
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nikita Balanenkov 201726IVSB

Managing Used Dependencies: Detecting and

Mitigating Security Vulnerabilities in Java-

based Web Applications

Bachelor's thesis

Supervisor: Toomas Lepikult

 PhD

Co-supervisor: Edmund Laugasson

 MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Nikita Balanenkov 201726IVSB

Kasutatavate sõltuvuste haldamine:

turvanõrkuste avaldamine ja likvideerimine

Java-põhistes veebirakendustes

Bakalaureusetöö

Juhendaja: Toomas Lepikult

 PhD

Kaasjuhendaja: Edmund Laugasson

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nikita Balanenkov

14.05.2023

4

Abstract

This bachelor’s thesis aims to compare different dependency scanning tools and

demonstrate their practical usage in software development. The first part of the thesis

introduces the concept of dependency scanning and explains its importance in modern

software development. Then, several popular dependency scanning tools are compared

based on different criteria.

The second part of the thesis provides step-by-step instructions on how to use selected

dependency scanning tools in practice. The usage instructions cover how to set up

scanners, configure them, and interpret the results of the scan. Additionally, the thesis

includes a demonstration of using selected dependency scanning tools on a sample

project.

The final part of the thesis presents a case study of a software development company that

adopted a dependency scanning tool as part of its development process. The case study

showcases how the scanner improved the company's software quality, reduced security

vulnerabilities, and helped the developers to manage their dependencies more effectively.

Overall, this thesis provides a comprehensive overview of dependency scanning tools and

demonstrates their practical usage in software development. It is a valuable resource for

developers, software engineers, and anyone interested in improving the security and

reliability of their software projects.

This thesis is written in English and is 70 pages long, including 8 chapters, 33 figures and

9 tables.

5

List of abbreviations and terms

AST Abstract Syntax Tree

APK

AWS

BOM

CI/CD

CLI

CSV

CVSS

DOS

HTML

HTTP

IDE

JAR

JSON

NVD

ODC

OWASP

PDF

RAM

RCE

SaaS

SARIF

SBOM

SCA

SQL

WAR

XML

XSS

Android Application Package

Amazon Web Services

Bill Of Materials

Continuous Integration/Continuous Delivery or Continuous

Deployment

Command Line Interface

Comma Separated Values

Common Vulnerability Scoring System

Denial of Service

HyperText Markup Language

HyperText Transfer Protocol

Integrated Development Environment

Java Archive

JavaScript Object Notation

National Vulnerability Database

OWASP Dependency Check

Open Web Application Security Project

Portable Document Format

Random Access Memory

Remote Code Execution

Software as a Service

Static Analysis Results Interchange Format

Software Bill Of Materials

Software Composition Analysis

Structured Query Language

Web Application Resource or Web application Archive

Extensible Markup Language

Cross-Site Scripting

6

Table of contents

1 Introduction ... 11

1.1 Problem setup ... 12

1.2 Methodology ... 12

2 Background .. 14

2.1 Dependencies .. 14

2.1.1 Direct dependencies ... 14

2.1.2 Indirect dependencies .. 14

2.2 Dependency scanning tools .. 15

3 Analysis ... 16

3.1 Analysis of risks caused by using vulnerable dependencies in web applications 16

3.2 Analysis of previous breaches and attacks caused by using vulnerable

dependencies in web applications ... 17

4 Overview of dependency scanning tools ... 19

4.1 Existing dependency scanning tools ... 19

4.2 Technologies used in dependency scanning tools .. 21

4.2.1 Static analysis .. 22

4.2.2 Dynamic analysis ... 23

4.3 Theoretical comparison of existing dependency scanning tools 24

5 Dependency scanning tools usage and instructions ... 35

5.1 Conduction of usage instructions for dependency scanning tools 35

5.1.1 General instructions ... 35

5.1.2 Specific instructions for OWASP Dependency Check 37

5.1.3 Specific instructions for Snyk ... 39

5.1.4 Specific instructions for DependencyTrack .. 40

5.1.5 Specific instructions for XRay by JFrog ... 42

5.2 Practical usage of existing dependency scanning tools .. 43

5.2.1 OWASP Dependency Check ... 44

5.2.2 Snyk ... 46

5.2.3 DependencyTrack .. 47

7

5.2.4 XRay by JFrog ... 48

5.3 Example of practical usage of dependency scanning tool in software development

company.. 50

6 Analysis of practical part ... 53

7 Future research .. 54

8 Summary .. 55

References .. 56

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 58

Appendix 2 – OWASP Dependency Check report ... 59

Appendix 3 – Snyk report ... 60

Appendix 4 – DependencyTrack report.. 62

Appendix 5 – XRay by JFrog report .. 63

Appendix 6 – Sonatype Nexus Lifecycle usage example... 64

8

List of figures

Figure 1. OWASP Dependency Check Maven plugin. .. 37

Figure 2. OWASP Dependency Check plugin scan execution command 37

Figure 3. OWASP Dependency Check tool scan execution command 38

Figure 4. Snyk installation command ... 39

Figure 5. Snyk authentication command .. 39

Figure 6. Snyk scan execution command ... 39

Figure 7. Command for downloading DependencyTrack Docker Compose file 40

Figure 8. Command for running DependencyTrack Docker Compose file 40

Figure 9. CycloneDX Maven plugin .. 40

Figure 10. CycloneDX Gradle dependency .. 41

Figure 11. CycloneDX Maven plugin execution command ... 41

Figure 12. CycloneDX Gradle dependency execution command 41

Figure 13. OWASP Dependency Check report, part 1 ... 59

Figure 14. OWASP Dependency Check report, part 2 ... 59

Figure 15. Snyk report, part 1 ... 60

Figure 16. Snyk report, part 2 ... 60

Figure 17. Snyk report, part 3 ... 61

Figure 18. Snyk report, part 4 ... 61

Figure 19. DependencyTrack report, part 1 .. 62

Figure 20. DependencyTrack report, part 2 .. 62

Figure 21. XRay by JFrog report, part 1... 63

Figure 22. XRay by JFrog report, part 2... 63

Figure 23. Failed build stage .. 64

Figure 24. Build logs .. 64

Figure 25. Application's build report in Sonatype Nexus Lifecycle 64

Figure 26. Risk remediation options .. 65

Figure 27. Policy violation details .. 66

Figure 28. Security violation details ... 66

Figure 29. Vulnerability details, part 1 ... 67

9

Figure 30. Vulnerability details, part 2 ... 68

Figure 31. Vulnerability details, part 3 ... 69

Figure 32. Legal details .. 70

Figure 33. Audit log ... 70

10

List of tables

Table 1. OWASP Dependency Check and Snyk details .. 25

Table 2. Sonatype Nexus Lifecycle and Black Duck Hub details 27

Table 3. DependencyTrack and Mend SCA details ... 29

Table 4. Aqua Security and XRay by JFrog details ... 31

Table 5. Veracode details ... 33

Table 6. OWASP Dependency Check list of vulnerable components with respective

severity level ... 44

Table 7. Snyk list of vulnerable components with respective severity level 46

Table 8. DependencyTrack list of vulnerable components with respective severity level

 .. 47

Table 9. XRay by JFrog list of vulnerable components with respective severity level . 48

11

1 Introduction

To keep pace with the demands of feature-rich and complex web applications, software

developers commonly rely on third-party libraries and frameworks to expedite

development processes. However, while such external components are beneficial for

accelerating work output, they give way for cybercriminals to hack vulnerabilities into a

system through which sensitive information can be leaked or destructive codes

introduced, disrupting web application operations. As such, overseeing dependencies has

emerged as fundamental to securing robustness within contemporary web apps. The

complex structure of larger projects makes staying ahead of potential security threats in

Java-based web applications challenging at best.

However, thanks to recent advancements made with dependency scanning tools, it is now

possible to quickly detect and remedy such vulnerabilities effectively. By analysing

dependencies used throughout the coding ecosystem, scanning systems highlight

common causes for concern, including known weaknesses that could expose sensitive

data, alongside expert recommendations on how best to mitigate them. As part of an

overall workflow strategy for better online safety practices, integrating such tools into

day-to-day development protocols should be considered essential.

The primary objective of this bachelor's thesis is to examine how dependency scanning

tools play a crucial role in the management of dependencies, specifically within Java-

based web applications. The study will investigate various techniques and approaches

used to detect and mitigate potential security vulnerabilities associated with third-party

code. The research will commence by examining the significance of dependency

management and the possible dangers when utilizing external sources.

This thesis will then compare different dependency scanning tools' effectiveness in

identifying vulnerable areas within a test application, appraise them, and present their

results. It will conclude by providing readers with guidelines on installing and running

dependency scanning tools for managing dependencies and guaranteeing the safety of

12

web applications. Through analysing prevalent literature relating to the subject matter,

studying case studies, and carrying out practical experiments employing an array of

dependency scanning tools, this research aims to generate vital insights concerning

dependency management best practices as well as guarantee web application security.

The thesis results can serve as a resource tool for stakeholders invested in web application

development, such as software developers, project managers, or any other interested party

engaged in software development activities.

1.1 Problem setup

Using vulnerable dependencies in the code is often a cause of security vulnerabilities. The

goal of the thesis is to try to pay attention to keeping dependencies updated by proposing

and analyzing different tools for the automatic detection of vulnerable dependencies in

theory and practice. The thesis deals with helping to mitigate security vulnerabilities in

Java-based web applications by providing possible options for detecting vulnerable

dependencies that could be a source for such vulnerabilities. The thesis will not provide

a direct solution to the problem, such as an actual application capable of such detection;

this could be done as a continuation of the work.

1.2 Methodology

This thesis heavily relies on quantitative research involving the methods described below:

• Conducting a literature review to identify relevant studies, research papers, and

articles related to the use of vulnerable dependencies in software development.

Analysing the findings and summing up the key points and insights.

• Conducting a comprehensive analysis of the security risks associated with using

vulnerable dependencies and exploring real-world security breaches that were

caused by such dependencies. Analysing the impact of these breaches and their

consequences.

• Searching for tools that can detect vulnerable dependencies automatically.

Evaluating the tools based on several criteria. Analysing their features and

functionalities and comparing them to other similar tools available on the market.

13

• Selecting the free tools identified in the previous step and conducting

experimental research to test their effectiveness in detecting vulnerable

dependencies. Using a sample application to evaluate the tools' performance and

analysing the results.

• Based on the experimental research results, developing a list of instructions that

outline the steps to be followed when using the tools to detect and mitigate

vulnerable dependencies.

• Providing a practical example of how the tools can be used in a software

development company to detect vulnerable dependencies in applications.

Outlining the steps involved in the process and providing a detailed description of

the tools used. Analysing the benefits of using the tools and how they can help the

company mitigate security risks associated with vulnerable dependencies.

14

2 Background

The following chapter will provide basic information about dependencies and

dependency vulnerability scanning tools to give readers a general understanding of the

topic.

2.1 Dependencies

In programming, dependencies refer to external modules, libraries, or packages that are

necessary for the proper execution of the code.

External resources are commonly produced and sustained by developers who are not

affiliated with the primary software project. These resources are usually accessed via

package managers such as npm (for JavaScript), pip (for Python), or Maven (for Java).

Dependencies can take many forms, including code libraries, frameworks, or even entire

software systems. For a code snippet to utilize a dependency, it is essential that the said

dependency is installed and configured appropriately within the project. Frequently, this

process involves the explicit declaration of the interdependence within a configuration

file or script, such as a pom.xml file utilized by a Maven-based Java web application or a

build.gradle file used by a Gradle-based Java web application. In software development,

dependencies can be classified as either direct or indirect[1].

2.1.1 Direct dependencies

Direct dependencies in Java refer to libraries or modules that are explicitly referenced in

your code. These are resources that your code directly depends on to function correctly.

Using Spring Boot as an example, Spring Boot would be a direct dependency of the

project when creating a Java web application. Import statements that reference Spring

Boot classes and interfaces would be included in the code[2].

2.1.2 Indirect dependencies

Indirect dependencies in Java are dependencies that are required by your direct

dependencies. These dependencies are not referenced directly in your code but are needed

15

by the libraries or modules that your code depends on. For example, Spring Boot may

have dependencies on other modules, such as Jackson for JSON processing. Jackson

would be an indirect dependency on your project because it's required by Spring Boot but

not directly referenced in your code[2].

2.2 Dependency scanning tools

Dependency scanning tools are software engineering instruments utilized to detect and

handle the dependencies of a given project. The aforementioned tools conduct an analysis

of a given project's source code, configuration files, and other related assets in order to

identify the external libraries, modules, or packages upon which it depends. Upon

identification, dependency scanning tools can assist developers in verifying the currency,

compatibility, and security of all dependencies.

The process of dependency scanning holds significant importance in projects that are

either large or complex and possess a multitude of dependencies. Inadequate management

of dependencies may result in outdated or incompatible dependencies, which can cause

performance degradation, security vulnerabilities, and other related issues. Through the

utilization of a dependency scanning tool, software developers are able to expeditiously

detect and revise obsolete dependencies, thereby guaranteeing the stability and security

of their projects.

A wide range of dependency scanning tools are currently available, ranging from

rudimentary command-line utilities to intricate enterprise-grade alternatives. Several

commonly used alternatives comprise Sonatype Nexus, DependencyTrack, Snyk, and

OWASP Dependency Check. The aforementioned tools provide a variety of

functionalities, including but not limited to dependency visualization, automated

dependency resolution, and vulnerability scanning. The utilization of a dependency

scanning tool enables developers to guarantee that their projects are constructed on a

stable basis of secure, current, and efficiently managed dependencies[3][4].

16

3 Analysis

The following chapter will provide a comprehensive analysis of the security risks

associated with using vulnerable dependencies and an overview of real-world security

breaches that were caused by the use of such dependencies.

3.1 Analysis of risks caused by using vulnerable dependencies in web

applications

In the field of software development, the use of dependencies could introduce

vulnerabilities in applications.

These flaws are typically characterized by different types of threats, such as cross-site

scripting (XSS), which originates from accepting unsanitized data as part of a webpage

without verification or sanitization. Additionally, SQL injection can also result from

failing to validate unsanitized parameters before using them to construct queries, leading

to unauthorized access to or exposure of confidential information.

Apart from cross-site scripting and SQL injection, three more types of vulnerabilities are

identified: remote code execution (RCE), denial of service (DoS), and information

disclosure.

A critical security risk is remote code execution; attackers can use vulnerable

dependencies to execute harmful code onto a victim's system, granting them considerable

access rights.

The second type of hazard is DoS, where the exploitation of deficient security resources

may result in the destruction or overloading of systems, starving genuine users of access

to essential services.

Lastly, data breaches through susceptibility within dependent libraries are sources for

information disclosure attacks carried out with specific intentions.

17

3.2 Analysis of previous breaches and attacks caused by using

vulnerable dependencies in web applications

Vulnerable dependencies have been the source of dozens of data breaches and cyber

security attacks, some of them are highlighted below:

• Equifax, 2017. Approximately 148 million Americans had their sensitive data

exposed in a data breach sustained by Equifax in 2017, along with around fifteen

million British citizens and roughly nineteen thousand Canadian residents. The

flaw that enabled this compromise within the financial information giant's

computer systems resulted from the exploitation of a vulnerability discovered

within an open-source web application framework titled Apache Struts; more

specifically, this security defect occurred due to Jakarta Multipart parser issues

related to improperly handled exceptions throughout file uploads processed

through HTTP headers present within Struts version numbers ranging from

between two point three through two point five[5].

• Capital One, 2019. Capital One fell victim to a cyber-attack in 2019, which

exploited a weakness in their web application firewall due to an incorrect

configuration of firewall rules. Such inadequate settings paved the way for the

invader to launch manipulated requests against the firewall, breaching its

defenses. The attacker penetrated the resilient Apache Struts software and

executed instructions that granted her access to data stored in S3 buckets[6].

• Target, 2013. A vulnerable point in a third-party vendor's software that had

become part and parcel of Target's payment system allowed hackers to gain

entrance into its payment infrastructure. The assailants took advantage of stolen

third-party network credentials traced back to this same inadequacy, which

furnished them direct access to Target’s network, allowing infiltration at ease.

Using malware meant for RAM scraping purposes, the attackers were then able to

siphon vital data being processed by Target[7][8].

• Mariott International, 2018. As investigations into the Marriott data breach

show, an exploitable loophole existed within their third-party reservation system,

which provided cybercriminals with an opportunity to gain unauthorized entry

into the network. It has been established that authentication controls were at fault

18

for failing to prevent such access from taking place, which ultimately triggered

this catastrophic event for Marriott[9].

• Heartbleed, 2014. The Heartbleed bug (CVE-2014-0160) was discovered in

OpenSSL, a popular open-source software library used to secure web

communications. The theft of sensitive information, such as private keys and

passwords, was enabled through the exploitation of a bug that compromised

vulnerable servers; among the websites affected were Yahoo, Pinterest, and

GitHub[10].

• WannaCry, 2017. The WannaCry ransomware attack wreaked havoc on over 200

thousand computers dispersed across 150 countries due to a critical flaw in

Microsoft Windows' system (CVE-2017-0144). This flaw was reportedly

discovered by National Security Agency operatives, and its details were leaked by

a hacker collective known as the Shadow Brokers[11].

19

4 Overview of dependency scanning tools

The following chapter will provide an overview of dependency scanning tools: existing

dependency scanning tools, technologies used and theoretical comparison of those tools.

4.1 Existing dependency scanning tools

Existing dependency scanning tools include the following options:

• OWASP Dependency Check is an open-source technology that scans application

dependencies to locate any known vulnerabilities. It has the ability to support a

number of file types, including WAR, JAR, and APK. The software takes

advantage of a mixture of internal and public vulnerability databases to detect

these known weaknesses. OWASP Dependency Check can be easily integrated

into the development cycle, providing constant scanning for these particular

issues[12].

• Sonatype Nexus Lifecycle is a commercial tool that provides in-depth analysis

of Java-based application dependencies. It offers detailed information about used

components, including their license information, security vulnerabilities, and

potential risks. The tool also provides actionable intelligence to help developers

and security teams remediate vulnerabilities and ensure compliance with industry

standards[13].

• Snyk is a powerful dependency scanning tool that offers developers detailed

information about used components, license information, potential risks, and

security vulnerabilities. Its ability to provide actionable intelligence ensures

compliance with industry standards while also helping developers and security

teams remediate vulnerabilities proactively. Furthermore, Snyk continuously

monitors applications and alerts users to newly discovered vulnerabilities[14].

• Black Duck offers an array of functionalities for companies seeking a

comprehensive solution for managing software security risks associated with

Java-based applications. Its ability to thoroughly scan application dependencies

20

enables the identification of components used in application development, along

with license details and known vulnerabilities[15].

• DependencyTrack is an open-source tool that helps organizations manage and

control their software dependencies. It scans Java-based applications to detect

known vulnerabilities in their dependencies and provides actionable intelligence

to remediate the vulnerabilities. It also offers a risk scoring system that prioritizes

vulnerabilities based on their severity[16].

• Mend SCA, as a commercial software tool, examines the dependencies of Java-

based applications to pinpoint any known vulnerabilities that may compromise

their integrity. License compliance information for open-source components is

also provided, complemented by expert recommendations to remediate any issues

that are detected. This program can be seamlessly integrated into software

development processes as it continuously monitors and reports new vulnerability

findings[17].

• Aqua Security is a commercial tool that provides vulnerability scanning and risk

assessment for Java-based applications. It scans application dependencies to

detect known vulnerabilities and provides detailed information about their

severity and remediation recommendations. The tool can also help to ensure

compliance with industry standards, such as the OWASP Top 10[18].

• XRay, Developed by JFrog, can be utilized as a tool for identifying known

vulnerabilities in Java-based application dependencies. The scanner integrates

seamlessly with popular development tools such as Jenkins and JFrog Artifactory

for continuous monitoring of application dependencies. Detailed reports and

dashboards are available through the use of XRay to enable teams to easily

manage and remediate any detected vulnerabilities[19].

• Veracode Software Composition Analysis is another commercially available

solution that focuses on scanning Java-based application dependencies to identify

known security threats. In addition to its capability of identifying vulnerabilities,

the tool also furnishes users with data concerning open-source components'

licensing compliance and suggests measures for rectification. This tool's potential

is emphasized through its ability to be integrated into the software development

21

lifecycle, ensuring constant scrutiny and notifications of newly discovered

problems[20].

4.2 Technologies used in dependency scanning tools

In order to detect potential security risks in software projects, dependency scanning tools

employ a methodical process of scanning the source code and analyzing its dependencies.

Through parsing the code and constructing a dependency graph, relationships between

components can be mapped and evaluated for any known vulnerabilities present. The

scanner proceeds to individually analyze each dependency by determining its version

number, provenance, and metadata.

Upon initiating the scanning process, the scanner will perform an exhaustive check

against each and every dependency on a database known for its repository of

vulnerabilities. The scanner vendor may maintain the database or obtain it from an

external third-party like the National Vulnerability Database (NVD).

Based on various techniques such as string matching, regular expressions, and fuzzy

matching, metadata information about each dependency is compared with entries in the

vulnerability database. If a particular match is detected, then a detailed report highlighting

specific potential risks and necessary remedial measures will be presented by the scanner.

Incorporated within the report may be details about how severe a vulnerability is and what

impact it has on software functionality or security.

To carry out this type of evaluation, dependency scanning tools employ numerous

technologies; static analysis and dynamic analysis are potential options[21][22].

22

4.2.1 Static analysis

Analyzing code without running it is possible using static analysis, which is often used in

software development. A key area where this technique comes into play is within

dependency scanning tools, specifically when identifying the associations present among

the various components that comprise a software system.

Dependencies exist on two levels: internally, meaning relations that link distinct modules

within one program; or externally, denoting connections across various frameworks and

libraries implemented by said program.

Through scrutinizing all aspects of a software system's coding infrastructure, static

analysis enables dependency scanning tools to highlight these interdependencies, which

is achieved by first parsing source code. This process entails a breakdown of the code into

its various constituent parts, including functions, variables, and statements. Additionally,

identification and tracing of dependencies between these segments are required through

this endeavor.

The next phase of this analysis consists of constructing an abstract syntax tree (AST)

through the assembly of parsed data to render an astute representation capturing both the

structure and syntax of the code.

Finally, analyzing ASTs is executed using diverse approaches seeking aid in clarifying

dependencies relating to individual software components. The identification of software

system dependencies involves various techniques like data flow analysis, control flow

analysis, and type inference.

Additionally, the dependency scanning tool produces a detailed report regarding the

identified dependencies, including information about the involved components, the

dependency types, and their strengths.

Static analysis is a crucial part of dependency scanning and is used by many popular

dependency scanning tools in the software development industry. Nevertheless, it has its

limitations since it may not recognize dependencies that arise at runtime or those that are

indirectly expressed in code[23].

23

4.2.2 Dynamic analysis

To analyze how a program behaves during execution, developers often rely on dynamic

analysis, a popular technique used in software development. Additionally, this approach

can also be applied to dependency scanning tools that are tasked with identifying

connections between different components within a software system.

Generally speaking, during dynamic analysis, one runs the target application while

recording its specific behaviors and closely monitoring interactions between individual

program sections. During program execution, the dependency scanning tool carefully

observes its behavior and captures data on various runtime characteristics, including

memory usage and execution time.

Upon completing the program execution, the dependency scanning tool uses different

techniques, such as analyzing memory usage, tracing execution components, and

identifying patterns in behavior, to scrutinize the collected data.

Finally, based on the data analysis results, it reports all identified dependencies.

Dynamic analysis, which involves identifying the components involved in a dependency,

determining the type of dependency, and assessing the strength of the dependency, is a

powerful technique for examining software systems. It is especially useful when

capturing dependencies that only emerge at runtime. Nonetheless, conducting dynamic

analysis can be resource-intensive and complicated compared to static analysis since the

program needs to run while data on its behavior is collected[24].

24

4.3 Theoretical comparison of existing dependency scanning tools

Table 1, Table 2, Table 3, Table 4 and Table 5 provide a theoretical comparison of the

nine most popular dependency scanning tools for Java-based applications, including:

OWASP Dependency Check[25], Sonatype Nexus Lifecycle[26], Snyk[27], Black

Duck[28], DependencyTrack[29], Mend SCA (formerly Whitesource)[30], Aqua

Security[18], XRay by JFrog[31], and Veracode[32]. The comparison will be made based

on 12 different criteria:

• Vulnerability database – the database of vulnerabilities that is being used by the

dependency scanning tool to identify vulnerabilities.

• Supported programming languages – applications written in a programming

language that can be scanned by the dependency scanning tool.

• Analysis scope – which part of the application is scanned by the dependency

scanning tool.

• Analysis type – what type of analysis is used during the scan (static, dynamic).

• Integration with IDEs – which IDEs can the dependency scanning tool be

integrated with.

• Integration with CI/CD – which CI/CD systems can the dependency scanning

tool be integrated with.

• Integration with repositories – which repositories can the dependency scanning

tool be integrated with.

• Scanning capabilities – what is being scanned by the dependency scanning tool

and what is included in the final report.

• License – under which license is the dependency scanning tool operating.

• Deployment – where can the dependency scanning tool be installed (locally, in

the cloud).

• Reporting – in what format is the final report presented.

25

• Pricing – how much does the dependency scanning tool cost.

Table 1 provides the details about OWASP Dependency Check and Snyk.

Table 1. OWASP Dependency Check and Snyk details

Parameter OWASP Dependency

Check

Snyk

Vulnerability database OWASP Top 10, NVD,

Retire.js, VulnDB,

Sonatype OSS Index

Snyk Vulnerability

Database

Supported programming

languages

Java, .NET, Node.js,

Ruby, Python, PHP,

Golang

Java, .NET, Node.js,

Ruby, Python, Golang,

Scala, Kotlin

Analysis scope Application dependencies Application dependencies

and container images

Analysis type Static analysis Static analysis

Integration with IDEs Eclipse, IntelliJ IDEA,

Visual Studio, Visual

Studio Code, Jenkins,

Azure DevOps, TeamCity

Visual Studio Code,

IntelliJ IDEA, WebStorm,

Atom, Eclipse, CLI

Integration with CI/CD Jenkins, Azure DevOps,

TeamCity, CircleCI,

GitLab CI/CD, Travis CI,

Bamboo, CodeShip,

Codeship Pro, Drone,

GitHub Actions

Jenkins, Azure DevOps,

CircleCI, GitLab CI/CD,

Travis CI, Bitbucket

Pipelines, Codefresh,

CodeShip, Codeship Pro,

Drone, GitHub Actions,

AWS CodeBuild

26

Parameter OWASP Dependency

Check

Snyk

Integration with

repositories

GitHub, GitLab, Bitbucket,

Artifactory, Nexus, npm,

PyPI, NuGet

GitHub, GitLab, Bitbucket,

JFrog Artifactory, AWS

Elastic Container Registry,

AWS Elastic Kubernetes

Service

Scanning capabilities Finds known

vulnerabilities in

dependencies

Finds known

vulnerabilities in

dependencies and

containers, identifies

license violations, detects

security misconfigurations

License Open source (Apache 2.0) Proprietary

Deployment On-premises, Docker,

cloud

On-premises, cloud, SaaS

Reporting HTML, JSON, XML,

CSV, SARIF

HTML, JSON, XML, CLI

Pricing Free Free for open source

projects, paid plans for

enterprise use

27

Table 2 provides the details about Sonatype Nexus Lifecycle and Black Duck.

Table 2. Sonatype Nexus Lifecycle and Black Duck Hub details

Parameter Sonatype Nexus Lifecycle Black Duck

Vulnerability database Sonatype OSS Index,

NVD, OWASP Top 10,

Snyk, VulnDB, Retire.js,

JFrog Xray

Black Duck Knowledge

Base

Supported programming

languages

Java, .NET, Node.js,

Ruby, Python, Go, PHP,

Swift, Kotlin, Scala,

JavaScript, Rust, C/C++

Java, .NET, Node.js,

Ruby, Python, Go, PHP,

Swift, Kotlin, Scala,

JavaScript, Rust, C/C++

Analysis scope Application dependencies,

containers, and software

bill of materials (SBOM)

Application dependencies,

containers, and software

bill of materials (SBOM)

Analysis type Combination of static and

dynamic analysis

Combination of static and

dynamic analysis

Integration with IDEs IntelliJ IDEA, Eclipse,

Visual Studio, Visual

Studio Code

Eclipse, IntelliJ IDEA,

Visual Studio, Visual

Studio Code, Atom,

Sublime Text, PyCharm

Integration with CI/CD Jenkins, Azure DevOps,

Bamboo, TeamCity,

CircleCI, GitLab CI/CD,

Travis CI, Codefresh

Jenkins, Azure DevOps,

Bamboo, TeamCity,

CircleCI, GitLab CI/CD,

Travis CI, Codefresh,

CodeShip, AWS

CodePipeline

Integration with

repositories

Nexus Repository

Manager, JFrog

Artifactory, GitHub,

Nexus Repository

Manager, JFrog

Artifactory, GitHub,

28

Parameter Sonatype Nexus Lifecycle Black Duck

GitLab, Bitbucket, npm,

PyPI, Maven Central,

NuGet

GitLab, Bitbucket, Docker

Hub, AWS Elastic

Container Registry, AWS

CodeArtifact

Scanning capabilities Finds known

vulnerabilities in

dependencies and provides

policy enforcement

capabilities based on

custom rules

Finds known

vulnerabilities in

dependencies, identifies

license compliance issues,

and provides policy

enforcement capabilities

based on custom rules

License Proprietary Proprietary

Deployment On-premises, cloud, SaaS On-premises, cloud, SaaS

Reporting HTML, JSON, XML,

CSV, SARIF

HTML, PDF, JSON, CLI

Pricing Paid plans for enterprise

use

Paid plans for enterprise

use

29

Table 3 provides the details about DependencyTrack and Mend SCA (formerly

Whitesource).

Table 3. DependencyTrack and Mend SCA details

Parameter DependencyTrack Mend SCA

Vulnerability database NVD, VulnDB, Retire.js,

ODC, ODC Advanced,

and WhiteSource

proprietary database

WhiteSource proprietary

database

Supported programming

languages

Java, .NET, Node.js,

Python, Ruby, Go, PHP,

Scala, Swift, Kotlin,

Objective-C, JavaScript

Java, .NET, Node.js,

Python, Ruby, Go, PHP,

Scala, Swift, Kotlin,

Objective-C, JavaScript,

Perl, Lua, Shell

Analysis scope Application dependencies,

containers, and software

bill of materials (SBOM)

Application dependencies,

containers, and software

bill of materials (SBOM)

Analysis type Combination of static and

dynamic analysis

Combination of static and

dynamic analysis

Integration with IDEs Eclipse, IntelliJ IDEA,

Visual Studio Code,

Visual Studio

Eclipse, IntelliJ IDEA,

Visual Studio Code,

Visual Studio, Atom,

Sublime Text, PyCharm

Integration with CI/CD Jenkins, Bamboo,

CircleCI, GitLab CI/CD,

Travis CI

Jenkins, Bamboo,

TeamCity, CircleCI,

GitLab CI/CD, Travis CI,

Azure DevOps, Bitbucket

Pipelines, GitHub Actions

30

Parameter DependencyTrack Mend SCA

Integration with

repositories

Nexus Repository

Manager, JFrog

Artifactory, GitLab,

GitHub, Bitbucket, Docker

Hub

Nexus Repository

Manager, JFrog

Artifactory, GitLab,

GitHub, Bitbucket, Docker

Hub, npm, PyPI, Maven

Central, NuGet

Scanning capabilities Finds known

vulnerabilities in

dependencies and provides

policy enforcement

capabilities based on

custom rules

Finds known

vulnerabilities in

dependencies, identifies

license compliance issues,

and provides policy

enforcement capabilities

based on custom rules

License Open source Proprietary

Deployment On-premises, cloud, SaaS On-premises, cloud, SaaS

Reporting HTML, PDF, JSON, CSV,

XML

HTML, JSON, XML, CLI

Pricing Free and open source Paid plans for enterprise

use

31

Table 4 provides the details about Aqua Security and XRay by JFrog.

Table 4. Aqua Security and XRay by JFrog details

Parameter Aqua Security XRay by JFrog

Vulnerability database Aqua proprietary database,

NVD, CVSS

NVD, VulnDB, JFrog

proprietary database

Supported programming

languages

Java, .NET, Node.js,

Python, Ruby, Go, PHP,

Scala, Swift, Kotlin,

Objective-C, JavaScript,

Rust

Java, .NET, Node.js,

Python, Ruby, Go, PHP,

Scala, Swift, Kotlin,

Objective-C, JavaScript

Analysis scope Container images,

Kubernetes, cloud-native

environments, and

software bill of materials

(SBOM)

Application dependencies,

containers, and software

bill of materials (SBOM)

Analysis type Dynamic analysis Static analysis

Integration with IDEs None IntelliJ IDEA, Visual

Studio Code, Visual

Studio

Integration with CI/CD Jenkins, GitLab CI/CD,

Travis CI, Azure DevOps,

CircleCI, Tekton,

Spinnaker, Codefresh

Jenkins, Bamboo,

TeamCity, CircleCI,

GitLab CI/CD, Travis CI,

Azure DevOps, Bitbucket

Pipelines, GitHub Actions

Integration with

repositories

Docker Hub, Amazon

ECR, Google GCR, JFrog

Artifactory

Nexus Repository

Manager, JFrog

Artifactory, GitLab,

GitHub, Bitbucket, Docker

32

Parameter Aqua Security XRay by JFrog

Hub, npm, PyPI, Maven

Central, NuGet

Scanning capabilities Finds known

vulnerabilities in container

images and cloud-native

environments, provides

policy enforcement

capabilities based on

custom rules

Finds known

vulnerabilities in

dependencies, identifies

license compliance issues,

and provides policy

enforcement capabilities

based on custom rules

License Proprietary Proprietary

Deployment On-premises, cloud, SaaS On-premises, cloud, SaaS

Reporting HTML, PDF, JSON, CSV HTML, JSON, XML, CLI

Pricing Paid plans for enterprise

use

Paid plans for enterprise

use

33

Table 5 provides the details about Veracode.

Table 5. Veracode details

Parameter Veracode

Vulnerability database Proprietary database, NVD

Supported programming

languages

Java, .NET, Node.js,

Python, Ruby, Go, PHP,

Scala, Swift, Kotlin,

Objective-C, JavaScript,

TypeScript, COBOL,

ABAP

Analysis scope Dependencies and

software bill of materials

(SBOM)

Analysis type Static analysis

Integration with IDEs Eclipse, IntelliJ IDEA,

Visual Studio, Visual

Studio Code

Integration with CI/CD Jenkins, Azure DevOps,

TeamCity, CircleCI,

GitLab CI/CD, Bamboo

Integration with

repositories

JFrog Artifactory, Nexus

Repository Manager,

GitLab, GitHub

Scanning capabilities Identifies known

vulnerabilities and offers

remediation guidance,

identifies license

compliance issues,

34

Parameter Veracode

provides policy

enforcement capabilities

based on custom rules

License Proprietary

Deployment On-premises, SaaS

Reporting HTML, PDF, CSV, JSON

Pricing Paid plans for enterprise

use

35

5 Dependency scanning tools usage and instructions

The following chapter focuses on the practical part of the work. It will provide readers

with instructions on how to properly use dependency scanning tools, demonstrate their

usage on a deliberately insecure application and provide an example of dependency

scanning tool’s usage in the software development company.

5.1 Conduction of usage instructions for dependency scanning tools

The following chapter will provide two types of instructions on how to properly use

dependency scanning tools: general and application specific.

5.1.1 General instructions

Choose a dependency scanning tool

There are several dependency scanning tools available on the market that can help you

identify and fix vulnerabilities in your application. Refer to the comparison of existing

dependency scanning tools to choose a tool that meets your needs and budget.

Install the dependency scanning tool

Follow the installation instructions provided by the tool vendor to integrate the scanner

into your application.

Configure the dependency scanning tool

Once the scanner is installed, you need to configure it to scan your application. The

configuration steps may vary depending on the scanner you choose.

Run the scan

Once the scanner is configured, you can run a scan of your application. The scanner will

crawl your application and identify any vulnerabilities that exist in your application's code

or dependencies.

36

Review the scan report

After the scan is complete, the scanner will generate a report that provides details about

the vulnerabilities it has identified. Take the time to review the report carefully to

understand the nature and severity of the vulnerabilities.

Resolve the vulnerabilities

Once you have reviewed the report, you can take steps to resolve the vulnerabilities.

Depending on the severity of the vulnerability, the recommended actions may vary. In

general, the actions you can take include:

• Updating the affected dependencies to a version that is not vulnerable

• Patching the vulnerability by applying a fix or workaround

• Removing the dependency altogether if it is not needed or cannot be patched

• Marking the vulnerability as not applicable if vulnerable functionality of the

dependency is not used

To resolve the vulnerabilities, you can follow the specific instructions provided in the

report. Once you have made the necessary changes, you can run the scan again to verify

that the vulnerabilities have been resolved.

Monitor for new vulnerabilities

It is important to monitor your Java web application for new vulnerabilities on an ongoing

basis. Different dependency scanning tools can help you stay up-to-date by providing

alerts when new vulnerabilities are discovered in your application's dependencies. You

can configure the scanner to send alerts to your email or another preferred communication

channel or integrate it with your CI/CD pipeline to automate vulnerability scanning and

resolution.

37

5.1.2 Specific instructions for OWASP Dependency Check

Option 1 – using a plugin

Installation

Step 1: Add the OWASP Dependency Check plugin to your project's build tool. For

example, if you are using Maven, add the following plugin to your pom.xml file:

<plugin>

 <groupId>org.owasp</groupId>

 <artifactId>dependency-check-maven</artifactId>

 <version><version></version>

</plugin>

Figure 1. OWASP Dependency Check Maven plugin.

Replace <version> with the version number of the OWASP Dependency Check plugin

that you want to use.

Scanning the application

Step 1: Run the OWASP Dependency Check plugin by executing the following command

in your project's directory:

mvn org.owasp:dependency-check-maven:check

Figure 2. OWASP Dependency Check plugin scan execution command

Wait for the OWASP Dependency Check plugin to finish scanning your application's

dependencies. The plugin will generate a report containing any identified vulnerabilities

and dependencies that are out of date.

Refer to the General instructions paragraph starting with “Reviewing the report“ for

further actions.

38

Option 2 – using the tool

Installation

Step 1: Download OWASP Dependency Check from the official website and extract the

files to a directory of your choice.

Step 2: Open a terminal or command prompt and navigate to the directory where you

extracted the OWASP Dependency Check files.

Step 3: Set up your Java environment by ensuring that Java is installed on your system

and that the JAVA_HOME environment variable is set correctly.

Scanning the application

Step 1: Run the OWASP Dependency Check tool by typing the following command in

the terminal or command prompt:

java -jar dependency-check-<version>-release.jar -s
<path_to_your_project_directory>

Figure 3. OWASP Dependency Check tool scan execution command

Replace <version> with the version number of the OWASP Dependency Check tool that

you downloaded, and <path_to_your_project_directory> with the path to the directory

containing your Java application.

Wait for the OWASP Dependency Check tool to finish scanning your application's

dependencies. The tool will generate a report containing any identified vulnerabilities and

dependencies that are out of date.

Refer to the General instructions paragraph starting with “Reviewing the report“ for

further actions.

39

5.1.3 Specific instructions for Snyk

Installation

Step 1: Install Node.js and npm on your machine. You can download the latest version

from the official Node.js website.

Step 2: Open the terminal or command prompt and run the following command to install

Snyk:

npm install -g snyk

Figure 4. Snyk installation command

Scanning the application

Step 1: Create a Snyk account if you don't already have one. You can create an account

for free on the Snyk website.

Step 2: Open the terminal or command prompt and run the following command to

authenticate in Snyk:

snyk auth

Figure 5. Snyk authentication command

Step 2: After authenticating into the tool, run the following command in your terminal to

test your application for vulnerabilities:

mvn snyk:test

Figure 6. Snyk scan execution command

This command will scan your application and identify any vulnerabilities that exist.

After running the scan execution command, Snyk will generate a report that identifies

any vulnerabilities that exist in your application's dependencies.

Refer to the General instructions paragraph starting with “Reviewing the report“ for

further actions.

40

5.1.4 Specific instructions for DependencyTrack

Installation

Step 1: Install Docker and Docker Compose on your machine. You can find the

installation instructions for your platform on the Docker website and the Docker Compose

website.

Step 2: Create a directory that will contain Docker Compose file for running

DependencyTrack and navigate to it in your terminal or command prompt.

Step 3: Download the official Docker Compose file for running DependencyTrack from

the official website:

curl -O https://dependencytrack.org/docker-compose.yml

Figure 7. Command for downloading DependencyTrack Docker Compose file

Step 4 (optional): Open the docker-compose.yml file in a text editor and modify the

db_password field under the services > dependency-track > environment section to set a

secure password for the database.

Step 5: Start the DependencyTrack server and the database by running the following

command in the project directory:

docker-compose up -d

Figure 8. Command for running DependencyTrack Docker Compose file

Integration with the application

Step 1: Add the CycloneDX plugin to your application. If you are using Maven as a build

tool, add the following plugin to your pom.xml file:

<plugin>

 <groupId>org.cyclonedx</groupId>

 <artifactId>cyclonedx-maven-plugin</artifactId>

 <version><version></version>

</plugin>

Figure 9. CycloneDX Maven plugin

Replace <version> with the version number of the CycloneDX plugin that you want to

use.

https://dependencytrack.org/docker-compose.yml

41

If you are using Gradle as a build tool, add the following dependency to your build.gradle

file:

id "org.cyclonedx.bom" version <version>

Figure 10. CycloneDX Gradle dependency

Replace <version> with the version number of the CycloneDX plugin that you want to

use.

Step 2: Build your Java web application and generate a CycloneDX Bill of Materials

(BOM) file by running the following commands.

If Maven is used as a build tool:

mvn org.cyclonedx:cyclonedx-maven-plugin:makeBom

Figure 11. CycloneDX Maven plugin execution command

If Gradle is used as a build tool:

./gradlew cyclonedxBom

Figure 12. CycloneDX Gradle dependency execution command

Step 3: Upload the CycloneDX BOM file to DependencyTrack by logging into the

DependencyTrack web interface at http://localhost:8080 and navigating to the Projects

section.

Step 4: Click on the Create Project button and enter the required information for your

application.

Step 5: Open the project and navigate to the Components tab. click on the Upload BOM

button and select the BOM file that was generated in Step 2.

Step 6: After refreshing the page, DependencyTrack will analyze the BOM file and

generate a report of any vulnerabilities found in your application's dependencies. You can

view the report under the Vulnerabilities tab.

Refer to the General instructions paragraph starting with “Reviewing the report“ for

further actions.

42

5.1.5 Specific instructions for XRay by JFrog

The instructions will cover installing and using the XRay by JFrog plugin in IntelliJ Idea.

XRay by JFrog also offers other integration options such as VS Code, Android Studio,

Docker, JFrog CLI, GitHub Actions, etc. You can find detailed installation instructions

for each supported product on the JFrog website.

Installation

Step 1: Go to the XRay by JFrog homepage at jfrog.com/xray and create an account to

start a free trial.

Step 2: To install the XRay plugin for IntelliJ IDEA, you'll need to open the IDE, go to

File > Settings > Plugins, search for "XRay", and click "Install".

Step 3: Once you've installed the XRay plugin, you'll need to configure it to connect to

your JFrog instance. This will involve entering your JFrog credentials and specifying the

URL for your JFrog instance.

Scanning the application

Step 1: To run a scan using XRay, you can simply click the "Run Scan" button in the

XRay panel of IntelliJ IDEA. This will initiate a scan of your project's dependencies.

Once you've done the XRay scanning, you'll be able to view XRay results directly in your

IDE.

Refer to the General instructions paragraph starting with “Reviewing the report“ for

further actions.

43

5.2 Practical usage of existing dependency scanning tools

Practical usage of existing dependency scanning tools involved testing four free tools:

OWASP Dependency Check, Snyk, DependencyTrack, and XRay by JFrog on the

WebGoat project[33].

WebGoat is a deliberately insecure web application created for educational purposes, and

as such, it presents a useful target for testing dependency scanning tools. The application

includes a variety of vulnerability examples and challenges that simulate real-world web

application security flaws, including those that may arise from dependencies. As a Java-

based application, WebGoat relies on numerous dependencies, such as libraries and

frameworks, to function. These dependencies can introduce vulnerabilities of their own,

such as outdated versions with known security issues or code injection vulnerabilities.

Testing dependency scanning tools on WebGoat can provide valuable insights into the

effectiveness and accuracy of these tools. By intentionally introducing vulnerabilities into

the application and then scanning for them, it can be assessed how well the scanners are

able to detect and report on these issues.

In addition, testing dependency scanning tools on WebGoat can also help identify

potential areas for improvement in the scanners themselves. For example, if a scanner

fails to detect a known vulnerability in one of WebGoat's dependencies, this may indicate

a need for updates or enhancements to the scanner's vulnerability database or detection

algorithms.

Overall, WebGoat is an excellent target for testing dependency scanning tools, as it

presents a realistic and varied set of vulnerabilities that can be used to assess the

effectiveness and accuracy of these tools. By using WebGoat in this way, users can gain

a better understanding of the strengths and weaknesses of different dependency scanning

tools and make more informed decisions about which tools to use in their own web

application security testing efforts.

44

5.2.1 OWASP Dependency Check

Running OWASP Dependency Check on WebGoat project generated the report in HTML

format (see Appendix 2).

Analysis of the report led to the following conclusions regarding Maven dependencies:

• The application contains 138 dependencies.

• The number of vulnerable dependencies is 16, 8 being of critical severity, 7 being

of high severity, 1 being of medium severity

• The total number of vulnerabilities is 75.

• The list of vulnerable components with respective severity level is shown in Table

6.

Table 6. OWASP Dependency Check list of vulnerable components with respective severity level

Component Severity level

hsqldb-2.5.2.jar CRITICAL

snakeyaml-1.30.jar CRITICAL

spring-web-5.3.21.jar CRITICAL

spring-security-web-5.7.2.jar CRITICAL

spring-security-crypto-5.7.2.jar CRITICAL

spring-security-core-5.7.2.jar CRITICAL

spring-security-config-5.7.2.jar CRITICAL

xstream-1.4.5.jar CRITICAL

spring-webmvc-5.3.21.jar HIGH

spring-expression-5.3.21.jar HIGH

45

Component Severity level

spring-core-5.3.21.jar HIGH

xnio-api-3.8.7.Final.jar HIGH

undertow-servlet-2.2.18.Final.jar HIGH

undertow-core-2.2.18.Final.jar HIGH

jackson-databind-2.13.3.jar HIGH

guava-31.1-jre.jar MEDIUM

46

5.2.2 Snyk

Running Snyk on WebGoat project generated the report in the CLI (see Appendix 3).

Analysis of the report led to the following conclusions regarding Maven dependencies:

• The application contains 136 dependencies.

• The number of vulnerable dependencies is 10, 2 being of critical severity, 4 being

of high severity, 4 being of medium severity.

• The total number of vulnerabilities is 55.

• The list of vulnerable components with respective severity level is shown in Table

7.

Table 7. Snyk list of vulnerable components with respective severity level

Component Severity level

spring-webmvc-5.3.21.jar CRITICAL

xstream-1.4.5.jar CRITICAL

hsqldb-2.5.2.jar HIGH

snakeyaml-1.30.jar HIGH

spring-security-web-5.7.2.jar HIGH

undertow-core-2.2.18.Final.jar HIGH

spring-expression-5.3.21.jar MEDIUM

spring-security-config-5.7.2.jar MEDIUM

xnio-api-3.8.7.Final.jar MEDIUM

jackson-databind-2.13.3.jar MEDIUM

47

5.2.3 DependencyTrack

Running DependencyTrack on WebGoat project generated the report in the server run

using docker (see Appendix 4).

Analysis of the report led to the following conclusions:

• The application contains 142 dependencies.

• The number of vulnerable dependencies is 12, 5 being of critical severity, 4 being

of high severity, 3 being of medium severity.

• The total number of vulnerabilities is 43.

• The list of vulnerable components with respective severity level is shown in Table

8.

Table 8. DependencyTrack list of vulnerable components with respective severity level

Component Severity level

hsqldb-2.5.2.jar CRITICAL

snakeyaml-1.30.jar CRITICAL

spring-web-5.3.21.jar CRITICAL

spring-security-web-5.7.2.jar CRITICAL

xstream-1.4.5.jar CRITICAL

spring-webmvc-5.3.21.jar HIGH

xnio-api-3.8.7.Final.jar HIGH

undertow-core-2.2.18.Final.jar HIGH

jackson-databind-2.13.3.jar HIGH

guava-31.1-jre.jar MEDIUM

48

Component Severity level

spring-expression-5.3.21.jar MEDIUM

spring-security-crypto-5.7.2.jar MEDIUM

5.2.4 XRay by JFrog

Running XRay by JFrog on WebGoat project generated the scan report in the

corresponding plugin (see Appendix 5). Analysis of the report led to the following

conclusions:

• The number of dependencies is not known.

• The number of vulnerable dependencies is 12, 5 being of critical severity, 7 being

of high severity, 2 being of medium severity.

• The total number of vulnerabilities is 60.

• The list of vulnerable components with respective severity level is shown in Table

9.

Table 9. XRay by JFrog list of vulnerable components with respective severity level

Component Severity level

hsqldb-2.5.2.jar CRITICAL

snakeyaml-1.30.jar CRITICAL

spring-webmvc-5.3.21.jar HIGH

spring-web-5.3.21.jar CRITICAL

spring-core-5.3.21.jar HIGH

spring-security-core-5.7.2.jar CRITICAL

undertow-core-2.2.18.Final.jar HIGH

49

Component Severity level

xstream-1.4.5.jar CRITICAL

jackson-databind-2.13.3.jar HIGH

jetty-server:9.4.48v0220622 MEDIUM

thymeleaf-extras-

springsecurity5:3.0.4.RELEASE

MEDIUM

wildfly-common:1.5.4.Final HIGH

50

5.3 Example of practical usage of dependency scanning tool in software

development company

The use of the dependency scanning tool will be demonstrated on the infrastructure of

Bally’s Interactive.

Bally's Interactive is a gaming company that develops and maintains online casino games

and sports betting applications. Managing used software dependencies is critical to their

development process to ensure software quality, performance, and compliance.

The methodology used by Bally's Interactive to manage software dependencies involves

using Nexus Lifecycle as a dependency scanning tool at the build stage of each

application to avoid deploying applications containing vulnerable dependencies even in

test environments. Nexus Lifecycle is integrated into the build stage of GoCD pipelines,

and policies are defined for acceptable components, versions, and licenses.

Nexus Lifecycle is used in the software development process by scanning all software

dependencies used in the applications. The results of the scan are then reviewed by the

development team, and any vulnerabilities or policy violations are addressed.

From my experience of as part of the development team at Bally’s Interactive, it is safe

to state that approximately 1 out of 10 builds fail because of Nexus reports containing 1

to 10 reported vulnerabilities in the code, which, if ignored, might lead to highly

vulnerable applications.

51

An example scenario indicating the usage of Nexus Lifecycle is described below.

The build stage of the pipeline has failed (see Appendix 6, Figure 23).

The reason for the failed build is Nexus finding two components with critical

vulnerabilities in applications’ dependencies (see Appendix 6, Figure 24).

Opening the link for the report provided by Nexus opens up the page, where we can see

that the components with critical vulnerabilities are transitive dependencies

com.fasterxml.jackson.core:jackson-core:2.14.1 and org.yaml:snakeyaml:1.33 (see

Appendix 6, Figure 25).

When opening an overview of the com.fasterxml.jackson.core:jackson-core:2.14.1

component, we can see that it is a transitive dependency of the component

org.springframework.boot:spring-boot-starter-webflux:3.0.2 and that the recommended

way of mitigating the vulnerability is upgrading the dependency to version 2.15.0-rc1.

(see Appendix 6, Figure 26).

Apart from that, we can also navigate to the “Policy violations” tab, which contains

information about policies that have been violated by the component (see Appendix 6,

Figure 27).

On the next tab “Security” we can see information about security policies that have been

violated and the exact vulnerability that the dependency contains (see Appendix 6, Figure

28).

When opening the details of the vulnerability, we can see a lot of important information,

such as the vulnerability score, explanation, vulnerable files and functions,

recommendations, versions affected, etc. (See Appendix 6, Figure 29, Figure 30, Figure 31).

The next tab “Legal” contains information about the licenses that have been detected in

the component and also outlines legal policy violations, if such are present (see Appendix

6, Figure 32).

The last tab “Audit log” includes actions such as when a scan was initiated, when policies

were defined or updated, when vulnerabilities were identified, and when remediation

actions were taken. In our case, the remediation action that has been taken is marking the

52

vulnerability as “Not applicable” since vulnerable functionality is not used in the

application (see Appendix 6, Figure 33).

The use of Nexus Lifecycle has led to a significant reduction in the number of

vulnerabilities in the software dependencies used in the applications and a greater

awareness among developers about the existence of such vulnerabilities. Additionally,

the development team has been able to identify and address policy violations early in the

development process, leading to better compliance with organizational policies. This has

resulted in improved software quality and performance.

53

6 Analysis of practical part

Demonstration of theoretical knowledge is a crucial element in academic writing, and it

is achieved through the practical segment of the thesis.

Consequently, the practical part of the thesis concentrates on providing an illustration via

various dependency scanning tools that are useful for software development. In such

scenarios, step-by-step instructions simplify usage procedures and demonstrate how

different dependency scanning tools help in feasible software development.

Furthermore, a case study of a well-known software development company provides

additional insight into scanner applications. Detailing the experiences of a software

development company in using dependency scanning tools, the second section of this

article outlines specific challenges relating to dependency management that were faced

by said organization. With the efficient scanning capabilities provided by these powerful

tools, however, those hurdles were successfully surmounted, thereby illustrating both the

current potential problems facing developers today and how powerful detection solutions

could prove quite useful in addressing them specifically.

Completing our understanding of these vital utilities appears later in this piece with step-

by-step directions on properly installing and leveraging dependency scanning tools. The

practical aspect of this thesis is crucial, as it equips the reader with the necessary skills to

apply dependency scanning tools in their own projects. The application of different

dependency scanning tools in software development is well demonstrated, making the

practical section an excellent resource for readers.

Indeed, the instructions are concise and straightforward, which allows readers to easily

comprehend and deploy these sophisticated tools in their respective projects. Moreover,

through the example of a software development company, this section emphasizes the

pragmatic benefits associated with utilizing dependency scanning tools.

54

7 Future research

Possible future research directions for the topic might include:

• Investigation of new techniques and tools for dependency management. As the

landscape of software development evolves, new tools and techniques for

managing dependencies may emerge. Future research could explore and evaluate

these new approaches and assess their effectiveness in detecting and mitigating

security vulnerabilities.

• Analysis of the effectiveness of different vulnerability detection methods.

Dependency scanning tools use various methods for detecting security

vulnerabilities, such as static analysis and dynamic analysis. Future research could

compare the effectiveness of these different methods in detecting and mitigating

security vulnerabilities in Java-based web applications.

• Examination of the impact of vulnerability mitigation on application performance.

Updating dependencies and mitigating security vulnerabilities can sometimes

have an impact on the performance of web applications. Future research could

investigate the relationship between vulnerability mitigation and application

performance and explore ways to optimize this balance.

• Study of the human factors in dependency management. While dependency

scanning tools are valuable tools for detecting and mitigating security

vulnerabilities, human factors also play a critical role in effective dependency

management. Future research could examine the role of developers, project

managers, and other stakeholders in ensuring the security of web applications

through effective dependency management practices.

• Investigation of the relationship between open-source software and security

vulnerabilities. Open-source software plays a significant role in software

development and is often used in web applications. However, the use of open-

source code can also introduce security vulnerabilities. Future research could

explore the relationship between open-source software and security vulnerabilities

and investigate ways to mitigate these risks in Java-based web applications.

55

8 Summary

The thesis aimed to address the issue of security vulnerabilities in Java-based web

applications caused by used dependencies. The thesis proposed the use of dependency

scanning tools as a solution to identify and manage vulnerabilities associated with used

dependencies in web applications.

The thesis provided a comprehensive analysis of the current state-of-the-art tools and

techniques for managing used dependencies in Java-based web applications. It

highlighted the advantages of automated dependency scanning tools.

The thesis also presented a detailed evaluation of several popular dependency scanning

tools, including a detailed comparison. The evaluation criteria included different

important parameters such as supported programming languages, used vulnerability

database, analysis scope, pricing etc.

In conclusion, the thesis provided valuable insights into the issue of managing used

dependencies in Java-based web applications and proposed a practical solution using

dependency scanning tools. The evaluation of different scanners can guide developers in

selecting the most appropriate tool for their specific needs. The recommendations

provided in the thesis can help improve the security of Java-based web applications and

prevent vulnerabilities caused by used dependencies.

56

References

[1] “What are software dependencies.” Sonatype. https://www.sonatype.com/launchpad/

what-are-software-dependencies (accessed May 14, 2023).

[2] “What are direct and indirect dependencies?” Snyk Support.

https://support.snyk.io/hc/en-us/articles/360000905138-What-are-direct-and-indirect-

dependencies- (accessed May 13, 2023).

[3] S. Koussa. “13 tools for checking the security risk of open-source dependencies.”

TechBeacon. https://techbeacon.com/app-dev-testing/13-tools-checking-security-risk-

open-source-dependencies (accessed May 14, 2023).

[4] “Free for Open Source Application Security Tools,” OWASP, https://owasp.org/www-

community/Free_for_Open_Source_Application_Security_Tools (accessed May 14,

2023).

[5] J. Fruhlinger, “Equifax Data Breach FAQ: What happened, who was affected, what was

the impact?,” CSO Online, https://www.csoonline.com/article/3444488/equifax-data-

breach-faq-what-happened-who-was-affected-what-was-the-impact.html (accessed May

14, 2023).

[6] “2019 capital one cyber incident: What happened,” Capital One,

https://www.capitalone.com/digital/facts2019/ (accessed May 14, 2023).

[7] D. Lukic. “Target Data Breach: How was target hacked?,” IDStrong,

https://www.idstrong.com/sentinel/that-one-time-target-lost-everything/ (accessed May

14, 2023).

[8] C. Jones. “Warnings (& lessons) of the 2013 Target Data Breach.” Red River.

https://redriver.com/security/target-data-breach (accessed May 14, 2023).

[9] J. Fruhlinger. “Marriott Data Breach FAQ: How did it happen and what was the impact?”

CSO Online. https://www.csoonline.com/article/3441220/marriott-data-breach-faq-how-

did-it-happen-and-what-was-the-impact.html (accessed May 14, 2023).

[10] S. Koussa. “13 tools for checking the security risk of open-source dependencies.”

TechBeacon. https://techbeacon.com/app-dev-testing/13-tools-checking-security-risk-

open-source-dependencies (accessed May 14, 2023).

[11] “What was Wannacry?: Wannacry ransomware,” Malwarebytes, https://www.malware

bytes.com/wannacry (accessed May 14, 2023).

[12] “OWASP Dependency-Check,” OWASP, https://owasp.org/www-project-dependency-

check/ (accessed May 14, 2023).

[13] “Sonatype lifecycle - Application Security Testing & Management,” Sonatype,

https://www.sonatype.com/products/open-source-security-dependency-management

(accessed May 14, 2023).

[14] “Open Source Security Management: SCA Tool,” Snyk, https://snyk.io/product/open-

source-security-management/ (accessed May 14, 2023).

https://www.sonatype.com/launchpad
https://www.malware/

57

[15] “Black Duck Software Composition Analysis (SCA),” Synopsys,

https://www.synopsys.com/software-integrity/security-testing/software-composition-

analysis.html (accessed May 14, 2023).

[16] Track: Software bill of materials (SBOM) analysis,” Dependency,

https://dependencytrack.org/ (accessed May 14, 2023).

[17] “MEND SCA: Open Source Software Management made simple,” Mend,

https://www.mend.io/sca/ (accessed May 14, 2023).

[18] “Container vulnerability scanning for cloud native applications,” Aqua,

https://www.aquasec.com/products/container-vulnerability-scanning/ (accessed May 14,

2023).

[19] “Software composition analysis tool - jfrog security,” JFrog, https://jfrog.com/xray/

(accessed May 14, 2023).

[20] “Software composition analysis (SCA),” Veracode, https://www.veracode.com/products/

software-composition-analysis (accessed May 14, 2023).

[21] A. Sharma, “Software composition analysis explained, and how it identifies open-source

software risks,” CSO Online, https://www.csoonline.com/article/3640808/software-

composition-analysis-explained-and-how-it-identifies-open-source-software-risks.html

(accessed May 14, 2023).

[22] “Component analysis,” OWASP, https://owasp.org/www-community/Component_

Analysis (accessed May 14, 2023).

[23] “What is SAST and how does static code analysis work?,” Synopsys,

https://www.synopsys.com/glossary/what-is-sast.html (accessed May 14, 2023).

[24] “What is Dynamic Application Security Testing (DAST): Micro focus,” Microfocus,

https://www.microfocus.com/en-us/what-is/dast (accessed May 14, 2023).

[25] Jeremylong, “OWASP Dependency Check repository,” GitHub,

https://github.com/jeremylong/DependencyCheck (accessed May 14, 2023).

[26] “Sonatype IQ Server,” Sonatype Documentation, https://help.sonatype.com/iqserver

(accessed May 14, 2023).

[27] “User docs,” User Docs - Snyk User Docs, https://docs.snyk.io/ (accessed May 14, 2023).

[28] “User Guide BlackDuck,” Synopsys, https://testing.blackduck.synopsys.com/

doc/pdfs/user_guide.pdf (accessed May 13, 2023).

[29] S. Springett, “Dependency-Track Introduction,” dependency track,

https://docs.dependencytrack.org/ (accessed May 14, 2023).

[30] “MEND documentation,” Mend Documentation, https://docs.mend.io/ (accessed May

14, 2023).

[31] “JFrog Xray,” JFrog Help Center, https://jfrog.com/help/r/get-started-with-the-jfrog-

platform/jfrog-xray (accessed May 14, 2023).

[32] “Veracode Docs,” Veracode Docs RSS, https://docs.veracode.com/ (accessed May 14,

2023).

[33] WebGoat, “WebGoat repository,” GitHub, https://github.com/WebGoat/WebGoat

(accessed May 14, 2023).

58

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I, Nikita Balanenkov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Managing Used Dependencies: Detecting and Mitigating Security

Vulnerabilities in Java-based Web Applications”, supervised by Toomas Lepikult and

Edmund Laugasson

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

14.05.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

59

Appendix 2 – OWASP Dependency Check report

Figure 13. OWASP Dependency Check report, part 1

Figure 14. OWASP Dependency Check report, part 2

60

Appendix 3 – Snyk report

Figure 15. Snyk report, part 1

Figure 16. Snyk report, part 2

61

Figure 17. Snyk report, part 3

Figure 18. Snyk report, part 4

62

Appendix 4 – DependencyTrack report

Figure 19. DependencyTrack report, part 1

Figure 20. DependencyTrack report, part 2

63

Appendix 5 – XRay by JFrog report

Figure 21. XRay by JFrog report, part 1

Figure 22. XRay by JFrog report, part 2

64

Appendix 6 – Sonatype Nexus Lifecycle usage example

Figure 23. Failed build stage

Figure 24. Build logs

Figure 25. Application's build report in Sonatype Nexus Lifecycle

65

Figure 26. Risk remediation options

66

Figure 27. Policy violation details

Figure 28. Security violation details

67

Figure 29. Vulnerability details, part 1

68

Figure 30. Vulnerability details, part 2

69

Figure 31. Vulnerability details, part 3

70

Figure 32. Legal details

Figure 33. Audit log

