapt to any environmental conditions enhances
real-time control efficiency.




€¢

Control system
type

Applicable algorithms

Benefits and
limitations

Limitations:
e  Complexity of tuning. Parameter tuning and adaptation rules adjustment are
required, which can be labour-intensive.
Instability. Incorrect settings selection may lead to loss of control system
stability.

Stochastic control

Linear quadratic gaussian [120];
Stochastic model predictive
[121];

Monte Carlo optimization [122].

Benefits:
e Uncertainty management. Ability to account for random disturbances and
occurrences of external forces to enhance control system stability.
e Operation in a stochastic environment. Enables the construction of a control
system for any environment with uncertain data.
Limitations:
e Computational complexity. Requires significant computational power for the
design and operation of the control system.
Sensitivity to precise mathematical models. An accurate mathematical model
of the process or mechanism operating in a stochastic environment is required,
which can be labor-intensive in real-world conditions.




Based on the literature review of control methods for robotic systems, two
approaches stand out for the task of mitigating, preventing, and diagnosing transmission
damage: optimal control with a finite or infinite forecasting horizon and adaptive and
robust control. These methods possess the necessary qualities to build a control system
based on analyzing vibrations that arise in the event of transmission damage.

Among the algorithms, Bellman’s dynamic programming stands out due to its features,
like forecasting, flexibility, and overcoming dynamic complexity [49]. This algorithm allows
for optimizing control considering the current and future states of the system. This
property is crucial for assessing system damage since the known vibration spectrum can
be used to establish an optimality criterion that minimizes the consequences. Moreover,
the ability to adapt the optimal control trajectory at each step guarantees optimal
control. The algorithm is well-suited for both finite and infinite horizons, making it
applicable for long-term use. By breaking the main task into smaller subtasks, Bellman’s
dynamic programming is particularly effective under conditions of mechanical damage
to a robot, as it enables the division of the overall task into manageable parts. Such an
approach reduces the influence of damage on the robot’s performance by ensuring that
the system can adapt dynamically to changing operational conditions while accounting
for the future impact of the damage.

For controlling a robotic system with a damaged transmission, fuzzy logic stands out
due to its properties, as functioning under uncertainty, adaptation to changes, and ease
of setup and integration [57], [60]. Fuzzy logic is indispensable in situations where the
mathematical model of a robotic system becomes unclear due to damage. This is
critically important for control, as fuzzy rules can be configured to operate effectively
under uncertainty. Furthermore, the vibration spectrum can be easily interpreted
through linguistic variables, simplifying control and configuration. In cases of system
degradation, such as worsening transmission damage, fuzzy logic easily adapts to changes,
enhancing the reliability and robustness of the control system. Despite the complexity
and multitasking nature of the system, the implementation and configuration of fuzzy
logic remain relatively straightforward, and integration with other control methods is
seamless.

Based on the above, Bellman’s dynamic programming and fuzzy logic together create
a synergistic control system combining adaptability, optimality, and robustness. Fuzzy
logic mitigates noise sensitivity, while dynamic programming ensures global optimality.
Furthermore, combining these two algorithms allows for assessing the current state of
the mechanical system and calculating an optimal control strategy.

Unfortunately, the high computational demand of these algorithms complicates their
integration into modern systems, which is why most studies lack precedents for exploring
such a control system. Additionally, the insufficient development of diagnostic methods
means that using vibration spectra as input data requires the development of new
diagnostic approaches and evaluations. Therefore, it is essential to examine these two
algorithms in more detail to assess their potential for building a control system for a
robotic system operating with a damaged transmission.
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2.4 Bellman’s Dynamic Programming Method

Bellman’s dynamic programming is a mathematical approach to solving optimal control
problems, based on the principle of breaking down the problem into smaller fragments
and finding the optimal solution for each of them [123], [124].

The main stages of dynamic programming are as follows [125], [126]:

1. Problem formulation.

The main task is broken down into fragments, for which optimality conditions are
defined, and an optimal solution is found at each step. The most common example for
such type of control is robot control with a specific sequence of actions.

2. Quality assessment.

For each step, an assessment of optimality is made. A quality function is created,
which, considering various factors such as resource costs, desired outcomes, etc.,
evaluates the optimality of the solution.

3. Finding the optimal path.

Considering each step individually allows for determining the optimal control strategy
for the overall problem solution.

4. Strategy preservation.

To reduce computational complexity, intermediate data is stored to avoid redundant
calculations for simpler tasks.

5. Formation of a complete control strategy.

After determining the optimal solutions for all tasks, they are combined, and an overall
control strategy is formed.

Two main expressions are used for forming optimal control according to Bellman’s
dynamic programming principle: the Bellman optimality equation (1) and the Bellman
recurrence equation (2) [126]-[128].

V(s) = maxgeas) {R(s, a) + yzs,esP(g'| s, a)V(s’)}; (2.1)

where, s — current system state; s’ — next system state; a — system impact;
V(s) — optimal strategy in the current state; A(s) — impact sets in the current state; R(s, a)
— optimal criteria after impact; y — discount coefficient; P(s’ | s, a) — transient possibility
to the next state after impact.

Vi (5) = matseacy {RG D +y ) P(s'I5,)V(s)); 2.2

where Vi(s) — optimal strategy in the current state in k-iteration.

Bellman’s dynamic programming algorithm is an excellent fit for addressing the problem
of mitigating vibration effects. This is supported by the algorithm’s distinct advantages.

By breaking down the problem into smaller functions, the control algorithm enables a
detailed understanding of local dynamics, including nonlinear behavior. For example,
in the case of a robotic manipulator subject to oscillations, dynamic programming
optimizes the control input for each joint, minimizing vibration amplitude step by step
[123], [124].

The quality criterion of this algorithm allows for considering various developmental
scenarios and adapting the control system to specific needs. This approach not only
mitigates the effects of damage and vibrations but also minimizes energy consumption
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and system wear. Thus, vibration suppression can simultaneously manage multiple
parameters influencing production quality and safety [129].

To solve the problem of vibration suppression, it is essential to identify a trajectory
and control strategy that avoids resonance frequencies and effectively reduces the
impact of vibrations on the system. By analysing the system’s response at each step,
dynamic programming can create a global control strategy. In this way, the algorithm
determines the sequence of actuator forces needed to compensate for disturbances
[130].

It should also be noted that due to its step-by-step optimization, this algorithm is ideally
suited for dynamically changing environments. Given that vibration characteristics can
change in real time almost instantaneously, the adaptability of Bellman’s dynamic
programming ensures the stability of the control system [131].

2.5 Fuzzy Logic Algorithm

Given the diversity of methods, optimal control finds applications in aerospace
engineering, for optimizing the movement and trajectory of ships and aircraft, and
robotics, for developing controllers, autonomous vehicles, and controlling robotic
manipulators. Fuzzy logic-based control systems enable the processing of imprecise data
and categorizing them into belonging to a particular output, unlike binary logic, where
the output parameter can only take on values of “0” or “1”. Fuzzy logic is an excellent
tool for creating control systems for mechanisms with nonlinear dynamics, complex
relationships, and ambiguous or insufficient input parameters [110], [132], [133].

A fuzzy logic-based control system operates according to a specific algorithm.

Fuzzy logic replaces traditional binary sets with fuzzy sets, which allow elements to
have partial membership in a set. Each fuzzy set is characterized by a membership
function that assigns degrees of membership to elements in the universe of discourse
[134], [135].

Fuzzy rules form the basis of the control logic in the fuzzy logic control system. These
rules are expressed in the form of “if-then” statements, where linguistic variables (e.g.,
“low”, “medium”, “high”) are used to represent inputs, outputs, and control actions.
Fuzzy rules capture expert knowledge and heuristics about the system’s behavior [136],
[137].

Fuzzy inference involves applying fuzzy logic rules to determine the system’s response
to input conditions [138]. It consists of two main steps: fuzzification and inference.
Fuzzification converts crisp input values into fuzzy sets using membership functions,
while inference combines fuzzy rules to produce fuzzy output sets [139], [140]. Three
main types of membership functions are used in this step. There are triangle (2.3),
trapezoidal (2.4), and gaussian (2.5) membership functions.

0, x<a
x—a
p a<x<b
triangle(x;a,b,c) =42 _ & ; (2.3)
—, b<x<c
c—b
0, c<

where, a, b — borders of the triangle function; c — the center of the triangle function.
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0, x<a
x—a

h—a’ a<x<b
trapezoid(x; a,b,c,d) = 1, b<x<c; (2.4)
c—a
, <x<d
> c<x
0, x<d

where, a, b — borders of the trapezoid function; ¢, d — the maximum of the trapezoid
function.

1/x—c\2
gaussian(x;c,0) = e‘E(T) ; (2.5)

where, c — the middle of the gaussian function; o — the width of the gaussian function.

Fuzzy aggregation combines the outputs of multiple fuzzy rules to generate a single
fuzzy output set. This process can involve methods such as minimum, maximum, or
weighted averaging to aggregate the contributions of individual rules [139].

Defuzzification converts the fuzzy output set into a crisp control action or decision.
This involves determining a single value or a set of values that best represents the fuzzy
output set, typically using methods such as centroid defuzzification or weighted average
[140].

Based on the fuzzy logic control algorithm, it can be said that this method is highly
adaptable to any task. Moreover, fuzzy logic does not require the calculation of an exact
mathematical model of the process or mechanism. Additionally, fuzzy logic mirrors
human reasoning, making it relatively easy to apply to various conditions. Consequently,
the fuzzy logic control algorithm finds its application in areas such as autonomous
systems, enabling smooth and efficient control, industrial automation, allowing the
control of many transient processes, and robotics, facilitating transportation and precise
control of machines and robots [141], [142].

2.6 Chapter Summary

There are numerous methods for controlling robotic systems, each designed for specific
purposes, as evidenced by the review presented in this chapter. Control systems are
constantly evolving to achieve greater performance, precision, or to mitigate undesirable
effects caused by external factors. Faced with new challenges, robotic control systems
are modernized to enable prediction, data analysis, and stable operation under varying
conditions.

Despite significant advancements in the development of control systems, certain gaps
remain in the application of specific control algorithms across different domains. This is
because many issues are not yet considered significant, or the algorithms have not been
optimized for external conditions (such as mechanical damages, environmental
contamination, etc.). Such algorithms include Bellman’s dynamic programming and fuzzy
logic. In the field of condition monitoring and diagnostics of the mechanical components
of robotic systems, these algorithms have not been fully developed. Many approaches
to building control systems are focused on machine learning rather than vibration
analysis, leaving the potential of dynamic programming and fuzzy logic in this area
untapped. These algorithms offer unique advantages and demonstrate their capabilities
when additional parameters for evaluating vibrational signals are available. This enables
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the development of a control system capable of mitigating undesirable effects caused by
damage to the mechanical components of robotic systems. It also provides the possibility
of controlling the robot under these conditions and diagnosing damage at early stages,
ensuring timely maintenance, reducing wear on other mechanical components, and
predicting the behavior of the mechanism in uncertain conditions.

The limited use of fuzzy logic and Bellman’s dynamic programming algorithms can be
attributed to their high computational resource requirements and the complexity of
adapting these algorithms to uncertain scenarios of mechanical failures. However,
by studying potential damage in robot transmissions, it is possible to obtain the
necessary data to significantly reduce the computational demands of these algorithms
and facilitate their integration into existing control systems. Addressing this gap could
lead to significant advancements in the reliability, performance, and safety of industrial
robotic systems, motivating further research in this direction.
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3 Condition Monitoring of Robots

Robots in industry play an important role in many industrial applications, ensuring safety
in the workplace and various production conditions. Monitoring the condition and
implementing reliable control strategies for robots has always been significant in the
industry. The use of optimal control systems in areas of predictive maintenance and
condition assessment is advancing in modern research [63], [64].

The application of reliable control strategies, specifically optimal control systems,
in industrial applications is evolving towards predictive maintenance to increase
productivity and reduce the number of scheduled and unscheduled repairs and
maintenance. Periodic and unscheduled repairs lead to loss of time and resources due to
equipment downtime and loss of production productivity. Therefore, more research is
focused on identifying damages at an early stage to prevent downtimes and find new
ways to ensure equipment maintenance [86], [95], [96].

This allows for the development of an algorithm for real-time damage detection data
assessment. Combining condition monitoring and reliable control strategies enables the
use of several types of analysis: vibration, thermal, acoustic, and performance. Each type
of analysis is intended to detect specific faults [143]-[146].

Vibration analysis is based on measuring the vibration levels of robot components,
such as transmissions, bearings, and joints. Accelerometers are used for this purpose,
recording the necessary data. Increased vibration levels can indicate imbalance,
misalignment, or wear of moving parts. This method is useful for detecting damage in
moving parts that are subject to increased friction [145].

Thermal analysis is based on determining thermal signatures using infrared cameras.
Overheating of the robot’s moving parts can indicate lubrication problems, friction,
or stress on the robot’s body. This method is effective for detecting overheating of
motors and joints [143].

Acoustic analysis involves analyzing high-frequency sounds emitted by materials
under load or friction. Cracks, friction, or other anomalies and damages generate sounds.
Acoustic sensors or sensitive microphones are used to capture sounds, allowing early
detection of fatigue cracks and component wear [144].

Performance analysis is based on assessing the working parameters of the robot,
such as speed, torque, or energy consumption. Robot sensors and software are used for
real-time data analysis. However, deviations from working parameters can indicate both
mechanical damages and system errors [146].

Based on a literature review of these methods, it can be stated that vibration analysis
integrates well into the strategy of reliable control systems and condition monitoring.
Thus, this type of analysis can be taken as the basis for diagnosing and managing robots
under the influence of mechanical damages.
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3.1 Scale Demonstrator

The scale demonstrator is built for experiments and getting vibration data from the
robot. The demonstrator consists of the Hirata cartesian robot, vibration sensors, and a
data acquisition system. The view of the scale demonstrator to collect data for different
faults is presented in Figure 3.1.

Hirata Cartesian

robot

Figure 3.1. The view of the scale demonstrator with data collection system. (previously published in
article 1V)

The scale demonstrator was constructed to evaluate the impact of transmission
damage on the structure of the Cartesian industrial robot. For this purpose, the operational
characteristics of vibration were assessed under normal transmission conditions.
Subsequently, damage was introduced, and experiments were conducted to evaluate the
vibration performance of the robot with a damaged transmission.

These experiments are essential for obtaining data on vibration frequency and
amplitude to understand the relationship between damage and its effects on the robot’s
vibrations during operation. By collecting sufficient data and analyzing it, a correlation
between damage and vibrations can be established. Based on this data, a control system
can be developed to enable the robotic system to operate under these conditions and to
diagnose the damage effectively.

The data is collected from the robot in a healthy and faulty state using Data Acquisition
System Dewetron and acceleration sensors. Data are collected in safe conditions to
prevent extreme situations. For this purpose, the robot’s parameters are set to certain
limits. The specification of the robot and parameters for the experiment are presented
in Table 3.1.
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Table 3.1. Specification of the robot and parameters for the experiment.

Parameter — Value -
Specification parameters Experimental parameters
Number of axes 4 2
X 400 400
Motor Y 200 200
power, W YA 100 -
W 30 —
X 1200 200
Max. speed, | Y 1200 200
mm/s z 1000 —
W 1200° —
X 1200 1000
Stroke, mm Y 700 700
! z 200 —
% 540° —
X
Repeatability. | Y *0.02
mm Z 10.01
% +0.02°

Only two out of four axes were chosen for the experiment on collecting vibration
signals. This was done because the Z and W axes have sufficiently rigid mounting, making
capturing the required vibration characteristics impossible. Additionally, it is important
to note that both axes represent a separate structure that can be easily replaced, which
is why these axes are not considered valuable resources for obtaining the necessary data.

3.2 Components

The proposed data acquisition and control system for the experimental setup consists of
the robot controller, teach pendant and three accelerometers (DIS-QG40N) united into
one network. The control components allow to control of the robot in semi-automatic
mode and help to avoid undesirable oscillations during the experiment. Teach pendant
is used for setting needed parameters into the robot controller and implemented of the
necessary robot operations. The technical specification for the accelerometers is given
in Table 3.2.

Table 3.2. Technical specification for the accelerometer DIS-QG40N.

Parameter Value
Measuring ways 3 axis (XYZ)
Measuring range 4 g.
Output signal 0.5-45V
Resolution 4 mg
Sensitivity error 2%
Output refresh rate 3ms
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The sensors were installed on the top and bottom of the test bench (presented in
Figure 3.1), as well as on the robot’s gripping system. These positions allow for capturing
the robot’s vibrations directly and eliminate unwanted oscillations from the test bench
frame in the main signal. Consequently, the robot's vibration signal is fully filtered from
extraneous interference, except for noise caused by the vibration of individual parts of
the robot’s structure. However, since these vibrations are insignificant, they can be
disregarded.
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3.3 Artificial Faults

During the experiment, it was determined that the gearbox has its natural frequencies,
which indicate its normal operation. Each transmission of the gearbox has distinct
frequencies, but when combined, they provide an overall representation of the
transmission’s performance. However, to obtain the necessary data, it is essential to
introduce damage to the gearbox structure. This will generate erroneous signals with
additional amplitudes and frequencies, which will serve as the basis for developing the
control system.

Under operating conditions, three types of mechanical faults can occur in the
transmission of a cartesian robot: over-tension of the timing belt in the tooth belt
transmission, heating of the worm in the screw transmission, and damage or excessive
wear of the gears and pulleys in the transmissions. The experiment considered two types
of failure: over-tension and heating. The third type was not considered, as the chance of
this damage occurring in real conditions is quite low. Additionally, the transmission parts
where this type of failure could occur are made of wear-resistant materials to avoid
jamming.

Belt over-tension occurs when the centers of the pulleys are vertically misaligned
relative to each other. This type of damage is shown in Figure 3.2.

Figure 3.2. The example of the belt over-tension in the tooth belt transmission. (previously published
in article I1)

Over-tension creates additional force and load on the shaft of the robot’s servomotor,
which, in turn, leads to vibrations during transition points, when the direction of the
robot’s movement changes to the opposite.

Worm heating in the screw transmission occurs when there is insufficient lubrication
or contamination. This type of damage is shown in Figure 3.3.

Figure 3.3. The example of the worm heating in the screw transmission. (previously published in
article 1)

Worm heating causes additional vibrations throughout the robot’s workspace,
reducing positioning accuracy and accelerating the wear of transmission components.
This type of damage is also directly related to the parts of the transmission that are in
constant contact. Due to additional wear, it can be assumed that the third type of
damage is a consequence.
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To obtain necessary data about the reference and faulty gearbox state the steps of
the experiment for getting natural and artificial vibration data are presented in Figure
3.4.

(1) (2] (5]

Equipment setup and Implement of the
operation parameters | 1 artificial failure

Data conversion

® . 0 |

Starting the
operation

Data analysis

9 A4 e A\ 4

Data recording Process repetition

Figure 3.4. The flowchart of the experiment steps.

1. This step involves mounting sensors on the lab stand, connecting instruments to
the data acquisition system, and setting the robot’s operating parameters, such as speed,
acceleration, the number of working axes, and movement paths.

2. At this stage, mechanical damage was introduced into the robot’s transmission
structure (first belt over-tension, then worm heating) separately for each axis of the
robot.

3. Loading the robot’s program in semi-automatic mode using the control panel, as
well as monitoring control parameters and tracking the robot's movement trajectory.

4. Reading and recording data from vibration sensors along the three axes X, Y, and Z
for the two robot axes, X and Y. The axes are considered separately to avoid “overlapping”
of data.

5. Changing the data format to obtain an accurate representation of the processes
occurring within the robot’s structure and extracting the necessary parameters from the
sensor’s output signal.

6. Extracting the frequency spectrum of the vibration signal using fast Fourier
transform for further use in the development of diagnostic and control algorithms.

7.To get a full picture of the ongoing processes, the experiment was conducted
multiple times for each of the robot’s axes and under various conditions, specifically:
healthy conditions (without additional noises and artificial failures), introducing an
over-tension fault for the X and Y axes, and implementing a heating fault for the X and Y
axes.
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3.4 Measurement Analysis of Getting Data

Based on the experimental setup the vibration spectrums are obtained. During of the
experiment, the reference signal (healthy state of the robot) and faulty signal (state of
the robot under over-tension or heating faults) are received. The data analysis was
carried out using the FFT method to determine the reference (natural) frequencies of the
robot’s transmission, as well as to isolate frequencies that are generated directly as a
result of mechanical damage. To achieve more accurate results, the FFT window was
selected with a range of 500 Hz. This was done because the mechanical components of
the robot’s transmission typically have vibrational frequencies in the low to mid-frequency
ranges [147]-[149], and most mechanical damage is detected below this limit. Therefore,
there is no point in considering a window with a higher frequency range.

The results of vibration signal analysis for timing belt over-tension of the tooth belt
transmission by X and Y axes are presented in Figure 3.5.
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Figure 3.5. The spectra analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the
over-tension fault of tooth belt transmission. (previously published in article 1)
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The vibrational spectra in Figure 3.5 illustrate the frequency analysis of two distinct
signals: a reference signal representing the healthy operation of a cartesian robot gearbox
and a faulty signal that captures the effects of over-tension due to misaligned pulley axes.
These graphs help to understand how the system’s vibrational characteristics shift under
faulty conditions, providing valuable insights into mechanical performance and fault
diagnosis.

In both spectra, the reference signal (shown in blue) corresponds to the nominal or
healthy state of the gearbox, where the belt tension is set according to factory
specifications. This signal exhibits clear peaks at approximately 50 Hz, 100 Hz, and
150 Hz, representing the fundamental frequencies associated with the gearbox’s normal
operation. These frequencies are characteristic of the system when functioning under
normal conditions, and the vibrational amplitudes at these points are relatively low,
indicating a well-tuned, stable system. In contrast, the faulty signal (shown in red) shows
the system’s response under over-tension, a condition where the transmission belt is
subject to excessive tension due to pulley misalignment.

Focusing on the vibrational spectrums by both axes, the reference signal shows
dominant peaks in the expected frequency range. The system, in its healthy state,
maintains low amplitudes at these critical frequencies, ensuring smooth operation.
However, the faulty signal reveals a starkly different behavior. In addition to the
fundamental peaks seen in the reference signal, the faulty spectrum introduces new
peaks in higher frequency ranges, particularly 200 Hz and 250 Hz. This broadening of the
frequency response, along with the substantial increase in amplitude, indicates that the
over-tension causes increased mechanical stress and friction, leading to a more energetic
vibrational response. The amplitude of these faulty peaks is significantly higher. This
elevated response signals that the system is under abnormal strain, a direct consequence
of the excessive tension in the transmission belt.

In both spectra, the faulty signal demonstrates a markedly different vibrational profile
compared to the reference signal. The presence of these higher frequency components
and their elevated amplitudes suggest that over-tension introduces significant resonances
that were not present in the nominal state. These resonances likely stem from increased
friction, belt tension, and mechanical misalignment, all of which contribute to the
generation of excess vibrational energy. Moreover, the noise floor in the faulty signal
appears to be elevated across the spectrum, particularly at lower frequencies, which may
indicate additional vibrations from external sources, such as adjacent machinery or loose
components within the system.

The over-tension fault’s impact on the system is clear: the increased vibrational
amplitude and the expansion of the frequency range up to 250 Hz signal that the system
is experiencing abnormal mechanical stress. This stress could lead to faster degradation
of the transmission components, such as the belt, pulleys, or even the gearbox itself,
if not corrected promptly. By comparing these spectra, it becomes evident that a healthy
system maintains a controlled vibrational response, while over-tension introduces
significant irregularities that can be detected through spectral analysis. Thus, monitoring
the vibrational spectrum of a transmission system is crucial for early fault detection,
allowing for timely maintenance and avoiding potential mechanical failures.

The results of vibration signal analysis for worm heating of the screw transmission by
X and Y axes are presented in Figure 3.6.
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Figure 3.6. The spectra analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the
heating fault of screw transmission. (previously published in article Ill)

In contrast, the second set of vibrational spectra examines the vibrational behavior
of the cartesian robot gearbox under the influence of a worm heating fault in the screw
transmission. The reference signal (blue) again represents the normal state of the system,
with stable peaks at 50 Hz, 100 Hz, and 150 Hz, while the faulty signal (red) captures the
effects of heating.

In the spectrums, the faulty signal due to the heating fault shows an increase in
amplitude, particularly in the 200-450 Hz range. The heating of the screw transmission
causes thermal expansion and deformation, which leads to increased friction and
mechanical misalignment. These changes generate broader vibrational peaks across a
wide frequency range, indicating that the heating fault excites multiple vibrational
modes. The higher frequencies in this case are indicative of the system’s struggle to
maintain stability under thermal stress. The heating-induced vibrations are not confined
to specific points in the system; instead, they have a stochastic nature, affecting multiple
components simultaneously and leading to erratic behavior.
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Unlike the over-tension fault, which manifests as a more predictable increase in
vibrational amplitude at higher harmonics, the heating fault introduces randomized
vibrational disturbances that are more challenging to mitigate. The broadening of the
frequency range and the significant increase in amplitude suggest that overheating
impacts the entire system, leading to increased wear on bearings, gears, and other
mechanical parts.

3.5 Chapter Summary

This chapter covers a unique vibration analysis method using strategically placed
accelerometers (shown in Figure 3.1) on the novel Cartesian scale demonstrator for
mechanical fault testing, enabling precise identification of frequency and amplitude
characteristics under both normal and damaged transmission conditions. Experiments
involving artificial damage to the Cartesian robot’s gearbox revealed key vibration
signals and spectra, distinguishing normal operational frequencies from those indicating
damage. These findings provide a foundation for creating advanced control strategies,
including systems based on Bellman’s dynamic programming to mitigate damage
effects and fuzzy logic algorithms for effective damage diagnosis and operation under
compromised conditions.
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4 Optimal Control System for Compensation the Damage
Impact

In the case of mechanical damage to the robot's transmission, which can lead to
undesirable load oscillations, optimal control (Bellman dynamic programming) can offer
effective solutions for several reasons [129]-[131]:

. Dynamic programming allows finding the optimal solution based on minimizing
a cost function. The algorithm accounts for the system’s dynamics and finds the optimal
trajectory for the entire process, effectively preventing undesirable oscillations.

. The algorithm can account for random disturbances and uncertainties in the
system, allowing for flexible real-time control adaptation to changing conditions.

. Optimal control relies on precise mathematical models of the system, enabling
consideration of all physical parameters.

. Optimal control can minimize load oscillations and vibrations by finding optimal
control actions at each step. This ensures smooth and steady control, even in the
presence of damage.

To create an optimal control system for eliminating robot vibrations, it is necessary
to define its mathematical model for the given case. In this context, we consider the
elimination of load vibrations caused by mechanical damage to the robot’s transmission.
When damage occurs, and therefore, the resulting vibrations intensify the impact on the
robot’s load, leading to additional undesirable effects such as reduced positioning
accuracy and increased dynamic load on the motors. To address this type of impact,
the Cartesian robot axis should be represented as a two-mass system, and optimality
criteria should be defined [123], [124].

Figure 4.1 presents the two-mass model for moving the load with a Cartesian robot
along the Y-axis. The Z-axis in this model represents the load’s attachment point,
and only its weight is considered in creating the mathematical model.

Figure 4.1. Two-mass model of the movement mechanism of Cartesian robot.
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It is also important to note that the distance from the X-axis to the attachment point
of the load can be neglected due to the rigid connection of the robot’s axes to each other.
In this regard, the system of differential equations describing the behavior of the
two-mass system for moving the robot with the load will be as follows [49], [150]:

, (4.2)
) + mzxz% = 0

(dzxz d?xq
dt? dt?

where m; is the weight of the Y and Z axes; m: is the mass of the load; x1, x2 are the
coordinates of the mass centers of the load in initial and final positions, respectively; g is
the acceleration of free fall; / is the length of the Z axis; F is the total traction or braking
forces acting on the frame; W is the strength of resistance of the frame movement.

Consider that when the robot moves without changing speed during operation, even
in the case of changing the direction of movement, the system of differential equations
can be reduced to a single second-order equation:

d?x w2 F-Ww 4.2)
—+ wx = .
dt? my

where w = %(1 + %) is the natural frequency of the load oscillation.
1

The differential equation (4.22) can be transformed into a system of canonical

. . . . . F
equations by introducing the following notation u =

zZ; = Xx:
ml'l

71 = Zy
{22 = (u— w?z) (43)

Two optimal criteria are obtained based on the mathematical model of the two-mass
system. One of them is criteria based on the value load deviation from the vertical and
dynamic component of the driving force, another one is criteria based on the value
transition time and dynamic component of the driving force. These two criteria are the
backbone of two optimal control models: the eliminating model and the accelerating
model.

4.1 Eliminating Optimal Control Model

As an optimization criterion, the complex integral criterion is chosen. This criterion shows
a relationship between the square of deviation load from the vertical and the square of
the dynamic component of the driving force [49], [150]:

I= f [klxz +k, (F;lw)z] dt (4.4)

where ki, k2 are the coefficients representing weighting factors based on the specific
system dynamics and design criteria, which influence the importance of each term in the
cost or performance index.

The coefficient k: is tied to the control force and how much penalty you assign to the
mismatch between F and W, normalized by the mass mi. A larger k: means you prioritize
minimizing this force error.
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The coefficient k2 means it can prioritize reaching the desired performance (force
balance) more quickly.
Considering the previous notations the criterion can be rewritten in the next form:

T
= f e 22 + kyu?]de (4.5)
0

The method of dynamic programming Bellman is used for minimizing the optimal
criterion. The main functional equation is based on minimizing a specific functional that
accounts for both the state variables and the control input. The Bellman functional
equation is written as [49], [150]:

S
(u—w?z)| =0, (4.6)

min |k, z? + ku? + —2z, + —
0z, 0z,

where S is the Bellman function, which represents the value function that we aim to
minimize. The function S depends on the state variables z; and z2, and its partial
derivatives concerning these states play a key role in the control process.

The optimal control law u is obtained by the first differentiate equation (4.6) to u.
It gives the necessary conditions for minimization. Setting this condition to zero leads to
the following relationship:

2k +65_0 (4.7)
2U 622_' .

Solving for the control variable u, the optimal control law is calculated:

1 dS
u= —Z—kza—zz (48)
This equation (4.8) provides the control input u as a function of the state variables
through the partial derivative of the Bellman function concerning z..
After substituting the expression for u back into the original Bellman equation (4.6)
the following equation is got:

2
as , 0S 1 (65) _o. (4.9)

kiz? + —2z;, — w*zy ———|=—
T gz, 72 Y0z, 4k2\0z,

To solve the partial differential equation (4.9) the Bellman function S can be
represented in a quadratic form, which is a standard approach for linear-quadratic
control problems. In this case, the equation for the Bellman function is next:

S = Alzlz + A2Z1Z2 + A3Zzz, (4.10)

where Ai, Az, and A3 are unknown constants to be determined through further
analysis. This quadratic form is typical in optimal control problems, where the value
function is often a second-order polynomial in the state variables.

To find the constants need to take partial derivatives of S concerning zzand z:

as

5s = Zhn + vy (4.11)
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as
6_22 = 2432, + Ay74, (4.12)
These expressions can now be substituted into equation (4.9) to determine the values
of the coefficients A1, A2, and As. The resulting system of equations will provide the
specific solution for the Bellman function, and thereby, the optimal control strategy for
the system.

(4.13)

The equation (4.13) will be true if the expressions in parentheses are equal to zero
since the variables z: and z; cannot be zero. Therefore, the equation (4.13) can be
rewritten as a system of algebraic expressions:

AZ
=g,y A0 =0
A3
A—2—0 4.14
2T, (4.14)
A,A
24, — 22 _24,0% = 0.
k,

This system of equations (4.14) typically results in two real solutions and two complex
ones. However, only one real solution is selected because, in this scenario, the system’s
motion is smooth, and the maximum control effort remains small. The real solution
ensures the physical feasibility and stability of the control system. After solving the
system of nonlinear equations and finding the roots, we substitute the real root into the
optimal control equation (4.8) derived earlier. The optimal control law can now be
written as:

z;(R—T)
Uu=——"—"—

T (4.14)

where

R = kyw? — [k, (ks + k,w?)], (4.15)

T = \/Ezz\/k2 [ [ky ey + ky0®)] — ksz]. (4.16)

Thus, by synthesizing the control law, the final expression for the optimal control is
successfully derived with input u, a function of the state variables zi, z2, and the
parameters ki, k2, w. This function represents the control strategy that minimizes the
cost function while maintaining system stability.
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4.2 Accelerating Optimal Control Model

The algorithm for determining the optimal acceleration control model is similar to the
previous model; however, the difference lies in the form of the integral optimality
criterion, which, in turn, leads to a completely different form of the optimal controller.
This criterion shows a relationship between the square of transition process time and the
square of the dynamic component of the driving force [150], [151]:

= fT [kztz + kg (F;W)Z] dt (4.17)
1
0

The criterion can be rewritten in the next form:

T
1= f[kzzzz + kyu?)dt (4.18)
0

The main Bellman’s functional equation written as:
j [k s+ k 2+65 +as( 2z)| =0 (4.19)
min |k,z u+—z,+—wW—wz)l =0, .
242 1 aZl 2 aZZ 1
The optimal control law is calculated as:

1 0ds

-9 4.20
Y= Tk, 0z, (4.20)

After substituting the expression for u back into the original Bellman equation (4.19)
the following equation is got:
rogz e 08 , 0S 1 <as)2 0 421)
—_— — a) — — — — = . .
2%2 0z, “ “ 0z, 4k?\0z,

To solve the partial differential equation (4.21) the Bellman function S can be
represented in a quadratic form, which is a standard approach for linear-quadratic
control problems. In this case, the equation for the Bellman function is next:

S = AIZ% + A22122 + Ang, (4.22)

To find the constants need to take partial derivatives of S concerning zzand z:

as
621 - 2A3Zl + A2Z21 (423)
as
a_ZZ = 2A122 + A2Z1, (4.24)

These expressions can now be substituted into equation (4.19) to determine the
values of the coefficients A1, Az, and As. The resulting system of equations will provide

the specific solution for the Bellman function, and thereby, the optimal control strategy
for the system.
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(4.25)

+ (ZA3 - - 2A1w2) z,Z, = 0.

1

The equation (4.25) will be true if the expressions in parentheses are equal to zero
since the variables z: and z2 cannot be zero. Therefore, the equation (4.25) can be
rewritten as a system of algebraic expressions:

Af
k2 - k_l + A2 = O,
AZ
2472 _ 4.26
A,w* + Ik, 0, ( )
A4,

2A3 - - ZAl(A)Z = 0.

1
This system of equations (4.26) typically results in two real solutions and two complex
ones. However, only one real solution is selected because, in this scenario, the system’s
motion is smooth, and the maximum control effort remains small. The real solution
ensures the physical feasibility and stability of the control system.
The optimal control law can now be written as:

2o\ky (ke — 40%ky) (4.27)

kl )

u=2w?z —

Thus, by synthesizing the control law, the final expression for the optimal control is
successfully derived with input u, a function of the state variables zi, z2, and the
parameters ki, k2, w. This function represents the control strategy that minimizes the
cost function while maintaining system stability.

4.3 Modelling Results

To conduct simulations of eliminating and accelerating optimal control systems, it is
necessary to recreate the optimal controller derived mathematically in the Simulink
environment. The input parameters for this controller include acceleration and braking
forces, and a vibration signal from the accelerometer is integrated into the controller to
simulate real operating conditions of the optimal control system.

Thus, Figure 4.2 shows a model of the optimal control system for the Cartesian robot,
designed to eliminate unwanted load (shown in Figure 4.1) oscillations caused by
mechanical damage to the gearbox.
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Figure 4.2. The optimal controller structural scheme for the Cartesian robot by eliminating modelling.

The optimal controller (gray blocks) shown in the diagram is designed to manage and
mitigate the undesirable load oscillations in a Cartesian robot, particularly under
conditions where mechanical damage may occur — damage that was illustrated by the
vibrational spectra in previous analyses. This controller is structured to provide real-time
feedback and adjustments to the robot’s movements, ensuring stability and precision
even in the presence of mechanical disturbances, such as the ones caused by over-tension
or heating faults.

The main part of this scheme is the state-space representation of the robot (blue
block), which models its dynamic behavior. The robot’s transfer function — the block
labeled with matrices A, B, C, and D — describes how the system responds to inputs and
how the outputs are generated based on its internal state. This forms the foundation of
the control system, as it encapsulates the essential characteristics of the robot’s
mechanical structure and dynamics.

The controller continuously monitors the difference between the desired and actual
states of the robot using feedback loops. These feedback mechanisms are crucial for
detecting deviations caused by external disturbances, such as those generated by
vibrational faults. The system takes this error signal and feeds it back into the control
algorithm to adjust the robot’s actions dynamically. The gain blocks, represented by the
components labeled ki and ka, play a critical role in scaling the control actions based on
the feedback. These gains are optimized to ensure that the corrections made by the
controller are proportional to the error magnitude while preventing excessive or
insufficient adjustments. Proper tuning of these gains is vital to minimizing oscillations
without introducing instability into the system. The controller includes mechanisms for
disturbance rejection, which are particularly important given the unpredictable nature
of mechanical damages, such as those associated with over-tension and heating faults.
The blocks that estimate disturbances assess external forces or vibrations acting on the
robot, allowing the controller to distinguish between expected behavior and abnormal
conditions that require corrective action.
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This optimal controller can be integrated into the Cartesian robot’s control system by
replacing or enhancing its existing motion control module. In a real-world setting, the
controller would be implemented using a digital signal processor or a programmable
logic controller capable of executing the real-time control algorithms required by the
dynamic programming approach. The system would continuously receive feedback from
position sensors, velocity sensors, and accelerometers, which measure the robot’s state
and detect any anomalies caused by mechanical issues. All controller parameters would
need to be carefully tuned during the commissioning phase to ensure optimal
performance under varying load conditions and disturbances.

The responses of the control system on the undesirable oscillations and elimination
of the dynamic load of the servomotor in conditions of mechanical damage are
presented in Figure 4.3.
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Figure 4.3. The control system’s response to asymmetric load oscillations (a) and dynamic load (b)
in conditions of mechanical damage in the robot's gearbox by eliminating modelling.

In the case of asymmetric load oscillations (a), the system’s reaction is characterized
by an initial overshoot, with the right side (z:1 right) peaking at approximately 0.13 p.u.
An overshoot of this magnitude indicates that the system’s control action is quite
aggressive initially, likely to quickly counterbalance the load imbalance. However,
excessive overshoot could lead to unnecessary stress on the robot’s components, so
careful tuning of this parameter is essential.

As time progresses, the oscillations gradually decay, and the system moves towards
stabilization. This is measured by the settling time, which in this case occurs 0.6 ms.
This relatively fast settling time demonstrates that the control system is effective at
damping the oscillations, reducing them to within a small margin around the steady-state
value. The system exhibits good damping characteristics, as the oscillations diminish
smoothly without escalating or persisting for too long, which would have indicated
instability or poor control. The response is underdamped, meaning that oscillations are
allowed initially but are progressively reduced, which is typically desirable for
maintaining both stability and responsiveness in dynamic systems.
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The oscillations in dynamic load are minimal, remaining close to zero throughout the
response. This indicates that the control system efficiently manages load variations,
maintaining the robot’s stability with minimal deviation from the desired state. Notably,
there is no significant overshoot or oscillation in this response, further demonstrating
the control system’s ability to smoothly adapt to changes in load without requiring
aggressive corrections.

The smoothness and stability of the dynamic load response (b) are key indicators of
the control system’s robustness under varying load conditions. The system reacts
promptly to these changes, with fluctuations settling almost immediately. The transient
process here is extremely short, with the response stabilizing in less than 0.3 ms, which
underscores the system'’s ability to provide rapid corrections and maintain control under
dynamic loads.

As the system stabilizes, both the right and left sides converge toward values near
zero, signifying a minimal steady-state error. This reflects the controller’s ability to
accurately bring the robot’s components back to their intended positions, effectively
compensating for the disturbances. The minimal steady-state error is monitored in both
cases, in the asymmetric oscillations and dynamic load reactions.

Figure 4.4 presents the model of the optimal control system for the Cartesian robot
during the accelerated transient process under conditions of undesirable oscillations
resulting from gearbox mechanical damage.

Based on an accelerating regulator, the control system is also founded on the optimal
control law derived using Bellman’s dynamic programming method. The structure of this
control system differs significantly from the previous one, with the main goal of this
regulator being to accelerate the transient process of damping oscillations and reducing
the dynamic load on the robot’s servomotor as quickly as possible without additional
oscillations. The main components of this system, as in the previous case, include the
block for converting the transfer function of the Cartesian robot into state space, and the
gains ki and ka2, which are responsible for the quality of the transient process.
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Figure 4.4. The optimal controller structural scheme for the Cartesian robot by accelerating modelling.
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Figure 4.5. The control system’s response to asymmetric load oscillations (a) and dynamic load (b)
in conditions of mechanical damage in the robot's gearbox by eliminating modelling.

In the case of accelerating modelling the control system reaction to asymmetric
oscillations (a) has also overshoot, but smaller than in eliminating modelling. The right
side peak (z1 right) reaches the amplitude of approximately 0.11 p.u., while the left side
(z1 left) lags slightly behind, peaking at a slightly lower value. This difference between the
right and left sides highlights an imbalance in how the system reacts to the disturbance,
which can be attributed to the nature of the mechanical damage.

The overshoot seen here reflects the control system’s initial aggressive response to
counteract the load imbalance and to restore equilibrium as quickly as possible. However,
a higher overshoot may also indicate increased stress on the robot’s mechanical
components, potentially leading to additional wear and tear over time. After this initial
peak, the oscillations begin to decay gradually, reflecting the system's damping
mechanism, which works to reduce vibrational energy over time.

The system stabilizes in 0.8 ms, indicating its settling time — the period within
which the oscillations have decreased to a minimal, steady-state level. The response
demonstrates an underdamped characteristic,c, where oscillations occur but are
controlled and gradually decrease without leading to instability.

In dynamic load response (b), the system displays a more controlled and less
oscillatory reaction compared to the asymmetric load case. The dynamic load fluctuations
are minimal and remain close to zero throughout the transient process, with no
significant oscillations or overshoot observed.

The system’s handling of dynamic load changes demonstrates smoothness and
stability compared to eliminating modelling, as the oscillations settle rapidly with no
major deviation from the steady-state value. The transient process in this case is 0.2 ms.
It’s less than the system stabilizing, underscoring the control system’s ability to manage
dynamic forces with minimal correction time. This level of performance suggests that the
system is well-tuned to address dynamic loads efficiently, ensuring the robot remains
stable and maintains operational precision even under varying external forces.
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The steady-state error appears minimal, as both sides eventually converge towards
zero, showing that the system effectively restores the robot to its intended operational
state after compensating for the disturbance.

4.4 Chapter Summary

The chapter presents a unique methodology for applying Bellman’s dynamic
programming to design optimal regulators that effectively eliminate undesirable
oscillations in robotic systems. By leveraging this approach, the response time of the
control system to disturbances caused by unwanted vibrations is significantly reduced,
and the mechanical system’s stability is enhanced.

The chapter synthesizes and simulates two types of regulators, derived based on
optimality equations for eliminating and accelerating modeling criteria. These regulators,
using vibration signals obtained from prior experiments, demonstrate their ability to
manage external disturbances effectively. Results confirm success in two critical areas:
eliminating undesirable oscillations and reducing the dynamic load on the robot’s
servomotor. The transient response characteristics validate the stability of the system
even under maximum disturbance, with rapid damping, absence of oscillatory behavior
after the transient phase, and no static error.

An optimal and unique solution was achieved, showcasing the integration of the
regulator into the robot’s control system by replacing the existing module. Real-time
feedback enables sensor signal tracking to adjust outputs dynamically. This approach
provides a robust foundation for enhancing the performance and reliability of robotic
systems under varying operational conditions.
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5 Fuzzy Logic Diagnosis and Control Algorithm

Creating a fuzzy logic algorithm for fault diagnosis and robot control in error-prone
conditions is based on analyzing vibration signal spectra in both normal and faulty states.
The development process includes several key stages, each crucial for ensuring the
accuracy and reliability of the system’s operation:

1. The first step is identifying the parameters for fault diagnosis and proper robot
control. Since fuzzy logic models human decision-making processes, key variables must
be identified during experiments and system characteristic studies. These variables
describe the parameters to be monitored (e.g., vibration amplitude and frequency) and
form the basis for further calculations.

2. Membership functions play a critical role in fuzzy logic as they define the
relationship between the input data (e.g., vibration signals) and the degree of their
belonging to certain categories that describe the system’s state (e.g., “movement speed”,
“presence of damage”). For each fuzzy variable, an appropriate membership function
must be selected. Choosing the right shape of these functions (e.g., triangular,
trapezoidal, Gaussian) allows for adequate modelling of the real system’s behavior.
These functions should accurately reflect the nature of the variable's changes related to
the robot’s condition.

3. A fuzzy rule base is created after defining the variables and membership functions.
These rules consist of logical “if-then” operators that connect the input data with output
decisions. For example, a rule might be: “If the vibration frequency exceeds a certain
threshold and the amplitude is within a critical range, then the robot is likely to have
suffered significant mechanical damage”. The rule base serves as the logical backbone of
the fuzzy logic algorithm and is used for fault diagnosis and adaptive control of the robot
in fault conditions.

Implementing of
fuzzy logic
\ algorithm /

Data collection Signal analysis Forming the fuzzy logic
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Figure 5.1. Overview of obtaining a fuzzy logic algorithm.
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Thus, the process of creating a fuzzy logic algorithm for robot control and condition
diagnosis consists of sequential stages: data collection, signal analysis, forming the fuzzy
rule system (Figure 5.1.), as well as testing and tuning the system to ensure proper
operation under real-world conditions. This approach allows effective robot management
and early fault diagnosis, improving reliability and resistance to mechanical damage.

Implementing the fuzzy logic algorithm into the existing robot control system is
carried out using the real input and output signals from the controller used in the control
system. Therefore, the general operation of the fuzzy logic algorithm can be represented
in the form shown in Figure 5.2.

Rules
database

Figure 5.2. The general operation of the fuzzy logic algorithm.

5.1 Selecting Fuzzy Membership Functions

During experimental work, it was determined that the following parameters were
accepted as input variables for the fuzzy logic: vibration frequency and amplitude,
over-tension frequency, heating vibration frequency, and fault amplitude. The output
variables of the fuzzy logic are the robot’s speed, torque, acceleration, and the fault type
degree. The scheme of the fuzzy logic algorithm processes is presented in Figure 5.3.

The presented diagram illustrates the integration of the robot control system under
mechanical damage and the damage diagnosis system. The vibration frequency and
amplitude parameters are directly used for the robot control system and influence the
output parameters of the robot’s drive speed, torque, and acceleration. The parameters
of frequency over-tension, frequency heating, and fault amplitude are used to determine
the presence of damage. Both control systems, based on the fuzzy logic algorithm, use
data obtained during experiments to identify the robot's reference and faulty operating
frequencies. The variables in the diagram are described by membership functions, with
each variable having its function shape that best reflects its behavior in real-time
operation.
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Figure 5.3. The scheme of the fuzzy logic algorithm processes. (previously published in article 1)

Membership functions are described the control system parameters are illustrated in
Figure 5.4.
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Figure 5.4. The control membership functions of input (a) and output (b) variables. (previously
published in article 1)

The vibration amplitude membership function includes three variables labeled as AL
(Amplitude Low), AM (Amplitude Medium), and AH (Amplitude High).

AL corresponds to low amplitudes, where vibrations have minimal effect on the
system’s components.

AM represents medium amplitude, which could indicate the maximum of nominal
robot vibration and the beginning of potential issues, such as minor misalignments or
early signs of wear.

AH covers high amplitudes, which usually signify severe mechanical damage or
over-stress conditions, such as those caused by over-tensioning or worm screw
transmission faults. The triangle shape in the AM zone reflects a smoother transition
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between low and high values, allowing for more sensitivity control when the amplitude
is in a mid-range. This ensures the control system does not react too aggressively when
the amplitude is neither low nor critically high, providing stability in response.

The vibration frequency membership function also has two variables: FL (Frequency
Low) and FH (Frequency High).

FL covers low-frequency vibrations, which correspond to nominal operational
conditions or vibrations caused by less critical disturbances, such as minor imbalances or
misalignments.

FH corresponds to high-frequency vibrations, which may indicate severe issues like
mechanical damage in the transmission system, as seen in the spectra of over-tension
and heating faults. The change between FL and FH is more abrupt, reflecting that
high-frequency vibrations tend to be more detrimental and require faster, more
immediate control action. This sharper boundary helps the system respond quickly to
prevent undesirable conditions.

The speed membership function has four variables: SLL (Speed Low Low), SL (Speed
Low), SM (Super Medium), and SH (Super High).

SLL and SL indicate slow speeds, where the system is operating in low-performance
conditions. In the event of mechanical damage (i.e., an increase in vibration amplitude and
frequency), the robot’s speed is reduced to a minimum to avoid serious consequences.

SM reflects a medium speed, where the system runs optimally under normal conditions.

SH covers higher speed ranges, suggesting that the system can increase performance
but at the risk of higher vibration and potential mechanical stress. Also, this variable
symbolizes stable robot workability without any faults.

Thanks to the overlapping nature of the functions and the Gaussian function shape,
the change occurs smoothly rather than abruptly.

The torque function is divided into four variables: TLL (Torque Low Low), TL (Torque
Low), TM (Torque Medium), and TH (Torque High).

TLL and TL are associated with lower torque values. As the speed increases,
the required torque decreases because less force is needed to maintain movement at
higher speeds in normal conditions.

TM represents the optimal torque range for regular operation.

TH reflects high torque, which could be necessary in cases of mechanical damage at
low speeds, the situation is different. The system must compensate by applying more
torque to ensure smooth transmission and prevent further damage. This increased force
helps overcome any additional resistance or friction caused by the fault, allowing the
robot to maintain its performance even under compromised conditions.

The overlap between TL and TM, as well as TM and TH, allows the control system to
apply precise adjustments to torque based on varying operational demands and vibration
data. The Gaussian function shape helps to change torque between different regimes
smoothly and decreases the vibration consequences.

The acceleration function has four key variables: Neg (Negative), ZeroNeg (Zero
Negative), ZeroPos (Zero Positive), and Pos (Positive).

Neg represents deceleration, which is required to mitigate vibrations and prevent the
system from further accelerating during critical conditions.

ZeroNeg and ZeroPos reflect states of minimal change, where the system remains in
a steady operational mode.

Pos refers to positive acceleration, indicating an increase in velocity when the system
is stable and can safely handle greater speeds.
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The symmetrical layout of this membership function ensures balanced control when
transitioning between increasing or decreasing accelerations. The trapezoidal forms of
the function help to hold the torque on the necessary level until incoming changes are
ended.

Membership functions are described the control system parameters are illustrated in
Figure 5.4.
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Figure 5.5. The diagnosis membership functions of input (a) and output (b) variables. (previously
published in article 1)

Over-tension frequency covers two distinct frequency zones (F200, F250), representing
levels of over-tension fault frequencies.

F200 and F250 correspond to over-tension frequencies (200 and 250 Hz), which may
indicate belt tension issues. The triangle form of this function shows that transmission is
not immediately damaging but requires attention.

Heating frequency covers four distinct frequency zones (F300, F350, F400, F450),
representing levels of heating fault frequencies.

The occurrence of any of these frequencies (300, 350, 400, 450 Hz) will signal the
onset of mechanical damage to the worm in the screw transmission, and attention
should be given to this situation before it becomes critical. In this case, the triangular
shape of the membership function is necessary for accurately tracking frequency peaks,
as well as nearby values, which are presumed to indicate the beginning of the worm’s
heating process.

The fault amplitude function represents vibration amplitudes, with two regions:
FAL (Fault amplitude low) and FAH (Fault amplitude high).

FAL corresponds to low-amplitude faults, where mechanical vibration levels are
minor and do not pose an immediate threat to the system.

FAH covers high-amplitude faults, which could indicate severe mechanical problems,
such as overloading, misalignments, or transmission defects. The sharp boundary between
these two functions ensures that the system reacts quickly to critical amplitude changes,
as they may indicate imminent mechanical failure.
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5.2 Creating Fuzzy Logic Rules Database

The rule base of the fuzzy logic algorithm is founded on the ‘if...then’ principle, allowing
for the selection of the best control method for the mechanism under different
conditions. This same principle is applied in damage diagnosis, simplifying the process of
defining conditions for the system.

The rules for the fuzzy logic algorithm are based not only on the chosen variables and
their membership functions but also on the observation of the behavior of the controlled
system. This means that the rules are developed during the experimental stage of
collecting vibration data. Through these observations, it was determined that a reduction
in vibration amplitude is directly proportional to a decrease in speed and inversely
proportional to an increase in torque. Likewise, the robot's acceleration also affects the
vibration amplitude.

In the context of diagnosing mechanical damage, the fuzzy logic rules are based on
analyzing the spectra of vibration signals. By monitoring these spectral characteristics,
the system can detect deviations that signal potential mechanical damage, allowing
preventive actions to be taken before a critical failure occurs. This diagnostic capability
enables the fuzzy logic system to respond in real-time, adjusting control parameters to
mitigate the effects of emerging damage, such as reducing speed to lower vibration levels
or increasing torque to compensate for mechanical stress. Thus, the algorithm enhances
both operational safety and the longevity of the robot’s components by providing a
proactive approach to damage management.

The fuzzy logic rules for controlling Cartesian robot under gearbox mechanical
damages and diagnosis of them are presented in Table 5.1.

Table 5.1. Rules of fuzzy logic algorithm.

Number IF THEN
1 Vibration frequency is FH AND Frequency Fault type degree is
over-tension is F200 Overtension
5 Vibration frequency is FH AND Frequency Fault type degree is
over-tension is F250 Overtension
Vibration frequency is FH AND Frequency Fault type degree is
3 L .
heating is F300 Heating
Vibration frequency is FH AND Frequency Fault type degree is
4 L .
heating is F350 Heating
5 Vibration frequency is FH AND Frequency Fault type degree is
heating is F400 Heating
Vibration frequency is FH AND Frequency Fault type degree is
6 . .
heating is F450 Heating
Vibration frequency is FL AND Frequency .
Fault t d
7 over-tension is NOT F200 AND Frequency Naourm;pe cgreels
heating is NOT F300
Vibration frequency is FL AND Frequency .
8 over-tension is NOT F250 AND Frequency Li)urlr;zpe degree is
heating is NOT F350
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Table 5.1. Rules of fuzzy logic algorithm. (continued)

Vibration frequency is FL AND Frequency

Fault type degree is

frequency is FH

9 heating is NOT F400 Normal
10 Vibration frequency is FL AND Frequency Fault type degree is
heating is NOT F450 Normal
Vibration frequency is FL AND Fault Fault type degree is
11 . .
amplitude FAH Overtension
12 Vibration frequency is FL AND Fault Fault type degree is
amplitude FAH Heating
Vibration frequency is FH AND Fault Fault type degree is
13 . .
amplitude FAL Overtension
Vibration frequency is FH AND Fault Fault type degree is
14 . .
amplitude FAL Heating
Vibration amplitude is AL AND Vibration Speed IS. SH
15 frequency is FL Torque is TLL
9 Y Acceleration is Positive
Vibration amplitude is AM AND Vibration Speed |s' SH
16 frequency is FL Torque is TLL
q ¥ Acceleration is ZeroPos
. . . . . . Speed is SL
Vibration amplitude is AH AND Vibration .
17 frequency is FL Torque is TL
q y Acceleration is Neg
Vibration amplitude is AL AND Vibration Speed IS. M
18 frequency is FH Torqueiis TH
9 Y Acceleration is Positive
Vibration amplitude is AM AND Vibration Speed |s' M
19 frequency is FH Torqueis TH
q y Acceleration is ZeroNeg
. . . . . . Speed is SLL
20 Vibration amplitude is AH AND Vibration Torque is TM

Acceleration is ZeroPos

5.3 Output of Diagnosis and Control Patterns

As aresult of the simulation, behavior patterns of the robot’s control parameters (speed,
torque, and acceleration), as well as the degree of diagnosis of mechanical damage, were
obtained. The results of the control system simulation based on the fuzzy logic algorithm

are presented in Figure 5.6.
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Figure 5.6. Results of modelling fuzzy logic algorithm for control parameters speed (a), torque (b),
and acceleration (c). (previously published in article I1)

Figure 5.6 (a) presents the simulation pattern of the dependence of vibration
amplitude and frequency on the robot’s movement speed. The robot’s speed increases
significantly with a decrease in amplitude, reaching a limit in the range between 0.1 and
0.4g. As the vibration frequency rises, the speed drops to an average value at the same
vibration amplitude levels. The movement speed decreases substantially when higher
amplitudes and frequencies are reached, where mechanical damage in the robot’s
transmission is detected. The fuzzy logic algorithm responds to the increase in vibration
levels by reducing the speed to compensate for the added stress and maintain the robot’s
movement stability. This highlights the system’s adaptation to mechanical damage in the
transmission.

Figure 5.6 (b) shows the simulation of torque. The relationship between torque and
vibration amplitude and frequency is inverse to that of speed. As the speed increases,
the torque decreases, but when mechanical damage occurs, particularly at higher
frequencies and amplitudes, the torque rises to maintain proper operation. Torque
increases when the amplitude exceeds 0.4g, ensuring that sufficient force is applied to
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the transmission to prevent further mechanical stress in the system. The higher torque
values for greater vibration amplitudes and frequencies are due to the system adjusting
to meet the increased demand for force caused by potential faults.

Figure 5.6 (c) describes the simulation of acceleration depending on the vibration
amplitude and frequency. The fuzzy logic algorithm allows necessary adjustments during
the occurrence of mechanical damage. At higher vibration levels, the acceleration
decreases, which correlates with the need to adjust the robot’s movements to mitigate
the impact of mechanical damage. The fuzzy logic system increases acceleration at lower
vibration amplitudes, ensuring that the robot responds quickly to disturbances and
reduces the likelihood of malfunctions. The change in acceleration following this pattern
reflects the system’s adaptability to the impact of mechanical damage, allowing for a
faster response to faults.

The fuzzy logic algorithm effectively adjusts the robot’s control parameters in
response to mechanical failures based on the degree of vibration amplitude and
frequency. It reduces speed to compensate for mechanical damage, increases torque to
ensure sufficient force is applied and regulates acceleration to maintain a quick response
to vibration disruptions. These results indicate a reliable control system capable of
maintaining performance despite faults, enhancing the robot’s reliability and stability in
dynamic operating conditions.

The results of the diagnosis system simulation based on the fuzzy logic algorithm are
presented in Figure 5.7.
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Figure 5.7. Results of modelling fuzzy logic algorithm for fault type degree: over-tension (a) and
heating (b).

Figure 5.7 (a) shows the relationship between the severity of belt over-tension failure
in the robot’s tooth belt transmission and the frequency, determined during the analysis
of vibration signals, as well as the amplitude of vibrations. The system detects the
presence of damage across the entire amplitude range when frequencies caused by
over-tension occur. The model suggests that at higher vibration amplitudes, especially
in the range of 0.4g and above, the system quickly identifies the severity of the fault,
indicating a higher degree of failure. The failure severity decreases for lower amplitudes
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or frequencies, which suggests that the system is highly sensitive to increased fault levels
under these conditions. The degree of the over-tension fault is set to —1 (indicating 100%
detection of the failure in the transmission). This degree is determined using a membership
function.

Figure 5.7 (b) displays the appearing degree of worm heating failure in screw
transmission. This pattern shows a similar trend to the previous one. The failure severity
sharply increases with higher vibration amplitudes (above 0.4g) and remains relatively
constant in the presence of heating frequencies. This indicates that, as in the previous
graph, the system’s diagnostic sensitivity to vibration amplitude is high, allowing it to
distinguish between different failure levels based on vibration frequency. In this case,
the maximum degree of damage is 1 (indicating 100% detection of the fault in the
transmission), and it is artificially set using a membership function, just like in the first
case.

Both graphs demonstrate the diagnostic system’s ability to identify faults based on
vibration characteristics, focusing on amplitude and frequency. The fault severity increases
significantly at high amplitudes, while frequency serves as an identifier. This highlights
the system’s effectiveness in detecting failures in the gearbox or mechanical components
by analyzing vibration signatures, allowing it to respond appropriately to mechanical
damage and ensure optimal performance under fault conditions.

5.4 Comparison and Combination of Both Algorithms

Since both methods are effective for achieving the set goals, a comparative analysis of
both methods is warranted. Both optimal control and the fuzzy logic algorithm have their
advantages and disadvantages, which should be considered when choosing a method.

Optimal control uses a mathematical model of the system to optimize performance
and minimize undesirable oscillations and vibrations. This method ensures smooth and
stable control by minimizing a cost function, and maintaining stability even in the
presence of mechanical damage. Moreover, both proposed approaches for optimal
control aim to address different consequences. The eliminating method focuses on
reducing load oscillations, while the accelerating method is aimed at shortening
regulation time and dynamic load, allowing for flexible control depending on the
situation. It is important to note that this method requires an accurate mathematical
model, which makes it sensitive to errors and noise. Additionally, implementing optimal
control requires significant computational resources due to the iterative nature of the
method.

Fuzzy logic, on the other hand, adapts to changing conditions and disturbances
without needing an exact mathematical model, making this algorithm more flexible in
uncertain environments. The presented method diagnoses faults and adjusts parameters
based on vibration signal analysis, ensuring reliable operation in unpredictable
conditions. Fuzzy logic is also easier to integrate into existing equipment due to its
rule-based approach. However, the accuracy of control depends on the completeness
and quality of the rule base and membership functions, and extensive experimental data
is required to fine-tune these rules for effective use.

Thus, both methods have their strengths and weaknesses. The choice between them
depends on the requirements for model accuracy, computational resources, and the
specific application of the control system.

Combining these methods is proposed with fuzzy logic as the primary level for
real-time diagnosis and control. The optimal control algorithm would be used only in
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cases requiring high precision and fast response and recovery from disturbances.
Additionally, optimal control can be used for calculating adjustments for future impacts,
thus predicting the behavior of the controlled system. In the case of damage, fuzzy logic
would serve as the diagnostic tool, while optimal control would focus on compensating
for the damage and optimizing performance.

5.5 Chapter Summary

This chapter proposes a new method for diagnosing mechanical damage in a robot’s
gearbox and controlling the mechanism under the influence of such damage. The method
is based on a fuzzy logic algorithm and data from vibration signal analysis. Mechanical
damage induces undesirable oscillations with specific amplitudes and frequencies, and
this information was used to develop an algorithm for diagnosing these faults and
controlling the robot under such conditions. As simulations demonstrate, the algorithm
successfully achieves the set goals and shows a high degree of efficiency in assessing the
damage. Furthermore, the control system, based on fuzzy logic, adjusts the robot’s
control parameters to the desired outcome, thereby minimizing the consequences of
mechanical damage. The presented results are promising, and the control and diagnostic
system can be successfully achieved using the proposed method. However, it is
important to note that this algorithm requires testing with various complex combinations
of faults to adjust the fuzzy rule base and improve the results respectively.
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6 Conclusion and Future Work

This chapter concludes the results of the research based on the objectives. Besides,
the future work is introduced to improve and continue the current research.

6.1 Conclusion

The main objectives of this research are threefold. The first is to develop a data collection
system for assessing damage conditions in robotic systems. The second is to create an
optimal control algorithm to suppress unwanted oscillations of the transported load
caused by mechanical damage. The third, and most crucial, is to develop an algorithm for
diagnosing and monitoring the robot’s condition to ensure smooth operation and
prevent mechanical damage.

The primary focus of the data collection system is the accuracy of the collected data,
free from excessive noise and deviations. This was achieved through the proper
placement of sensors on the experimental setup, accounting for potential noise.
Experiments on data collection and analysis demonstrated that the use of spectral
analysis, specifically the Fast Fourier Transform method, allows for the detection of
damage at early stages. The resulting vibration spectra showed changes in the frequency
characteristics of the robot’s gearbox in both reference and damaged states. The analysis
identified frequencies associated with two types of damage, namely, over-tension in the
tooth belt transmission and worm heating in the screw transmission. This opens up
opportunities for further research in predictive maintenance and the development of
diagnostic and control algorithms. This will help reduce equipment downtime and
increase the overall productivity of robotic systems.

The second part of the thesis focuses on the application of optimal control methods,
particularly Bellman dynamic programming, to address the issue of eliminating
unwanted oscillations. Using this method allows for the creation of an optimal control
system to minimize costs and make the system adaptive and resistant to disturbances.
A key feature of this strategy is the use of an accurate mathematical model of the robot
in state space. This allows for the consideration of important physical parameters and
provides predictions based on real dynamic characteristics. The robot’s movement axis
is modeled as a two-mass system, enabling adequate assessment of oscillation processes
occurring due to mechanical damage.

The use of real data from accelerometers allows for highly accurate assessments of
the model’s state. The feedback and error control mechanisms in the model facilitate the
prompt detection of deviations and corresponding adjustments in the robot’s motion
control. Analysis of the model’s response to asymmetric oscillations shows a significant
level of overshoot, indicating the system’s aggressive response to external disturbances.
The absence of oscillations in the transient process indicates good system stability.
The quick settling time demonstrates the control system’s high efficiency under
dynamically changing load conditions. The proposed optimal control strategies will
significantly improve the robot’s positioning and reduce dynamic loads on the drives,
which in turn will lower the likelihood of system failures in the event of mechanical
damage.

The final important part of this thesis is the development of a fuzzy logic algorithm
for fault diagnosis and robot control in conditions of increased likelihood of mechanical
damage, based on the analysis of vibration signal spectra. The process of creating the
algorithm consists of several stages.
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First, linguistic variables are defined, which describe certain system parameters (e.g.,
vibration amplitude and frequency). These variables form the basis for further algorithm
development. Second, the membership functions of the linguistic variables are
constructed, allowing for the consideration of input parameters according to various
criteria, such as vibration levels, frequencies of over-tension, or heating errors. Clear
boundaries of these functions ensure the system’s rapid response to critical changes.
Third, fuzzy logic rules are established, playing a central role in robot control and
diagnostics. These rules are formed based on experimental data obtained from observing
the system’s behavior. They allow the system to account for the relationship between
changes in vibration frequency, amplitude, and the robot’s parameters, such as speed,
torque, and acceleration, and are used to develop a damage diagnosis algorithm.

Simulation modelling has shown that the fuzzy logic algorithm is capable of effectively
responding to changes in vibration characteristics by adjusting the robot’s control
parameters. For example, when high-amplitude and high-frequency vibrations occur, the
system reduces the robot’s speed and increases torque to compensate for the additional
load on the mechanical components. The system also adjusts the robot’s acceleration to
prevent further vibration growth and stabilize operation under damaged conditions.

The diagnostic system, based on fuzzy logic, allows real-time monitoring of vibration
spectral characteristics and timely detection of deviations that signal possible mechanical
damage. The algorithm responds to such damage by adjusting control parameters,
which helps prevent critical failures and extends the lifespan of the robot’s components.
Vibration signals are used to determine the presence of damage, such as worm screw
transmission overheating or belt tension issues, allowing the system to respond before
the damage becomes critical.

Thus, the proposed fuzzy logic algorithm not only improves the reliability of the robot
control system but also ensures early fault diagnosis. This contributes to increased
system resilience to mechanical damage, extends the lifespan of its components, and
minimizes the risk of failures.

6.2 Future Work

The proposed control systems can be validated through laboratory tests on a real
object, as well as experiments involving the introduction of additional faults or their
combinations. This will help assess the flexibility and accuracy of the proposed models,
improve their performance, and identify potential limitations of the algorithms.

For optimal control systems, testing should be conducted under various operating
conditions of the robot, including variable loads and increased positioning demands. This
will help identify weak points in the model’s behavior and improve the optimal control
strategy.

The fuzzy logic-based control algorithm also requires additional experiments with
various vibration signals to ensure its robustness against larger disturbances. Introducing
other faults will expand the database of linguistic variables and fuzzy rules, potentially
increasing the accuracy of fault detection with a greater number of diagnostic criteria.
Additionally, integrating the fuzzy logic algorithm with machine learning systems should
be considered to enhance the system’s ability to detect faults at earlier stages.

Thus, future research will focus on expanding diagnostic capabilities and improving
the robustness of mechanisms against mechanical damage, which will ultimately
significantly increase the reliability and efficiency of robotic systems in industrial
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environments. Combining both methods is proposed with fuzzy logic as the primary level
for real-time diagnosis and control. The optimal control algorithm would be used only in
cases requiring high precision and fast response and recovery from disturbances.
Additionally, optimal control can be used for calculating adjustments for future impacts,
thus predicting the behavior of the controlled system. In the case of damage, fuzzy logic
would serve as the diagnostic tool, while optimal control would focus on compensating
for the damage and optimizing performance.
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Abstract

Fault Tolerant Control and Diagnosis Strategies for Cartesian
Industrial Robot Motion Control Planning System

The main objective of this research is to develop a multi-level approach to enhancing the
reliability and efficiency of unconventional machines and applications, including robotic
systems. The basis for developing this approach is mechanical damage in the
transmissions of robotic systems and unstable operating loads characteristic of industrial
environments. The primary goals are to improve control, diagnostics, and failure
prediction to minimize downtime, increase productivity, and prevent critical system
failures. These tasks are becoming increasingly relevant due to the growing use of robotic
systems across various industries.

The research sets out three key objectives. The first involves developing a data
collection system to monitor the mechanical condition of the robot, particularly when
mechanical damage occurs or there is a risk of it. To achieve this, an experimental lab
setup with sensors was developed to collect data on the robot’s vibrations and
oscillations during its operations. Using spectral analysis, specifically Fast Fourier
Transform, it was possible to identify mechanical issues such as belt over-tension in a
tooth belt transmission and worm heating in the screw transmission. The results of
vibration signal analysis indicate significant differences in the frequency spectra of the
robot in its reference condition versus when damage is present. This, in turn, allows for
early identification of damage and prevention of further degradation. This approach
provides the foundation for predictive maintenance and minimizes maintenance costs.

The second objective of the research is to develop an optimal control system capable
of suppressing unwanted load oscillations caused by mechanical damage to the gearbox.
To achieve this, Bellman dynamic programming is applied, allowing for the creation of an
adaptive control system that minimizes time costs and enhances the system’s robustness
against stochastic disturbances. A two-mass system model of the robot was adopted to
evaluate the oscillatory processes with sufficient accuracy and optimize the control
system to minimize oscillations. As shown through modelling, the proposed
strategy demonstrates high accuracy and stability under disturbances. This approach
reduces the dynamic load on the robot’s drives, which mitigates the impact of
mechanical damage on the overall structure, thereby extending the system’s operational
life.

The final part of the study focuses on the development of a fault detection and control
algorithm for the robot in the presence of damage, based on fuzzy logic. The fuzzy logic
algorithm is designed to process vibration signal analysis and make control decisions.
To ensure the algorithm’s accuracy, appropriate linguistic variables and their membership
functions were selected, along with a base of fuzzy rules. These components were chosen
based on experimental data from vibration collection. The fuzzy logic algorithm links
changes in vibration characteristics with the condition of the robot’s transmissions,
enabling control under mechanical damage conditions without severe consequences.
Simultaneously, real-time gearbox diagnostics are conducted to assess the state of the
mechanical system. Modelling results show that the system responds effectively to
changes in vibrations by adjusting the robot's parameters to stabilize its operation and
prevent further structural damage. This approach allows the robotic system to adapt to
changes, maintaining operability even under conditions of mechanical failure.
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The research results demonstrate the significant potential of the proposed solutions
for improving the performance and reliability of robotic systems in real-world industrial
processes. It is expected that the proposed control and diagnostic algorithms will not
only allow timely responses to mechanical damage but also prevent such issues, reducing
the likelihood of critical failures and extending equipment life. Thus, this research
represents an important step forward in the field of control and diagnostics for robotic
systems operating under the increased probability of mechanical damage. The proposed
methods and algorithms provide substantial improvements in both control accuracy and
fault diagnosis, ultimately contributing to enhanced overall reliability and efficiency of
robotic systems in industrial environments.
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Lihikokkuvote

Torketaluvusega juhtimis- ja diagnostikastrateegiad
toostusliku karteesianroboti liikumise planeerimise
juhtimissiisteemi jaoks

Selle uurimist66 peamine eesmark on vilja to6tada mitmetasandiline ldhenemine, et
suurendada ebatraditsiooniliste masinate ja rakenduste, sealhulgas robotisiisteemide,
tookindlust ja tohusust. Selle aluseks on robotisisteemide lilekannete mehaanilised
kahjustused ja ebastabiilsed tookoormused, mis on iseloomulikud t66stuskeskkondadele.
Peamised eesmargid on tdiustada juhtimist, diagnostikat ja rikete prognoosimist, et
minimeerida seisakuid, suurendada tootlikkust ja ennetada kriitilisi stisteemirikkeid.
Need (lesanded muutuvad (ha olulisemaks seoses robotislisteemide kasvava
kasutamisega erinevates toostusharudes.

Uuringus seatakse kolm pd&hieesmarki. Esimene eesmark on vidlja t6otada
andmekogumissisteem roboti mehaanilise seisundi jalgimiseks, eriti kui esineb
mehaanilisi kahjustusi v6i on nende oht. Selle saavutamiseks to6otati valja
eksperimentaalne laboriseade koos anduritega, et koguda andmeid roboti vibratsioonide
ja vonkumiste kohta tooprotsessi kdigus. Spektraalanaliitsi, tapsemalt kiire Fourier’
teisenduse abil, tuvastati mehaanilisi probleeme, nagu rihmiilekande liigpinge ja
kruvitlekande kuumenemine. Vibratsioonisignaali analtisi tulemused naitasid olulisi
erinevusi roboti sagedusspektrites kahjustuste korral ning normaaltalitluse puhul. See
vOimaldab kahjustusi varakult tuvastada ja rikke edasist stivenemist ennetada. Selline
Idhenemine loob aluse ennustavale hooldusele ning vahendab hoolduskulusid.

Uuringu teine eesmark on vidlja té6tada optimaalne juhtimissisteem, mis suudab
summutada soovimatud koormusvonkumised, mis on pd&hjustatud kdigukasti
mehaanilistest kahjustustest. Selle saavutamiseks rakendatakse Bellmani diinaamilist
programmeerimist, mis v&imaldab luua adaptiivse juhtimissiisteemi, omakorda
minimeerides ajakulu ja suurendades slisteemi vastupidavust stohhastilistele hairetele.
Roboti kahe massi sisteemi mudelit kasutati vonkeprotsesside tapseks hindamiseks ning
juhtimissiisteemi  optimeerimiseks, et vadhendada vonkumisi. Modelleerimise
tulemusena naitas pakutud strateegia hadirete korral suurt tdpsust ja stabiilsust. See
Idhenemine vahendab roboti ajamitele mdjuvaid diinaamilisi koormusi, leevendades
mehaaniliste kahjustuste mdju kogu struktuurile ja pikendades susteemi todiga.

Uuringu viimane osa keskendub torgete korral to6tava roboti rikete tuvastamise ja
juhtimise algoritmi véljatootamisele, kasutades hagusloogikat. Hagusloogika algoritm on
loodud tootlema vibratsioonisignaali analllsi ja tegema juhtimisotsuseid. Algoritmi
tapsuse tagamiseks valiti sobivad muutujad ja nende kuuluvusfunktsioonid ning
hagusreeglite baas. Need komponendid valiti vibratsioonide kogumise eksperimentaalsete
andmete pdhjal. Hagusloogika algoritm seob vibratsioonitunnuste muutused roboti
lilekannete seisundiga, voimaldades juhtimist mehaaniliste kahjustuste korral ilma
tOsiste tagajargedeta. Samal ajal viiakse labi kdigukasti reaalajas diagnostika mehaanilise
siisteemi seisundi hindamiseks. Modelleerimise tulemused néitavad, et slisteem
reageerib vibratsioonide muutustele tdhusalt, kohandades roboti parameetreid
tooprotsessi stabiliseerimiseks ja edasiste kahjustuste ennetamiseks. Selline lahenemine
voimaldab robotisiisteemil kohaneda muutustega, sdilitades to6vGime isegi mehaaniliste
rikete tingimustes.
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Uuringu tulemused naitavad pakutud lahenduste markimisvdarset potentsiaali
robotistiisteemide joudluse ja tookindluse parandamisel reaalses toostusprotsessis.
Eeldatakse, et valjapakutud juhtimis- ja diagnostikaalgoritmid véimaldavad mitte ainult
Oigeaegset reageerimist mehaanilistele kahjustustele, vaid ka nende ennetamist,
vahendades kriitiliste rikete tdendosust ja pikendades seadmete eluiga. Seega tdhistab
see uuring olulist sammu edasi robotisiisteemide juhtimise ja diagnostika valdkonnas,
kus suureneb mehaaniliste kahjustuste tdendosus. Pakutud meetodid ja algoritmid
tagavad olulise taiustuse nii juhtimistapsuses kui ka rikete diagnoosimises, aidates I0puks
kaasa robotisiisteemide tookindluse ja efektiivsuse parandamisele to0stuskeskkonnas.
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Abstract: Servomotors have found widespread application in many areas, such as manufacturing,
robotics, automation, and others. Thus, the control of servomotors is divided into various principles
and methods, leading to a high diversity of control systems. This article provides an overview of
types of servomotors and their basic principles and control methods. Principles such as digital signal
processing, feedback control principle, field-oriented control, and integration with Industry 4.0 are
discussed. Based on these control principles, the article presents popular control methods: PWM
control, current control, two-loop control, fuzzy-logic control, and programmable control. The article
concludes with a comparison of the presented methods on several criteria, and as an example, it
includes the results of modeling a servomotor using the fuzzy-logic control method.

Keywords: current control; machine vector control; fuzzy control; programmable control; pulse-width

modulation; servomotors; two-term control

1. Introduction

Modern production cannot do without electric motors, which are used in various fields.
Various types of electric motors are employed for diverse purposes, allowing for increased
productivity, energy efficiency, and cost-effectiveness in any manufacturing process [1-4].
Thanks to motors, the possibilities of production are constantly expanding, enabling the use
of more complex and advanced mechanisms, and creating new development opportunities.
One way of advancing production is the use of robotic systems, where servomotors are
directly employed [5-7].

Servomotors in robots are used to enhance the precision or smoothness of a mecha-
nism’s operation, depending on the task it performs. Therefore, the control of drives must
have a similar nature, enabling the achievement of the required goals. However, the more
complex the drive control method, the more intricate the control system will be, leading to
additional costs but at the same time enhancing production characteristics [7-10].

The control of servomotors has not only changed in recent years but continues to
evolve, revolutionizing various industries, particularly robotics and automation. Initially,
these motors were controlled using analog methods, but with the advancement of digital
technologies, control has become more precise and versatile [11-14].

Various technologies for servomotor control are currently employed, including digital
signal processing systems, feedback systems, field-oriented control, and control systems
integrated with Industry 4.0. All these types of servomotor control are used to achieve
different results, each having its own merits and drawbacks, which are discussed in these
works [15-21].

This work is a general overview of the topic of servomotors, their devices and prin-
ciples of operation, popular methods of control, and ways to expand existing and new
control systems. It is worth noting that motor control is constantly evolving, allowing
for the exploration of new control methods, such as the transition from analog to digital
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systems, from open-loop systems to feedback systems, and so on. The development of
control systems enables the improvement of the efficiency, precision, and adaptability of
motors in various industries, leading to the conclusion that new technologies will have
more complex yet integrable solutions.

The second chapter of this article provides a description of the structure and oper-
ating principles of servomotors and discusses the main objectives of their use. The third
and fourth chapters introduce the control principles mentioned above and outline some
methods of controlling servomotors that are suitable for a specific type of control. The fifth
chapter is a comparison of the presented types of control. The chapter does not provide
experimental data but rather offers a comparative characterization based on previously
conducted research.

2. Servomotors: Structure, Operating Method, Types, Main Characteristics
2.1. Structure and Operating Method

A servomotor is a type of electromotor, the shaft of which can be controlled with high
accuracy. A shaft of a servomotor can rotate at the required angle or with constant rotational
speed. Servomotors have become widespread in robotics for these properties [22,23].

A servomotor consists of a DTC motor, gearbox with shaft, and controller with neces-
sary sensors (encoder, position sensor, etc.). A draft of the construction of a servomotor is
presented in Figure 1.

Gearbox Control plate

Output shaft

Figure 1. The draft of the servomotor.

The gearbox in servomotors is used to reduce speed and increase torque on the output
shaft. A potentiometer or encoder is used to track the rotation angle or speed of the shaft,
thus creating a closed-loop control system with feedback [23-25].

A popular method of controlling a servomotor is pulse-width modulation (PWM).
This method is based on determining the angle of rotation or speed of the output shaft
based on the pulse length at a given frequency. The use of PWM for controlling servomotors
is based on the following principles [26-28]:

1. PWM generates pulses of varying width (duration) with different periods.

T
D= —" 100, 1)
Tperiod

where D—pulse duration, Ton—the ON time of the signal, and Tperoq—the total
period of one PWM cycle.
1

f= ,
Tperiod

@

where f—PWM frequency.
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2. To control the speed of the servomotor, the width of the pulses is changed, allowing
the regulation of the power supplied to the motor.

PW = D(Pwmax - PWmin) + PWminr (3)

where PW—pulse width and PWax and PW,j,—the maximum and minimum pulse
width supported by the servomotor.

3. Control of the position of the servomotor is possible using feedback. To adjust the
position, the voltage applied to the motor, after the PWM signal is converted, is
compared to the desired voltage, resulting in a control signal.

x = D(O‘max - (Xmin) + Xmins (4)

where x—angular position of the servomotor and otmax and &min—the maximum and
minimum angles of the servomotor.

4. PWM is also used to regulate a smooth trajectory of movement from one point to
another for the servomotor.

5. Inaddition to PWM, PID controllers and microcontrollers are applied to enhance the
efficiency of regulation and control.

This method has gained popularity due to its simplicity of implementation and low
cost. PWM also provides high efficiency in speed and positioning control, making it
applicable in applications requiring a high response to control input and precise control.
Examples of such applications may include non-dynamic systems such as fans, pumps,
or conveyors [29,30]. However, to achieve the best results, other principles of controlling
servomotors are applied, which will be discussed below.

2.2. Servomotor Types

Currently, servomotors are divided into several types based on six different criteria:
the type of motor used, the type of current, the type of construction, the function performed,
the signal processing method, and the type of gearbox.

Based on the type of motor used and the type of current, servomotors are classified
as synchronous or asynchronous, and using alternating or direct current, respectively.
Considering that asynchronous motors are more powerful, this type of servomotor is
produced only for alternating current. Synchronous motors have lower power but provide
greater accuracy; in conjunction with direct current, they allow for achieving smaller motor
dimensions and using this type of servomotor for autonomous mechanisms [31-35].

In terms of construction, servomotors are divided into brush motors, coreless motors,
and brushless motors. Unlike brush motors, brushless models have a wider range of
rotation speeds, allowing them to be used in processes requiring high-speed movement.
However, controlling a brushless motor requires the presence of a PLC, regardless of the
tasks it performs [33,36-38].

According to the function performed, servomotors are divided into two groups: main-
taining a specified rotation angle or rotational speed. Based on the names, the first group of
servomotors is used to bring mechanisms to the required position, such as locks, dampers,
cranes, etc. The second group of servomotors is used to move objects in the working area
and is employed in manipulators, various CNC machines, etc. Depending on the function
performed, the main control parameter in the servomotor will differ: the motor’s rotation
range or moment of inertia for the first or second group of motors, respectively [15,17,39-42].

In terms of signal processing, servomotors are divided into analog and digital motors.
The main difference between these groups is the control principle. Analog motors use
microchips, while digital ones use microprocessors. Due to technological advancements,
digital servomotors have replaced analog ones due to their increased response speed to the
control signal. Consequently, these servomotors have increased positioning accuracy and
the ability to maintain a constant torque [43-46].
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For example, in Figure 2, a servomotor used in a Hirata Cartesian robot (Hirata
Corporation, Kumamoto, Japan) is depicted. It is a synchronous alternating current motor
with the function of maintaining a constant rotational speed, as it is used to move the robot
axis along the working area [47,48].

Figure 2. The servomotor used in a Hirata Cartesian robot.

Motors with the function of maintaining a constant rotational speed are also used in
laboratory setups of a digital twin of a wind generator [49], as well as in diagnosing damage
to bearings [50,51] depicted in Figure 3a,b. Motor control is carried out using a frequency
converter, allowing the selection of an appropriate motor control mode, adjustment of
controller settings for different operating conditions, calibration of control to eliminate
malfunctions, and more.

(b)

Figure 3. Using servomotors in various test benches: (a) as the digital twin of a wind generator; (b) in
diagnosis of bearing faults.

For example, in bearing fault diagnosis setup, discrete motor control is used to main-
tain a constant rotational speed. The use of a potentiometer to set an analog speed signal is
not appropriate because there is a high probability of additional disturbances that would
affect the rotational speed of the output shaft. For the digital twin setup of a wind generator,
modeling methods are used, since, to maintain a constant rotational speed, the input speed
signal is converted from a database stored in the cloud.

2.3. Servomotor Characteristics

The main technical characteristics of servomotors are as follows [18,52-57]:
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Torque (shaft force).

Operating voltage.

Rotational speed.

Maximum rotational angle.

Dimensions and weight.

The torque indicates the rate of acceleration of the output shaft and its ability to

overcome the resistance to the rotation of the load. The ability to realize the full

potential of the servomotor is directly proportional to the torque.

e The rotation speed of the servomotor indicates the time it takes for the output shaft to
turn by 60°. For example, a rotation speed of 0.07 s means that the servomotor shaft
will turn by 60° in 0.07 s. The working voltage of the servomotor power supply affects
both the rotation speed and the torque.

e  The maximum rotation angle indicates the angle to which the output shaft of the
servomotor can turn. In modern production, servomotors with continuous rotation
are used, meaning that the maximum rotation angle is 360°. However, in some
mechanisms, motors with smaller rotation angles, such as 120°, 180°, 270°, etc.,
are used.

e  The dimensions of the servomotor affect the choice of the motor used to produce the
mechanical structures in which they will be installed. This parameter is important for
devices where speed, lightness, and compactness are crucial, such as drone models.

e Of the technical characteristics mentioned above, only three directly influence the

control of servomotors: torque, rotation speed, and rotation angle. Depending on the

selected control mode, the control parameter of the servomotor will differ.

e o6 o o o o

For example, the main technical characteristics of the servomotor mentioned above
are presented in Table 1.

Table 1. The main technical characteristics of the Hirata Cartesian robot servomotor [47,58].

Characteristic Value
Torque 24 Nm
Input (operating) voltage 116 V AC
Rotational speed 3000 r/min
Output power 0.75 kW

3. Basic Principles of Servomotor Control

As mentioned above, four main principles exist for controlling servomotors: digital
signal processing, feedback control, field-oriented control, and integration with Industry 4.0.

3.1. Digital Signal Processing in Servomotors

Digital signal processing has allowed for the optimization of servomotor control,
expanding boundaries in control methods and opening up new possibilities. Digital signal
processing enables the limitations of analog control systems to be bypassed, thus laying a
new foundation for more effective servomotor management. Based on [59-62], it is possible
to identify the key aspects in the construction of this principle and draw conclusions about
its advantages and disadvantages.

Key points in digital signal processing for servomotor control include:

1.  Precision control. Digital signal processing allows the use of advanced control al-
gorithms that enhance control accuracy. This is achieved as digital controllers can
receive, process, and respond to changes in input signals in real time, skipping many
stages in tuning the control action.

2. Adaptive control. Since servomotors operate in dynamic environments with changes
in load and the occurrence of various errors, the principle of digital signal processing
helps integrate adaptive control for servomotors. This type of control neutralizes
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disturbing influences in real time and adjusts control depending on new conditions,
thus improving the performance and efficiency of servomotors.

3. Noise filtering. In real production environments, servomotors are subject to interfer-
ence and noise from other devices, production line structures, additional loads, etc.
The principle of digital signal processing allows the identification and neutralization
of noise to maintain the accuracy of the control signal at the required level.

4. Network interaction and communication. The communication of servomotors within
a unified system is facilitated by the principle of digital signal processing. Coordinat-
ing actions, adjusting control, and other networking capabilities enable synchronized
control of servomotors in complex manufacturing processes, such as robotic techno-
logical lines.

However, along with the merits of digital signal processing, there are some drawbacks
to this principle:

1. Computational power. Implementing digital signal processing algorithms requires
significant computational resources. To ensure real-time signal processing, it is nec-
essary to accurately calculate the processing time and controller signal responses to
fully realize the potential of the entire control system.

2. Integration with existing control systems. Integrating control based on digital signal
processing with other systems may pose challenges due to compatibility issues and
the need for proper design of the control interface.

3.2. Feedback Control Principle in Servomotors

Feedback control systems are closed-loop control systems that compare the actual
output signal with the desired one. Based on the difference between these values, they
adjust the control settings, thereby changing the system’s behavior to minimize the devia-
tion of the output signal. In the case of servomotors, feedback control systems provide a
specified value for the position, speed, or any other output parameter of the motor. Based
on [63-67], it is possible to identify the key aspects in the construction of this principle and
draw conclusions about its advantages and disadvantages.

A feedback control system consists of the following components:

e  Sensor. In the case of servomotors, encoders or potentiometers are mainly used to
continuously track the speed or position of the motor’s output shaft.

e  Controller. This is the part responsible for processing feedback signals and generating
control actions through an integrated controller to the motor. Most control systems
use a PID controller for its speed and minimization of output error.

e Desired output signal. This is the target value that the motor control system aims to
achieve. Any parameter can be taken as the desired value, forming the basis for the
control system.

The working principle of a feedback control system is quite simple and operates on a
clear algorithm. The sensor continuously monitors the output value in real time and sends
data to the controller. The error is then calculated by comparing the signals, and a control
action is output. Using the controller and its components, a control signal is generated to
minimize the deviation and increase the stability of the control system.

Advantages of feedback systems include:

1. Accuracy. Continuous control of the output value allows feedback systems to achieve
high levels of maintaining the desired output signal.

2. Dynamic response. Feedback control systems provide a quick response to changes in
load, disturbances, or noise, allowing servomotors to be used in changing conditions.

3. Reduction in static error. The controllers used in these systems minimize static error
and reduce the transient process time.

4. Stability. The closed-loop control increases the overall stability of the control system.
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3.3. Vector Control Principle in Servomotors

Vector control is a control method that allows the optimization of the control of
alternating current (AC) motors and synchronous motors with permanent magnets. This
control method uses an approach where the torque and current flux of the motor are
separately considered. The main idea is to transform the three-phase current and voltage
into a rotating coordinate system, aligning the magnetic flux with the rotor’s magnetic
field. This enables independent control of the torque, leading to better dynamic response
of the control system, reduced additional noise, and increased efficiency. Based on [68-72],
it is possible to identify the key aspects in the construction of this principle and draw
conclusions about its advantages and disadvantages.

The main components of the field-oriented control system are:

e  Coordinate transformation. Vector control relies on transforming currents into a
coordinate system using Park and Clarke transformations, simplifying the control task
and optimizing the motor’s operation.

e  Current control. Precise control of currents is crucial. Independent torque control
allows for minimizing losses and improving efficiency.

e  Use of PI controllers. Using controllers of this type helps reduce control errors, enhance
responsiveness, and provide continuous support for the desired motor performance.

The key advantages of the vector control principle include:

1. Improved dynamic response. Fast and accurate motor control enables instant dynamic
response.

2. Reduction of torque disturbances. This significantly reduces torque fluctuations,
ensuring smooth motor operation.

3. Increased efficiency. Optimization of motor currents and minimization of losses lead
to improved overall motor efficiency.

4. Increased power density. The design of more compact and lightweight servomotors
with higher power can be achieved, making them suitable for use in limited spaces.

3.4. Integration with Industry 4.0 Principle in Servomotors

Industry 4.0 enables the use of smart technologies that alter the behavior of mecha-
nisms in the industry, with servomotors being one of the key elements in smart technologies
due to their provision of precision and efficiency. Thanks to integration with Industry 4.0,
new opportunities have emerged in predictive management and seamless communication
of production processes and mechanisms. Based on [16,73-77], it is possible to identify the
key aspects in the construction of this principle and draw conclusions about its advantages
and disadvantages.

The main points of integration with Industry 4.0 are:

1. Internet of Things (IoT) connectivity. Servomotors connected to Industry 4.0 are part
of a unified Internet of Things network. This connection allows real-time monitoring
of motor conditions, collecting a wealth of data such as operational parameters,
temperature, vibration, etc.

2. Data analysis and predictive maintenance. Modern methods of data analysis allow
the collection of data streams from servomotors into a unified database. This sys-
tematic organization of data enables the prediction of motor behavior and planning
maintenance and repairs, thus avoiding unjustified equipment downtime.

3. Remote monitoring and control. Servomotors connected to Industry 4.0 can be re-
motely controlled. This is beneficial in large-scale manufacturing where engines are
distributed over a large area, requiring remote control and monitoring of engine
conditions for timely management adjustments without on-site intervention. Remote
monitoring reduces delays and increases overall production efficiency.

4. Standardization. The use of specific standards, such as Open Platform Communica-
tions Unfired Architecture (OPC UA), facilitates the integration of servomotors into a
unified network with other production components.
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5. Adaptive control. Integration with Industry 4.0 allows the development and use of
flexible servomotor control systems. Control systems can adapt promptly to changing
conditions and respond to disturbances, thereby reducing setup time and downtime.

6.  Energy efficiency. By connecting servomotors to a unified network using Industry 4.0
protocols, it is possible to reduce the energy consumption of production and optimize
processes to use a more logical distribution of energy resources.

4. Control Methods of Servomotors

According to the principles of servomotor control outlined above, the basic common
control methods are distinguished: PWM control, current control, two-loop control, fuzzy-
logic control, and programmable control. PWM control has been described earlier in the
article; it should be noted that this type of control is based on the principle of digital signal
processing, allowing control of the position, speed, and trajectory of the output shaft of
the servomotor.

4.1. Current Control

Current control, also known as torque control, is based on changing the current in the
windings of the servomotor. This method allows precise regulation of the torque on the
motor shaft because the current magnitude is proportional to the torque. Current control,
which provides high accuracy in torque control, is suitable for applications where load con-
trol is required, as well as the need for overload protection. Examples of such applications
include systems where maintaining stable control is important, such as industrial robots
and autonomous motion systems [78,79].

The basis of current control is the principle of feedback and regulation. Feedback on
the current is applied to the servomotor, the current is measured in the windings, and the
value is sent to the controller for comparison with the set value (Equation (5)). When the
measured value deviates from the set value, the regulator generates a control signal for the
power amplifier. The power amplifier, in turn, adjusts the voltage on the motor windings
to bring the current value to the desired level [80,81].

e=1I3— Iy, )

where e—deviation error, and I and I,,,—the set and measured value of the current.

The regulator in this type of control method consists of three parts and their combina-
tions: proportional, integral, and differential.

The proportional component uses the following equation for increasing performance:

P= eKp, (6)

where P—proportional control signal, and Kp,—proportional coefficient.
The integral component uses the following equation for error elimination:

= / edt, )

where I—integral control signal, and Kj—integral coefficient.
The differential component uses the following equation for reducing the amount
of overshoot: 4
e
D=K4—, 8
dyg ®)
where D—differential control signal, and Ky—differential coefficient.
The main advantages of this method include the following [82,83]:
1. High precision in regulating torque.
Quick response to changes. Current control allows easy adaptation to external changes.
3. Energy savings. Efficient energy use is due to the adaptive properties of current control.
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4. Impact on positioning accuracy. Strict control of torque allows controlling the position
of the shaft in the final position.

The main drawbacks of the method, which differ from other methods and negatively
affect further development, are the requirements for the accurate measurement of torque
and flux parameters and sensitivity to changes in motor parameters, namely inductance
and resistance [82,83].

4.2. Two-Loop Control

Two-loop control connects feedback loops, typically consisting of positional and
velocity loops. This method enhances the efficiency of motor control by ensuring precision
in positioning and speed. Two-loop control allows a balance between system dynamics
and control accuracy to be maintained, so the application of this control method is common
in medical devices and automatic manufacturing lines.

The positional loop is designed to control the position of the servomotor’s output
shaft and sets the direction of its movement to a specified point. A control signal for the
electric motor is created by comparing the current position with the set position using a
potentiometer. The control signal is generated to minimize positioning errors [42,84].

The velocity loop aims to stabilize the rotational speed of the servomotor’s output
shaft. The feedback from the velocity loop measures the current rotational speed and
compares it with the desired speed, calculated based on the positioning error from the
positional control loop [42,84].

The mathematical apparatus of the two-loop control is dame such as current con-
trol. The difference between these two apparatuses is the amount of regulators used for
each loop.

The advantages of two-loop control include the following [84-86]:

1.  Precision in positioning.

Stability of the speed control system.

3. Dynamic response. Interaction between both loops allows the servomotor control
system to respond promptly to changes.

4.  Integration with other methods. A two-loop control-based system easily integrates
with control systems based on other methods, such as field-oriented control.

N

The main drawback of two-loop control is the requirement for the precise tuning
of the regulator coefficients in both loops. Achieving optimal control and stable system
operation demands more complex mathematical calculations. However, the mathematical
calculations required are much less than that of more advanced methods, such as FOC and
fuzzy logic [84-86].

4.3. Field-Oriented Control

Field-oriented control (FOC), based on the vector control principle, is a method of
controlling current and voltage in a servomotor, considering the direction of the magnetic
field rotation. FOC supports system control dynamics and efficiency, which is suitable for
high-performance systems and mechanisms with high precision. Examples of applications
may include CNC machines and laser cutting machines [72].

The field-oriented control method involves transforming the magnetic field into a
rotating coordinate system known as the “d-q” system. The d-axis is aligned with the
magnetic flux, while the g-axis is perpendicular to the d-axis. This transformation aligns the
magnetic flux inside the motor along one axis, and the variable current is aligned along the
other axis, which is the torque axis. Therefore, control is carried out based on the variable
current [71,87].

The mathematical equation for Park transformation is:

H _ {cosw) m(e)} W’ ©)

ig sin(0)  cos(0) | [iq
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where iy and ig—stator currents in fixed axes, ig and iq—stator currents in rotated axes,
and 6—magnetic flux rotation angle.
The mathematical equation for Clark transformation is:

iq cos(0) sin(0)] [ix
S = . P (10)

ig —sin(0) cos(0)] |ip
The feedback system measures the magnetic flux and then, using Park and Clarke
transformations, converts them from the stator coordinate system to the rotating d-q
coordinate system. The use of a PI controller in a field-oriented control system allows
maintaining the specified flux for each axis. The Clarke transformation is used to create d-q
coordinates, and the inverse Park transformation is used to transform the currents back

into the stator coordinate system [71,87,88].
The equations for motor voltage and torque are as follows:

3 . .
Te = 2p(Wiq + (0 — Vi), an
. di
Ve = Rgis + Lsﬁ +es, (12)

where Vs—stator voltage, Rs—stator resistance, Ls—stator inductance, is—stator current,
p—number of pole pairs, p—rotor flux, pm—maximum rotor flux, T.—electromagnetic
torque, es—back EMF.

Advantages of the field-oriented control method [71,87,88]:

1. Precision control. This method allows for increased precision in controlling both the
torque and speed of the servomotor.

2. Low noise and vibration levels. FOC reduces mechanical and electrical noise in the
operation of the servomotor.

3. High energy efficiency. The method reduces losses and allows for increased energy
utilization efficiency.

The development of FOC faces two of its most significant drawbacks: complexity of
implementation and sensitivity to motor parameters. The more complex the mechanism
control system, the more difficult the algorithm implementation and the more precise the
behavior model should be. In turn, changes in motor parameters lead to the revision of the
entire control algorithm [71,87,88].

4.4. Fuzzy-Logic Control

The use of fuzzy logic in servomotor control allows for optimizing and adapting
the motor control system to changing input conditions. Fuzzy-logic control primarily
provides flexibility and adaptability in conditions of fuzzy tasks and a lack of complete
data. Accordingly, fuzzy logic finds its application in applications with variable loads,
mechanisms operating in a changing environment, and robotic systems. Fuzzy logic-based
control is built on the following stages [§9-91]:

1. Identification of input conditions: In the case of a servomotor, the input variables are
typically the position or speed of the output shaft.

2. Definition of fuzzy rules: Creating fuzzy sets with different degrees of member-
ship for each input variable and establishing rules that link the conditions into a
unified system.

3. Fuzzy logical inference: Applying the defined rules to each input value.

Aggregation: Combining the applied rules to determine the control action.

5. Defuzzification: Converting the overall control action rule into a specific value that is
then applied to the servomotor.

-

Although fuzzy logic does not require an exact mathematical model, tuning this
method is quite labor-intensive. The development of the method is also influenced by



Appl. Sci. 2024, 14,2579

11 of 22

the difficulty of predicting its behavior under different conditions and achieving optimal
performance without loss of computational efficiency [89,92].

Considering that for fuzzy logic there is no need to use special and accurate mathe-
matical models, the structure of the algorithm can be illustrated as in Figure 4.

Real Real
Input Output
[y
T ST oY
w Linguistic variables

\
|

[ L_Input ] [LfOutput] |
|

i
|
|
|
\

Rules
database

Figure 4. The fuzzy logic algorithm structure.

Unlike binary logic, where variables are divided based on the values of true or false,
fuzzy logic determines the degree of membership of a variable to 0 or 1. The use of this type
of control allows for adapting the control system to operate in changing conditions, even
under the influence of various stochastic disturbances such as changes in load, detection of
mechanical errors, etc. Fuzzy logic control is effective in situations where predicting the
behavior of the mathematical model of the system is challenging, and there is no possibility
of its precise determination [89,92].

Such systems include digital twins, which, when working with real-world objects,
have a significant degree of uncertainty. Therefore, the adaptability of a control system
based on fuzzy logic is an ideal solution for managing a digital twin and can also serve as a
tool for creating a multitasking control system.

4.5. Programmable Control

Programmable control of a servomotor is based on the use of specialized software and
external controllers to manage the speed, positioning, and torque of the motor. This method
is associated with the principle of integration with Industry 4.0. Programmable control,
depending on the task, provides adaptive control and tuning, allowing integration with
other control systems. Accordingly, this method of servo motor control finds its application
in automated production control systems and robotics [93-95].

By using an external controller, programmable control allows a range of desired
positions to be defined through corresponding commands and supports various motion
variations, such as smooth start and stop, acceleration profiles, maintaining constant speed
or torque, and so on [81,96].

The use of feedback in the programmable control system is essential, and the feedback
can be either incremental or absolute. Measuring the position or rotational speed of the
servomotor’s output shaft allows for a clearer response to errors that may occur during
positioning and a smooth response for their elimination. The flexibility of control is also
supported using different coordinate systems (including relative or external) [97-99].

Interaction with other devices in the control system through the software method is
ensured by using various protocols, such as EtherCAT, Modbus, etc. Additionally, the
software method allows the creation of Supervisory Control and Data Acquisition (SCADA)
systems for interaction between machines and humans. The use of different programming
languages, as well as proprietary servomotor libraries, allows optimizing costs for control
and integration of the motor into existing control systems [100-104].

Programmable control, based on its features, has such drawbacks as programming
complexity and implementation due to the presence of many disparate control systems,
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and depending on computational power, there may be a loss of real-time performance. It is
also worth noting that this method is the only one among all those analyzed in this paper
that requires constant debugging and maintenance of all involved systems.

Programmable control is illustrated using the example of a digital twin of a wind
turbine, presented at the beginning of the article. This method is ideal for integrating
multiple different interfaces into a unified system and enables the quick analysis of input
data from various sources, making it a versatile approach to software methods.

4.6. Other Modern Methods

In addition to the methods of servomotor control discussed above, there are new
methods emerging that have not yet gained widespread use in industrial, robotics, and
other fields, and therefore are not considered in comparison with the presented methods.
However, it is worth noting that modern servo motor control methods are a very promising
direction in the development of control systems. Such methods include Model Predictive
Control (MPC), Neural Network Control (NNC), piecewise linear control, and others.

MPC is a control method where the use of an accurate mathematical model of a
mechanism or process can create a behavior model and determine performance criteria
in advance [105]. This control finds its application in areas where control of systems with
delays or variable characteristics is necessary, such as chemical production and long-acting
robotic systems [106,107]. However, even though MPC allows optimization of system
performance based on the desired criteria, the computational power of this method remains
a significant downside that limits its proliferation. Creating a complex mathematical model,
as well as computing the optimal solution at each time step, is a challenging task for most
mechanisms and productions [21,108].

NNC is a control method that uses neural networks and principles of artificial intel-
ligence to approximate nonlinear control functions and the mathematical model of the
process. This type of servo motor control is used in systems where it is impossible or
difficult to create an accurate mathematical model, such as multi-level autonomous con-
trol systems [109,110]. This method resonates with fuzzy logic-based control methods
and possesses similar positive qualities such as flexibility, adaptability of control, and the
ability to react quickly to external influences [111]. However, unlike fuzzy logic, training
a neural network requires a huge amount of data and resources, as well as a significant
amount of time, which is an obstacle in the real world where fast decision-making based
on unexplored data is required.

Piecewise linear control of servo motors is a control method that allows the motor
control curve to be divided into separate linear segments to achieve control points with
sufficiently high precision [112]. This method is characterized by its simplicity of imple-
mentation and discretization of control space, with each control segment having its own
characteristics. This method is an optimal solution where the use of complex algorithms
is too costly and the number of computational resources is significantly limited [113,114].
However, this method is quite a specific solution and has many limitations when applied
to solving complex and dynamic tasks [115].

5. Comparison of Servomotor Control Methods

Comparison of servomotor control methods may vary to some extent for each technical
solution; therefore, this work proposes a general comparison based on several parame-
ters: speed, accuracy, adaptability, energy efficiency, popularity, ease of implementation,
and material resource costs. These are general indicators that can be used to assess the
effectiveness of the presented control methods and choose the most suitable one for a
specific case.

Each characteristic plays a key role in building a control system and is evaluated on a
five-point scale:

e  Speed is necessary to evaluate the responsiveness of the control system to incoming
disturbances and changes in input parameters (1—low speed, 5—high speed).
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Programmable control

PWM-control
Current control

Two-loop control

Fuzzy-logic control

e Accuracy is the primary parameter for systems based on positioning (1—low accuracy,
5—high accuracy).

e  Adaptability is responsible for the degree of adaptability of the control system to
changing conditions (1—low flexibility, 5—high flexibility).

e  Energy efficiency indicates the amount and quality of consumed energy (1—increased
energy consumption, 5—low energy consumption).

e  Popularity not only indicates the degree of method dissemination in the industry but
also access to reliable information on creating a control system based on a particular
method (1—low popularity, 5—high popularity).

e Ease of implementation is important for assessing the complexity of developing
and maintaining the created control system (1—easily implemented, 5—difficult
to implement).

e  Material resource costs influence the economic factor of developing a control system,
its costliness, and payback period, considering efficiency and performance aspects
(1—high costs, 5—low costs).

A visual comparison of characteristics is provided in Figure 5.

FOC

"

0 1 2 3 4 5
B Speed B Accuracy B Adaptability
Energy efficiency M Popularity B Implementation

W Material resource costs

Figure 5. Comparison of the main characteristics of servomotor control methods.

As seen from the comparison, the most popular and energy-efficient method today is
the programmable control of servomotors. However, the simplest to implement is PWM
control, and in terms of adaptive control, fuzzy logic algorithm is considered. In terms of
accuracy, three control methods stand out: two-loop control, FOC, and fuzzy logic control.
In summary, when choosing a method for servomotor control, it is advisable to consider
the initial characteristics of the desired control, i.e., to select control parameters that bear
greater responsibility for performing specific operations.

In the control of the Hirata Cartesian robot’s servomotor operations, direct control
based on fuzzy logic algorithm is used. This is because the algorithm is not only used
for motor control but also for diagnosing mechanical damage in the robot’s transmissions.
Therefore, important characteristics for servomotor control include accuracy, adaptability,
and control speed. Additionally, the adaptability of fuzzy logic, coupled with high precision,
allows its utilization in configuring digital twins for modeling various conditions and
behavioral variations. Fuzzy logic facilitates the development of a control system along
multiple directions, enabling the digital twin to emulate human logic based on external



Appl. Sci. 2024, 14, 2579 14 of 22

factors. This human-like decision-making ability is crucial in scenarios where rigid rule-
based systems may fall short, providing a more nuanced and realistic approach.

6. Fuzzy Logic Control of the Hirata Cartesian Robot Servomotor

The speed and torque control of Hirata Cartesian robot servomotor is based on the
frequency and amplitude of the vibration signal that occurs because of mechanical damage
in the robot’s transmissions. This correlation is based on several reasons, namely the
detection of damage in the transmissions and the robot’s operation under conditions of
damaged transmission.

Control based on fuzzy logic operates by defining linguistic variables and constructing
a fuzzy set of data. Therefore, the fuzzy logic algorithm does not require the determination
of an exact mathematical model of the robot for servomotor control.

Fuzzy sets for linguistic input variables related to the amplitude and frequency of
vibrations are illustrated in Figure 6.
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Figure 6. Fuzzy sets for linguistic input variables: (a) vibration amplitude, where AL—low amplitude,
AM—medium amplitude, AH—high amplitude; (b) vibration frequency, where FL—low frequency,
FH—high frequency.

The shape of the membership function is chosen to align with the logic of the robot’s
operation under specified conditions. For instance, the nominal vibration of the robot
during work operations is 0.3 g for the nominal motor rotation speed at which the maximum
speed of the robot’s working element is achieved. Therefore, for the fuzzy set of amplitude,
trapezoidal and triangular functions are chosen, while only trapezoidal functions are
selected for frequency. Gaussian functions are chosen for the output parameters of the
speed and torque of the servomotor to ensure smoother regulation of these parameters.

Fuzzy sets for linguistic output variables related to the speed and torque of the
servomotor are presented in Figure 7.
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Figure 7. Fuzzy sets for linguistic output variables: (a) servomotor speed, where SLL—minimum
speed, SL—low speed, SM—medium speed, SH—high speed; (b) servomotor torque, where TLL—
minimum torque, TL—low torque, TM—medium torque, TH—high torque.

As aresult, based on the presented fuzzy sets and the derived fuzzy rule base, patterns
for the speed and torque of the servomotor can be obtained. The simulation results are
illustrated in Figure 8.
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Figure 8. Patterns for the speed (a) and torque (b) of the servomotor.

As seen from the simulation results, the speed parameter is inversely proportional to the
torque of the servomotor. This is implemented to overcome the consequences of mechanical
damage to the robot’s transmission. When a fault is detected, the robot’s movement speed
decreases, and the torque increases to mitigate the impact of undesirable consequences on
other parts of the robot. This also helps reduce the influence on its fundamental characteristics,
such as positioning accuracy, performance, and energy efficiency.
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7. Conclusions

In this work, the structures, implementation, types, and basic principles and methods
of servomotor control are described while highlighting its benefits, limitations, and appli-
cation possibilities. PWM control, utilizing digital signal processing, proves effective in
controlling position, speed, and trajectory. Current control, or torque control, stands out
for its high precision in regulating torque, quick response to changes, energy savings, and
impact on positioning accuracy.

Two-loop control, integrating positional and velocity loops, enhances motor control
efficiency, offering precision in positioning, stability in speed control, dynamic response,
and integration with other methods. Field-oriented control (FOC), based on the vector
control principle, ensures precision control, low noise and vibration levels, and high energy
efficiency through the transformation of the magnetic field.

Fuzzy-logic control, relying on fuzzy sets and logical inference, enables adaptive
motor control in changing conditions, making it ideal for uncertain systems like digital
twins. Finally, programmable control, associated with Industry 4.0, utilizes specialized
software and external controllers, offering high flexibility, efficiency, easy integration, and
interaction with various protocols and SCADA systems.

The comparison of servomotor control methods presented in this work provides a
comprehensive overview of various parameters crucial for assessing the effectiveness
of different control techniques. The parameters of speed, accuracy, adaptability, energy
efficiency, popularity, ease of implementation, and material resource costs serve as valuable
indicators in making informed decisions about the choice of a control method based on
specific requirements.

The analysis reveals that programmable control stands out as the most popular and
energy-efficient method, while PWM control is the simplest to implement. For adaptive
control, the fuzzy logic algorithm is considered, and for accuracy, two-loop control, FOC,
and fuzzy-logic control are highlighted.

Each method has its niche and strengths, and the choice depends on the specific
requirements of the application. The adaptability of fuzzy-logic control and the efficiency of
programmable control make them particularly versatile, addressing challenges in uncertain
environments. As technology advances, the selection of a servomotor control method
should align with the evolving demands of precision, adaptability, and efficiency in diverse
industrial applications.
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Abstract: The detection of faults during an operational process constitutes a crucial objective within
the framework of developing a control system to monitor the structure of industrial mechanisms.
Even minor faults can give rise to significant consequences that require swift resolution. This
research investigates the impact of overtension in the tooth belt transmission and heating of the screw
transmission worm on the vibration signals in a robotic system. Utilizing FFT techniques, distinct
frequency characteristics associated with different faults were identified. Overtension in the tooth belt
transmission caused localized oscillations, addressed by adjusting the acceleration and deceleration
speeds. Heating of the screw transmission worm led to widespread disturbances affecting servo
stress and positioning accuracy. A fuzzy logic algorithm based on spectral analysis was proposed
for adaptive control, considering the vibration’s frequency and amplitude. The simulation results
demonstrated effective damage mitigation, reducing wear on the mechanical parts. The diagnostic
approach, relying on limited data, emphasized the feasibility of identifying transmission damage,
thereby minimizing maintenance costs. This research contributes a comprehensive and adaptive
solution for robotic system diagnostics and control, with the proposed fuzzy logic algorithm showing
promise for efficient signal processing and machine learning applications.

Keywords: condition monitoring; gears; fast Fourier transforms; fault diagnosis; fuzzy control; robot
control; robot motion; process monitoring; vibration measurement

1. Introduction

Industrial robots are a cornerstone of modern automated manufacturing, spanning
various industries. Their extensive and diverse applications, such as assembly lines, trans-
portation, and complex and costly processes, underscore their indispensable role in contem-
porary society [1,2]. However, the precise and uninterrupted operation of these mechanisms
depends on the seamless functioning of all their systems, including power components,
control systems, and mechanical connections. Disruptions to any of these parts can lead to
production failures and the loss of material and energy resources [3,4].

Typically, diagnostic systems embedded in robot controllers are oriented toward
monitoring the condition of the power components and control systems of the robot. While
such systems allow for monitoring the operation of the robot’s main units and detecting
malfunctions, they often overlook smaller mechanical connections, such as gearboxes,
hinges, and other elements. The inability to track the behavior of mechanical connections
makes these robot parts the most challenging for fault detection, potentially resulting in
serious consequences, including complete robot failure [1,3].

The diagnosis of faults in robots uses many methods [3,5,6]:

1. Mathematical methods (fast and short-time Fourier transform, continuous wavelet
transforms) [7,8];
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2. Modeling methods (fuzzy logic, machine learning, and other artificial intelligence
methods) [8,9];

3. Condition monitoring methods (control currents, temperature of mechanical parts,
noise control, etc.) [10,11].

Therefore, for diagnostics, each of the methods presented has its own scope of applica-
tion and is used to achieve various goals [1,6,7]. The mathematical methods are a powerful
tool for evaluating and analyzing data, thereby identifying anomalies in the behavior of
the mechanism. The modeling methods offer predictive and control capabilities, assessing
discrepancies in the data obtained [11,12]. The condition monitoring methods enable real-
time data acquisition, constantly evaluating possible deviations from normal operation,
thereby allowing problems to be detected before a failure occurs.

The application of fuzzy logic-based diagnostic and control methods is of particular
interest in the context of identifying faults in the mechanical parts of the robot. This
approach avoids the use of precise mathematical models and ensures operation even if
the integrity of the input data is compromised, in conditions in which other methods are
least effective. The fuzzy logic algorithm processes information in such a way as to create a
reliable system for diagnosing, controlling, and rectifying faults in challenging operating
conditions [13,14].

The use of fuzzy logic principles allows for the adequate and adaptive adjustment of
the robot’s operating characteristics, taking into account uncertainties. This enables the
maintenance of operational reliability, timely detection of damage, and determination of
preventive measures for preserving structures and for their maintenance. Integrating such a
system based on fuzzy logic is a way to enhance the stability and reliability of mechanisms,
reduce equipment downtime, and improve performance in changing conditions [15,16].

This article is organized as follows: Section 2 of this article is a description of a
Cartesian robot and its diagnosis system with a controller. The main faults detected by
the controller are shown. Section 3 illustrates the gearbox structure of the Cartesian robot
and includes the benefits and limitations of each part. Based on this information, the main
gearbox faults are described. Section 4 describes the methodology used for generating the
results of this article. Section 5 presents the specification of the test bench, the diagnosis
results, and their description. Based on these results, the fuzzy logic algorithm was built.
This section also shows the fuzzy logic algorithm modeling results for control parameters
and fault type diagnosis.

2. Cartesian Robot Description

The Cartesian robot is a commonly found industrial robot in production [17]. This type
of robot is used for any task, like moving details in the technological lines, working with
dangerous materials, and accurate processes. Cartesian robots have different structures for
any purpose [18]. The sketches of the main types of it are presented in Figure 1.

Figure 1. The sketch of Cartesian robots with fourorthogonal axes.

As seen from the figure, Cartesian robots have a few degrees of freedom. This means
that the diagnosis system should have a special base of rules for each axis.
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2.1. Hirata Cartesian Robot

The Hirata Cartesian robot (HCR), described in this research, is a Cartesian robot
consisting of four axes set up perpendicular to each other. This robot was designed to work
with special attachments and devices, for the implementation of different operations in
which humans cannot participate [19,20]. A view of the HCR is presented in Figure 2.

Figure 2. The view of HCR.

2.2. Diagnosis System of the HCR

The diagnosis system of the HCR consists of the controller, the teach pendant, and
various sensors, such as overload and origin sensors, limited switches, and encoders [19,21].
The view of the controller and teach pendant of the HCR are presented in Figure 3a,b.

Figure 3. The view of the controller (a) and teach pendant (b) of the HCR.

Before starting work, the auto-calibration (A-cal) of the HCR should be executed. The
A-cal mode is a regime for automatically returning the robot axes to their original positions
and checking whether any faults are connected to the control and power systems of the
robot. In this mode, the state information is executed [19,21].

The main faults are detected in the power and control systems of the robot. The list
of the main faults is presented in Table 1. When a fault occurs in the controller or servo
drive of the robot during the work process, a message about failure appears on the teach
pendant [19,21].
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Table 1. The list of main faults of the HCR.

Error Code Description
Pos. error XXXX Positioning cannot be completed.
Emergency stop The emergency stop is activated.
A-cal error A-cal cannot be completed normally.
Overrun XXXX Overrun has occurred.
Positioning error Positioning cannot be performed.
Overspeed The speed is too high.
Driver error An error has occurred in the servo amplifier/driver.
Enc error XXXX The encoder has a broken wire.

The message “XXXX” shows the status of each axis of the robot. For example, the
message “0101” means the faults occurred at the Y and W axes of the HCR.

The diagnosis system of the HCR may detect faults only in the control or power system
of the robot. However, in the mechanical parts of the robot, such as gearboxes and joints,
detection does not exist. The diagnosis system of the robot generates warnings and stops
the mechanism only after fault consequences occur. This means that the mechanical parts
of the robot are the weakest places; the robot is subject to the devastating consequences of
even the slightest damage in case of failures occurring here [19,21].

3. HCR Gearbox

The gearbox of the HCR consists of two types of transmissions: tooth belt transmission
(TBT) and screw transmission (ST). The TBT provides constant resolution for each axis
with high accuracy, and the ST provides smooth movement of the robot. The sketch of the
gearbox is presented in Figure 4.

Servo drive

Figure 4. The sketch of the gearbox of the HCR.

Each of the gearbox parts has benefits and limitations that influence the Cartesian
robot’s work.

3.1. Tooth Belt Transmission

The benefits of the tooth belt transmission are a constant gear ratio, no need for
lubrication, quiet work, and lack of undesirable vibrations. Consequently, the TBT has a
large torque-carrying capacity, transmits mechanical power with constant speed, and lacks
slippage between pulleys and timing belts. The limits of the TBT are associated with its
benefits. The work of the TBT is provided by the tension of the timing belt. In this case, the
tension adds resistance to torque and additional load to the motor shaft. Also, one of the
conditions for normal working of the TBT is pulley alignment [22,23]. The real view of the
tooth belt transmission of the gearbox is presented in Figure 5.
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Figure 5. View of the tooth belt transmission.

3.2. Screw Transmission

Just like the tooth belt transmission, the screw transmission has a number of similar
benefits, such as quiet and smooth motion, lack of undesirable vibrations, and simple
design. Also, the ST has a high load-carrying capacity, self-deceleration property due to
high inertia, and compact construction, which minimizes the needed length of the work
area. The limits of the ST are low efficiency and additional wearing during the mechanism’s
operation. In this case, expensive antifriction materials and lubrication must be used to
avoid constant repairing of the transmission [24]. The real view of the screw transmission
of the gearbox is presented in Figure 6.

N
‘

Figure 6. View of the screw transmission.

Based on the listed properties, the gearbox provides control of the HCR without
significant noises, additional vibrations, and other disturbances. Also, this combination
of transmissions leads to the following control characteristics of the robot as presented in
Table 2 [20].

Table 2. Axis characteristics of the HCR.

Axis Max Speed, mm/s Stroke, mm Max Payload, kg Repeatability
X 1200
Y 1200 800 . +0.02
Z 1000 200 +0.01
\ 1200° 540 +0.03°

The construction of the robot provides a good combination of speed and accuracy.
In this case, the robot can work with various conditions and different processes, such as
3D-printing, movement processes, or working with dangerous materials and environments.

3.3. Gearbox Faults

The faults that occur during the working of the HCR have different characteristics
and lead to various consequences. Any smaller deviations from nominal work have a
possibility to cause serious damage to the robot and production. Besides the listed benefits
and limitations, the gearbox has a few failures, such as heating, overtension of the timing
belt, and jamming or teeth cracks [3].
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Overtension of the timing belt occurs due to the misalignment of the transmission
pulleys. In the case of misalignment by the vertical axis, high tension and skewing of the
belt occur, leading to an additional load on the servo drives and resistance torque on the
servo drive shaft. On the other hand, misalignment by the horizontal axis leads to low
tension of the timing belt; however, in this case, the belt may fly off the pulley, and the
robot will stop without any damage. Low tension works like a damper in the case of the
HCR gearbox [18,25]. An example of displaced pulleys and, consequently, overtension of
the belt is presented in Figure 7.

Figure 7. Example of the overtensioned timing belt of the gearbox.

The gearbox heats up under the following circumstances: when there is no lubricant,
in conditions of high pollution, and if the gearbox part is under voltage. This failure leads
to additional vibrations in the whole work area of the gearbox. As a result, the accuracy
of the robot is reduced, and the wear of the gearbox material (tooth wheels, worm, screw
mechanism, etc.) is increased. This failure is the second most common error that occurs in
this type of gearbox. Usually, this mechanical damage refers to the parts of the transmission
that are subject to continuous contact [24,26]. An example of the effect of heating on the
screw worm of the gearbox is presented in Figure 8.

Figure 8. Example of the effect of heating on the screw worm of the gearbox.

Jamming or teeth cracks occur in two ways. The first part of this fault is fatigue of the
metal, and the second part is unbalanced parts of the gearbox or loss of structural rigidity.
Jamming of the gearbox leads to intermittent vibrations or a full stop of the robot. Teeth
cracks provide cycle vibrations and deviations from the nominal accuracy and positioning
of the robot [26,27]. An example of a broken pulley, in case of the appearance of a foreign
body, is presented in Figure 9.

Figure 9. Example of pulley teeth cracks of the gearbox.

4. Diagnosis and Control Methods

Every fault that arises during robot operations possesses a distinct spectrum, which
can be monitored through a few different methods. This study employed two specific
methods. The initial approach involved utilizing the fast Fourier transform, enabling
the assessment of various vibrations present in the output signal. The second method
employed a fuzzy logic algorithm, thereby enabling the development of a control system
that permits the robot to continue functioning under faulty conditions.
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4.1. Fast Fourier Transform Diagnosis Method

The fast Fourier transform (FFT) is a sophisticated algorithmic technique widely
employed in various fields of science, engineering, and mathematics. This transformation
allows for the analysis of complex signals and the extraction of information about their
frequency components [28,29].

The FFT technique finds applications in diverse fields, including signal processing,
telecommunications, image processing, audio analysis, scientific computing, and many
more. It allows researchers, engineers, and analysts to quickly analyze and manipulate
signals in the frequency domain, enabling tasks such as filtering, spectral analysis, correla-
tion, convolution, and data compression. Its efficiency has made it an indispensable tool
in digital signal processing, providing the capability to handle real-time data streams and
process vast amounts of information with minimal computational overhead [30,31].

The fast Fourier transform method is a groundbreaking algorithm that has transformed
the landscape of digital signal processing and numerous related fields by providing an
efficient means to compute the discrete Fourier transform. Its ability to drastically reduce
the computational complexity of this operation has made it a cornerstone in modern
scientific and engineering applications, allowing for the exploration and extraction of
valuable insights from complex datasets in the frequency domain [32,33].

4.2. Fuzzy Logic Control Method

The fuzzy logic control method is an advanced computational approach used to make
decisions and draw conclusions in situations in which the boundaries between different
states or conditions are not well defined. Rooted in the principles of fuzzy logic, this
method is particularly effective when dealing with complex and uncertain systems in
which traditional binary logic might fall short [34].

Unlike classical logic, which relies on crisp definitions of true or false, fuzzy logic
allows for degrees of truth to be expressed. It accommodates the inherent imprecision
and uncertainty present in many real-world scenarios, making it well suited for diagnostic
applications across various fields such as engineering, medicine, finance, and more [35,36].
The working scheme for fuzzy logic is illustrated in Figure 10.

Real Real
Input Output
A

(— "~ Y Linguistic variables |
| |
| [ L_Input ] [ L_Output ] |
|
L |

Rules
database

Figure 10. General scheme of the fuzzy logic algorithm.

The fuzzy logic algorithm operates through several key stages:

1. Identification of linguistic variables: Initial parameters are established to construct
descriptions for input and output variables. For example, the variable “speed” is
defined with specific values, such as “slow” or “fast”.

2. Establishment of fuzzy sets: Each linguistic variable and its corresponding value are
defined by a fuzzy set, characterized by a membership function. These functions,
which can take various forms like triangular or Gaussian, enable the flexibility of
fuzzy logic, eliminating the need for precise mathematical models.
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3. Fuzzification: Input variables are matched with their respective membership functions
to generate a fuzzy output, determining the degree of membership of the input
variable within a specific fuzzy set.

4. Formulation of fuzzy rule base: Fuzzy rules are defined that dictate the algorithm’s
actions based on combinations of input variables. These rules, based on linguistic
variables and sets, employ logical operations like AND/OR to organize them into
relevant categories.

5. Defuzzification: The inverse process of fuzzification, converting the degree of mem-
bership of the output parameter based on fuzzy rules into a numerical value. This
numerical value guides subsequent control actions.

The fuzzy logic control method excels in scenarios in which uncertainty and impre-
cision are prevalent, such as medical diagnosis, fault detection in complex systems, risk
assessment, and decision-making in dynamic environments.

5. Experimental Part
5.1. Experimental Test Bench

A test bench was built for conducting experiments. The view of the test bench is
presented in Figure 11.

Hirata Cartesian
robot

Figure 11. View of the experimental test bench.

The test bench consists of the Hirata Cartesian robot, the data collection system based
on Dewetron, and three vibration sensors installed on the grab system of the robot and the
top and bottom of the test bench.

The main sensor for measuring robot vibrations is installed on the Z-axis, directly on
the gripping system. This placement allows the tracking of vibrations along both axes of
the robot. The sensors placed above and below the laboratory stand structure are intended
for measuring the stand’s vibrations to eliminate additional noise from the main signal.
This approach helps mitigate the influence of the stand’s vibrations on the magnitude of
the main sensor’s signal. Accelerometers of the DIS QG40N-series (DIS Sensors, Soest,
Netherlands) were used for the experiment. The technical specifications of the sensor are
presented in Table 3.

Gearbox faults were sequentially introduced into the robot’s structure. To obtain the
necessary data, artificial faults were separately created in the gearbox, namely, overtension
of the tooth belt transmission and heating of the screw transmission. For overtension of the
belt, a displacement of the transmission pulleys was performed, as this type of damage is
the most common. For heating the worm, lubrication was removed, simulating the case of
contamination/drying of lubrication in the transmission.
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Table 3. Technical specification of DIS QG40N.

Characteristic Value
Measuring ways 3 axes (XYZ)
Measuring range +4g

Output signal 0.5-45V

Resolution 4mg
Sensitivity error +2%
Output refresh rate 3ms

During the experiment, several conditions were established: a minimum rotation

speed of the robot’s servo motor was set (200 rpm/s) to avoid unwanted damage. Measure-
ments were conducted along two axes of the robot, X and Y, the robot movements were
linear to track changes in the reference and faulty signals.

4.

The experiment consisted of the following steps:

Data acquisition, collection of all data from vibration sensors by unfaulty (reference)
and faulty signals. The vibrational signal, captured by accelerometers, was converted
into an electrical signal, and proceeded into Dewetron inputs for processing, visual-
ization, and storage.

Data processing, transformation of output vibration signals into spectra to obtain
vibration amplitude analysis. Following data collection, Fourier transform analysis
was performed to analyze the acquired data. Also, to eliminate unwanted noise by
comparing signals from the accelerometers, Matlab (9.10.0.1602886, R2021a) filters
were used.

Compilation of fuzzy logic rules library based on the spectra. Based on spectral
analysis, data collection was conducted, and a rule base for the fuzzy logic algorithm
was developed. This formed the foundation for the diagnostic and control system.
Development of a fuzzy logic control system.

5.2. Diganosis Results

During the experiment, vibration signals were acquired as the output. To analyze the

frequency characteristics of these signals, the FFT technique was employed. The resulting
spectra from this analysis of the tooth belt transmission due to overtension, captured along
two axes, are presented in Figure 12a,b.

Amplitude, g

-1 S -1 I
1 —Reference signal 1 —Reference signal
—Faulty signal —Faulty signal
107
10° 5o
S
<
107 £
=
z
107
-6
10 \‘\\#\
107 107
0 100 200 300 400 500 0 100 200 300 400 500
Frequency, Hz Frequency, Hz

(@) (b)

Figure 12. The spectral analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the
overtension fault of tooth belt transmission.
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The graphs depict two signal types: a reference signal representing the transmission
belt’s normal tension (as per factory settings) and a faulty signal indicating overtension
caused by a shift in the pulley axes’ center. As seen from the reference signal, the nominal
frequencies of the HCR gearbox were at the level 50, 100, and 150 Hz.

The additional noises that manifest between the main frequencies are oscillations of
other robot parts that cannot be rigidly fixed, such as cable lines and protective metal
structures. The nominal amplitude of the robot structure oscillations should not exceed
0.3 g. Considering the low noise amplitude, the presence of various frequency ranges,
and the appearance of additional frequencies when the robot breaks down, which can be
used to determine the type of damage, noise can be disregarded for the optimization and
simplification of algorithm operations.

The belt overtension in the tooth belt transmission results in frequent oscillations
occurring at the transition points within the robot’s operational area. Transition points
refer to instances in which the robot changes direction during its movement. Consequently,
the tension of the belt affects the robot’s performance only at specific locations within its
operational space. Furthermore, the spectrum analysis highlights that the frequencies of
vibration of the belt overtension are at the level of 200-250 Hz.

The resulting spectral analysis of the screw transmission, captured along two axes, in
the case of the heating fault, is presented in Figure 13a,b.
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) g
=
Z10* 210t
o o
g g
< <.
107 107
i
10 100
107 107
0 100 200 300 400 500 0 100 200 300 400 500
Frequency, Hz Frequency, Hz
(a) (b)

Figure 13. The spectral analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the
heating fault of screw transmission.

In contrast to the negative consequences of overtension in the belt, damage to the
torque transmission worm can result in significant disturbances throughout the entire path
of the robot’s movement, affecting not only specific points.

These vibrations can lead to increased stress on the robot’s servos, reduced positioning
accuracy, and significant wear on other components of the mechanism. Furthermore, an
analysis of the vibration spectrum indicated that these vibrations were not cyclic but rather
stochastic, making their elimination and reduction of their impact more challenging. One
proposed method to mitigate the effects of errors in the robot’s design is to increase the
torque in the servo drive to prevent potential gear jamming. Also, the frequency vibration
diapason is wider than that in the case of the overtension fault and is equal to 200-450 Hz.

Based on subsequent comparisons of the frequency spectra, it is possible to develop
a fuzzy logic algorithm that will determine the extent of damage in the transmission and
propose corresponding speed and torque patterns for the robot control system.

5.3. Fuzzy Logic Algorithm Results

Based on the information obtained from the spectral analysis, it is possible to create a
fuzzy logic algorithm for the diagnosis and control of the robot. Depending on the ampli-
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tude and vibration frequency, it is necessary to control the speed, torque, and acceleration
of the moving parts of the robot. Diagnosis according to the fuzzy logic algorithm should
be based on the frequency spectrum of the vibrational signal and the presence of vibration
amplitude, i.e., the presence of low-frequency signals with a high fault amplitude, as well as
high-frequency signals with low or high fault amplitudes. This will indicate transmission
damage, and depending on the frequency range, the type of failure will be determined.
The scheme of the fuzzy logic algorithm process is presented in Figure 14.
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Figure 14. The scheme of the fuzzy logic algorithm process.

The membership functions of input and output variables that determine the fuzzy
logic algorithm to control robot servomotors are presented in Figure 15a,b.
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Figure 15. The control membership functions of input (a) and output (b) variables.
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As seen in Figure 15, each membership function describes the linguistic variable. For
the inputs, the variables were AL, FL—low amplitude and frequency of vibrations; AM—
medium amplitude; AH, FH—high amplitude and frequency. For the outputs, the variables
were SLL, TLL—minimum speed and torque of the servomotor; SL, TL—low speed and
torque; SM, TM—medium speed and torque; SH, TH—high speed and torque; Pos, Neg—
racing and braking of the robot, respectively; ZeroPos, ZeroNeg—weak acceleration and
deceleration of the robot. The form of the membership functions was chosen in such a
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way that the input variables corresponded to the data based on the spectral analysis. The
output variables were designed to ensure the smooth control of speed and torque, as well
as maintain the required degree of acceleration or deceleration of the robot.

The membership functions of input and output variables that determine the fuzzy
logic diagnosis algorithm for mechanical faults in the robot transmission are presented in
Figure 16a,b.
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Figure 16. The diagnosis membership functions of input (a) and output (b) variables.

As seen in Figure 16, for the inputs, the variables were F200, F250, F300, F350, F400,
and F450—the vibration frequencies for 200, 250, 300, 350, 400, and 450 Hz, respectively;
FAL—low fault amplitude of the vibration, FAH—high fault amplitude of the vibration.
For the output, the variable fault types and their magnitudes were chosen in such a way
that it was possible to identify mechanical damage in the transmission. Thus, the normal
state of the transmission was equal to 0; the presence of belt overtension was equal to —1;
and the presence of worm heating was equal to 1.

The modeling results of the control parameters (speed, torque, and acceleration) are
illustrated in Figure 17a—c.
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Figure 17. Results of modeling fuzzy logic algorithm for control parameters speed (a), torque (b),
and acceleration (c).
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As seen from the simulation results, with an increase in the amplitude and frequency of
vibrations, the robot’s speed decreased while the torque increased. This occurred to reduce
the impact of vibrations on the robot’s structure and prevent undesirable consequences and
further breakdowns. The reduction in speed leads to a decrease in inertia, thereby reducing
the amplitude of vibrations, while increasing the torque helps overcome the current impact
of damage and diminishes its influence on the transmission. Regarding acceleration, the
situation is different. Acceleration depends more on the amplitude of the vibrations than
on their frequency, so with an increase in amplitude, the acceleration decreases. This results
in the damping of vibrations, stabilizing the entire system.

The rule base of the fuzzy logic algorithm was structured in such a way that the
control system’s output parameters contributed to reducing the impact of damage on the
transmission while ensuring the mechanical system’s functionality. This ensures minimal
wear on mechanical parts and, in turn, does not interrupt the execution of operational
tasks, allowing the completion of the work cycle. Moreover, this control method is easily
adjustable, making the entire system much more flexible and adaptive.

The modeling results for the diagnosis are illustrated in Figure 18a,b.
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Figure 18. The control membership functions of input (a) and output (b) variables.

The diagnostic modeling results indicate the likelihood of damage in the transmission.
Thus, the closer the output parameter is to the corresponding value for the presence of the
corresponding frequency in the vibrational spectrum of the signal (—1 for overtension fault
and 1 for worm heating fault), the more likely the presence of damage. By comparing the
diagnostic patterns of damage with real signals, it is possible to identify the presence of
damage even with a limited amount of data, relying solely on the frequency and amplitude
of vibrations. It is important to note that values from the vibration sensor’s input signal
should be considered within specific frequency ranges. Therefore, in the presence of
the necessary frequencies in the signal spectrum, the onset of damage can be identified
even with the slightest amplitude. This diagnostic approach significantly reduces the
frequency of repairs, meaning equipment maintenance will occur as needed, reducing
overall maintenance costs.

Similar to the control system, this diagnostic system is easily adaptable to various
types of damage, making it a versatile solution for signal processing and machine learning.

6. Conclusions

In conclusion, tests on the developed test bench prove the effectiveness of the method-
ology for diagnosing and controlling mechanical faults in robotic systems. The data
collection, processing, and fuzzy logic algorithms to identify and address common issues
like belt tension and gear heating in robot transmissions are used.
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Analysis of the vibration signals from the experiments gave insights into different
fault frequencies. By spotting distinct patterns through spectral analysis, a strong fuzzy
logic algorithm for diagnosing and fixing faults accurately based on vibration frequency
and amplitude was developed.

The fuzzy logic algorithm effectively adjusts robot parameters like speed, torque, and
acceleration to mitigate the impact of faults on the transmission system. This ensures
smooth operation while reducing wear on mechanical parts and preventing breakdowns.

The diagnostic modeling results highlight the reliability of the approach in identifying
damage in the transmission system, even with limited data. This reduces the need for
frequent repairs and lowers maintenance costs.

Overall, our findings emphasize the potential of fuzzy logic-based systems for enhanc-
ing the reliability of robots in dynamic industrial environments. The flexible methodology
offers real-time fault detection and management, improving operational efficiency and
reducing downtime in automated manufacturing processes.

For future work, we plan to explore other types of mechanical damage, upgrade
our fuzzy logic rule database, and validate our algorithm for controlling and diagnosing
faults. We will also investigate the use of fuzzy logic in machine learning and predictive
maintenance. Additionally, our research can aid in setting up digital twins of transmission
systems, robots, and other connected elements.
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Abstract. The paper discusses problems that occur in robotic arm control. The specific problems arise due to the wear of various
types of gears (in the presented case, belt gear and worm gear). It is important to note that such errors need to be diagnosed in time,
and the way of their elimination has to be determined, which should be resource-intensive and cost-effective. This article describes
the basic types of robotic manipulators (robotic arm, telpher and Cartesian), presenting a review and study of the possibilities of
errors in the movement of a robot, adjustment of a mechanical system, and determination of a strategy for solving the emerging
problems. A comparison between various types of gear faults is also provided. Different ways of diagnosing faults are discussed,
based on the advantages and disadvantages of the methods. The main objective of this study is to provide a complete overview of

the mechanical areas where disturbances occur, their diagnosing, and methods of their elimination.

Keywords: electrical drives, mechatronics system control, robotic control, diagnosis.

1. INTRODUCTION

Industrial development and energy crisis are two aspects
linked to the development of modern manufacturing.
Increasing industrial power leads to the design and
construction of more complicated mechanisms and in-
creased consumption of energy resources.

Nowadays, no manufacturing is complete without the
implementation of machines and special mechanisms. The
use of robots, manipulators, and other autonomous de-
vices ensures greater productivity for enterprises and
reduces the risk of defective products. Smooth and ac-
curate movements of robotic manipulators lead to the
desired result with minimal loss of material and energy
resources [1,2].

However, like any other system, robotic manipulators
are subject to wear, namely the parts in which the force is
transmitted from the motor that controls the movement of

* Corresponding author, siaaut@taltech.ee

the robot to various mechanical parts using different gears
[2,3]. Several types of transmissions are utilized for this
purpose, each of which is used under certain conditions,
to perform specific tasks. The wear of mechanical as-
semblies leads to the appearance of nonlinearities in the
operation of robotic manipulators, reducing their technical
capabilities [4]. As a consequence, there is a violation of
the technological process, defective products, and nu-
merous increased resource costs [5].

Diagnostics of the overall performance of industrial
robots is the main task for the standard operation of
mechanisms. Diagnostics should be carried out for dif-
ferent systems [1,6,7]:

- control system;

- power electronics;

- motors;

- mechanical system.

Diagnosis of the control system and power electronics
involves diagnostic sensors used to obtain feedback from
a robot and for more effective control mechanisms. This
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Fig. 1. Sketches of industrial robotic manipulators: (a) robotic arm manipulator, (b) telpher manipulator, (c) Cartesian robotic

manipulator. Mechanical gear joints are areas marked by red lines.

type of diagnosis of the control system also includes
checking of control algorithms and programs during the
operation of an industrial robot [1,6,7].

The main research questions of this article are:

- definition of the character of gear faults;

- overview of diagnostic methods;

- showing the influence of the faults of different mech-

anical parts on each other.

This review is organized as follows. Section 2
describes industrial robots, motor types used to move parts
of a robot, and how to transmit force to other parts of the
robot. Section 3 specifies the types of gears that transmit
force from the motor to other parts of the mechanisms.
For every type of gear, the advantages and disadvantages
are given, and problem areas are indicated. A comparison
of gears based on common properties is also provided.
Section 4 summarizes the types of diagnostic and monitor-
ing methods related to transmission problems. The Hirata
Cartesian robot is used as an example for comparing each
type of diagnostic method.

Diagnosis of the motor and mechanical components
as well as mapping of the most probable damage minimize
the risks associated with malfunctioning of mechanisms
and prevent serious damage. Moreover, diagnostics of
different types of gears allows to understand how to
eliminate emerging problems with minimal cost, which is
an essential criterion in the context of globally developing
production and caring for the environment [1,6,7]. This
article is a general overview of gears used for industrial
robots and the related faults. The basic types of industrial
robots presented in this article, which have the same
transmission as the Hirata Cartesian robot, will be the
main subject of future research.

2. ROBOTS AND MOTORS

Industrial robots cover an essential segment of industry
[1], they are used to perform work that poses a threat to
human life and health [8,9]. Any industrial robot consists
of mechanical parts to perform specific functions, such as
moving weights or the structure of the robot, or grabbing
details or parts of another mechanism. Each part is rep-
resented by a specific gear, specifically suited for the
particular type of operation [1,10].

For a more detailed consideration of transmission
types, an example of some of the main robotic manipu-
lators is presented in Fig. 1 [8]. The robotic arm manipu-
lator (Fig. 1a) is designed to move small details during the
technological process and assemble other mechanisms.
The telpher manipulator (Fig. 1b) is an industrial ma-
nipulator designed for operation with special attachments
and devices as well as for moving heavy cargo along the
technological line. The Cartesian robot (Fig. 1c) is de-
signed for operation in technological processes of as-
sembling and installing, usually applied in electronics
manufacturing and conveyor systems [11,12].

As can be seen from the literature, servo drives and
stepper motor drives are the most commonly used pro-
pulsion devices that satisfy high-performance require-
ments and allow the robot to move smoothly with precise
accuracy. Both motor types have their advantages and
disadvantages, and a comparative analysis from the point
of view of the dedicated application (robotic manipulator)
is presented in Table 1 [13-16].

As seen from the comparison, the servo motor is the
best drive element in terms of backlash presence, the
range of power used, and wear. However, its control
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Table 1. Comparison of servo and stepper motors for a robotic manipulator

Criteria |

Servo motor [

Stepper motor

Requirements for the motor in terms
of power and the type of gearbox

not needed

needed

Accuracy high accuracy high accuracy
Backlash/slippage absent present

Wear low degree of wear medium degree of wear
Immediate detection of failure present present

Need for additional sensors needed for normal operation needed to simply improve normal operation
Complexity of the control system complex not complex

Fixing of the motor shaft needed not needed

Cost high price low price

system is more complex than that of the stepper motor,
and there is no holding torque. Therefore, several trans-
mission types are used for servos, mainly the worm gear
and the screw gear [16—-19].

The areas marked by red lines in Fig. 1 indicate mech-
anical gears. The main task is to transmit force from the
motor drive shaft to other parts of the robotic manipulator,
allowing independent control for its different parts.

As shown in Table 1, each motor type should use
additional sensors for higher operation accuracy. The number
of faults occurring during the motor’s operation is increas-
ing, which means that diagnosis of the robot’s operation
should be performed on the mechanical and electrical
systems. Therefore, diagnosis is further performed on con-
trol systems, power electronics, and the mechanical parts.

Faults occurring in the control system and power
electronics lead to increased product failure, breaking the
correct regime of operation, but do not allow the parts of
the robot to be destroyed through protecting the systems.

Damage to the mechanical system causes more
negative consequences because minor changes in smaller
mechanical parts lead to the nonlinear character of the
robot’s operation. The situation leads to an increased
consumption of energy resources and possible destruction
of critical mechanical parts of the robot, which will
require renovation and increase the consumption of ma-
terial resources.

3. FAULTS IN THE TYPES OF GEARS
3.1. Gear train

A gear train is a mechanism that has gears to transmit
force directly. It usually consists of two toothed wheels,
one of which is called a cogwheel with fewer teeth, the
other with more teeth is called a wheel [2,3,20]. A sketch
of a gear train is presented in Fig. 2. The problem areas of
the gear train (the possibility of jamming and overheating)
are highlighted in red.

Dynamic load zone

Heating and
jamming zone

Fig. 2. Faults of the gear train.

The main advantages of the gear train are high
efficiency, compactness, and high rotational speed, which
allows it to be used at high power [21-23]. On the other
hand, the disadvantages of the gear train which reduce the
scope of its application are noise, increased dynamic load,
frequent need for lubrication to avoid tooth jamming and
abrasion, transmission rigidity [21-23]. Gear drives are
mainly used for two purposes [24]: force transmission
between parallel shafts and conversion of translational
motion into rotary motion and vice versa. Therefore, those
types of gears are used in cases where translational and
rectilinear movement of a load or a high-power motor is
used, e.g. moving the structure of a robotic manipulator
along a technological line [25].

3.2. Belt gear

The belt gear is a mechanism that consists of at least two
pulleys, with a belt stretched between them. The belt gears
can be with or without teeth, depending on the load being
transferred [2,3,20]. A sketch of the belt gear is presented
in Fig. 3. The main failures that potentially affect belt gear
performance are slippage and overheating.

The advantages of belt gears are closely linked to their
disadvantages, e.g. belt slippage causes transmission
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zone

Fig. 3. Faults of the belt gear.

disruption and relieves shaft overload. Belt tension
makes the transmission operation quiet and smooth, but
it leads to additional heating. Some additional advan-
tages include low cost and minimal damage to the struc-
ture in the event of some belt failures [21,26,27].
Usually, the belt gear is used to transmit force from the
motor shaft to those parts of the mechanism that are in
continuous motion and employed for variable small and
medium loads. However, the belt gear is also used to
transmit tractive effort over long distances, e.g.
conveyor-type machines [28,29].

3.3. Worm gear

A sketch of the worm gear is presented in Fig. 4. Possible
failures of the worm gear are jamming, overheating, and
increased friction.

The worm gear is a mechanism that has a helical pair
with teeth usually located orthogonally to each other. In
the worm gear, the teeth of the worm slide over the teeth
of the wheel, which leads to certain restrictions on its
operation [2,3,20].

The advantages of the worm gear are smooth and quiet
operation, compactness, and high kinematic accuracy, as
well as the possibility of self-braking due to friction
[21,30,31]. The disadvantages of the worm gear are as-
sociated with the friction of the teeth against each other,
namely heating and low efficiency, the need to use anti-
friction materials, and jamming of the gear [21,30,31].
The significant performance characteristic of the worm
gear is its assembly accuracy, which helps to reduce the
chances of some imperfections and increases the service
life [20]. Worm gears are used for direct force trans-
mission, similar to the gear train, e.g. in industrial manipu-
lators [32,33].

(

Heating and

Fig. 4. Faults of the worm gear.

3.4. Chain gear

The chain gear is a mechanism that combines the gear
train and the belt gear. Instead of cogwheels and wheels,
sprockets are used, and instead of a belt, a chain is used
that meshes with the sprockets [2,3,34]. A sketch of the
chain gear is presented in Fig 5. The problem areas are
related to abrasion and wear.

Since the chain gear is a combination of the gear train
and the belt gear, its advantages are similar to those of
such types of transmissions, such as high efficiency, the
possibility of short-term overloads, the ability to transmit
force over long distances, and no tension due to the chain
engagement [21,35-37]. The disadvantages are similar
to these of the gear train — the need for lubrication, noise,
and additional dynamic load. The disadvantage of the
chain transmission is the wear and tear of the chain joints
[21,35,37]. Consequently, due to its design, the chain
gear can be used where using a gear train is not possible
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Fig. 5. Faults of the chain gear.

and the belt gear is not suitable for such operation
[2,38,39].

3.5. Analysis of a gear type based on the application
of the industrial robotic manipulator

Based on the above, each type of force transmission from
the motor to other parts of the robot is used for per-
forming specific tasks. It is necessary to consider sep-
arately each of the types for each system, and the ex-
pediency of using that particular transmission for the
assigned task. When developing mechanisms, several
criteria can be distinguished by which transmissions can
be compared and according to which a suitable trans-
mission can be chosen: compactness, power/area of ap-
plication, degree of wear, and the possibility of trans-
mitting force over long distances. A comparative analysis
based on the authors’ evaluation is presented in Fig. 6,
where “5” is the highest and “1” the lowest proximity to
the criterion.

As illustrated by the comparative diagram (Fig. 6),
each of the presented gears has several advantages over
the others in specific criteria, which allows one to select

5
g 4
-
é 3
= 2
Q
g 1
0
Compactness Power of
application

m Gear train  m Belt gear

the gear best suited for particular operating conditions.
However, the degree of wear of each gear is relatively
high. This is due to the constant friction of the gear parts
against each other, tension, and heating. Therefore, during
the operation of the mechanism, errors caused by the
degree of gear wear may occur. To prevent more damage
to the mechanism, it is necessary to diagnose the parts that
are subject to wear over time.

4. BEARING FAULTS

A bearing is a fundamental part of any gear or motor. A
bigger part of the dynamic load is directly transferred to
the bearing during the operating time of the motor. This
means that many faults occur for different reasons, such
as overload, friction, current on the shaft of the motor,
damage due to improper lubrication, etc. [40]. As seen in
Fig. 7, the following types of bearing damage occur most
frequently [41]:

- material wear,

- cracks due to the wrong emplacement,

- friction due to insufficient lubrication,

- damage due to shaft current.

Degree of wear Distance

Worm gear m Chain gear

Fig. 6. Comparative analysis of gear types for industrial robotic manipulators.
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Fig. 7. Damage types of bearings: (a) material wear and friction due to insufficient lubrication, (b) crack due to the wrong
emplacement, (c) pitting due to shaft current. The highlighted zones indicate the zones of increased friction.

Wear in the bearing usually occurs due to cyclic oper-
ation of the mechanism and when the motor is operating
at different high speeds [42]. Overload occurs during the
motor’s operation in a stressed situation for the bearing,
for example, as a result of additional tension or friction
damage on the bearing surfaces. This damage causes
unwanted vibration and increases the dynamic load on the
motor shaft [43].

Wrong emplacement leads to an unequal load on the
bearing and, as a result, an additional dynamic load on
different areas. In this case, the bearing should be properly
installed [44]. Before the installation it is required to check
the shaft of the motor and the mounting surface of the
bearing. If it is not done, it should be ensured that the
bearing is mounted properly as its damage can lead to the
destruction of the motor shaft or the different mechanisms
connected with the shaft [43].

The latter type of fault can be caused by current in the
motor. In this case, frosting or pitting take place on the
surface of the bearing. As a result, the motor operation has
nonlinear character [43]. No type of damage can be found
without special devices, but this minor damage leads to
bad faults in the operation of the mechanism. In this case,
every damage should be diagnosed and steps should be
taken to repair it [45].

5. METHODS OF DIAGNOSIS

It is essential to predict damage before starting work on
an industrial robot. The performance, accuracy, and

energy efficiency depend on the overall condition of the
device. Even a minor deviation from the standard oper-
ation of one part of the mechanisms over time can have
serious consequences [6,46]. Damage to transmissions is
of difficult nature. There are spalls of a cogwheel, over-
friction of gear parts, overheating and failure of the
wheels, and breakage of the belt or chain, caused by
tension or over-wear of the elements [7,40].

Various types of fault prediction and diagnostic
methods are used to obtain information about the damage.
Several types of diagnostics are used in practice, mainly
[40,47]:

- Fast Fourier Transform (FFT),

- Short-Time Fourier Transform (STFT),

- Continuous Wavelet Transform (CWT),

- Advanced Diagnostic Techniques (ADT).

5.1. Fast Fourier Transform

The FFT is used to transform the input signal into different
types of spectral analysis. This transformation provides
information about the “degree of presence” of this or that
frequency in the spectrum of the signal [48]. The FFT is
used for stationary signals that do not change their spectral
parts during that time. The pros and cons of the FFT
analysis are schematically shown in Fig. 8.

The FFT analysis has several advantages. Firstly, it
allows to reduce the number of calculations needed for the
analysis of the input signal. Secondly, the FFT provides a
prediction of the result, obtaining the result of the spectral
analysis of the entire time axis. Thirdly, it also has a
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Fig. 8. Advantages and disadvantages of FFT.

simple structure without additional equations for the
stationary signal [49,50].

At the same time, the following disadvantages need to
be discussed. In the case of the FFT, it is impossible to
analyze non-stationary signals as these signals have a
complex structure with a different set of frequencies,
which allows additional spectra to occur in the spectral
analysis of the FFT. Furthermore, it is necessary to use a
window weighting function (o) for the waveform to
compensate for spectral dissipation, reducing the loss of
information [51-54].

5.2. Short-Time Fourier Transform

The STET can be used for non-stationary signals, and in
this case the STFT is a function of two variables — time
and frequency [55]. Non-stationary signals have a few
frequencies for problem analysis, but the STFT takes a
small amount of time, providing thus a good basis for the
signal analysis. The pros and cons of the STFT analysis
are schematically shown in Fig 9.

Unlike the FFT, the frequency-time characteristic is
obtained. Unfortunately, the STFT has a significant
disadvantage, which is related to the Heisenberg’s prin-
ciple [56,57]. This principle is based on two character-
istics (momentum and position) of a point in an area that
cannot be found with the same accuracy. If the STFT is
used, a signal will disperse along one axis, narrowly
localized along the other axis, and vice versa [58]. So, if
a wide window is taken to localize a signal, poor res-

Fig. 9. Advantages and disadvantages of STFT.

olution in time will be obtained, and in the other case, if a
narrow window is taken, the uncertainty in frequency will
increase [49,50]. Based on the above, to find a better
solution to this problem, other diagnostic methods for
damage should be used.

5.3. Continuous Wavelet Transform

The CWT is an alternative to the STFT because the CWT
enables to solve problems with poor resolutions in time
and frequency [59]. Usually, the CWT is used for signals
that have a short-time high frequency and fewer long-
term frequency components [60]. The principle of the
CWT is similar to the STFT but it has two crucial differ-
ences [61-63]:

- CWT does not use the Fourier Transform for weighted

signals;

- CWT width changes for each part of the signal, allow-

ing a better spectral analysis.

The main benefits and drawbacks of the Wavelet
Transform are shown in Fig. 10.

In practice, many signals have the same structure that
allows the use of the CWT for a spectral analysis [64]. It
means that by using the CWT, good resolution in time and
poor resolution in frequency are obtained for a high-
frequency area, and vice versa for an area with lower
frequency [49,50]. In this case, the CWT has a few dis-
advantages such as an increased number of calculations
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Fig. 10. Advantages and disadvantages of CWT.

for signal diagnosis, and as a consequence, necessary com-
putational power is also increasing. Continuous Wavelet
Transform is used in different fields: acoustics, medicine,
industrial attachments, etc. Thanks to the CWT, various
anomalies in the operation of different mechanisms can
be detected [65].

5.4. Advanced Diagnostic Techniques

Advanced Diagnostic Techniques are modern methods
that use artificial intelligence for faults diagnostics. These
methods can include such algorithms as fuzzy logic (FL),
machine learning (ML), and other methods to find slight
deviations from the normal condition in mechanical and
electrical parts of the robotic manipulator [66—69].

Fuzzy logic is used for the diagnosis of faults in gears
or bearings. Fuzzy logic methods allow to adapt each
control system to different failures [70-72] and to send a
report about minor deviations from the normal operation
of a mechanism [73-76]. At the same time, machine learn-
ing methods allow us to teach a control system that
defines deviations and faults, the malfunctions of which
lead to possible damage of the mechanism [77,78]. After
a few tests the ML is able to find different types of
faults without human control and perform operations for
minimizing the consequences [79-81].

The main benefits and drawbacks of the above-
mentioned techniques are shown in Fig. 11.

These methods have a complicated structure and many
calculations but they have good accuracy and a low
probability of errors. Moreover, the advanced techniques

Fig. 11. Advantages and disadvantages of ADT.

can be used for different signals, but additional sensors
should be installed [82-86].

6. COMPARISON OF DIAGNOSTIC METHODS
BY THE EXAMPLE OF THE HIRATA
CARTESIAN ROBOT

Each of the above methods can be applied to different
conditions. It depends on the type of output signals, the
construction of the robot, the type of operation, etc. To
compare the diagnostic methods, the Hirata Cartesian
robot is taken as an example. This robot consists of three
orthogonal axes that are connected with different gears
(belt gear and worm gear highlighted in Fig. 12). The
driving force is transmitted by the belt gear, the worm
gear, and the gear train to move different parts of the
robot. It means that any fault that can occur during the
robot’s operation leads to different types of disturbances,
such as unwanted vibrations, increased friction, wear of
the parts of the robot, and other disturbances. One can
conclude that different types of signals are emitted in the
case of damaged gears or disturbances of operating
sensors [87]. The main aspects of the diagnostics of the
Hirata Cartesian robot are presented in Table 2.

The comparison of the diagnostic methods is based on
the advantages and disadvantages of the presented
methods and is recommendatory in nature, based on the
opinion of the authors.
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Fig. 12. Hirata Cartesian robot: (a) view with the worm gear, (b) view with the belt gear.

Table 2. Aspects of diagnostics

Aspect

Value

Model of the robot

Diagnosis of the transmission
Parameters of the transmission:
- diameter of the driving pulley;
- diameter of the driven pulley;
- length of the belt;

- distance between centers.
Working conditions

Each of the above types of diagnostic methods can be
used for finding and describing faults that can occur
during the operation of the robot. Nevertheless, the CWT
and ADT methods can work and perform the spectral
analysis of signals without noise and do not depend on the
type of signals. At present, the FFT and the STFT have a
simple structure, and these methods do not need additional
sensors and computational power.

Taking the above into account, it can be concluded that
each type of diagnostic method can mark different types
of damage and faults during the robot’s operation,
depending on the aims that are set. The FFT and STFT
methods can be used for fast and straightforward marking
when we have stationary signals or signals with a small
amount of noise. The CWT and ADT methods can be used
for more complicated faults, where we should mark
different types of signals without any errors.

When examining Hirata Cartesian robots and which
damage and faults can occur during operation, better
methods for diagnosing faults in the control system of the
robot and in the complex mechanical parts would be the
CWT and the ADT. As the structure of the robot includes

CRWQ-H2010APHT-11.5-7-2LL-B
Toothed belt transmission

75 mm
150 mm
500 mm
200 mm
Soft, dust-free area, motors without load

a few types of gears (belt gear and worm gear) and a few
ways to move each part of the robot, which leads to sto-
chastic disturbances, the simple and fast FFT or STFT will
not solve the task of diagnosing damage and faults in this
case, but could be used for diagnosing simple mechanical
faults such as damage to the tooth of the belt or pulleys.
For modeling artificial damage to a mechanical part
of the robot, the timing belt gear was chosen as an object.
This transmission has second-order aperiodic transfer

function:
s

WO = ar6s+a M
2
G, = r;_zz (pArgra; + qpb), (2)
_ Tn1
Gl - Pu(ll * 103 — 32 * 1027'[7‘"1)’ (3)
G = bE,, “4)

where 7y, is the outer diameter of the driven pulley;
7,2 denote the inner radius of the driving and driven
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Fig. 13. Spectral analysis of the damaged toothed pulley of the belt gear in the Hirata Cartesian robot: (a) FFT method, (b) CWT

method.

pulleys, respectively; p is the density of the belt, 4
represents the section of the belt; F, denotes the beginning
tension of the belt (table value); b is the width of the belt;
qnm refers to the mass of 1 meter of the belt with a width
of 1 mm (table value); a; is the angle of the belt girth at
the driven pulley.

This transfer function was transformed into state-
space, the response of the timing belt transmission to the
pulley damage and the spectral analysis of this damage is
shown in Fig. 13a,b.

The first graph is a spectral analysis of the output
signal of the toothed belt gear by the FFT method
presented in Fig. 13a. The graph shows the normal oper-
ation of belt transmission (red line) and the fully noisy
output signal which occurred after disturbances (blue
line). These disturbances occur during a transient process,
for example, in the case of pulley or bearing damage or
displacement of center pulleys. Figure 13b shows the
diagnosis by the CWT method. The CWT method is a
more presentable method than the FFT. In this case,
additional information is provided about the faults. Based
on these methods, it can be suggested which types of
faults could occur in toothed belt transmission. This
suggestion is based on the information about the character
of faults. Each fault has a specific harmonic with definite
frequency.

From a diagnostic point of view, the main problems of
the robot and its own transmission are related to non-
constant load, shift operation mode, and placement
difficulty of additional sensors. In addition, working
conditions must be considered. For example, if the robot

is working in a dirty room, slippage of the belt may occur.
In this case, it is difficult to isolate additional noise
presented in the output signal.

CONCLUSIONS

Industrial robots have a complex mechanical structure, the
joints of the robot parts, represented by transmissions that
transmit force from the motor to other parts of the robot,
are subject to various types of damage, such as friction,
heating, wear, and others. The main aim of this research
is to make an analysis of the transmission faults and
diagnostic methods, to provide a comparison of trans-
mission advantages of industrial robots and to suggest
different diagnostic methods for improving the efficient
operation of the mechanisms. The methods presented in
this article for diagnosing the damage and identifying
faults allow timely detection of a malfunction in the
robot’s operation, thereby preventing considerable damage.
The article shows the possibility of using different
diagnostic methods for the Hirata Cartesian robot, based
on the opinion of the authors.

For future work, models of all the gears that are part
of the robot will be developed and the necessary ex-
periments will be carried out. The Hirata Cartesian robot
has many mechanical parts represented by transmissions,
which makes it possible to simulate various damage cases
and understand which diagnostic method is the best for
each transmission. The research is aimed at diagnos-
tics, selecting the best control mode, and developing a
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control system that provides the required level of robotic
control.
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Toostuslike kartesiaanrobotite véimalike rikete ja tuvastusmeetodite analiiiis

Siarhei Autsou, Anton Rassdlkin, Toomas Vaimann ja Karolina Kudelina

Kaesolev artikkel kirjeldab probleeme, mis kerkivad esile seoses roboti manipulaatori juhtimisega. Nimetatud mured
tekivad eri tiitipi tilekannete kulumisest (esitletud juhtudel rihm- ja tiguiilekanne), nagu ka artiklis on kirjeldatud. Oluline
on mirkida, et sellised kdrvalekalded normaaltalitluselt on téhtis aegsasti tuvastada ning leida ka sobivad vdoimalused
nende korvaldamiseks, arvestades ressursi- ja kulutdhusust. Artikkel kirjeldab eri tiitipi roboteid (manipulaator, telfer,
kartesiaanrobot), millele tuginedes antakse iilevaade vdimalikest esinevatest riketest, mehhaanilise siisteemi kohanda-
misest ning tulenevalt sellest ka probleemide lahendamise strateegiatest. Lisaks esitatakse eri tiiiipi iilekannete rikete
omavaheline vrdlus ning kirjeldatakse rikete tuvastamise meetodeid tuginedes nende eelistele ja puudustele. Uurimuse
peamine eesmark on esitada téielik iilevaade mehhaanika valdkondadest, kus nimetatud korvalekalded robotite puhul
esinevad, ja ndidata voimalikke rikketuvastuse meetodeid ning voimalusi rikete kdrvaldamiseks.
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Abstract—Using machine learning or artificial intelligence
enhances the quality of control and the degree of diagnostics of
mechanical system states. However, in cases of insufficient data,
these methods cannot fully realize their potential. In such
instances, fuzzy logic algorithms can serve as a complete
alternative to these methods. Fuzzy logic does not require the
calculation of a precise mathematical model. In case of
unexpected faults, some data can be lost, or additional noise
appears, which can lead to destabilization of the control system.
Working with fuzzy sets and linguistic variables allows the
construction of a high-level control and diagnostic system. This
article explores the possibility of using a fuzzy logic algorithm to
create a diagnostic system for mechanical damage based on a
Cartesian robot and underscores the importance of this method
in addressing such issues. The article provides a description of
the method and its working principles, along with conclusions
and results of damage detection in the robot.

Keywords—Gears, Fault diagnosis, Fuzzy logic, Robot
control, Vibration measurement

[. INTRODUCTION

The development of artificial intelligence [1] and machine
learning leads [2], [3] to the emergence of new technologies,
control systems, and diagnostic methods [4]. The
development of these technologies has significantly impacted
the diagnosis of mechanical faults across various industrial
sectors [5].

Diagnosing  mechanical damage and managing
mechanisms under these conditions are crucial for ensuring
the reliability and performance of robotic systems [4].
Methods such as vibration or acoustic analysis [6], [7] are
employed to detect faults like gear wear [8], bearing damage
[9], pulley misalignment [10], and more. It’s important to
notice, that diagnosing these kinds of faults in the gearbox of
the mechanisms, is of significant meaning. Even smaller
deviations in the structure of the transmission can lead to
seriously consequences.

Integrating artificial intelligence and machine learning
into these methods enhances diagnostic efficiency by enabling
the analysis of large amounts of data [11]. However, achieving
the desired results requires collecting extensive datasets and

The research leading to these results received funding from the
PSG453, 2020-2024, “Digital twin for propulsion drive of autonomous
electric vehicle”.

performing thorough processing and analysis, as well as
developing precise mathematical models to improve accuracy
and efficiency [12]. Due to this requirement, there are
challenges in defining the data, and assessing the damage in
mechanical systems becomes logistically complex without
data loss. Consequently, machine learning faces difficulties in
solving problems with insufficient data, which hinders making
accurate decisions and predictions [13].

In these cases, the fuzzy logic algorithm stands out with its
uniqueness. Operating based on fuzzy rules and sets, fuzzy
logic allows for solving numerous problems and tasks in the
field of uncertain and fuzzy data [14]. Research on fault
management and diagnostics based on fuzzy logic principles
has provided a powerful set of tools for solving complex and
non-standard problems that do not fit within the confines of
traditional precise mathematical models [15], [16]. The
fundamental principle of fuzzy logic enables the transfer of
human observations directly into control without prior
preparation and tuning of mechanism behavior models [16],
[17].

If, in real conditions, a certain volume of data may be lost
or not obtained, for control and diagnostic algorithms based
on fuzzy logic, this is not a problem. The ability to operate
with fuzzy sets suggests new possibilities, solution paths, and
perspectives for modeling real conditions. The fuzzy logic
method easily adapts to the most unpredictable scenarios and
non-standard conditions [18], [19].

The main idea of the fuzzy logic algorithm lies in the use
of fuzzy "if-then" rules, expressing decision-making logic
based on input data. This construction allows for building a
broad control system and ensuring optimal performance in
various scenarios. Based on a set of rules, fuzzy logic also
allows for identifying and analyzing faults in mechanisms
based on fuzzy data [20], [21].

Despite modern robotic systems having their diagnostic
system, which evaluates the robot's condition in control and
power circuits, it does not account for possible faults in the
mechanical part of the robot, which can lead to significant
consequences [22]. Mechanical breakdowns occur due to
prolonged exposure to negative factors on parts of the robot,
resulting in undesirable deviations in performance and
efficiency, such as the occurrence of unwanted vibrations
leading to a loss of precision in robot positioning [23]. The
main aim of the work is to show fuzzy logic-based control and
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the diagnostic algorithm will identify the fault and reduce the
risks of performance loss, smoothing the consequences of
damage. Analysis of the vibrational signal spectrum allows for
assessing the robot's condition and identifying the necessary
fuzzy logic rules to create a control and diagnostic algorithm
for mechanical damage.

In the second chapter of the article, the most common
mechanical damages in robotic system transmissions are
discussed, along with the consequences of these damages. The
third chapter briefly describes the principles of fuzzy logic and
introduces the advantages of this method. The fourth chapter
presents experimental results on the development and
implementation of a fuzzy logic algorithm for detecting
mechanical damages based on the Hirata cartesian robot.

II. GEARBOX FAULTS

The subject of the study is the transmission of the Hirata
cartesian robot, which consists of two parts: a tooth belt
transmission and a screw transmission. Each of these types of
transmission has its advantages and disadvantages, which
contribute to the robot's operation [24], [25].

The tooth belt transmission has advantages in maintaining
a constant rotational speed and transmission ratio. In the
cartesian robot, the transmission is reduced, allowing a
decrease in the speed of the robot's working element and an
increase in torque, thereby improving the smoothness of
operation. The disadvantage of the transmission is the need for
belt tensioning and the alignment of transmission pulleys [26],
[27].

The screw transmission has high precision, high inertia,
and smooth operation. These advantages help reduce the risks
of unwanted vibrations and ensure smooth movement of the
robot's working element. Disadvantages of the transmission
include wear of its parts, the possibility of gear engagement,
and excessive heating in the absence of sufficient lubrication
[28], [29].

Based on the gearbox benefits and limitations of the Hirata
cartesian robot can be concluded two main types of
mechanical faults are belt over tension of the tooth belt
transmission and heating of the screw transmission. The
consequences of these faults are presented in Fig. 1 and Fig. 2.

Fig. 1. Example of the bel over tension of the tooth belt transmission.

Belt over tension occurs in case of displacement of pulleys
along the vertical axis relative to each other. Usually, this
mechanical fault appears under the influence of the wrong
setting way of the transmission, entry of a foreign body inside
of the gearbox, or wearing of the pulley material [30].

This fault leads to additional vibrations at the transient
points of the robot. These points are points where the
movement direction of the robot is changed. In this case, the
whole construction of the robot undergoes high loads because
the amplitude of the vibration is high [31].

Fig. 2. Example of the heated worm of the screw transmission.

Heating occurs in no lubrication case or lubricant
contamination. This fault appears in cases of prolonged
operation under high loads and a contaminated environment,
leading to the drying out and/or contamination of the lubricant
inside the transmission. Also, contamination of the lubricant
can lead to jamming of the transmission. As a result, there is
significant wear on transmission parts and, consequently,
loads increase on the robot's structure. At the same time,
unwanted low-amplitude vibrations occur, which degrade the
operational characteristics of the mechanism [32], [33].

III. Fuzzy LOGIC ALGORITHM

Fuzzy logic is a method of processing data based on the
degree of membership of an input variable to a set of fuzzy
sets. This method allows working with uncertain or
incomplete data, enabling the identification of necessary
control actions. Fuzzy logic is used in various fields, such as
pattern recognition, control of complex systems, etc., making
it an acknowledged universal method for control and
diagnostics. The block scheme of the fuzzy logic algorithm is
presented in Fig. 3.
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Fig. 3. Description of the control principle of fuzzy logic.

The fuzzy logic algorithm comprises several stages:

1. Definition of linguistic variables: Determining
parameters based on which descriptions of input and output
variables will be constructed. Examples of linguistic variables
include "temperature" or "speed." Then, values for linguistic
variables are defined; for instance, for the variable
"temperature," values might be "cold" and "hot," while for the
variable "speed," values could be defined as "slow" and "fast."

2. Definition of fuzzy sets: Each linguistic variable and its
value are defined by a fuzzy set, which, in turn, is described
by a membership function. The membership function can take
various forms and types, such as triangular, trapezoidal,
Gaussian, etc. The advantage of fuzzy logic lies in the
presence of fuzzy sets, allowing the avoidance of finding an
exact mathematical model for the mechanism or process.
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3. Fuzzification: Matching the input variable and the
membership function to obtain a fuzzy output, ie.,
determining the degree of membership of the input variable to
a specific fuzzy set.

4. Description of the fuzzy rule base: Formulation of fuzzy
rules, which determine the algorithm's actions based on the
combination of input variables. Rules are established based on
linguistic variables and sets. The combination of input and
output values is also based on the logic of AND/OR, enabling
the grouping of fuzzy logic rules into various necessary
categories.

5. Defuzzification: The reverse process of fuzzification,
allowing for obtaining the degree of membership of the output
parameter based on the fuzzy rule base and converting it into
a numerical value used subsequently for creating control
actions.

IV. EXPERIMENTAL RESULTS

To obtain data suitable for building a control and
diagnostic system based on the principles of fuzzy logic, a
series of experiments were conducted to capture the
vibrational signals of the robot during its operational tasks.
The test bench for conducting these experiments is shown in
Fig. 4.

Hirata
cartesian
robot

Fig. 4. Experimental test bench.

The laboratory setup consists of a Cartesian robot, a data
acquisition system, and three vibration sensors installed on
top, and bottom of the frame, and on the robot's working tool.
These sensors measure the amplitude of the robot's vibrations
along three axes. Reference and error signals were measured
along the X and Y axes of the robot; measurements along the
Z-axis were not conducted due to the robot's construction,
which has rigid mounting along this axis, resulting in
negligible vibrational oscillations. The signals from the
vibration sensors are transmitted to the data acquisition system
provided by Dewetron. Subsequently, the collected data
undergoes further processing and analysis using the fast
Fourier transform (FFT).

The vibration signals are measured by accelerometers of
DIS QG40N-series with the next characteristics: three ways of

measurement by X, Y, Z axes; measurement range is +4g;
output refresh rate is 3ms; resolution is 4 mg; output signal 0.5
— 4.5 V. These characteristics allow to get enough data for
creating fuzzy logic algorithm.

A. Diagnosis Results

Experimental data were obtained in two directions. The
first direction involved determining the belt over tension in the
tooth belt transmission, while the second direction focused on
identifying the worm heating in the screw transmission. Both
errors were artificially induced: in the first case, the pulleys
were misaligned relative to the horizontal axis, and in the
second case, part of the lubricant was removed from the
transmission worm gear to simulate the effects of heating.

Considering that during the robot's operation, its inherent
oscillation amplitude can reach 0.3 g, it is important to also
determine the frequency of these oscillations. Each part of the
robot's transmission has its frequency of oscillations and based
on the obtained information about the amplitude and
frequency, the presence of mechanical damage can be
determined. Therefore, spectral analysis of signals from
vibration sensors is conducted to identify any faults. The
spectral analysis is also presented on a logarithmic scale to
filter out unwanted noise and to detect changes in signals, as
the data range is sufficiently large.

The diagnostic results for belt over tension are presented
in [26], [31], [34]. The results of spectral analysis for worm
heating along the X and Y axes are presented in Fig. 5 and
Fig. 6.

r—iR;:fcrcnce si gT i
[—Faulty signal

o

Amplitude, g
=

30 40 50 60 70
Frequency, Hz

3

Amplitude, g
=

0 100 200 300 400 500
Frequency, Hz

Fig. 5. Signal spectrum analysis of vibration sensor by X-axis.
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As seen from the figure two types of signals are presented:
the reference signal and the faulty signal. Upon close
comparison of the signals, it is evident that the faulty signal
contains a significant number of unwanted frequencies and
amplitudes. Extra stochastic noise has been filtered out with
the help of two other vibration sensors, that are mounted on
the top and bottom of the test bench, to eliminate its influence
on the assessment of mechanical damage presence.

Based on the experimental results, it can be assumed that
the primary frequencies of the transmission fall within the
range of 50-150 Hz. This implies that the presence of other
frequencies is a clear indication of mechanical damage. Worm
heating in the screw transmission, in the absence of an
adequate amount of lubrication, leads to the emergence of
additional frequencies within the range of 200-450 Hz, which
is traced in the spectral analysis.

To assess transmission damage, it is also essential to
monitor the amplitude of vibrations, ensuring it does not
exceed the nominal value. That is, if there is a high amplitude
of oscillation within the frequency range of 50-150 Hz, it may
also indicate the presence of damage.

—Reference signal||
—Faulty signal

30 40 50 60 70
Frequency, Hz

—Reference signal '
—Faulty signal J

Amplitude, g

0 100 200 300
Frequency, Hz

Fig. 6. Signal spectrum analysis of vibration sensor by Y-axis.

The spectral analysis along the Y-axis has a similar
appearance to that along the X-axis, confirming the validity of
the assumption that the occurrence of additional frequencies
in the range of 200-450 Hz is indicative of overheating of the
worm gear transmission in the absence or contamination of
lubrication.

These conclusions form the basis for developing a fuzzy
logic algorithm to predict the occurrence of mechanical
damage in robot transmissions. It is important to note that to
construct a fuzzy logic algorithm, it is necessary to determine
the discrepancies in frequencies and vibration amplitudes. In
this context, the method used to analyze the vibration signal is
not crucial for building the fuzzy rule base.

B. Fuzzy logic algorithm results

The main aim of the developing the fuzzy logic algorithm
is to create the control and diagnosis system, that will allow
continue and finish the robot work operations in the conditions
of the mechanical gearbox faults. For this purpose, reference
and faulty frequencies of the gearbox and amplitude of the
vibrations are determined, and based on it create fuzzy sets
and rules for control system. Based on the above information
linguistic variables, fuzzy sets, and fuzzy rule base can be
determined. For linguistic variables input vibration amplitude,
vibration frequency, and diapason of vibration frequency are
chosen. For linguistic variables output speed, torque,
acceleration, and fault type are chosen.

This method allows don’t use big number of the data or
exact mathematical model. In this case, the control and
diagnosis system will be more adaptive and will copy the
human logic which leads to a fairly quick and easy setup of
the algorithm.

However, this work will consider modeling results related
to diagnosis and determining of mechanical fault type in the
gearbox. In this case, the scheme of the fuzzy logic algorithm
is presented in Fig. 7.
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Fig. 7. Fuzzy logic algorithm designer scheme.

Input variables “Amplitude” and “Frequency Limits” are
used to control the speed, torque, and acceleration of robot
servomotors. Input variables “Frequency Overtension”,
“Frequency Heating”, and “Fault Amplitude” are used for the
diagnosis of faults in the gearbox. The fuzzy sets for variables
“Frequency Heating”, “Fault Amplitude” and “Fault Type”
are presented in Fig. 8, Fig. 9, and Fig. 10.

The values of the input variables for the membership
functions were selected to correspond to the nominal
operating conditions of the robot. Specifically, during the
experiment, it was established that the reference transmission
frequencies of the robot are 50, 100, and 150 Hz. Therefore,
other frequencies that arise during operation indicate the
presence of damage.

It is also important to note that the robot's vibration
amplitude should not exceed 0.3g. However, if low vibration
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is observed at high frequency, there is already a probability of
damage occurring. Thus, the membership functions form a set
of rules that define the algorithm for diagnosing damage.
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Fig. 8. Frequency heating fuzzy set.
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Fig. 10. Fault type degree fuzzy set.

As seen from Figures for inputs, variables are F200, F250,
F300, F350, F400, and F450 — respectively vibration
frequency for 200, 250, 300, 350,400, and 450 Hz; FAL — low
fault amplitude of the vibration, FAH - high fault amplitude of
the vibration. For output, variables are “Overtension”,
“Heating”, and “Normal” — fault detection degree.

Based on the fuzzy rule base the degree of presence
heating in the gearbox can be displayed. The result is
presented in Fig. 11.

S
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TR

S

Fault type degree, p.u.

Fig. 11. The degree of presence heating based on gearbox vibration
frequency.

For ease of assessment, the degree of detection of over-
tension and heating faults was taken as -1 and 1 respectively.
In the same vein, the degree of absence of failures is equated
to 0. The closer the output value is to the corresponding
magnitude, the higher the probability of the presence or
absence of transmission damage. As evident from the results
of modeling using the fuzzy logic algorithm, when assessing
the degree of transmission damage based on the frequency
spectrum of the vibration signal, it is possible to identify the
presence of damage in the transmission.

As seen in Fig. 11, the probability of damage detection
occurs after 200 Hz across the entire frequency spectrum.
However, it is worth noting that evaluating the presence of
damage solely based on frequencies is not precise, as it is also
necessary to consider the amplitude of the vibrations.
Therefore, in assessing the presence of heating fault frequency
in the screw transmission worm and vibration amplitudes, the
degree of damage presence will be significantly
supplemented. The result of modeling the fuzzy logic
algorithm for detecting heating damages in the robot's
transmission based on the frequency and amplitude of the
vibration signal is presented in Fig. 12.
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Fig. 12. The degree of presence heating based on gearbox vibration
amplitude and frequency.

Including vibration amplitude in the assessment of damage
allows for supplementing the result in such a way that even
with the smaller amplitude of vibrations in the frequency
spectrum of the heating fault, the algorithm will indicate the
potential presence of damage in the transmission. Thus, the
fuzzy logic algorithm enables the detection of damage in the
robot's transmission and helps eliminate the consequences of
their impact on the entire mechanism.

CONCLUSION

Based on the information provided, the conclusion can be
drawn that the analysis and diagnosis of mechanical faults in
the gearbox are being conducted using a combination of
frequency spectrum analysis and fuzzy logic algorithm. The
primary frequencies of the transmission are expected to fall
within the range of 50-150 Hz, and the presence of other
frequencies may indicate mechanical damage. Additional
frequencies in the range of 200-450 Hz, attributed to worm
heating in the screw transmission, are observed when there is
insufficient lubrication. Also, because of frequency evaluation
in the spectrum, it is possible to determine the presence of
other mechanical damages in the transmission without
obtaining a large volume of data, making the presented
method a universal way to detect faults.

To assess transmission damage, both frequency and
amplitude of vibrations are considered. The analysis involves
linguistic variables such as vibration amplitude, vibration
frequency, diapason of vibration frequency, output speed,
torque, acceleration, and fault type. The use of linguistic
variables allows for avoiding the use of a precise mathematical
model for the control and diagnosis of the transmission. Thus,
in the presence of new damages or deviations from the normal
operation of the transmission, new variables can be introduced
by observing its performance, and describing such behavior.
Therefore, a diagnostic system based on the fuzzy logic
algorithm can be easily upgraded without the need for
additional resources.

The results indicate that the algorithm can identify the
presence of damage in the transmission based on the
frequency spectrum of the vibration signal. However, it is
highlighted that evaluating damage solely based on

frequencies may lack precision, necessitating consideration of
vibration amplitudes as well. The inclusion of vibration
amplitude in the assessment allows for a more comprehensive
analysis, even detecting potential damage with smaller
amplitudes in the frequency spectrum associated with heating
faults. It is also worth noting that the closer the output signal
is to the specified value of the evaluation degree (in this work,
1), the higher the degree of damage. Thus, the diagnostic
system based on the fuzzy logic algorithm not only detects the
presence of faults in the transmission but also allows for a
qualitative assessment of the damage.

In summary, the fuzzy logic algorithm proves to be a
valuable tool for diagnosing and determining mechanical fault
types in the gearbox. The approach considers both frequency
and amplitude factors, contributing to a more accurate
assessment of transmission damage and aiding in mitigating
the consequences on the overall mechanism. For future work,
efforts will continue to enhance the fuzzy logic algorithm not
only for diagnosing faults but also for controlling the
transmission under damaged conditions. Additional
mechanical damages and the conditions of their occurrence
will be considered to supplement the algorithm. Also, the
validation of the algorithm for real object will consider.
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Abstract — Cartesian robots framework is a complex
mechanical structure that consists of gearboxes, joints, and
moving parts. The main problem with this structure is the
impossibility to monitor any faults in mechanical parts that have
occurred during work operations. An example of such a system,
the Hirata cartesian robot, is described in the paper. The fault
diagnosis system and main gearbox of the cartesian robot are
researched. This article shows the significance of fault diagnosis
in mechanical parts of industrial robots based on a
mathematical model and real experimental results. Belt tension
is the main fault considered in the article. For analysis of
additional vibrations, fast Fourier transform and continuous
wavelet transform are used. Based on spectrum analysis results,
conclusions are described of the possible consequences of the
presented fault.

Keywords— fault diagnosis, robot motion, manipulators,
gears, industrial robots

1. INTRODUCTION

Industrial robots (IRs) work with different devices and are
used for many technological processes, such as galvanic
processes, working with dangerous materials and others. Such
systems must have perfect accuracy and smooth motions for
achieving great work results. IRs are produced with sensors
for detection failures in control, power, motion, and other
subsystems [1], [2]. However, complex mechanical
transmissions generally do not allow installing sensors or
connecting them to joints, which are usually the weakest part
of any mechanical system. Small damages occur in joints and
influence the whole IR system [3], [4].

Fault diagnosis is a progressive way of improving the
quality, workability, and safety of other mechanisms and
devices [1], [5], [6]. Fault detection has proved efficient in
different systems such as power systems, control systems, and
mechanical and grab parts [7]-[9]. Each fault has a special
track and nature. Based on this information, we can trace other
damages until their origin and eliminate them [5], [8].

The failures in IRs mechanical parts are described in
different works [10]-[13]. There are pulley tooth cracks,
bearings faults, any rotation faults, etc. [10], [14], [15]. Failure
diagnosis is implemented by different methods, such as
random intuitive fuzzy decision [11], digital twin [12], or
artificial intelligent methods [13].

978-1-6654-8082-6/22/$31.00 ©2022 IEEE

Hirata cartesian robot (CR) is considered a case study in
this research. This kind of IR has a complex structure
consisting of axes connecting through gearboxes to each
other, as shown in Fig.l. The Hirata CR has gearboxes,
consisting of two transmissions: tooth belt transmission and
worm transmission. Based on the above, the fault detection
system in the mechanical parts of this CR should be improved,
as the existing diagnostic system in the CR does not allow the
diagnosis of emerging faults with desired precision.

This paper’s main contribution is to develop a
mathematical model of gearbox and analyze additional
vibration signals in case of occurring faults. The description
of these transmissions is presented in the paper. In the first
chapter, a description of Hirata CR and the fault detection
system of Hirata CR are presented. Also, the diagnosis
algorithm of the robot is described. The second chapter of the
paper describes a mathematical model of the gearbox based on
previous research. The experimental part and its results are
declared in the third chapter.

II. HIRATA CARTESIAN ROBOT

Hirata CR is used for work with special attachments, such
as electric, pneumatic and magnate grabs. This robot consists
of three orthogonal axes and four joints (two linear and two
rotation). The sketch of Hirata CR is presented in Fig. 1. The
figure shows that CR consists of three linear axes and one
rotating axis. Gearboxes are set along each axis and consist of
the worm gear and tooth belt gear. Grab is connected to the Z
and W axes for vertical and rotational movement.

Gearboxes
X-axis /
Y-axis |M2
M3
W-axis l Z-axis
™M) © Worm
gear
Tooth belt Grab
gear

Fig. 1. Sketch of the cartesian robot.
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Hirata CR has a few important benefits, which are:

- constant resolution for each axis;

- ability to move across set positions with high accuracy;
- robust structure and smooth moving.

These benefits lead to getting perfect results in positioning
and speed of motion. The main axis parameters of Hirata CR
are presented in Table 1 [16], [17]. Also, it should be noted
that the cartesian robot has a payload of about 5 kg.

TABLE L HIRATA CARTESIAN ROBOT PARAMETERS
Axis Maximal Stroke Position Motor power

speed (1/sec) (mm) error (mm) (W)

X 1500 400

1200 +0.02

Y 700 200
Z 1000 200 +0.01 100
w 1200° 540° +0.03 © 30

Failures, which the diagnosis system of Hirata CR can
detect, can be separated into two types. The first type of
failure, such as overrun, overload, and encoder error, leads to
an emergency stop. The second type of failure, such as
positioning and measurement errors, leads to the CR's non-
linear work. These errors are detected by comparing two
signals: the reference signal, which is set in the controller, and
the real-time output signal [17], [18].

The flow-chart of the diagnosis algorithm of Hirata CR is
presented in Fig. 2. The diagnosis system of the robot is
collected data for analysis first of all. After collection and
analysis, filtering and screening of noise occur. Next, faults
are identified and assigned a specific code. This code is
derived from displaying of teaching pedant.

> Nois'e

extraction

’
Coding and
selection

Data analysis i

o h
Data filter description
|

Fig. 2. Flow-shart diagnosis algorithm of the cartesian robot.

In this detection process, power and control faults can be
detected. Yet, the faults occur in mechanical parts of the Hirata
CR, such as in bearings, gearboxes and others, which cannot
be detected using the existing diagnostic system. This research
is aimed to improve this weak spot of the diagnostic system of
Hirata CR and show the influence of small faults on gearbox
operations.

III. DESCRIPTION AND MATHEMATICAL MODEL OF GEARBOX

A. Description of Main Gearbox

Hirata CR has three gearboxes. In this research, the main
gearbox on X-axis is described. This transmission consists of
two types of gear: tooth belt gear and worm gear. The first

type is used for constant gear ratio, and the second one is used
for quiet and smooth grab motion of Hirata CR.

The sketch of the main gearbox is presented in Fig. 3.

Pulleys

from
servodrive

Fig. 3. Sketch the cartesian robot's main gearbox, where red elements are
drive end parts, and blue elements are non-drive end parts.

The parameters of the gearbox, which are used for
calculating the mathematical model and describing the
transmission, are presented in Table 2 [16].

TABLE IL GEARBOX PARAMETERS
Gear type Tooth belt gear ‘Worm gear part
part
Name of parameter
Gear ratio 2 0,5
Length (mm) 525 1500
Diameter of drive end 30 20
element (mm)
Diameter of non-drive end 60 40
element (mm)
Lifetime (km) 51840

B. Mathematical Model of Gearbox

The mathematical model of the gearbox is presented as a
consistent transfer function of tooth belt gear and worm gear.
The common transfer function of the gearbox is as follows:

VVg(S) = Wtb(s) *ng(s) (1)
where the tooth belt gear transfer function is based on [19], [20]:

- )

As?+Bs+C

Wiy (s) =

and the worm gear transfer function is based on [21]-[23]:

D(s—woRy1)

ng (S) = S2+ES+F )
In the previous equations, variables are defined as:
2
A= zl_zz (pK1p202 + qmb) “

where 1y, 12 — outer and inner radiuses of the and non-drive
end pulley respectively, u — gear ratio, p — density of the belt,
K — section area of the belt, a> — the angle of belt girth, b —
width of the belt, qm — the mass of 1 m of the belt with width
1 mm (table value).

B=— ™m0 )

T Pu(1.1%¥103-3.2%1027ry1)

where P — the power of servomotor, ro1, rn1 — inner radiuses of
the drive end pulley, respectively.
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€ = bF, ©)

where Fy — initial tension of the belt (table value).

D = 2TRy (Wmax — Wo) 7
E = —2wyR, (8)
F= w(Z)R% + (woRy — “-)male)z )

where Ts — maximal worm gear force, @y, . — nominal and
maximal angular speed of worm, R — worm radius.

C. Gearbox Failures

In the gearbox of the CR, the following failures can occur
[24]-[27]: overheating of gearbox in connection parts; an
overload of gearbox in drive-end parts; jamming of gearbox
in worm part.

Overheating is justified by continuous transmission
operation under high loads, such as high moving speed and
short distances of moving [24], [26]. Overload is substantiated
by the additional load on the gearbox parts, such as high
tension of the belt and the additional load on grabs of the IR
[24], [26]. Jamming is probable in no lubrication case of worm
gear part, which results in additional friction of metal parts
between each other [27]. Overload faults are one of the most
dangerous failures for the CR. These damages lead to serious
consequences for the gearbox and CR as a whole. Overload
leads to expensive repair of the whole CR or different
mechanism elements. In this research, the level of belt tension
of the toothed belt and gear part is considered. Low belt
tension leads to a damper effect, but the slippage possibility is
increased at the same time. High tension leads to added
accuracy, but at the same time, additional load to gearbox
elements occurs.

IV. ANALYSIS OF ADDITIONAL VIBRATIONS

Analysis of additional vibrations has a significant
meaning. Small undesirable oscillations lead to metal fatigue,
interference and wrong results. Modelling the gearbox system
can reduce the possibility of vibrations occurrence, faults and
overload. The main aim of modelling is to predict, based on
results, when and where failures can occur. Results of the
gearbox modelling are presented in Fig. 4.
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Fig. 4. Results of gearbox modelling with additional vibration, where the
blue line — low belt tension (reference signal), the red line — high belt tension
(real-time output signal with over tension of the belt).

As seen from the modelling results, gearbox operation has
constant vibration. When the direction of rotation is changed
in the gearbox, additional vibration occurs. In the case of high
tension, overload with additional vibration is upper, then in
the case with low belt tension.

For analysis of these signals, a fast Fourier transform is
used. This analysis showed a difference between the gearbox's
amplitude and frequency of additional vibration. Results of the
analysis are presented in Fig. 5.

10"

— low tension
high tension

s

Amplitude, dB
S

Frequency, Hz

Fig. 5. Spectrum analysis of gearbox by fast Fourier transform, where the
blue line — low belt tension (reference signal), the red line — high belt tension
(real-time output signal with over tension of the belt).

As seen from spectral analysis, in the case of high belt
tension frequency, amplitude and duration of the vibration are
higher than with low belt tension. This means — that continuous
work under these conditions will lead to serious consequences,
such as overloading the drive system or jamming of the gearbox.
For transient processes localization and synchronous analysis of
time and frequency, continuous wavelet transform is used.
Results of the analysis are presented in Fig. 6 (a, b).
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Fig. 6. Spectral analysis of gearbox using continuous wavelet transform,
where (a) - low belt tension(reference signal), (b) high belt tension (real-time
output signal with over tension of the belt).

As seen from the results, the Hirata CR has significant
vibrations during transient processes. Transient processes
have occurred at points in which the movement direction of
the robot is changed. In this case, it can be concluded that these
points are weak places in the gearbox.

V. CONCLUSION

Even a small fault influences CR subsystems. Additional
vibrations occur in joints, gearboxes and other mechanical parts,
leading to considerable consequences. This can accelerate metal
fatigue, the additional load on the motor, heating of joints and
others. This research shows the significance of failures diagnosis
in mechanical parts of Hirata CR. Modelling of the gearbox with
different belt tension is shown. Results of modelling show
significant vibrations during transient processes of the Hirata
CR. In the case of high belt tension, the drive system has
additional load, mechanical parts have additional oscillations,
and the weakest place in the Hirata CR can be defined.

The fast Fourier transform and continuous wavelet
transform are used to analyse output signals. The first method
is used for getting fast results of spectrum analysis of output
signal. The second method is used for transient processes
localization. The results of modelling can be used to teach the
existing system. For future work, other condition monitoring
methods can be used to monitor other failures which may
occur during industrial robot operations.
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Abstract — Cartesian robot is a complex industrial robot,
which is designed to work in hard and dangerous human
conditions. This kind of robot has some control modes that help
transform it for different tasks, such as movement details, 3D-
printing, accuracy cutting processes, and others. Hirata
cartesian robot is chosen for research in the paper. Additional
vibrations occur in the industrial robot leading to unstable
work. Usually, vibrations are occurred in mechanical parts of
the industrial robot, like gearboxes, and joints. The problem
with these parts is the impossibility to install any sensors for
state monitoring oscillations. In this case, need to predict any
mechanical faults or eliminate undesirable vibrations during the
robot operations. This article considers belt over tension, as the
origin of additional vibrations. Two types of control modes,
manual and semiautomatic modes, are described in the paper.
Also, fast Fourier transform and continuous wavelet transform
are used for the analysis output signal. The first method is used
for rapid damage assessment. The second method is used for the
determination of the localization of damages. Experimental
results, based on Hirata cartesian robot, are presented in the
article.

Keywords— continuous wavelet transform, gears, fast Fourier
transform, fault diagnosis, motion control, robot control, robot
motion.

1. INTRODUCTION

Modern industry seeks to eliminate expenses and increase
energy efficiency [1]-[3]. Industrial robots (IRs) are one of the
ways to achieve this aim [4]-[6]. IRs can be separate into
different types, such as a cartesian robot, robot-arm,
manipulators, and other, for making various works [7]. There
are movement details between technological lines in the
manufactory process, operations with dangerous materials,
and accurate assembly operations [7], [8]. IRs have a suitable
control mode for each operation. Control modes subdivide
into manual, semiautomatic, and automatic. The name of the
modes shows a difference in the degree of human involvement
in robot control [7], [9].

Automatic robot control is a common control mode for IR.
In this mode, the robot moves according to the given program
and will after finishing the work program. Semiautomatic
robot control is called also like “from button to position”. The
operator pushes the button on the remote control and the
mechanism will start to make an operation. The IR will stop
at the endpoint. Manual robot control is used to check the
control system, set the robot's parameters, and prepare for

978-1-6654-6295-2/22/$31.00 ©2022 IEEE

operations. All modes let to continuous

production[7]-[12].

organize

However, robots can’t work endlessly. IRs need maintenance,
periodic repair, or replacement. These actions are related to the
wear of mechanical parts of the mechanism. Suitable control mode
and diagnosis mechanical parts help to continuous work of the IRs
until finish the work process [13], [14].

Hirata cartesian robot (CR) is a research object in this article.
This robot has good development potential. This CR has three
control modes and a good diagnosis system. However, a lot of
joints in the CR lead to the formation of weak places in the robot.
In this case, need to choose the control mode of the robot and make
different diagnosis procedures for improving the workability of
the Hirata CR [15], [16].

The paper's main contribution is making an analysis of
additional vibration that occur in the joints of Hirata CR by
different control modes. The article's first chapter presents the
description of these joints and control modes. Also, the
reasons for vibrations in joints of Hirata CR are considered in
the second chapter. The third chapter of the article shows
experimental results and analysis of output signals by two
diagnosis methods. Fast Fourier transform and continuous
wavelet transform are used in the paper. The reason for
choosing these methods is described in the article.

II. DESCRIPTION OF THE RESEARCH OBJECT

A. Hirata Cartesain Robot

Hirata CR has a complex structure and consists of one to
four orthogonal axes. These axes are connected by gearboxes.
Each gearbox of the robot consists of two gears: tooth belt gear
and screw belt gear. The sketch and main parameters of Hirata
CR are presented in Fig. 1 and Table 1 [15].

Fig. 1. Sketch of the Hirata cartesian robot.
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TABLE L MAIN PARAMETERS OF THE HIRATA CARTESIAN ROBOT TABLE II. MAIN PARAMETERS OF THE GEARBOX
Maximal | Compounded Motor Error | Maximal Name of
. Tooth belt gear Screw gear
Axis speed speed power (mm) payload parameter
(mm/sec) (mm/sec) (kW) (ke) Gear ratio 2 0.5
X 0.4
1200 1697 +0.02 Length, mm 525 1000
Y 02 5 Diameter, mm
7 1000 o £0.01 - drive end 50 30
0.1/0.03* element
W 1200° _ +0.03° - non-drive end 100 —
element
* The mode of motor power for the W-axis is 0.03kW. Width 55 2
Fig. 1 shows that each previous drive is used for moving 1dth, mm

the attached axis. The combination of tooth belt and screw
gears are used for linear movement by X and Y axes. The same
gear combination is used for linear movement by Z-axis and
synchronous rotation movement by the W-axis.

Asseen in Table 1, X and Y axes can move synchronously.
This means other procedures can be allowed after stopping
these axes[15], [16].

The Hirata CR has three main control modes [16], [17]:
- teach mode;

- check mode;

- auto/online mode.

The robot work by teach pendant in teaches and check
modes. The first method is a kind of manual mode of work. In
this mode, Hirata CR moves when the corresponding axis
button is pressed. Speed in this case is minimal (not more than
100 mm/sec). The second method is semiautomatic. The robot
moves from the initial to a final position which sending by
addresses in the teach pendant. In this method speed (until
1000 mmy/sec), acceleration, deceleration, and other settings
can be changed [16], [17].

Auto/online mode differs by way of control. The program
of movements is set by DO/DI signals in the auto mode.
Online mode allows to connect CR with computer and write
programs for robot movement. Like in check mode, different
movement settings can be changed in the auto/online mode.
The check mode is used for research in this paper [16], [17].

B. Description of Gearbox

The gearbox structure depends on the benefits and
drawbacks of each part. The tooth belt gear provides a
constant ratio value and speed limit from the motor. The screw
gear provides smooth axis movement and additional braking
due to saving inertia [15]. The sketch and main parameters of
the gearbox is presented in Fig. 12 and Table 2.

Connection

of Y-axis
Tooth

belt gear

Fig. 2. Sketch of the gearbox.

III. GEARBOX FAULTS

Undesirable vibrations occur due to faults and errors.
Faults depend on some factors such as metal fatigue, lubricant
existence, and load on the gearbox.

The main faults that occur in the gearbox are [18]-[21]:
- over/low tension of the timing belt;

- heating parts of the gearbox;

- jamming parts of the gearbox;

- pulleys and screw tooth cracks.

Over tension in the tooth belt gear lead to additional load
for the drive system and undesirable resistance torque on the
shaft. This fault influences the lifetime of the transmission.
Positioning CR accuracy is reduced under over tension of the
belt. The tension of the belt affects the gear ratio and makes it
non-constant. In this case, CR has variable speed which
oscillations of grab are induced [22], [23].

Heating takes place due to additional friction between the
drive end and non-drive end elements of the gearbox. Friction
occurs in no lubricant case or when transmission parts of the
gear work under significant load. Heating influences gearbox
integrity and the lifetime of transmission elements. In this
case, additional vibration of the robot occurs due to an
imbalance of gearbox parts caused by heating [21], [24].

Jamming and tooth cracks occur in case of metal fatigue
of the transmission parts. These faults induce of emergency
stop usually. However, the CR has significant vibrations and
noises before an emergency stop. A crack’s fault can be
diagnosed in case of constant condition monitoring of the

robot [23]-[25].

IV. EXPERIMENTAL RESULTS

Fast Fourier transform and continuous wavelet transform
are used to analyze the additional vibration of the robot. The
degree of belt tension is used for research.

Teach and check control modes of the Hirata CR are
chosen for the experiment. The results of the spectrum
analysis output signal are presented in Fig. 3 (a,b).
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Fig. 3. Spectrum analysis of additional vibrations by different control
modes, where (a) spectrum analysis by X-axis, (b) spectrum analysis
by Y-axis; blue line — teach mode, red line — check mode with normal
tension of the belt, yellow line — check mode with over tension of the
belt.

The figures show significant oscillations in check mode. It
is because in teach mode movement speed is low (for the
experiment speed was 100 mm/sec), but in the check, mode
robot has a wide range of speed (acceleration until 700
mm/sec). Also, as seen from the results, the biggest vibrations
occur on X-axis. The over tension also influences additional
vibrations and load of the robot drive system. During the
experiment it was found, that over belt tension leads to the
stuck robot in the teach mode.

Fast Fourier transform (FFT) is used for getting fast
spectrum analysis results and finding oscillations in the output
signals. This method is a good diagnosis instrument to get a
complete picture of the system states. However, FFT has a
significant limit. The limit is discreteness. The output signal is
measured in the current time moments. A part of information
about the signal is lost in this case and, like a conclusion, the
results may be significant distortions [13], [23], [25].

For the more visual influence of additional vibration by
both axes CWT is used in the experiment. Results of spectrum
analysis output signal by X and Y axes are presented in Fig.
4,5 (a,b,c) respectively.
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Fig. 4. Spectrum analysis of additional vibrations by X-axis, where (a) by
teach mode, (b) check mode with normal tension of the belt; (c) check
mode with over tension of the belt.
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Fig. 5. Spectrum analysis of additional vibrations by Y-axis, where (a) by
teach mode, (b) check mode with normal tension of the belt; (c) check
mode with over tension of the belt.

Continuous wavelet transform (CWT) is used for
synchronous analysis time and frequency of output signal.
CWT can localize a transient process and select the necessary
frequencies. CWT allows separating the output signal on

parts. This method helps to study each part of the signal
separately [23], [25], [26].

The results show a significant difference between control
modes. The transient processes of the robot are displayed in
the figures. However, in over belt tension case, additional
vibration occurs during transient prosses. Smaller vibrations,
which are displayed in the results, are standard work
vibrations. These signals occur as the result of robot work.

Transient processes in the Hirata CR are moments when
the movement direction of the robot is changed. As seen from
the results in these moments CR has significant vibrations and
therefore additional load on the drive systems. In the case of
teach mode and check mode with normal belt tension, these
vibrations are not so significant.

V. CONCLUSION

Research and diagnosis of additional vibrations by
different control modes of the IRs are significant tasks. Right
control mode and diagnosis of fault help to extend the lifetime
of the mechanism in case of occurring faults. As seen from the
results smaller faults have a significant influence on all CR.

The main types of faults and control modes of the Hirata
CR are described in the article. Based on this information we
can develop a common control system for controlling robots
in fault-occurring cases. In this research over/low tension
faults are described. Hirata CR hasn’t been any undesirable
vibrations in case of low belt tension, but the robot had
significant vibrations and load on the drive system in the over
belt tension case (with extremely belt tension robot has been
emergency stop during the experiment). Also, the article
shows the difference between control modes of the Hirata CR.
Teach mode and check mode are taken in comparison.

Teach mode has a small movement speed. In this case,
additional vibrations are difficult to determine, regardless of
the faults. However, check mode has the biggest range of
movement speed and undesirable vibrations are visible.

Significant vibrations are occurred during transient
process in the HCR in case of over tension of the belt into the
gearbox. In the HCR 0.04 - 0.03g (0.006 - 0.008 p.u.) is usual
vibration, but in case of over tension HCR has 0.4g (0.02 p.u.)
value of vibrations. This can lead to unbalancing structure of
the robot, eliminating accuracy and additional load to the
mechanical parts.

This article is directed toward the diagnosis of faults by
different control modes. Data, which get during this research,
will help to eliminate a lot of undesirable situations. Faults can
be detected online without special software and expensive
sensors installing. The main idea of using this data is setting
additional algorithms for diagnosis mechanical faults into
existing diagnosis system of the robots. In the future work will
research other faults and mechanical parts of the Hirata CR.
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Abstract— Faults, which occur during the work of industrial
robots, have different natures and characteristics. They emerge
due to the continued hard work of the control system and
mechanical parts. Diagnosis of each fault type is an important
task because preliminary faults detection precludes expensive
equipment replacement. In this paper, the significance of timely
break detection is highlighted. Also, the possibility of fault
elimination is displayed. Transmission failures and diagnosis
methods, which can be used for fault elimination, are presented.
In this report, a description of the Hirata cartesian robot, its
diagnosis system, and the parameters of the robot are declared.
This article presents experiments with belt tension of tooth belt
transmission installed in the Hirata cartesian robot.

Keywords— continuous wavelet transforms, fast Fourier
transforms, fault diagnosis, gears, robots, vibration measurement.

I. INTRODUCTION

Modern world tends to reduce the undesirable influence of
different faults and deviations from normal work of
mechanisms [1]. A good way for avoiding unexpected breaks
is to detect early damages in the mechanism. However,
modern diagnosis systems do not have any instruments for the
prediction of potential damages [2]. These systems can only
stop technological processes after the occurrence of some
significant damage. In this case, the research can be described
in two ways: avoidance of dangerous situations and
development of a diagnosis system, which would help to
improve the safety of the technological process.

Diagnosis systems of the robots are a good tool to avoid
expensive replacement of mechanisms, but usually, it cannot
eliminate the possibility of faults [3]. In this case, the system,
which will help to predict a probable fault, should be designed.
Faults in the early stage are hardly detectable, but over by
time, specific harmonics components indicating damage will
occur [3], [4].

By revising industrial robots, a large percentage of a
cartesian robot is used in by different manufacturers [5]. That
type of robot is usually used for moving particulars between
technological lines and construction processes with high
accuracy. Sometimes, cartesian robots are used for work with
dangerous materials. In this case, a better way to solve the
abovementioned problems is to predict faults likely to occur
during the technological process [6].

The research leading to these results received funding from the
PSG453, 2020-2023, “Digital twin for propulsion drive of autonomous
electric vehicle”.

978-1-6654-1040-3/22/$31.00 ©2022 IEEE

Toomas Vaimann
Department of Electrical Power
Engineering and Mechatronics

Tallinn University of Technology
Tallinn, Estonia
toomas.vaimann@taltech.ce

Anton Rassolkin
Department of Electrical Power
Engineering and Mechatronics

Tallinn University of Technology

Tallinn, Estonia

anton.rassolkin@taltech.ee

Bilal Asad
Department of Electrical Power
Engineering and Mechatronics

Tallinn University of Technology
Tallinn, Estonia
bilal.asad@taltech.ee

According to [5], [6], faults in industrial robots can occur
in power, control, and mechanical systems. Faults in the
power system usually damage the motor, amplifier, frequency
converter, and others. Robots have protection like power fuses
that protect robots from different voltage fluctuations in the
network. Usually, these faults occur very spontaneously and it
is impossible to predict them. Also, power fuses are cheap and
can be easily replaced. In this case, a diagnosis system does
not need to include these types of faults [7]. Faults in the
control system have a different character. These faults include
any errors that occur during the technological process of the
robot, for example, sensor errors, overload, overrunning, etc.
It is hard to detect these faults, but in many cases, the control
system already has a detection system for these failures that
can notify users about it with special software of robots. In this
case, diagnosis systems already exist and help to eliminate this
type of fault as well as solve it [8]. Faults in the mechanical
system influence other systems of robots. These types of
failures can lead to overload or overstrain of the robot and
break all mechanisms. Mechanical system faults can occur in
any mechanical part of the robot, like the gearbox, bearing,
and joint. But these types of faults are easy to be traced by the
output signal of the system. It is possible to use any condition
monitoring sensor, for example, a vibrometer, a thermometer,
and others. Based on the data from additional sensors, there
are more changes in predictions [9].

This research work presents the possibility of diagnosing
mechanical system faults. The first chapter of this article is a
review of the cartesian robot and its diagnosis system. This
review contains the advantages and disadvantages of the
diagnosis system in the case of the cartesian robot and the
ways to improve it. In the first chapter, the main errors in
power and control systems, which monitor the Hirata robot
detection system, are given. Types of transmission faults and
control are highlighted in the second chapter of this article.
This chapter describes the nature of faults and reviews
detection methods. The experimental part with Hirata
cartesian robot is presented in the third chapter of this article.
A description of the experiment and real data is given.

II. REVIEW OF THE CARTESIAN ROBOT

Hirata cartesian robot (HCR) is used for this research. This
kind of robot is a standard type of cartesian robot. Its
construction can include from one to four axes. The view of
HCR is presented in Fig. 1.
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Fig. 1. View of the Hirata cartesian robot.

The robot consists of three orthogonal axes and four servo
drives. This structure leads to making linear and rotational
movements of the robot axes. It rotates the grab around the
axis with the help of two types of gear: belt gear and worm
gear. Set of HCR contains a controller and teach pendant for
the control system. Also, this robot can connect to a PC by RS-
232 with different software, for example, LabView [10], [11].
The views of the controller and teach pendant are presented in
Fig. 2.

(b)

Fig. 2. View of Hirata controller (a) and teach pendant (b).

The robot has a few types of sensors, such as overload,
origin, limited switches, and encoders. Origin sensors and
limited switches are installed at the initial and final positions
of each robot axis for controlling stroke. Encoders and
overload sensors are installed on each servo drive for speed
control [11]. This combination of the sensors helps diagnose
any faults in the power and control systems of the robot. The
basic parameters of the HCR are presented in Table 1.

TABLE 1.

MAIN PARAMETERS OF HCR

Axis X Y z w
Motor power, W 400 200 100 30
Max. speed, mm/sec 1200 1200 100 1200 ©
Max. payload, kg 5
Repeatability +0.02 ‘ +0.01 ‘ +0.03°

The controller of HCR has a good diagnosis system for
power and control systems. However, to monitor additional
faults, which occur during the movement of the robot, like
failures in the transmission, it is necessary to install additional
sensors. The detection system of the controller can monitor
only basic and significant parameters [10], [12]. The list of
these parameters is presented in Table 2.

TABLE II.

DIAGNOSIS PARAMETER OF HCR

Error message

Description

Position error XXXX *

Positioning cannot be completed

Emergency stop

Emergency Stop is activated

Overrun XXXX * Overrun has occurred
Servo error XXXX * Servo error has occurred
Over speed Speed is too high

Positioning error

Positioning cannot be performed

Start motion error

Motor does not rotate

Driver error

Error has occurred in the
amplifier/driver

S€rvo

Encoder error XXXX *

Encoder signal is not inputted

* Abbreviation "XXXX" is the description of the axis where an error has occurred. For example,
"enc. error 1 0 0 0" means the encoder signal is not inputted from X-axis [12].

One of the ways to improve the diagnosis system is to use
additional mathematical algorithms. These algorithms are
based on the comparison of the reference output signal
(reference signal is output signal with low tension of the
timing belt) with the real output signal (for example,
vibration) and finding deviations during the work. Methods
that can be used are fast Fourier transform (FFT) and
continuous wavelet transform (CWT).

III. TRANSMISSION FAULTS AND DIAGNOSIS METHODS

A. Faults of Gearbox

In the HCR, there are two types of gears: tooth belt
transmission (TBT) and worm transmission (WT). Each of
these types of transmissions has benefits and limitations based
on the construction of the gear [11].

The first type of transmission is worm transmission. Each
axis in the robot has this type of transmission. WT is often
used because of its benefits like high accuracy, high inertia,
and smooth motion. However, this type of gear has several
limitations, which can lead to serious consequences, such as
high additional friction, higher heat generation, and the
possibility of jamming after wearing the material gear [13],
[14]. The sketch of WT is presented in Fig. 3.
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Fig. 3. Sketch of worm transmission.

The second type of transmission is tooth belt transmission.
The tooth belt gear is used to connect servo drives with WT.
As a benefit, the tooth belt allows achieving constant gear ratio
and angular speed. Also, the smooth and quiet work of this
gear helps to avoid additional undesirable vibration. In case of
transmission breakage, it will not lead to expensive
construction damages. However, limitations of the tooth belt
gear include some restrictions: mandatory centering of
pulleys, necessary tension of the belt, and overheating at high
rotation speed [15]-[17]. The sketch of TBT is presented in
Fig. 4.

Fig. 4. Sketch of tooth belt transmission.

The red fields in the pictures are failure areas, where
additional faults are occurring. In the case of WT, faults are
area jamming, heating, and additional friction, in the case of
TBT, faults are heating, over tension, and break of belt [13],
[16].

B. Diagnosis Methods

For the research of gear faults diagnosis, FFT and CWT
are used. For diagnostic purposes, FFT makes diagnosis of an
output signal without numerous calculations and complex
structures of the method [18], [19]. However, FFT has some
significant limitations, such as the impossibility of evaluation
of non-stationary signals and the need to use additional
weight functions for getting the whole spectrum of the output
signal. Also, sometimes results of FFT analysis cannot give a
full picture of the output signal with different faults. In this
case, the CWT method can be used [20]-[22].

CWT method can be used for getting additional
information about the output signal [18], [23]. The benefits
of this method are the possibility to monitor different types
of signals. Besides, it is possible to get a good result by time
or frequency in case of low/high-frequency signals or get an
additional filter function for eliminating undesirable noises.
Currently, CWT has two serious limitations: many iterations
during the calculations process and, consequently, the usage
of additional computational power for calculating the
spectrum of output signal [20]-[22].

IV. EXPERIMENTAL PART

The experiment with HCR consists of two parts:

1. Measuring vibrations with the high tension of the belt
in the TBT

2. Measuring vibrations with low tension of belt in the
TBT

The sensing elements for the experiment were vibrations
sensors of the model QG40N with an accuracy of 0.15 g. For
output data acquisition, the DEWETRON system is used. The
sensor is installed on the grab of the robot.

Output signals from the vibration sensor set on the grab of
HCR are presented in Fig. 5. Noticeable deviations on the graph
are points of change in robot positions. Another noise is the work
of belt transmission with high or low tension of the belt.
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Fig. 5. Acceleration output signal from vibration sensor: blue line — high
tension of the belt, red line — low tension of the belt.

The results of spectrum analysis by FFT are presented in
Fig. 6.

Amplitude, dB

50 100 150 200 250 300 350 400 450

Frequency, Hz

Fig. 6. Spectrum analysis of output signal from vibration sensor by FFT
method: blue line — high tension of the belt, red line — low tension of the belt.

As seen from the results presented in Fig. 6, in both cases
the HCR vibrations are in direction of position changes. Also,
in both graphs, we can see vibrations during moving robots
between positions. In the first case (blue line), vibrations have
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a larger amplitude than in the second case (red line). Based on
these results, we can say that high tension of the belt leads to
more additional vibrations. For more visual results and
information, the CWT method is used. The results of the
analysis output signal by continuous wavelet transform
method are presented in Fig. 7 (a, b).
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Fig. 7. Spectrum analysis of output signal from vibration sensor by CWT
method, (a) — with the high tension of the belt, (b) — with low tension of the
belt.

As seen from the results, additional vibration in the grab
of HCR occurs in case of the high tension of the belt. This
result shows better in CWT spectrum analysis. As seen from
Fig. 7, in the first case, the grab of HCR has almost constant
additional vibration than in the case of low belt tension. Also,
it should be considered that the robot moves along the X and
Y axes, and the vibration of worm transmissions by the X and
Y axes follows.

As seen from the results in the reference signal (output
signal with low tension of the timing belt) maximum of
vibration is 0.012p.u. (~0.06g), but in the high-tension belt
vibrations reach up to 0.02 p.u. (~0.1g). The maximum
vibration for normal work of the HCR is 0.3g with the

maximal speed of the robot. The speed of movement of the
robot during the experiment was taken at the level of 200
mm/sec. In this case it is possible to estimate, that the
vibrations at maximal speed would be around 1.8g. This
vibration can lead to the expensive repair of the robot or its
own mechanical parts. The results of the experiment may
include the program of the controller of the HCR to compare
output vibration signals for pulley imbalance in the TBT,
which leads to over tension of the timing belt.

V. CONCLUSION

This research shows the influence of belt tension on the
operation of HCR. Belt tension leads to additional vibrations
during the work of the robot. As seen from the results, low
tension of the belt in TBT allows a reduction of vibration on
all mechanisms. It means that the belt, in this case, works like
a damper. However, the experiment shows one more result
about the accuracy of the robot. High tension of the belt in
TBT leads to the higher positioning accuracy of the robot than
low tension. The depends on additional factors, such as the
length of TBT, working condition of worm transmission, and
calibration of sensors.

By increasing the tension of the belt, the load on the drive
system is also growing. In this case, the robot cannot operate,
due to the need of making automatic calibration. Moreover,
the additional load on the motors does not allow it.

In future work, an experiment with worm transmission
will be made for checking the influence of WT damages on
the cartesian robot. Also, other condition monitoring methods
will be considered for signal analysis.
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	1.8 Outline of the Thesis

	Motion planning plays a significant role in robotics, it helps to determine a possible trajectory for a robot to move from the initial state to a desired location while avoiding obstacles and observing specific constraints [1], [2]. The motion planning control system in robotics is based on three key components [2]: an actuator (electric, pneumatic, or hydraulic) [3], [4], a control system configured according to the required parameters (such as performance, accuracy, and operation in unpredictable conditions) [1], [5], and a transmission that converts the actuator’s force into mechanical movement [6]. The primary actuator in nowadays robotics system is the electric motor [1], [7].
	Electric motors have a wide range of uses and allow for the creation of new technologies and the modernization of existing ones [8], [9]. Each type of electric motors finds its application in robotics, allowing for greater efficiency, productivity, conservation of material and energy resources, etc. However, achieving the necessary goals depends not only on the use of specific types of electric motor but also on the correct selection of their size and control methods, depending on the specified conditions. These factors such as speed range, torque, accuracy, environmental and mechanical conditions play a critical role in this decision [10], [11].
	Additionally, unconventional motors designed for specific application (such as industrial robotics) may require a completely different control method in certain applications than the one they are adapted to. Electrical motor used in robotics and automation enable the expansion of the range of applications with a high degree of efficiency in transportation, manufacturing, assembly, and other areas [12]–[14]. Thus, selecting a control method for operation in different conditions in various industrial sectors is extremely acute and requires careful analysis. In addition, the impact of mechanical factors, such as unexpected vibrations, misalignments, possible joints damages, and transmissions issues, should also be considered when choosing a control method. These factors can significantly affect the robot's performance and lifespan.
	The choice of control method for industrial robots is based on achieving desired parameters, such as control preciseness, system performance, energy consumption, etc. Additionally, the control system should be resilient to disturbances, easily integrated into a larger network, and adaptable to changing conditions [2], [5]. Various control methods are used to reach the desired performance parameters of mechanisms. However, maintaining system reliability and stability remains a central challenge. Robotic systems operating in industrial environments are often subjected to various mechanical loads and interferences, which lead to unintended vibrations, wear, and, ultimately, equipment failure. Consequently, the choice of control method should also consider the monitoring of the robotic system’s condition and the early diagnosis of issues. 
	To ensure efficient robot operation under varying conditions, the main control methods are summarized in Table 1.1. This analysis highlights their applicability, benefits, and limitations.
	Table 1.1. The main control methods in robotics with corresponding attributes.
	Control method type
	Benefits and limitations
	Control algorithms
	Benefits:
	 Classical PID-control [15]–[17];
	PID-control
	 Simple to implement and tune;
	 Well-suited for linear systems and stable processes;
	 Autotuning PID-control [18], [19];
	 Widely used and applicable in most applications.
	Limitations:
	 Efficiency decreases with significant delays or rapidly changing conditions;
	 Requires careful parameter tuning for good results, especially in complex systems;
	 Sensitive to noise, which can cause instability.
	Benefits:
	Adaptive control
	 Gain scheduling control [20], [21];
	 Ability to adjust to changing system parameters in real-time;
	 Improves control accuracy under uncertainty and variable conditions;
	 Self-tuning regulators [22], [23];
	 Applicable in systems where an accurate model cannot be created.
	Limitations:
	 Adaptive fuzzy logic control [24], [25];
	 Complex to implement and computationally intensive;
	 May not handle fast or sharp changes in parameters effectively;
	 Requires mechanisms for real-time parameter estimation.
	Benefits:
	Optimal control
	 Pontryagin’s maximum principle [26], [27];
	 Allows for minimizing or maximizing a target function;
	 Ensures efficient and economical trajectories and actions;
	 Bellman’s dynamic programming [28], [29];
	 Useful for systems requiring high precision and cost minimization.
	Limitations:
	 Lagrange method [30];
	 High computational complexity, especially for multidimensional tasks;
	 May require an accurate mathematical model, which is not always available;
	 Limited adaptability since optimal solutions are designed for fixed conditions.
	Benefits:
	 Classic fuzzy logic control [31];
	Robust control
	 Resilient to significant uncertainties and disturbances;
	 Ensures stability and predictability even when parameters change;
	 Multi-model control [32];
	 Effective in systems with substantial modelling errors.
	 H∞ control [33];
	Limitations:
	 Complex tuning requiring specialized knowledge;
	 Potentially high computational cost during design;
	May lead to conservative solutions, reducing system efficiency.
	Benefits:
	 Predictive control with finite horizon [34];
	Predictive control
	 Considers the future behavior of the system, allowing for prediction and optimization;
	 Takes constraints into account, important for complex systems;
	 Predictive control with infinite horizon [35];
	 Provides precise control and good response to external disturbances.
	Limitations:
	 Stochastic predictive control [36]
	 High computational requirements, especially for large prediction horizons;
	 Dependence on the accuracy of the mathematical model;
	Complex implementation for tasks with rapidly changing parameters.
	Benefits:
	Discrete control
	 Finite state machine control [37];
	 Simple to implement for tasks that can be represented as a sequence of states;
	 High reliability and predictability in simple systems;
	 Timed finite state machine control [38];
	 Easy-to-understand logic that simplifies debugging and testing.
	Limitations:
	 Limited flexibility and adaptability, unsuitable for complex or continuous processes;
	 Can become cumbersome as the number of states and logical conditions increases;
	Poor fit for tasks with high uncertainty or unpredictability.
	The chosen control method must effectively mitigate the consequences of disturbances and also prevent their occurrence. However, vibrations in the moving parts of the robot (transmission), caused by mechanical damage, often go unnoticed and tend to be cumulative. This, in turn, leads to additional wear, repair, or failure of equipment. Identifying signs at an early stage can not only be detected but also their impact on the robotic system’s structure can be minimized with the proper control method.
	When considering the control methods described above in terms of improving the reliability and stability of a robotic system in the presence of undesirable disturbances, the following advantages stand out: optimal, predictive and robust control.
	Control systems are rapidly evolving, transforming, and adapting to modern conditions, leading to an expansion of capabilities in controlling mechanisms. New control methods, such as piecewise-linear control, the use of artificial intelligence, or machine learning, enable achieving excellent control quality [9], [39]. However, alongside these new methods, traditional approaches maintain their popularity and are being redefined for new application areas, such as optimal control systems [40]–[42].
	Optimal control systems are a combination of methods and algorithms designed to achieve the best (optimal) management results for a dynamic system. The main goal of optimal control systems is to maximize output parameters that determine the quality of control and minimize undesirable criteria affecting performance. Optimal control systems also consider most of the constraints imposed on the dynamic system. The key aspects of optimal control include [43]–[45]:
	 Formalization of the problem;
	 Definition of performance criteria;
	 Constraints;
	 Determination of optimal strategy;
	 Adaptation to changes.
	Building an optimal control system starts with defining the dynamic system to be controlled, the objective function, and the performance criterion for optimization. The dynamic system is a mathematical model describing the system’s behavior over time. The objective function takes various forms depending on whether the minimization or maximization task is set.
	Performance criteria are parameters that determine the quality of control. Choosing an appropriate criterion allows monitoring how well the control objective is achieved. Depending on the specific task and requirements of the dynamic system, the criterion could involve minimizing time, cost, resource consumption, or maximizing performance and profit.
	When developing an optimal control system, it’s essential to consider the constraints imposed on the dynamic system. Constraints include various physical parameters like speed or time, as well as technical parameters depending on the system’s design, such as maximum load [44].
	The next aspect in developing an optimal control system is finding the optimal control strategy to either maximize or minimize performance criteria. Various methods are used for determining the strategy, such as Pontryagin’s maximum principle, Bellman’s dynamic programming method, fuzzy logic-based algorithms, machine learning algorithms, etc [46]–[48].
	In the case of unpredictable optimal control problems or working in stochastic environments, optimal control systems must be sufficiently adaptive and flexible. Achieving this result involves using various combinations of methods to react to changes promptly and maintain the optimal control strategy.
	Based on the literature analysis, Bellman’s dynamic programming method is suitable for optimizing the control of a robotic system under mechanical disturbances for the following reasons [49]–[51]:
	1. Recursive approach to solving control problems.
	By breaking the main task into smaller sub-tasks, Bellman’s dynamic programming method increases its efficiency in decision-making under changing conditions. When subjected to vibrational disturbances, the Bellman approach recalculates the optimal solution at each step, allowing the control system to adapt to disturbances while maintaining operational stability.
	2. Lack of strict conditions and applicability to uncertain systems.
	Unlike other methods, such as the Lagrange method or Pontryagin’s maximum principle, the Bellman approach is better suited for systems with numerous dynamic parameters. Vibration parameters, such as frequency and amplitude, as well as robotic system parameters like speed, torque, precision, and acceleration, can change unpredictably in the event of mechanical damage. The Bellman method ensures a more reliable response by recalculating the optimal trajectory compared to other methods that rely on a fixed optimal trajectory.
	3. Adaptability to constraints and improved response efficiency.
	Response time minimization is achieved through continuous searching for the optimal solution, which, in turn, contributes to the stability of the mechanical system. Taking constraints into account at each step, especially those related to variable disturbances, eliminates the need for complex modeling of the robotic system.
	4. Compatibility with other algorithms.
	Bellman’s method can complement certain algorithms, introducing new dimensions to control strategy development. For instance, combining it with fuzzy logic algorithms can create a predictive diagnostic system, minimizing the impact of damage before its destructive effects begin.
	Predictive and robust control strategies are key components in the fields of industrial automation, robotics, and the aviation and automotive industries [52]. Predictive control aims to forecast equipment failure and identify potential faults to prevent breakdowns without adhering to a fixed schedule of maintenance tasks. In turn, robust control strategies address uncertainties, noise, and disturbances, as well as changes in environmental and operating conditions, ensuring stable operation of mechanisms under various circumstances [53]. These methods are crucial in systems where environmental conditions, processes, or external disturbances can be unpredictable [52], [54].
	Together, predictive and robust control strategies can be broken down into key components [55], [56]:
	 Condition monitoring and uncertainty modelling allow to collect data from sensors, measuring various process or mechanism parameters in real-time, allows for a thorough study of system dynamics and potential uncertainties. This leads to the development of a mathematical model describing system behavior under different conditions.
	 Data analysis and controller design provide to identify patterns, anomalies, errors, and potential equipment failures. Controllers are then developed to maintain system stability and performance in the presence of deviations. These controllers use various algorithms, such as PID control, optimal control, fuzzy logic, and artificial intelligence.
	 Predictive modelling and sensitivity analysis identify key stages and determine the possibility of equipment failure and the need for maintenance. At the same time, sensitivity analysis of control system performance to uncertainties is conducted to identify potential improvement opportunities.
	 Preventive actions, simulation, and testing through analysis and prediction of failures reliable operation of control systems and mechanisms is ensured under different operating conditions.
	In this context, predictive and robust control systems allow for reduced equipment downtime, which would otherwise be required for maintenance and adjustment to new operating conditions; cost savings due to high adaptability; and improved safety, quality, and efficiency by reducing the impact of uncertainties, noise, and disturbances on equipment.
	Among the control methods presented above, fuzzy logic stands out for its adaptability, robustness, and ability to predict events. Fuzzy logic possesses several key features that make it particularly effective in handling mechanical damage in robotic systems [57]–[60]:
	1. Adaptive approach to uncertainties.
	Fuzzy logic enables the management of imprecise data, which is especially crucial for robotic systems affected by vibrational disturbances. The absence of a requirement for prior parameter tuning for each event scenario allows a fuzzy logic-based control system to adapt to changing conditions.
	2. No requirement for a precise mathematical model.
	This simplifies the process of designing, implementing, and configuring a fuzzy logic control system, enabling generalization across various scenarios without excessive detail.
	3. Rule-based control for predictive capabilities.
	The use of a rule base enables the creation of predictive control systems to assess future states, setting fuzzy logic apart from other algorithms. The use of empirical data and a set of rules ensures high response speed.
	4. Integration with other control methods.
	Fuzzy logic can complement other control strategies, broadening control horizons and achieving the required quality. The distribution of fuzzy sets to encompass various scenarios enables a shift from focusing solely on the system's current state to building a control strategy that adapts to changes.
	5. Resistance to disturbances and adaptability to changes.
	Fuzzy logic ensures robust control even in the presence of significant deviations in system operation. Furthermore, its lack of reliance on extensive calculations saves computational resources, enhancing system performance.
	Thus, in terms of developing a robust and predictive control strategy, the fuzzy logic algorithm excels due to its adaptability, precision, and computational efficiency.
	The research field of the thesis in fault diagnosis and robust control strategies have taken a turn with the optimal control system integration. This integration way is assumed to increase the accuracy and performance of the robotic system and optimize the detection of mechanical faults to eliminate their consequences. Based on the vibrational analysis the thesis’s purposes present how to update the mathematical model of the robot to achieve the desired performance characteristics under various conditions. Through current research, the following hypotheses are proposed:
	 Vibrational analysis of a robot’s moving parts, based on using accelerometers with special placement, will allow for precise determination of the frequency characteristics of specific mechanical damages.
	 The data from the vibrational analysis can be used to develop optimal robot control strategies based on Bellman’s dynamic programming and an algorithm based on fuzzy logic.
	 Using optimal control based on Bellman’s dynamic programming will reduce the control system’s response time to disturbances caused by unwanted vibrations and increase the stability of the mechanical system.
	 The fuzzy logic-based algorithm may be capable of predicting and diagnosing mechanical damages.
	 The combination of vibrational analysis and the fuzzy logic algorithm can simplify the task of predicting repairs of robotic systems and enhancing the stability of control systems in the presence of mechanical damages.
	The main aim of the thesis is to design and develop an optimal control and diagnosis system for an industrial robot. The system provides detection and prediction of faults, also controls the robotic system behaviour using robust control strategies. The system should be adaptive, flexible, accurate and analyse data in real-time. At the same time, adaptive control and fault prediction diagnosis of the optimal control system are important. The research questions consider different fault types and optimal control strategies for interacting, predicting, and eliminating mechanical damages in robotic systems. In this case, the goals of this thesis are:
	 Development of a scaled demonstrator with a data acquisition system for vibration analysis data collection.
	 Design and modelling an optimal control system based on Bellman’s dynamic programming method for eliminating oscillations.
	 Development of a fuzzy logic algorithm for diagnosing mechanical faults in robotic system.
	 Implement a fuzzy logic algorithm to control a robotic system under mechanical damage conditions.
	 Vibration analysis method using strategically placed accelerometers to determine vibration characteristics (frequency and amplitude) for both normal and damaged transmission operation.
	 Methodology of application of Bellman’s dynamic programming optimal regulator for eliminating undesirable oscillations in the robotic systems.
	 Designing a novel adaptive and suitable application oriented on the fuzzy logic algorithm for diagnosing mechanical faults and controlling the robotic system under these conditions without using accurate mathematical models.
	 An analysis of the control characteristics of optimal control system based on Bellman’s dynamic programming method and a novel application oriented on the fuzzy logic for eliminating consequences of mechanical damages.
	 Development of a scaled demonstrator for vibration analysis data collection.
	 Definition of the reference and faulty frequencies of the tooth belt transmission and screw transmission of the robot system.
	 Modelling of the Bellman’s dynamic programming optimal control regulator for eliminating vibration based on vibrational spectrum.
	 Modelling of the fuzzy logic diagnosis and control algorithm for detecting mechanical faults and control robotic system under these conditions.
	The thesis is structured into five chapters are as follows.
	Chapter 2 covers the review of related works. This chapter focuses on gearbox faults, types of control systems, and the description and analysis of Bellman’s dynamic programming method and fuzzy logic method.
	Chapter 3 describes the design of the experimental part for getting vibration signals. This includes the description of the experimental test bench and its components, measurement setup, and laboratory test parameters. Also, this chapter covers the vibrational signal analysis by the fast Fourier transform method.
	Chapter 4 focuses on designing the optimal control system. The first part of this chapter includes the mathematical description of cartesian robots like two-mass system and contains the mathematical derivation of the optimal controller. The second part of the chapter covers modelling process of the optimal regulator in two ways are eliminating and accelerating. The chapter analyzes and compares the modelling results of the obtained optimal controllers.
	Chapter 5 contains details of designing the fuzzy logic algorithm for diagnosis of mechanical damages and control robot under these conditions. This algorithm is based on the analysis of vibrational signals. The chapter provides a detailed description of the algorithm's derivation and output, as well as the results of its modeling using real data.
	Chapter 6 presents the conclusion and future work of this research.
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	Robotic systems are widely used in modern manufacturing. These systems increase productivity while reducing the consumption of materials, energy, and human resources [61]. Robots help ensure human safety by handling hazardous materials and operating in unfavorable environments. However, despite their many advantages, robotic systems require maintenance, repair, and replacement in the event of wear or damage [62]. To extend the lifespan of a robotic system, properly selected actuators (primarily electric motors) are used. Control systems for robots are developed based on various algorithms to achieve the desired quality of operation. Predictive maintenance and diagnostic systems for moving mechanical parts of robots are being implemented and advanced to ensure high productivity and reduce maintenance costs [63], [64].
	One of the extensive areas of implementing electric machines is robotics. Servo motors play a crucial role as actuators in robotics. This type of motor has found wide application in this field due to its advantages, namely [I]:
	 Precise control over angular position, velocity, and acceleration, enabling high positional accuracy of robotic actuators [65], [66].
	 Feedback in the form of potentiometers and encoders [67], [68]. These sensors, integrated into the servo motor’s design, provide real-time feedback on position and velocity, facilitating adjustments and corrections to deviations from desired parameters, thereby enhancing precision and stability [69], [70].
	 Despite their small size, servo motor-drives can deliver high torque, making them indispensable in applications with limited installation space or requiring lifting heavy loads or applying significant force [71], [72].
	 Servo motor-drives can be easily integrated into various control systems due to the versatility of control approaches. There are numerous methods for controlling servo motors, allowing for the development of various applications [73]–[75].
	The conversion of electrical energy into mechanical energy is achieved with minimal losses when using servo motor-drives [76], [77].
	Thus, servo motor-drives enhance the accuracy, versatility, and performance of mechanisms and applications. However, the motor control system also significantly influences operational characteristics [65], [78], [79]. The robot’s diagnostic and control system are equipped with an adequate number of sensors to monitor the mechanism’s behavior in real-time during work operations. However, these sensors only track parameters in the power and control systems of the machines [80]–[82]. This leads to the inability to prevent or predict the robot’s behavior in case of mechanical part failure. As a result, damages such as wear, heating, or breakdown of parts in the robot’s transmissions and connecting links go unnoticed and lead to serious consequences. Consequently, mechanisms lose their efficiency, working characteristics decrease, or they may completely fail.
	Based on this literature review, discusses what faults in mechanical parts (e.g. gearboxes, reductors, couplings, joints, etc.) may occur during work operations and how a fuzzy logic-based control system can be used to create a predictive robust control system capable of operating under specified conditions.
	Gearboxes play an important role in robotic systems. They consist of various transmission types, transfer force from the actuator to other parts of the robot, and coordinate the movement of these parts [83]. The correct choice of transmission types in gearbox affects the system’s efficiency, maneuverability, precision, and lifecycle. Depending on the purpose, characteristics, and conditions, several types of transmissions are used in robotic systems [83]–[85], [II]:
	1. Tooth transmission is used for working with high loads and minimal backlash. It is popular in small systems due to its compactness.
	2. Belt transmission is used to transmit force in more complex and larger robotic systems. It is popular for its constant gear ratio, lightweight, and noiseless operation.
	3. Chain transmission is used in large robotic systems where significant forces and loads need to be transmitted.
	4. Screw or worm transmission is used in linear systems requiring precise positioning.
	An example of a robot gearbox is shown in Figure 2.1.
	/
	Figure 2.1. The example of the gearbox (previously published in article V).
	Faults in the gearbox can significantly affect the performance, operational characteristics, durability, and energy efficiency of robotic systems. Gearbox failures develop gradually and don’t instantly lead to system failure [86]. This process can extend over a long period, and even minor damage can result in serious consequences, disrupting system operation and eventually leading to complete failure. The most common gearbox damages include [II, III]:
	 Wear and tear of wheels and pulleys.
	All moving parts of the gearbox are subject to wear. Over time, gears and pulleys wear out due to constant friction, resulting in increased clearance between them and potentially reducing the system’s accuracy and performance [87], [88].
	 Misalignment of pulley centers.
	Misaligned pulleys cause excessive friction, noise, and wear on gears and transmission belts. Improper pulley alignment can result from manufacturing defects, additional vibration, and mechanical stress [89].
	 Lubrication and contamination issues.
	Insufficient lubrication and contamination accelerate wear, increase friction, and lead to overheating and breakdown of transmission components. Lubrication is necessary to prevent metal-to-metal contact and reduce friction. Inadequate lubrication in the gearbox can lead to frequent repairs and downtime [90], [91].
	 Overloading, vibrations, and impacts.
	Subjecting the gearbox to loads beyond its design capacity, as well as shocks and vibrations, accelerates wear, deformation, and stress on transmission parts [92], [93]. Overloading, along with additional vibration, arises from excessive loads, sudden impacts, external forces, and mechanical imbalances [94].
	Addressing gearbox issues requires a combination of servicing methods and the installation of modern monitoring and control systems to prevent frequent inspections and repairs. Reliable design solutions will ensure reliability and performance under various operating conditions.
	When addressing the task of mitigating and preventing damage in transmissions, five main types of control methods are distinguished based on system constraints and environmental conditions [95], [96]:
	 Regulation;
	 Optimal control with a finite or infinite forecasting horizon;
	 Optimal control with constraints;
	 Adaptive and robust control;
	 Stochastic control.
	Regulation mainly aims to minimize the error between the output signal of the dynamic system and the desired (specified) value [97]. Methods such as the least squares method or PID control are used for this purpose [98], [99].
	Optimal control with a finite or infinite forecasting horizon is used to determine the control strategy based on the forecast of the system’s state and future conditions [100], [101]. In the case of a finite horizon, the optimal control system aims to determine the control strategy over a fixed time interval [102]. In the case of an infinite horizon, the optimal control system determines the control strategy over an infinite time interval, considering the subsequent states of the system and the conditions of influence [103]. Dynamic programming algorithms like Bellman’s equations are used to implement such control strategies.
	Optimal control with constraints creates a control strategy for a dynamic system considering the presence of constraints to maximize or minimize performance criteria under specified conditions [46], [104]. Algorithms such as Pontryagin’s maximum principle or quadratic programming are used to solve constrained control problems [46], [105].
	Adaptive and robust control combines some algorithms, which can adjust to changing environmental conditions or control task requirements while maintaining the optimal control strategy [106]–[108]. Algorithms based on adaptive regulation, fuzzy logic, and machine learning are used to tune adaptive and robust control systems [109], [110].
	Stochastic control systems are designed to operate in dynamic systems where random processes occur [111], [112]. These control systems consider the probability distribution and statistics of finding the optimal control strategy [113], [114]. To solve such problems, algorithms like the Kalman filter or Markov decision processes are typically used.
	Each of these methods is applied in various fields depending on the task at hand and has its benefits and limitations. However, only three of them are often used in robotics and their comparison is presented in Table 2.1. 
	Table 2.1. Comparison of optimal control system types.
	Benefits and
	Control system type
	Applicable algorithms
	limitations
	Benefits:
	 Bellman’s dynamic programming [47];
	Optimal control with a finite or infinite forecasting horizon
	 Forecasting. Ability to anticipate future changes and manage them.
	 Flexibility. Allows for determining optimal control strategy at any time interval.
	 Linear quadratic regulation [115];
	Limitations:
	 Model predictive control [116].
	 Mathematical complexity. Working with large time intervals requires significant computational resources.
	 Noise sensitivity. The presence of additional or unwanted noise that cannot be eliminated leads to the destabilization of the control system.
	Benefits:
	Optimal control with constraints
	 Pontryagin’s maximum principle [46];
	 Safety. Ensuring compliance with imposed constraints on the mechanism enhances control stability.
	 Constrained model predictive control [117].
	 Adaptability. Allows for determining control strategy under any constraints.
	Limitations:
	 Implementation complexity. Calculation and application of complex algorithms are required to account for all constraints, which complicates the design of the control system.
	Probability of obtaining a suboptimal control strategy.
	Benefits:
	Adaptive and robust control
	 Robust model predictive control [118];
	 Forecasting. Working in variable conditions allows for predicting system states and adapting to changes without full reconfiguration of the control system.
	 Adaptive neural network control [119];
	 Flexibility. The ability to adapt to any environmental conditions enhances real-time control efficiency.
	 Fuzzy logic algorithm [48].
	Limitations:
	 Complexity of tuning. Parameter tuning and adaptation rules adjustment are required, which can be labour-intensive.
	Instability. Incorrect settings selection may lead to loss of control system stability.
	Benefits:
	 Linear quadratic gaussian [120];
	Stochastic control
	 Uncertainty management. Ability to account for random disturbances and occurrences of external forces to enhance control system stability.
	 Stochastic model predictive [121];
	 Operation in a stochastic environment. Enables the construction of a control system for any environment with uncertain data.
	 Monte Carlo optimization [122].
	Limitations:
	 Computational complexity. Requires significant computational power for the design and operation of the control system.
	Sensitivity to precise mathematical models. An accurate mathematical model of the process or mechanism operating in a stochastic environment is required, which can be labor-intensive in real-world conditions.
	Based on the literature review of control methods for robotic systems, two approaches stand out for the task of mitigating, preventing, and diagnosing transmission damage: optimal control with a finite or infinite forecasting horizon and adaptive and robust control. These methods possess the necessary qualities to build a control system based on analyzing vibrations that arise in the event of transmission damage.
	Among the algorithms, Bellman’s dynamic programming stands out due to its features, like forecasting, flexibility, and overcoming dynamic complexity [49]. This algorithm allows for optimizing control considering the current and future states of the system. This property is crucial for assessing system damage since the known vibration spectrum can be used to establish an optimality criterion that minimizes the consequences. Moreover, the ability to adapt the optimal control trajectory at each step guarantees optimal control. The algorithm is well-suited for both finite and infinite horizons, making it applicable for long-term use. By breaking the main task into smaller subtasks, Bellman’s dynamic programming is particularly effective under conditions of mechanical damage to a robot, as it enables the division of the overall task into manageable parts. Such an approach reduces the influence of damage on the robot’s performance by ensuring that the system can adapt dynamically to changing operational conditions while accounting for the future impact of the damage.
	For controlling a robotic system with a damaged transmission, fuzzy logic stands out due to its properties, as functioning under uncertainty, adaptation to changes, and ease of setup and integration [57], [60]. Fuzzy logic is indispensable in situations where the mathematical model of a robotic system becomes unclear due to damage. This is critically important for control, as fuzzy rules can be configured to operate effectively under uncertainty. Furthermore, the vibration spectrum can be easily interpreted through linguistic variables, simplifying control and configuration. In cases of system degradation, such as worsening transmission damage, fuzzy logic easily adapts to changes, enhancing the reliability and robustness of the control system. Despite the complexity and multitasking nature of the system, the implementation and configuration of fuzzy logic remain relatively straightforward, and integration with other control methods is seamless.
	Based on the above, Bellman’s dynamic programming and fuzzy logic together create a synergistic control system combining adaptability, optimality, and robustness. Fuzzy logic mitigates noise sensitivity, while dynamic programming ensures global optimality. Furthermore, combining these two algorithms allows for assessing the current state of the mechanical system and calculating an optimal control strategy.
	Unfortunately, the high computational demand of these algorithms complicates their integration into modern systems, which is why most studies lack precedents for exploring such a control system. Additionally, the insufficient development of diagnostic methods means that using vibration spectra as input data requires the development of new diagnostic approaches and evaluations. Therefore, it is essential to examine these two algorithms in more detail to assess their potential for building a control system for a robotic system operating with a damaged transmission.
	Bellman’s dynamic programming is a mathematical approach to solving optimal control problems, based on the principle of breaking down the problem into smaller fragments and finding the optimal solution for each of them [123], [124].
	The main stages of dynamic programming are as follows [125], [126]:
	1. Problem formulation.
	The main task is broken down into fragments, for which optimality conditions are defined, and an optimal solution is found at each step. The most common example for such type of control is robot control with a specific sequence of actions.
	2. Quality assessment. 
	For each step, an assessment of optimality is made. A quality function is created, which, considering various factors such as resource costs, desired outcomes, etc., evaluates the optimality of the solution.
	3. Finding the optimal path. 
	Considering each step individually allows for determining the optimal control strategy for the overall problem solution.
	4. Strategy preservation.
	To reduce computational complexity, intermediate data is stored to avoid redundant calculations for simpler tasks.
	5. Formation of a complete control strategy. 
	𝑉𝑠=𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑅𝑠,𝑎+𝛾𝑠′∈𝑆𝑃𝑠′ 𝑠,𝑎)𝑉(𝑠′);
	After determining the optimal solutions for all tasks, they are combined, and an overall control strategy is formed.
	Two main expressions are used for forming optimal control according to Bellman’s dynamic programming principle: the Bellman optimality equation (1) and the Bellman recurrence equation (2) [126]–[128].
	(2.1)
	𝑉𝑘+1𝑠=𝑚𝑎𝑥𝑎∈𝐴(𝑠)𝑅𝑠,𝑎+𝛾𝑠′∈𝑆𝑃𝑠′ 𝑠,𝑎)𝑉𝑘(𝑠′);
	where, s – current system state; s’ – next system state; α – system impact; V(s) – optimal strategy in the current state; A(s) – impact sets in the current state; R(s, α) – optimal criteria after impact; γ – discount coefficient; P(s’ | s, α) – transient possibility to the next state after impact.
	(2.2)
	where Vk(s) – optimal strategy in the current state in k-iteration.
	Bellman’s dynamic programming algorithm is an excellent fit for addressing the problem of mitigating vibration effects. This is supported by the algorithm’s distinct advantages.
	By breaking down the problem into smaller functions, the control algorithm enables a detailed understanding of local dynamics, including nonlinear behavior. For example, in the case of a robotic manipulator subject to oscillations, dynamic programming optimizes the control input for each joint, minimizing vibration amplitude step by step [123], [124].
	The quality criterion of this algorithm allows for considering various developmental scenarios and adapting the control system to specific needs. This approach not only mitigates the effects of damage and vibrations but also minimizes energy consumption and system wear. Thus, vibration suppression can simultaneously manage multiple parameters influencing production quality and safety [129].
	To solve the problem of vibration suppression, it is essential to identify a trajectory and control strategy that avoids resonance frequencies and effectively reduces the impact of vibrations on the system. By analysing the system’s response at each step, dynamic programming can create a global control strategy. In this way, the algorithm determines the sequence of actuator forces needed to compensate for disturbances [130].
	It should also be noted that due to its step-by-step optimization, this algorithm is ideally suited for dynamically changing environments. Given that vibration characteristics can change in real time almost instantaneously, the adaptability of Bellman’s dynamic programming ensures the stability of the control system [131].
	Given the diversity of methods, optimal control finds applications in aerospace engineering, for optimizing the movement and trajectory of ships and aircraft, and robotics, for developing controllers, autonomous vehicles, and controlling robotic manipulators. Fuzzy logic-based control systems enable the processing of imprecise data and categorizing them into belonging to a particular output, unlike binary logic, where the output parameter can only take on values of “0” or “1”. Fuzzy logic is an excellent tool for creating control systems for mechanisms with nonlinear dynamics, complex relationships, and ambiguous or insufficient input parameters [110], [132], [133].
	A fuzzy logic-based control system operates according to a specific algorithm.
	Fuzzy logic replaces traditional binary sets with fuzzy sets, which allow elements to have partial membership in a set. Each fuzzy set is characterized by a membership function that assigns degrees of membership to elements in the universe of discourse [134], [135].
	Fuzzy rules form the basis of the control logic in the fuzzy logic control system. These rules are expressed in the form of “if-then” statements, where linguistic variables (e.g., “low”, “medium”, “high”) are used to represent inputs, outputs, and control actions. Fuzzy rules capture expert knowledge and heuristics about the system’s behavior [136], [137].
	𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑥;𝑎,𝑏,𝑐)=0,𝑥≤𝑎𝑥−𝑎𝑏−𝑎,𝑎≤𝑥≤𝑏𝑐−𝑎𝑐−𝑏,𝑏≤𝑥≤𝑐0,𝑐≤𝑥;
	Fuzzy inference involves applying fuzzy logic rules to determine the system’s response to input conditions [138]. It consists of two main steps: fuzzification and inference. Fuzzification converts crisp input values into fuzzy sets using membership functions, while inference combines fuzzy rules to produce fuzzy output sets [139], [140]. Three main types of membership functions are used in this step. There are triangle (2.3), trapezoidal (2.4), and gaussian (2.5) membership functions.
	(2.3)
	where, a, b – borders of the triangle function; c – the center of the triangle function.
	𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑(𝑥;𝑎,𝑏,𝑐,𝑑)=0,𝑥≤𝑎 𝑥−𝑎𝑏−𝑎,𝑎≤𝑥≤𝑏1,𝑏≤𝑥≤𝑐𝑐−𝑎𝑐−𝑏,𝑐≤𝑥≤𝑑0,𝑥≤𝑑;
	(2.4)
	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥;𝑐,𝜎)=𝑒−12𝑥−𝑐𝜎2;
	where, a, b – borders of the trapezoid function; c, d – the maximum of the trapezoid function.
	(2.5)
	where, c – the middle of the gaussian function; σ – the width of the gaussian function.
	Fuzzy aggregation combines the outputs of multiple fuzzy rules to generate a single fuzzy output set. This process can involve methods such as minimum, maximum, or weighted averaging to aggregate the contributions of individual rules [139].
	Defuzzification converts the fuzzy output set into a crisp control action or decision. This involves determining a single value or a set of values that best represents the fuzzy output set, typically using methods such as centroid defuzzification or weighted average [140].
	Based on the fuzzy logic control algorithm, it can be said that this method is highly adaptable to any task. Moreover, fuzzy logic does not require the calculation of an exact mathematical model of the process or mechanism. Additionally, fuzzy logic mirrors human reasoning, making it relatively easy to apply to various conditions. Consequently, the fuzzy logic control algorithm finds its application in areas such as autonomous systems, enabling smooth and efficient control, industrial automation, allowing the control of many transient processes, and robotics, facilitating transportation and precise control of machines and robots [141], [142].
	There are numerous methods for controlling robotic systems, each designed for specific purposes, as evidenced by the review presented in this chapter. Control systems are constantly evolving to achieve greater performance, precision, or to mitigate undesirable effects caused by external factors. Faced with new challenges, robotic control systems are modernized to enable prediction, data analysis, and stable operation under varying conditions.
	Despite significant advancements in the development of control systems, certain gaps remain in the application of specific control algorithms across different domains. This is because many issues are not yet considered significant, or the algorithms have not been optimized for external conditions (such as mechanical damages, environmental contamination, etc.). Such algorithms include Bellman’s dynamic programming and fuzzy logic. In the field of condition monitoring and diagnostics of the mechanical components of robotic systems, these algorithms have not been fully developed. Many approaches to building control systems are focused on machine learning rather than vibration analysis, leaving the potential of dynamic programming and fuzzy logic in this area untapped. These algorithms offer unique advantages and demonstrate their capabilities when additional parameters for evaluating vibrational signals are available. This enables the development of a control system capable of mitigating undesirable effects caused by damage to the mechanical components of robotic systems. It also provides the possibility of controlling the robot under these conditions and diagnosing damage at early stages, ensuring timely maintenance, reducing wear on other mechanical components, and predicting the behavior of the mechanism in uncertain conditions.
	The limited use of fuzzy logic and Bellman’s dynamic programming algorithms can be attributed to their high computational resource requirements and the complexity of adapting these algorithms to uncertain scenarios of mechanical failures. However, by studying potential damage in robot transmissions, it is possible to obtain the necessary data to significantly reduce the computational demands of these algorithms and facilitate their integration into existing control systems. Addressing this gap could lead to significant advancements in the reliability, performance, and safety of industrial robotic systems, motivating further research in this direction.
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	Robots in industry play an important role in many industrial applications, ensuring safety in the workplace and various production conditions. Monitoring the condition and implementing reliable control strategies for robots has always been significant in the industry. The use of optimal control systems in areas of predictive maintenance and condition assessment is advancing in modern research [63], [64].
	The application of reliable control strategies, specifically optimal control systems, in industrial applications is evolving towards predictive maintenance to increase productivity and reduce the number of scheduled and unscheduled repairs and maintenance. Periodic and unscheduled repairs lead to loss of time and resources due to equipment downtime and loss of production productivity. Therefore, more research is focused on identifying damages at an early stage to prevent downtimes and find new ways to ensure equipment maintenance [86], [95], [96].
	This allows for the development of an algorithm for real-time damage detection data assessment. Combining condition monitoring and reliable control strategies enables the use of several types of analysis: vibration, thermal, acoustic, and performance. Each type of analysis is intended to detect specific faults [143]–[146].
	Vibration analysis is based on measuring the vibration levels of robot components, such as transmissions, bearings, and joints. Accelerometers are used for this purpose, recording the necessary data. Increased vibration levels can indicate imbalance, misalignment, or wear of moving parts. This method is useful for detecting damage in moving parts that are subject to increased friction [145].
	Thermal analysis is based on determining thermal signatures using infrared cameras. Overheating of the robot’s moving parts can indicate lubrication problems, friction, or stress on the robot’s body. This method is effective for detecting overheating of motors and joints [143].
	Acoustic analysis involves analyzing high-frequency sounds emitted by materials under load or friction. Cracks, friction, or other anomalies and damages generate sounds. Acoustic sensors or sensitive microphones are used to capture sounds, allowing early detection of fatigue cracks and component wear [144].
	Performance analysis is based on assessing the working parameters of the robot, such as speed, torque, or energy consumption. Robot sensors and software are used for real-time data analysis. However, deviations from working parameters can indicate both mechanical damages and system errors [146].
	Based on a literature review of these methods, it can be stated that vibration analysis integrates well into the strategy of reliable control systems and condition monitoring. Thus, this type of analysis can be taken as the basis for diagnosing and managing robots under the influence of mechanical damages.
	The scale demonstrator is built for experiments and getting vibration data from the robot. The demonstrator consists of the Hirata cartesian robot, vibration sensors, and a data acquisition system. The view of the scale demonstrator to collect data for different faults is presented in Figure 3.1.
	/
	Figure 3.1. The view of the scale demonstrator with data collection system. (previously published in article IV)
	The scale demonstrator was constructed to evaluate the impact of transmission damage on the structure of the Cartesian industrial robot. For this purpose, the operational characteristics of vibration were assessed under normal transmission conditions. Subsequently, damage was introduced, and experiments were conducted to evaluate the vibration performance of the robot with a damaged transmission.
	These experiments are essential for obtaining data on vibration frequency and amplitude to understand the relationship between damage and its effects on the robot’s vibrations during operation. By collecting sufficient data and analyzing it, a correlation between damage and vibrations can be established. Based on this data, a control system can be developed to enable the robotic system to operate under these conditions and to diagnose the damage effectively.
	The data is collected from the robot in a healthy and faulty state using Data Acquisition System Dewetron and acceleration sensors. Data are collected in safe conditions to prevent extreme situations. For this purpose, the robot’s parameters are set to certain limits. The specification of the robot and parameters for the experiment are presented in Table 3.1.
	Table 3.1. Specification of the robot and parameters for the experiment.
	Value
	Parameter
	Experimental parameters
	Specification parameters
	2
	4
	Number of axes
	400
	400
	X
	200
	200
	Y
	Motor power, W
	—
	100
	Z
	—
	30
	W
	200
	1200
	X
	200
	1200
	Y
	Max. speed, mm/s
	—
	1000
	Z
	—
	1200°
	W
	1000
	1200
	X
	700
	700
	Y
	Stroke, mm
	—
	200
	Z
	—
	540°
	W
	X
	±0.02
	Y
	Repeatability. mm
	±0.01
	Z
	±0.02°
	W
	Only two out of four axes were chosen for the experiment on collecting vibration signals. This was done because the Z and W axes have sufficiently rigid mounting, making capturing the required vibration characteristics impossible. Additionally, it is important to note that both axes represent a separate structure that can be easily replaced, which is why these axes are not considered valuable resources for obtaining the necessary data.
	The proposed data acquisition and control system for the experimental setup consists of the robot controller, teach pendant and three accelerometers (DIS-QG40N) united into one network. The control components allow to control of the robot in semi-automatic mode and help to avoid undesirable oscillations during the experiment. Teach pendant is used for setting needed parameters into the robot controller and implemented of the necessary robot operations. The technical specification for the accelerometers is given in Table 3.2.
	Table 3.2. Technical specification for the accelerometer DIS-QG40N.
	Value
	Parameter
	3 axis (XYZ)
	Measuring ways
	±4 g.
	Measuring range
	0.5 – 4.5 V
	Output signal
	4 mg
	Resolution
	± 2%
	Sensitivity error
	3 ms
	Output refresh rate
	The sensors were installed on the top and bottom of the test bench (presented in Figure 3.1), as well as on the robot’s gripping system. These positions allow for capturing the robot’s vibrations directly and eliminate unwanted oscillations from the test bench frame in the main signal. Consequently, the robot's vibration signal is fully filtered from extraneous interference, except for noise caused by the vibration of individual parts of the robot’s structure. However, since these vibrations are insignificant, they can be disregarded.
	During the experiment, it was determined that the gearbox has its natural frequencies, which indicate its normal operation. Each transmission of the gearbox has distinct frequencies, but when combined, they provide an overall representation of the transmission’s performance. However, to obtain the necessary data, it is essential to introduce damage to the gearbox structure. This will generate erroneous signals with additional amplitudes and frequencies, which will serve as the basis for developing the control system.
	Under operating conditions, three types of mechanical faults can occur in the transmission of a cartesian robot: over-tension of the timing belt in the tooth belt transmission, heating of the worm in the screw transmission, and damage or excessive wear of the gears and pulleys in the transmissions. The experiment considered two types of failure: over-tension and heating. The third type was not considered, as the chance of this damage occurring in real conditions is quite low. Additionally, the transmission parts where this type of failure could occur are made of wear-resistant materials to avoid jamming.
	Belt over-tension occurs when the centers of the pulleys are vertically misaligned relative to each other. This type of damage is shown in Figure 3.2.
	/
	Figure 3.2. The example of the belt over-tension in the tooth belt transmission. (previously published in article II)
	Over-tension creates additional force and load on the shaft of the robot’s servomotor, which, in turn, leads to vibrations during transition points, when the direction of the robot’s movement changes to the opposite.
	Worm heating in the screw transmission occurs when there is insufficient lubrication or contamination. This type of damage is shown in Figure 3.3.
	/
	Figure 3.3. The example of the worm heating in the screw transmission. (previously published in article II)
	Worm heating causes additional vibrations throughout the robot’s workspace, reducing positioning accuracy and accelerating the wear of transmission components. This type of damage is also directly related to the parts of the transmission that are in constant contact. Due to additional wear, it can be assumed that the third type of damage is a consequence.
	To obtain necessary data about the reference and faulty gearbox state the steps of the experiment for getting natural and artificial vibration data are presented in Figure 3.4.
	/
	Figure 3.4. The flowchart of the experiment steps.
	1. This step involves mounting sensors on the lab stand, connecting instruments to the data acquisition system, and setting the robot’s operating parameters, such as speed, acceleration, the number of working axes, and movement paths.
	2. At this stage, mechanical damage was introduced into the robot’s transmission structure (first belt over-tension, then worm heating) separately for each axis of the robot.
	3. Loading the robot’s program in semi-automatic mode using the control panel, as well as monitoring control parameters and tracking the robot's movement trajectory.
	4. Reading and recording data from vibration sensors along the three axes X, Y, and Z for the two robot axes, X and Y. The axes are considered separately to avoid “overlapping” of data.
	5. Changing the data format to obtain an accurate representation of the processes occurring within the robot’s structure and extracting the necessary parameters from the sensor’s output signal.
	6. Extracting the frequency spectrum of the vibration signal using fast Fourier transform for further use in the development of diagnostic and control algorithms.
	7. To get a full picture of the ongoing processes, the experiment was conducted multiple times for each of the robot’s axes and under various conditions, specifically: healthy conditions (without additional noises and artificial failures), introducing an over-tension fault for the X and Y axes, and implementing a heating fault for the X and Y axes.
	Based on the experimental setup the vibration spectrums are obtained. During of the experiment, the reference signal (healthy state of the robot) and faulty signal (state of the robot under over-tension or heating faults) are received. The data analysis was carried out using the FFT method to determine the reference (natural) frequencies of the robot’s transmission, as well as to isolate frequencies that are generated directly as a result of mechanical damage. To achieve more accurate results, the FFT window was selected with a range of 500 Hz. This was done because the mechanical components of the robot’s transmission typically have vibrational frequencies in the low to mid-frequency ranges [147]–[149], and most mechanical damage is detected below this limit. Therefore, there is no point in considering a window with a higher frequency range.
	The results of vibration signal analysis for timing belt over-tension of the tooth belt transmission by X and Y axes are presented in Figure 3.5.
	(b)
	(a)
	Figure 3.5. The spectra analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the over-tension fault of tooth belt transmission. (previously published in article I)
	The vibrational spectra in Figure 3.5 illustrate the frequency analysis of two distinct signals: a reference signal representing the healthy operation of a cartesian robot gearbox and a faulty signal that captures the effects of over-tension due to misaligned pulley axes. These graphs help to understand how the system’s vibrational characteristics shift under faulty conditions, providing valuable insights into mechanical performance and fault diagnosis.
	In both spectra, the reference signal (shown in blue) corresponds to the nominal or healthy state of the gearbox, where the belt tension is set according to factory specifications. This signal exhibits clear peaks at approximately 50 Hz, 100 Hz, and 150 Hz, representing the fundamental frequencies associated with the gearbox’s normal operation. These frequencies are characteristic of the system when functioning under normal conditions, and the vibrational amplitudes at these points are relatively low, indicating a well-tuned, stable system. In contrast, the faulty signal (shown in red) shows the system’s response under over-tension, a condition where the transmission belt is subject to excessive tension due to pulley misalignment.
	Focusing on the vibrational spectrums by both axes, the reference signal shows dominant peaks in the expected frequency range. The system, in its healthy state, maintains low amplitudes at these critical frequencies, ensuring smooth operation. However, the faulty signal reveals a starkly different behavior. In addition to the fundamental peaks seen in the reference signal, the faulty spectrum introduces new peaks in higher frequency ranges, particularly 200 Hz and 250 Hz. This broadening of the frequency response, along with the substantial increase in amplitude, indicates that the over-tension causes increased mechanical stress and friction, leading to a more energetic vibrational response. The amplitude of these faulty peaks is significantly higher. This elevated response signals that the system is under abnormal strain, a direct consequence of the excessive tension in the transmission belt.
	In both spectra, the faulty signal demonstrates a markedly different vibrational profile compared to the reference signal. The presence of these higher frequency components and their elevated amplitudes suggest that over-tension introduces significant resonances that were not present in the nominal state. These resonances likely stem from increased friction, belt tension, and mechanical misalignment, all of which contribute to the generation of excess vibrational energy. Moreover, the noise floor in the faulty signal appears to be elevated across the spectrum, particularly at lower frequencies, which may indicate additional vibrations from external sources, such as adjacent machinery or loose components within the system.
	The over-tension fault’s impact on the system is clear: the increased vibrational amplitude and the expansion of the frequency range up to 250 Hz signal that the system is experiencing abnormal mechanical stress. This stress could lead to faster degradation of the transmission components, such as the belt, pulleys, or even the gearbox itself, if not corrected promptly. By comparing these spectra, it becomes evident that a healthy system maintains a controlled vibrational response, while over-tension introduces significant irregularities that can be detected through spectral analysis. Thus, monitoring the vibrational spectrum of a transmission system is crucial for early fault detection, allowing for timely maintenance and avoiding potential mechanical failures.
	The results of vibration signal analysis for worm heating of the screw transmission by X and Y axes are presented in Figure 3.6.
	(b)
	(a)
	Figure 3.6. The spectra analysis of the output vibration signal by X-axis (a) and Y-axis (b) for the heating fault of screw transmission. (previously published in article III)
	In contrast, the second set of vibrational spectra examines the vibrational behavior of the cartesian robot gearbox under the influence of a worm heating fault in the screw transmission. The reference signal (blue) again represents the normal state of the system, with stable peaks at 50 Hz, 100 Hz, and 150 Hz, while the faulty signal (red) captures the effects of heating.
	In the spectrums, the faulty signal due to the heating fault shows an increase in amplitude, particularly in the 200–450 Hz range. The heating of the screw transmission causes thermal expansion and deformation, which leads to increased friction and mechanical misalignment. These changes generate broader vibrational peaks across a wide frequency range, indicating that the heating fault excites multiple vibrational modes. The higher frequencies in this case are indicative of the system’s struggle to maintain stability under thermal stress. The heating-induced vibrations are not confined to specific points in the system; instead, they have a stochastic nature, affecting multiple components simultaneously and leading to erratic behavior.
	Unlike the over-tension fault, which manifests as a more predictable increase in vibrational amplitude at higher harmonics, the heating fault introduces randomized vibrational disturbances that are more challenging to mitigate. The broadening of the frequency range and the significant increase in amplitude suggest that overheating impacts the entire system, leading to increased wear on bearings, gears, and other mechanical parts.
	This chapter covers a unique vibration analysis method using strategically placed accelerometers (shown in Figure 3.1) on the novel Cartesian scale demonstrator for mechanical fault testing, enabling precise identification of frequency and amplitude characteristics under both normal and damaged transmission conditions. Experiments involving artificial damage to the Cartesian robot’s gearbox revealed key vibration signals and spectra, distinguishing normal operational frequencies from those indicating damage. These findings provide a foundation for creating advanced control strategies, including systems based on Bellman’s dynamic programming to mitigate damage effects and fuzzy logic algorithms for effective damage diagnosis and operation under compromised conditions.
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	In the case of mechanical damage to the robot's transmission, which can lead to undesirable load oscillations, optimal control (Bellman dynamic programming) can offer effective solutions for several reasons [129]–[131]:
	 Dynamic programming allows finding the optimal solution based on minimizing a cost function. The algorithm accounts for the system’s dynamics and finds the optimal trajectory for the entire process, effectively preventing undesirable oscillations.
	 The algorithm can account for random disturbances and uncertainties in the system, allowing for flexible real-time control adaptation to changing conditions.
	 Optimal control relies on precise mathematical models of the system, enabling consideration of all physical parameters.
	 Optimal control can minimize load oscillations and vibrations by finding optimal control actions at each step. This ensures smooth and steady control, even in the presence of damage.
	To create an optimal control system for eliminating robot vibrations, it is necessary to define its mathematical model for the given case. In this context, we consider the elimination of load vibrations caused by mechanical damage to the robot’s transmission. When damage occurs, and therefore, the resulting vibrations intensify the impact on the robot’s load, leading to additional undesirable effects such as reduced positioning accuracy and increased dynamic load on the motors. To address this type of impact, the Cartesian robot axis should be represented as a two-mass system, and optimality criteria should be defined [123], [124].
	Figure 4.1 presents the two-mass model for moving the load with a Cartesian robot along the Y-axis. The Z-axis in this model represents the load’s attachment point, and only its weight is considered in creating the mathematical model.
	/
	Figure 4.1. Two-mass model of the movement mechanism of Cartesian robot.
	&𝑚1𝑑2𝑥1𝑑𝑡2+𝑚2𝑥2𝑔𝑙=𝐹−𝑊&𝑚2𝑑2𝑥2𝑑𝑡2−𝑑2𝑥1𝑑𝑡2+𝑚2𝑥2𝑔𝑙=0,
	It is also important to note that the distance from the X-axis to the attachment point of the load can be neglected due to the rigid connection of the robot’s axes to each other. In this regard, the system of differential equations describing the behavior of the two-mass system for moving the robot with the load will be as follows [49], [150]:
	(4.1)
	where m1 is the weight of the Y and Z axes; m2 is the mass of the load; x1, x2 are the coordinates of the mass centers of the load in initial and final positions, respectively; g is the acceleration of free fall; l is the length of the Z axis; F is the total traction or braking forces acting on the frame; W is the strength of resistance of the frame movement.
	𝑑2𝑥𝑑𝑡2+𝜔2𝑥=𝐹−𝑊𝑚1
	Consider that when the robot moves without changing speed during operation, even in the case of changing the direction of movement, the system of differential equations can be reduced to a single second-order equation:
	(4.2)
	&𝑧1=𝑧2&𝑧2=(𝑢−𝜔2𝑧1).
	where 𝜔=𝑔𝑙1+𝑚2𝑚1 is the natural frequency of the load oscillation.
	The differential equation (4.22) can be transformed into a system of canonical equations by introducing the following notation 𝑢= 𝐹−𝑊𝑚1, 𝑧1=𝑥:
	(4.3)
	Two optimal criteria are obtained based on the mathematical model of the two-mass system. One of them is criteria based on the value load deviation from the vertical and dynamic component of the driving force, another one is criteria based on the value transition time and dynamic component of the driving force. These two criteria are the backbone of two optimal control models: the eliminating model and the accelerating model.
	𝐼=0𝑇𝑘1𝑥2+𝑘2𝐹−𝑊𝑚12𝑑𝑡
	As an optimization criterion, the complex integral criterion is chosen. This criterion shows a relationship between the square of deviation load from the vertical and the square of the dynamic component of the driving force [49], [150]:
	(4.4)
	where k1, k2 are the coefficients representing weighting factors based on the specific system dynamics and design criteria, which influence the importance of each term in the cost or performance index.
	The coefficient k1 is tied to the control force and how much penalty you assign to the mismatch between 𝐹 and 𝑊, normalized by the mass m1. A larger k1 means you prioritize minimizing this force error.
	𝐼=0𝑇𝑘1𝑧12+𝑘2𝑢2𝑑𝑡
	The coefficient k2 means it can prioritize reaching the desired performance (force balance) more quickly.
	Considering the previous notations the criterion can be rewritten in the next form:
	(4.5)
	𝑚𝑖𝑛𝑘1𝑧12+𝑘2𝑢2+𝜕𝑆𝜕𝑧1𝑧2+𝜕𝑆𝜕𝑧2𝑢−𝜔2𝑧1=0,
	The method of dynamic programming Bellman is used for minimizing the optimal criterion. The main functional equation is based on minimizing a specific functional that accounts for both the state variables and the control input. The Bellman functional equation is written as [49], [150]:
	(4.6)
	2𝑘2𝑢+𝜕𝑆𝜕𝑧2=0.
	where S is the Bellman function, which represents the value function that we aim to minimize. The function S depends on the state variables z1 and z2, and its partial derivatives concerning these states play a key role in the control process.
	The optimal control law u is obtained by the first differentiate equation (4.6) to u. It gives the necessary conditions for minimization. Setting this condition to zero leads to the following relationship:
	𝑢=−12𝑘2𝜕𝑆𝜕𝑧2.
	(4.7)
	Solving for the control variable u, the optimal control law is calculated:
	(4.8)
	𝑘1𝑧12+𝜕𝑆𝜕𝑧1𝑧2−𝜔2𝑧1𝜕𝑆𝜕𝑧2−14𝑘22𝜕𝑆𝜕𝑧22=0.
	This equation (4.8) provides the control input u as a function of the state variables through the partial derivative of the Bellman function concerning z2.
	After substituting the expression for u back into the original Bellman equation (4.6) the following equation is got:
	𝑆=𝐴1𝑧12+𝐴2𝑧1𝑧2+𝐴3𝑧22,
	(4.9)
	To solve the partial differential equation (4.9) the Bellman function S can be represented in a quadratic form, which is a standard approach for linear-quadratic control problems. In this case, the equation for the Bellman function is next:
	𝜕𝑆𝜕𝑧1=2𝐴1𝑧1+𝐴2𝑧2,
	(4.10)
	where A1, A2, and A3 are unknown constants to be determined through further analysis. This quadratic form is typical in optimal control problems, where the value function is often a second-order polynomial in the state variables.
	To find the constants need to take partial derivatives of S concerning z1 and z2:
	(4.11)
	𝜕𝑆𝜕𝑧2=2𝐴3𝑧2+𝐴2𝑧1,
	(4.12)
	𝑘1−𝐴324𝑘2−𝐴3𝜔2𝑧12+𝐴3−𝐴22𝑘2𝑧22+
	These expressions can now be substituted into equation (4.9) to determine the values of the coefficients A1, A2, and A3. The resulting system of equations will provide the specific solution for the Bellman function, and thereby, the optimal control strategy for the system.
	+2𝐴1−𝐴2𝐴3𝑘2−2𝐴2𝜔2𝑧1𝑧2=0.
	(4.13)
	&𝑘1−𝐴324𝑘2−𝐴3𝜔2=0,&𝐴3−𝐴22𝑘2=0,&2𝐴1−𝐴2𝐴3𝑘2−2𝐴2𝜔2=0.
	The equation (4.13) will be true if the expressions in parentheses are equal to zero since the variables z1 and z2 cannot be zero. Therefore, the equation (4.13) can be rewritten as a system of algebraic expressions:
	(4.14)
	This system of equations (4.14) typically results in two real solutions and two complex ones. However, only one real solution is selected because, in this scenario, the system’s motion is smooth, and the maximum control effort remains small. The real solution ensures the physical feasibility and stability of the control system. After solving the system of nonlinear equations and finding the roots, we substitute the real root into the optimal control equation (4.8) derived earlier. The optimal control law can now be written as:
	𝑢=𝑧1𝑅−𝑇𝑘2,
	𝑅=𝑘2𝜔2−𝑘2𝑘1+𝑘2𝜔4,
	𝑇=2𝑧2𝑘2𝑘2𝑘1+𝑘2𝜔4−𝑘2𝜔2.
	(4.14)
	where
	(4.15)
	(4.16)
	Thus, by synthesizing the control law, the final expression for the optimal control is successfully derived with input u, a function of the state variables z1, z2, and the parameters k1, k2, ω. This function represents the control strategy that minimizes the cost function while maintaining system stability.
	𝐼=0𝑇𝑘2𝑡2+𝑘1𝐹−𝑊𝑚12𝑑𝑡
	The algorithm for determining the optimal acceleration control model is similar to the previous model; however, the difference lies in the form of the integral optimality criterion, which, in turn, leads to a completely different form of the optimal controller. This criterion shows a relationship between the square of transition process time and the square of the dynamic component of the driving force [150], [151]:
	𝐼=0𝑇𝑘2𝑧22+𝑘1𝑢2𝑑𝑡
	(4.17)
	The criterion can be rewritten in the next form:
	𝑚𝑖𝑛𝑘2𝑧22+𝑘1𝑢2+𝜕𝑆𝜕𝑧1𝑧2+𝜕𝑆𝜕𝑧2𝑢−𝜔2𝑧1=0,
	(4.18)
	𝑢=−12𝑘1𝜕𝑆𝜕𝑧2.
	The main Bellman’s functional equation written as:
	(4.19)
	The optimal control law is calculated as:
	𝑘2𝑧22+𝜕𝑆𝜕𝑧1𝑧2−𝜔2𝑧1𝜕𝑆𝜕𝑧2−14𝑘12𝜕𝑆𝜕𝑧22=0.
	(4.20)
	After substituting the expression for u back into the original Bellman equation (4.19) the following equation is got:
	𝑆=𝐴1𝑧22+𝐴2𝑧1𝑧2+𝐴3𝑧12,
	(4.21)
	To solve the partial differential equation (4.21) the Bellman function S can be represented in a quadratic form, which is a standard approach for linear-quadratic control problems. In this case, the equation for the Bellman function is next:
	𝜕𝑆𝜕𝑧1=2𝐴3𝑧1+𝐴2𝑧2,
	𝜕𝑆𝜕𝑧2=2𝐴1𝑧2+𝐴2𝑧1,
	(4.22)
	To find the constants need to take partial derivatives of S concerning z1 and z2:
	(4.23)
	(4.24)
	These expressions can now be substituted into equation (4.19) to determine the values of the coefficients A1, A2, and A3. The resulting system of equations will provide the specific solution for the Bellman function, and thereby, the optimal control strategy for the system.
	𝑘2−𝐴12𝑘1+𝐴2𝑧22−𝐴2𝜔2+𝐴224𝑘1𝑧12+
	+2𝐴3−𝐴1𝐴2𝑘1−2𝐴1𝜔2𝑧1𝑧2=0.
	(4.25)
	&𝑘2−𝐴12𝑘1+𝐴2=0,&𝐴2𝜔2+𝐴224𝑘1=0,&2𝐴3−𝐴1𝐴2𝑘1−2𝐴1𝜔2=0.
	The equation (4.25) will be true if the expressions in parentheses are equal to zero since the variables z1 and z2 cannot be zero. Therefore, the equation (4.25) can be rewritten as a system of algebraic expressions:
	(4.26)
	𝑢=2𝜔2𝑧1−𝑧2𝑘1𝑘2−4𝜔2𝑘1𝑘1.
	This system of equations (4.26) typically results in two real solutions and two complex ones. However, only one real solution is selected because, in this scenario, the system’s motion is smooth, and the maximum control effort remains small. The real solution ensures the physical feasibility and stability of the control system. 
	The optimal control law can now be written as:
	(4.27)
	Thus, by synthesizing the control law, the final expression for the optimal control is successfully derived with input u, a function of the state variables z1, z2, and the parameters k1, k2, ω. This function represents the control strategy that minimizes the cost function while maintaining system stability.
	To conduct simulations of eliminating and accelerating optimal control systems, it is necessary to recreate the optimal controller derived mathematically in the Simulink environment. The input parameters for this controller include acceleration and braking forces, and a vibration signal from the accelerometer is integrated into the controller to simulate real operating conditions of the optimal control system.
	Thus, Figure 4.2 shows a model of the optimal control system for the Cartesian robot, designed to eliminate unwanted load (shown in Figure 4.1) oscillations caused by mechanical damage to the gearbox.
	/
	Figure 4.2. The optimal controller structural scheme for the Cartesian robot by eliminating modelling.
	The optimal controller (gray blocks) shown in the diagram is designed to manage and mitigate the undesirable load oscillations in a Cartesian robot, particularly under conditions where mechanical damage may occur – damage that was illustrated by the vibrational spectra in previous analyses. This controller is structured to provide real-time feedback and adjustments to the robot’s movements, ensuring stability and precision even in the presence of mechanical disturbances, such as the ones caused by over-tension or heating faults.
	The main part of this scheme is the state-space representation of the robot (blue block), which models its dynamic behavior. The robot’s transfer function – the block labeled with matrices A, B, C, and D – describes how the system responds to inputs and how the outputs are generated based on its internal state. This forms the foundation of the control system, as it encapsulates the essential characteristics of the robot’s mechanical structure and dynamics.
	The controller continuously monitors the difference between the desired and actual states of the robot using feedback loops. These feedback mechanisms are crucial for detecting deviations caused by external disturbances, such as those generated by vibrational faults. The system takes this error signal and feeds it back into the control algorithm to adjust the robot’s actions dynamically. The gain blocks, represented by the components labeled k1 and k2, play a critical role in scaling the control actions based on the feedback. These gains are optimized to ensure that the corrections made by the controller are proportional to the error magnitude while preventing excessive or insufficient adjustments. Proper tuning of these gains is vital to minimizing oscillations without introducing instability into the system. The controller includes mechanisms for disturbance rejection, which are particularly important given the unpredictable nature of mechanical damages, such as those associated with over-tension and heating faults. The blocks that estimate disturbances assess external forces or vibrations acting on the robot, allowing the controller to distinguish between expected behavior and abnormal conditions that require corrective action.
	This optimal controller can be integrated into the Cartesian robot’s control system by replacing or enhancing its existing motion control module. In a real-world setting, the controller would be implemented using a digital signal processor or a programmable logic controller capable of executing the real-time control algorithms required by the dynamic programming approach. The system would continuously receive feedback from position sensors, velocity sensors, and accelerometers, which measure the robot’s state and detect any anomalies caused by mechanical issues. All controller parameters would need to be carefully tuned during the commissioning phase to ensure optimal performance under varying load conditions and disturbances.
	The responses of the control system on the undesirable oscillations and elimination of the dynamic load of the servomotor in conditions of mechanical damage are presented in Figure 4.3.
	(b)
	(a)
	Figure 4.3. The control system’s response to asymmetric load oscillations (a) and dynamic load (b) in conditions of mechanical damage in the robot's gearbox by eliminating modelling.
	In the case of asymmetric load oscillations (a), the system’s reaction is characterized by an initial overshoot, with the right side (z1 right) peaking at approximately 0.13 p.u. An overshoot of this magnitude indicates that the system’s control action is quite aggressive initially, likely to quickly counterbalance the load imbalance. However, excessive overshoot could lead to unnecessary stress on the robot’s components, so careful tuning of this parameter is essential.
	As time progresses, the oscillations gradually decay, and the system moves towards stabilization. This is measured by the settling time, which in this case occurs 0.6 ms. This relatively fast settling time demonstrates that the control system is effective at damping the oscillations, reducing them to within a small margin around the steady-state value. The system exhibits good damping characteristics, as the oscillations diminish smoothly without escalating or persisting for too long, which would have indicated instability or poor control. The response is underdamped, meaning that oscillations are allowed initially but are progressively reduced, which is typically desirable for maintaining both stability and responsiveness in dynamic systems.
	The oscillations in dynamic load are minimal, remaining close to zero throughout the response. This indicates that the control system efficiently manages load variations, maintaining the robot’s stability with minimal deviation from the desired state. Notably, there is no significant overshoot or oscillation in this response, further demonstrating the control system’s ability to smoothly adapt to changes in load without requiring aggressive corrections. 
	The smoothness and stability of the dynamic load response (b) are key indicators of the control system’s robustness under varying load conditions. The system reacts promptly to these changes, with fluctuations settling almost immediately. The transient process here is extremely short, with the response stabilizing in less than 0.3 ms, which underscores the system’s ability to provide rapid corrections and maintain control under dynamic loads.
	As the system stabilizes, both the right and left sides converge toward values near zero, signifying a minimal steady-state error. This reflects the controller’s ability to accurately bring the robot’s components back to their intended positions, effectively compensating for the disturbances. The minimal steady-state error is monitored in both cases, in the asymmetric oscillations and dynamic load reactions.
	Figure 4.4 presents the model of the optimal control system for the Cartesian robot during the accelerated transient process under conditions of undesirable oscillations resulting from gearbox mechanical damage.
	Based on an accelerating regulator, the control system is also founded on the optimal control law derived using Bellman’s dynamic programming method. The structure of this control system differs significantly from the previous one, with the main goal of this regulator being to accelerate the transient process of damping oscillations and reducing the dynamic load on the robot’s servomotor as quickly as possible without additional oscillations. The main components of this system, as in the previous case, include the block for converting the transfer function of the Cartesian robot into state space, and the gains k1 and k2, which are responsible for the quality of the transient process.
	/
	Figure 4.4. The optimal controller structural scheme for the Cartesian robot by accelerating modelling. 
	(b)
	(a)
	Figure 4.5. The control system’s response to asymmetric load oscillations (a) and dynamic load (b) in conditions of mechanical damage in the robot's gearbox by eliminating modelling. 
	In the case of accelerating modelling the control system reaction to asymmetric oscillations (a) has also overshoot, but smaller than in eliminating modelling. The right side peak (z1 right) reaches the amplitude of approximately 0.11 p.u., while the left side (z1 left) lags slightly behind, peaking at a slightly lower value. This difference between the right and left sides highlights an imbalance in how the system reacts to the disturbance, which can be attributed to the nature of the mechanical damage.
	The overshoot seen here reflects the control system’s initial aggressive response to counteract the load imbalance and to restore equilibrium as quickly as possible. However, a higher overshoot may also indicate increased stress on the robot’s mechanical components, potentially leading to additional wear and tear over time. After this initial peak, the oscillations begin to decay gradually, reflecting the system's damping mechanism, which works to reduce vibrational energy over time.
	The system stabilizes in 0.8 ms, indicating its settling time – the period within which the oscillations have decreased to a minimal, steady-state level. The response demonstrates an underdamped characteristic, where oscillations occur but are controlled and gradually decrease without leading to instability.
	In dynamic load response (b), the system displays a more controlled and less oscillatory reaction compared to the asymmetric load case. The dynamic load fluctuations are minimal and remain close to zero throughout the transient process, with no significant oscillations or overshoot observed.
	The system’s handling of dynamic load changes demonstrates smoothness and stability compared to eliminating modelling, as the oscillations settle rapidly with no major deviation from the steady-state value. The transient process in this case is 0.2 ms. It’s less than the system stabilizing, underscoring the control system’s ability to manage dynamic forces with minimal correction time. This level of performance suggests that the system is well-tuned to address dynamic loads efficiently, ensuring the robot remains stable and maintains operational precision even under varying external forces.
	The steady-state error appears minimal, as both sides eventually converge towards zero, showing that the system effectively restores the robot to its intended operational state after compensating for the disturbance.
	The chapter presents a unique methodology for applying Bellman’s dynamic programming to design optimal regulators that effectively eliminate undesirable oscillations in robotic systems. By leveraging this approach, the response time of the control system to disturbances caused by unwanted vibrations is significantly reduced, and the mechanical system’s stability is enhanced.
	The chapter synthesizes and simulates two types of regulators, derived based on optimality equations for eliminating and accelerating modeling criteria. These regulators, using vibration signals obtained from prior experiments, demonstrate their ability to manage external disturbances effectively. Results confirm success in two critical areas: eliminating undesirable oscillations and reducing the dynamic load on the robot’s servomotor. The transient response characteristics validate the stability of the system even under maximum disturbance, with rapid damping, absence of oscillatory behavior after the transient phase, and no static error.
	An optimal and unique solution was achieved, showcasing the integration of the regulator into the robot’s control system by replacing the existing module. Real-time feedback enables sensor signal tracking to adjust outputs dynamically. This approach provides a robust foundation for enhancing the performance and reliability of robotic systems under varying operational conditions.
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	Creating a fuzzy logic algorithm for fault diagnosis and robot control in error-prone conditions is based on analyzing vibration signal spectra in both normal and faulty states. The development process includes several key stages, each crucial for ensuring the accuracy and reliability of the system’s operation:
	1. The first step is identifying the parameters for fault diagnosis and proper robot control. Since fuzzy logic models human decision-making processes, key variables must be identified during experiments and system characteristic studies. These variables describe the parameters to be monitored (e.g., vibration amplitude and frequency) and form the basis for further calculations.
	2. Membership functions play a critical role in fuzzy logic as they define the relationship between the input data (e.g., vibration signals) and the degree of their belonging to certain categories that describe the system’s state (e.g., “movement speed”, “presence of damage”). For each fuzzy variable, an appropriate membership function must be selected. Choosing the right shape of these functions (e.g., triangular, trapezoidal, Gaussian) allows for adequate modelling of the real system’s behavior. These functions should accurately reflect the nature of the variable's changes related to the robot’s condition.
	3. A fuzzy rule base is created after defining the variables and membership functions. These rules consist of logical “if-then” operators that connect the input data with output decisions. For example, a rule might be: “If the vibration frequency exceeds a certain threshold and the amplitude is within a critical range, then the robot is likely to have suffered significant mechanical damage”. The rule base serves as the logical backbone of the fuzzy logic algorithm and is used for fault diagnosis and adaptive control of the robot in fault conditions.
	/
	Figure 5.1. Overview of obtaining a fuzzy logic algorithm.
	Thus, the process of creating a fuzzy logic algorithm for robot control and condition diagnosis consists of sequential stages: data collection, signal analysis, forming the fuzzy rule system (Figure 5.1.), as well as testing and tuning the system to ensure proper operation under real-world conditions. This approach allows effective robot management and early fault diagnosis, improving reliability and resistance to mechanical damage.
	Implementing the fuzzy logic algorithm into the existing robot control system is carried out using the real input and output signals from the controller used in the control system. Therefore, the general operation of the fuzzy logic algorithm can be represented in the form shown in Figure 5.2.
	/
	Figure 5.2. The general operation of the fuzzy logic algorithm.
	During experimental work, it was determined that the following parameters were accepted as input variables for the fuzzy logic: vibration frequency and amplitude, over-tension frequency, heating vibration frequency, and fault amplitude. The output variables of the fuzzy logic are the robot’s speed, torque, acceleration, and the fault type degree. The scheme of the fuzzy logic algorithm processes is presented in Figure 5.3.
	The presented diagram illustrates the integration of the robot control system under mechanical damage and the damage diagnosis system. The vibration frequency and amplitude parameters are directly used for the robot control system and influence the output parameters of the robot’s drive speed, torque, and acceleration. The parameters of frequency over-tension, frequency heating, and fault amplitude are used to determine the presence of damage. Both control systems, based on the fuzzy logic algorithm, use data obtained during experiments to identify the robot's reference and faulty operating frequencies. The variables in the diagram are described by membership functions, with each variable having its function shape that best reflects its behavior in real-time operation.
	/
	Figure 5.3. The scheme of the fuzzy logic algorithm processes. (previously published in article II)
	Membership functions are described the control system parameters are illustrated in Figure 5.4.
	(b)
	(a)
	Figure 5.4. The control membership functions of input (a) and output (b) variables. (previously published in article I)
	The vibration amplitude membership function includes three variables labeled as AL (Amplitude Low), AM (Amplitude Medium), and AH (Amplitude High).
	AL corresponds to low amplitudes, where vibrations have minimal effect on the system’s components.
	AM represents medium amplitude, which could indicate the maximum of nominal robot vibration and the beginning of potential issues, such as minor misalignments or early signs of wear.
	AH covers high amplitudes, which usually signify severe mechanical damage or over-stress conditions, such as those caused by over-tensioning or worm screw transmission faults. The triangle shape in the AM zone reflects a smoother transition between low and high values, allowing for more sensitivity control when the amplitude is in a mid-range. This ensures the control system does not react too aggressively when the amplitude is neither low nor critically high, providing stability in response.
	The vibration frequency membership function also has two variables: FL (Frequency Low) and FH (Frequency High).
	FL covers low-frequency vibrations, which correspond to nominal operational conditions or vibrations caused by less critical disturbances, such as minor imbalances or misalignments.
	FH corresponds to high-frequency vibrations, which may indicate severe issues like mechanical damage in the transmission system, as seen in the spectra of over-tension and heating faults. The change between FL and FH is more abrupt, reflecting that high-frequency vibrations tend to be more detrimental and require faster, more immediate control action. This sharper boundary helps the system respond quickly to prevent undesirable conditions.
	The speed membership function has four variables: SLL (Speed Low Low), SL (Speed Low), SM (Super Medium), and SH (Super High).
	SLL and SL indicate slow speeds, where the system is operating in low-performance conditions. In the event of mechanical damage (i.e., an increase in vibration amplitude and frequency), the robot’s speed is reduced to a minimum to avoid serious consequences.
	SM reflects a medium speed, where the system runs optimally under normal conditions.
	SH covers higher speed ranges, suggesting that the system can increase performance but at the risk of higher vibration and potential mechanical stress. Also, this variable symbolizes stable robot workability without any faults.
	Thanks to the overlapping nature of the functions and the Gaussian function shape, the change occurs smoothly rather than abruptly.
	The torque function is divided into four variables: TLL (Torque Low Low), TL (Torque Low), TM (Torque Medium), and TH (Torque High).
	TLL and TL are associated with lower torque values. As the speed increases, the required torque decreases because less force is needed to maintain movement at higher speeds in normal conditions.
	TM represents the optimal torque range for regular operation.
	TH reflects high torque, which could be necessary in cases of mechanical damage at low speeds, the situation is different. The system must compensate by applying more torque to ensure smooth transmission and prevent further damage. This increased force helps overcome any additional resistance or friction caused by the fault, allowing the robot to maintain its performance even under compromised conditions. 
	The overlap between TL and TM, as well as TM and TH, allows the control system to apply precise adjustments to torque based on varying operational demands and vibration data. The Gaussian function shape helps to change torque between different regimes smoothly and decreases the vibration consequences.
	The acceleration function has four key variables: Neg (Negative), ZeroNeg (Zero Negative), ZeroPos (Zero Positive), and Pos (Positive).
	Neg represents deceleration, which is required to mitigate vibrations and prevent the system from further accelerating during critical conditions.
	ZeroNeg and ZeroPos reflect states of minimal change, where the system remains in a steady operational mode.
	Pos refers to positive acceleration, indicating an increase in velocity when the system is stable and can safely handle greater speeds. 
	The symmetrical layout of this membership function ensures balanced control when transitioning between increasing or decreasing accelerations. The trapezoidal forms of the function help to hold the torque on the necessary level until incoming changes are ended.
	Membership functions are described the control system parameters are illustrated in Figure 5.4.
	(b)
	(a)
	Figure 5.5. The diagnosis membership functions of input (a) and output (b) variables. (previously published in article I)
	Over-tension frequency covers two distinct frequency zones (F200, F250), representing levels of over-tension fault frequencies.
	F200 and F250 correspond to over-tension frequencies (200 and 250 Hz), which may indicate belt tension issues. The triangle form of this function shows that transmission is not immediately damaging but requires attention.
	Heating frequency covers four distinct frequency zones (F300, F350, F400, F450), representing levels of heating fault frequencies.
	The occurrence of any of these frequencies (300, 350, 400, 450 Hz) will signal the onset of mechanical damage to the worm in the screw transmission, and attention should be given to this situation before it becomes critical. In this case, the triangular shape of the membership function is necessary for accurately tracking frequency peaks, as well as nearby values, which are presumed to indicate the beginning of the worm’s heating process.
	The fault amplitude function represents vibration amplitudes, with two regions: FAL (Fault amplitude low) and FAH (Fault amplitude high).
	FAL corresponds to low-amplitude faults, where mechanical vibration levels are minor and do not pose an immediate threat to the system.
	FAH covers high-amplitude faults, which could indicate severe mechanical problems, such as overloading, misalignments, or transmission defects. The sharp boundary between these two functions ensures that the system reacts quickly to critical amplitude changes, as they may indicate imminent mechanical failure.
	The rule base of the fuzzy logic algorithm is founded on the ‘if...then’ principle, allowing for the selection of the best control method for the mechanism under different conditions. This same principle is applied in damage diagnosis, simplifying the process of defining conditions for the system.
	The rules for the fuzzy logic algorithm are based not only on the chosen variables and their membership functions but also on the observation of the behavior of the controlled system. This means that the rules are developed during the experimental stage of collecting vibration data. Through these observations, it was determined that a reduction in vibration amplitude is directly proportional to a decrease in speed and inversely proportional to an increase in torque. Likewise, the robot's acceleration also affects the vibration amplitude.
	In the context of diagnosing mechanical damage, the fuzzy logic rules are based on analyzing the spectra of vibration signals. By monitoring these spectral characteristics, the system can detect deviations that signal potential mechanical damage, allowing preventive actions to be taken before a critical failure occurs. This diagnostic capability enables the fuzzy logic system to respond in real-time, adjusting control parameters to mitigate the effects of emerging damage, such as reducing speed to lower vibration levels or increasing torque to compensate for mechanical stress. Thus, the algorithm enhances both operational safety and the longevity of the robot’s components by providing a proactive approach to damage management.
	The fuzzy logic rules for controlling Cartesian robot under gearbox mechanical damages and diagnosis of them are presented in Table 5.1.
	Table 5.1. Rules of fuzzy logic algorithm.
	THEN
	IF
	Number
	Fault type degree is Overtension
	Vibration frequency is FH AND Frequency over-tension is F200
	1
	Fault type degree is Overtension
	Vibration frequency is FH AND Frequency over-tension is F250
	2
	Fault type degree is Heating
	Vibration frequency is FH AND Frequency heating is F300
	3
	Fault type degree is Heating
	Vibration frequency is FH AND Frequency heating is F350
	4
	Fault type degree is Heating
	Vibration frequency is FH AND Frequency heating is F400
	5
	Fault type degree is Heating
	Vibration frequency is FH AND Frequency heating is F450
	6
	Vibration frequency is FL AND Frequency over-tension is NOT F200 AND Frequency heating is NOT F300
	Fault type degree is Normal
	7
	Vibration frequency is FL AND Frequency over-tension is NOT F250 AND Frequency heating is NOT F350
	Fault type degree is Normal
	8
	Table 5.1. Rules of fuzzy logic algorithm. (continued)
	Fault type degree is Normal
	Vibration frequency is FL AND Frequency heating is NOT F400
	9
	Fault type degree is Normal
	Vibration frequency is FL AND Frequency heating is NOT F450
	10
	Fault type degree is Overtension
	Vibration frequency is FL AND Fault amplitude FAH
	11
	Fault type degree is Heating
	Vibration frequency is FL AND Fault amplitude FAH
	12
	Fault type degree is Overtension
	Vibration frequency is FH AND Fault amplitude FAL
	13
	Fault type degree is Heating
	Vibration frequency is FH AND Fault amplitude FAL
	14
	Speed is SH
	Vibration amplitude is AL AND Vibration frequency is FL
	Torque is TLL
	15
	Acceleration is Positive
	Speed is SH
	Vibration amplitude is AM AND Vibration frequency is FL
	Torque is TLL
	16
	Acceleration is ZeroPos
	Speed is SL
	Vibration amplitude is AH AND Vibration frequency is FL
	Torque is TL
	17
	Acceleration is Neg
	Speed is SM
	Vibration amplitude is AL AND Vibration frequency is FH
	Torque is TH
	18
	Acceleration is Positive
	Speed is SM
	Vibration amplitude is AM AND Vibration frequency is FH
	Torque is TH
	19
	Acceleration is ZeroNeg
	Speed is SLL
	Vibration amplitude is AH AND Vibration frequency is FH
	Torque is TM
	20
	Acceleration is ZeroPos
	As a result of the simulation, behavior patterns of the robot’s control parameters (speed, torque, and acceleration), as well as the degree of diagnosis of mechanical damage, were obtained. The results of the control system simulation based on the fuzzy logic algorithm are presented in Figure 5.6.
	(b)
	(a)
	(c)
	Figure 5.6. Results of modelling fuzzy logic algorithm for control parameters speed (a), torque (b), and acceleration (c). (previously published in article II)
	Figure 5.6 (a) presents the simulation pattern of the dependence of vibration amplitude and frequency on the robot’s movement speed. The robot’s speed increases significantly with a decrease in amplitude, reaching a limit in the range between 0.1 and 0.4g. As the vibration frequency rises, the speed drops to an average value at the same vibration amplitude levels. The movement speed decreases substantially when higher amplitudes and frequencies are reached, where mechanical damage in the robot’s transmission is detected. The fuzzy logic algorithm responds to the increase in vibration levels by reducing the speed to compensate for the added stress and maintain the robot’s movement stability. This highlights the system’s adaptation to mechanical damage in the transmission.
	Figure 5.6 (b) shows the simulation of torque. The relationship between torque and vibration amplitude and frequency is inverse to that of speed. As the speed increases, the torque decreases, but when mechanical damage occurs, particularly at higher frequencies and amplitudes, the torque rises to maintain proper operation. Torque increases when the amplitude exceeds 0.4g, ensuring that sufficient force is applied to the transmission to prevent further mechanical stress in the system. The higher torque values for greater vibration amplitudes and frequencies are due to the system adjusting to meet the increased demand for force caused by potential faults.
	Figure 5.6 (c) describes the simulation of acceleration depending on the vibration amplitude and frequency. The fuzzy logic algorithm allows necessary adjustments during the occurrence of mechanical damage. At higher vibration levels, the acceleration decreases, which correlates with the need to adjust the robot’s movements to mitigate the impact of mechanical damage. The fuzzy logic system increases acceleration at lower vibration amplitudes, ensuring that the robot responds quickly to disturbances and reduces the likelihood of malfunctions. The change in acceleration following this pattern reflects the system’s adaptability to the impact of mechanical damage, allowing for a faster response to faults.
	The fuzzy logic algorithm effectively adjusts the robot’s control parameters in response to mechanical failures based on the degree of vibration amplitude and frequency. It reduces speed to compensate for mechanical damage, increases torque to ensure sufficient force is applied and regulates acceleration to maintain a quick response to vibration disruptions. These results indicate a reliable control system capable of maintaining performance despite faults, enhancing the robot’s reliability and stability in dynamic operating conditions.
	The results of the diagnosis system simulation based on the fuzzy logic algorithm are presented in Figure 5.7.
	(b)
	(a)
	Figure 5.7. Results of modelling fuzzy logic algorithm for fault type degree: over-tension (a) and heating (b).
	Figure 5.7 (a) shows the relationship between the severity of belt over-tension failure in the robot’s tooth belt transmission and the frequency, determined during the analysis of vibration signals, as well as the amplitude of vibrations. The system detects the presence of damage across the entire amplitude range when frequencies caused by over-tension occur. The model suggests that at higher vibration amplitudes, especially in the range of 0.4g and above, the system quickly identifies the severity of the fault, indicating a higher degree of failure. The failure severity decreases for lower amplitudes or frequencies, which suggests that the system is highly sensitive to increased fault levels under these conditions. The degree of the over-tension fault is set to –1 (indicating 100% detection of the failure in the transmission). This degree is determined using a membership function.
	Figure 5.7 (b) displays the appearing degree of worm heating failure in screw transmission. This pattern shows a similar trend to the previous one. The failure severity sharply increases with higher vibration amplitudes (above 0.4g) and remains relatively constant in the presence of heating frequencies. This indicates that, as in the previous graph, the system’s diagnostic sensitivity to vibration amplitude is high, allowing it to distinguish between different failure levels based on vibration frequency. In this case, the maximum degree of damage is 1 (indicating 100% detection of the fault in the transmission), and it is artificially set using a membership function, just like in the first case.
	Both graphs demonstrate the diagnostic system’s ability to identify faults based on vibration characteristics, focusing on amplitude and frequency. The fault severity increases significantly at high amplitudes, while frequency serves as an identifier. This highlights the system’s effectiveness in detecting failures in the gearbox or mechanical components by analyzing vibration signatures, allowing it to respond appropriately to mechanical damage and ensure optimal performance under fault conditions.
	Since both methods are effective for achieving the set goals, a comparative analysis of both methods is warranted. Both optimal control and the fuzzy logic algorithm have their advantages and disadvantages, which should be considered when choosing a method.
	Optimal control uses a mathematical model of the system to optimize performance and minimize undesirable oscillations and vibrations. This method ensures smooth and stable control by minimizing a cost function, and maintaining stability even in the presence of mechanical damage. Moreover, both proposed approaches for optimal control aim to address different consequences. The eliminating method focuses on reducing load oscillations, while the accelerating method is aimed at shortening regulation time and dynamic load, allowing for flexible control depending on the situation. It is important to note that this method requires an accurate mathematical model, which makes it sensitive to errors and noise. Additionally, implementing optimal control requires significant computational resources due to the iterative nature of the method.
	Fuzzy logic, on the other hand, adapts to changing conditions and disturbances without needing an exact mathematical model, making this algorithm more flexible in uncertain environments. The presented method diagnoses faults and adjusts parameters based on vibration signal analysis, ensuring reliable operation in unpredictable conditions. Fuzzy logic is also easier to integrate into existing equipment due to its rule-based approach. However, the accuracy of control depends on the completeness and quality of the rule base and membership functions, and extensive experimental data is required to fine-tune these rules for effective use.
	Thus, both methods have their strengths and weaknesses. The choice between them depends on the requirements for model accuracy, computational resources, and the specific application of the control system.
	Combining these methods is proposed with fuzzy logic as the primary level for real-time diagnosis and control. The optimal control algorithm would be used only in cases requiring high precision and fast response and recovery from disturbances. Additionally, optimal control can be used for calculating adjustments for future impacts, thus predicting the behavior of the controlled system. In the case of damage, fuzzy logic would serve as the diagnostic tool, while optimal control would focus on compensating for the damage and optimizing performance.
	This chapter proposes a new method for diagnosing mechanical damage in a robot’s gearbox and controlling the mechanism under the influence of such damage. The method is based on a fuzzy logic algorithm and data from vibration signal analysis. Mechanical damage induces undesirable oscillations with specific amplitudes and frequencies, and this information was used to develop an algorithm for diagnosing these faults and controlling the robot under such conditions. As simulations demonstrate, the algorithm successfully achieves the set goals and shows a high degree of efficiency in assessing the damage. Furthermore, the control system, based on fuzzy logic, adjusts the robot’s control parameters to the desired outcome, thereby minimizing the consequences of mechanical damage. The presented results are promising, and the control and diagnostic system can be successfully achieved using the proposed method. However, it is important to note that this algorithm requires testing with various complex combinations of faults to adjust the fuzzy rule base and improve the results respectively.
	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	This chapter concludes the results of the research based on the objectives. Besides, the future work is introduced to improve and continue the current research.
	The main objectives of this research are threefold. The first is to develop a data collection system for assessing damage conditions in robotic systems. The second is to create an optimal control algorithm to suppress unwanted oscillations of the transported load caused by mechanical damage. The third, and most crucial, is to develop an algorithm for diagnosing and monitoring the robot’s condition to ensure smooth operation and prevent mechanical damage.
	The primary focus of the data collection system is the accuracy of the collected data, free from excessive noise and deviations. This was achieved through the proper placement of sensors on the experimental setup, accounting for potential noise. Experiments on data collection and analysis demonstrated that the use of spectral analysis, specifically the Fast Fourier Transform method, allows for the detection of damage at early stages. The resulting vibration spectra showed changes in the frequency characteristics of the robot’s gearbox in both reference and damaged states. The analysis identified frequencies associated with two types of damage, namely, over-tension in the tooth belt transmission and worm heating in the screw transmission. This opens up opportunities for further research in predictive maintenance and the development of diagnostic and control algorithms. This will help reduce equipment downtime and increase the overall productivity of robotic systems.
	The second part of the thesis focuses on the application of optimal control methods, particularly Bellman dynamic programming, to address the issue of eliminating unwanted oscillations. Using this method allows for the creation of an optimal control system to minimize costs and make the system adaptive and resistant to disturbances. A key feature of this strategy is the use of an accurate mathematical model of the robot in state space. This allows for the consideration of important physical parameters and provides predictions based on real dynamic characteristics. The robot’s movement axis is modeled as a two-mass system, enabling adequate assessment of oscillation processes occurring due to mechanical damage.
	The use of real data from accelerometers allows for highly accurate assessments of the model’s state. The feedback and error control mechanisms in the model facilitate the prompt detection of deviations and corresponding adjustments in the robot’s motion control. Analysis of the model’s response to asymmetric oscillations shows a significant level of overshoot, indicating the system’s aggressive response to external disturbances. The absence of oscillations in the transient process indicates good system stability. The quick settling time demonstrates the control system’s high efficiency under dynamically changing load conditions. The proposed optimal control strategies will significantly improve the robot’s positioning and reduce dynamic loads on the drives, which in turn will lower the likelihood of system failures in the event of mechanical damage.
	The final important part of this thesis is the development of a fuzzy logic algorithm for fault diagnosis and robot control in conditions of increased likelihood of mechanical damage, based on the analysis of vibration signal spectra. The process of creating the algorithm consists of several stages.
	First, linguistic variables are defined, which describe certain system parameters (e.g., vibration amplitude and frequency). These variables form the basis for further algorithm development. Second, the membership functions of the linguistic variables are constructed, allowing for the consideration of input parameters according to various criteria, such as vibration levels, frequencies of over-tension, or heating errors. Clear boundaries of these functions ensure the system’s rapid response to critical changes. Third, fuzzy logic rules are established, playing a central role in robot control and diagnostics. These rules are formed based on experimental data obtained from observing the system’s behavior. They allow the system to account for the relationship between changes in vibration frequency, amplitude, and the robot’s parameters, such as speed, torque, and acceleration, and are used to develop a damage diagnosis algorithm.
	Simulation modelling has shown that the fuzzy logic algorithm is capable of effectively responding to changes in vibration characteristics by adjusting the robot’s control parameters. For example, when high-amplitude and high-frequency vibrations occur, the system reduces the robot’s speed and increases torque to compensate for the additional load on the mechanical components. The system also adjusts the robot’s acceleration to prevent further vibration growth and stabilize operation under damaged conditions.
	The diagnostic system, based on fuzzy logic, allows real-time monitoring of vibration spectral characteristics and timely detection of deviations that signal possible mechanical damage. The algorithm responds to such damage by adjusting control parameters, which helps prevent critical failures and extends the lifespan of the robot’s components. Vibration signals are used to determine the presence of damage, such as worm screw transmission overheating or belt tension issues, allowing the system to respond before the damage becomes critical.
	Thus, the proposed fuzzy logic algorithm not only improves the reliability of the robot control system but also ensures early fault diagnosis. This contributes to increased system resilience to mechanical damage, extends the lifespan of its components, and minimizes the risk of failures.
	The proposed control systems can be validated through laboratory tests on a real object, as well as experiments involving the introduction of additional faults or their combinations. This will help assess the flexibility and accuracy of the proposed models, improve their performance, and identify potential limitations of the algorithms.
	For optimal control systems, testing should be conducted under various operating conditions of the robot, including variable loads and increased positioning demands. This will help identify weak points in the model’s behavior and improve the optimal control strategy.
	The fuzzy logic-based control algorithm also requires additional experiments with various vibration signals to ensure its robustness against larger disturbances. Introducing other faults will expand the database of linguistic variables and fuzzy rules, potentially increasing the accuracy of fault detection with a greater number of diagnostic criteria. Additionally, integrating the fuzzy logic algorithm with machine learning systems should be considered to enhance the system’s ability to detect faults at earlier stages.
	Thus, future research will focus on expanding diagnostic capabilities and improving the robustness of mechanisms against mechanical damage, which will ultimately significantly increase the reliability and efficiency of robotic systems in industrial environments. Combining both methods is proposed with fuzzy logic as the primary level for real-time diagnosis and control. The optimal control algorithm would be used only in cases requiring high precision and fast response and recovery from disturbances. Additionally, optimal control can be used for calculating adjustments for future impacts, thus predicting the behavior of the controlled system. In the case of damage, fuzzy logic would serve as the diagnostic tool, while optimal control would focus on compensating for the damage and optimizing performance. 
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	Abstract
	Fault Tolerant Control and Diagnosis Strategies for Cartesian Industrial Robot Motion Control Planning System
	The main objective of this research is to develop a multi-level approach to enhancing the reliability and efficiency of unconventional machines and applications, including robotic systems. The basis for developing this approach is mechanical damage in the transmissions of robotic systems and unstable operating loads characteristic of industrial environments. The primary goals are to improve control, diagnostics, and failure prediction to minimize downtime, increase productivity, and prevent critical system failures. These tasks are becoming increasingly relevant due to the growing use of robotic systems across various industries.
	The research sets out three key objectives. The first involves developing a data collection system to monitor the mechanical condition of the robot, particularly when mechanical damage occurs or there is a risk of it. To achieve this, an experimental lab setup with sensors was developed to collect data on the robot’s vibrations and oscillations during its operations. Using spectral analysis, specifically Fast Fourier Transform, it was possible to identify mechanical issues such as belt over-tension in a tooth belt transmission and worm heating in the screw transmission. The results of vibration signal analysis indicate significant differences in the frequency spectra of the robot in its reference condition versus when damage is present. This, in turn, allows for early identification of damage and prevention of further degradation. This approach provides the foundation for predictive maintenance and minimizes maintenance costs.
	The second objective of the research is to develop an optimal control system capable of suppressing unwanted load oscillations caused by mechanical damage to the gearbox. To achieve this, Bellman dynamic programming is applied, allowing for the creation of an adaptive control system that minimizes time costs and enhances the system’s robustness against stochastic disturbances. A two-mass system model of the robot was adopted to evaluate the oscillatory processes with sufficient accuracy and optimize the control system to minimize oscillations. As shown through modelling, the proposed strategy demonstrates high accuracy and stability under disturbances. This approach reduces the dynamic load on the robot’s drives, which mitigates the impact of mechanical damage on the overall structure, thereby extending the system’s operational life.
	The final part of the study focuses on the development of a fault detection and control algorithm for the robot in the presence of damage, based on fuzzy logic. The fuzzy logic algorithm is designed to process vibration signal analysis and make control decisions. To ensure the algorithm’s accuracy, appropriate linguistic variables and their membership functions were selected, along with a base of fuzzy rules. These components were chosen based on experimental data from vibration collection. The fuzzy logic algorithm links changes in vibration characteristics with the condition of the robot’s transmissions, enabling control under mechanical damage conditions without severe consequences. Simultaneously, real-time gearbox diagnostics are conducted to assess the state of the mechanical system. Modelling results show that the system responds effectively to changes in vibrations by adjusting the robot's parameters to stabilize its operation and prevent further structural damage. This approach allows the robotic system to adapt to changes, maintaining operability even under conditions of mechanical failure.
	The research results demonstrate the significant potential of the proposed solutions for improving the performance and reliability of robotic systems in real-world industrial processes. It is expected that the proposed control and diagnostic algorithms will not only allow timely responses to mechanical damage but also prevent such issues, reducing the likelihood of critical failures and extending equipment life. Thus, this research represents an important step forward in the field of control and diagnostics for robotic systems operating under the increased probability of mechanical damage. The proposed methods and algorithms provide substantial improvements in both control accuracy and fault diagnosis, ultimately contributing to enhanced overall reliability and efficiency of robotic systems in industrial environments.
	Lühikokkuvõte
	Tõrketaluvusega juhtimis- ja diagnostikastrateegiad tööstusliku karteesianroboti liikumise planeerimise juhtimissüsteemi jaoks
	Selle uurimistöö peamine eesmärk on välja töötada mitmetasandiline lähenemine, et suurendada ebatraditsiooniliste masinate ja rakenduste, sealhulgas robotisüsteemide, töökindlust ja tõhusust. Selle aluseks on robotisüsteemide ülekannete mehaanilised kahjustused ja ebastabiilsed töökoormused, mis on iseloomulikud tööstuskeskkondadele. Peamised eesmärgid on täiustada juhtimist, diagnostikat ja rikete prognoosimist, et minimeerida seisakuid, suurendada tootlikkust ja ennetada kriitilisi süsteemirikkeid. Need ülesanded muutuvad üha olulisemaks seoses robotisüsteemide kasvava kasutamisega erinevates tööstusharudes.
	Uuringus seatakse kolm põhieesmärki. Esimene eesmärk on välja töötada andmekogumissüsteem roboti mehaanilise seisundi jälgimiseks, eriti kui esineb mehaanilisi kahjustusi või on nende oht. Selle saavutamiseks töötati välja eksperimentaalne laboriseade koos anduritega, et koguda andmeid roboti vibratsioonide ja võnkumiste kohta tööprotsessi käigus. Spektraalanalüüsi, täpsemalt kiire Fourier’ teisenduse abil,  tuvastati mehaanilisi probleeme, nagu rihmülekande liigpinge ja kruviülekande kuumenemine. Vibratsioonisignaali analüüsi tulemused näitasid olulisi erinevusi roboti sagedusspektrites kahjustuste korral ning normaaltalitluse puhul. See võimaldab kahjustusi varakult tuvastada ja rikke edasist süvenemist ennetada. Selline lähenemine loob aluse ennustavale hooldusele ning vähendab hoolduskulusid.
	Uuringu teine eesmärk on välja töötada optimaalne juhtimissüsteem, mis suudab summutada soovimatud koormusvõnkumised, mis on põhjustatud käigukasti mehaanilistest kahjustustest. Selle saavutamiseks rakendatakse Bellmani dünaamilist programmeerimist, mis võimaldab luua adaptiivse juhtimissüsteemi, omakorda minimeerides ajakulu ja suurendades süsteemi vastupidavust stohhastilistele häiretele. Roboti kahe massi süsteemi mudelit kasutati võnkeprotsesside täpseks hindamiseks ning juhtimissüsteemi optimeerimiseks, et vähendada võnkumisi. Modelleerimise tulemusena näitas pakutud strateegia häirete korral suurt täpsust ja stabiilsust. See lähenemine vähendab roboti ajamitele mõjuvaid dünaamilisi koormusi, leevendades mehaaniliste kahjustuste mõju kogu struktuurile ja pikendades süsteemi tööiga.
	Uuringu viimane osa keskendub tõrgete korral töötava roboti rikete tuvastamise ja juhtimise algoritmi väljatöötamisele, kasutades hägusloogikat. Hägusloogika algoritm on loodud töötlema vibratsioonisignaali analüüsi ja tegema juhtimisotsuseid. Algoritmi täpsuse tagamiseks valiti sobivad muutujad ja nende kuuluvusfunktsioonid ning hägusreeglite baas. Need komponendid valiti vibratsioonide kogumise eksperimentaalsete andmete põhjal. Hägusloogika algoritm seob vibratsioonitunnuste muutused roboti ülekannete seisundiga, võimaldades juhtimist mehaaniliste kahjustuste korral ilma tõsiste tagajärgedeta. Samal ajal viiakse läbi käigukasti reaalajas diagnostika mehaanilise süsteemi seisundi hindamiseks. Modelleerimise tulemused näitavad, et süsteem reageerib vibratsioonide muutustele tõhusalt, kohandades roboti parameetreid tööprotsessi stabiliseerimiseks ja edasiste kahjustuste ennetamiseks. Selline lähenemine võimaldab robotisüsteemil kohaneda muutustega, säilitades töövõime isegi mehaaniliste rikete tingimustes.
	Uuringu tulemused näitavad pakutud lahenduste märkimisväärset potentsiaali robotisüsteemide jõudluse ja töökindluse parandamisel reaalses tööstusprotsessis. Eeldatakse, et väljapakutud juhtimis- ja diagnostikaalgoritmid võimaldavad mitte ainult õigeaegset reageerimist mehaanilistele kahjustustele, vaid ka nende ennetamist, vähendades kriitiliste rikete tõenäosust ja pikendades seadmete eluiga. Seega tähistab see uuring olulist sammu edasi robotisüsteemide juhtimise ja diagnostika valdkonnas, kus suureneb mehaaniliste kahjustuste tõenäosus. Pakutud meetodid ja algoritmid tagavad olulise täiustuse nii juhtimistäpsuses kui ka rikete diagnoosimises, aidates lõpuks kaasa robotisüsteemide töökindluse ja efektiivsuse parandamisele tööstuskeskkonnas.
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