

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical and Power Engineering and Mechatronics

MODELING AND CONTROL WITH NEURAL
NETWORKS FOR A MAGNETIC LEVITATION

SYSTEM WITH TWO ELECTROMAGNETS

MODELLEERIMINE JA KONTROLL NÄRVIVÕRGU ABIL

KAHE ELEKTROMAGNETIGA

MAGNETILISE LEVITATSIOONISÜSTEEMI JAOKS

MASTER THESIS

Student: Alexandra Kolosova

Student code: 201639MAHM

Supervisor:
Hossein Alimohammadi,
Early-Stage Researcher

Co-supervisor:

Mart Tamre, Professor

Tallinn 2022

(On the reverse side of title page)

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“18” May 2022

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

Non-exclusive licence for reproduction and publication of a graduation thesis1

I, Alexandra Kolosova,

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

“Modeling and Control with Neural Networks for a Magnetic Levitation System with Two

Electromagnets”,

supervised by Hossein Alimohammadi,

1.1 to be reproduced for the purposes of preservation and electronic publication of the
graduation thesis, incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered

in the digital collection of the library of Tallinn University of Technology until expiry
of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

18/05/2022 (date)

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the

student's application for restriction on access to the graduation thesis that has been signed by

the school's dean, except in case of the university's right to reproduce the thesis for preservation

purposes only. If a graduation thesis is based on the joint creative activity of two or more

persons and the co-author(s) has/have not granted, by the set deadline, the student defending

his/her graduation thesis consent to reproduce and publish the graduation thesis in compliance

with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid

for the period.

Department of Electrical and Power Engineering and Mechatronics

THESIS TASK

Student: Alexandra Kolosova, 201639MAHM

Study programme: MAHM02/18 – Mechatronics,

main speciality: Mechatronics

Supervisor: Early-Stage Researcher Hossein Alimohammadi, +372 57852726

Co-Supervisor: Professor Mart Tamre, +372 5120982

Thesis topic:

(in English) Modeling and Control with Neural Networks for a Magnetic Levitation

System with Two Electromagnets

(in Estonian) Modelleerimine ja kontroll närvivõrgu abil kahe elektromagnetiga

magnetilise levitatsioonisüsteemi jaoks

Thesis main objectives:

1. Collect and analyse time-series datasets from the Magnetic Levitation System.

2. Develop the Neural Network based control solution for position tracking.

3. Improve existing PID controller’s performance and extend its working range.

Thesis tasks and time schedule:

No Task description Deadline

1. Literature analysis. Writing “Introduction” and “Literature
overview” chapters of the thesis

October 2021-
November 2021

2. Design of the artificial neural network and related controller
December 2021 –

January 2022

3. Simulations, analysis, and adjustments of the controller
January 2022 –
February 2022

4. Writing thesis work and analysis of the results
March 2022 –

April 2022

5. Thesis submission and defense
May 2022 –
June 2022

Language: English Deadline for submission of thesis: “18” May 2022

Student: Alexandra Kolosova ……………. “.......”......................2022

 /signature/

Supervisor: Hossein Alimohammadi ……………. “.......”......................2022

 /signature/

Co-Supervisor: Mart Tamre ……………. “.......”......................2022

 /signature/

Head of study

programme: Anton Rassõlkin ……………. “.......”......................2022

 /signature/

Terms of thesis closed defence and/or restricted access conditions to be formulated on

the reverse side

6

TABLE OF CONTENTS

PREFACE .. 8

LIST OF FIGURES .. 9

LIST OF TABLES ...11

ABBREVIATIONS...13

1. INTRODUCTION ..15

2. LITERATURE OVERVIEW ...18

2.1 Necessity of the intelligent control methods ..18

2.2 Existing solutions ...19

 2.2.1 State feedback control ..19

 2.2.2 Linear quadratic regulator ...20

 2.2.3 Gain-scheduling approach ...21

 2.2.4 Backstepping ...21

 2.2.5 Fuzzy logic control ..22

 2.2.6 Sliding mode control ...22

 2.2.7 Fractional-order controllers ..23

 2.2.8 Model predictive control ..24

 2.2.9 Neural network control ..25

 2.2.10 Deep reinforcement learning ..28

2.3 Literature overview conclusions ...35

2.4 Aims of the thesis ..37

3. MAGNETIC LEVITAION SYSTEM AND ITS MODELING38

3.1 System description and modeling...38

 3.1.1 Mechanical part and software ...38

 3.1.2 System modeling..40

 3.1.3 Existing controllers ...44

 3.1.4 Parameter estimation for MLS2EM ..46

4. NARX-BASED CONTROLLER DESIGN ..50

4.1 NARX-based controller ..50

 4.1.1 NARX model ..50

 4.1.2 Training datasets ..51

 4.1.3 NARX neural network structure ..52

 4.1.4 Training and its results ..56

 4.1.5 NARX-based controller 1 ...57

 4.1.6 NARX-based controller 2 ...59

 4.1.7 NARX-based controller 4 ...60

4.2 Obstacles in NARX-based controller design ..60

7

5. RL-BASED CONTROLLER DESIGN ..62

5.1 Reinforcement Learning based controller ..62

 5.1.1 Deep Reinforcement Learning approach ..62

 5.1.2 Deep Deterministic Policy-Gradient algorithm...64

 5.1.3 Environment, observations and reward function67

 5.1.4 Actor and Critic design ..70

 5.1.5 RL-training and its results..73

 5.1.6 Graded learning for MLS2EM ..77

 5.1.7 Graded learning on the example of Water Tank model77

6. SIMULATION EXPERIMENTS, RESULTS AND DISCUSSIONS83

6.1 Simulation experiments results ..83

 6.1.1 Experiments for Controller 1 ..83

 6.1.2 Experiments for Controller 2 ..87

 6.1.3 Experiments for Controller 4 ..88

 6.1.4 Experiments for Controller 1, Graded learning ..89

SUMMARY ..92

KOKKUVÕTE ..94

REFERENCES..94

APPENDICES .. 102

 Appendix 1 MATLAB code for training NARX network 103

 Appendix 2 DDPG Algorithm [39] .. 105

 Appendix 3 MATLAB code for building the environment 106

 Appendix 4 MATLAB code for creating actor and critic networks 107

 Appendix 5 MATLAB code for setting RL-training options 109

 Appendix 6 Training progress for the case of graded learning 110

 Appendix 7 MATLAB code for calculating MSE and building plots 112

 Appendix 8 Plots in experiments for controller 1 ... 113

 Appendix 9 Plots in experiments for controller 2 ... 124

 Appendix 10 Plots in experiments for controller 4 ... 131

 Appendix 11 Plots in experiments for controller 1 with graded learning 133

8

PREFACE

The master thesis topic “Modeling and Control with Neural Networks for a Magnetic

Levitation System with Two Electromagnets” was proposed by the Early-Stage

Researcher Hossein Alimohammadi. The magnetic levitation system with two

electromagnets (MLS2EM), used during the following work, is created by the Polish

company INTECO, and currently located in Centre for Intelligent Systems, Tallinn

University of Technology.

The main goal of the thesis was to design a better alternative control solution for already

existing PD-controller, based on the neural networks. The work was challenging and

interesting. Due to certain limitations and obstacles, it required more investigation and

effort, which resulted in the significant improvement of the PD-controller, using

Reinforcement Learning method.

I would like to express my gratitude towards my main supervisor, Early-Stage

Researcher Hossein Alimohammadi, for assistance and support at each stage of

experiments and writing the master thesis work. I would also like to thank Professor

Mart Tamre from Department of Electrical and Power Engineering and Mechatronics for

a right and timely advice, Professor Eduard Petlenkov from Department of Computer

Systems, and Early-Stage Researcher Vjatšeslav Škiparev from Department of Software

Science, for consultations and fresh eyes on issues appeared during experiments.

Keywords: magnetic levitation system, artificial neural network, reinforcement

learning, control design, master thesis.

9

LIST OF FIGURES

Figure 1.1 MLS2EM laboratory setup [1] ..16

Figure 3.1 The Magnetic Levitation Main window ...39

Figure 3.2 Simulation model "PD" (model 1) with Animation block40

Figure 3.3 Visualization of magnetic levitation using Animation block40

Figure 3.4 MLS2EM diagram [1] ...42

Figure 3.5. Interior of the MLS2EM model ..42

Figure 3.6 Interior of the EM1 and EM2 current models ...43

Figure 3.7 Interior of the EM1 Fem and EM2 Fem blocks ..43

Figure 3.8 Interior of the PD-controller ..44

Figure 3.9 Interior of the differential mode PD-controller45

Figure 3.10 Datasets for parameter estimation ...47

Figure 3.11 Parameter estimation progress ..48

Figure 3.12 Measured and simulated outputs prior parameter estimation (above);

reference signal (below) ..48

Figure 3.13 Measured and simulated outputs after parameter estimation (above);

reference signal (below) ..49

Figure 4.1 Parallel (on the left) and Series-Parallel (on the right) architecture of NARX

 ..50

Figure 4.2 Generating of the training dataset, Simulink model51

Figure 4.3 Input and target data, collected in simulation52

Figure 4.4 NARX series-parallel (open-loop) configuration diagram54

Figure 4.5 a).The interior of open-loop NARX model; b). Hidden layer 1; c). Output

layer 2; ...54

Figure 4.6 NARX parallel (closed-loop) configuration diagram54

Figure 4.7 a).The interior of closed-loop NARX model; b). Hidden layer 1; c). Output

layer 2; ...55

Figure 4.8 NARX and PD output comparison ...58

Figure 4.9 Squares of errors for NARX over the time ..58

Figure 5.1 Simulink model, PD controller and DDPG agent in parallel67

Figure 5.2 "Generate observations" block ………………………………………………………….70

Figure 5.3 "Stop simulation" block ..70

Figure 5.4 "Calculate reward" block...70

Figure 5.5 Actor (left) and critic (right) structure in Deep Network Designer72

Figure 5.6 Training progress of RL-agent “c1_agent1” ...75

Figure 5.7 Simulation result of the trained RL-agent “c1_agent1”75

Figure 5.8 Training of “c1_agent1” without time reward ..76

10

Figure 5.9 Diverging training of “c1_agent1” without time reward76

Figure 5.10 Water Tank model diagram [52] ..78

Figure 5.11 Water Tank Simulink model with PID-controller78

Figure 5.12 Interior of the Water Tank system ...79

Figure 5.13 Water Tank Simulink model with the RL-agent79

Figure 5.14 The reward block interior (left) and stopping criteria (right), bounds in

meters ..79

Figure 5.15 Test 1. Performance of the PID-controller, wt_agent1_000 and wt_agent2.

Initial water level: 10 m. Reference signal: the Random Number (mean 9, variance 5,

sample time 40 s). No disturbance added ..81

Figure 5.16 Test 2. Performance of the PID-controller, wt_agent1_000 and wt_agent2.

Initial water level: 10 m. Reference signal: the Random Number (mean 6, variance 8,

sample time 20 s). Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse

width 10 samples, phase delay 30 samples) ...81

Figure 5.17 Test 3. Performance of the PID-controller, wt_agent1_000 and wt_agent2.

Initial water level: 5 m. Reference signal: the Random Number (mean 6, variance 8,

sample time 20 s). Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse

width 10 samples, phase delay 30 samples) ...82

Figure 6.1 First-three-seconds response of the PD-controller 183

Figure 6.2 First-three-seconds response of the NARX-based controller 184

Figure 6.3 First-three-seconds response of the PD-controller 1 with RL-agent in

parallel ..84

Figure A.1 Training progress of "wt_agent1_100" ... 110

Figure A.2 Training progress of "wt_agent1_075" ... 110

Figure A.3 Training progress of "wt_agent1_050" ... 110

Figure A.4 Training progress of "wt_agent1_025" .. 111

Figure A.5 Training progress of "wt_agent1_000" ... 111

Figure A.6 Training progress of "wt_agent2" .. 111

11

LIST OF TABLES

Table 2.1 Transient analysis between PID and ANN controllers [30]26

Table 2.2 Transient analysis between RBFNNSMC, SMC, BSC controllers [31]26

Table 2.3 Average MSE and run-time of MLFFNN-, RBFN- and NARX-based controllers

[32] ..26

Table 2.4 Transient analysis between FOPID, MRAC-FOPID and PID with NARX

reference model [35] ..27

Table 2.5 NNs structure and training settings for DDPG agent, [39]31

Table 2.6 NNs structure and training settings for DDPG agent, [40]32

Table 2.7 Comparison of closed-loop performance of DDPG-based controllers using

different reward functions [40] ...33

Table 2.8 NNs structure and training settings for DDPG agent, [42]35

Table 3.1 Ferromagnetic objects’ parameters ...38

Table 3.2 Existing simulation and experimental models of MLS2EM39

Table 3.3 Parameters of the equations (3.1)-(3.2) ..41

Table 3.4 Parameters of the simulation and experimental PD-controllers for the models

1-5 ...45

Table 3.5 Reference signal characteristics for collecting datasets (setpoint, Figure

3.10) ..47

Table 3.6 Initial and estimated parameters' values ...48

Table 4.1 Characteristics of the input signal ...51

Table 4.2 Open-loop / closed-loop NARX structure ..53

Table 5.1 List of observations with limits ...68

Table 5.2 Reference signal (sine wave) parameters ...70

Table 5.3 Actor structure ...71

Table 5.4 Critic structure ...71

Table 5.5 Agent, actor and critic, and noise properties ..73

Table 5.6 Agent training options ...73

Table 5.7 Adam optimizer options for actor and critic ..74

Table 5.8 RL-agents and related PD-controllers ..75

Table 5.9 Training outcomes depending on the time reward77

Table 5.10 Training schedule for “c1_agent1” with decreasing PD-controller output ..77

Table 5.11 The PID-controller parameters for the water tank model78

Table 5.12 Agent, actor and critic, and noise properties for Water Tank problem80

Table 5.13 Agent training options for Water Tank problem80

Table 5.14 Training schedule for Water Tank model ..80

Table 5.15 Performance of the PID-controller, wt_agent1_000, wt_agent282

12

Table 6.1 Description of the sets of experiments, controller 185

Table 6.2 Performance of the PD-controller1, NARX-based controller1, PD-controller1

+RL-agent ...86

Table 6.3 Description of the sets of experiments, controller 287

Table 6.4 Performance of the PD-controller2, NARX-based controller2, PD-controller2

+RL-agent ...88

Table 6.5 Description of the sets of experiments, controller 488

Table 6.6 Performance of the PD-controller4, NARX-based controller4, PD-controller4

+RL-agent ...89

Table 6.7 Description of the sets of experiments, controller 1, graded learning90

Table 6.8 Performance of the decreased-output PD-controller 1, PD controller 1 + RL-

agent and PD controller 1 + retrained RL-agent ..90

13

ABBREVIATIONS

1-DOF One Degree-of-Freedom

2-DOF Two Degrees-of-Freedom

ACO Ant Colony Optimization algorithm

ANN, NN Artificial Neural Network, or Neural Network; Tehisnärvivõrk (est.)

ASMC Adaptive Sliding Mode Controller

BSC Backstepping Control

CCS Cascade Control System

CDM Coefficient Diagram Method

DDPG Deep Deterministic Policy Gradient algorithm

DDPG-agent Deep Deterministic Policy Gradient Agent

DDQN Double-Deep Q-Network

DL Toolbox Deep Learning Toolbox; Süvaõppe Toolbox(est.)

DN Designer Deep Network Designer App

DPG Deterministic Policy Gradient algorithm

DQN Deep Q-Network

DRL Deep Reinforcement Learning

EM Electromagnetic Field

EM1 Electromagnet 1 (upper)

EM2 Electromagnet 2 (lower)

EMS Electromagnetic Suspension

FL Feedback Linearization

FLC Fuzzy Logic Control

FOC Fractional-Order Control

FOPID Fractional-Order PID controller

FOSMC Fractional-Order Sliding Mode Controller

Google Colab Online Jupyter Notebooks environment from Google

GS-C Gain Scheduling Control

I/O Input/Output

IAE Integral Absolute Error

IBS Integral Backstepping

LCD Liquid Crystal Display

LMA Levenberg-Marquardt Algorithm

LQR Linear Quadratic Regulator

MIT Massachusetts Institute of Technology

MLFFNN Multilayer Feedforward Neural Network

MLS Magnetic Levitation System; Magnetilise Levitatsioonisüsteemi (est.)

14

MLS1EM Magnetic Levitation System with one Electromagnet

MLS2EM Magnetic Levitation System with two Electromagnets,

 kahe Elektromagnetiga Magnetilise Levitatsioonisüsteemi (est.)

MPC Model Predictive Control

MRAC-FOPID Model Reference Adaptive Fractional-Order PID Control

MSE Mean Squared Error; Ruut Keskmine Viga (est.)

NARX Nonlinear Auto-Regressive with eXogenous inputs model;

 Mittelineaarne Autoregressiivne Eksogeensete sisenditega mudel (est.)

NN Toolbox Neural Network Toolbox; Närvivõrgu Toolbox (est.)

OpenAI Gym Open Source Python Library

OU Ornstein-Uhlenbeck noise / process

PD Proportional Derivative

PD+RL Proportional Derivative controller with RL-agent in parallel

PI Proportional Integral

PID Proportional Integral Derivative

PI-FC Proportional Integral Fuzzy Control

PLC Programmable Logic Controller

PWM Pulse Width Modulation

Q-Network Neural Network based on the Q-Value, or Q-Function

RBFNN Radial Basis Function Neural Network

RBFNNSMC Sliding Mode Controller based on Radial Basis Function Neural Network

ReLU Rectified Linear Unit

RL Designer Reinforcement Learning Designer App

RL Toolbox Reinforcement Learning Toolbox; Stiimulõppe Toolbox (est.)

RL-agent Reinforcement Learning Agent

RMSE Root Mean Squared Error

RTW Toolbox Real Time Windows Toolbox

SMC Sliding Mode Control

SMD Sliding Mode Differentiator

TP-C Tensor-Product based Control

TPU Tensor Processing Unit

15

1. INTRODUCTION

Magnetic levitation technology had been studied and developed during the whole 20th

century. Nowadays, it is used in various fields of industry and many industrial systems

such as magnetic levitation trains, electromagnetic bearing, levitation melting with

induction heating, microrobotic systems, vibration isolation, wind turbines, levitation of

wind tunnel models, aerospace, etc. The key advantage of the use of magnetic levitation

technology is the possibility to almost eliminate contact and, subsequently, friction

between surfaces, which guarantees high operation speeds and precision with minimal

mechanical wear and low maintenance requirements.

For the efficient applicability of the magnetic levitation technology, the robust and high-

performance feedback control should be designed. Magnetic levitation system (MLS) is

widely used in the laboratories for this purpose. Magnetic levitation phenomenon is

based on the principle of electromagnetic suspension (EMS). The gravity force affecting

the levitated ferromagnetic (made of nickel, cobalt, iron, etc.) body is balanced by the

electromagnetic field produced by the electromagnet. The feedback loop serves to

control the strength of the electromagnetic field and, thus, to control the air gap

between the levitated body and the electromagnet.

MLS has a complex nonlinear dynamics, it is open-loop unstable and time-varying

dynamical system, which includes parameter uncertainty [1], or parameter variation,

for example, the inductance related electromagnetic parameter. Besides this, there is

always a discrepancy between actual plant and its mathematical model, which comes

from unknown or unpredictable external disturbances and some unmodeled dynamics.

Thus, the design of a control law for achieving high control performance along with

robustness is a very challenging task, for which the use of classical controllers (e.g.,

PID-controller) is not the best solution. In order to obtain control gains, it is necessary

to perform linearization and long and tedious mathematical calculations. Another issue

is that linear controllers can properly operate only in limited region, which depends on

the determined operating point. The use of intelligent methods, such as artificial neural

networks (ANNs), for acquiring a controller does not require long calculations, and the

controller can be extended to a nonlinear region.

In recent decades, ANNs have become more and more popular. They are already broadly

and successfully used for finding accurate and robust solutions for complex nonlinear

problems in many fields of industry, medicine, security (image processing and

recognition), banking and finances (forecasting), military, etc. ANNs have ability to learn

16

and also to model complex nonlinear relationships between inputs and outputs of the

system which is essentially important due to high complexity and nonlinearity of the

real-world systems.

The following work is focused on the experimental magnetic levitation system with two

electromagnets (MLS2EM), provided by INTECO Ltd., Krakow, Poland. The system is

fully integrated with MATLAB/Simulink and operates in the real-time in MS Windows.

The model consists of two electromagnets (upper and lower), the set of ferromagnetic

objects (balls of different diameters and masses) to be levitated, position and current

sensors, power interface, RTDAC4/USB measurement and control I/O board, a personal

computer (Figure 1.1, [1]). The levitated object is suspended between two

electromagnets and the equilibrium stage is maintained by the balance of the

electromagnetic and the gravity forces. The lower electromagnet is used to bring the

disturbance into the system (an external force excitation) or in addition to the gravity

force (for example, to introduce mass disturbance). The ball position is controlled by

adjusting the current through the electromagnets applying controlled voltage across the

electromagnets’ terminals.

Figure 1.1 MLS2EM laboratory setup [1]

The main goal of the thesis is to design a control solution based on the ANNs for an

accurate trajectory tracking of the levitated object and to achieve a better control and

stability performance of the system and wider operating range in a presence of

unpredictable disturbances and parameter uncertainty. During the design process of the

controller, simulations and experiments, MATLAB/Simulink R2017b, R2020b with Deep

17

Learning (DL), Reinforcement Learning (RL) and Neural Network (NN) Toolboxes will be

used.

The time-series datasets including object position will be collected and analysed first

from the simulation and from the real-time plant. The ANN structure for the system’s

model representation will be designed and trained on the obtained datasets. Based on

the parameters of ANN, the NN controller will be developed. The NN controller model

will be implemented in Simulink model of the MLS2EM system. The various input signals

and disturbances will be applied to analyse the control and stability performance. The

results of the simulation experiments will be given and analysed for validation of the

proposed control solution.

The Chapter 2 of the thesis presents a literature overview of the control solutions,

existing to date in the field of the magnetic levitation. The short comparative analysis

of the various methods and approaches, including hybrid methods, is given there. The

magnetic levitation model is described in the Chapter 3. The NN structure and NARX-

based controller are developed in the Chapter 4. The Reinforcement Learning based

control solution is developed in the Chapter 5. The results of simulation experiments are

discussed in the Chapter 6. Summary gives short conclusion of the thesis and its

outcomes. Appendices include algorithms, MATLAB codes and plots of experiments.

18

2. LITERATURE OVERVIEW

2.1 Necessity of the intelligent control methods

A number of research papers on the problem of magnetic levitation control has been

published during few recent years. A wide range of control solutions was proposed for

the task of trajectory tracking in the MLS. Since the system is highly nonlinear and

unstable, the studies on the robust control methods have become a subject of an intense

interest.

The PID-controller, integrated in the MLS Simulink model, is a simple solution for the

controlling position, but not the best one for such nonlinear and unstable system as

MLS. The controller works using method based on the linearization of the system. The

acquiring of the linearized model the MLS is described in details by P. Balko and D.

Rosinova in the article [2]. This approach simplifies the process model and leads to the

loss of some system’s dynamics. This results in a steady-state error, overshoots, and

oscillations. The main drawback of the PID-controller’s use is that the system can be

stabilized only in the controller’s operation region, in other words, close to the

determined operating point. The performance of the system fully depends on the

fortunate selection of the PID-parameters. The instability of the MLS means that

inappropriate PID-control unavoidably leads to the situation when the levitated object

is either being dropped down or attracted to the upper electromagnet in the first seconds

of the experiment. The PID-controllers cannot adapt to the abrupt disturbances, for

example, change of the ball’s mass. The narrow working range is clearly observed in

the real system, but when one expands the movement range of the ball, the PID-

controller cannot optimally control the ball anymore.

While the linear controllers are usually valid only around the operating point, the

nonlinear controllers need exact knowledge about the plant nonlinearities to guarantee

a good performance and stability. The practical implementations of the nonlinear

controllers can be difficult due to the modeling and parameter uncertainties in the MLS.

Thus, the intelligent control techniques should be used.

Among the proposed linear and nonlinear control strategies both for MLS1EM and

MLS2EM (magnetic levitation systems with one and two electromagnets accordingly)

are state feedback control and linear quadratic regulator algorithm, gain scheduling

approach, backstepping, fuzzy logic control, sliding mode control, fractional-order

19

controllers, predictive control, and neural network control. All these control solutions

along with their benefits and drawbacks are discussed in more details in the next

section.

2.2 Existing solutions

2.2.1 State feedback control

The state feedback control has been implemented in several research works: [3], [4],

[5], [6], [7]. This method is based on the use of the state vector of the system for

computation of the control action and the pole placement technique. This technique

allows to compensate undesired system’s response by placing its closed-loop poles in

the complex plane (s-plane) and calculating the feedback matrix.

The state feedback control based on PID-controllers is discussed in [3]. Although, it is

a low-cost solution, that can be easily implemented, it requires a lot of effort to derive

a nonlinear mathematical model, to identify the parameters of equation through the

experiment and to find a proper feedback gain matrix. The authors linearized the MLS

model around seven operating points and designed seven PID-controllers. The state

feedback control solution was included in the cascade structure with PID-controller in

the outer loop to stabilize the system. The real-time experiments showed some

oscillations in the beginning of transient response.

In [4] the authors combined PID and state-feedback controller to eliminate the steady-

state error with the help of integral component. Two solutions, the state feedback and

the cascade control, were proposed, but the stability analysis was not done.

The integral state feedback control has been developed in [5]. As it was done in [4], the

integral component was added to eliminate the steady state error. The coefficient

diagram method (CDM) was applied instead of trial-error method which is usually used

to determine the controller’s parameters. Varying the mass, the inductance and the

resistance uncertainties during the experiments, the authors found out that the use of

the robust parameters of CDM gives faster and more accurate response, while the

standard parameters of CDM result in smaller rise time.

20

Inappropriate choice of PID-control gains may reduce the control performance and even

damage the experimental system. The selection process is hard and time-consuming,

and the control gains may require the big number of adjustments, done via trial-error

method until the best performance is achieved. To simplify this process, B. Bidikli and

A. Bayrak proposed a full-state feedback control with self-tuning rules in [6]. The robust

controller was designed. Although, it showed effective work, the authors of the paper

noticed that the control effort can be decreased with optimal or neural-network methods

in future.

The nonlinear state feedback control is designed in [7]. Its main advantage over the

linear state feedback control is capability to provide a faster system’s response without

or with minimum overshoot. The gradually changing feedback gain, introduced by the

authors, affected the damping factor of the closed loop. This allowed to drive the

overshoot to zero and achieve small rise and settling time in the experiment.

2.2.2 Linear quadratic regulator

The linear quadratic regulator (LQR) algorithm is one of the main results in the theory

of optimal control. It serves to reduce optimization efforts on the controller, in other

words, it is an automated way of finding state-feedback controller under specified design

goals. This method still utilizes the state-space model of the system and requires

determination of the cost functions. The difficulty consists in the finding of proper

weighting factors, which eventually limits the application of the LQR.

The LQR controller is proposed in [8] as a better solution than the existing PID-controller

in terms of better stability and larger work bandwidth. The experiments showed that

the ball could follow the sinusoidal reference trajectory but with a lower amplitude and

some small error.

Another LQR-PID controller is designed in [9]. Two controllers (LQR and PID) were

combined to operate together in two loops for the task of stabilization of the MLS.

Additionally, LQR-PID controller solved the overshoot problem, but the authors of the

article admitted, that selection of error and control weightage matrices for the LQR

control loop was a challenging task.

21

2.2.3 Gain-scheduling approach

The gain-scheduling approach is one of the most common in the control theory. It

requires understanding of the plant’s operating regions and determination of the related

operating specifications. The procedure includes the linearization of the plant around

each operating point and tunning of several controllers, i.e., obtaining a set of control

gains for each operating region. It is obvious, that the procedure is time-consuming,

since it demands several sets of control gains to be properly defined. The gain-

scheduling method can guarantee adequate system’s performance by switching

between the operating regions and associated with them controllers, but the controllers

still need to be robust.

The reference [10] presents three proportional-integral gain-scheduling control (PI-GS-

C) solutions, based on the Lagrange interpolating parameter value method, Cauchy

kernel distance metric and switching GS between PI linear controllers. During the

experiments the authors concluded that all structures guarantee zero steady state error

and satisfying trajectory tracking, although some oscillations happen in the beginning

of the system’s response.

2.2.4 Backstepping

The backstepping (BS) is a recursive technique that uses Lyapunov stability theory to

derive a stabilizing control law for nonlinear dynamical systems. The inconvenience here

is that there is no auto-tune tool for the nonlinear controllers in MATLAB/Simulink similar

to one for PID-controllers, and, thus, researchers had to set and tune control gains

manually via trial-error method and the system’s response checks.

The backstepping and the integral backstepping (IBS) along with the synergetic control

are discussed in [11]. The synergetic control involves macro variables which contain

tracking errors of all states of the system. According to the results of the simulations,

the IBS controller showed the best performance.

Adapting backstepping control method is proposed in [12]. The adaptation feature of

the controller means its capability to adapt to the controlled system with uncertain or

time-varying parameters. Usually, backstepping controller is added to reduce a negative

effect of the slowly varying parameters of the system.

22

2.2.5 Fuzzy logic control

Fuzzy control logic is described in [13], [14], [15] and [16]. The parameters of fuzzy

controller can be easily tuned, and it has a good potential to stabilize the ball levitation

process. The fuzzy controller shows lower overshoot and no steady state error,

comparing to the PID-controller, but its response is slower, and the settling time is

longer [13]. The fuzzy logic design may include some nonlinearities due to the inference

engine and some nonlinear methods applied in defuzzification process (when resulting

fuzzy set, being converted to the number, is sent to the process as a control signal).

In [14] the authors utilized the programmable logic controller (PLC) with a liquid crystal

display (LCD) panel for data acquisition and user control. They implemented fuzzy PID-

controller and compared its performance with that one of the classical PID-controller. It

appeared, that fuzzy controller works correctly for different set-points, unlike the

classical PID-controller does. The authors point out the advantages of fuzzy controller

in that it does not require the explicit model of the process, its control law is simpler

and computational complexity is lower in comparison with other nonlinear controllers,

for example, neural network-based ones.

Two cascade control system (CCS) structures using tensor-product based control (TP-

C) and PI fuzzy logic control (PI-FC) were designed in [15]. The proposed solutions

resulted in zero steady state control error and good rejection of the disturbances.

In master thesis work [16] the PD-controller was replaced by the fuzzy logic controller

(FLC) for actual plant of MLS2EM. The smooth tracking control was achieved by increase

of the number membership functions and rules. The developed FLC showed better

steady-state error results comparing to the PD-controller.

2.2.6 Sliding mode control

The sliding mode control (SMC) is a nonlinear variable structure control method that

alters the system’s dynamics by applying discontinuous control signal and driving the

system’s states to the sliding surface. Among the advantages of the SMC are its

robustness and finite-time convergence to the equilibrium point. The main drawback of

the SMC consists in undesirable phenomenon of finite-frequency or finite-amplitude

oscillations (so called “chattering”) caused by the high-frequency switching of a sliding

mode controller due to the presence of some unmodeled dynamics in the closed-loop.

23

The chattering suppression methods are discussed by V. Utkin and H. Lee in [17]. The

chattering problem appears in many SMC implementations, and without proper remedy

it can become an obstacle to SMC application in the real-world plants.

The SMC solutions are developed in [18], [19], [20], [21]. Y. Eroğlu in the maser thesis

[18] proposed several controllers’ design strategies applying cascade control. The SMC

was utilized for the inner electrical part of the control loop of MLS in order to obtain its

fast response and better compensation of the negative effect of inductance related

disturbances. It was found that SMC controllers keep the current error around zero but

cannot fully eliminate the position steady-state error.

Simulation and implementation results of the SMC performance are compared in [19].

Robustness of the controller is tested applying external disturbance to the input signal.

The adaptive sliding mode controller (ASMC) with a sliding mode differentiator (SMD)

presented in [20] allowed additionally to estimate the ball velocity needed for proper

work of the controller and achieve the desired ball position and reference trajectory

within only 1 s.

The real-time implementation of SMC–PID controller is done in [21].

2.2.7 Fractional-order controllers

The fractional calculus is applied in the field of control theory, called fractional-order

control (FOC). This is a promising direction of the control studies and a good alternative

to the classical control methods. FOC utilizes a fractional-order integral operator, that

considers the whole history of its input signal, and capable to handle the chaotic

behaviour of the complex mathematical models. The fractional-order controllers provide

more adjustable system’s response and also allow to reduce noise appearing in the

control law. The control solution is based on the finding an operating point, linearization

of the nonlinear system around operating point, determination of a stability region and

stability margins and some parametric optimization.

Fractional-order controllers are discussed in [22], [23], [24], [25], [26], [27]. The

stabilizing fractional-order PIλD controller, designed by W. Bauer and J. Baranowski in

[22], reached the reference point in 1,5 s and managed with the task of disturbance

rejection. The authors mentioned that there exists an issue of infinite memory for data

24

storage and computations in the developed solution. For this reason, direct

implementation of the fractional-order controllers for the real-time unstable systems

may be difficult and require additional approximations.

Four novel fractional-order sliding mode controllers (static, integral static, dynamic and

integral dynamic) are presented in [23] as a way to scale down the control effort and

achieve robust and energy-efficient performance.

The two degrees-of-freedom (2-DOF) PIλDµ controller has been designed in [24]. It

showed good results in terms of stabilization, trajectory tracking and actuator saturation

problem.

The authors of [25] designed 1-DOF and 2-DOF FOPID-controller for MLS and compared

their performance with 1-DOF and 2-DOF integer-order PID-controllers (IOPID) in both

simulation and real-time experiments. The results depicted the superiority of FOPID-

controller over IOPID. The parameters of the controllers were obtained using the

dominant pole placement method by optimizing the objective function.

The optimizing fractional PID (FOPID)-controller has been developed in [26]. Applying

Ant Colony Optimization (ACO) algorithm and Ziegler Nicholas method, the authors of

the article achieved reduction of the settling time and oscillations, but performance of

the FOPID-controller with constraints, uncertainties and external disturbances, is to be

analysed and improved in future.

A comparative analysis of SMC and FOSMC controllers is conducted by researchers in

[27]. FOSMC showed better results, comparing with the SMC, on the basis of all main

characteristics: zero overshoot, smaller settling time, the most accurate position

tracking, reduction of chattering and lower control effort.

2.2.8 Model predictive control

Model predictive control (MPC) is an advanced method in the control theory. The main

benefit of the MPC is ability to predict future response of the system as well as upcoming

disturbances using its reference input. The MPC controller can adapt to the changes in

the system parameters over the period of time, for example, due to mechanical wear of

some parts of the system. The drawback of the MPC is the demand for the proper

25

system’s model, and also the installation of the MPC controllers can be costly, because

for optimization purposes it requires a computer.

The MPC is described in the articles [28], [29]. The performance of the model predictive

controller was compared with that of classical PI and PID-controllers in [28]. The authors

varied PI and PID-controllers’ gains to demonstrate that any change of those can result

in oscillations, overshoot, large position error, etc. Meanwhile, the MPC controller easily

adapted to the change of weighting matrices and did not show any overshoot or steady

state error, and the settling time was minimal.

The real-time implementation of the MPC controller for the MLS with one electromagnet

is presented in [29]. The authors compared the performance of the nonlinear feedback

linearization (FL), linear MPC and conventional PID-controllers in this research. During

the experiment both FL and MPC controllers showed reliable performance, while PID-

controller failed to achieve stability when the reference position was changed. The best

stability performance and the lowest settling time were reached by FL controller. The

MPC controller restored stability with some oscillations.

2.2.9 Neural network control

The key benefit of using the ANNs is the reduction of the design effort related to the

linearization of the system and corresponding calculations. The ANNs are capable to

capture all system’s dynamics that cannot be formulated analytically, and the system’s

stability is no more limited by the controller’s operation region.

The acceptability of the ANNs for the control of the MLS with one electromagnet is

investigated in [30]. The multilayer feed forward NN with one input layer, one output

layer and two hidden layers (with 20 and 10 neurons) was designed to learn the

nonlinear behaviour of the system using the back propagation method. The training of

the NN was realized using 30000 samples for inputs and outputs collected from the

simulation with PD controller in MATLAB/Simulink environment. During the tests the NN

controller did not perform properly during the stable position of the ball and the ball fell.

This problem was resolved introducing two gains to amplify the input and error values

and to make the NN react on the very small change. Square wave, sine wave and step

input were applied during the experiments. The NN controller performed much better

than the PID-controller and could efficiently and accurately follow the desired trajectory.

For instance, the overshoot in case of the NN controller was almost 10 times lower than

26

that of the PID-controller, and the settling time was around 5 times lower. On the other

side, the PID-controller showed better values of rise time, delay time and peak time

(Table 2.1). The reason is related to the back propagation method which suffers of slow

convergence, being based on the gradient-descent algorithm.

Table 2.1 Transient analysis between PID and ANN controllers [30]

Parameter PID-controller ANN controller

Overshoot, % 27 2,8

Settling time, s 5,71 1,12

Rise time, s 0,1 0,46

Delay time, s 0,05 0,36

Peak time, s 0,22 0,48

The reference [31] proposes adaptive sliding mode controller based on the radial basis

function neural network (RBFNNSMC) as faster and more robust one, comparing with

the SMC and backstepping controllers (Table 2.2). The stability of the closed-loop

system was proved by using the Lyapunov stability theory.

Table 2.2 Transient analysis between RBFNNSMC, SMC, BSC controllers [31]

Parameter RBFNNSMC SMC BSC

Overshoot, m 1,5 × 10-6 1,45 × 10-5 6,9 × 10-5

Settling time, s 0,67 >1 >1

Response speed quick middle slow

Comparative study on the performance of radial basis function neural network (RBFNN),

multilayer feedforward neural network (MLFFNN) and a recurrent nonlinear auto-

regressive with exogenous inputs (NARX) neural network was conducted in [32]. The

authors combined back propagation and Lyapunov stability methods to speed up the

convergence rate and successfully developed a novel adaptive learning rate for the

neural network. Based on the results of simulations, the authors concluded that RBFNN-

based controller performed much better than MLFFNN- and NARX-based controllers in

regard to the computational time, average mean squared error (MSE), robustness and

simplicity (the number of parameters to be trained), which makes the RBFNN an efficient

tool for control operations (Table 2.3).

Table 2.3 Average MSE and run-time of MLFFNN-, RBFN- and NARX-based controllers [32]

Parameter MLFFNN RBFNN NARX

Average MSE (10 000
iterations)

9,13·10-2 2,28·10-2 4,91·10-3

Simulation time, s 4,722920 0,335487 4,738064

The NN is utilized in [33] for approximation of the electromagnetic parameter for better

compensation by the controller. The nonlinear NN controller with the novel control law

was designed and compared with the two stages (or two layers) controller. The two

27

stages controller also utilizes the NN (with the sliding mode) for the trajectory tracking

but does not estimate the electromagnetic parameter and does not consider the angular

position of the ball. Based on the value of the root mean squared error (RMSE), the

researchers concluded that the designed controller had improved the performance of

the two stages controller. The authors suggested that further development could be

done for approximation of other parameters: non-modelled dynamics and eddy currents

(swirls).

In [34] the authors added the adaptive NN controller learning online in a real-time to

the inner linearization loop, keeping the PD controller in the outer loop. This resulted in

the stable response of the MLS and good adaptation to the abrupt changes of the

levitated object’s mass, which was realized by excitation of the lower electromagnet of

the MLS2EM. The researchers concluded that the ANN is a proper approximator of the

MLS nonlinearities.

The article [35] offers a multi-loop Model Reference Adaptive fractional-order

proportional integral derivative (MRAC-FOPID) control structures with NARX model as a

reference model. The authors noticed that, aside from the presented unpredictable

disturbances in the MLS, there is a tradeoff between the position tracking and the

disturbance rejection control. To resolve this dilemma, the authors used the FOPID for

the improved stability and set-point tracking and the MRAC for improvement of the

disturbance rejection. The Massachusetts Institute of Technology (MIT) rule [35] is used

in the outer loop for the MRAC process. The comparison of performance parameters of

FOPID, MRAC-FOPID and PID with NARX reference model is given in Table 2.4.

Table 2.4 Transient analysis between FOPID, MRAC-FOPID and PID with NARX reference model

[35]

Parameter FOPID control MRAC-FOPID
PID with NARX

reference model

Peak values, m 3,603 × 10-3 2,021 × 10-3 5,552 × 10-3

Settling time after
step disturbance, s

1,23 0,43 1,08

For stabilization purpose, in [36] the real experimental data was collected. Using the

NN, trained on this data, the authors designed the velocity observer for the MLS.

28

2.2.10 Deep reinforcement learning

Deep Reinforcement Learning (DRL) is a branch of machine learning. It is applied for

the difficult control problems, including highly unstable systems, such as MLS.

Unlike the supervised learning, where input-output datasets are given to the neural

network to learn the desired behaviour, the learning process in DRL is based on the

direct interaction with the environment. The Reinforcement Learning (RL) agent learns

the behaviour, adjusting its parameters throughout the number of episodes, or runs of

the experiment. It evaluates its own performance and gets the certain reward after each

episode. The RL agent is capable to explore the space of its possible actions and

accumulate the experience over the time which makes possible finding the most optimal

solution for the specified task.

The following control solutions in RL were proposed by the researchers recently for the

MLS.

The stable control for MLS with one electromagnet was realized by T. Huang, Y. Liang

and X. Ban in [37] using improved Q-Network method (model-free reinforcement

learning method). The proper choice of the reward function plays an important role in

RL concept. The authors introduced 3-component reward function (2.1), that includes

distance reward, velocity reward and direction reward, using position, velocity and

current as observations:

𝑟𝑒𝑤𝑎𝑟𝑑1 =
𝑑𝑚𝑎𝑥 − |𝑑|

𝑑 + 𝑑0
,

𝑟𝑒𝑤𝑎𝑟𝑑2 =
𝑣𝑚𝑎𝑥 − |𝑣|

𝑣𝑚𝑎𝑥
,

𝑟𝑒𝑤𝑎𝑟𝑑3 = |
𝑑

|𝑑|
−
𝑣

|𝑣|
| − 1,

𝑟 = 3,2 × 𝑟𝑒𝑤𝑎𝑟𝑑1 + 𝑟𝑒𝑤𝑎𝑟𝑑2 + 0,3 × 𝑟𝑒𝑤𝑎𝑟𝑑3,

(2.1)

where

𝑑0 — target position of the ball, m,

𝑑𝑚𝑎𝑥 — maximum allowed deviation from target position, m,

𝑑 — real-time distance between actual and target position (error), m,

𝑣𝑚𝑎𝑥 — maximum allowable velocity of the ball, m/s,

𝑣 — real-time velocity, m/s,

𝑟 — total reward.

29

The researchers noted, that since RL includes exploration part, this leads to continuous

oscillations near the desired position. This means, there is always a large steady-state

error, and the performance of Q-network controller suffers from the low fitting accuracy.

To resolve this issue, the authors proposed the network retraining algorithm in order to

improve the accuracy of the controller. The retraining algorithm is based on the idea of

adaptive adjusting of the exploration rate. Namely, the authors adopted 𝜀 greedy

strategy, where 𝜀 ∈ [0,1] is the action exploration probability, in such way that

exploration rate was decreasing with the progress of the learning process. It is important

to note, that the exploration probability allows system to jump out of the local optimal

state and continue to explore the action space until the better solution is found.

The training process was split into conditional cycles. After achieving the desired number

of “good-steps” (that keep error value within the allowable range), the algorithm sets

exploration rate to zero, since there is no need of further exploration. This approach

allowed to effectively reduce the oscillations and, subsequently, a steady-state error of

the designed Q-network controller by an order of magnitude. The results of simulations

proved the reasonableness and significance of use of the proposed retraining algorithm

even in presence of the noise.

A self-learning controller for MLS1EM was developed in [38]. The authors designed the

Dueling-Double-Deep Q-Network (Dueling-DDQN) and compared it with the Deep Q-

network (DQN) controller in simulation. The Dueling-DDQN method has faster

convergence, and it was shown that Dueling-DDQN controller can provide more stable

control and has a larger attraction domain rather than DQN controller. The benefit of

use of Dueling-DDQN algorithm is that it has a double network structure, and the action

value function is separated into two parts: a state value function and an advantage

function, that is related both to state and action spaces. These improvements help to

solve the overestimation issue of the state value that traditional DQN suffers from.

The reward function was chosen to fasten convergence of the training process in the

following view (2.2):

{

 𝑟1 = tan (

𝜃1 − 𝜃0
|𝑒𝑚𝑎𝑥 |

|𝑒| + 𝜃0) ,

𝑟2 = max

(𝑠𝑖𝑔𝑛(𝑒𝑣)|𝑣|, 0),

𝑟 = 𝑙1𝑟1 + 𝑙2𝑟2 ,

 (2.2)

where

𝑒 — error between expected and measured position values, mm,

30

𝑣 — velocity of the ball, m/s,

𝑟1 — reward for the position of the ball, which is more sensitive for smaller |𝑒|,

𝑟2 — reward for the velocity of the ball, 𝑟2 ≥ 0, (the error and the velocity signs

should be the same, otherwise 𝑟2 = 0),

𝑟 — total reward,

𝜃0, 𝜃1 — angles, 𝑄0 = 20°,𝑄1 = 89°, and

𝑙1, 𝑙2 — constants, 𝑙1 = 10, 𝑙2 = 15, picked after a serial of experiments.

The training process was split into nine cycles, each of them consists of 300 episodes.

The exploration of the action space was organised using 𝜖-greedy policy depending on

the number of the cycle. The RL-agent was being given the biggest exploration

probability in the beginning of the learning. With the growing number of the cycle, the

exploration probability was being decreased, and eventually set equal to 0,1 staring

from the 5th cycle. This was done for adequate exploration of the action space by the

RL-agent with the passing time and for decrease noise after achieving intermediate

results. Besides this, the authors introduced stopping criteria for episode, namely,

exceeding of the ball’s lower and upper position limits and the simulation duration of 4 s.

The most valuable and frequently cited work [39] in the field of DRL gives an adaptation

of the ideas of the Q-learning method to the continuous action domain. The authors of

the article state that DQN learning methods are not relevant for application to the

physical control tasks with complex dynamics, which have continuous and high-

dimensional action spaces. Moreover, discretization of the action space could be an

obvious solution in adapting DQN learning methods to continuous domains, but it also

has its limitations. One of the biggest issues here is that the number of actions grows

exponentially with the number of degrees of freedom of the system. The difficulty of

efficient manipulation with the large, discretised action spaces and also the fact that

discretization leads to the loss of information about the structure of the action space,

makes application of the DQN learning methods unreasonable.

In the paper, authors introduced the robust model-free, off-policy actor-critic approach

based on the deterministic policy gradient (DPG) algorithm. The concept of actor and

critic NNs will be explained and used later in Chapter 5. The authors combined this

approach with ideas borrowed from Deep Q Network (DQN) learning method by training

the network off-policy using samples from so-called “replay buffer” and introducing

target Q-network to provide “consistent targets during temporal backups”.

31

The introduced method, named by the authors as “Deep deterministic policy gradient”

(DDPG), was applied to more than 20 simulated physics tasks of various levels of

difficulty, including classic problems such as cartpole swing-up, moving gripper, legged

locomotion and car driving, etc. The approach benefit consists in its simplicity and easy

implementation. The authors showed that DDPG is able to learn good policies and,

eventually, provide a robust control. Being applied to the hardest problems, DDPG

algorithm even surpassed the performance of the Q-learning, which tends to

overestimate values of the 𝑄-function (action-value), using function approximators.

The authors introduced Ornstein-Uhlenbeck (OU) noise process 𝒩 for better action

space exploration, which will be discussed in Chapter 5, and applied batch normalization

at each layer of the NNs. The DDPG approach still has its limitations. One of them is a

large number of training episodes required for finding a solution. The DDPG algorithm,

developed in [39], is used in the current work, and given in Appendix 2. The authors

used Adam optimizer for learning NN parameters. The structure of the NNs and

information on the training settings, used in [39], are given in Table 2.5.

Table 2.5 NNs structure and training settings for DDPG agent, [39]

Parameter Value

Learning rate for actor 10-4

Learning rate for critic 10-3

𝐿2 weight decay 10-2

Discount factor, 𝛾 0,99

Target smooth factor, 𝜏 10-3

Activation functions for all hidden layers
of actor and critic

ReLU

Actor output activation function Tanh

Number of hidden layers 2

Hidden layers size, neurons 400, 300

Weights and biases initialization range
at actor and critic final layers, uniform distribution

[-3·10-3, 3·10-3]

Minibatch size 64

Replay buffer size / Experience buffer length 106

Standard deviation of OU noise, 𝜎 0,2

Mean attraction of OU noise, 𝜃 0,15

In [40] S. Wongsa and N. Kowkasai implemented RL algorithm in continuous control

using deep deterministic policy gradient (DDPG) for Magnetic Levitation Model CE 152

with one electromagnet developed by Humusoft company. The authors have focused on

the importance of the reward function and its role for the training outcomes and learning

the optimal policy. In the article they considered five reward functions and compared

the training outcomes.

As a successful result of the training, the controlled variable, which is position of the

ball in case of MLS, must follow the desired trajectory. For this, the neural networks

32

parameters are forced to change in a certain way by setting the appropriately chosen

reward function. When the process output gets closer to the reference value, or in other

words, when the position error remains in the error tolerance range, the more reward

is given to RL agent. And on the opposite, when the process output goes beyond the

error tolerance range limits, or even falls out of the pre-set system limitations for

controlled variables, the more penalty (or negative reward) system receives. It is

obviously, that proper reward function can sufficiently improve the training process

results and its convergence speed.

The authors considered two types of reward functions 𝑅1 and 𝑅2, (2.3), (2.4):

 𝑅1 = {
 𝑐, 𝑖𝑓 |𝑒| ≤ 𝜀,

−|𝑒|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (2.3)

 𝑅2 = 𝑒𝑥𝑝(−|𝑒|) − 1. (2.4)

where

𝑒 — position error, m,

 𝑐 — constant, 𝑐 > 0,

𝜀 — error tolerance, m, 𝜀 > 0.

The authors noted that tuning of the hyper-parameters (constants 𝑐 and 𝜀) for the

reward function of a common view 𝑅1 can be challenging and tedious. For this reason,

they proposed an alternative simple reward function 𝑅2 which depends only on the

calculated error value and does not require manual tuning of the constants.

The RL training was implemented by the authors using open-source OpenAI Gym

interface in Python, rendered environment for visualization of behaviour, and Tensor

Processing Unit (TPU) available in the Google Colab for parallel training and running of

deep RL process. The structure of the networks and the training settings are shown in

Table 2.6. The Adam optimizer and batch normalization was used similarly to [39].

Table 2.6 NNs structure and training settings for DDPG agent, [40]

Parameter Value

Learning rate for actor 10-4

Learning rate for critic 10-3

Discount factor, 𝛾 0,99

Target smooth factor, 𝜏 10-3

Activation functions for all hidden layers
of actor and critic

ReLU

Number of hidden layers 2

33

 Table 2.6 continued

Parameter Value

Hidden layers size, neurons 64

Minibatch size 128

Replay buffer size / Experience buffer length 5·104

Standard deviation of OU noise 1·10-2

For the better exploration of the action space the authors have added OU noise not to

the action space, as it was done in [39], but directly to the parameters of the neural

network policy. The efficiency of this approach was shown in [41].

The training and tests were conducted using staircase function as a setpoint signal. The

outcomes of the trainings were compared for five reward functions (Table 2.7) using

integral absolute error (IAE), calculated for the position of the ball (2.5):

 𝐼𝐴𝐸 = ∫|𝑒𝑡|𝑑𝑡,

𝑇

0

 (2.5)

where

𝑒𝑡 — error at time step 𝑡, m,

𝑇 — experiment length, s.

Table 2.7 Comparison of closed-loop performance of DDPG-based controllers using different

reward functions [40]

Reward function IAE Settling time, s

R1 (𝑐 = 0,1, 𝜀 = 0,001) 0,049 0,041

R1 (𝑐 = 0,1, 𝜀 = 0,01) 0,655 0,095

R1 (𝑐 = 0,5, 𝜀 = 0,001) 0,121 0,070

R1 (𝑐 = 0,5, 𝜀 = 0,01) 0,523 0,069

R2 0,086 0,043

The authors concluded that the performance using reward function 𝑅2 can compete with

that using the best tuned reward function 𝑅1, and the proposed reward function 𝑅2 can

be easily applied to any setpoint tracking problem. Moreover, no obvious correlation

between 𝑐 and 𝜀 constants’ values and the convergence rate of the learning was found.

However, it was found that the smaller value of error tolerance 𝜀 requires more episodes

for training to get an optimal solution. The experiments showed that DDPG-based

controllers can provide stable and accurate setpoint tracking over the full operating

points.

One of the most recent works [42] is devoted to another control problem, namely, to

the control of nonlinear valves using DDPG algorithm of RL. This article is of great

interest because the RL process was implemented by R. Siraskar in MATLAB/Simulink

34

environment with recently launched Reinforcement Learning Toolbox™, while the

majority of works utilize Python and OpenAI Gym environments. The Reinforcement

Learning (RL) Toolbox for the first time was introduced in MATLAB R2019a version and

since that time has been developing and improving. The current thesis work will also

exploit RL Toolbox for the control of MLS.

In the Simulink model the author of the article used Reinforcement Learning Agent

block, provided within the RL Toolbox, and created an observation vector, reward

function and stopping criteria in a similar way, as it was done in the Reinforcement

Learning Toolbox™ User’s Guide [42, pp.1-19 - 1-26] by MathWorks® for classic Water

tank Simulink model. The training of the DDPG agent is realized, by guess, using similar

MATLAB code with Reset function, provided in RL User’s Guide. The Reset function

makes possible to vary the setpoint value (for constant setpoints) in the beginning of

each episode during the training and reset the environment. Additionally, the author

randomized initial value of the controlled variable (flow value in the case of valve control

problem), as it was also done in the given example. This method allows to find more

flexible optimal policy, which can provide a better control.

The observation vector consists of the measured signal value (actual flow), error with

respect to the reference signal and the integral of the error. The latter one provides a

mechanism that computes the total error over the time and drives DDPG agent to

decrease it. The reward function was created in a hybrid form based on (2.6) and (2.7):

 𝑅𝑒𝑤𝑎𝑟𝑑 = {

10, 𝑖𝑓 |𝑒| < 𝜀,

−1, 𝑖𝑓 |𝑒| ≥ 𝜀,
−100, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤)

 (2.6)

where 𝜀 — allowable error margin, m, 𝜀 > 0.

 𝑅𝑒𝑤𝑎𝑟𝑑 = {
−100, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤)
1

𝑒 + 𝜆
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.7)

where 𝜆 — a small constant preventing division by zero-error.

The new reward function included reward and penalty parts (2.8):

 𝑅𝑒𝑤𝑎𝑟𝑑 = {

0,1, 𝑖𝑓 |𝑒| ≤ 0,1,
|𝑒|, 𝑖𝑓 |𝑒| > 0,1,
𝑝, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤)

 (2.8)

35

where 𝑝 — penalty, which value was not specified in [42].

The structure of the NNs and the training parameters are shown in Table 2.8.

Table 2.8 NNs structure and training settings for DDPG agent, [42]

Parameter Value

Learning rate for actor 10-4

Learning rate for critic 10-3

Discount factor, 𝛾 0,9

Activation functions for all hidden layers
of actor and critic

ReLU

Actor output activation function Tanh

Actor hidden layers number 1

Actor hidden layers size, neurons 25

Critic hidden layers size, neurons 50, 25

Action path size, neurons 25

Minibatch size 64

Standard deviation / Variance of OUP noise 1,5

Variance decay rate 105

The authors elaborated on “Graded Learning”, a progressive coaching method, which is

a form of “Curriculum learning” method. The Graded learning helped to avoid long

trainings that can consist of thousands of episodes and last many hours. Instead of one

long-term training, the RL task was intuitively broken down into levels, where each of

them puts forward training criteria with increasing difficulty. The agent was trained for

𝑛 episodes or until the training criteria is met. Once the level of task is learned, the

agent is retrained at the next level and the new experience is built upon. So-called

“transfer-learning” technique was used to transfer leaned NN’s weights from one task

to another throughout 6 stages of increasing difficulty. The analysis of the results

showed that Graded Learning is effective way to coach the RL agent.

2.3 Literature overview conclusions

The enormous number of the control methods has been described in the research

papers, devoted to the problem of controlling the MLS and the accurate and stable

trajectory tracking.

The linear control methods are not suitable for the highly nonlinear and unstable MLS:

36

• All the assumptions and simplifications, regarding modeling, result in a simplified

model and weaker control.

• The state feedback control, the LQR and the gain-scheduling approach require

long and tedious calculations in order to linearize the process model and to find

a feedback matrix.

• Tuning of one or several PID-controllers, in case of the gain-scheduling approach,

is done through the trial-error method, which can be hard and very time-

consuming.

• The linear controllers have a very narrow operating region.

• The high control performance, and especially robustness of the controller, are

not guaranteed. For this reason, additional methods and hybrid techniques are

used.

The nonlinear and advanced control methods require complex mathematical analysis

and long and tedious calculations in order to obtain an appropriate control law.

• Cascade control, implemented in the number of research works, can improve

simple classical controllers’ performance only to some extent, and require

various stabilizing controllers in additional loop.

• The backstepping, the fuzzy logic control and the sliding mode control provide

better stability of the system than linear control methods. While the backstepping

requires manual tuning of the control parameters, the fuzzy controllers are easily

tuned, but have slow response and long settling time. The sliding mode

controllers have a stabilizing feature and provide fast response but suffer from

the chattering problem and additionally require optimization.

• The fractional-order control has a great potential in regard to the accuracy, but

not the uncertainties, and there exists a problem of infinite memory for data

storage and computations.

• The model predictive control is used for its adaptation ability and prediction of

the future system’s response, but it also demands a proper system’s model.

• While the classical controllers, such as PID, are cheap and affordable, the

implementation of the advanced controllers, such as MPC, may be costly and

require additional setups.

The amount of effort to be made in order to derive an appropriate control law and

develop a controller, depends on the complexity of the model in hand and the design

goals and specifications. It is clear, that application of the intelligent control methods,

such as ANNs, can significantly reduce the design effort.

37

• The controller, based on the ANNs, can consider uncertainties that are highly

difficult to identify and predict in the mathematical modeling, and thus,

guarantee the higher control and stability performance of MLS.

• The NN-based controller’s design process does not involve mathematical analysis

of the model, thus, requires less effort.

• Additionally, the NN-based controller will have wider operating region, and make

various reference signals possible to be applied for the levitated object.

2.4 Aims of the thesis

The main aim of the thesis is to develop a control solution based on the ANNs for an

accurate trajectory tracking of the levitated object in the MLS2EM, as well as to achieve

a higher control and stability performance of the system in a presence of unpredictable

disturbances and parameter uncertainty. The NN-based controller will have wider

operating range in comparison to the PID-controller, which operating region is around

2·10-3 m.

To accomplish that, the following sub-goals have been outlined:

• Collect and analyse the time-series datasets including object’s position first from

the simulation model and then from the actual plant of MLS2EM;

• Develop an appropriate NN structure and train the NN on the collected datasets;

• Design the NN controller;

• Test the NN controller in Simulation and compare it with the existing PD-

controller;

• Make the necessary adjustments in the NN structure or control solution based

on the tests results;

• Validate the control and stability performance of the MLS2EM applying various

reference signals and introducing disturbances;

• Evaluate the results.

38

3. MAGNETIC LEVITAION SYSTEM AND ITS MODELING

3.1 System description and modeling

3.1.1 Mechanical part and software

Magnetic levitation phenomenon is based on the principle of electromagnetic suspension

(EMS). As mentioned in Chapter 1, the magnetic levitation technology makes frictionless

motion possible, and therefore can provide operations with high speed and precision

and reduce the mechanical wear of the equipment.

The laboratory setup of the magnetic levitation system with two electromagnets

(MLS2EM) is schematically shown in Figure 1.1. The mechanical unit of MLS2EM consists

of the aluminum frame, two electromagnets attached to it (upper EM1 and lower EM2),

an optical detector to sense the object position, and coils current sensors, and three

ferromagnetic spheres of different weights and sizes (Table 3.1). The hardware is

accompanied with the power supply and interface to a personal computer (PC) and the

dedicated RTDAC/USB measurement and control input-output (I/O) board in the Xilinx®

technology. The software operates in real time under MS Windows® using

MATLAB®/Simulink R2017b and the Real Time Windows (RTW) Toolbox (currently

renamed to Simulink Desktop Real-Time Toolbox) for building a real-time model [1].

Additionally, to the control software, the MLS2EM Toolbox is provided by INTECO in

order to solve modeling, design and control problems for MLS2EM in MATLAB

environment.

Table 3.1 Ferromagnetic objects’ parameters

Ball number Ball size Ball mass, kg Ball diameter, m

1 small 1,91·10-2 3,8·10-2

2 medium 3,76·10-2 5,6·10-2

3 big 4,71·10-2 6,4·10-2

The MLS2EM control window is opened by the MATLAB command “mls2em_usb2_main”

and shown in Figure 3.1. Through it one can rapidly access all basic functions of the

MLS: testing tools, drivers, models and demo applications [1].

Identification of the MLS2EM is done in four steps to verify or modify static and dynamic

characteristics of the system. During identification process position sensor

characteristics, static and dynamic features of actuators (electromagnets) are identified.

The minimal control analysis is conducted to define the minimal control (or minimal

39

applied voltage) required to cause the motion of the levitated object from the lower

electromagnet towards the upper electromagnet against the gravity force.

Figure 3.1 The Magnetic Levitation Main window

The MagLev device driver is a software go-between for the real-time MATLAB

environment and the RT-DAC4/USB acquisition board [1]. The interior of the driver block

is given in [1].

The INTECO provided three simulation models along with pre-tuned controllers (Table

3.2, models 0-2, Figure 3.2), which include Magnetic Levitation Animation block (Figure

3.3), and three pre-tuned experimental controllers (Table 3.2, models 3-5). The

controllers will be discussed in Section 3.1.3.

Table 3.2 Existing simulation and experimental models of MLS2EM

Controller/
Model number

Model name Sample time, s

-/0 Open loop (sim.) 1·10-3

1 PD (sim.) 1·10-3

2 PD differential mode (sim.) 1·10-3

3 PD EM1 (real-time) 5·10-3

4 PD EM1, EM2 pulse excitation (real-time) 5·10-3

5 PD differential mode (real-time) 5·10-3

The “Magnetic Levitation model (MLS2EM)” block has two inputs: EM1 and EM2 control

actions, and six outputs, which go to the Scope “MagLev – model Control and States”

as four channels:

- Position, m,

- Velocity, m/s,

- EM1 and EM2 currents, A,

- EM1 and EM2 controls, pulse width modulation (PWM) duty 0-1.

The MLS model will be described in more details in the next Section 3.1.2.

40

Figure 3.2 Simulation model "PD" (model 1) with Animation block

Figure 3.3 Visualization of magnetic levitation using Animation block

3.1.2 System modeling

The nonlinear state space model of the MLS2EM is given by the set of equations (3.1)-

(3.2), [1], and represented in the diagram in Figure 3.4:

�̇�1 = 𝑥2,

�̇�2 = −
𝐹𝑒𝑚1
𝑚

+ 𝑔 +
𝐹𝑒𝑚2
𝑚

,

�̇�3 =
1

𝑓𝑖(𝑥1)
(𝑘𝑖𝑢1 + 𝑐𝑖 − 𝑥3),

�̇�4 =
1

𝑓𝑖(𝑥𝑑 − 𝑥1)
(𝑘𝑖𝑢2 + 𝑐𝑖 − 𝑥4),

(3.1)

41

where

𝐹𝑒𝑚1 = 𝑥3
2
𝐹𝑒𝑚𝑃1
𝐹𝑒𝑚𝑃2

exp (−
𝑥1

𝐹𝑒𝑚𝑃2
),

𝐹𝑒𝑚2 = 𝑥4
2
𝐹𝑒𝑚𝑃1
𝐹𝑒𝑚𝑃2

exp (−
𝑥𝑑 − 𝑥1
𝐹𝑒𝑚𝑃2

) ,

𝑓𝑖(𝑥1) =
𝑓𝑖𝑃1
𝑓𝑖𝑃2

𝑒𝑥𝑝 (−
𝑥1
𝑓𝑖𝑃2

) , 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑠,

(3.2)

where

𝑥1 — position of the ball, m, 𝑥1𝜖[0, 0,02], measured downwards from EM1 to the

highest point of the levitated ball,

 𝑥2 — velocity of the ball, m·s, 𝑥2𝜖ℝ,

 𝑥3 — current in the coil EM1, A, 𝑥3 ∈ [𝑖𝑀𝐼𝑁 , 𝑖𝑀𝐴𝑋],

 𝑥4 — current in the coil EM2, A, 𝑥4 ∈ [𝑖𝑀𝐼𝑁 , 𝑖𝑀𝐴𝑋],

𝑢1 — control for the EM2, 𝑢1𝜖[𝑢𝑀𝐼𝑁 , 𝑢𝑀𝐴𝑋],

𝑢2 — control for the EM2, 𝑢2𝜖[𝑢𝑀𝐼𝑁 , 𝑢𝑀𝐴𝑋].

The parameters of the equations (3.1)-(3.2) are described in Table 3.3 below.

Table 3.3 Parameters of the equations (3.1)-(3.2)

Symbol Description Value Unit

𝑚 ball mass 5,71·10-2 kg

𝑑 ball diameter 6·10-2 m

𝑔 gravity acceleration 9,81 m·s-2

𝐹𝑒𝑚1 , 𝐹𝑒𝑚2 electromagnetic force functions of 𝑥1 and 𝑥3 N

𝐹𝑒𝑚𝑃1 electromagnetic force parameter 1,7521·10-2 H

𝐹𝑒𝑚𝑃2 electromagnetic force parameter 5,8231·10-3 m

𝑓𝑖(𝑥1) actuator parameters function of 𝑥1 1·s-1

𝑓𝑖𝑃1 actuator parameters 1,4142·10-4 m·s

𝑓𝑖𝑃2 actuator parameters 4,5626·10-3 m

𝑐𝑖 actuator parameters 2,43·10-2 A
𝑘𝑖 actuator parameters 2,5165 A

𝑥𝑑
distance between electromagnets minus

ball diameter
0,75-𝑑 m

𝑖𝑀𝐼𝑁 minimum current value 3,884·10-2 A

𝑖𝑀𝐴𝑋 maximum current value 2,38 A

𝑢𝑀𝐼𝑁 minimal control for levitation 4,98·10-3 -

𝑢𝑀𝐴𝑋 maximal control 1 -

42

Figure 3.4 MLS2EM diagram [1]

The interior of the “Magnetic Levitation model (MLS2EM)” block is shown in Figure 3.5-

Figure 3.7. The distance between the electromagnets EM1 and EM2 is denoted by

EMsDistance, and equals to 7,5 · 10−2 m. The result of subtraction 𝑥𝑏 = 𝑥𝑑 − 𝑥1 gives the

distance between the lowest point of the levitated ball and the bottom electromagnet

EM2.

Figure 3.5. Interior of the MLS2EM model

43

Figure 3.6 Interior of the EM1 and EM2 current models

Figure 3.7 Interior of the EM1 Fem and EM2 Fem blocks

The function 𝑓(𝑢) corresponds to the expressions for 𝐹𝑒𝑚1, 𝐹𝑒𝑚2 from the equation (3.2).

The system has two inputs: the controls 𝑢1 and 𝑢2, saturated in the limits [𝑢𝑀𝐼𝑁 , 1], and

six outputs: the position of the ball 𝑥1, the velocity of the ball 𝑥2, the currents 𝑥3 and 𝑥4

in the coils EM1 and EM2, respectively, and the controls PWM duty.

The position of the ball is detected by the position sensor and measured downwards

from the bottom of the upper electromagnet EM1. Additionally, control PWM (pulse width

modulation) duty cycle is shown for the EM1 and EM2 in the scope (Figure 3.5).

All variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 of the equation (3.1) come together as a state of the system

[𝑥1, 𝑥2, 𝑥3, 𝑥4], which is being changed at every time step 𝑡, 𝑡 ≥ 0. The initial state of the

system is given at time 𝑡 = 0 as follows (3.3):

𝑥1(0) = 0,009,

𝑥2(0) = 0,

𝑥3(0) = 0,9,

𝑥4(0) = 0,04.

(3.3)

44

3.1.3 Existing controllers

The control of the ball position in MLS2EM is performed through the feedback control

loop using classic PID-controller with zero integral component. The control law of a

classic PID-controller includes proportional, integral, and derivative terms, and is given

by the well-known equations (3.4)-(3.5):

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
, (3.4)

 𝑒(𝑡) = 𝑟(𝑡) − 𝑥(𝑡), (3.5)

where

𝑟(𝑡) — desired process value, or setpoint, SP,

𝑥(𝑡) — measured process value, PV,

𝑒(𝑡) — error value.

As it has been already mentioned in Section 3.1.1, the INTECO provided six Simulink

models: three simulation models and three experimental models (Table 3.2). The

model 0, “open loop” does not exploit any controller. The rest of the models 1-5 include

five pre-tuned PD-controllers.

The interior of the PD and differential mode PD-controllers is shown in Figure 3.8 and

Figure 3.9, and described by the equations (3.6) and (3.7), respectively. The integral

term 𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0
 is replaced by the steady-state control constant 𝑢0, which is tuned for

each controller separately. The parameters of the five controllers are given in Table 3.4.

Figure 3.8 Interior of the PD-controller

45

Figure 3.9 Interior of the differential mode PD-controller

The saturation blocks in Figure 3.8 and Figure 3.9 limit PD-controllers outputs 𝑢(𝑡) by

the range of [0, 1].

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝑢0, (3.6)

 𝑢𝐸𝑀1(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝑢0 𝐸𝑀1,

𝑢𝐸𝑀2(𝑡) = −(𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
) + 𝑢0 𝐸𝑀2.

(3.7)

It is important to note here, that in the given five Simulink models (for example, in

Figure 3.2) the position error is calculated differently rather than in common case (3.5),

namely:

 𝑒(𝑡) = 𝑥(𝑡) − 𝑟(𝑡). (3.8)

Another issue is that there is no information on the operating points of the controllers

in [1], but empirically it was found equal to 9·10-3 m for all the PD-controllers.

Table 3.4 Parameters of the simulation and experimental PD-controllers for the models 1-5

Controller
number

Controller
name

Proportiona
l gain, 𝑲𝒑

Derivativ
e gain, 𝑲𝒅

Steady-state
control, 𝒖𝟎

Controller
sample

time

1 PD (sim.) 55 5 0,3617 1·10-3

2
PD differential
mode (sim.)

60 4
0,3812 for EM1
0,3812 for EM2

1·10-3

3
PD EM1 (real-

time)
30 0,3 0,315 1·10-3

4
PD EM1, EM2

pulse excitation
(real-time)

55 5 0,358 1·10-3

5
PD differential

mode (real-time)
45 1

0,45 for EM1
0,59 for EM2

5·10-4

46

The main problem of the PD-controllers used in the simulation and experiments is that

they are no more suitable when any change takes place in the MLS2EM. The PD-

controllers must be re-tuned for each certain case. For example, controllers 1-5 are

tuned for the ball with weight of 5,71·10-2 kg and diameter of 6·10-2 m, but after

changing these parameters to those from Table 3.1, controllers can no more provide

accurate and adequate control. The problem becomes even more complicated and time-

consuming, since MLS2EM is a highly nonlinear and unstable system, and such MATLAB

tool, as transfer function based automated tuning of PID-components (gains), is not

available. Any disturbance, introduced in the system, for example, produced by the

lower electromagnet EM2, crucially affects the tracking performance of the PD-

controller.

The second issue is that the PD-controllers can provide more or less accurate control of

the ball position in a very narrow range, which is approximately 2·10-3 m (2 mm), around

the operating point. In the mentioned above conditions regarding the ball weight and

diameter, and with the constant reference position of 9·10-3 m, the PD-control still

results in the steady-state error of order 10-4 m.

3.1.4 Parameter estimation for MLS2EM

Since there is always a discrepancy between the real plant and its mathematical model,

the parameter estimation for the MLS2EM is required. Thus, we can get closer in

simulation to the behaviour of the real plant.

The parameter estimation was done using datasets “Setpoint” and “Ball position” (Figure

3.10), collected from the real plant acting on the medium size ball (ball number 2, Table

3.1). The characteristics of the setpoint, or reference signal, are given in Table 3.5.

47

Figure 3.10 Datasets for parameter estimation

Table 3.5 Reference signal characteristics for collecting datasets (setpoint, Figure 3.10)

Time period, s Singal type Property Value

[0, 7) Constant Value 1·10-2 m

[7, 40)
Uniform Random

Number

Minimum
Maximum

Seed
Sample time

9,8·10-3 m
1,02·10-2 m

7
5 s

[40, 70) Chirp

Initial frequency
Frequency at time 60s

Gain
Shift along x-axis

1 Hz
6 Hz

1·10-3

10-2 m

[70, 85)
Band-Limited White

Noise

Noise power
Sample time

Gain
Shift along x-axis

0,1
0,5 s
5·10-4

10-2 m

[85, 100) Sine Wave

Amplitude
Bias

Frequency
Phase

Sample time

8·10-4 m
1·10-3 m
3 rad/sec

0
10-3 s

The parameter estimation was performed using Parameter Estimator App in MATLAB

R2021b. The Trust-Region-Reflective algorithm and the Nonlinear Least Squares

optimization method were used during the parameter estimation (Figure 3.11). The

process took 43 iterations. The initial fit and the results of the estimation are depicted

in Figure 3.12 and Figure 3.13, and given in Table 3.6. It is seen that the simulated

output of MLS2EM is very close to the measured output after parameter estimation.

48

Figure 3.11 Parameter estimation progress

Table 3.6 Initial and estimated parameters' values

Parameter Initial value Estimation range Estimated value Unit

𝐹𝑒𝑚𝑃1 1,7521·10-2 [0, 0,2] 1,1296·10-2 H

𝐹𝑒𝑚𝑃1 5,8231·10-3 [0, 0,2] 4,7817·10-3 m
𝑓𝑖𝑃1 1,4142·10-4 [0, 0,1] 2,5326·10-3 m·s

𝑓𝑖𝑃2 4,5626·10-3 [0, 0,1] 1,3875·10-2 m

𝑐𝑖 2,43·10-2 [0, 0,2] 3,4421·10-2 A
𝑘𝑖 2,5165 [0, 10] 3,009 A

Figure 3.12 Measured and simulated outputs prior parameter estimation (above); reference

signal (below)

49

Figure 3.13 Measured and simulated outputs after parameter estimation (above); reference

signal (below)

50

4. NARX-BASED CONTROLLER DESIGN

4.1 NARX-based controller

4.1.1 NARX model

As the first NN-based control solution for MLS2EM the nonlinear autoregressive network

with exogenous inputs (NARX) was chosen. The NARX networks have a dynamic

recurrent structure with feedback connections between layers. They are commonly used

for such problems, as an input signal prediction, nonlinear filtering of the input signal,

and also modeling of nonlinear dynamic systems, such as MLS.

The NARX model is defined by the recurrent equation (4.1) [44]:

 𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑛𝑢)), (4.1)

where the output signal 𝑦(𝑡) at current time step 𝑡, 𝑡 ≥ 0, depends on its own previous

values and the values of the input signal 𝑢(𝑡).

There are two configurations of the NARX network commonly used in trainings [44],

Figure 4.1:

- Parallel architecture, where the network’s estimated output is fed back to the

second input of feedforward neural network;

- Series-Parallel architecture, where the true output (available target data) is used

as the second input of feedforward network instead of feeding back the network’s

estimated output.

The Series-Parallel architecture will be used in the current work due to the higher

accuracy of the input. After the training of NN is done, the NN structure is transformed

into Parallel one with the feedback connection.

Figure 4.1 Parallel (on the left) and Series-Parallel (on the right) architecture of NARX

51

4.1.2 Training datasets

To realize the supervised learning for the NARX model, the following datasets has been

prepared and collected in open loop as arrays (for convenience) of size 100001 × 1 with

the sample time 10-3 s (Figure 4.2, Table 4.1):

- Input data “input1”, which is an error generated in appropriate range going as

an input to the PD-controller;

- Target data “output1”, which is the PD-controller’s response to the error, or

control action;

- Time vector ”t1”, collected separately for building plots.

Figure 4.2 Generating of the training dataset, Simulink model

Table 4.1 Characteristics of the input signal

Time period, s Singal type Property Value

[0, 7) Constant Value 0

[7, 40)
Uniform Random

Number

Minimum
Maximum

Seed
Sample time

-1,1·10-3 m
1,7·10-3 m

7
3 s

[40, 70) Chirp

Initial frequency
Frequency at time 60s

Gain
Shift along x-axis

1 Hz
6 Hz

2·10-4

7·10-5

[70, 85)
Band-Limited White

Noise

Noise power
Sample time

Gain
Shift along x-axis

0,1
0,5 s
1·10-3

7·10-5

52

Table 4.1 continued

Time period, s Singal type Property Value

[85, 100) Sine Wave

Amplitude
Bias

Samples per period
Offset

Sample time

10-3 m
0 m
10
0

10-3 s

The training dataset is represented in the plot, Figure 4.3. The input data has been

generated to look similar to the error’s behaviour in case of closed-loop system.

Figure 4.3 Input and target data, collected in simulation

4.1.3 NARX neural network structure

As it was mentioned in Section 4.1.1, the NARX network is trained in Series-Parallel

(open-loop) configuration (Figure 4.1), and later transformed into Parallel (closed-loop)

configuration. Let’s denote:

- 𝑥(𝑡) = (
𝑥(𝑡)
𝑡
) – input 1 of the NN, time-series dataset, where the first-row

element 𝑥(𝑡) is a transposed vector “input1”;

- 𝑦(𝑡) =(
𝑦(𝑡)
𝑡
) – input 2 of the NN, time-series dataset, where the first-row element

𝑦(𝑡) is a transposed vector “output1”;

- 𝐼𝑊{1,1} – matrix of the weighting coefficients from the input 1, 𝑥(𝑡), to the hidden

layer 1, where {𝑖, 𝑗}-element of the matrix corresponds to the 𝑖-neuron in the

hidden layer 1 and 𝑗-row of the input vector 𝑥(𝑡), 𝑖, 𝑗𝜖ℕ;

53

- 𝐼𝑊{1,2} – matrix of the weighting coefficients from the input 2, 𝑦(𝑡), to the hidden

layer 1, where {𝑖, 𝑗}-element of the matrix corresponds to the 𝑖-neuron in the

hidden layer 1 and 𝑗-row of the input vector 𝑦(𝑡), 𝑖, 𝑗𝜖ℕ;

- 𝑏{1} – bias to the layer 1, of size 1 × 𝑖, where 𝑖 is a number of neurons in the

hidden layer 1;

- 𝐿𝑊{2,1} – matrix of the weighting coefficients from the hidden layer 1 to the

output layer 2, of size 1 × 𝑖;

- 𝑏{2} – bias to the layer 2, of size 1 × 1;

- 𝐹1 and 𝐹2 – activation functions of the hidden layer 1 and output layer 2,

respectively

- �̂�(𝑡) – output of the NN.

The output of the NARX network of Series-Parallel structure is given in a matrix form by

the equation (4.2):

 �̂�(𝑡) = 𝐹2(𝐿𝑊{2,1} ∙ 𝐹1(𝐼𝑊{1,1} ∙ 𝑥(𝑡) + 𝐼𝑊{1,2} ∙ 𝑦(𝑡) + b{1}) + b{2}), (4.2)

where NN is supposed to have only one hidden layer.

The open-loop and closed-loop NARX network diagrams, interior and structure of its

Simulink models are given in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Table

4.2. The Simulink models, shown in Figure 4.5 and Figure 4.7, were generated

automatically with the command “gensim” from NN Toolbox.

Table 4.2 Open-loop / closed-loop NARX structure

Component
number

Name Type
Size,

neurons
Learnables of
closed-loop

1 𝑥(𝑡) Input 1 1 -

2 Process input 1 Normalization -

3 𝑦(𝑡) / 𝑎{2} Input 2 1 -

4

Layer 1 Hidden layer 10

Weights
𝐼𝑊{1; 1} 10 × 2
𝐿𝑊{1;2} 10 × 2
Bias 𝑏{1} 10 × 1

5 Delays 1 Delay - -

6 Delays 2 Delay - -

7 Tansig Activation function - -

8
Layer 2 Output layer 1

Weights
𝐿𝑊{2;1} 1 × 10
Bias 𝑏{2} 1 × 1

9 Purelin Activation function - -

10 Process output 1 Denormalization - -

11 𝑦(𝑡) / 𝑎{2} Output 1 -

54

Figure 4.4 NARX series-parallel (open-loop) configuration diagram

Figure 4.5 a).The interior of open-loop NARX model; b). Hidden layer 1; c). Output layer 2;

d). Interior of IW{1,1} block

Figure 4.6 NARX parallel (closed-loop) configuration diagram

a).

b).

c). d).

55

Figure 4.7 a).The interior of closed-loop NARX model; b). Hidden layer 1; c). Output layer 2;

d). Interior of IW{1,1} block

The input and target data arrays “input1” and “output1” are transposed and converted

into matrices, using command “con2seq”, where the second raw is a set of time steps,

corresponding to the data samples.

Two “Delays” blocks are set for each input; thus, the training starts from the third

sample of datasets.

The “Process input 1” and “Process output 1” blocks conduct normalization of the input

and denormalization of the output, respectively.

The input values are normalized according to the formula (4.3), realizing “mapminmax”

MATLAB function:

 �̃� =
(𝑥 − 𝑥𝑚𝑖𝑛)(�̃�𝑚𝑎𝑥 − �̃�𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ �̃�𝑚𝑖𝑛 , (4.3)

where 𝑥 and �̃� are the input and the output of the function.

a).

b).

c). d).

56

The output values are denormalized using formula (4.4):

 𝑥 =
(�̆� − �̆�𝑚𝑖𝑛)(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

�̆�𝑚𝑎𝑥 − �̆�𝑚𝑖𝑛
+ 𝑥𝑚𝑖𝑛 , (4.4)

where �̆� and 𝑥 are the input and the output of the reverse function.

The activation functions “Tansig” (symmetric sigmoid transfer function) and “Purelin”

(linear transfer function) are described by the equations (4.5) and (4.6):

 𝐹1(𝑥) =
2

1 + exp(−2𝑥)
− 1, (4.5)

 𝐹2(𝑥) = 𝑥. (4.6)

4.1.4 Training and its results

During the training, the NN learns complex associations between input and target data,

and evaluates its own performance, or how close the returned output �̂�(𝑡) is to the target

output 𝑦(𝑡).

The Levenberg-Marquardt algorithm (LMA), is used to minimizes the performance

function, or loss function 𝐿(𝑡), given in a form of sum of squares (4.7):

 𝐿(𝑡) =∑ (𝑦𝑘(𝑡) − �̂�𝑘(𝑡))
2

𝑁

𝑘=1

, (4.7)

where 𝑘, 𝑘𝜖ℕ, – number of the sample.

The iterative procedure of LMA, which approximates the Newton’s method, is given by

the common formula (4.8) [45]:

 𝑥𝑘+1 = 𝑥𝑘[𝐽
𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒, (4.8)

where

𝑒 – vector of network errors,

𝐽 – Jacobian matrix of first derivatives of 𝑒 with respect to network weights and

biases,

57

𝐼 – identity matrix,

𝜇 – scalar parameter, which is changed after each iteration step.

The gradient is calculated in a following way:

 𝑔 = 𝐽𝑇𝑒. (4.9)

The LMA is used for each case of training. The training is performed in 300 epochs. After

the training, the open-loop NARX network is rearranged into original Parallel form, using

MATLAB command “closeloop”. The NARX controller is generated with the command

“gensim” with the sample time of 1·10-3 s.

In the next Sections 4.1.5, 4.1.6, and 4.1.7, three NARX-based controllers will be

presented. The following NARX-based controllers were learned from the PD-controllers

1, 2 and 4 (Table 3.4). The related NARX networks were created and trained using open-

source MATLAB code [44], see Appendix 1. The full analysis of position tracking and

stability performance will be given in Chapter 6.

4.1.5 NARX-based controller 1

The parameters of the designed NARX-based controller “narx_net1_closed”, learned

from the PD-controller 1, are given in (4.10):

𝐼𝑊{1; 1} =

[

−1,5711
−0,9611
 0,7872
 0,8321
 0,7768
−0,3205
−1,5020
 0,8368
 1,2098
 0,3563

−1,1854
−1,4866
−1,5972
−0,6935
−1,0333
 0,3598
 1,4866
−0,4003
−1,0431
−1,4156]

𝐿𝑊{1; 2} =

[

−0,7365
−0,7701
 0,8602
 2,9899
 7,0143
 0,1900
 3,7893
−0,3342
−0,3245
−0,0014

−0,4897
−0,8142
 2,3477
−1,7177
−4,7847
 3,4506
−2,4252
−0,1395
 1,9986
−0,1234]

𝐿𝑊{2; 1}′ =

[

 0,0289
 0,0062
 0,0564
 1,0189
 0,7870
 0,2254
−1,7802
 0,3954
−1,0288
−0,7422]

 𝑏{1} =

[

 2,9087
 1,4966
 1,2087
−0,2117
 0,2520
 1,9699
−0,0732
 0,4850
 2,3823
 2,5733]

 𝑏{2} = 1,0563

(4.10)

58

where 𝐿𝑊{1; 2} – matrix of the weighting coefficients replacing corresponding matrix

𝐼𝑊{1,2} from open-loop case (Figure 4.7).

The simulated output of the NARX network together with the target data, used during

the training is shown in Figure 4.8. It is seen, that at some points NARX output goes

behind the range of [0,1], which means that the NARX network will work somewhat

worse rather than the related PD-controller. Later the control action is saturated at 0

and 1 inside MLS2EM block. The simulated NARX output was compared to the PD-

controller’s output using the MSE, which equals to 4,2925·10-4. The squares of errors

for NARX over the time 𝑡 are depicted in Figure 4.9.

Figure 4.8 NARX and PD output comparison

Figure 4.9 Squares of errors for NARX over the time

59

4.1.6 NARX-based controller 2

The NARX control corresponding to the differential mode PD-controller 2 (Table 3.4) was

realized as two NARX-based controllers for EM1 and EM2 separately. Since the PD-

controller 2 has two outputs, the training data was collected from each of them. The

parameters of the NARX-based controller for EM1 are given in (5.5). And the MSE value,

calculated for comparison of NARX and PD-controller’s outputs, equals to 1,1387·10-4.

𝐼𝑊{1; 1} =

[

−0,1548
−0,2101
−2,0148
−1,5955
 0,5687
−0,8278
 0,3058
−0,6805
 0,5860
 1,1515

 1,0869
 0,0675
−0,4340
 1,3751
−1,3224
−2,8071
 1,5597
−0,3998
−0,1964
−0,6019]

𝐿𝑊{1; 2} =

[

 1,5011
−1,9873
−1,3850
−2,0346
 4,4689
−0,6768
 3,4217
 1,3890
−2,0713
 0,1470

 1,4176
−1,2346
−1,0671
−0,4208
−0,9881
−1,2108
 0,4119
−1,2374
 0,3746
 2,1746]

𝐿𝑊{2; 1}′ =

[

−0,0579
−0,5594
−0,0087
 0,2661
 0,7590
 0,0259
 0,0585
−0,1782
 1,3428
−0,3977]

 𝑏{1} =

[

 2,4467
−1,8737
 1,6147
 1,0942
 0,0545
−0,5950
 0,3949
−1,9347
−0,1397
 2,7238]

 𝑏{2} = 0.1027

(4.11)

The parameters of the NARX-based controller for EM2 are given in (4.12). And the

related MSE equals to 8,2169·10-4.

𝐼𝑊{1; 1} =

[

−1,2599
 2,0494
−0,2667
−1,1055
 0,2693
−2,0241
 0,6604
 0,3908
 0,2945
−0,3247

−0,6166
−0,5117
−0,7080
 0,4494
 0,1285
−1,1927
 1,6507
 2,4090
 1,4833
−0,4166]

𝐿𝑊{1; 2} =

[

−1,2935
 0,6896
 0,6565
 1,2389
 3,4240
−1,6231
 0,5122
−1,0850
−0,1690
−0,4476

 2,1896
−0,6694
−0,6096
 0,8733
 0,7469
−1,2791
−0,5876
 1,3397
 0,2847
−1,0349]

𝐿𝑊{2; 1}′ =

[

 0,3820
 0,4612
 1,2698
 0,1860
−0,6743
 0,2940
 0,2520
 0,1122
 0,8727
−0,6959]

 𝑏{1} =

[

 1,8858
−1,9460
−0,0858
 1,5445
−0,6239
−0,6272
 0,4366
−1,0595
 2,4012
 1,0737]

 𝑏{2} = 0,7505

(4.12)

60

4.1.7 NARX-based controller 4

The parameters of the designed NARX-based controller, learned from the PD-

controller 4, are given in (4.13). And the related MSE equals to 2,9628·10-4.

𝐼𝑊{1; 1} =

[

−1,0644
−0,6850
0,3325
1,4099
1,3821
−0,4540
−0,9576
1,0704
0,3932
0,9415

 0,7998
−1,9695
−0,1619
−0,2552
−1,5384
−2,5546
 0,9500
 0,2007
−1,1143
 0,6126]

𝐿𝑊{1; 2} =

[

 1,1755
 0,1278
 1,6428
−0,7310
 6,3106
 0,5325
 3,8451
−1,5176
 1,3787
 0,7089

−1,4630
−0,1900
−1,4782
 0,4081
−5,0281
−0,2290
−3,4080
−0,1900
−1,6747
 2,0036]

𝐿𝑊{2; 1}′ =

[

 0,0391
 0,0103
 0,6545
 0,0797
 1,0609
−0,0058
−1,5739
 0,1115
−0,0896
 0,0155]

 𝑏{1} =

[

 2,9279
 1,8852
 0,0382
−0,8902
 0,3319
−0,7329
 0,1133
 1,6058
 2,0165
 2,3106]

 𝑏{2} = −0,2891

(4.13)

4.2 Obstacles in NARX-based controller design

During the NAXR-controller design and based on the results of the training, the number

of obstacles to creating an adequate control has appeared.

- Due to the fact, that the weights and biases of the network are initialized

randomly, each certain network training (with same training settings and

network structure) ends up with different results. Moreover, the trainings often

end up with unpredictable, insufficient, or on opposite, excessive control action,

which is frequently shifted away from the expected control action range. This

means, that even being simple with respect to the mathematical effort, the

design of a proper controller may take many trials and quite a long time.

- The simplicity or the difficulty of the training datasets structure (for example,

pure sine wave form “input data”) do not result in the design of a better control.

The same is true about the network structure. The different number of the

61

hidden layers and different layer sizes were tried out during the network

training, but no correlation was found between those and the network’s

improvement.

- The NARX-based controller can only surpass the PD-controller’s performance

only at some points in accuracy, but overall performance of the NARX-based

controller is weaker (this will be discussed in more details in Chapter 6). The

NARX controller cannot interpolate and extend the PD working region. It is less

stable to disturbance rather than the PD-controller.

- The training datasets for the experimental NARX-based controller for real-time

control cannot be collected from the PD-controller in open-loop since there is no

option to run the experiment on the real plant with disconnected PD-controller.

The datasets collected in closed-loop include excessive information that comes

from MLS2EM output and affects the position error values. These datasets are

useless in the NARX-based controller design.

For these reasons, one can conclude that the NARX-based controller is not suitable in

the tracking control problem for MLS2EM, or the pure NARX-control is not sufficient. In

the next Chapter 5 the Reinforcement Learning based control solution will be presented.

62

5. RL-BASED CONTROLLER DESIGN

5.1 Reinforcement Learning based controller

5.1.1 Deep Reinforcement Learning approach

Deep Reinforcement Learning (DRL) is a branch of machine learning, which stands

separately from supervised and unsupervised learning. Supervised Learning supposes

providing input and output behaviour patterns to be achieved during the learning

process. Unsupervised Learning realizes self-learning by discovering similar input

features and categorizing them into groups with a certain output probability.

Reinforcement Learning does not employ either training datasets as a behaviour sample,

or data distribution to categories during the learning process. Instead, RL involves direct

interaction between a learner, called “agent”, and an environment.

An environment includes everything outside an agent, namely: dynamic model of a

plant, reference and measured signals, observations’ block, reward generating and

termination blocks.

The observations’ block contains measured signals to be observed, including calculated

error between setpoint and measured values, and its variations. A set of observations

is a vector of values which is observed at each moment of time. It is commonly called

“state”. Thus, the state is being changed and observed throughout the whole learning

process at each time step.

The reward block provides the rule to evaluate and regulate the overall performance of

the agent’s training.

The training is split into episodes, which literally represent separate runs of experiment

or simulation. Termination block provides stopping criteria, or certain conditions, that

terminate the current episode and immediately launch the next one. The initial state of

the system is restored at the beginning of each episode.

The reinforcement learning method includes five main components:

- agent,

- environment 𝐸,

63

- action 𝑎𝑡,

- state 𝑠𝑡,

- reward 𝑟𝑡, where 𝑡 is a time step, 𝑡 ≥ 0.

Let’s also introduce the following notations:

𝒮 – set of states, or state space, finite,

𝒜 – set of actions, or action space, finite.

The agent interacts with the environment 𝐸 in the following way. At each time step 𝑡

the agent receives a set of observations, or state 𝑠𝑡, selects and performs an action 𝑎𝑡,

which drives system to the new state 𝑠𝑡+1, and immediately obtains a scalar reward 𝑟𝑡.

The immediate reward, that agent receives after performing an action at each time step,

is defined by the rule called a “reward function”. The reward function plays the crucial

role in RL. A nicely defined reward function gives the proper “motivation” to the agent

and affects the quality and speed of the learning performance.

Let’s denote by 𝑟(𝑠𝑡 , 𝑎𝑡) the immediate reward 𝑟𝑡 received by the agent after performing

an action 𝑎𝑡 through the state 𝑠𝑡 at time 𝑡. By the transition dynamics 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) we

will understand probability, that action 𝑎𝑡 in a state 𝑠𝑡 at time step 𝑡 will lead to the state

𝑠𝑡+1 at time step 𝑡 + 1.

The agent behavior, or the action choice in the state 𝑠𝑡, is determined by the policy 𝜋,

or in other words, by the probability of the action 𝑎𝑡 at time step 𝑡. The policy function,

or policy, 𝜋: 𝒮 → 𝒫(𝒜), realizes mapping between the state space 𝒮 and the probability

distribution over the action space 𝒜 ⊂ ℝ𝑁.

The so-called “return from a state”, or “cumulative reward”, is defined as the sum of

discounted future reward 𝑅𝑡 given by the formula (5.1) [39]:

 𝑅𝑡 =∑𝛾𝑖−𝑡𝑟(𝑠𝑖 , 𝑎𝑖)

𝑇

𝑖=𝑡

, (5.1)

where 𝛾 – discount factor, 𝛾 ∈ [0,1], driving the agent either to take actions immediately

or postpone them over time (when 𝛾 → 1). The discount factor is usually chosen close

to 1.

64

The goal of RL is to find an optimal policy 𝜋∗, which maximizes the cumulative reward

function (5.1).

5.1.2 Deep Deterministic Policy-Gradient algorithm

Deep Deterministic Policy-Gradient (DDPG) algorithm, described in [39], Appendix 2,

represents an off-policy actor-critic algorithm which can learn policies in continuous

action spaces. This makes the algorithm applicable for the control of the systems with

complex continuous dynamics, such as MLS.

The DDPG algorithm utilizes two artificial neural networks, given by the following

functions:

- actor 𝜇(𝑠| 𝜃𝜇), with parameters 𝜃𝜇, which takes the state 𝑠𝑡 as an input, and has

the specific action 𝑎𝑡 at the output, thus, realizing the current policy 𝜋,

- critic 𝑄(𝑠, 𝑎|𝜃𝑄), with parameters 𝜃𝑄, which takes the state 𝑠𝑡 and action 𝑎𝑡 as two

inputs and returns the corresponding expectation of the discounted cumulative

reward 𝑅𝑡.

The DDPG algorithm iteratively solves the recursive Bellman equation (5.2) for critic 𝑄:

 𝑄𝜇(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄
𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))], (5.2)

where 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 — an expectation of cumulative reward, depending only on the

environment 𝐸.

The loss function 𝐿(𝜃𝑄) of critic parameters 𝜃𝑄 is given by the equations (5.3), (5.4):

 𝐿(𝜃𝑄) = 𝔼𝑠𝑡~𝜌𝛽,𝑎𝑡~𝛽,𝑟𝑡~𝐸
[(𝑄(𝑠𝑡 , 𝑎𝑡|𝜃

𝑄) − 𝑦𝑡)
2], (5.3)

where

𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃

𝑄),

𝜇(𝑠𝑡+1) = 𝑎𝑡+1.
(5.4)

𝛽 — stochastic behavior policy, used to learn 𝑄 off-policy.

65

The goal of the training is minimization of the loss function 𝐿(𝜃𝑄) with respect to 𝜃𝑄.

The actor 𝜇 is updated applying the chain rule to the expected return from the start

distribution 𝐽 with respect to the actor parameters 𝜃𝜇 [39]:

∇𝜃𝜇𝐽 ≈ 𝔼𝑠𝑡~𝜌𝛽 [∇𝜃𝜇𝑄(𝑠, 𝑎

|𝜃𝑄)|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡| 𝜃𝜇)]

= 𝔼𝑠𝑡~𝜌𝛽 [∇𝑎𝑄(𝑠, 𝑎
|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇𝜇(𝑠|𝜃

𝜇)|𝑠=𝑠𝑡],
(5.5)

where ∇𝜃𝜇𝐽 — gradient of 𝐽 with respect to 𝜃𝜇, and 𝐽 is given by the expression (5.6):

 𝐽 = 𝔼𝑟𝑖,𝑠𝑖~𝐸,𝑎𝑖~𝜋 [𝑅1]. (5.6)

During the training, actor and critic update and store their parameters. The training

algorithm, given by T.P. Lillicrap and others in [39], considers use of a replay buffer 𝑅,

which is a finite sized cache, storing the transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). The learning

process is realized in minibatches. This is done to solve the problem of a uniform

distribution of samples for the optimization algorithm in case of continuous time

domains.

The “target networks”, 𝜇′(𝑠|𝜃𝜇
′
) and 𝑄′(𝑠, 𝑎|𝜃𝑄

′
), which are the copies of actor and critic

networks, with parameters 𝜃𝜇
′
 and 𝜃𝑄

′
 respectively, are used to calculate the target

values [39]. The weights of target networks 𝜇′ and 𝑄′ are being updated slowly (5.7),

applying target smooth factor 𝜏, 𝜏 ≪ 1. This prevents instability and divergence issues

of the learning process, which is a frequent problem of the Q-learning algorithm. The

full DDPG algorithm, described in [39], is given in Appendix 2.

𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
,

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
.

(5.7)

For effective networks’ learning the deep learning technique called “batch normalization”

[46] is commonly used in problem of differently scaled input values. A minibatch of data

is normalized across all observations using the rule (5.8) from [47]:

𝑥𝑖 =

𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

 ,

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽,

(5.8)

66

where

𝑥𝑖 — an element of the input to be normalized,

𝜇𝐵 — mean, and

𝜎𝐵
2 — variance, calculated for each channel (or, observation) independently,

𝜖 — constant improving numerical stability in case of very small variance value,

𝛾 — scale factor, and

𝛽 — offset, updated during the network training.

One of the important challenges of learning process is exploration of the continuous

action space. To realize this, the authors of [39] introduced exploration policy 𝜇′, where

the noise 𝒩𝑡 is added to the actor output, or selected action, at each time step (5.9):

 𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃
𝜇) +𝒩𝑡. (5.9)

The frequently used action noise model is based on Ornstein-Uhlenbeck process (OUP),

which is described by stochastic differential equation and refers to the Wiener process.

As it is mentioned in [42], simpler models, such as additive Gaussian noise model, do

not suit, since they may cause abrupt unexpected changes over the time and replicate

real life actuators’ behavior worse that OUP model does.

In RL, OUP action noise model is realized through the notions of standard deviation and

mean, provided in [48]. The noise value 𝑣(𝑡 + 1) at each next time step 𝑡 + 1 is defined

by the recurrent formula (5.10):

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑀𝑒𝑎𝑛𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.∗ (𝑀𝑒𝑎𝑛 − 𝑣(𝑡)).∗ 𝑇𝑠

+𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑡).∗ 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑀𝑒𝑎𝑛)).∗ √𝑇𝑠,
(5.10)

where 𝑇𝑠 — simulation sampling time.

It is important to appropriately set the noise standard deviation, taking into account the

particular environment properties, to encourage good exploration of the action space.

The standard deviation is chosen so, that the product of multiplication

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.∗ √𝑇𝑠 equals to 1% to 10% of the expected action range for specific

system (5.11), [48]:

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.∗ √𝑇𝑠 = (1% 𝑡𝑜 10%) 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒. (5.11)

67

The noise, added to the action at each time step, plays the crucial role in the exploration

ability of an agent, and therefore directly impacts the learning performance. For

example, increasing the amount of noise, one can overcome the problem of too quick

convergence to the local minimum and jamming of the training process.

5.1.3 Environment, observations and reward function

The following control solution suggests training the DDPG agent in parallel with the PD-

controller for several cases of the latter one (Table 3.2).

The environment includes the following components (Figure 5.1):

- the plant “Magnetic Levitation model (MLS2EM)”;

- the PD-controller to be improved;

- set of reference signals, scope and display blocks;

- “Generate observations” block, which consists of measured position and

calculated error at each time step, and also integral error to accumulate the error

value over the time, and generates an observations’ vector;

- “Stop simulation” block with criteria for immediate termination of simulation in

case of falling out of bounds for position;

- “Calculate reward” block, which calculates the scalar reward at each time step.

Figure 5.1 Simulink model, PD controller and DDPG agent in parallel

68

Figure 5.2 "Generate observations" block Figure 5.3 "Stop simulation" block

Figure 5.4 "Calculate reward" block

The observations information includes 3x1 vector with elements given in Table 5.1. The

position and the error values are observed in meters. The action information includes

1x1 vector called “control”, whose values are saturated later in the plant block (Figure

1.1) at the lower and upper actuator limits 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 (Table 3.3), namely, at

4,98·10-3 and 1.

Table 5.1 List of observations with limits

Observation Limits

Position [0, +∞) ⊂ ℝ𝑛

Error (−∞,+∞) ⊂ ℝ𝑛

Integral error (−∞,+∞) ⊂ ℝ𝑛

The stopping criteria is based on the measured position value. The block sets its output

to logic “true” when the agent goes behind the limits of 1·10-4 m (lower limit) or 2·10-2 m

(upper limit) and rises the flag “isdone” inside the “DDPG agent” block.

The measured position value and calculated error go as two inputs into “Calculate

reward” block. After many experiments, the most appropriate reward function was

chosen of the following view (5.12):

69

𝑟1 = {
1, 𝑖𝑓 |𝑒| < 1 · 10−3,
−10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑟2 = {
−300, 𝑖𝑓 𝑥1 ≤ 1 · 10

−4, 𝑜𝑟 𝑥1 ≥ 2 · 10
−2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑟3 = 1, ∀𝑡 ≥ 0,

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟1 + 𝑟2 + 𝑟3 ,

(5.12)

where

𝑟1 — error related (accuracy) reward,

𝑟2 — position related penalty for exceeding bounds,

𝑟3 — time (continuation) reward.

The error tolerance was chosen based on the training performance. It is obvious, that

the smaller allowable error range, the harder for DDPR agent to find a solution. Taking

into account the high instability of MLS, any decrease of the error tolerance to 5·10-4,

or even to 8·10-4, appears to be impossible. The experiments in this case end up with

constantly growing deviation of action value, being produced by the actor, from the

expected control range [𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥].

Block “Data type conversion” (

Figure 5.4) was added to convert data from Boolean to Double type. This important point

is not mentioned in the similar example for water tank model problem described in RL

Toolbox User’s Guide [43], pp. 2-46 - 2-49.

The proposed type of reward function (5.12) gives clear understanding of goodness of

the training process since the reward is calculated as integer value at each time step.

Comparing to the exponential reward functions (2.4) from [42], the reward function

(5.12), can give more motivation to the agent, by strictly penalizing it for falling out of

the allowable error range. The cumulative reward is one of the “DDPG agent” block’s

outputs and displayed during the training using “display” block along with single time-

step reward (Figure 5.1).

The sine wave was chosen in a role of reference signal (Table 5.2) as the most

appropriate pattern for training. To change the setpoint during the training as it was

done in [42] and [43], using environment reset function “env.ResetFnc”, appeared to

be unreasonable due to high instability of MLS. Thus, the training was done, using only

one unchangeable reference signal.

70

The control action of DDPG agent is displayed during training, using “Display” block, as

long as cumulative and each time step reward values. The measured position is

observed in the “Scope” block.

Table 5.2 Reference signal (sine wave) parameters

Parameter Value

Amplitude, m 1·10-3

Bias, m 9·10-3

Frequency, rad/s 6

Phase, rad 0

Sample time, s 10-3

The MLS2EM parameters set during the training include those given in Table 3.3, where

the ball mass is 5,71·10-2 kg and ball diameter is 6·10-2 m. The initial state of the system

is given by (3.3).

The Simulink environment is built using command “rlSimulinkEnv” from the open-source

MATLAB code [43] from RL Toolbox, Appendix 3.

5.1.4 Actor and Critic design

In order to design an appropriate control solution for MLS, enormous number of

simulation experiments had been conducted. The different structures of actor and critic

NNs were tested out.

The following obstacles were met during the process of actor and critic design.

- The RL Toolbox does not support batch normalization, which was found useful in

research works [39] and [40]. The regular normalization applied either at the

input layers or at all layers of NNs does not affect the improvement of the

training.

- The size of the NNs is limited by the computational ability of the computer

(Intel(R) Core(TM) i5-1035G1 CPU, RAM 8,00 GB) used for the RL trainings. It

was found that the medium-size NNs (with up to 50 neurons in the hidden layer)

work well for the problem of improvement of the PD-controller, and there is no

need to exploit large NNs (with 300-400 neurons in the hidden layer), as it was

done in [39]. Even regular normalization, applied only to input layers of NNs,

could slow down the training process in several times and make the training

71

impossible. For the mentioned reasons, it was decided not to use any

normalization.

The actor and critic NNs were created using Deep Network (DN) Designer App from

Deep Learning (DL) Toolbox [49] and later imported in Reinforcement Learning (RL)

Designer. It is also possible to create NNs directly in RL Designer, but there are

limitations for activation functions and number of layers. In fact, the equal number of

neurons in each hidden layer of actor and critic is the only option to set in RL Designer.

The selected actor and critic structure is given in Table 5.3 and Table 5.4, and shown in

Figure 5.5.

Table 5.3 Actor structure

Layer
number

Name Type
Layer size,

neurons
Learnables

1 input_1 Feature Input 3
-
-

2 fc_1 Fully Connected 25
Weights 25 × 3

Bias 25 × 1

3 tanh_1 Tanh -
-
-

4 fc_2 Fully Connected 25
Weights 25 × 25

Bias 25 × 1

5 tanh_2 Tanh -
-
-

6 output Fully Connected 1
Weights 1 × 25

Bias 1 × 1

Table 5.4 Critic structure

Layer
number

Name Type
Layer size,

neurons
Learnables

1 input_1 Feature Input 3
-
-

2 st_fc_1 Fully Connected 50
Weights 50 × 3

Bias 50 × 1

3 relu_1 ReLU -
-
-

4 st_fc_2 Fully Connected 25
Weights 25 × 50

Bias 25 × 1

5 input_2 Feature Input 1
-
-

6 act_fc_1 Fully Connected 25
Weights 25 × 2

Bias 25 × 1

7 concat Addition -
-
-

8 relu_output ReLU -
-
-

9 output_1 Fully Connected 1
Weights 1 × 25

Bias 1 × 1

72

The actor NN, was exported from DN Designer to MATLAB workspace only with “layers”

structure, but not “layer graph”, as for critic NN. This causes the error while importing

actor network in RL Designer. The problem was solved by correcting the code,

automatically generated in DN Designer (Appendix 4), namely, by declaring the

corresponding layer graph (with command “layerGraph”) and adding actor’s layers to it

(with command “addLayers”).

Also, it worth to notice, that there may appear “name mismatch” error in RL Designer,

which is solved by keeping the input and output layers’ names strictly as “input_1”,

“input_2”, “output”, “output_1”, etc.

Figure 5.5 Actor (left) and critic (right) structure in Deep Network Designer

The following layer types are used in actor and critic NNs structure:

- Feature Input Layer as an input layer for scalar data set representing features;

- Fully Connected Layer as a hidden layer, that multiplies the input by a weight

matrix and adds a bias vector;

73

The common weights initialization scheme, Glorot initialization, is used at each

Fully Connected Layer. The initial weights are sampled independently, from the

uniform distribution with zero mean and variance equal to

2/(𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒 + 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑧𝑒). The biases are initialized as zeros.

- Tanh Layer, or hyperbolic tangent, as activation layer that applies the tanh

function to the input and has bounded output in a range [-1,1]:

 tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
; (5.13)

- ReLU Layer, or rectified linear unit, performs the threshold operation to each

element of input:

 𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0,
0, 𝑥 < 0.

 (5.14)

- Addition Layer implements concatenation of the layers.

5.1.5 RL-training and its results

The RL-agent training process was organized using Reinforcement Learning Designer

from Reinforcement Learning Toolbox [43]. The designed actor and critic NNs along with

the built environment was imported prior to the training. Different amounts of noise,

actor and critic learning rates and limitations for gradients were tested out. The most

suitable properties and training options, that resulted in acceptable solution, are given

in Table 5.5, Table 5.6. In role of execution environment CPU was used.

Table 5.5 Agent, actor and critic, and noise properties

Parameter Value

Sample time, s 10-3

Discount factor 0,99

Batch size 128

Experience buffer length 106

Target smooth factor 10-3

Actor learn rate 10-3

Actor gradient threshold 1

Critic learn rate 10-3

Critic gradient threshold 1

Standard deviation of OU noise 2·10-2

Mean 0

Table 5.6 Agent training options

Parameter Value

Maximum episodes 104

74

Maximum episode length, time steps / s 104 / 10

Average window lengths, episodes 5

Stopping criteria: episode reward 2·104

Save agent criteria: episode reward 2·104

The actor and critic networks parameters are updated using Adam optimizer [50], [51],

according to the equations (5.15)-(5.16):

 𝜃𝑙+1 = 𝜃𝑙 −
𝛼𝑚𝑙

√𝑣𝑙 + 𝜀
, (5.15)

where

𝑚𝑙 = 𝛽1𝑚𝑙−1 + (1 − 𝛽1)∇𝐸(𝜃𝑙),

𝑣𝑙 = 𝛽2𝑣𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]
2,

(5.16)

𝛼 — step size,

𝜀 — offset,

𝛽1 and 𝛽1 — decay rates,

𝐸(𝜃𝑙) — expectation of the value 𝜃𝑙.

The Adam optimization method is suitable for the problems with large datasets and

high-dimensional parameter spaces. This robust method required little memory and

applied for the wide range of optimization problems in the field of machine learning. The

full description of Adam algorithm is given in [50].

The following settings were used for actor and critic parameters updates (Table 5.7).

Table 5.7 Adam optimizer options for actor and critic

Parameter Value

Denominator offset, 𝜀 10-8

Gradient decay, 𝛽1 0,9

Squared gradient decay, 𝛽2 0,999

Gradient threshold method l2norm

L2 regularization 10-4

The training and validation of the agent can be also done using the MATLAB code from

Appendix 5, provided in common view in [43].

Three PD-controllers 1, 2 and 4 (Table 3.4) had been improved with the added in parallel

RL(DDPG)-agents. The RL-agents were saved and later used in simulations, being

loaded from the workspace. The RL Toolbox, unfortunately, does not provide an option

to export actor and critic weights, as array, or function. For this reason, further

75

exploitation of the designed RL agent with the real-plant MLS2EM were impossible, since

the plant works on drivers of 2017 and operates in MATLAB/Simulink R2017b, which

does not support newer RL Toolbox. The designed RL-agents are provided in

supplementary digital materials of the thesis according to the Table 5.8. The

performance of the RL-agents will be discussed in Chapter 6.

Table 5.8 RL-agents and related PD-controllers

RL-agent name Related PD-controller

c1_agent1 controller1

c2_agent1 controller2

c4_agent1 controller4

The training progress and simulation results for the RL agent, named “c1_agent1”,

trained in parallel with the PD-controller 1, are depicted in Figure 5.6, Figure 5.7. It is

seen that training converges to maximum reward at the 17th episode. The simulated RL-

agent works well and reaches the maximum reward in 10 of 10 cases.

Figure 5.6 Training progress of RL-agent “c1_agent1”

76

Figure 5.7 Simulation result of the trained RL-agent “c1_agent1”

Here, it is important to note, that the training with same parameters, based on the

reward function (5.12) without the term 𝑟3, i.e., without the time reward, results in a

longer and less stable training (Figure 5.8). Since the parameters of actor and critic NNs

are initialized randomly, each certain training goes differently, requires different number

of episodes, and ends up with a little bit different solution. Without time reward the

training process tends to diverge (Figure 5.9), the actor’s output goes far away from

the adequate control range, and the prognosed reward 𝑄0 continually decreases. The

comparison of those three cases depending on the time reward is given in Table 5.9.

Figure 5.8 Training of “c1_agent1” without time reward

77

Figure 5.9 Diverging training of “c1_agent1” without time reward

Table 5.9 Training outcomes depending on the time reward

Figure
Time reward

value, 𝒓𝟑

Number of
episodes

Training duration Achieved reward

Figure 5.7 1 45 33 min 2·104 / 2·104

Figure 5.8 0 125 1 h 20 min 1·104 / 1·104

Figure 5.9 0 160+ 1 h+ -310 / 1·104

5.1.6 Graded learning for MLS2EM

The idea of graded learning with learning control tasks by levels of increasing difficulty,

introduced in [42], can be applied for the design of the control solution for MLS. This

idea will be realized so: the PD-controller output is supposed to be decreased from level

to level using gain in a range [0, 1] in series with the PD-controller (Figure 5.1). The

RL-agent is supposed to be retrained from one level of difficulty to another, transferring

NNs weights and experience buffer from one training to another. The RL Toolbox

provides an option to retrain the agent, rebuilding the environment for each training.

This approach allows to extend the working range and increase the stability of the RL-

agent, and eventually almost cancel out the role of the PD-controller in position tracking.

Besides this, each level trainings does not take much time (up to one hour).

The training schedule is presented in Table 5.10. The trained RL-agents are given in

supplementary digital materials of the thesis work.

78

Table 5.10 Training schedule for “c1_agent1” with decreasing PD-controller output

Training
number

Gain for PD-controller
output

Trained RL-agent name

1 1 c1_agent1_100

2 0,75 c1_agent1_075

3 0,5 c1_agent1_050

4 0,25 c1_agent1_025

5 0,15 c1_agent1_015

6 0,1 c1_agent1_010

5.1.7 Graded learning on the example of Water Tank model

In this section, the graded learning will be realized on the classic example of the level

control in Water Tank model (Figure 5.10), presented in [52] and RL Toolbox User’s

Guide [42, pp.1-19 - 1-26]. And then compared to the training results without graded

learning.

Figure 5.10 Water Tank model diagram [52]

The height of the water in the tank over time 𝑡, 𝑡 ≥ 0, is described by the equation (5.17):

𝑑𝐻

𝑑𝑡
=
1

𝐴
(𝑏𝑉 − 𝑎√𝐻), (5.17)

where

𝐻 — height of the water in the tank, m,

𝐴 — the cross-sectional area of the tank, m2,

𝑏 — constant related to the flow rate into the tank,

𝑎 — constant related to the flow rate out of the tank,

𝑉 — voltage applied to the water pump, V.

The control of the water level is performed in a feedback loop using the PID-controller

(Table 5.11). The PID-controller is tuned automatically in Simulink.

79

Table 5.11 The PID-controller parameters for the water tank model

Gain Value

Proportional, 𝐾𝑝 1,94

Integral, 𝐾𝑖 0,28

Derivative, 𝐾𝑑 -0,36

The Water Tank Simulink model is given in

Figure 5.11, Figure 5.12.

Figure 5.11 Water Tank Simulink model with PID-controller

Figure 5.12 Interior of the Water Tank system

The environment and RL/DDPG-agent for the water level control were built according to

the example in [43], [53], Figure 5.13, Figure 5.14.

Figure 5.13 Water Tank Simulink model with the RL-agent

80

Figure 5.14 The reward block interior (left) and stopping criteria (right), bounds in meters

Also, since for the graded learning it was supposed to use RL Toolbox, but not the full

code from [43], [53], it was not possible to vary the reference signal and the initial

water level in the tank, using the reset function. Namely, the reason was that RL Toolbox

does not suppose generating and reload of the environment in the beginning of each

episode. Instead, the Random Number (mean 9, variance 5, sample time 40 s) was

used as a reference signal in Water tank model (Figure 5.13). The initial water level was

kept as 10 m. The training was performed under the same training conditions and with

same actor and critic NNs structure as given in [43], [51], Table 5.12, Table 5.13, with

sample time of 1 s and episode length of 200 s.

Table 5.12 Agent, actor and critic, and noise properties for Water Tank problem

Parameter Value

Sample time, s 1

Discount factor 1

Batch size 64

Experience buffer length 106

Target smooth factor 10-3

Actor hidden layers number 1

Actor hidden layers size, neurons 3

Actor output activation function Tanh

Critic hidden layers size (state path), neurons 50, 25

Critic hidden layers size (action path), neurons 25

Actor learn rate 10-4

Actor gradient threshold 1

Critic learn rate 10-3

Critic gradient threshold 1

Standard deviation / Variance of OU noise 0,3

Variance decay rate 1·10-5

Table 5.13 Agent training options for Water Tank problem

Parameter Value

Maximum episodes 5·103

Maximum episode length, time steps / s 200 / 200

Average window lengths, episodes 20

Stopping criteria: average reward 800

Save agent criteria: average reward 800

The RL-agent “wt_agent1” was trained by steps with the PID-controller in parallel

(trainings 1-5, Table 5.14). The training 6 is performed for “wt_agent2” with no PID-

controller in parallel for comparison.

81

Table 5.14 Training schedule for Water Tank model

Training
number

Gain for PID
output

RL-agent name
Number of
episodes

Training
duration

Average
reward

1 1 wt_agent1_100 51 10 min 23 s 812 / 800

2 0,75 wt_agent1_075 25 5 min 17 s 803 / 800

3 0,5 wt_agent1_050 23 4 min 58 s 823 / 800

4 0,25 wt_agent1_025 27 5 min 23 s 834 / 800

5 0 wt_agent1_000 110 22 min 6 s 804 / 800

6 No PID wt_agent2 97 11 min 43 s 816 / 800

As it is seen from Table 5.14, the number of episodes on average is less in case of the

graded learning (trainings 1-5). The training progress for trainings 1-6 is given in

Appendix 6.

The performance of the trained agents “wt_agent1_000” and “wt_agent2” (both do not

use PID-controller in parallel) is shown in Figure 5.15, Figure 5.16, Figure 5.17. During

the tests 1-3 the Random Number with different properties was used as a reference

signal. Two initial water levels were tested out: 5 m and 10 m. It is seen, that

“wt_agent1_000” is more oscillatory but responds faster than “wt_agent2”. Both RL-

agents are stable to the disturbance, introduced in error signal at time of 30-40 s (tests

2-3), and have less overshoots and undershoots rather than the PID-controller. The

MSE values, calculated for the tests, are given in Table 5.15. In all cases, the retrained

agent “wt_agent1_000”, using the graded learning, has shown lower MSE values.

Figure 5.15 Test 1. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial

water level: 10 m. Reference signal: the Random Number (mean 9, variance 5, sample time 40 s).

No disturbance added

82

Figure 5.16 Test 2. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial

water level: 10 m. Reference signal: the Random Number (mean 6, variance 8, sample time 20 s).

Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse width 10 samples, phase delay 30

samples)

Figure 5.17 Test 3. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial

water level: 5 m. Reference signal: the Random Number (mean 6, variance 8, sample time 20 s).

Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse width 10 samples, phase delay 30

samples)

Table 5.15 Performance of the PID-controller, wt_agent1_000, wt_agent2

Test
number

Figure MSE for PID
MSE for

wt_agent1_000

MSE for
wt_agent2

1 Figure 5.15 0,2422 0,2086 0,2334

2 Figure 5.16 1,3029 1,7535 2,2646

83

3 Figure 5.17 1,4482 2,1679 2,5256

It worth to add, that, of course, Water Tank and MLS2EM are completely different

systems. The Water Tank system has a big inertia, while the MLS2EM is very quickly

responding to any change of the setpoint system. The Water Tank is stable system, that

can be controlled by the easily tuned PID-controller, while control of the MLS2EM is a

challenge due to its high instability.

84

6. SIMULATION EXPERIMENTS, RESULTS AND

DISCUSSIONS

6.1 Simulation experiments results

6.1.1 Experiments for Controller 1

The comparison of performance of the PD-controllers, NARX-based controllers and RL-

based controllers is given in the current Section 6.1.1, and the following Sections 6.1.2,

6.1.3. The experiments are divided into groups regarding the PD-controllers 1, 2 and 4

(Table 3.4) and associated with them NARX-based and RL-based controllers.

To begin, the first-three-seconds response of the PD-controller 1, related NARX-based

controller and PD-controller 1 with RL-agent is shown in Figure 6.1, Figure 6.2 and

Figure 6.3, respectively. The actual position value together with reference, velocity,

currents values and controls by the electromagnets EM1 and EM2 are depicted in plots.

The control is performed by the upper electromagnet EM1, the electromagnet EM2 is

inactive for now.

Figure 6.1 First-three-seconds response of the PD-controller 1

It is seen from the position plots, that the ball follows the reference trajectory the most

accurately in case of the PD-controller 1, improved with RL-agent (Figure 6.3). The

NARX-based controller responds faster, than the PD-controller 1, but the ball deviates

85

from the trajectory along the vertical axis more (Figure 6.1, Figure 6.2). The ball,

controlled by the PD+RL controller has bigger velocity in the beginning of the control,

that’s why there is a small shift in position (along the vertical axis) in the very beginning

of the experiment (Figure 6.3). In case of the NARX-based controller (Figure 6.2), there

are small oscillations in the velocity, current and control signals, which may become a

problem in overall performance of the controller.

Figure 6.2 First-three-seconds response of the NARX-based controller 1

Figure 6.3 First-three-seconds response of the PD-controller 1 with RL-agent in parallel

86

Further, the controllers will be tested out in a number of experiments. The experiments

are split into sets (Table 6.1), for convenience.

The comparison of performance of the PD, PD+RL and NARX-based controllers is done

based on calculating of the mean squared error (MSE):

 𝑀𝑆𝐸 =
1

𝑘
∑𝑒2,

𝑛

𝑘=1

 (6.1)

where

𝑒 – position error, m, calculated for each controller separately,

𝑛 – number of samples, 𝑛 = 10001.

The MATLAB code for calculating MSE and building plots is given in Appendix 7.

The initial conditions of MLS2EM are not changed (3.3), the initial position of the ball is

9·10-3 m. All the analysis, including calculation of MSE values, is done for the data

collected during the simulations of duration of 30 s. The results of the performance of

the PD-controller 1, NARX-based controller and PD-controller with RL-agent in parallel

are given in Table 6.2 and plots are added into Appendix 8. The cases in Table 6.2,

where the tracking control was failed, in other words, the ball was lost by the controller,

are pointed out with the orange color.

Table 6.1 Description of the sets of experiments, controller 1

Set
number

Experiment
number

Description

1 1-4

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter
of 6·10-2 m.

Reference signal: Sine wave (amplitude, m; bias, m; frequency 6
rad/s; sample time 1·10-2 s).

No disturbance.

2 5-8

Original ball.
Reference signal: Uniform Random Number (URN)

(minimum, m; maximum, m; seed 7; sample time 3 s).
No disturbance.

3 9-12
Original ball.

Reference signal: Constant (value, m).
No disturbance.

4 13-15
Small ball.

Reference signals: Sine wave, URN, Constant.
No disturbance.

5 16-18
Medium ball.

Reference signals: Sine wave, URN, Constant.
No disturbance.

6 19-21
Big ball.

Reference signals: Sine wave, URN, Constant.
No disturbance.

87

 Table 6.1 continued
Set

number
Experiment

number
Description

7 22-24

Original ball.
Reference signals: Sine wave, URN, Constant.

Disturbance added to error at time 5 s, 15 s, 25 s:
Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase

delay 5 s)

8 25-27

Original ball.
Reference signals: Sine wave, URN, Constant.

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse
width 0,2 s, phase delay 0 s) with gain 0,4

Table 6.2 Performance of the PD-controller1, NARX-based controller1, PD-controller1+RL-agent

Exp# Reference signal properties PD NARX PD+RL

1 Sine wave (1·10-3, 9·10-3) 2,65·10-6 4,15·10-7 1,71·10-8

2 Sine wave (2·10-3, 9·10-3) 1,15·10-6 1,59·10-6 5,52·10-8

3 Sine wave (2·10-3, 1·10-2) 8,22·10-6 2,09·10-6 6,01·10-8

4 Sine wave (2·10-3, 8·10-3) 1,68·10-6 6,28·10-5 5,53·10-8

5 URN (9·10-3, 1,05·10-2) 3,22·10-6 1,61·10-6 1,47·10-8

6 URN (9·10-3, 1,1·10-2) 4,55·10-5 2,28·10-6 2,10·10-8

7 URN (7,5·10-3, 9,5·10-3) 6,34·10-7 7,43·10-7 1,05·10-8

8 URN (7,5·10-3, 1,05·10-2) 1,72·10-6 1,13·10-6 2,39·10-8

9 Constant (9·10-3) 6,64·10-13 6,44·10-10 4,17·10-9

10 Constant (1,2·10-2) 6,28·10-5 4,87·10-6 4,48·10-8

11 Constant (1,05·10-2) 7,22·10-5 3,55·10-6 1,93·10-8

12 Constant (7·10-3) 3,69·10-6 4,68·10-5 7,27·10-9

13 Sine wave (1·10-3, 9·10-3) 1,56·10-5 7,98·10-5 5,96·10-8

14 URN (7,5·10-3, 1,05·10-2) 1,56·10-5 8,04·10-5 6,78·10-8

15 Constant (9·10-3) 1,57·10-5 7,91·10-5 4,07·10-8

16 Sine wave (1·10-3, 9·10-3) 4,91·10-6 7,81·10-5 3,15·10-8

17 URN (7,5·10-3, 1,05·10-2) 4,88·10-6 7,96·10-5 3,80·10-8

18 Constant (9·10-3) 4,90·10-6 7,84·10-5 1,60·10-8

19 Sine wave (1·10-3, 9·10-3) 1,59·10-6 7,71·10-5 2,31·10-8

20 URN (7,5·10-3, 1,05·10-2) 1,79·10-6 7,11·10-5 2,98·10-8

21 Constant (9·10-3) 1,51·10-6 1,60·10-6 9,00·10-9

22 Sine wave (1·10-3, 9·10-3) 5,84·10-7 6,38·10-5 9,64·10-8

23 URN (7,5·10-3, 1,05·10-2) 1,75·10-6 6,66·10-5 1,14·10-7

24 Constant (9·10-3) 3,43·10-7 4,14·10-7 8,32·10-8

25 Sine wave (1·10-3, 9·10-3) 3,13·10-7 5,04·10-7 1,69·10-8

26 URN (7,5·10-3, 1,05·10-2) 2,63·10-6 1,18·10-6 2,37·10-8

27 Constant (9·10-3) 2,34·10-8 3,11·10-8 4,20·10-9

The experiments 1-27 showed that:

- PD-controller has a good performance only near its operating point of 9·10-3 m;

- PD-control is quite slow, and the most suitable for the constant reference signal;

- NARX-based controller can replicate the behavior of the PD-controller, the

performance of PD and NARX are comparable, but NARX has faster, more

accurate, but more oscillating response;

- NARX-controller worse handles with abrupt changes of the reference signal

rather than PD-controller, but at the same time has wider operating range,

especially in the region farther from the electromagnet EM1;

88

- RL agent improves PD-controller performance so that MSE value is decreased on

average by two orders for all types of the reference signal;

- PD+RL controller has bigger settling time comparing to the PD-controller working

near operating point, but has smaller steady-state error out of the PD-controller

operating range;

- PD+RL controller is stable against abrupt changes of the reference signal, and

has significantly wider operating range rather than PD- and NARX-based

controllers;

- PD+RL tends to eliminate an error over time approximately by the time 20 s.

6.1.2 Experiments for Controller 2

In this Section the differential mode PD-controller 2 (Table 3.4) is compared with the

NARX-based controller, consisting of two NARX networks, and improved PD-controller 2

with RL-agent in parallel. The sets of experiments are described in Table 6.3, and the

MSE is given in Table 6.4, the plots are given in Appendix 9.

Table 6.3 Description of the sets of experiments, controller 2

Set
number

Experiment
number

Description

1 28-31

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter
of 6·10-2 m.

Reference signals: Sine wave (amplitude, m; bias, m; frequency
6 rad/s; sample time 1·10-2 s),
Uniform Random Number (URN)

(minimum, m; maximum, m; seed 7; sample time 1 s).
Constant (value, m).

No disturbance.

2 32-34
Small ball.

Reference signals: Sine wave, URN, Constant.
No disturbance.

3 35-36
Medium ball (35), big ball (36).
Reference signals: Sine wave.

No disturbance.

4 37-39

Original ball.
Reference signals: Sine wave, URN, Constant.

Disturbance added to error at time 5 s, 15 s, 25 s:
Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase

delay 5 s)

5 40-42

Original ball.
Reference signals: Sine wave, URN, Constant.

Disturbance added to the control action of EM1: Pulse (amplitude
1, period 4 s, pulse width 0,2 s, phase delay 0 s) with gain 2·10-2
Disturbance added to the control action of EM2: Pulse (amplitude
1, period 4 s, pulse width 0,2 s, phase delay 2 s) with gain 0,2

89

Table 6.4 Performance of the PD-controller2, NARX-based controller2, PD-controller2+RL-agent

Exp# Reference signal properties PD, MSE NARX, MSE PD+RL, MSE

28 Sine wave (1·10-3, 9·10-3) 3,59·10-7 5,46·10-7 2,96·10-8

29 URN (7,5·10-3, 1,05·10-2) 9,84·10-7 1,05·10-4 4,55·10-8

30 URN (8,5·10-3, 9,5·10-3) 1,14·10-7 1,37·10-7 2,97·10-8

31 Constant (9·10-3) 1,47·10-10 5,29·10-8 2,79·10-8

32 Sine wave (1·10-3, 9·10-3) 1,56·10-5 4,75·10-5 2,29·10-9

33 URN (8,5·10-3, 9,5·10-3) 1,58·10-5 4,89·10-5 1,86·10-9

34 Constant (9·10-3) 1,56·10-5 4,94·10-5 6,16·10-11

35 Sine wave (1·10-3, 9·10-3) 5,32·10-6 1,52·10-5 1,04·10-8

36 Sine wave (1·10-3, 9·10-3) 7,74·10-7 1,75·10-6 1,93·10-8

37 Sine wave (1·10-3, 9·10-3) 7,17·10-7 1,68·10-5 1,16·10-7

38 URN (8,5·10-3, 9,5·10-3) 4,77·10-7 6,58·10-7 1,16·10-7

39 Constant (9·10-3) 3,88·10-7 1,62·10-5 1,15·10-7

40 Sine wave (1·10-3, 9·10-3) 3,84·10-7 5,80·10-7 2,95·10-8

41 URN (8,5·10-3, 9,5·10-3) 1,42·10-7 1,75·10-7 2,95·10-8

42 Constant (9·10-3) 2,04·10-8 8,88·10-8 2,77·10-8

The experiments 28-42 showed that:

- Differential mode type of control performed by EM1 and EM2 is more difficult

task;

- NARX-based control is quite oscillatory, weaker and less stable than PD-control,

it does not handle with the change of the ball mass and diameter;

- PD+RL controller handles relatively good as in previous group of experiments,

improving the PD controller and decreasing MSE by the one-two orders on

average, although PD+RL controller has large settling time, comparing to the

pure PD-control;

- PD+RL controller has the fastest response and the smallest deviation from the

setpoint under disturbance.

6.1.3 Experiments for Controller 4

Since PD-controllers 1 and 4 are quite similar in structure, in this section only few

experiments will be presented. The reference signals are changed. The results of

experiments are given in Table 6.5, Table 6.6 and the tracking performance is given in

Appendix 10.

Table 6.5 Description of the sets of experiments, controller 4

Set
number

Experiment
number

Description

1 43-46

Original ball (43) (Table 3.3) with mass of 5,71·10-2 kg and
diameter of 6·10-2 m. Small (44), medium (45), big (46) balls.

Reference signals: Sine wave (amplitude, m; bias, m; frequency
2 rad/s; sample time 1·10-2 s),

No disturbance.

90

 Table 6.5 continued

Set
number

Experiment
number

Description

2 47

Original ball.
Reference signals: URN (minimum, m; maximum, m; seed 7;

sample time 3 s).
Disturbance added to error at time 5 s, 15 s, 25 s:

Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase
delay 5 s)

3 48

Original ball.
Reference signals: Constant (value, m).

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse
width 0,2 s, phase delay 0 s) with gain 0,4

Table 6.6 Performance of the PD-controller4, NARX-based controller4, PD-controller4+RL-agent

Exp# Reference signal properties PD, MSE NARX, MSE PD+RL, MSE

43 Sine wave (1·10-3, 9·10-3) 9,12·10-7 1,16·10-6 3,83·10-9

44 Sine wave (1·10-3, 9·10-3) 1,49·10-5 3,48·10-5 2,70·10-8

45 Sine wave (1·10-3, 9·10-3) 4,39·10-6 3,43·10-6 2,74·10-9

46 Sine wave (1·10-3, 9·10-3) 1,38·10-6 1,28·10-6 8,98·10-10

47 URN (7,5·10-3, 1,05·10-2) 1,97·10-6 5,19·10-5 1,11·10-7

48 Constant (9,5·10-3) 1,35·10-6 1,51·10-6 4,43·10-9

The experiments 43-48 showed again that:

- NARX-based controller is less stable to any change in MLS2EM or disturbance,

than PD-controller;

- PD-controller, improved by RL-agent in parallel, performs better than pure PD-

controller in all the experiments.

It is important to mention here, that the PD-controller 4, which is supposed to be used

with the real plant, does not work in simulation with the MLS2EM model with sample

time 5·10-3 s. For this reason, sample time 1·10-3 s was used. Unfortunately, it was also

found, that the PD-controller 4 is not capable to perform a tracking control for the

MLS2EM model with estimated parameters (see Subsection 3.1.4) in simulation with

sample time either 1·10-3 s or 5·10-3 s. Thus, the original MLS2EM model was used. In

future research, one can use the MLS2EM model with estimated parameters to design a

control solution purely by the RL-agent and, than, utilize the trained RL-agent in the

real-time experiment.

6.1.4 Experiments for Controller 1, Graded learning

The results of Section 5.1.6 will be discussed next. The PD-controller 1 will be compared

with improved PD+RL controller, while the output of the PD-controller 1 will be

decreasing. This is done to see, how much RL-agent can compensate the PD-control.

Also, performance of the retrained RL-agents (Table 5.10) will be evaluated. The

91

description of the sets of experiments is given in Table 6.7. The performance of the

decreased-output PD controller 1, PD controller 1 with RL-agent in parallel, and PD-

controller 1 with consequently retrained RL-agents in parallel is given in Table 6.8. Plots

can be found in Appendix 11.

Table 6.7 Description of the sets of experiments, controller 1, graded learning

Set
number

Experiment
number

Description

1 49-54

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter
of 6·10-2 m.

Reference signals: Sine wave (amplitude 1·10-3 m; bias 9·10-3 m;
frequency 2 rad/s; sample time 1·10-2 s).

No disturbance.

2 55-57

Small (55), medium (56), big (57) balls.
Reference signal: Sine wave (amplitude 1·10-3 m; bias 9·10-3 m;

frequency 2 rad/s; sample time 1·10-2 s).
No disturbance.

3 58-59

Original ball.
Reference signal: URN (minimum 8·10-3 m; maximum 1·10-2 m;

seed 7; sample time 2 s).
Disturbance added to error at time 5 s, 15 s, 25 s:

Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase
delay 5 s)

4 60

Original ball.
Reference signal: Constant (value, m).

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse
width 0,2 s, phase delay 0 s) with gain 0,4

Table 6.8 Performance of the decreased-output PD-controller 1, PD controller 1 + RL-agent and

PD controller 1 + retrained RL-agent

Exp# Gain for PD output PD, MSE PD+RL, MSE
PD+retrained

RL, MSE

49 1 7,79·10-7 1,69·10-8 1,69·10-8

50 0,75 1,19·10-4 1,33·10-8 1,16·10-8

51 0,5 1,20·10-4 2,38·10-8 3,19·10-9

52 0,25 1,21·10-4 5,07·10-8 2,91·10-10

53 0,15 1,21·10-4 1,20·10-4 1,79·10-8

54 0,1 1,21·10-4 1,20·10-4 7,13·10-7

55 0,25 1,20·10-4 2,37·10-8 4,01·10-7

56 0,25 1,21·10-4 3,24·10-8 9,10·10-8

57 0,25 1,21·10-4 4,05·10-8 2,43·10-8

58 0,25 1,21·10-4 9,77·10-5 1,05·10-7

59 0,25 1,24·10-4 1,11·10-4 1,09·10-7

60 0,25 1,21·10-4 3,87·10-8 2,37·10-9

The experiments 49-60 showed that:

- PD-controller is very sensitive to any change in its output, or control action;

- RL-agent can compensate the PD-controller’s output decreased up to 25%, it can

handle the change of the ball mass and diameter, although some abrupt changes

in error destabilize the RL-agent control;

92

- Being retrained consequently, RL-agent is capable successfully to compensate

the PD-controller’s output decreased up to 15%; the retrained RL-agents provide

accurate tracking and handle the disturbance to some extent.

93

SUMMARY

The main goal of the master thesis was to design a control solution for the Magnetic

levitation system with two electromagnets (MLS2EM), provided by INTECO company,

which can surpass the performance of the existing in simulations PD-controllers.

It is clear from the Literature Overview, that the control of a highly nonlinear and

unstable MLS is a topic of a great incessant interest. Many control solutions had been

developed, including hybrid control methods, which allow to improve or surpass the

simple PID-controller’s performance. But most of them require a big engineering effort

and difficult and tedious mathematical calculations. Nowadays, the intelligent methods

become more and more popular due to its simplicity in realization and applicability to

the various control problems.

In the present master thesis work, two control solutions were found and realized in

simulation using MATLAB/Simulink with Deep Learning, Reinforcement Learning and

Neural Network Toolboxes.

Originally, the idea was to fully replace the existing PD-controller by the NARX-based

controller, which is trained on the datasets collected from the related PD-controller in

open-loop. But after tests and simulation experiments it turned out, that the NARX-

based controller cannot significantly surpass the PD-controller’s performance,

especially, in regard to stability (change of the ball mass, or added disturbance). Same

can be said regarding the working region of the NARX-based controller. Although, it

showed faster and more accurate response rather than the PD-controller to some extent.

The ANNs approach was chosen due to its engineering simplicity, although in practice it

appeared, that enormous number of trainings is needed to acquire the adequate

parameters for the NN. The reason of this is the randomness of parameter initialization,

which means that each certain training ends up in a different result. Moreover,

unexpected training outcomes are quite often case in the work with NNs.

Since Supervised Learning method is dependent on the training datasets, and

subsequently, on the certain PD-controller performance, it was decided to switch to

Reinforcement Learning approach. The latter one was applied to develop a RL/DDPG-

agent, capable to improve and stabilize the performance of the PD-controller in

simulation, and also extend its operating range. Full replacement of the PD-controller

by the RL-agent was not possible due to limitations existing in the MATLAB

Reinforcement Learning Toolbox, such as impossibility to use batch normalization, or to

94

add exploration noise to the NNs parameters directly. The intention of use of MATLAB

was in its multitool environment, convenience, and also for the reason that the MLS2EM

simulation models are provided by INTECO in MATLAB/Simulink. Potentially, in future,

with the improvements in the RL Toolbox, the task of the full replacement of the PD-

controller with the RL-agent may be fulfilled.

The comparison of the performance of the PD-controllers with the related NARX-based

controllers and the PD-controllers, improved by RL-agents in parallel, was done for three

control cases. Two of them consider control of the upper electromagnet EM1 only, and

the third one considers control of both electromagnets EM1 and EM2 in differential mode.

In all cases of 60 simulation experiments, the PD+RL-agent controller showed the

decrease of the MSE value one hundred times on average, comparing to that of the pure

PD-controller. The good stability of the PD+RL-agent controller was proved adding the

disturbance to the error signal, and to the controller’s output, using EM2 for the pulse

excitation as well. Besides, four balls configurations (mass and diameter) were tested

out. While the PD-controller can handle somewhat this change, and the NARX-controller

fails, the PD+RL-agent controller still performs an accurate position tracking.

Moreover, the RL-agent is capable to successfully compensate the decrease of the PD-

controller’s output up to 25%. Being retrained with the presented in the thesis graded

learning method, the RL-agent can even compensate it up to 15%. This means, even in

case when the PD-controller breaks up, and critically drops its control action, RL-agent

can become a solution to uninterrupted system operation. The designed method of the

improvement of the PD-controllers can be used in industry, where the PD-controllers

are the most common and cheap control method. Since the mechanical wear of the

equipment always takes place, the PD-controller, improved by the RL-agent, can

continue to perform with no re-tuning.

Having newer hardware drivers for the MLS2EM in laboratory, one can transfer the RL-

agent, pretrained in simulation, to control the real plant. The estimated parameters for

MLS2EM, found in the thesis, can be utilized to decrease the discrepancy between the

simulation model and the real-time system. Having pretrained RL-agent, the retraining

can be performed online on the real-time system to achieve the desired performance.

95

KOKKUVÕTE

Antud magistritöö peamine eesmärk oli projekteerida juhtimislahendus ettevõtte

INTECO poolt pakutava kahe elektromagnetiga magnetilise levitatsioonisüsteemi

(MLS2EM) jaoks, mis võib ületada olemasolevates simulatsioonides kasutatavate PD-

regulaatorite jõudlust.

Kirjanduse ülevaatest selgub, et väga mittelineaarse ja ebastabiilse MLS kontrollimine

on teema, mis pakub suurt ja pidevat huvi. Välja on töötatud mitmeid juhtimislahendusi,

sealhulgas hübriidjuhtimismeetodid, mis võimaldavad parandada või ületada lihtsa PID-

regulaatori jõudlust. Kuid enamik neist nõuab suurt inseneripingutust ning raskeid ja

tüütuid matemaatilisi arvutusi. Tänapäeval muutuvad intelligentsed meetodid üha

populaarsemaks tänu nende lihtsale realiseerimisele ja rakendatavusele erinevate

reguleerimisprobleemide puhul.

Käesolevas magistritöös leiti ja realiseeriti simulatsioonis kaks juhtimislahendust,

kasutades MATLAB/Simulinki koos Deep Learning, Reinforcement Learning ja Neural

Network Toolboxidega.

Algne idee oli olemasolev PD-regulaator täielikult välja vahetada NARX-põhise

regulaatoriga, mis on välja õpetatud seotud PD-regulaatorilt avatud ahelas kogutud

andmekogumite põhjal. Kuid pärast teste ja simulatsioonikatsetusi selgus, et NARX-

põhine regulaator ei suuda märkimisväärselt ületada PD-regulaatori jõudlust, eriti

stabiilsuse osas (palli massi muutus, või lisatud häire). Sama võib öelda ka NARX-põhise

regulaatori tööpiirkonna kohta. Kuigi see näitas pigem kiiremat ja täpsemat

reageerimist kui PD-regulaator mingil määral. ANN-meetod valiti selle tehnilise lihtsuse

tõttu, kuigi praktikas selgus, et NNi jaoks sobivate parameetrite omandamiseks on vaja

tohutult palju treeninguid. Selle põhjuseks on parameetrite initsialiseerimise

juhuslikkus, mis tähendab, et iga konkreetne treening annab erineva tulemuse. Lisaks

sellele on NN-idega tehtavas töös üsna sageli ette tulnud ootamatuid treeningtulemusi.

Kuna superviseeritud õppimise meetod sõltub treeningu andmekogumitest ja seejärel

teatud PD-regulaatori jõudlusest, otsustati minna üle stiimulõpe (Reinforcement

Learning) meetodile. Viimast rakendati RL/DDPG-agendi väljatöötamiseks, mis on

võimeline parandama ja stabiliseerima PD-regulaatori jõudlust simulatsioonis ning

laiendama selle tööpiirkonda. PD-regulaatori täielik asendamine RL-agendiga ei olnud

võimalik MATLABi Reinforcement Learning Toolboxi piirangute tõttu, näiteks võimatus

kasutada partiide normaliseerimist või lisada NNide parameetritele otse uurimismüra.

96

MATLABi kasutamise eesmärk oli selle multitööriistakeskkond, mugavus ja ka seetõttu,

et MLS2EMi simulatsioonimudelid on INTECO poolt pakutud MATLAB/Simulinkis.

Võimalik, et tulevikus, koos RL Toolboxi täiustustega, on võimalik täita ülesanne PD-

regulaatori täielik asendamine RL-agentidega.

PD-regulaatorite ja nendega seotud NARX-põhiste regulaatorite ning paralleelselt RL-

agentide abil täiustatud PD-regulaatorite toimivust võrreldi kolme juhtumi puhul. Kahes

neist käsitletakse ainult ülemise elektromagneti EM1 juhtimist ja kolmandas mõlema

elektromagneti EM1 ja EM2 juhtimist diferentsiaalrežiimis.

Kõigil 60 simulatsioonikatsete puhul näitas PD+RL-agendi regulaator keskmise ruudu

vea (MSE) vähenemist keskmiselt sada korda, võrreldes puhta PD-regulaatoriga.

PD+RL-agendi regulaatori head stabiilsust tõestati, kui veasignaalile ja regulaatori

väljundile lisati häire, kasutades impulsside ergutamiseks ka EM2. Lisaks katsetati nelja

pallikonfiguratsiooni (mass ja läbimõõt). Kuigi PD-regulaator saab selle muudatusega

mõnevõrra hakkama ja NARX- põhise regulaator ebaõnnestub, teostab PD+RL-agendi

regulaator siiski täpset asukoha jälgimist.

Lisaks sellele on RL-agent võimeline edukalt kompenseerima PD-regulaatori väljundi

vähenemist kuni 25%. Kui RL-agent on ümber õpetatud käesolevas töös esitatud

astmelise õppimise meetodiga, suudab ta seda isegi kuni 15% ulatuses kompenseerida.

See tähendab, et isegi juhul, kui PD-regulaator laguneb ja jätab kriitiliselt oma

juhtimismehhanismi välja, võib RL-agent olla lahenduseks süsteemi katkematu

toimimise tagamiseks. Kavandatud PD-regulaatorite täiustamise meetodit saab

kasutada tööstuses, kus PD-regulaatorid on kõige levinum ja odavam juhtimismeetod.

Kuna seadmete mehaaniline kulumine on loomuululik, võib RL-agendi abil täiustatud

PD-regulaator jätkata tööd ilma ümberhäälestamiseta.

Kui MLS2EMi uuemad riistvara draiverid on laboris olemas, saab simulatsioonis eelnevalt

treenitud RL-agenti üle kanda tegeliku seadme kontrollimiseks. Lõputöös leitud

MLS2EMi hinnangulisi parameetreid saab kasutada selleks, et vähendada erinevusi

simulatsioonimudeli ja reaalajas toimiva süsteemi vahel. Kui RL-agent on eelnevalt

treenitud, saab soovitud jõudluse saavutamiseks reaalajasüsteemis ümber treenida ka

veebipõhiselt.

97

REFERENCES

[1] Inteco, “Magnetic Levitation System 2EM (MLS2EM), User’s Manual,” Krakow,

Poland, 2008.

[2] P. Balko and D. Rosinova, “Modeling of Magnetic Levitation System,” in 2017 21st

International Conference on Process Control (PC), 2017, pp. 252–257, doi:

10.1109/PC.2017.7976222.

[3] C.-A. Bojan-Dragos, S. Preitl, R.-E. Precup, S. Hergane, E. G. Hughiet, and A.-I.

Szedlak-Stinean, “State Feedback and Proportional-Integral-Derivative Control of

a Magnetic Levitation System,” in 2016 IEEE 14th International Symposium on

Intelligent Systems and Informatics, Proceedings (SISY), 2016, vol. 2, no. 1, pp.

111–116, doi: 10.1109/SISY.2016.7601480.

[4] C.-A. Dragoş, R.-E. Precup, S. Preitl, E. M. Petriu, and M.-B. Rădac, “Control

Solutions, Simulation and Experimental Results for a Magnetic Levitation

Laboratory System.” [Online]. Available:

https://www.eurosim.info/fileadmin/user_upload_eurosim/EUROSIM_OA/Congr

ess/2010/data/papers/155.pdf.

[5] I. Iswanto and A. Ma’arif, “Robust Integral State Feedback Using Coefficient

Diagram in Magnetic Levitation System,” IEEE Access, vol. 8, pp. 57003–57011,

2020, doi: 10.1109/ACCESS.2020.2981840.

[6] B. Bidikli and A. Bayrak, “A Self-Tuning Robust Full-State Feedback Control

Design for the Magnetic Levitation System,” Control Eng. Pract., vol. 78, no.

February, pp. 175–185, 2018, doi: 10.1016/j.conengprac.2018.06.017.

[7] D. Khimani, S. Karnik, and M. Patil, “Implementation of High Performance

Nonlinear Feedback Control on Magnetic Levitation System,” IFAC-PapersOnLine,

vol. 51, no. 1, pp. 13–18, 2018, doi: 10.1016/j.ifacol.2018.05.003.

[8] D. Maji, M. Biswas, A. Bhattacharya, G. Sarkar, T. K. Mondal, and I. Dey,

“MAGLEV System Modeling and LQR Controller Design in Real Time Simulation,”

in 2016 International Conference on Wireless Communications, Signal Processing

and Networking (WiSPNET), 2016, pp. 1562–1567, doi:

10.1109/WiSPNET.2016.7566399.

[9] K. Anurag and S. Kamlu, “Design of LQR-PID Controller for Linearized Magnetic

Levitation System,” in 2018 2nd International Conference on Inventive Systems

98

and Control (ICISC), 2018, pp. 444–447, doi: 10.1109/ICISC.2018.8399112.

[10] C.-A. Bojan-Dragos, M.-B. Radac, R.-E. Precup, E.-L. Hedrea, and O.-M. Tănăsoiu,

“Gain-Scheduling Control Solutions for Magnetic Levitation Systems,” Acta

Polytech. Hungarica, vol. 15, no. 5, pp. 89–108, 2018, doi:

10.12700/APH.15.5.2018.5.6.

[11] A. S. Malik, I. Ahmad, A. U. Rahman, and Y. Islam, “Integral Backstepping and

Synergetic Control of Magnetic Levitation System,” IEEE Access, vol. 7, pp.

173230–173239, 2019, doi: 10.1109/ACCESS.2019.2952551.

[12] F. Adıgüzel, E. Dokumacılar, O. Akbatı, and T. Türker, “Design and

Implementation of an Adaptive Backstepping Controller for a Magnetic Levitation

System,” Trans. Inst. Meas. Control, vol. 40, no. 8, pp. 2466–2475, 2018, doi:

10.1177/0142331217725146.

[13] J. R. Middala, “Modeling and Analysis of Magnetic Levitation System Using Fuzzy

Logic Control,” Int. J. Sci. Dev. Res., vol. 2, no. 6, pp. 318–323, 2017.

[14] K. Czerwiński, A. Wojtulewicz, and M. Ławryńczuk, “Fuzzy Controller for

Laboratory Levitation System: Real-time Experiments Using Programmable Logic

Controller,” Int. J. Control. Autom. Syst., vol. 17, no. 6, pp. 1507–1514, 2019,

doi: 10.1007/s12555-018-0394-1.

[15] E.-L. Hedrea, R.-E. Precup, C.-A. Bojan-Dragos, and C. Hedrea, “TP – Based Fuzzy

Control Solutions for Magnetic Levitation Systems,” in 2019 23rd International

Conference on System Theory, Control and Computing (ICSTCC), 2019, pp. 809–

814, doi: 10.1109/ICSTCC.2019.8886134.

[16] M. B. Unamboowe, “Dynamic Modeling of a Magnetic Levitation System,” Tallinn

University of Technology, 2021.

[17] V. Utkin and H. Lee, “Chattering Problem in Sliding Mode Control Systems,” in

International Workshop on Variable Structure Systems, 2006. VSS’06., 2006, p.

1, doi: 10.1016/B978-008044613-4.50002-1.

[18] Y. Eroğlu, “Sliding Mode and PID Based Tracking Control of Magnetic Levitaion

Plant and HIL Tests,” Abdullah Gul University, 2016.

[19] D. Khimani and R. Rokade, “Implementation of Sliding Mode Control on Magnetic

Levitation System,” 2018, doi: 10.1109/ICAC3.2017.8318763.

99

[20] S. A. Al-Samarraie, B. F. Midhat, and R. A. B. Al-Deen, “Adaptive Sliding Mode

Control for Magnetic levitation system,” Al-Nahrain J. Eng. Sci., vol. 21, no. 2, pp.

266–274, 2018, doi: https://doi.org/10.29194/NJES21020266.

[21] A. V. Starbino and S. Sathiyavathi, “Real-time Implementation of SMC–PID for

Magnetic Levitation System,” Sadhana - Acad. Proc. Eng. Sci., vol. 44, no. 5, pp.

1–13, 2019, doi: https://doi.org/10.1007/s12046-019-1074-4.

[22] W. Bauer and J. Baranowski, “Fractional PIλD Controller Design for a Magnetic

Levitation System,” Electronics, vol. 9, no. 12, pp. 1–15, 2020, doi:

10.3390/electronics9122135.

[23] S. Pandey, V. Dourla, P. Dwivedi, and A. Junghare, “Introduction and Realization

of Four Fractional-Order Sliding Mode Controllers for Nonlinear Open-Loop

Unstable System: a Magnetic Levitation Study Case,” Nonlinear Dyn., vol. 98, no.

1, pp. 601–621, 2019, doi: 10.1007/s11071-019-05216-x.

[24] S. Pandey, P. Dwivedi, and A. S. Junghare, “A Novel 2-DOF Fractional-Order PIλ-

Dμ Controller with Inherent Anti-Windup Capability for a Magnetic Levitation

System,” AEU - Int. J. Electron. Commun., vol. 79, pp. 158–171, 2017, doi:

10.1016/j.aeue.2017.05.031.

[25] S. K. Swain, D. Sain, S. K. Mishra, and S. Ghosh, “Real Time Implementation of

Fractional Order PID Controllers for a Magnetic Levitation Plant,” AEU - Int. J.

Electron. Commun., vol. 78, pp. 141–156, 2017, doi:

10.1016/j.aeue.2017.05.029.

[26] A. Mughees and S. A. Mohsin, “Design and Control of Magnetic Levitation System

by Optimizing Fractional Order PID Controller Using Ant Colony Optimization

Algorithm,” IEEE Access, vol. 8, pp. 116704–116723, 2020, doi:

10.1109/ACCESS.2020.3004025.

[27] P. Roy and B. K. Roy, “Sliding Mode Control Versus Fractional-Order Sliding Mode

Control: Applied to a Magnetic Levitation System,” J. Control. Autom. Electr.

Syst., vol. 31, no. 3, pp. 597–606, 2020, doi: 10.1007/s40313-020-00587-8.

[28] L. Alkurawy and K. G. Mohammed, “Model Predictive Control of Magnetic

Levitation System,” Int. J. Electr. Comput. Eng., vol. 10, no. 6, pp. 5802–5812,

2020, doi: 10.11591/ijece.v10i6.pp5802-5812.

[29] M. Sherif, D. Victor, and A. El-Badawy, “Real-Time Control of a Magnetic

100

Levitation System,” in 2019 31st International Conference on Microelectronics

(ICM), 2019, pp. 280–283, doi: 10.1109/ICM48031.2019.9021705.

[30] G. M. K. B. Karunasena, H. D. N. S. Priyankara, and B. G. D. A. Madhusank,

“Artificial Neural Network vs PID Controller for Magnetic Levitation System,” Int.

J. Innov. Sci. Res. Technol., vol. 5, no. 7, pp. 505–511, 2020, doi:

10.38124/ijisrt20jul432.

[31] W. Yang, F. Meng, S. Meng, S. Man, and A. Pang, “Tracking Control of Magnetic

Levitation System Using Model-Free RBF Neural Network Design,” IEEE Access,

vol. 8, pp. 204563–204572, 2020, doi: 10.1109/ACCESS.2020.3037352.

[32] R. Kumar, S. Srivastava, and J. R. P. Gupta, “Comparative Study of Neural

Networks for Control of Nonlinear Dynamical Systems with Lyapunov Stability-

Based Adaptive Learning Rates,” Arab. J. Sci. Eng., vol. 43, no. 6, pp. 2971–2993,

2018, doi: 10.1007/s13369-017-3034-9.

[33] J. de Jesús Rubio, L. Zhang, E. Lughofer, P. Cruz, A. Alsaedi, and T. Hayat,

“Modeling and Control with Neural Networks for a Magnetic Levitation System,”

Neurocomputing, vol. 227, no. February 2016, pp. 113–121, 2017, doi:

10.1016/j.neucom.2016.09.101.

[34] A. Piłat and A. Turnau, “Neural Adapted Controller Learned On-line in Real-Time,”

IFAC Proc. Vol., vol. 42, no. 13, pp. 47–52, 2009, doi: 10.3182/20090819-3-pl-

3002.00010.

[35] H. Alimohammadi, B. B. Alagoz, A. Tepljakov, K. Vassiljeva, and E. Petlenkov, “A

NARX Model Reference Adaptive Control Scheme: Improved Disturbance

Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation

System,” Algorithms, vol. 13, no. 8, 2020, doi: 10.3390/A13080201.

[36] A. K. Piłat, J. Źrebiec, and B. Sikora, “Neural Velocity Observer Trained with

Experimental Data Supporting Stabilization of Magnetically Levitating Sphere,” in

2019 12th Asian Control Conference (ASCC), 2019, pp. 214–219.

[37] T. Huang, Y. Liang, X. Ban, J. Zhang, and X. Huang, “The Control of Magnetic

Levitation System Based on Improved Q-network,” in 2019 IEEE Symposium

Series on Computational Intelligence (SSCI), 2019, pp. 191–197, doi:

10.1109/SSCI44817.2019.9002980.

[38] Y. Yang, X. Ban, X. Huang, and C. Shan, “A Dueling-Double-Deep Q-Network

101

Controller for Magnetic Levitation Ball System,” in 2020 39th Chinese Control

Conference (CCC), 2020, vol. 2020-July, pp. 1885–1890, doi:

10.23919/CCC50068.2020.9189157.

[39] T. P. Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” in

4th International Conference on Learning Representations, ICLR 2016 -

Conference Track Proceedings, 2016, p. 14, doi: 10.48550/arXiv.1509.02971.

[40] S. Wongsa and N. Kowkasai, “Deep Deterministic Policy Gradient for Magnetic

Levitation Control,” in 2020 17th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), 2020, pp. 796–799, doi: 10.1109/ECTI-

CON49241.2020.9158096.

[41] “Better Exploration with Parameter Noise.” https://openai.com/blog/better-

exploration-with-parameter-noise/ (accessed May 01, 2022).

[42] R. Siraskar, “Reinforcement Learning for Control of Valves,” Mach. Learn. with

Appl., vol. 4, p. 100030, 2021, doi: 10.1016/j.mlwa.2021.100030.

[43] The MathWorks Inc., “Reinforcement Learning ToolboxTM User’s Guide,” 2020.

[44] “Design Time Series NARX Feedback Neural Networks - MATLAB & Simulink -

MathWorks United Kingdom.”

https://uk.mathworks.com/help/deeplearning/ug/design-time-series-narx-

feedback-neural-networks.html (accessed May 01, 2022).

[45] “Levenberg-Marquardt Backpropagation - MATLAB trainlm - MathWorks United

Kingdom.”

https://uk.mathworks.com/help/deeplearning/ref/trainlm.html?s_tid=doc_ta

(accessed May 01, 2022).

[46] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” 32nd Int. Conf. Mach. Learn. ICML

2015, vol. 1, pp. 448–456, 2015, doi: 10.48550/arXiv.1502.03167.

[47] “Batch Normalization Layer - MATLAB - MathWorks United Kingdom.”

https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.batchnormaliza

tionlayer.html (accessed May 01, 2022).

[48] “Options for DDPG Agent. Noise Model - MATLAB - MathWorks United Kingdom.”

https://uk.mathworks.com/help/reinforcement-

102

learning/ref/rlddpgagentoptions.html?s_tid=doc_ta (accessed May 01, 2022).

[49] M. H. Beale, M. T. Hagan, and H. B. Demuth, “Deep Learning ToolboxTM User’s

Guide,” 2020.

[50] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings, 2015, pp. 1–15, doi: 10.48550/arXiv.1412.6980.

[51] “Training Options for Adam Optimizer - MATLAB - MathWorks United Kingdom.”

https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.trainingoptionsadam

.html?searchHighlight=adam (accessed May 01, 2022).

[52] “Watertank Simulink Model - MATLAB & Simulink - MathWorks United Kingdom.”

https://uk.mathworks.com/help/slcontrol/gs/watertank-simulink-model.html

(accessed May 01, 2022).

[53] “Create Simulink Environment and Train Agent - MATLAB & Simulink - MathWorks

United Kingdom.”

 https://uk.mathworks.com/help/reinforcement-learning/ug/create-simulink-

environment-and-train-agent.html?searchHighlight (accessed May 02, 2022).

103

APPENDICES

104

Appendix 1 MATLAB code for training NARX network

% Preparing data

u=input1'; % input data
y=output'; % target data

% Data conversion

u = con2seq(u);
y = con2seq(y);

% Time delays

d1 = [1:2];
d2 = [1:2];

% Design of NARX network

narx_net1 = narxnet(d1,d2,10);
narx_net1.divideFcn = '';
narx_net1.trainParam.min_grad = 1e-10;
narx_net1.trainParam.epochs = 300;
[p,Pi,Ai,t] = preparets(narx_net1,u,{},y);

% Training NARX network

narx_net1 = train(narx_net1,p,t,Pi);

% Open-loop to closed-loop modification

narx_net1_closed = closeloop(narx_net1);

%view(narx_net1)
%view(narx_net1_closed)

% Get a controller

gensim(narx_net1_closed, 0.001)

% Simulate closed-loop NARX and compare with PD output

ou_sim1=sim(narx_net1_closed, u);
ou_sim1=cell2mat(ou_sim1);
ou_sim1=ou_sim1';

% Fit

mse = (output1-ou_sim1).^2;
mean_mse=mean(mse);

% Plots

figure('WindowState','maximized','Color',[1 1 1]);
plot(t1, output1'); % pd output
hold on;
plot(t1, ou_sim1); % narx output
title('NARX output and PD output');

105

xlabel('Time, s');
ylabel('Control action');
legend('NARX','PD');

figure('WindowState','maximized','Color',[1 1 1]);
plot(t1,mse);
title('Squares of errors');
xlabel('Time, s');
ylabel('SE');
ylim([-0.5 2.5]);

106

Appendix 2 DDPG Algorithm [39]

Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) with weights 𝜃𝑄 and 𝜃𝜇

Initialize target network 𝑄′ and 𝜇′ with weights 𝜃𝑄
′
← 𝜃𝑄, 𝜃𝜇

′
← 𝜃𝜇

Initialize replay buffer 𝑅

for episode = 1, M do

 Initialize a random process 𝒩 for action exploration

 Receive initial observation state 𝑠1

 for t = 1, T do

Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝜇) +𝒩𝑡 according to the current policy and

exploration noise

Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝑅

Sample a random minibatch of 𝑁 transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝑅

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄

′
)

Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖

Update the actor policy using the sampled policy gradient:

∇𝜃𝜇𝐽 ≈
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠𝑖

Update the target networks:

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′

end for

end for

107

Appendix 3 MATLAB code for building the environment

% Create observations

obsInfo = rlNumericSpec([3 1],...
 'LowerLimit',[0 -inf -inf]',...
 'UpperLimit',[inf inf inf]');

obsInfo.Name = 'observations';
obsInfo.Description = 'position, error, integral error';
numObservations = obsInfo.Dimension(1);

% Create actions

actInfo = rlNumericSpec([1 1]);

actInfo.Name = 'control';
numActions = actInfo.Dimension(1);

% Build the environment interface object

env =
rlSimulinkEnv('control_1_NARX_vs_PID_RL_sim_1em','control_1_NARX_vs_PID_RL_sim_
1em/DDPG Agent',...
 obsInfo,actInfo);

108

Appendix 4 MATLAB code for creating actor and critic networks

% Actor NN design

lgraph_actor = layerGraph();
layers = [
 featureInputLayer(3,"Name","input_1")
 fullyConnectedLayer(25,"Name","fc_1")
 tanhLayer("Name","tanh_1")
 fullyConnectedLayer(25,"Name","fc_2")
 tanhLayer("Name","tanh_2")
 fullyConnectedLayer(1,"Name","output")
];
lgraph_actor = addLayers(lgraph_actor,layers);

% Critic NN design

lgraph_critic = layerGraph();

% state path

tempLayers = [
 featureInputLayer(3,"Name","input_1")
 fullyConnectedLayer(50,"Name","st_fc_1")
 reluLayer("Name","relu_1")
 fullyConnectedLayer(25,"Name","st_fc_2")
];
lgraph_critic = addLayers(lgraph_critic,tempLayers);

% action path

tempLayers = [
 featureInputLayer(1,"Name","input_2")
 fullyConnectedLayer(25,"Name","act_fc_1")
];
lgraph_critic = addLayers(lgraph_critic,tempLayers);

% add

tempLayers = [
 additionLayer(2,"Name","concat")
 reluLayer("Name","relu_output")
 fullyConnectedLayer(1,"Name","output_1")
];
lgraph_critic = addLayers(lgraph_critic,tempLayers);

% clean up helper variable

clear tempLayers;

% state path
lgraph_critic = connectLayers(lgraph_critic,"st_fc_2","concat/in1");

% action path
lgraph_critic = connectLayers(lgraph_critic,"act_fc_1","concat/in2");

109

% Plot graphs

figure;
plot(lgraph_actor);

figure;
plot(lgraph_critic);

110

Appendix 5 MATLAB code for setting RL-training options

% Sample time and Simulation time

Ts = 0.001;
Tf = 10;

% Specify options for actor and critic representation

actorOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

% Specify the DDPG agent options

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',0.99, ...
 'MiniBatchSize',128, ...
 'ExperienceBufferLength',1e6);

agentOpts.NoiseOptions.Variance = 0.02;

% Create the DDPG agent

agent = rlDDPGAgent(actor,critic,agentOpts);

% Training options

maxepisodes = 10000;
maxsteps = ceil(Tf/Ts);

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'ScoreAveragingWindowLength',5, ...
 'StopTrainingCriteria','EpisodeReward', ...
 'StopTrainingValue',20000, ...
 'SaveAgentCriteria', 'EpisodeReward', ...
 'SaveAgentValue', 20000, ...
 'Verbose',false, ...
 'Plots','training-progress' ...
);

% Train the DDPG agent

trainingStats = train(agent,env,trainOpts);

% Validate the trained DDPG agent

simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
experiences = sim(env,agent,simOpts);

111

Appendix 6 Training progress for the case of graded learning

Figure A.1 Training progress of "wt_agent1_100"

Figure A.2 Training progress of "wt_agent1_075"

Figure A.3 Training progress of "wt_agent1_050"

112

Figure A.4 Training progress of "wt_agent1_025"

Figure A.5 Training progress of "wt_agent1_000"

Figure A.6 Training progress of "wt_agent2"

Appendix 7 MATLAB code for calculating MSE and building plots

% PD

ERR=0;
SSE=0;

ERR = out.refer - out.pid; % ERR
SSE = sum(ERR.^2); % Sum-Squared Error
MSE_pid = mean(ERR.^2)

% NARX

ERR=0;
SSE=0;

ERR = out.refer - out.narx; % ERR
SSE = sum(ERR.^2); % Sum-Squared Error
MSE_narx = mean(ERR.^2)

% PD with RL-agent

ERR=0;
SSE=0;

ERR = out.refer - out.pid_rl; % ERR
SSE = sum(ERR.^2); % Sum-Squared Error
MSE_pid_rl = mean(ERR.^2)

% Building plots

fig1 = figure('WindowState','maximized','Color',[1 1 1]);
plot(out.time',out.refer','green');
hold on;
plot(out.time,out.pid)
title('Exp.1. Performance of the PD-controller, NARX-based controller, PD-
controller with RL-agent');
plot(out.time,out.narx);
plot(out.time,out.pid_rl,'blue');
xlabel('Time, s');
ylabel('Position of the ball, m');
ylim([0.004 0.015]);
legend('Reference', 'PD control', 'NARX control', 'PD+RL control');
grid on;

saveas(fig1,'fig1','fig');
saveas(fig1,'fig1','png');

114

Appendix 8 Plots in experiments for controller 1

115

116

117

118

119

120

121

122

123

124

125

Appendix 9 Plots in experiments for controller 2

126

127

128

129

130

131

132

Appendix 10 Plots in experiments for controller 4

133

134

Appendix 11 Plots in experiments for controller 1 with graded learning

135

136

137

138

