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PREFACE 

 

The master thesis topic “Modeling and Control with Neural Networks for a Magnetic 

Levitation System with Two Electromagnets” was proposed by the Early-Stage 

Researcher Hossein Alimohammadi. The magnetic levitation system with two 

electromagnets (MLS2EM), used during the following work, is created by the Polish 

company INTECO, and currently located in Centre for Intelligent Systems, Tallinn 

University of Technology.  

 

The main goal of the thesis was to design a better alternative control solution for already 

existing PD-controller, based on the neural networks. The work was challenging and 

interesting. Due to certain limitations and obstacles, it required more investigation and 

effort, which resulted in the significant improvement of the PD-controller, using 

Reinforcement Learning method. 

 

I would like to express my gratitude towards my main supervisor, Early-Stage 

Researcher Hossein Alimohammadi, for assistance and support at each stage of 

experiments and writing the master thesis work. I would also like to thank Professor 

Mart Tamre from Department of Electrical and Power Engineering and Mechatronics for 

a right and timely advice, Professor Eduard Petlenkov from Department of Computer 

Systems, and Early-Stage Researcher Vjatšeslav Škiparev from Department of Software 

Science, for consultations and fresh eyes on issues appeared during experiments.  

 
Keywords: magnetic levitation system, artificial neural network, reinforcement 

learning, control design, master thesis. 
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1. INTRODUCTION 

 

Magnetic levitation technology had been studied and developed during the whole 20th 

century. Nowadays, it is used in various fields of industry and many industrial systems 

such as magnetic levitation trains, electromagnetic bearing, levitation melting with 

induction heating, microrobotic systems, vibration isolation, wind turbines, levitation of 

wind tunnel models, aerospace, etc. The key advantage of the use of magnetic levitation 

technology is the possibility to almost eliminate contact and, subsequently, friction 

between surfaces, which guarantees high operation speeds and precision with minimal 

mechanical wear and low maintenance requirements.  

 

For the efficient applicability of the magnetic levitation technology, the robust and high-

performance feedback control should be designed. Magnetic levitation system (MLS) is 

widely used in the laboratories for this purpose. Magnetic levitation phenomenon is 

based on the principle of electromagnetic suspension (EMS). The gravity force affecting 

the levitated ferromagnetic (made of nickel, cobalt, iron, etc.) body is balanced by the 

electromagnetic field produced by the electromagnet. The feedback loop serves to 

control the strength of the electromagnetic field and, thus, to control the air gap 

between the levitated body and the electromagnet. 

 

MLS has a complex nonlinear dynamics, it is open-loop unstable and time-varying 

dynamical system, which includes parameter uncertainty [1], or parameter variation, 

for example, the inductance related electromagnetic parameter. Besides this, there is 

always a discrepancy between actual plant and its mathematical model, which comes 

from unknown or unpredictable external disturbances and some unmodeled dynamics. 

Thus, the design of a control law for achieving high control performance along with 

robustness is a very challenging task, for which the use of classical controllers (e.g., 

PID-controller) is not the best solution. In order to obtain control gains, it is necessary 

to perform linearization and long and tedious mathematical calculations. Another issue 

is that linear controllers can properly operate only in limited region, which depends on 

the determined operating point. The use of intelligent methods, such as artificial neural 

networks (ANNs), for acquiring a controller does not require long calculations, and the 

controller can be extended to a nonlinear region.  

 

In recent decades, ANNs have become more and more popular. They are already broadly 

and successfully used for finding accurate and robust solutions for complex nonlinear 

problems in many fields of industry, medicine, security (image processing and 

recognition), banking and finances (forecasting), military, etc. ANNs have ability to learn 
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and also to model complex nonlinear relationships between inputs and outputs of the 

system which is essentially important due to high complexity and nonlinearity of the 

real-world systems.  

 

The following work is focused on the experimental magnetic levitation system with two 

electromagnets (MLS2EM), provided by INTECO Ltd., Krakow, Poland. The system is 

fully integrated with MATLAB/Simulink and operates in the real-time in MS Windows. 

The model consists of two electromagnets (upper and lower), the set of ferromagnetic 

objects (balls of different diameters and masses) to be levitated, position and current 

sensors, power interface, RTDAC4/USB measurement and control I/O board, a personal 

computer (Figure 1.1, [1]). The levitated object is suspended between two 

electromagnets and the equilibrium stage is maintained by the balance of the 

electromagnetic and the gravity forces. The lower electromagnet is used to bring the 

disturbance into the system (an external force excitation) or in addition to the gravity 

force (for example, to introduce mass disturbance). The ball position is controlled by 

adjusting the current through the electromagnets applying controlled voltage across the 

electromagnets’ terminals. 

 

 

Figure 1.1 MLS2EM laboratory setup [1] 

 

The main goal of the thesis is to design a control solution based on the ANNs for an 

accurate trajectory tracking of the levitated object and to achieve a better control and 

stability performance of the system and wider operating range in a presence of 

unpredictable disturbances and parameter uncertainty. During the design process of the 

controller, simulations and experiments, MATLAB/Simulink R2017b, R2020b with Deep 
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Learning (DL), Reinforcement Learning (RL) and Neural Network (NN) Toolboxes will be 

used. 

 

The time-series datasets including object position will be collected and analysed first 

from the simulation and from the real-time plant. The ANN structure for the system’s 

model representation will be designed and trained on the obtained datasets. Based on 

the parameters of ANN, the NN controller will be developed. The NN controller model 

will be implemented in Simulink model of the MLS2EM system. The various input signals 

and disturbances will be applied to analyse the control and stability performance. The 

results of the simulation experiments will be given and analysed for validation of the 

proposed control solution. 

 

The Chapter 2 of the thesis presents a literature overview of the control solutions, 

existing to date in the field of the magnetic levitation. The short comparative analysis 

of the various methods and approaches, including hybrid methods, is given there. The 

magnetic levitation model is described in the Chapter 3. The NN structure and NARX-

based controller are developed in the Chapter 4. The Reinforcement Learning based 

control solution is developed in the Chapter 5. The results of simulation experiments are 

discussed in the Chapter 6. Summary gives short conclusion of the thesis and its 

outcomes. Appendices include algorithms, MATLAB codes and plots of experiments. 
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2. LITERATURE OVERVIEW 

 

2.1 Necessity of the intelligent control methods 

 

A number of research papers on the problem of magnetic levitation control has been 

published during few recent years. A wide range of control solutions was proposed for 

the task of trajectory tracking in the MLS. Since the system is highly nonlinear and 

unstable, the studies on the robust control methods have become a subject of an intense 

interest. 

 

The PID-controller, integrated in the MLS Simulink model, is a simple solution for the 

controlling position, but not the best one for such nonlinear and unstable system as 

MLS. The controller works using method based on the linearization of the system. The 

acquiring of the linearized model the MLS is described in details by P. Balko and D. 

Rosinova in the article [2]. This approach simplifies the process model and leads to the 

loss of some system’s dynamics. This results in a steady-state error, overshoots, and 

oscillations. The main drawback of the PID-controller’s use is that the system can be 

stabilized only in the controller’s operation region, in other words, close to the 

determined operating point. The performance of the system fully depends on the 

fortunate selection of the PID-parameters. The instability of the MLS means that 

inappropriate PID-control unavoidably leads to the situation when the levitated object 

is either being dropped down or attracted to the upper electromagnet in the first seconds 

of the experiment. The PID-controllers cannot adapt to the abrupt disturbances, for 

example, change of the ball’s mass. The narrow working range is clearly observed in 

the real system, but when one expands the movement range of the ball, the PID-

controller cannot optimally control the ball anymore. 

 

While the linear controllers are usually valid only around the operating point, the 

nonlinear controllers need exact knowledge about the plant nonlinearities to guarantee 

a good performance and stability. The practical implementations of the nonlinear 

controllers can be difficult due to the modeling and parameter uncertainties in the MLS. 

Thus, the intelligent control techniques should be used. 

 

Among the proposed linear and nonlinear control strategies both for MLS1EM and 

MLS2EM (magnetic levitation systems with one and two electromagnets accordingly) 

are state feedback control and linear quadratic regulator algorithm, gain scheduling 

approach, backstepping, fuzzy logic control, sliding mode control, fractional-order 
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controllers, predictive control, and neural network control. All these control solutions 

along with their benefits and drawbacks are discussed in more details in the next 

section.  

 

 

 

2.2 Existing solutions  

 

2.2.1 State feedback control 

 

The state feedback control has been implemented in several research works: [3], [4], 

[5], [6], [7]. This method is based on the use of the state vector of the system for 

computation of the control action and the pole placement technique. This technique 

allows to compensate undesired system’s response by placing its closed-loop poles in 

the complex plane (s-plane) and calculating the feedback matrix. 

 

The state feedback control based on PID-controllers is discussed in [3]. Although, it is 

a low-cost solution, that can be easily implemented, it requires a lot of effort to derive 

a nonlinear mathematical model, to identify the parameters of equation through the 

experiment and to find a proper feedback gain matrix. The authors linearized the MLS 

model around seven operating points and designed seven PID-controllers. The state 

feedback control solution was included in the cascade structure with PID-controller in 

the outer loop to stabilize the system. The real-time experiments showed some 

oscillations in the beginning of transient response.  

 

In [4] the authors combined PID and state-feedback controller to eliminate the steady-

state error with the help of integral component. Two solutions, the state feedback and 

the cascade control, were proposed, but the stability analysis was not done.  

 

The integral state feedback control has been developed in [5]. As it was done in [4], the 

integral component was added to eliminate the steady state error. The coefficient 

diagram method (CDM) was applied instead of trial-error method which is usually used 

to determine the controller’s parameters. Varying the mass, the inductance and the 

resistance uncertainties during the experiments, the authors found out that the use of 

the robust parameters of CDM gives faster and more accurate response, while the 

standard parameters of CDM result in smaller rise time. 
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Inappropriate choice of PID-control gains may reduce the control performance and even 

damage the experimental system. The selection process is hard and time-consuming, 

and the control gains may require the big number of adjustments, done via trial-error 

method until the best performance is achieved. To simplify this process, B. Bidikli and 

A. Bayrak proposed a full-state feedback control with self-tuning rules in [6]. The robust 

controller was designed. Although, it showed effective work, the authors of the paper 

noticed that the control effort can be decreased with optimal or neural-network methods 

in future.  

 

The nonlinear state feedback control is designed in [7]. Its main advantage over the 

linear state feedback control is capability to provide a faster system’s response without 

or with minimum overshoot. The gradually changing feedback gain, introduced by the 

authors, affected the damping factor of the closed loop. This allowed to drive the 

overshoot to zero and achieve small rise and settling time in the experiment. 

 

 

2.2.2 Linear quadratic regulator 

 

The linear quadratic regulator (LQR) algorithm is one of the main results in the theory 

of optimal control. It serves to reduce optimization efforts on the controller, in other 

words, it is an automated way of finding state-feedback controller under specified design 

goals. This method still utilizes the state-space model of the system and requires 

determination of the cost functions. The difficulty consists in the finding of proper 

weighting factors, which eventually limits the application of the LQR. 

 

The LQR controller is proposed in [8] as a better solution than the existing PID-controller 

in terms of better stability and larger work bandwidth. The experiments showed that 

the ball could follow the sinusoidal reference trajectory but with a lower amplitude and 

some small error. 

 

Another LQR-PID controller is designed in [9]. Two controllers (LQR and PID) were 

combined to operate together in two loops for the task of stabilization of the MLS. 

Additionally, LQR-PID controller solved the overshoot problem, but the authors of the 

article admitted, that selection of error and control weightage matrices for the LQR 

control loop was a challenging task.  
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2.2.3 Gain-scheduling approach 

 

The gain-scheduling approach is one of the most common in the control theory. It 

requires understanding of the plant’s operating regions and determination of the related 

operating specifications. The procedure includes the linearization of the plant around 

each operating point and tunning of several controllers, i.e., obtaining a set of control 

gains for each operating region. It is obvious, that the procedure is time-consuming, 

since it demands several sets of control gains to be properly defined. The gain-

scheduling method can guarantee adequate system’s performance by switching 

between the operating regions and associated with them controllers, but the controllers 

still need to be robust.  

 

The reference [10] presents three proportional-integral gain-scheduling control (PI-GS-

C) solutions, based on the Lagrange interpolating parameter value method, Cauchy 

kernel distance metric and switching GS between PI linear controllers. During the 

experiments the authors concluded that all structures guarantee zero steady state error 

and satisfying trajectory tracking, although some oscillations happen in the beginning 

of the system’s response. 

 

 

2.2.4 Backstepping 

 

The backstepping (BS) is a recursive technique that uses Lyapunov stability theory to 

derive a stabilizing control law for nonlinear dynamical systems. The inconvenience here 

is that there is no auto-tune tool for the nonlinear controllers in MATLAB/Simulink similar 

to one for PID-controllers, and, thus, researchers had to set and tune control gains 

manually via trial-error method and the system’s response checks.  

 

The backstepping and the integral backstepping (IBS) along with the synergetic control 

are discussed in [11]. The synergetic control involves macro variables which contain 

tracking errors of all states of the system. According to the results of the simulations, 

the IBS controller showed the best performance. 

 

Adapting backstepping control method is proposed in [12]. The adaptation feature of 

the controller means its capability to adapt to the controlled system with uncertain or 

time-varying parameters. Usually, backstepping controller is added to reduce a negative 

effect of the slowly varying parameters of the system.  
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2.2.5 Fuzzy logic control 

 

Fuzzy control logic is described in [13], [14], [15] and [16]. The parameters of fuzzy 

controller can be easily tuned, and it has a good potential to stabilize the ball levitation 

process. The fuzzy controller shows lower overshoot and no steady state error, 

comparing to the PID-controller, but its response is slower, and the settling time is 

longer  [13]. The fuzzy logic design may include some nonlinearities due to the inference 

engine and some nonlinear methods applied in defuzzification process (when resulting 

fuzzy set, being converted to the number, is sent to the process as a control signal). 

 

In [14] the authors utilized the programmable logic controller (PLC) with a liquid crystal 

display (LCD) panel for data acquisition and user control. They implemented fuzzy PID-

controller and compared its performance with that one of the classical PID-controller. It 

appeared, that fuzzy controller works correctly for different set-points, unlike the 

classical PID-controller does. The authors point out the advantages of fuzzy controller 

in that it does not require the explicit model of the process, its control law is simpler 

and computational complexity is lower in comparison with other nonlinear controllers, 

for example, neural network-based ones.  

 

Two cascade control system (CCS) structures using tensor-product based control (TP-

C) and PI fuzzy logic control (PI-FC) were designed in [15]. The proposed solutions 

resulted in zero steady state control error and good rejection of the disturbances. 

 

In master thesis work [16] the PD-controller was replaced by the fuzzy logic controller 

(FLC) for actual plant of MLS2EM. The smooth tracking control was achieved by increase 

of the number membership functions and rules. The developed FLC showed better 

steady-state error results comparing to the PD-controller. 

  

 

2.2.6 Sliding mode control 

 

The sliding mode control (SMC) is a nonlinear variable structure control method that 

alters the system’s dynamics by applying discontinuous control signal and driving the 

system’s states to the sliding surface. Among the advantages of the SMC are its 

robustness and finite-time convergence to the equilibrium point. The main drawback of 

the SMC consists in undesirable phenomenon of finite-frequency or finite-amplitude 

oscillations (so called “chattering”) caused by the high-frequency switching of a sliding 

mode controller due to the presence of some unmodeled dynamics in the closed-loop. 
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The chattering suppression methods are discussed by V. Utkin and H. Lee in [17]. The 

chattering problem appears in many SMC implementations, and without proper remedy 

it can become an obstacle to SMC application in the real-world plants. 

 

The SMC solutions are developed in [18], [19], [20], [21]. Y. Eroğlu in the maser thesis 

[18] proposed several controllers’ design strategies applying cascade control. The SMC 

was utilized for the inner electrical part of the control loop of MLS in order to obtain its 

fast response and better compensation of the negative effect of inductance related 

disturbances. It was found that SMC controllers keep the current error around zero but 

cannot fully eliminate the position steady-state error. 

 

Simulation and implementation results of the SMC performance are compared in [19]. 

Robustness of the controller is tested applying external disturbance to the input signal. 

 

The adaptive sliding mode controller (ASMC) with a sliding mode differentiator (SMD) 

presented in [20] allowed additionally to estimate the ball velocity needed for proper 

work of the controller and achieve the desired ball position and reference trajectory 

within only 1 s.  

 

The real-time implementation of SMC–PID controller is done in [21]. 

 

 

2.2.7 Fractional-order controllers 

 

The fractional calculus is applied in the field of control theory, called fractional-order 

control (FOC). This is a promising direction of the control studies and a good alternative 

to the classical control methods. FOC utilizes a fractional-order integral operator, that 

considers the whole history of its input signal, and capable to handle the chaotic 

behaviour of the complex mathematical models. The fractional-order controllers provide 

more adjustable system’s response and also allow to reduce noise appearing in the 

control law. The control solution is based on the finding an operating point, linearization 

of the nonlinear system around operating point, determination of a stability region and 

stability margins and some parametric optimization. 

 

Fractional-order controllers are discussed in [22], [23], [24], [25], [26], [27]. The 

stabilizing fractional-order PIλD controller, designed by W. Bauer and J. Baranowski in 

[22], reached the reference point in 1,5 s and managed with the task of disturbance 

rejection. The authors mentioned that there exists an issue of infinite memory for data 
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storage and computations in the developed solution. For this reason, direct 

implementation of the fractional-order controllers for the real-time unstable systems 

may be difficult and require additional approximations.  

 

Four novel fractional-order sliding mode controllers (static, integral static, dynamic and 

integral dynamic) are presented in [23] as a way to scale down the control effort and 

achieve robust and energy-efficient performance. 

 

The two degrees-of-freedom (2-DOF) PIλDµ controller has been designed in [24]. It 

showed good results in terms of stabilization, trajectory tracking and actuator saturation 

problem. 

  

The authors of [25] designed 1-DOF and 2-DOF FOPID-controller for MLS and compared 

their performance with 1-DOF and 2-DOF integer-order PID-controllers (IOPID) in both 

simulation and real-time experiments. The results depicted the superiority of FOPID-

controller over IOPID. The parameters of the controllers were obtained using the 

dominant pole placement method by optimizing the objective function.  

 

The optimizing fractional PID (FOPID)-controller has been developed in [26]. Applying 

Ant Colony Optimization (ACO) algorithm and Ziegler Nicholas method, the authors of 

the article achieved reduction of the settling time and oscillations, but performance of 

the FOPID-controller with constraints, uncertainties and external disturbances, is to be 

analysed and improved in future. 

 

A comparative analysis of SMC and FOSMC controllers is conducted by researchers in 

[27]. FOSMC showed better results, comparing with the SMC, on the basis of all main 

characteristics: zero overshoot, smaller settling time, the most accurate position 

tracking, reduction of chattering and lower control effort. 

 

 

2.2.8 Model predictive control 

 

Model predictive control (MPC) is an advanced method in the control theory. The main 

benefit of the MPC is ability to predict future response of the system as well as upcoming 

disturbances using its reference input. The MPC controller can adapt to the changes in 

the system parameters over the period of time, for example, due to mechanical wear of 

some parts of the system. The drawback of the MPC is the demand for the proper 
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system’s model, and also the installation of the MPC controllers can be costly, because 

for optimization purposes it requires a computer. 

 

The MPC is described in the articles [28], [29]. The performance of the model predictive 

controller was compared with that of classical PI and PID-controllers in [28]. The authors 

varied PI and PID-controllers’ gains to demonstrate that any change of those can result 

in oscillations, overshoot, large position error, etc. Meanwhile, the MPC controller easily 

adapted to the change of weighting matrices and did not show any overshoot or steady 

state error, and the settling time was minimal.  

 

The real-time implementation of the MPC controller for the MLS with one electromagnet 

is presented in [29]. The authors compared the performance of the nonlinear feedback 

linearization (FL), linear MPC and conventional PID-controllers in this research. During 

the experiment both FL and MPC controllers showed reliable performance, while PID-

controller failed to achieve stability when the reference position was changed. The best 

stability performance and the lowest settling time were reached by FL controller. The 

MPC controller restored stability with some oscillations.  

 

 

2.2.9 Neural network control 

 

The key benefit of using the ANNs is the reduction of the design effort related to the 

linearization of the system and corresponding calculations. The ANNs are capable to 

capture all system’s dynamics that cannot be formulated analytically, and the system’s 

stability is no more limited by the controller’s operation region. 

 

The acceptability of the ANNs for the control of the MLS with one electromagnet is 

investigated in [30]. The multilayer feed forward NN with one input layer, one output 

layer and two hidden layers (with 20 and 10 neurons) was designed to learn the 

nonlinear behaviour of the system using the back propagation method. The training of 

the NN was realized using 30000 samples for inputs and outputs collected from the 

simulation with PD controller in MATLAB/Simulink environment. During the tests the NN 

controller did not perform properly during the stable position of the ball and the ball fell. 

This problem was resolved introducing two gains to amplify the input and error values 

and to make the NN react on the very small change. Square wave, sine wave and step 

input were applied during the experiments. The NN controller performed much better 

than the PID-controller and could efficiently and accurately follow the desired trajectory. 

For instance, the overshoot in case of the NN controller was almost 10 times lower than 
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that of the PID-controller, and the settling time was around 5 times lower. On the other 

side, the PID-controller showed better values of rise time, delay time and peak time 

(Table 2.1). The reason is related to the back propagation method which suffers of slow 

convergence, being based on the gradient-descent algorithm.  

 

Table 2.1 Transient analysis between PID and ANN controllers [30] 

Parameter PID-controller ANN controller 

Overshoot, % 27 2,8 

Settling time, s 5,71 1,12 

Rise time, s 0,1 0,46 

Delay time, s 0,05 0,36 

Peak time, s 0,22 0,48 

 

The reference [31] proposes adaptive sliding mode controller based on the radial basis 

function neural network (RBFNNSMC) as faster and more robust one, comparing with 

the SMC and backstepping controllers (Table 2.2). The stability of the closed-loop 

system was proved by using the Lyapunov stability theory. 

 

Table 2.2 Transient analysis between RBFNNSMC, SMC, BSC controllers [31] 

Parameter RBFNNSMC SMC BSC 

Overshoot, m 1,5 × 10-6 1,45 × 10-5 6,9 × 10-5 

Settling time, s 0,67 >1 >1 

Response speed quick middle slow 

 

Comparative study on the performance of radial basis function neural network (RBFNN), 

multilayer feedforward neural network (MLFFNN) and a recurrent nonlinear auto-

regressive with exogenous inputs (NARX) neural network was conducted in [32]. The 

authors combined back propagation and Lyapunov stability methods to speed up the 

convergence rate and successfully developed a novel adaptive learning rate for the 

neural network. Based on the results of simulations, the authors concluded that RBFNN-

based controller performed much better than MLFFNN- and NARX-based controllers in 

regard to the computational time, average mean squared error (MSE), robustness and 

simplicity (the number of parameters to be trained), which makes the RBFNN an efficient 

tool for control operations (Table 2.3). 

 

Table 2.3 Average MSE and run-time of MLFFNN-, RBFN- and NARX-based controllers [32]  

Parameter MLFFNN RBFNN NARX 

Average MSE (10 000 
iterations) 

9,13·10-2 2,28·10-2 4,91·10-3 

Simulation time, s 4,722920 0,335487 4,738064 

 

The NN is utilized in [33] for approximation of the electromagnetic parameter for better 

compensation by the controller. The nonlinear NN controller with the novel control law 

was designed and compared with the two stages (or two layers) controller. The two 
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stages controller also utilizes the NN (with the sliding mode) for the trajectory tracking 

but does not estimate the electromagnetic parameter and does not consider the angular 

position of the ball. Based on the value of the root mean squared error (RMSE), the 

researchers concluded that the designed controller had improved the performance of 

the two stages controller. The authors suggested that further development could be 

done for approximation of other parameters: non-modelled dynamics and eddy currents 

(swirls). 

 

In [34] the authors added the adaptive NN controller learning online in a real-time to 

the inner linearization loop, keeping the PD controller in the outer loop. This resulted in 

the stable response of the MLS and good adaptation to the abrupt changes of the 

levitated object’s mass, which was realized by excitation of the lower electromagnet of 

the MLS2EM. The researchers concluded that the ANN is a proper approximator of the 

MLS nonlinearities.  

 

The article [35] offers a multi-loop Model Reference Adaptive fractional-order 

proportional integral derivative (MRAC-FOPID) control structures with NARX model as a 

reference model. The authors noticed that, aside from the presented unpredictable 

disturbances in the MLS, there is a tradeoff between the position tracking and the 

disturbance rejection control. To resolve this dilemma, the authors used the FOPID for 

the improved stability and set-point tracking and the MRAC for improvement of the 

disturbance rejection. The Massachusetts Institute of Technology (MIT) rule [35] is used 

in the outer loop for the MRAC process. The comparison of performance parameters of 

FOPID, MRAC-FOPID and PID with NARX reference model is given in Table 2.4. 

 

Table 2.4 Transient analysis between FOPID, MRAC-FOPID and PID with NARX reference model 

[35] 

Parameter FOPID control MRAC-FOPID 
PID with NARX 

reference model 

Peak values, m 3,603 × 10-3 2,021 × 10-3 5,552 × 10-3 

Settling time after 
step disturbance, s 

1,23 0,43 1,08 

 

For stabilization purpose, in [36] the real experimental data was collected. Using the 

NN, trained on this data, the authors designed the velocity observer for the MLS. 
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2.2.10 Deep reinforcement learning 

 

Deep Reinforcement Learning (DRL) is a branch of machine learning. It is applied for 

the difficult control problems, including highly unstable systems, such as MLS. 

 

Unlike the supervised learning, where input-output datasets are given to the neural 

network to learn the desired behaviour, the learning process in DRL is based on the 

direct interaction with the environment. The Reinforcement Learning (RL) agent learns 

the behaviour, adjusting its parameters throughout the number of episodes, or runs of 

the experiment. It evaluates its own performance and gets the certain reward after each 

episode. The RL agent is capable to explore the space of its possible actions and 

accumulate the experience over the time which makes possible finding the most optimal 

solution for the specified task. 

The following control solutions in RL were proposed by the researchers recently for the 

MLS. 

The stable control for MLS with one electromagnet was realized by T. Huang, Y. Liang 

and X. Ban in [37] using improved Q-Network method (model-free reinforcement 

learning method). The proper choice of the reward function plays an important role in 

RL concept. The authors introduced 3-component reward function (2.1), that includes 

distance reward, velocity reward and direction reward, using position, velocity and 

current as observations: 

 

 

𝑟𝑒𝑤𝑎𝑟𝑑1 =
𝑑𝑚𝑎𝑥 − |𝑑|

𝑑 + 𝑑0
, 

𝑟𝑒𝑤𝑎𝑟𝑑2 =
𝑣𝑚𝑎𝑥 − |𝑣|

𝑣𝑚𝑎𝑥
, 

𝑟𝑒𝑤𝑎𝑟𝑑3 = |
𝑑

|𝑑|
−
𝑣

|𝑣|
| − 1, 

𝑟 = 3,2 × 𝑟𝑒𝑤𝑎𝑟𝑑1 + 𝑟𝑒𝑤𝑎𝑟𝑑2 + 0,3 × 𝑟𝑒𝑤𝑎𝑟𝑑3, 

(2.1) 

 

where   

𝑑0 — target position of the ball, m,  

𝑑𝑚𝑎𝑥  — maximum allowed deviation from target position, m, 

𝑑 — real-time distance between actual and target position (error), m,  

𝑣𝑚𝑎𝑥  — maximum allowable velocity of the ball, m/s, 

𝑣 — real-time velocity, m/s, 

𝑟  — total reward. 
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The researchers noted, that since RL includes exploration part, this leads to continuous 

oscillations near the desired position. This means, there is always a large steady-state 

error, and the performance of Q-network controller suffers from the low fitting accuracy. 

To resolve this issue, the authors proposed the network retraining algorithm in order to 

improve the accuracy of the controller. The retraining algorithm is based on the idea of 

adaptive adjusting of the exploration rate. Namely, the authors adopted 𝜀 greedy 

strategy, where 𝜀 ∈ [0,1] is the action exploration probability, in such way that 

exploration rate was decreasing with the progress of the learning process. It is important 

to note, that the exploration probability allows system to jump out of the local optimal 

state and continue to explore the action space until the better solution is found.  

 

The training process was split into conditional cycles. After achieving the desired number 

of “good-steps” (that keep error value within the allowable range), the algorithm sets 

exploration rate to zero, since there is no need of further exploration. This approach 

allowed to effectively reduce the oscillations and, subsequently, a steady-state error of 

the designed Q-network controller by an order of magnitude. The results of simulations 

proved the reasonableness and significance of use of the proposed retraining algorithm 

even in presence of the noise. 

 

A self-learning controller for MLS1EM was developed in [38]. The authors designed the 

Dueling-Double-Deep Q-Network (Dueling-DDQN) and compared it with the Deep Q-

network (DQN) controller in simulation. The Dueling-DDQN method has faster 

convergence, and it was shown that Dueling-DDQN controller can provide more stable 

control and has a larger attraction domain rather than DQN controller. The benefit of 

use of Dueling-DDQN algorithm is that it has a double network structure, and the action 

value function is separated into two parts: a state value function and an advantage 

function, that is related both to state and action spaces. These improvements help to 

solve the overestimation issue of the state value that traditional DQN suffers from.   

 

The reward function was chosen to fasten convergence of the training process in the 

following view (2.2): 

 

 

{
 
 

 
 𝑟1 = tan (

𝜃1 − 𝜃0
|𝑒𝑚𝑎𝑥  |

|𝑒| + 𝜃0) ,

𝑟2 = max
 
(𝑠𝑖𝑔𝑛(𝑒𝑣)|𝑣|, 0),   

𝑟 = 𝑙1𝑟1 + 𝑙2𝑟2 ,                     

 (2.2) 

 

where   

𝑒  — error between expected and measured position values, mm, 
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𝑣  — velocity of the ball, m/s, 

𝑟1 — reward for the position of the ball, which is more sensitive for smaller |𝑒|, 

𝑟2 — reward for the velocity of the ball, 𝑟2 ≥ 0, (the error and the velocity signs   

should be the same, otherwise 𝑟2 = 0), 

𝑟  — total reward, 

𝜃0, 𝜃1 — angles,  𝑄0 = 20°,𝑄1 = 89°, and 

𝑙1, 𝑙2 — constants, 𝑙1 = 10, 𝑙2 = 15,  picked after a serial of experiments. 

 

The training process was split into nine cycles, each of them consists of 300 episodes. 

The exploration of the action space was organised using 𝜖-greedy policy depending on 

the number of the cycle. The RL-agent was being given the biggest exploration 

probability in the beginning of the learning. With the growing number of the cycle, the 

exploration probability was being decreased, and eventually set equal to 0,1 staring 

from the 5th cycle. This was done for adequate exploration of the action space by the 

RL-agent with the passing time and for decrease noise after achieving intermediate 

results. Besides this, the authors introduced stopping criteria for episode, namely, 

exceeding of the ball’s lower and upper position limits and the simulation duration of 4 s.  

 

The most valuable and frequently cited work [39] in the field of DRL gives an adaptation 

of the ideas of the Q-learning method to the continuous action domain. The authors of 

the article state that DQN learning methods are not relevant for application to the 

physical control tasks with complex dynamics, which have continuous and high-

dimensional action spaces. Moreover, discretization of the action space could be an 

obvious solution in adapting DQN learning methods to continuous domains, but it also 

has its limitations. One of the biggest issues here is that the number of actions grows 

exponentially with the number of degrees of freedom of the system. The difficulty of 

efficient manipulation with the large, discretised action spaces and also the fact that 

discretization leads to the loss of information about the structure of the action space, 

makes application of the DQN learning methods unreasonable.  

 

In the paper, authors introduced the robust model-free, off-policy actor-critic approach 

based on the deterministic policy gradient (DPG) algorithm. The concept of actor and 

critic NNs will be explained and used later in Chapter 5. The authors combined this 

approach with ideas borrowed from Deep Q Network (DQN) learning method by training 

the network off-policy using samples from so-called “replay buffer” and introducing 

target Q-network to provide “consistent targets during temporal backups”.  
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The introduced method, named by the authors as “Deep deterministic policy gradient” 

(DDPG), was applied to more than 20 simulated physics tasks of various levels of 

difficulty, including classic problems such as cartpole swing-up, moving gripper, legged 

locomotion and car driving, etc. The approach benefit consists in its simplicity and easy 

implementation. The authors showed that DDPG is able to learn good policies and, 

eventually, provide a robust control. Being applied to the hardest problems, DDPG 

algorithm even surpassed the performance of the Q-learning, which tends to 

overestimate values of the 𝑄-function (action-value), using function approximators.  

 

The authors introduced Ornstein-Uhlenbeck (OU) noise process 𝒩 for better action 

space exploration, which will be discussed in Chapter 5, and applied batch normalization 

at each layer of the NNs. The DDPG approach still has its limitations. One of them is a 

large number of training episodes required for finding a solution. The DDPG algorithm, 

developed in [39], is used in the current work, and given in Appendix 2. The authors 

used Adam optimizer for learning NN parameters. The structure of the NNs and 

information on the training settings, used in [39], are given in Table 2.5. 

 

Table 2.5 NNs structure and training settings for DDPG agent, [39]  

Parameter Value 

Learning rate for actor 10-4 

Learning rate for critic 10-3 

𝐿2 weight decay 10-2 

Discount factor, 𝛾 0,99 

Target smooth factor, 𝜏 10-3 

Activation functions for all hidden layers  
of actor and critic 

ReLU  

Actor output activation function Tanh 

Number of hidden layers 2 

Hidden layers size, neurons 400, 300 

Weights and biases initialization range  
at actor and critic final layers, uniform distribution 

[-3·10-3, 3·10-3] 

Minibatch size 64 

Replay buffer size / Experience buffer length 106 

Standard deviation of OU noise, 𝜎 0,2 

Mean attraction of OU noise, 𝜃 0,15 

 

In [40] S. Wongsa and N. Kowkasai implemented RL algorithm in continuous control 

using deep deterministic policy gradient (DDPG) for Magnetic Levitation Model CE 152 

with one electromagnet developed by Humusoft company. The authors have focused on 

the importance of the reward function and its role for the training outcomes and learning 

the optimal policy. In the article they considered five reward functions and compared 

the training outcomes. 

 

As a successful result of the training, the controlled variable, which is position of the 

ball in case of MLS, must follow the desired trajectory. For this, the neural networks 
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parameters are forced to change in a certain way by setting the appropriately chosen 

reward function. When the process output gets closer to the reference value, or in other 

words, when the position error remains in the error tolerance range, the more reward 

is given to RL agent. And on the opposite, when the process output goes beyond the 

error tolerance range limits, or even falls out of the pre-set system limitations for 

controlled variables, the more penalty (or negative reward) system receives. It is 

obviously, that proper reward function can sufficiently improve the training process 

results and its convergence speed.  

 

The authors considered two types of reward functions 𝑅1 and 𝑅2, (2.3), (2.4): 

 

 𝑅1 = {
    𝑐, 𝑖𝑓 |𝑒| ≤ 𝜀,

−|𝑒|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  (2.3) 

 𝑅2 = 𝑒𝑥𝑝(−|𝑒|) − 1.  (2.4) 

 

where    

𝑒 — position error, m, 

           𝑐 — constant, 𝑐 > 0, 

𝜀 — error tolerance, m, 𝜀 > 0. 

 

The authors noted that tuning of the hyper-parameters (constants 𝑐 and 𝜀) for the 

reward function of a common view 𝑅1 can be challenging and tedious. For this reason, 

they proposed an alternative simple reward function 𝑅2 which depends only on the 

calculated error value and does not require manual tuning of the constants. 

 

The RL training was implemented by the authors using open-source OpenAI Gym 

interface in Python, rendered environment for visualization of behaviour, and Tensor 

Processing Unit (TPU) available in the Google Colab for parallel training and running of 

deep RL process. The structure of the networks and the training settings are shown in 

Table 2.6. The Adam optimizer and batch normalization was used similarly to [39].  

 

Table 2.6 NNs structure and training settings for DDPG agent, [40] 

Parameter Value 

Learning rate for actor 10-4 

Learning rate for critic 10-3 

Discount factor, 𝛾 0,99 

Target smooth factor, 𝜏 10-3 

Activation functions for all hidden layers  
of actor and critic 

ReLU 

Number of hidden layers 2 
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   Table 2.6 continued 

Parameter Value 

Hidden layers size, neurons 64 

Minibatch size 128 

Replay buffer size / Experience buffer length 5·104 

Standard deviation of OU noise 1·10-2 

 

For the better exploration of the action space the authors have added OU noise not to 

the action space, as it was done in [39], but directly to the parameters of the neural 

network policy. The efficiency of this approach was shown in [41]. 

 

The training and tests were conducted using staircase function as a setpoint signal. The 

outcomes of the trainings were compared for five reward functions (Table 2.7) using 

integral absolute error (IAE), calculated for the position of the ball (2.5): 

 

 𝐼𝐴𝐸 = ∫|𝑒𝑡|𝑑𝑡,

𝑇

0

 (2.5) 

where    

𝑒𝑡 — error at time step 𝑡, m, 

𝑇 — experiment length, s.  

 

Table 2.7 Comparison of closed-loop performance of DDPG-based controllers using different 

reward functions [40] 

Reward function  IAE Settling time, s 

R1 (𝑐 = 0,1, 𝜀 = 0,001) 0,049 0,041 

R1 (𝑐 = 0,1, 𝜀 = 0,01)     0,655 0,095 

R1 (𝑐 = 0,5, 𝜀 = 0,001) 0,121 0,070 

R1 (𝑐 = 0,5, 𝜀 = 0,01) 0,523 0,069 

R2 0,086 0,043 

 

The authors concluded that the performance using reward function 𝑅2 can compete with 

that using the best tuned reward function 𝑅1, and the proposed reward function 𝑅2 can 

be easily applied to any setpoint tracking problem. Moreover, no obvious correlation 

between 𝑐 and 𝜀 constants’ values and the convergence rate of the learning was found. 

However, it was found that the smaller value of error tolerance 𝜀 requires more episodes 

for training to get an optimal solution. The experiments showed that DDPG-based 

controllers can provide stable and accurate setpoint tracking over the full operating 

points.   

 

One of the most recent works [42] is devoted to another control problem, namely, to 

the control of nonlinear valves using DDPG algorithm of RL. This article is of great 

interest because the RL process was implemented by R. Siraskar in MATLAB/Simulink 
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environment with recently launched Reinforcement Learning Toolbox™, while the 

majority of works utilize Python and OpenAI Gym environments. The Reinforcement 

Learning (RL) Toolbox for the first time was introduced in MATLAB R2019a version and 

since that time has been developing and improving. The current thesis work will also 

exploit RL Toolbox for the control of MLS. 

 

In the Simulink model the author of the article used Reinforcement Learning Agent 

block, provided within the RL Toolbox, and created an observation vector, reward 

function and stopping criteria in a similar way, as it was done in the Reinforcement 

Learning Toolbox™ User’s Guide [42, pp.1-19 - 1-26] by MathWorks® for classic Water 

tank Simulink model. The training of the DDPG agent is realized, by guess, using similar 

MATLAB code with Reset function, provided in RL User’s Guide. The Reset function 

makes possible to vary the setpoint value (for constant setpoints) in the beginning of 

each episode during the training and reset the environment. Additionally, the author 

randomized initial value of the controlled variable (flow value in the case of valve control 

problem), as it was also done in the given example. This method allows to find more 

flexible optimal policy, which can provide a better control. 

 

The observation vector consists of the measured signal value (actual flow), error with 

respect to the reference signal and the integral of the error. The latter one provides a 

mechanism that computes the total error over the time and drives DDPG agent to 

decrease it. The reward function was created in a hybrid form based on (2.6) and (2.7): 

 

 𝑅𝑒𝑤𝑎𝑟𝑑 = {

10, 𝑖𝑓 |𝑒| < 𝜀,

−1, 𝑖𝑓 |𝑒| ≥ 𝜀,
−100, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤) 

 (2.6) 

 

where   𝜀 —  allowable error margin, m, 𝜀 > 0. 

 

 𝑅𝑒𝑤𝑎𝑟𝑑 = {
−100, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤)
1

𝑒 + 𝜆
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.7) 

 

where   𝜆 — a small constant preventing division by zero-error.  

 

The new reward function included reward and penalty parts (2.8):  

 

 𝑅𝑒𝑤𝑎𝑟𝑑 = {

0,1, 𝑖𝑓 |𝑒| ≤ 0,1,
|𝑒|, 𝑖𝑓 |𝑒| > 0,1,
𝑝, 𝑖𝑓 (𝑦 ≤ 0, 𝑦 > 𝑀𝑎𝑥_𝐹𝑙𝑜𝑤) 

 (2.8) 
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where   𝑝 — penalty, which value was not specified in [42]. 

 

The structure of the NNs and the training parameters are shown in Table 2.8.  

 

Table 2.8 NNs structure and training settings for DDPG agent, [42] 

Parameter Value 

Learning rate for actor 10-4 

Learning rate for critic 10-3 

Discount factor, 𝛾 0,9 

Activation functions for all hidden layers  
of actor and critic 

ReLU 

Actor output activation function Tanh 

Actor hidden layers number 1 

Actor hidden layers size, neurons 25 

Critic hidden layers size, neurons 50, 25 

Action path size, neurons 25 

Minibatch size 64 

Standard deviation / Variance of OUP noise 1,5 

Variance decay rate 105 

 

The authors elaborated on “Graded Learning”, a progressive coaching method, which is 

a form of “Curriculum learning” method. The Graded learning helped to avoid long 

trainings that can consist of thousands of episodes and last many hours. Instead of one 

long-term training, the RL task was intuitively broken down into levels, where each of 

them puts forward training criteria with increasing difficulty. The agent was trained for 

𝑛 episodes or until the training criteria is met. Once the level of task is learned, the 

agent is retrained at the next level and the new experience is built upon. So-called 

“transfer-learning” technique was used to transfer leaned NN’s weights from one task 

to another throughout 6 stages of increasing difficulty. The analysis of the results 

showed that Graded Learning is effective way to coach the RL agent.  

 

 

 

2.3 Literature overview conclusions 

 

The enormous number of the control methods has been described in the research 

papers, devoted to the problem of controlling the MLS and the accurate and stable 

trajectory tracking.  

 

The linear control methods are not suitable for the highly nonlinear and unstable MLS:  
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• All the assumptions and simplifications, regarding modeling, result in a simplified 

model and weaker control.  

• The state feedback control, the LQR and the gain-scheduling approach require 

long and tedious calculations in order to linearize the process model and to find 

a feedback matrix.  

• Tuning of one or several PID-controllers, in case of the gain-scheduling approach, 

is done through the trial-error method, which can be hard and very time-

consuming.  

• The linear controllers have a very narrow operating region.  

• The high control performance, and especially robustness of the controller, are 

not guaranteed. For this reason, additional methods and hybrid techniques are 

used.  

 

The nonlinear and advanced control methods require complex mathematical analysis 

and long and tedious calculations in order to obtain an appropriate control law.  

 

• Cascade control, implemented in the number of research works, can improve 

simple classical controllers’ performance only to some extent, and require 

various stabilizing controllers in additional loop.  

• The backstepping, the fuzzy logic control and the sliding mode control provide 

better stability of the system than linear control methods. While the backstepping 

requires manual tuning of the control parameters, the fuzzy controllers are easily 

tuned, but have slow response and long settling time. The sliding mode 

controllers have a stabilizing feature and provide fast response but suffer from 

the chattering problem and additionally require optimization. 

• The fractional-order control has a great potential in regard to the accuracy, but 

not the uncertainties, and there exists a problem of infinite memory for data 

storage and computations.  

• The model predictive control is used for its adaptation ability and prediction of 

the future system’s response, but it also demands a proper system’s model.  

• While the classical controllers, such as PID, are cheap and affordable, the 

implementation of the advanced controllers, such as MPC, may be costly and 

require additional setups.  

 

The amount of effort to be made in order to derive an appropriate control law and 

develop a controller, depends on the complexity of the model in hand and the design 

goals and specifications. It is clear, that application of the intelligent control methods, 

such as ANNs, can significantly reduce the design effort.  
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• The controller, based on the ANNs, can consider uncertainties that are highly 

difficult to identify and predict in the mathematical modeling, and thus, 

guarantee the higher control and stability performance of MLS. 

• The NN-based controller’s design process does not involve mathematical analysis 

of the model, thus, requires less effort.  

• Additionally, the NN-based controller will have wider operating region, and make 

various reference signals possible to be applied for the levitated object. 

 

 

 

2.4 Aims of the thesis 

 

The main aim of the thesis is to develop a control solution based on the ANNs for an 

accurate trajectory tracking of the levitated object in the MLS2EM, as well as to achieve 

a higher control and stability performance of the system in a presence of unpredictable 

disturbances and parameter uncertainty. The NN-based controller will have wider 

operating range in comparison to the PID-controller, which operating region is around 

2·10-3 m. 

 

To accomplish that, the following sub-goals have been outlined: 

 

• Collect and analyse the time-series datasets including object’s position first from 

the simulation model and then from the actual plant of MLS2EM; 

• Develop an appropriate NN structure and train the NN on the collected datasets; 

• Design the NN controller;  

• Test the NN controller in Simulation and compare it with the existing PD-

controller; 

• Make the necessary adjustments in the NN structure or control solution based 

on the tests results; 

• Validate the control and stability performance of the MLS2EM applying various 

reference signals and introducing disturbances;  

• Evaluate the results. 
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3. MAGNETIC LEVITAION SYSTEM AND ITS MODELING 

 

3.1 System description and modeling 

 

3.1.1 Mechanical part and software 

 

Magnetic levitation phenomenon is based on the principle of electromagnetic suspension 

(EMS). As mentioned in Chapter 1, the magnetic levitation technology makes frictionless 

motion possible, and therefore can provide operations with high speed and precision 

and reduce the mechanical wear of the equipment. 

 

The laboratory setup of the magnetic levitation system with two electromagnets 

(MLS2EM) is schematically shown in Figure 1.1. The mechanical unit of MLS2EM consists 

of the aluminum frame, two electromagnets attached to it (upper EM1 and lower EM2), 

an optical detector to sense the object position, and coils current sensors, and three 

ferromagnetic spheres of different weights and sizes (Table 3.1). The hardware is 

accompanied with the power supply and interface to a personal computer (PC) and the 

dedicated RTDAC/USB measurement and control input-output (I/O) board in the Xilinx® 

technology. The software operates in real time under MS Windows® using 

MATLAB®/Simulink R2017b and the Real Time Windows (RTW) Toolbox (currently 

renamed to Simulink Desktop Real-Time Toolbox) for building a real-time model [1]. 

Additionally, to the control software, the MLS2EM Toolbox is provided by INTECO in 

order to solve modeling, design and control problems for MLS2EM in MATLAB 

environment. 

 

Table 3.1 Ferromagnetic objects’ parameters 

Ball number  Ball size Ball mass, kg Ball diameter, m 

1 small 1,91·10-2 3,8·10-2 

2 medium 3,76·10-2 5,6·10-2 

3  big 4,71·10-2 6,4·10-2 

 

The MLS2EM control window is opened by the MATLAB command “mls2em_usb2_main” 

and shown in Figure 3.1. Through it one can rapidly access all basic functions of the 

MLS: testing tools, drivers, models and demo applications [1].  

 

Identification of the MLS2EM is done in four steps to verify or modify static and dynamic 

characteristics of the system. During identification process position sensor 

characteristics, static and dynamic features of actuators (electromagnets) are identified. 

The minimal control analysis is conducted to define the minimal control (or minimal 



 

39 

applied voltage) required to cause the motion of the levitated object from the lower 

electromagnet towards the upper electromagnet against the gravity force. 

 

 

Figure 3.1 The Magnetic Levitation Main window 

 
The MagLev device driver is a software go-between for the real-time MATLAB 

environment and the RT-DAC4/USB acquisition board [1]. The interior of the driver block 

is given in [1]. 

 

The INTECO provided three simulation models along with pre-tuned controllers (Table 

3.2, models 0-2, Figure 3.2), which include Magnetic Levitation Animation block (Figure 

3.3), and three pre-tuned experimental controllers (Table 3.2, models 3-5). The 

controllers will be discussed in Section 3.1.3. 

 

Table 3.2 Existing simulation and experimental models of MLS2EM 

Controller/ 
Model number  

Model name Sample time, s 

-/0 Open loop (sim.) 1·10-3 

1 PD (sim.) 1·10-3 

2 PD differential mode (sim.) 1·10-3 

3  PD EM1 (real-time) 5·10-3 

4 PD EM1, EM2 pulse excitation (real-time) 5·10-3 

5 PD differential mode (real-time) 5·10-3 

 

The “Magnetic Levitation model (MLS2EM)” block has two inputs: EM1 and EM2 control 

actions, and six outputs, which go to the Scope “MagLev – model Control and States” 

as four channels: 

- Position, m, 

- Velocity, m/s,  

- EM1 and EM2 currents, A, 

- EM1 and EM2 controls, pulse width modulation (PWM) duty 0-1. 

 

The MLS model will be described in more details in the next Section 3.1.2. 
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Figure 3.2 Simulation model "PD" (model 1) with Animation block 

 

 

Figure 3.3 Visualization of magnetic levitation using Animation block 

 

 

3.1.2 System modeling 

 

The nonlinear state space model of the MLS2EM is given by the set of equations (3.1)-

(3.2), [1], and represented in the diagram in Figure 3.4: 

 

 

�̇�1 = 𝑥2, 

�̇�2 = −
𝐹𝑒𝑚1
𝑚

+ 𝑔 +
𝐹𝑒𝑚2
𝑚

, 

�̇�3 =
1

𝑓𝑖(𝑥1)
(𝑘𝑖𝑢1 + 𝑐𝑖 − 𝑥3), 

�̇�4 =
1

𝑓𝑖(𝑥𝑑 − 𝑥1)
(𝑘𝑖𝑢2 + 𝑐𝑖 − 𝑥4), 

(3.1) 
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where   

 

 

𝐹𝑒𝑚1 = 𝑥3
2
𝐹𝑒𝑚𝑃1
𝐹𝑒𝑚𝑃2

exp (−
𝑥1

𝐹𝑒𝑚𝑃2
), 

𝐹𝑒𝑚2 = 𝑥4
2
𝐹𝑒𝑚𝑃1
𝐹𝑒𝑚𝑃2

exp (−
𝑥𝑑 − 𝑥1
𝐹𝑒𝑚𝑃2

) , 

𝑓𝑖(𝑥1) =
𝑓𝑖𝑃1
𝑓𝑖𝑃2

𝑒𝑥𝑝 (−
𝑥1
𝑓𝑖𝑃2

) , 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑠, 

(3.2) 

 

where 

𝑥1 — position of the ball, m, 𝑥1𝜖[0, 0,02],  measured downwards from EM1 to the 

highest point of the levitated ball, 

 𝑥2 — velocity of the ball, m·s,  𝑥2𝜖ℝ, 

 𝑥3 — current in the coil EM1, A,  𝑥3 ∈ [𝑖𝑀𝐼𝑁 , 𝑖𝑀𝐴𝑋], 

 𝑥4 — current in the coil EM2, A,  𝑥4 ∈ [𝑖𝑀𝐼𝑁 , 𝑖𝑀𝐴𝑋], 

𝑢1  — control for the EM2, 𝑢1𝜖[𝑢𝑀𝐼𝑁 , 𝑢𝑀𝐴𝑋],   

𝑢2  — control for the EM2, 𝑢2𝜖[𝑢𝑀𝐼𝑁 , 𝑢𝑀𝐴𝑋].         

 

The parameters of the equations (3.1)-(3.2) are described in Table 3.3 below.  

 

Table 3.3 Parameters of the equations (3.1)-(3.2) 

Symbol Description Value Unit 

𝑚 ball mass 5,71·10-2 kg 

𝑑 ball diameter 6·10-2 m 

𝑔 gravity acceleration 9,81 m·s-2 

𝐹𝑒𝑚1 , 𝐹𝑒𝑚2 electromagnetic force functions of 𝑥1 and 𝑥3 N 

𝐹𝑒𝑚𝑃1 electromagnetic force parameter 1,7521·10-2 H 

𝐹𝑒𝑚𝑃2 electromagnetic force parameter 5,8231·10-3 m 

𝑓𝑖(𝑥1) actuator parameters function of 𝑥1 1·s-1 

𝑓𝑖𝑃1 actuator parameters 1,4142·10-4 m·s 

𝑓𝑖𝑃2 actuator parameters 4,5626·10-3 m 

𝑐𝑖 actuator parameters 2,43·10-2 A 
𝑘𝑖 actuator parameters 2,5165 A 

𝑥𝑑 
distance between electromagnets minus 

ball diameter 
0,75-𝑑 m 

𝑖𝑀𝐼𝑁 minimum current value 3,884·10-2 A 

𝑖𝑀𝐴𝑋 maximum current value 2,38 A 

𝑢𝑀𝐼𝑁 minimal control for levitation 4,98·10-3 - 

𝑢𝑀𝐴𝑋 maximal control 1 - 
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Figure 3.4 MLS2EM diagram [1] 

 

The interior of the “Magnetic Levitation model (MLS2EM)” block is shown in Figure 3.5-

Figure 3.7. The distance between the electromagnets EM1 and EM2 is denoted by 

EMsDistance, and equals to 7,5 · 10−2 m. The result of subtraction 𝑥𝑏 = 𝑥𝑑 − 𝑥1 gives the 

distance between the lowest point of the levitated ball and the bottom electromagnet 

EM2. 

 

 

Figure 3.5. Interior of the MLS2EM model 
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Figure 3.6 Interior of the EM1 and EM2 current models 

 

 

Figure 3.7 Interior of the EM1 Fem and EM2 Fem blocks 

 

The function 𝑓(𝑢) corresponds to the expressions for 𝐹𝑒𝑚1, 𝐹𝑒𝑚2  from the equation (3.2).  

The system has two inputs: the controls 𝑢1 and 𝑢2, saturated in the limits [𝑢𝑀𝐼𝑁 , 1], and 

six outputs: the position of the ball 𝑥1, the velocity of the ball 𝑥2, the currents 𝑥3 and 𝑥4 

in the coils EM1 and EM2, respectively, and the controls PWM duty. 

 

The position of the ball is detected by the position sensor and measured downwards 

from the bottom of the upper electromagnet EM1. Additionally, control PWM (pulse width 

modulation) duty cycle is shown for the EM1 and EM2 in the scope (Figure 3.5). 

 

All variables 𝑥1, 𝑥2, 𝑥3,  𝑥4 of the equation (3.1) come together as a state of the system 

[𝑥1, 𝑥2, 𝑥3,  𝑥4], which is being changed at every time step 𝑡, 𝑡 ≥ 0. The initial state of the 

system is given at time 𝑡 = 0 as follows (3.3): 

 

 

𝑥1(0) = 0,009,  

𝑥2(0) = 0, 

𝑥3(0) = 0,9, 

𝑥4(0) = 0,04. 

(3.3) 
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3.1.3 Existing controllers 

 

The control of the ball position in MLS2EM is performed through the feedback control 

loop using classic PID-controller with zero integral component. The control law of a 

classic PID-controller includes proportional, integral, and derivative terms, and is given 

by the well-known equations (3.4)-(3.5): 

 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
,  (3.4) 

 𝑒(𝑡) = 𝑟(𝑡) − 𝑥(𝑡), (3.5) 

where  

𝑟(𝑡) — desired process value, or setpoint, SP,  

𝑥(𝑡) — measured process value, PV,  

𝑒(𝑡) — error value. 

 

As it has been already mentioned in Section 3.1.1, the INTECO provided six Simulink 

models: three simulation models and three experimental models (Table 3.2). The 

model 0, “open loop” does not exploit any controller. The rest of the models 1-5 include 

five pre-tuned PD-controllers.  

 

The interior of the PD and differential mode PD-controllers is shown in Figure 3.8 and 

Figure 3.9, and described by the equations (3.6) and (3.7), respectively. The integral 

term  𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0
 is replaced by the steady-state control constant 𝑢0, which is tuned for 

each controller separately. The parameters of the five controllers are given in Table 3.4. 

 

 

Figure 3.8 Interior of the PD-controller 
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Figure 3.9 Interior of the differential mode PD-controller 

 

The saturation blocks in Figure 3.8 and Figure 3.9 limit PD-controllers outputs 𝑢(𝑡) by 

the range of [0, 1]. 

 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝑢0,  (3.6) 

 𝑢𝐸𝑀1(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
+ 𝑢0 𝐸𝑀1, 

𝑢𝐸𝑀2(𝑡) = −(𝐾𝑝𝑒(𝑡) + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
) + 𝑢0 𝐸𝑀2.  

(3.7) 

 

It is important to note here, that in the given five Simulink models (for example, in 

Figure 3.2) the position error is calculated differently rather than in common case (3.5), 

namely: 

 

 𝑒(𝑡) = 𝑥(𝑡) − 𝑟(𝑡). (3.8) 

 

Another issue is that there is no information on the operating points of the controllers 

in [1], but empirically it was found equal to 9·10-3 m for all the PD-controllers. 

 

Table 3.4 Parameters of the simulation and experimental PD-controllers for the models 1-5 

Controller 
number 

Controller 
name 

Proportiona
l gain, 𝑲𝒑 

Derivativ
e gain, 𝑲𝒅 

Steady-state 
control, 𝒖𝟎 

Controller 
sample 

time 

1 PD (sim.) 55 5 0,3617 1·10-3 

2 
PD differential 
mode (sim.) 

60 4 
0,3812 for EM1 
0,3812 for EM2 

1·10-3 

3 
PD EM1 (real-

time) 
30 0,3 0,315 1·10-3 

4 
PD EM1, EM2 

pulse excitation 
(real-time) 

55 5 0,358 1·10-3 

5 
PD differential 

mode (real-time) 
45 1 

0,45 for EM1 
0,59 for EM2 

5·10-4 

 



 

46 

The main problem of the PD-controllers used in the simulation and experiments is that 

they are no more suitable when any change takes place in the MLS2EM. The PD-

controllers must be re-tuned for each certain case. For example, controllers 1-5 are 

tuned for the ball with weight of 5,71·10-2 kg and diameter of 6·10-2 m, but after 

changing these parameters to those from Table 3.1, controllers can no more provide 

accurate and adequate control. The problem becomes even more complicated and time-

consuming, since MLS2EM is a highly nonlinear and unstable system, and such MATLAB 

tool, as transfer function based automated tuning of PID-components (gains), is not 

available. Any disturbance, introduced in the system, for example, produced by the 

lower electromagnet EM2, crucially affects the tracking performance of the PD-

controller. 

 

The second issue is that the PD-controllers can provide more or less accurate control of 

the ball position in a very narrow range, which is approximately 2·10-3 m (2 mm), around 

the operating point. In the mentioned above conditions regarding the ball weight and 

diameter, and with the constant reference position of 9·10-3 m, the PD-control still 

results in the steady-state error of order 10-4 m. 

 

 

3.1.4 Parameter estimation for MLS2EM 

 

Since there is always a discrepancy between the real plant and its mathematical model, 

the parameter estimation for the MLS2EM is required. Thus, we can get closer in 

simulation to the behaviour of the real plant. 

 

The parameter estimation was done using datasets “Setpoint” and “Ball position” (Figure 

3.10), collected from the real plant acting on the medium size ball (ball number 2, Table 

3.1). The characteristics of the setpoint, or reference signal, are given in Table 3.5. 
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Figure 3.10 Datasets for parameter estimation 

 

Table 3.5 Reference signal characteristics for collecting datasets (setpoint, Figure 3.10) 

Time period, s Singal type Property Value 

[0, 7) Constant Value 1·10-2 m 

[7, 40) 
Uniform Random 

Number 

Minimum 
Maximum 

Seed  
Sample time 

9,8·10-3 m 
1,02·10-2 m 

7 
5 s 

[40, 70) Chirp 

Initial frequency 
Frequency at time 60s 

Gain 
Shift along x-axis 

1 Hz 
6 Hz 

1·10-3 

10-2 m 

[70, 85) 
Band-Limited White 

Noise 

Noise power 
Sample time 

Gain 
Shift along x-axis 

0,1 
0,5 s 
5·10-4 

10-2 m 

[85, 100) Sine Wave 

Amplitude 
Bias 

Frequency 
Phase 

Sample time 

8·10-4 m 
1·10-3 m 
3 rad/sec 

0 
10-3 s 

 

The parameter estimation was performed using Parameter Estimator App in MATLAB 

R2021b. The Trust-Region-Reflective algorithm and the Nonlinear Least Squares 

optimization method were used during the parameter estimation (Figure 3.11). The 

process took 43 iterations. The initial fit and the results of the estimation are depicted 

in Figure 3.12 and Figure 3.13, and given in Table 3.6. It is seen that the simulated 

output of MLS2EM is very close to the measured output after parameter estimation. 
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Figure 3.11 Parameter estimation progress 

 

Table 3.6 Initial and estimated parameters' values 

Parameter Initial value Estimation range Estimated value Unit 

𝐹𝑒𝑚𝑃1 1,7521·10-2 [0, 0,2] 1,1296·10-2 H 

𝐹𝑒𝑚𝑃1 5,8231·10-3 [0, 0,2] 4,7817·10-3 m 
𝑓𝑖𝑃1 1,4142·10-4 [0, 0,1] 2,5326·10-3 m·s 

𝑓𝑖𝑃2 4,5626·10-3 [0, 0,1] 1,3875·10-2 m 

𝑐𝑖 2,43·10-2 [0, 0,2] 3,4421·10-2 A 
𝑘𝑖 2,5165 [0, 10] 3,009 A 

 
 

 

Figure 3.12 Measured and simulated outputs prior parameter estimation (above); reference 

signal (below) 
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Figure 3.13 Measured and simulated outputs after parameter estimation (above); reference 

signal (below) 
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4. NARX-BASED CONTROLLER DESIGN 

 

4.1 NARX-based controller  

 

4.1.1 NARX model 

 

As the first NN-based control solution for MLS2EM the nonlinear autoregressive network 

with exogenous inputs (NARX) was chosen. The NARX networks have a dynamic 

recurrent structure with feedback connections between layers. They are commonly used 

for such problems, as an input signal prediction, nonlinear filtering of the input signal, 

and also modeling of nonlinear dynamic systems, such as MLS. 

 

The NARX model is defined by the recurrent equation (4.1) [44]: 

 

 𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑛𝑢)),  (4.1) 

 

where the output signal 𝑦(𝑡) at current time step 𝑡, 𝑡 ≥ 0, depends on its own previous 

values and the values of the input signal 𝑢(𝑡).  

 

There are two configurations of the NARX network commonly used in trainings [44], 

Figure 4.1: 

- Parallel architecture, where the network’s estimated output is fed back to the 

second input of feedforward neural network; 

- Series-Parallel architecture, where the true output (available target data) is used 

as the second input of feedforward network instead of feeding back the network’s 

estimated output. 

 

The Series-Parallel architecture will be used in the current work due to the higher 

accuracy of the input. After the training of NN is done, the NN structure is transformed 

into Parallel one with the feedback connection. 

 

Figure 4.1 Parallel (on the left) and Series-Parallel (on the right) architecture of NARX 
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4.1.2 Training datasets  

 

To realize the supervised learning for the NARX model, the following datasets has been 

prepared and collected in open loop as arrays (for convenience) of size 100001 × 1 with 

the sample time 10-3 s (Figure 4.2, Table 4.1): 

- Input data “input1”, which is an error generated in appropriate range going as 

an input to the PD-controller; 

- Target data “output1”, which is the PD-controller’s response to the error, or 

control action; 

- Time vector ”t1”, collected separately for building plots. 

 

 

Figure 4.2 Generating of the training dataset, Simulink model 

 

Table 4.1 Characteristics of the input signal 

Time period, s Singal type Property Value 

[0, 7) Constant Value 0 

[7, 40) 
Uniform Random 

Number 

Minimum 
Maximum 

Seed  
Sample time 

-1,1·10-3 m 
1,7·10-3 m 

7 
3 s 

[40, 70) Chirp 

Initial frequency 
Frequency at time 60s 

Gain 
Shift along x-axis 

1 Hz 
6 Hz 

2·10-4 

7·10-5 

[70, 85) 
Band-Limited White 

Noise 

Noise power 
Sample time 

Gain 
Shift along x-axis 

0,1 
0,5 s 
1·10-3 

7·10-5 
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Table 4.1 continued 

Time period, s Singal type Property Value 

[85, 100) Sine Wave 

Amplitude 
Bias 

Samples per period 
Offset 

Sample time 

10-3 m 
0 m 
10 
0 

10-3 s 

 

The training dataset is represented in the plot, Figure 4.3. The input data has been 

generated to look similar to the error’s behaviour in case of closed-loop system. 

 

 

Figure 4.3 Input and target data, collected in simulation 

  

 

4.1.3 NARX neural network structure 

 

As it was mentioned in Section 4.1.1, the NARX network is trained in Series-Parallel 

(open-loop) configuration (Figure 4.1), and later transformed into Parallel (closed-loop) 

configuration. Let’s denote: 

- 𝑥(𝑡) = (
𝑥(𝑡)
𝑡
) – input 1 of the NN, time-series dataset, where the first-row 

element 𝑥(𝑡) is a transposed vector “input1”; 

- 𝑦(𝑡) =(
𝑦(𝑡)
𝑡
) – input 2 of the NN, time-series dataset, where the first-row element 

𝑦(𝑡) is a transposed vector “output1”; 

- 𝐼𝑊{1,1} – matrix of the weighting coefficients from the input 1, 𝑥(𝑡), to the hidden 

layer 1, where {𝑖, 𝑗}-element of the matrix corresponds to the 𝑖-neuron in the 

hidden layer 1 and 𝑗-row of the input vector 𝑥(𝑡), 𝑖, 𝑗𝜖ℕ; 
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- 𝐼𝑊{1,2} – matrix of the weighting coefficients from the input 2, 𝑦(𝑡), to the hidden 

layer 1, where {𝑖, 𝑗}-element of the matrix corresponds to the 𝑖-neuron in the 

hidden layer 1 and 𝑗-row of the input vector 𝑦(𝑡), 𝑖, 𝑗𝜖ℕ; 

- 𝑏{1} – bias to the layer 1, of size 1 × 𝑖, where 𝑖 is a number of neurons in the 

hidden layer 1; 

- 𝐿𝑊{2,1} – matrix of the weighting coefficients from the hidden layer 1 to the 

output layer 2, of size 1 × 𝑖; 

- 𝑏{2} – bias to the layer 2, of size 1 × 1; 

- 𝐹1 and 𝐹2 – activation functions of the hidden layer 1 and output layer 2, 

respectively 

- �̂�(𝑡) – output of the NN. 

 

The output of the NARX network of Series-Parallel structure is given in a matrix form by 

the equation (4.2): 

 

 �̂�(𝑡) = 𝐹2(𝐿𝑊{2,1} ∙ 𝐹1(𝐼𝑊{1,1} ∙ 𝑥(𝑡) + 𝐼𝑊{1,2} ∙ 𝑦(𝑡) + b{1}) + b{2}),  (4.2) 

 

where NN is supposed to have only one hidden layer.  

 

The open-loop and closed-loop NARX network diagrams, interior and structure of its 

Simulink models are given in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and Table 

4.2. The Simulink models, shown in Figure 4.5 and Figure 4.7, were generated 

automatically with the command “gensim” from NN Toolbox. 

 

Table 4.2 Open-loop / closed-loop NARX structure 

Component 
number 

Name Type 
Size, 

neurons 
Learnables of 
closed-loop 

1 𝑥(𝑡) Input 1 1 - 

2 Process input 1 Normalization  - 

3 𝑦(𝑡) / 𝑎{2} Input 2 1 - 

4 

Layer 1 Hidden layer 10 

Weights  
𝐼𝑊{1; 1}  10 × 2 
𝐿𝑊{1;2}  10 × 2 
Bias 𝑏{1} 10 × 1 

5 Delays 1 Delay - - 

6 Delays 2 Delay - - 

7 Tansig Activation function - - 

8 
Layer 2 Output layer 1 

Weights 
𝐿𝑊{2;1}  1 × 10 
Bias 𝑏{2} 1 × 1 

9 Purelin Activation function - - 

10 Process output 1 Denormalization - - 

11 𝑦(𝑡) / 𝑎{2} Output 1 - 
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Figure 4.4 NARX series-parallel (open-loop) configuration diagram  

 
Figure 4.5 a).The interior of open-loop NARX model; b). Hidden layer 1; c). Output layer 2; 

d). Interior of IW{1,1} block 

 

 

Figure 4.6 NARX parallel (closed-loop) configuration diagram 

 

 

a). 

b). 

c). d). 
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Figure 4.7 a).The interior of closed-loop NARX model; b). Hidden layer 1; c). Output layer 2; 

d). Interior of IW{1,1} block 

 

The input and target data arrays “input1” and “output1” are transposed and converted 

into matrices, using command “con2seq”, where the second raw is a set of time steps, 

corresponding to the data samples. 

 

Two “Delays” blocks are set for each input; thus, the training starts from the third 

sample of datasets.  

 

The “Process input 1” and “Process output 1” blocks conduct normalization of the input 

and denormalization of the output, respectively.  

 

The input values are normalized according to the formula (4.3), realizing “mapminmax” 

MATLAB function: 

 

 �̃� =
(𝑥 − 𝑥𝑚𝑖𝑛)(�̃�𝑚𝑎𝑥 − �̃�𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ �̃�𝑚𝑖𝑛 , (4.3) 

 

where 𝑥 and �̃� are the input and the output of the function. 

 

a). 

b). 

c). d). 
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The output values are denormalized using formula (4.4): 

 

 𝑥 =
(�̆� − �̆�𝑚𝑖𝑛)(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

�̆�𝑚𝑎𝑥 − �̆�𝑚𝑖𝑛
+ 𝑥𝑚𝑖𝑛 , (4.4) 

 

where �̆� and 𝑥 are the input and the output of the reverse function. 

 

The activation functions “Tansig” (symmetric sigmoid transfer function) and “Purelin” 

(linear transfer function) are described by the equations (4.5) and (4.6): 

 

 𝐹1(𝑥) =
2

1 + exp(−2𝑥)
− 1, (4.5) 

 𝐹2(𝑥) = 𝑥. (4.6) 

 

 

4.1.4 Training and its results 

 

During the training, the NN learns complex associations between input and target data, 

and evaluates its own performance, or how close the returned output �̂�(𝑡) is to the target 

output 𝑦(𝑡).  

 

The Levenberg-Marquardt algorithm (LMA), is used to minimizes the performance 

function, or loss function 𝐿(𝑡), given in a form of sum of squares (4.7): 

 

 𝐿(𝑡) =∑ (𝑦𝑘(𝑡) − �̂�𝑘(𝑡))
2

𝑁

𝑘=1

, (4.7) 

 

where 𝑘, 𝑘𝜖ℕ, – number of the sample. 

 

The iterative procedure of LMA, which approximates the Newton’s method, is given by 

the common formula (4.8) [45]: 

 

 𝑥𝑘+1 = 𝑥𝑘[𝐽
𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒, (4.8) 

 

where 

𝑒 – vector of network errors, 

𝐽 – Jacobian matrix of first derivatives of 𝑒 with respect to network weights and 

biases, 
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𝐼 – identity matrix, 

𝜇 – scalar parameter, which is changed after each iteration step. 

 

The gradient is calculated in a following way: 

 

 𝑔 = 𝐽𝑇𝑒. (4.9) 

 

The LMA is used for each case of training. The training is performed in 300 epochs. After 

the training, the open-loop NARX network is rearranged into original Parallel form, using 

MATLAB command “closeloop”. The NARX controller is generated with the command 

“gensim” with the sample time of 1·10-3 s. 

 

In the next Sections 4.1.5, 4.1.6, and 4.1.7, three NARX-based controllers will be 

presented. The following NARX-based controllers were learned from the PD-controllers 

1, 2 and 4 (Table 3.4). The related NARX networks were created and trained using open-

source MATLAB code [44], see Appendix 1. The full analysis of position tracking and 

stability performance will be given in Chapter 6. 

 

 

4.1.5 NARX-based controller 1 

 

The parameters of the designed NARX-based controller “narx_net1_closed”, learned 

from the PD-controller 1, are given in (4.10): 

 

 

𝐼𝑊{1; 1} =

[
 
 
 
 
 
 
 
 
 
−1,5711
−0,9611
   0,7872
   0,8321
   0,7768
−0,3205
−1,5020
   0,8368
   1,2098
   0,3563

−1,1854
−1,4866
−1,5972
−0,6935
−1,0333
   0,3598
   1,4866
−0,4003
−1,0431
−1,4156]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{1; 2} =

[
 
 
 
 
 
 
 
 
 
−0,7365 
−0,7701
   0,8602
   2,9899
   7,0143
   0,1900
   3,7893
−0,3342
−0,3245
−0,0014

−0,4897
−0,8142
   2,3477
−1,7177
−4,7847
   3,4506
−2,4252
−0,1395
   1,9986
−0,1234]

 
 
 
 
 
 
 
 
 

 

 

𝐿𝑊{2; 1}′ =

[
 
 
 
 
 
 
 
 
 
   0,0289
   0,0062
   0,0564
   1,0189
   0,7870
   0,2254
−1,7802
   0,3954
−1,0288
−0,7422]

 
 
 
 
 
 
 
 
 

 

          𝑏{1} =

[
 
 
 
 
 
 
 
 
 
   2,9087
   1,4966
   1,2087
−0,2117
   0,2520
   1,9699
−0,0732
   0,4850
   2,3823
   2,5733]

 
 
 
 
 
 
 
 
 

 

     𝑏{2} = 1,0563 

(4.10) 
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where 𝐿𝑊{1; 2} – matrix of the weighting coefficients replacing corresponding matrix 

𝐼𝑊{1,2} from open-loop case (Figure 4.7). 

 

The simulated output of the NARX network together with the target data, used during 

the training is shown in Figure 4.8. It is seen, that at some points NARX output goes 

behind the range of [0,1], which means that the NARX network will work somewhat 

worse rather than the related PD-controller. Later the control action is saturated at 0 

and 1 inside MLS2EM block. The simulated NARX output was compared to the PD-

controller’s output using the MSE, which equals to 4,2925·10-4. The squares of errors 

for NARX over the time 𝑡 are depicted in Figure 4.9. 

 

 

Figure 4.8 NARX and PD output comparison 

 

Figure 4.9  Squares of errors for NARX over the time 
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4.1.6 NARX-based controller 2 

 

The NARX control corresponding to the differential mode PD-controller 2 (Table 3.4) was 

realized as two NARX-based controllers for EM1 and EM2 separately. Since the PD-

controller 2 has two outputs, the training data was collected from each of them. The 

parameters of the NARX-based controller for EM1 are given in (5.5). And the MSE value, 

calculated for comparison of NARX and PD-controller’s outputs, equals to 1,1387·10-4. 

 

𝐼𝑊{1; 1} =

[
 
 
 
 
 
 
 
 
 
−0,1548
−0,2101
−2,0148
−1,5955
   0,5687
−0,8278
   0,3058
−0,6805
   0,5860
   1,1515

   1,0869
   0,0675
−0,4340
   1,3751
−1,3224
−2,8071
   1,5597
−0,3998
−0,1964
−0,6019]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{1; 2} =

[
 
 
 
 
 
 
 
 
 
   1,5011
−1,9873
−1,3850
−2,0346
    4,4689
−0,6768
   3,4217
   1,3890
−2,0713
   0,1470

   1,4176
−1,2346
−1,0671
−0,4208
−0,9881
−1,2108
   0,4119
−1,2374
   0,3746
   2,1746]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{2; 1}′ =

[
 
 
 
 
 
 
 
 
 
−0,0579
−0,5594
−0,0087
   0,2661
   0,7590
   0,0259
   0,0585
−0,1782
   1,3428
−0,3977]

 
 
 
 
 
 
 
 
 

 

         𝑏{1} =

[
 
 
 
 
 
 
 
 
 
   2,4467
−1,8737
   1,6147
   1,0942
   0,0545
−0,5950
   0,3949
−1,9347
−0,1397
   2,7238]

 
 
 
 
 
 
 
 
 

 

     𝑏{2} = 0.1027 

(4.11) 

 

The parameters of the NARX-based controller for EM2 are given in (4.12). And the 

related MSE equals to 8,2169·10-4. 

 

𝐼𝑊{1; 1} =

[
 
 
 
 
 
 
 
 
 
−1,2599
   2,0494
−0,2667
−1,1055
   0,2693
−2,0241
   0,6604
   0,3908
   0,2945
−0,3247

−0,6166
−0,5117
−0,7080
   0,4494
   0,1285
−1,1927
   1,6507
   2,4090
   1,4833
−0,4166]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{1; 2} =

[
 
 
 
 
 
 
 
 
 
−1,2935
   0,6896
   0,6565
   1,2389
    3,4240
−1,6231
   0,5122
−1,0850
−0,1690
−0,4476

   2,1896
−0,6694
−0,6096
   0,8733
   0,7469
−1,2791
−0,5876
   1,3397
   0,2847
−1,0349]

 
 
 
 
 
 
 
 
 

 

 

𝐿𝑊{2; 1}′ =

[
 
 
 
 
 
 
 
 
 
   0,3820
   0,4612
   1,2698
   0,1860
−0,6743
   0,2940
   0,2520
   0,1122
   0,8727
−0,6959]

 
 
 
 
 
 
 
 
 

 

         𝑏{1} =

[
 
 
 
 
 
 
 
 
 
   1,8858
−1,9460
−0,0858
   1,5445
−0,6239
−0,6272
   0,4366
−1,0595
   2,4012
   1,0737]

 
 
 
 
 
 
 
 
 

 

     𝑏{2} = 0,7505 

(4.12) 
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4.1.7 NARX-based controller 4 

 

The parameters of the designed NARX-based controller, learned from the PD-

controller 4, are given in (4.13). And the related MSE equals to 2,9628·10-4. 

 

 

𝐼𝑊{1; 1} =

[
 
 
 
 
 
 
 
 
 
−1,0644
−0,6850
0,3325
1,4099
1,3821
−0,4540
−0,9576
1,0704
0,3932
0,9415

   0,7998
−1,9695
−0,1619
−0,2552
−1,5384
−2,5546
   0,9500
   0,2007
−1,1143
   0,6126]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{1; 2} =

[
 
 
 
 
 
 
 
 
 
   1,1755 
   0,1278
   1,6428
−0,7310
   6,3106
   0,5325
   3,8451
−1,5176
   1,3787
   0,7089

−1,4630
−0,1900
−1,4782
   0,4081
−5,0281
−0,2290
−3,4080
−0,1900
−1,6747
   2,0036]

 
 
 
 
 
 
 
 
 

 

𝐿𝑊{2; 1}′ =

[
 
 
 
 
 
 
 
 
 
   0,0391
   0,0103
   0,6545
   0,0797
   1,0609
−0,0058
−1,5739
   0,1115
−0,0896
   0,0155]

 
 
 
 
 
 
 
 
 

 

          𝑏{1} =

[
 
 
 
 
 
 
 
 
 
   2,9279
   1,8852
   0,0382
−0,8902
   0,3319
−0,7329
   0,1133
   1,6058
   2,0165
   2,3106]

 
 
 
 
 
 
 
 
 

 

       𝑏{2} = −0,2891 

(4.13) 

 

 

 

   

4.2 Obstacles in NARX-based controller design 

 

During the NAXR-controller design and based on the results of the training, the number 

of obstacles to creating an adequate control has appeared.  

 

- Due to the fact, that the weights and biases of the network are initialized 

randomly, each certain network training (with same training settings and 

network structure) ends up with different results. Moreover, the trainings often 

end up with unpredictable, insufficient, or on opposite, excessive control action, 

which is frequently shifted away from the expected control action range. This 

means, that even being simple with respect to the mathematical effort, the 

design of a proper controller may take many trials and quite a long time.  

 

- The simplicity or the difficulty of the training datasets structure (for example, 

pure sine wave form “input data”) do not result in the design of a better control. 

The same is true about the network structure. The different number of the 
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hidden layers and different layer sizes were tried out during the network 

training, but no correlation was found between those and the network’s 

improvement. 

 

- The NARX-based controller can only surpass the PD-controller’s performance 

only at some points in accuracy, but overall performance of the NARX-based 

controller is weaker (this will be discussed in more details in Chapter 6). The 

NARX controller cannot interpolate and extend the PD working region. It is less 

stable to disturbance rather than the PD-controller.  

 

- The training datasets for the experimental NARX-based controller for real-time 

control cannot be collected from the PD-controller in open-loop since there is no 

option to run the experiment on the real plant with disconnected PD-controller. 

The datasets collected in closed-loop include excessive information that comes 

from MLS2EM output and affects the position error values. These datasets are 

useless in the NARX-based controller design. 

 

For these reasons, one can conclude that the NARX-based controller is not suitable in 

the tracking control problem for MLS2EM, or the pure NARX-control is not sufficient. In 

the next Chapter 5 the Reinforcement Learning based control solution will be presented. 
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5. RL-BASED CONTROLLER DESIGN 

 

5.1 Reinforcement Learning based controller 

 

5.1.1 Deep Reinforcement Learning approach 

 

Deep Reinforcement Learning (DRL) is a branch of machine learning, which stands 

separately from supervised and unsupervised learning. Supervised Learning supposes 

providing input and output behaviour patterns to be achieved during the learning 

process. Unsupervised Learning realizes self-learning by discovering similar input 

features and categorizing them into groups with a certain output probability. 

 

Reinforcement Learning does not employ either training datasets as a behaviour sample, 

or data distribution to categories during the learning process. Instead, RL involves direct 

interaction between a learner, called “agent”, and an environment.  

 

An environment includes everything outside an agent, namely: dynamic model of a 

plant, reference and measured signals, observations’ block, reward generating and 

termination blocks. 

 

The observations’ block contains measured signals to be observed, including calculated 

error between setpoint and measured values, and its variations. A set of observations 

is a vector of values which is observed at each moment of time. It is commonly called 

“state”. Thus, the state is being changed and observed throughout the whole learning 

process at each time step.  

 

The reward block provides the rule to evaluate and regulate the overall performance of 

the agent’s training.  

 

The training is split into episodes, which literally represent separate runs of experiment 

or simulation. Termination block provides stopping criteria, or certain conditions, that 

terminate the current episode and immediately launch the next one. The initial state of 

the system is restored at the beginning of each episode. 

 

The reinforcement learning method includes five main components: 

- agent,  

- environment 𝐸,  
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- action 𝑎𝑡,  

- state 𝑠𝑡,  

- reward 𝑟𝑡, where 𝑡 is a time step, 𝑡 ≥ 0. 

 

Let’s also introduce the following notations: 

 

𝒮  – set of states, or state space, finite, 

𝒜 – set of actions, or action space, finite. 

 

The agent interacts with the environment 𝐸 in the following way. At each time step 𝑡 

the agent receives a set of observations, or state 𝑠𝑡, selects and performs an action 𝑎𝑡, 

which drives system to the new state 𝑠𝑡+1, and immediately obtains a scalar reward 𝑟𝑡.  

The immediate reward, that agent receives after performing an action at each time step, 

is defined by the rule called a “reward function”. The reward function plays the crucial 

role in RL. A nicely defined reward function gives the proper “motivation” to the agent 

and affects the quality and speed of the learning performance.  

 

Let’s denote by 𝑟(𝑠𝑡 , 𝑎𝑡) the immediate reward 𝑟𝑡 received by the agent after performing 

an action 𝑎𝑡 through the state 𝑠𝑡 at time 𝑡. By the transition dynamics 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) we 

will understand probability, that action 𝑎𝑡 in a state 𝑠𝑡 at time step 𝑡 will lead to the state 

𝑠𝑡+1 at time step 𝑡 + 1. 

 

The agent behavior, or the action choice in the state 𝑠𝑡, is determined by the policy 𝜋, 

or in other words, by the probability of the action 𝑎𝑡 at time step 𝑡. The policy function, 

or policy, 𝜋: 𝒮 → 𝒫(𝒜), realizes mapping between the state space 𝒮 and the probability 

distribution over the action space 𝒜 ⊂ ℝ𝑁. 

 

The so-called “return from a state”, or “cumulative reward”, is defined as the sum of 

discounted future reward 𝑅𝑡 given by the formula (5.1) [39]:  

 

 𝑅𝑡 =∑𝛾𝑖−𝑡𝑟(𝑠𝑖 , 𝑎𝑖)

𝑇

𝑖=𝑡

, (5.1) 

 

where 𝛾 – discount factor, 𝛾 ∈ [0,1], driving the agent either to take actions immediately 

or postpone them over time (when 𝛾 → 1). The discount factor is usually chosen close 

to 1.  
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The goal of RL is to find an optimal policy 𝜋∗, which maximizes the cumulative reward 

function (5.1). 

 

 

5.1.2 Deep Deterministic Policy-Gradient algorithm 

 

Deep Deterministic Policy-Gradient (DDPG) algorithm, described in [39], Appendix 2, 

represents an off-policy actor-critic algorithm which can learn policies in continuous 

action spaces. This makes the algorithm applicable for the control of the systems with 

complex continuous dynamics, such as MLS.  

 

The DDPG algorithm utilizes two artificial neural networks, given by the following 

functions:  

- actor 𝜇(𝑠| 𝜃𝜇), with parameters 𝜃𝜇, which takes the state 𝑠𝑡 as an input, and has 

the specific action 𝑎𝑡 at the output, thus, realizing the current policy 𝜋,   

- critic 𝑄(𝑠, 𝑎|𝜃𝑄), with parameters 𝜃𝑄, which takes the state 𝑠𝑡 and action 𝑎𝑡 as two 

inputs and returns the corresponding expectation of the discounted cumulative 

reward 𝑅𝑡.  

 

The DDPG algorithm iteratively solves the recursive Bellman equation (5.2) for critic 𝑄: 

 

 𝑄𝜇(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸 [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄
𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))], (5.2) 

 

where 𝔼𝑟𝑡,𝑠𝑡+1~𝐸  — an expectation of cumulative reward, depending only on the 

environment 𝐸. 

 

The loss function 𝐿(𝜃𝑄) of critic parameters 𝜃𝑄 is given by the equations (5.3), (5.4): 

 

 𝐿(𝜃𝑄) = 𝔼𝑠𝑡~𝜌𝛽,𝑎𝑡~𝛽,𝑟𝑡~𝐸 
[(𝑄(𝑠𝑡 , 𝑎𝑡|𝜃

𝑄) − 𝑦𝑡)
2], (5.3) 

 

where  

 

 
𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃

𝑄), 

𝜇(𝑠𝑡+1) = 𝑎𝑡+1. 
(5.4) 

 

𝛽 — stochastic behavior policy, used to learn 𝑄 off-policy. 
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The goal of the training is minimization of the loss function 𝐿(𝜃𝑄) with respect to 𝜃𝑄. 

 

The actor 𝜇 is updated applying the chain rule to the expected return from the start 

distribution 𝐽 with respect to the actor parameters 𝜃𝜇 [39]: 

 

 
∇𝜃𝜇𝐽 ≈ 𝔼𝑠𝑡~𝜌𝛽 [∇𝜃𝜇𝑄(𝑠, 𝑎

|𝜃𝑄)|𝑠=𝑠𝑡 ,𝑎=𝜇(𝑠𝑡| 𝜃𝜇)] 

= 𝔼𝑠𝑡~𝜌𝛽 [∇𝑎𝑄(𝑠, 𝑎
|𝜃𝑄)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)∇𝜃𝜇𝜇(𝑠|𝜃

𝜇)|𝑠=𝑠𝑡], 
(5.5) 

 

where   ∇𝜃𝜇𝐽 — gradient of 𝐽 with respect to 𝜃𝜇, and 𝐽 is given by the expression (5.6): 

 

 𝐽 = 𝔼𝑟𝑖,𝑠𝑖~𝐸,𝑎𝑖~𝜋 [𝑅1]. (5.6) 

 

During the training, actor and critic update and store their parameters. The training 

algorithm, given by T.P. Lillicrap and others in [39], considers use of a replay buffer 𝑅, 

which is a finite sized cache, storing the transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). The learning 

process is realized in minibatches. This is done to solve the problem of a uniform 

distribution of samples for the optimization algorithm in case of continuous time 

domains.  

 

The “target networks”, 𝜇′(𝑠|𝜃𝜇
′
)  and 𝑄′(𝑠, 𝑎|𝜃𝑄

′
), which are the copies of  actor and critic 

networks, with parameters 𝜃𝜇
′
 and 𝜃𝑄

′
 respectively, are used to calculate the target 

values [39]. The weights of target networks  𝜇′ and 𝑄′ are being updated slowly (5.7), 

applying target smooth factor  𝜏, 𝜏 ≪ 1. This prevents instability and divergence issues 

of the learning process, which is a frequent problem of the Q-learning algorithm. The 

full DDPG algorithm, described in [39], is given in Appendix 2. 

 

 
𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
, 

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
. 

(5.7) 

 

For effective networks’ learning the deep learning technique called “batch normalization” 

[46] is commonly used in problem of differently scaled input values. A minibatch of data 

is normalized across all observations using the rule (5.8) from [47]: 

 

 
𝑥𝑖 =

𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖 

 , 

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽, 

(5.8) 
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where  

𝑥𝑖    — an element of the input to be normalized, 

𝜇𝐵 — mean, and 

𝜎𝐵
2 — variance, calculated for each channel (or, observation) independently, 

𝜖  — constant improving numerical stability in case of very small variance value, 

𝛾  — scale factor, and 

𝛽 — offset, updated during the network training. 

 

One of the important challenges of learning process is exploration of the continuous 

action space. To realize this, the authors of [39] introduced exploration policy 𝜇′, where 

the noise 𝒩𝑡 is added to the actor output, or selected action, at each time step (5.9): 

 

 𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃
𝜇) +𝒩𝑡.  (5.9) 

 

The frequently used action noise model is based on Ornstein-Uhlenbeck process (OUP), 

which is described by stochastic differential equation and refers to the Wiener process. 

As it is mentioned in [42], simpler models, such as additive Gaussian noise model, do 

not suit, since they may cause abrupt unexpected changes over the time and replicate 

real life actuators’ behavior worse that OUP model does.  

 

In RL, OUP action noise model is realized through the notions of standard deviation and 

mean, provided in [48]. The noise value 𝑣(𝑡 + 1) at each next time step 𝑡 + 1 is defined 

by the recurrent formula (5.10): 

 

  
𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑀𝑒𝑎𝑛𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.∗ (𝑀𝑒𝑎𝑛 − 𝑣(𝑡)).∗ 𝑇𝑠 

+𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑡).∗ 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑀𝑒𝑎𝑛)).∗ √𝑇𝑠, 
(5.10) 

 

where   𝑇𝑠 — simulation sampling time. 

 

It is important to appropriately set the noise standard deviation, taking into account the 

particular environment properties, to encourage good exploration of the action space. 

The standard deviation is chosen so, that the product of multiplication 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.∗ √𝑇𝑠  equals to 1% to 10% of the expected action range for specific 

system (5.11), [48]: 

 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.∗ √𝑇𝑠 = (1% 𝑡𝑜 10%) 𝑜𝑓 𝐴𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒. (5.11) 
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The noise, added to the action at each time step, plays the crucial role in the exploration 

ability of an agent, and therefore directly impacts the learning performance. For 

example, increasing the amount of noise, one can overcome the problem of too quick 

convergence to the local minimum and jamming of the training process.  

 

 

5.1.3 Environment, observations and reward function 

 

The following control solution suggests training the DDPG agent in parallel with the PD-

controller for several cases of the latter one (Table 3.2). 

 

The environment includes the following components (Figure 5.1): 

 

- the plant “Magnetic Levitation model (MLS2EM)”; 

- the PD-controller to be improved; 

- set of reference signals, scope and display blocks;  

- “Generate observations” block, which consists of measured position and 

calculated error at each time step, and also integral error to accumulate the error 

value over the time, and generates an observations’ vector; 

- “Stop simulation” block with criteria for immediate termination of simulation in 

case of falling out of bounds for position; 

- “Calculate reward” block, which calculates the scalar reward at each time step.  

 

 

Figure 5.1 Simulink model, PD controller and DDPG agent in parallel 
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Figure 5.2 "Generate observations" block   Figure 5.3 "Stop simulation" block 

 

Figure 5.4 "Calculate reward" block 

 

The observations information includes 3x1 vector with elements given in Table 5.1. The 

position and the error values are observed in meters. The action information includes 

1x1 vector called “control”, whose values are saturated later in the plant block (Figure 

1.1) at the lower and upper actuator limits 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 (Table 3.3), namely, at 

4,98·10-3  and 1.  

 

Table 5.1 List of observations with limits 

Observation Limits 

Position [0, +∞) ⊂ ℝ𝑛 

Error (−∞,+∞) ⊂ ℝ𝑛 

Integral error (−∞,+∞) ⊂ ℝ𝑛 

 

The stopping criteria is based on the measured position value. The block sets its output 

to logic “true” when the agent goes behind the limits of 1·10-4 m (lower limit) or 2·10-2 m 

(upper limit) and rises the flag “isdone” inside the “DDPG agent” block. 

 

The measured position value and calculated error go as two inputs into “Calculate 

reward” block. After many experiments, the most appropriate reward function was 

chosen of the following view (5.12): 
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𝑟1 = {
1,           𝑖𝑓  |𝑒| < 1 · 10−3,
−10,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,            

 

𝑟2 = {
−300,        𝑖𝑓  𝑥1 ≤ 1 · 10

−4, 𝑜𝑟 𝑥1 ≥ 2 · 10
−2,

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                           
 

𝑟3 = 1, ∀𝑡 ≥ 0, 

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟1 + 𝑟2 + 𝑟3 , 

(5.12) 

where 

𝑟1 — error related (accuracy) reward, 

𝑟2 — position related penalty for exceeding bounds, 

𝑟3 — time (continuation) reward. 

 

The error tolerance was chosen based on the training performance. It is obvious, that 

the smaller allowable error range, the harder for DDPR agent to find a solution. Taking 

into account the high instability of MLS, any decrease of the error tolerance to 5·10-4, 

or even to 8·10-4, appears to be impossible. The experiments in this case end up with 

constantly growing deviation of action value, being produced by the actor, from the 

expected control range [𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥].  

 

Block “Data type conversion” ( 

Figure 5.4) was added to convert data from Boolean to Double type. This important point 

is not mentioned in the similar example for water tank model problem described in RL 

Toolbox User’s Guide [43], pp. 2-46 - 2-49. 

 

The proposed type of reward function (5.12) gives clear understanding of goodness of 

the training process since the reward is calculated as integer value at each time step. 

Comparing to the exponential reward functions (2.4) from [42], the reward function 

(5.12), can give more motivation to the agent, by strictly penalizing it for falling out of 

the allowable error range. The cumulative reward is one of the “DDPG agent” block’s 

outputs and displayed during the training using “display” block along with single time-

step reward (Figure 5.1). 

 

The sine wave was chosen in a role of reference signal (Table 5.2) as the most 

appropriate pattern for training. To change the setpoint during the training as it was 

done in [42] and [43], using environment reset function “env.ResetFnc”, appeared to 

be unreasonable due to high instability of MLS. Thus, the training was done, using only 

one unchangeable reference signal. 
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The control action of DDPG agent is displayed during training, using “Display” block, as 

long as cumulative and each time step reward values. The measured position is 

observed in the “Scope” block. 

Table 5.2 Reference signal (sine wave) parameters 

Parameter Value 

Amplitude, m 1·10-3 

Bias, m 9·10-3 

Frequency, rad/s 6 

Phase, rad 0 

Sample time, s 10-3 

 

The MLS2EM parameters set during the training include those given in Table 3.3, where 

the ball mass is 5,71·10-2 kg and ball diameter is 6·10-2 m. The initial state of the system 

is given by (3.3). 

 

The Simulink environment is built using command “rlSimulinkEnv” from the open-source 

MATLAB code [43] from RL Toolbox, Appendix 3. 

 

 

5.1.4 Actor and Critic design 

 

In order to design an appropriate control solution for MLS, enormous number of 

simulation experiments had been conducted. The different structures of actor and critic 

NNs were tested out.  

 

The following obstacles were met during the process of actor and critic design. 

 

- The RL Toolbox does not support batch normalization, which was found useful in 

research works [39] and [40]. The regular normalization applied either at the 

input layers or at all layers of NNs does not affect the improvement of the 

training.   

 

- The size of the NNs is limited by the computational ability of the computer 

(Intel(R) Core(TM) i5-1035G1 CPU, RAM 8,00 GB) used for the RL trainings. It 

was found that the medium-size NNs (with up to 50 neurons in the hidden layer) 

work well for the problem of improvement of the PD-controller, and there is no 

need to exploit large NNs (with 300-400 neurons in the hidden layer), as it was 

done in [39]. Even regular normalization, applied only to input layers of NNs, 

could slow down the training process in several times and make the training 
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impossible. For the mentioned reasons, it was decided not to use any 

normalization. 

 

The actor and critic NNs were created using Deep Network (DN) Designer App from 

Deep Learning (DL) Toolbox [49] and later imported in Reinforcement Learning (RL) 

Designer. It is also possible to create NNs directly in RL Designer, but there are 

limitations for activation functions and number of layers. In fact, the equal number of 

neurons in each hidden layer of actor and critic is the only option to set in RL Designer. 

 

The selected actor and critic structure is given in Table 5.3 and Table 5.4, and shown in 

Figure 5.5. 

 

Table 5.3 Actor structure 

Layer 
number 

Name Type 
Layer size, 

neurons 
Learnables 

1 input_1 Feature Input 3 
- 
- 

2 fc_1 Fully Connected 25 
Weights 25 × 3 

Bias 25 × 1 

3 tanh_1 Tanh - 
- 
- 

4 fc_2 Fully Connected 25 
Weights 25 × 25 

Bias 25 × 1 

5 tanh_2 Tanh - 
- 
- 

6 output Fully Connected 1 
Weights 1 × 25 

Bias 1 × 1 

 

Table 5.4 Critic structure 

Layer 
number 

Name Type 
Layer size, 

neurons 
Learnables 

1 input_1 Feature Input 3 
- 
- 

2 st_fc_1 Fully Connected 50 
Weights 50 × 3 

Bias 50 × 1 

3 relu_1 ReLU - 
- 
- 

4 st_fc_2 Fully Connected 25 
Weights 25 × 50 

Bias 25 × 1 

5 input_2 Feature Input 1 
- 
- 

6 act_fc_1 Fully Connected 25 
Weights 25 × 2 

Bias 25 × 1 

7 concat Addition - 
- 
- 

8 relu_output ReLU - 
- 
- 

9 output_1 Fully Connected 1 
Weights 1 × 25 

Bias 1 × 1 
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The actor NN, was exported from DN Designer to MATLAB workspace only with “layers” 

structure, but not “layer graph”, as for critic NN. This causes the error while importing 

actor network in RL Designer. The problem was solved by correcting the code, 

automatically generated in DN Designer (Appendix 4), namely, by declaring the 

corresponding layer graph (with command “layerGraph”) and adding actor’s layers to it 

(with command “addLayers”).  

 

Also, it worth to notice, that there may appear “name mismatch” error in RL Designer, 

which is solved by keeping the input and output layers’ names strictly as “input_1”, 

“input_2”, “output”, “output_1”, etc. 

 

 

Figure 5.5 Actor (left) and critic (right) structure in Deep Network Designer 

  

The following layer types are used in actor and critic NNs structure: 

 

- Feature Input Layer as an input layer for scalar data set representing features; 

- Fully Connected Layer as a hidden layer, that multiplies the input by a weight 

matrix and adds a bias vector; 
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The common weights initialization scheme, Glorot initialization, is used at each 

Fully Connected Layer. The initial weights are sampled independently, from the 

uniform distribution with zero mean and variance equal to 

2/(𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒 +  𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑧𝑒). The biases are initialized as zeros. 

- Tanh Layer, or hyperbolic tangent, as activation layer that applies the tanh 

function to the input and has bounded output in a range [-1,1]: 

 

 tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
; (5.13) 

 

- ReLU Layer, or rectified linear unit, performs the threshold operation to each 

element of input: 

 𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0,
0, 𝑥 < 0.

 (5.14) 

 

- Addition Layer implements concatenation of the layers. 

 

 

5.1.5 RL-training and its results 

 

The RL-agent training process was organized using Reinforcement Learning Designer 

from Reinforcement Learning Toolbox [43]. The designed actor and critic NNs along with 

the built environment was imported prior to the training. Different amounts of noise, 

actor and critic learning rates and limitations for gradients were tested out. The most 

suitable properties and training options, that resulted in acceptable solution, are given 

in Table 5.5, Table 5.6. In role of execution environment CPU was used. 

 

Table 5.5 Agent, actor and critic, and noise properties 

Parameter Value 

Sample time, s 10-3 

Discount factor 0,99 

Batch size 128 

Experience buffer length 106 

Target smooth factor 10-3 

Actor learn rate 10-3 

Actor gradient threshold 1 

Critic learn rate 10-3 

Critic gradient threshold 1 

Standard deviation of OU noise 2·10-2 

Mean 0 

 

Table 5.6 Agent training options 

Parameter Value 

Maximum episodes 104 
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Maximum episode length, time steps / s 104 / 10 

Average window lengths, episodes 5 

Stopping criteria: episode reward 2·104 

Save agent criteria: episode reward 2·104 

 
The actor and critic networks parameters are updated using Adam optimizer [50], [51], 

according to the equations (5.15)-(5.16): 

 

 𝜃𝑙+1 = 𝜃𝑙 −
𝛼𝑚𝑙

√𝑣𝑙 + 𝜀
, (5.15) 

where 

 

 
𝑚𝑙 = 𝛽1𝑚𝑙−1 + (1 − 𝛽1)∇𝐸(𝜃𝑙), 

𝑣𝑙 = 𝛽2𝑣𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]
2, 

(5.16) 

 

𝛼 — step size, 

𝜀 — offset, 

𝛽1 and 𝛽1 — decay rates, 

𝐸(𝜃𝑙) — expectation of the value 𝜃𝑙. 

 

The Adam optimization method is suitable for the problems with large datasets and 

high-dimensional parameter spaces. This robust method required little memory and 

applied for the wide range of optimization problems in the field of machine learning. The 

full description of Adam algorithm is given in [50].  

 

The following settings were used for actor and critic parameters updates (Table 5.7). 

 

Table 5.7 Adam optimizer options for actor and critic 

Parameter Value 

Denominator offset, 𝜀 10-8 

Gradient decay, 𝛽1 0,9 

Squared gradient decay, 𝛽2 0,999 

Gradient threshold method l2norm 

L2 regularization 10-4 

 

The training and validation of the agent can be also done using the MATLAB code from 

Appendix 5, provided in common view in [43]. 

 

Three PD-controllers 1, 2 and 4 (Table 3.4) had been improved with the added in parallel 

RL(DDPG)-agents. The RL-agents were saved and later used in simulations, being 

loaded from the workspace. The RL Toolbox, unfortunately, does not provide an option 

to export actor and critic weights, as array, or function. For this reason, further 
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exploitation of the designed RL agent with the real-plant MLS2EM were impossible, since 

the plant works on drivers of 2017 and operates in MATLAB/Simulink R2017b, which 

does not support newer RL Toolbox. The designed RL-agents are provided in 

supplementary digital materials of the thesis according to the Table 5.8. The 

performance of the RL-agents will be discussed in Chapter 6. 

 

Table 5.8 RL-agents and related PD-controllers 

RL-agent name Related PD-controller 

c1_agent1 controller1  

c2_agent1 controller2 

c4_agent1 controller4 

 

The training progress and simulation results for the RL agent, named “c1_agent1”, 

trained in parallel with the PD-controller 1, are depicted in Figure 5.6, Figure 5.7. It is 

seen that training converges to maximum reward at the 17th episode. The simulated RL-

agent works well and reaches the maximum reward in 10 of 10 cases.  

 

 

Figure 5.6 Training progress of RL-agent “c1_agent1” 
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Figure 5.7 Simulation result of the trained RL-agent “c1_agent1” 

Here, it is important to note, that the training with same parameters, based on the 

reward function (5.12) without the term 𝑟3, i.e., without the time reward, results in a 

longer and less stable training (Figure 5.8). Since the parameters of actor and critic NNs 

are initialized randomly, each certain training goes differently, requires different number 

of episodes, and ends up with a little bit different solution. Without time reward the 

training process tends to diverge (Figure 5.9), the actor’s output goes far away from 

the adequate control range, and the prognosed reward 𝑄0 continually decreases. The 

comparison of those three cases depending on the time reward is given in Table 5.9. 

 

 

Figure 5.8 Training of “c1_agent1” without time reward 
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Figure 5.9 Diverging training of “c1_agent1” without time reward 

Table 5.9 Training outcomes depending on the time reward 

Figure 
Time reward 

value, 𝒓𝟑 

Number of 
episodes 

Training duration Achieved reward 

Figure 5.7 1 45 33 min 2·104 / 2·104 

Figure 5.8 0 125 1 h 20 min 1·104 / 1·104 

Figure 5.9 0 160+ 1 h+ -310 / 1·104 

 

 

5.1.6 Graded learning for MLS2EM  

 

The idea of graded learning with learning control tasks by levels of increasing difficulty, 

introduced in [42], can be applied for the design of the control solution for MLS. This 

idea will be realized so: the PD-controller output is supposed to be decreased from level 

to level using gain in a range [0, 1] in series with the PD-controller (Figure 5.1). The 

RL-agent is supposed to be retrained from one level of difficulty to another, transferring 

NNs weights and experience buffer from one training to another. The RL Toolbox 

provides an option to retrain the agent, rebuilding the environment for each training.  

 

This approach allows to extend the working range and increase the stability of the RL-

agent, and eventually almost cancel out the role of the PD-controller in position tracking. 

Besides this, each level trainings does not take much time (up to one hour). 

 

The training schedule is presented in Table 5.10. The trained RL-agents are given in 

supplementary digital materials of the thesis work. 
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Table 5.10 Training schedule for “c1_agent1” with decreasing PD-controller output 

Training 
number 

Gain for PD-controller 
output 

Trained RL-agent name 

1 1 c1_agent1_100 

2 0,75 c1_agent1_075 

3 0,5 c1_agent1_050 

4 0,25 c1_agent1_025 

5 0,15 c1_agent1_015 

6 0,1 c1_agent1_010 

 

 

5.1.7 Graded learning on the example of Water Tank model 

 

In this section, the graded learning will be realized on the classic example of the level 

control in Water Tank model (Figure 5.10), presented in [52] and RL Toolbox User’s 

Guide [42, pp.1-19 - 1-26]. And then compared to the training results without graded 

learning. 

 

Figure 5.10 Water Tank model diagram [52] 

 

The height of the water in the tank over time 𝑡, 𝑡 ≥ 0, is described by the equation (5.17): 

 

 
𝑑𝐻

𝑑𝑡
=
1

𝐴
(𝑏𝑉 − 𝑎√𝐻), (5.17) 

 

where 

𝐻 — height of the water in the tank, m, 

𝐴 — the cross-sectional area of the tank, m2, 

𝑏 — constant related to the flow rate into the tank, 

𝑎 — constant related to the flow rate out of the tank, 

𝑉 — voltage applied to the water pump, V. 

 

The control of the water level is performed in a feedback loop using the PID-controller 

(Table 5.11). The PID-controller is tuned automatically in Simulink. 
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Table 5.11 The PID-controller parameters for the water tank model 

Gain Value 

Proportional, 𝐾𝑝 1,94 

Integral, 𝐾𝑖 0,28 

Derivative, 𝐾𝑑 -0,36 

 

The Water Tank Simulink model is given in  

Figure 5.11, Figure 5.12. 

 

 

Figure 5.11 Water Tank Simulink model with PID-controller 

 

Figure 5.12 Interior of the Water Tank system 

 

The environment and RL/DDPG-agent for the water level control were built according to 

the example in [43], [53], Figure 5.13, Figure 5.14.  

 

 

Figure 5.13 Water Tank Simulink model with the RL-agent 
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Figure 5.14 The reward block interior (left) and stopping criteria (right), bounds in meters  

 
Also, since for the graded learning it was supposed to use RL Toolbox, but not the full 

code from [43], [53], it was not possible to vary the reference signal and the initial 

water level in the tank, using the reset function. Namely, the reason was that RL Toolbox 

does not suppose generating and reload of the environment in the beginning of each 

episode. Instead, the Random Number (mean 9, variance 5, sample time 40 s) was 

used as a reference signal in Water tank model (Figure 5.13). The initial water level was 

kept as 10 m. The training was performed under the same training conditions and with 

same actor and critic NNs structure as given in [43], [51], Table 5.12, Table 5.13, with 

sample time of 1 s and episode length of 200 s.  

 

Table 5.12 Agent, actor and critic, and noise properties for Water Tank problem  

Parameter Value 

Sample time, s 1 

Discount factor 1 

Batch size 64 

Experience buffer length 106 

Target smooth factor 10-3 

Actor hidden layers number 1 

Actor hidden layers size, neurons 3 

Actor output activation function Tanh 

Critic hidden layers size (state path), neurons 50, 25 

Critic hidden layers size (action path), neurons 25 

Actor learn rate 10-4 

Actor gradient threshold 1 

Critic learn rate 10-3 

Critic gradient threshold 1 

Standard deviation / Variance of OU noise 0,3 

Variance decay rate 1·10-5 

 

Table 5.13 Agent training options for Water Tank problem 

Parameter Value 

Maximum episodes 5·103 

Maximum episode length, time steps / s 200 / 200 

Average window lengths, episodes 20 

Stopping criteria: average reward 800 

Save agent criteria: average reward 800 

 

The RL-agent “wt_agent1” was trained by steps with the PID-controller in parallel 

(trainings 1-5, Table 5.14). The training 6 is performed for “wt_agent2” with no PID-

controller in parallel for comparison.  
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Table 5.14 Training schedule for Water Tank model 

Training 
number 

Gain for PID 
output 

RL-agent name 
Number of 
episodes 

Training 
duration 

Average 
reward 

1 1 wt_agent1_100 51 10 min 23 s 812 / 800 

2 0,75 wt_agent1_075 25 5 min 17 s 803 / 800 

3 0,5 wt_agent1_050 23 4 min 58 s 823 / 800 

4 0,25 wt_agent1_025 27 5 min 23 s 834 / 800 

5 0 wt_agent1_000 110 22 min 6 s 804 / 800 

6 No PID wt_agent2 97 11 min 43 s 816 / 800 

 

As it is seen from Table 5.14, the number of episodes on average is less in case of the 

graded learning (trainings 1-5). The training progress for trainings 1-6 is given in 

Appendix 6. 

 

The performance of the trained agents “wt_agent1_000” and “wt_agent2” (both do not 

use PID-controller in parallel) is shown in Figure 5.15, Figure 5.16, Figure 5.17. During 

the tests 1-3 the Random Number with different properties was used as a reference 

signal. Two initial water levels were tested out: 5 m and 10 m. It is seen, that 

“wt_agent1_000” is more oscillatory but responds faster than “wt_agent2”. Both RL-

agents are stable to the disturbance, introduced in error signal at time of 30-40 s (tests 

2-3), and have less overshoots and undershoots rather than the PID-controller. The 

MSE values, calculated for the tests, are given in Table 5.15. In all cases, the retrained 

agent “wt_agent1_000”, using the graded learning, has shown lower MSE values. 

 

 

Figure 5.15 Test 1. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial 

water level: 10 m. Reference signal: the Random Number (mean 9, variance 5, sample time 40 s). 

No disturbance added 
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Figure 5.16 Test 2. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial 

water level: 10 m. Reference signal: the Random Number (mean 6, variance 8, sample time 20 s). 

Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse width 10 samples, phase delay 30 

samples) 

 

Figure 5.17 Test 3. Performance of the PID-controller, wt_agent1_000 and wt_agent2. Initial 

water level: 5 m. Reference signal: the Random Number (mean 6, variance 8, sample time 20 s). 

Disturbance: Pulse (amplitude 0.5, period 200 samples, pulse width 10 samples, phase delay 30 

samples) 

 

Table 5.15 Performance of the PID-controller, wt_agent1_000, wt_agent2 

Test 
number 

Figure MSE for PID 
MSE for 

wt_agent1_000 

MSE for 
wt_agent2 

1 Figure 5.15 0,2422 0,2086 0,2334 

2 Figure 5.16 1,3029 1,7535 2,2646 
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3 Figure 5.17 1,4482 2,1679 2,5256 

 

It worth to add, that, of course, Water Tank and MLS2EM are completely different 

systems. The Water Tank system has a big inertia, while the MLS2EM is very quickly 

responding to any change of the setpoint system. The Water Tank is stable system, that 

can be controlled by the easily tuned PID-controller, while control of the MLS2EM is a 

challenge due to its high instability.  
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6. SIMULATION EXPERIMENTS, RESULTS AND 

DISCUSSIONS 

 

6.1 Simulation experiments results  

 

6.1.1 Experiments for Controller 1 

 

The comparison of performance of the PD-controllers, NARX-based controllers and RL-

based controllers is given in the current Section 6.1.1, and the following Sections 6.1.2, 

6.1.3. The experiments are divided into groups regarding the PD-controllers 1, 2 and 4 

(Table 3.4) and associated with them NARX-based and RL-based controllers.  

 

To begin, the first-three-seconds response of the PD-controller 1, related NARX-based 

controller and PD-controller 1 with RL-agent is shown in Figure 6.1, Figure 6.2 and 

Figure 6.3, respectively. The actual position value together with reference, velocity, 

currents values and controls by the electromagnets EM1 and EM2 are depicted in plots. 

The control is performed by the upper electromagnet EM1, the electromagnet EM2 is 

inactive for now.  

 

 

Figure 6.1 First-three-seconds response of the PD-controller 1 

 

It is seen from the position plots, that the ball follows the reference trajectory the most 

accurately in case of the PD-controller 1, improved with RL-agent (Figure 6.3). The 

NARX-based controller responds faster, than the PD-controller 1, but the ball deviates 
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from the trajectory along the vertical axis more (Figure 6.1, Figure 6.2). The ball, 

controlled by the PD+RL controller has bigger velocity in the beginning of the control, 

that’s why there is a small shift in position (along the vertical axis) in the very beginning 

of the experiment (Figure 6.3). In case of the NARX-based controller (Figure 6.2), there 

are small oscillations in the velocity, current and control signals, which may become a 

problem in overall performance of the controller. 

 

 

Figure 6.2 First-three-seconds response of the NARX-based controller 1 

 

 

Figure 6.3 First-three-seconds response of the PD-controller 1 with RL-agent in parallel 
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Further, the controllers will be tested out in a number of experiments. The experiments 

are split into sets (Table 6.1), for convenience. 

 

The comparison of performance of the PD, PD+RL and NARX-based controllers is done 

based on calculating of the mean squared error (MSE): 

 

 𝑀𝑆𝐸 =
1

𝑘
∑𝑒2,

𝑛

𝑘=1

 (6.1) 

where  

𝑒 – position error, m, calculated for each controller separately,  

𝑛 – number of samples, 𝑛 = 10001. 

 

The MATLAB code for calculating MSE and building plots is given in Appendix 7. 

 

The initial conditions of MLS2EM are not changed (3.3), the initial position of the ball is 

9·10-3 m. All the analysis, including calculation of MSE values, is done for the data 

collected during the simulations of duration of 30 s. The results of the performance of 

the PD-controller 1, NARX-based controller and PD-controller with RL-agent in parallel 

are given in Table 6.2 and plots are added into Appendix 8. The cases in Table 6.2, 

where the tracking control was failed, in other words, the ball was lost by the controller, 

are pointed out with the orange color.  

 

Table 6.1 Description of the sets of experiments, controller 1 

Set 
number 

Experiment 
number 

Description 

1 1-4 

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter 
of 6·10-2 m. 

Reference signal: Sine wave (amplitude, m; bias, m; frequency 6 
rad/s; sample time 1·10-2 s). 

No disturbance. 

2 5-8 

Original ball. 
Reference signal: Uniform Random Number (URN)  

(minimum, m; maximum, m; seed 7; sample time 3 s). 
No disturbance. 

3 9-12 
Original ball. 

Reference signal: Constant (value, m). 
No disturbance. 

4 13-15 
Small ball. 

Reference signals: Sine wave, URN, Constant. 
No disturbance. 

5 16-18 
Medium ball. 

Reference signals: Sine wave, URN, Constant. 
No disturbance. 

6 19-21 
Big ball. 

Reference signals: Sine wave, URN, Constant. 
No disturbance. 
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  Table 6.1 continued 
Set 

number 
Experiment 

number 
Description 

7 22-24 

Original ball. 
Reference signals: Sine wave, URN, Constant. 

Disturbance added to error at time 5 s, 15 s, 25 s:  
Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase 

delay 5 s) 

8 25-27 

Original ball. 
Reference signals: Sine wave, URN, Constant. 

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse 
width 0,2 s, phase delay 0 s) with gain 0,4 

 

Table 6.2 Performance of the PD-controller1, NARX-based controller1, PD-controller1+RL-agent 

Exp# Reference signal properties PD NARX PD+RL 

1 Sine wave (1·10-3, 9·10-3) 2,65·10-6 4,15·10-7 1,71·10-8 

2 Sine wave (2·10-3, 9·10-3) 1,15·10-6 1,59·10-6 5,52·10-8 

3 Sine wave (2·10-3, 1·10-2) 8,22·10-6 2,09·10-6 6,01·10-8 

4 Sine wave (2·10-3, 8·10-3) 1,68·10-6 6,28·10-5 5,53·10-8 

5 URN (9·10-3, 1,05·10-2) 3,22·10-6 1,61·10-6 1,47·10-8 

6 URN (9·10-3, 1,1·10-2) 4,55·10-5 2,28·10-6 2,10·10-8 

7 URN (7,5·10-3, 9,5·10-3) 6,34·10-7 7,43·10-7 1,05·10-8 

8 URN (7,5·10-3, 1,05·10-2) 1,72·10-6 1,13·10-6 2,39·10-8 

9 Constant (9·10-3) 6,64·10-13 6,44·10-10 4,17·10-9 

10 Constant (1,2·10-2) 6,28·10-5 4,87·10-6 4,48·10-8 

11 Constant (1,05·10-2) 7,22·10-5 3,55·10-6 1,93·10-8 

12 Constant (7·10-3) 3,69·10-6 4,68·10-5 7,27·10-9 

13 Sine wave (1·10-3, 9·10-3) 1,56·10-5 7,98·10-5 5,96·10-8 

14 URN (7,5·10-3, 1,05·10-2) 1,56·10-5 8,04·10-5 6,78·10-8 

15 Constant (9·10-3) 1,57·10-5 7,91·10-5 4,07·10-8 

16 Sine wave (1·10-3, 9·10-3) 4,91·10-6 7,81·10-5 3,15·10-8 

17 URN (7,5·10-3, 1,05·10-2) 4,88·10-6 7,96·10-5 3,80·10-8 

18 Constant (9·10-3) 4,90·10-6 7,84·10-5 1,60·10-8 

19 Sine wave (1·10-3, 9·10-3) 1,59·10-6 7,71·10-5 2,31·10-8 

20 URN (7,5·10-3, 1,05·10-2) 1,79·10-6 7,11·10-5 2,98·10-8 

21 Constant (9·10-3) 1,51·10-6 1,60·10-6 9,00·10-9 

22 Sine wave (1·10-3, 9·10-3) 5,84·10-7 6,38·10-5 9,64·10-8 

23 URN (7,5·10-3, 1,05·10-2) 1,75·10-6 6,66·10-5 1,14·10-7 

24 Constant (9·10-3) 3,43·10-7 4,14·10-7 8,32·10-8 

25 Sine wave (1·10-3, 9·10-3) 3,13·10-7 5,04·10-7 1,69·10-8 

26 URN (7,5·10-3, 1,05·10-2) 2,63·10-6 1,18·10-6 2,37·10-8 

27 Constant (9·10-3) 2,34·10-8 3,11·10-8 4,20·10-9 

 

The experiments 1-27 showed that: 

- PD-controller has a good performance only near its operating point of 9·10-3 m; 

- PD-control is quite slow, and the most suitable for the constant reference signal; 

- NARX-based controller can replicate the behavior of the PD-controller, the 

performance of PD and NARX are comparable, but NARX has faster, more 

accurate, but more oscillating response; 

- NARX-controller worse handles with abrupt changes of the reference signal 

rather than PD-controller, but at the same time has wider operating range, 

especially in the region farther from the electromagnet EM1; 
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- RL agent improves PD-controller performance so that MSE value is decreased on 

average by two orders for all types of the reference signal;  

- PD+RL controller has bigger settling time comparing to the PD-controller working 

near operating point, but has smaller steady-state error out of the PD-controller 

operating range; 

- PD+RL controller is stable against abrupt changes of the reference signal, and 

has significantly wider operating range rather than PD- and NARX-based 

controllers; 

- PD+RL tends to eliminate an error over time approximately by the time 20 s. 

 

 

6.1.2 Experiments for Controller 2 

 

In this Section the differential mode PD-controller 2 (Table 3.4) is compared with the 

NARX-based controller, consisting of two NARX networks, and improved PD-controller 2 

with RL-agent in parallel. The sets of experiments are described in Table 6.3, and the 

MSE is given in Table 6.4, the plots are given in Appendix 9. 

 

Table 6.3 Description of the sets of experiments, controller 2 

Set 
number 

Experiment 
number 

Description 

1 28-31 

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter 
of 6·10-2 m. 

Reference signals: Sine wave (amplitude, m; bias, m; frequency 
6 rad/s; sample time 1·10-2 s),  
Uniform Random Number (URN)  

(minimum, m; maximum, m; seed 7; sample time 1 s). 
Constant (value, m). 

No disturbance. 

2 32-34 
Small ball. 

Reference signals: Sine wave, URN, Constant. 
No disturbance. 

3 35-36 
Medium ball (35), big ball (36). 
Reference signals: Sine wave. 

No disturbance. 

4 37-39 

Original ball. 
Reference signals: Sine wave, URN, Constant. 

Disturbance added to error at time 5 s, 15 s, 25 s:  
Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase 

delay 5 s) 

5 40-42 

Original ball. 
Reference signals: Sine wave, URN, Constant. 

Disturbance added to the control action of EM1: Pulse (amplitude 
1, period 4 s, pulse width 0,2 s, phase delay 0 s) with gain 2·10-2 
Disturbance added to the control action of EM2: Pulse (amplitude 
1, period 4 s, pulse width 0,2 s, phase delay 2 s) with gain 0,2 
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Table 6.4 Performance of the PD-controller2, NARX-based controller2, PD-controller2+RL-agent 

Exp# Reference signal properties PD, MSE NARX, MSE PD+RL, MSE 

28 Sine wave (1·10-3, 9·10-3) 3,59·10-7 5,46·10-7 2,96·10-8 

29 URN (7,5·10-3, 1,05·10-2) 9,84·10-7 1,05·10-4 4,55·10-8 

30 URN (8,5·10-3, 9,5·10-3) 1,14·10-7 1,37·10-7 2,97·10-8 

31 Constant (9·10-3) 1,47·10-10 5,29·10-8 2,79·10-8 

32 Sine wave (1·10-3, 9·10-3) 1,56·10-5 4,75·10-5 2,29·10-9 

33 URN (8,5·10-3, 9,5·10-3) 1,58·10-5 4,89·10-5 1,86·10-9 

34 Constant (9·10-3) 1,56·10-5 4,94·10-5 6,16·10-11 

35 Sine wave (1·10-3, 9·10-3) 5,32·10-6 1,52·10-5 1,04·10-8 

36 Sine wave (1·10-3, 9·10-3) 7,74·10-7 1,75·10-6 1,93·10-8 

37 Sine wave (1·10-3, 9·10-3) 7,17·10-7 1,68·10-5 1,16·10-7 

38 URN (8,5·10-3, 9,5·10-3) 4,77·10-7 6,58·10-7 1,16·10-7 

39 Constant (9·10-3) 3,88·10-7 1,62·10-5 1,15·10-7 

40 Sine wave (1·10-3, 9·10-3) 3,84·10-7 5,80·10-7 2,95·10-8 

41 URN (8,5·10-3, 9,5·10-3) 1,42·10-7 1,75·10-7 2,95·10-8 

42 Constant (9·10-3) 2,04·10-8 8,88·10-8 2,77·10-8 
 

The experiments 28-42 showed that: 

- Differential mode type of control performed by EM1 and EM2 is more difficult 

task; 

- NARX-based control is quite oscillatory, weaker and less stable than PD-control, 

it does not handle with the change of the ball mass and diameter; 

- PD+RL controller handles relatively good as in previous group of experiments, 

improving the PD controller and decreasing MSE by the one-two orders on 

average, although PD+RL controller has large settling time, comparing to the 

pure PD-control; 

- PD+RL controller has the fastest response and the smallest deviation from the 

setpoint under disturbance. 

 

 

6.1.3 Experiments for Controller 4 

 

Since PD-controllers 1 and 4 are quite similar in structure, in this section only few 

experiments will be presented. The reference signals are changed. The results of 

experiments are given in Table 6.5, Table 6.6 and the tracking performance is given in 

Appendix 10. 

 

Table 6.5 Description of the sets of experiments, controller 4 

Set 
number 

Experiment 
number 

Description 

1 43-46 

Original ball (43) (Table 3.3) with mass of 5,71·10-2 kg and 
diameter of 6·10-2 m. Small (44), medium (45), big (46) balls. 

Reference signals: Sine wave (amplitude, m; bias, m; frequency 
2 rad/s; sample time 1·10-2 s),  

No disturbance. 
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  Table 6.5 continued 

Set 
number 

Experiment 
number 

Description 

2 47 

Original ball. 
Reference signals: URN (minimum, m; maximum, m; seed 7; 

sample time 3 s). 
Disturbance added to error at time 5 s, 15 s, 25 s:  

Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase 
delay 5 s) 

3 48 

Original ball. 
Reference signals: Constant (value, m). 

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse 
width 0,2 s, phase delay 0 s) with gain 0,4 

 

Table 6.6 Performance of the PD-controller4, NARX-based controller4, PD-controller4+RL-agent 

Exp# Reference signal properties PD, MSE NARX, MSE PD+RL, MSE 

43 Sine wave (1·10-3, 9·10-3) 9,12·10-7 1,16·10-6 3,83·10-9 

44 Sine wave (1·10-3, 9·10-3) 1,49·10-5 3,48·10-5 2,70·10-8 

45 Sine wave (1·10-3, 9·10-3) 4,39·10-6 3,43·10-6 2,74·10-9 

46 Sine wave (1·10-3, 9·10-3) 1,38·10-6 1,28·10-6 8,98·10-10 

47 URN (7,5·10-3, 1,05·10-2) 1,97·10-6 5,19·10-5 1,11·10-7 

48 Constant (9,5·10-3) 1,35·10-6 1,51·10-6 4,43·10-9 

 

The experiments 43-48 showed again that: 

- NARX-based controller is less stable to any change in MLS2EM or disturbance, 

than PD-controller; 

- PD-controller, improved by RL-agent in parallel, performs better than pure PD-

controller in all the experiments. 

 

It is important to mention here, that the PD-controller 4, which is supposed to be used 

with the real plant, does not work in simulation with the MLS2EM model with sample 

time 5·10-3 s. For this reason, sample time 1·10-3 s was used. Unfortunately, it was also 

found, that the PD-controller 4 is not capable to perform a tracking control for the 

MLS2EM model with estimated parameters (see Subsection 3.1.4) in simulation with 

sample time either 1·10-3 s or 5·10-3 s. Thus, the original MLS2EM model was used. In 

future research, one can use the MLS2EM model with estimated parameters to design a 

control solution purely by the RL-agent and, than, utilize the trained RL-agent in the 

real-time experiment.  

 

 

6.1.4 Experiments for Controller 1, Graded learning  

 

The results of Section 5.1.6 will be discussed next. The PD-controller 1 will be compared 

with improved PD+RL controller, while the output of the PD-controller 1 will be 

decreasing. This is done to see, how much RL-agent can compensate the PD-control. 

Also, performance of the retrained RL-agents (Table 5.10) will be evaluated. The 
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description of the sets of experiments is given in Table 6.7. The performance of the 

decreased-output PD controller 1, PD controller 1 with RL-agent in parallel, and PD-

controller 1 with consequently retrained RL-agents in parallel is given in Table 6.8. Plots 

can be found in Appendix 11. 

 

Table 6.7 Description of the sets of experiments, controller 1, graded learning 

Set 
number 

Experiment 
number 

Description 

1 49-54 

Original ball (Table 3.3) with mass of 5,71·10-2 kg and diameter 
of 6·10-2 m.  

Reference signals: Sine wave (amplitude 1·10-3 m; bias 9·10-3 m; 
frequency 2 rad/s; sample time 1·10-2 s).  

No disturbance. 

2 55-57 

Small (55), medium (56), big (57) balls. 
Reference signal: Sine wave (amplitude 1·10-3 m; bias 9·10-3 m; 

frequency 2 rad/s; sample time 1·10-2 s).  
No disturbance. 

3 58-59 

Original ball. 
Reference signal: URN (minimum 8·10-3 m; maximum 1·10-2 m; 

seed 7; sample time 2 s). 
Disturbance added to error at time 5 s, 15 s, 25 s:  

Pulse (amplitude 1·10-3 m, period 10 s, pulse width 1 s, phase 
delay 5 s) 

4 60 

Original ball. 
Reference signal: Constant (value, m). 

Disturbance added by EM2: Pulse (amplitude 1, period 2 s, pulse 
width 0,2 s, phase delay 0 s) with gain 0,4 

 

Table 6.8 Performance of the decreased-output PD-controller 1, PD controller 1 + RL-agent and 

PD controller 1 + retrained RL-agent 

Exp# Gain for PD output PD, MSE PD+RL, MSE 
PD+retrained 

RL, MSE 

49 1 7,79·10-7 1,69·10-8 1,69·10-8 

50 0,75 1,19·10-4 1,33·10-8 1,16·10-8 

51 0,5 1,20·10-4 2,38·10-8 3,19·10-9 

52 0,25 1,21·10-4 5,07·10-8 2,91·10-10 

53 0,15 1,21·10-4 1,20·10-4 1,79·10-8 

54 0,1 1,21·10-4 1,20·10-4 7,13·10-7 

55 0,25 1,20·10-4 2,37·10-8 4,01·10-7 

56 0,25 1,21·10-4 3,24·10-8 9,10·10-8 

57 0,25 1,21·10-4 4,05·10-8 2,43·10-8 

58 0,25 1,21·10-4 9,77·10-5 1,05·10-7 

59 0,25 1,24·10-4 1,11·10-4 1,09·10-7 

60 0,25 1,21·10-4 3,87·10-8 2,37·10-9 

 

The experiments 49-60 showed that: 

- PD-controller is very sensitive to any change in its output, or control action; 

- RL-agent can compensate the PD-controller’s output decreased up to 25%, it can 

handle the change of the ball mass and diameter, although some abrupt changes 

in error destabilize the RL-agent control; 
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- Being retrained consequently, RL-agent is capable successfully to compensate 

the PD-controller’s output decreased up to 15%; the retrained RL-agents provide 

accurate tracking and handle the disturbance to some extent. 
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SUMMARY 

 

The main goal of the master thesis was to design a control solution for the Magnetic 

levitation system with two electromagnets (MLS2EM), provided by INTECO company, 

which can surpass the performance of the existing in simulations PD-controllers. 

 

It is clear from the Literature Overview, that the control of a highly nonlinear and 

unstable MLS is a topic of a great incessant interest. Many control solutions had been 

developed, including hybrid control methods, which allow to improve or surpass the 

simple PID-controller’s performance. But most of them require a big engineering effort 

and difficult and tedious mathematical calculations. Nowadays, the intelligent methods 

become more and more popular due to its simplicity in realization and applicability to 

the various control problems. 

 

In the present master thesis work, two control solutions were found and realized in 

simulation using MATLAB/Simulink with Deep Learning, Reinforcement Learning and 

Neural Network Toolboxes.   

 

Originally, the idea was to fully replace the existing PD-controller by the NARX-based 

controller, which is trained on the datasets collected from the related PD-controller in 

open-loop. But after tests and simulation experiments it turned out, that the NARX-

based controller cannot significantly surpass the PD-controller’s performance, 

especially, in regard to stability (change of the ball mass, or added disturbance). Same 

can be said regarding the working region of the NARX-based controller. Although, it 

showed faster and more accurate response rather than the PD-controller to some extent. 

The ANNs approach was chosen due to its engineering simplicity, although in practice it 

appeared, that enormous number of trainings is needed to acquire the adequate 

parameters for the NN. The reason of this is the randomness of parameter initialization, 

which means that each certain training ends up in a different result. Moreover, 

unexpected training outcomes are quite often case in the work with NNs.  

 

Since Supervised Learning method is dependent on the training datasets, and 

subsequently, on the certain PD-controller performance, it was decided to switch to 

Reinforcement Learning approach. The latter one was applied to develop a RL/DDPG-

agent, capable to improve and stabilize the performance of the PD-controller in 

simulation, and also extend its operating range. Full replacement of the PD-controller 

by the RL-agent was not possible due to limitations existing in the MATLAB 

Reinforcement Learning Toolbox, such as impossibility to use batch normalization, or to 
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add exploration noise to the NNs parameters directly. The intention of use of MATLAB 

was in its multitool environment, convenience, and also for the reason that the MLS2EM 

simulation models are provided by INTECO in MATLAB/Simulink. Potentially, in future, 

with the improvements in the RL Toolbox, the task of the full replacement of the PD-

controller with the RL-agent may be fulfilled. 

 

The comparison of the performance of the PD-controllers with the related NARX-based 

controllers and the PD-controllers, improved by RL-agents in parallel, was done for three 

control cases. Two of them consider control of the upper electromagnet EM1 only, and 

the third one considers control of both electromagnets EM1 and EM2 in differential mode.  

 

In all cases of 60 simulation experiments, the PD+RL-agent controller showed the 

decrease of the MSE value one hundred times on average, comparing to that of the pure 

PD-controller. The good stability of the PD+RL-agent controller was proved adding the 

disturbance to the error signal, and to the controller’s output, using EM2 for the pulse 

excitation as well.  Besides, four balls configurations (mass and diameter) were tested 

out. While the PD-controller can handle somewhat this change, and the NARX-controller 

fails, the PD+RL-agent controller still performs an accurate position tracking.  

 

Moreover, the RL-agent is capable to successfully compensate the decrease of the PD-

controller’s output up to 25%. Being retrained with the presented in the thesis graded 

learning method, the RL-agent can even compensate it up to 15%. This means, even in 

case when the PD-controller breaks up, and critically drops its control action, RL-agent 

can become a solution to uninterrupted system operation. The designed method of the 

improvement of the PD-controllers can be used in industry, where the PD-controllers 

are the most common and cheap control method. Since the mechanical wear of the 

equipment always takes place, the PD-controller, improved by the RL-agent, can 

continue to perform with no re-tuning.  

 

Having newer hardware drivers for the MLS2EM in laboratory, one can transfer the RL-

agent, pretrained in simulation, to control the real plant. The estimated parameters for 

MLS2EM, found in the thesis, can be utilized to decrease the discrepancy between the 

simulation model and the real-time system. Having pretrained RL-agent, the retraining 

can be performed online on the real-time system to achieve the desired performance.  
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KOKKUVÕTE 

 

Antud magistritöö peamine eesmärk oli projekteerida juhtimislahendus ettevõtte 

INTECO poolt pakutava kahe elektromagnetiga magnetilise levitatsioonisüsteemi 

(MLS2EM) jaoks, mis võib ületada olemasolevates simulatsioonides kasutatavate PD-

regulaatorite jõudlust. 

 

Kirjanduse ülevaatest selgub, et väga mittelineaarse ja ebastabiilse MLS kontrollimine 

on teema, mis pakub suurt ja pidevat huvi. Välja on töötatud mitmeid juhtimislahendusi, 

sealhulgas hübriidjuhtimismeetodid, mis võimaldavad parandada või ületada lihtsa PID-

regulaatori jõudlust. Kuid enamik neist nõuab suurt inseneripingutust ning raskeid ja 

tüütuid matemaatilisi arvutusi. Tänapäeval muutuvad intelligentsed meetodid üha 

populaarsemaks tänu nende lihtsale realiseerimisele ja rakendatavusele erinevate 

reguleerimisprobleemide puhul. 

 

Käesolevas magistritöös leiti ja realiseeriti simulatsioonis kaks juhtimislahendust, 

kasutades MATLAB/Simulinki koos Deep Learning, Reinforcement Learning ja Neural 

Network Toolboxidega.   

 

Algne idee oli olemasolev PD-regulaator täielikult välja vahetada NARX-põhise 

regulaatoriga, mis on välja õpetatud seotud PD-regulaatorilt avatud ahelas kogutud 

andmekogumite põhjal. Kuid pärast teste ja simulatsioonikatsetusi selgus, et NARX-

põhine regulaator ei suuda märkimisväärselt ületada PD-regulaatori jõudlust, eriti 

stabiilsuse osas (palli massi muutus, või lisatud häire). Sama võib öelda ka NARX-põhise 

regulaatori tööpiirkonna kohta. Kuigi see näitas pigem kiiremat ja täpsemat 

reageerimist kui PD-regulaator mingil määral. ANN-meetod valiti selle tehnilise lihtsuse 

tõttu, kuigi praktikas selgus, et NNi jaoks sobivate parameetrite omandamiseks on vaja 

tohutult palju treeninguid. Selle põhjuseks on parameetrite initsialiseerimise 

juhuslikkus, mis tähendab, et iga konkreetne treening annab erineva tulemuse. Lisaks 

sellele on NN-idega tehtavas töös üsna sageli ette tulnud ootamatuid treeningtulemusi. 

 

Kuna superviseeritud õppimise meetod sõltub treeningu andmekogumitest ja seejärel 

teatud PD-regulaatori jõudlusest, otsustati minna üle stiimulõpe (Reinforcement 

Learning) meetodile. Viimast rakendati RL/DDPG-agendi väljatöötamiseks, mis on 

võimeline parandama ja stabiliseerima PD-regulaatori jõudlust simulatsioonis ning 

laiendama selle tööpiirkonda. PD-regulaatori täielik asendamine RL-agendiga ei olnud 

võimalik MATLABi Reinforcement Learning Toolboxi piirangute tõttu, näiteks võimatus 

kasutada partiide normaliseerimist või lisada NNide parameetritele otse uurimismüra. 
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MATLABi kasutamise eesmärk oli selle multitööriistakeskkond, mugavus ja ka seetõttu, 

et MLS2EMi simulatsioonimudelid on INTECO poolt pakutud MATLAB/Simulinkis. 

Võimalik, et tulevikus, koos RL Toolboxi täiustustega, on võimalik täita ülesanne PD-

regulaatori täielik asendamine RL-agentidega. 

 

PD-regulaatorite ja nendega seotud NARX-põhiste regulaatorite ning paralleelselt RL-

agentide abil täiustatud PD-regulaatorite toimivust võrreldi kolme juhtumi puhul.  Kahes 

neist käsitletakse ainult ülemise elektromagneti EM1 juhtimist ja kolmandas mõlema 

elektromagneti EM1 ja EM2 juhtimist diferentsiaalrežiimis. 

 

Kõigil 60 simulatsioonikatsete puhul näitas PD+RL-agendi regulaator keskmise ruudu 

vea (MSE) vähenemist keskmiselt sada korda, võrreldes puhta PD-regulaatoriga. 

PD+RL-agendi regulaatori head stabiilsust tõestati, kui veasignaalile ja regulaatori 

väljundile lisati häire, kasutades impulsside ergutamiseks ka EM2.  Lisaks katsetati nelja 

pallikonfiguratsiooni (mass ja läbimõõt). Kuigi PD-regulaator saab selle muudatusega 

mõnevõrra hakkama ja NARX- põhise regulaator ebaõnnestub, teostab PD+RL-agendi 

regulaator siiski täpset asukoha jälgimist.  

 

Lisaks sellele on RL-agent võimeline edukalt kompenseerima PD-regulaatori väljundi 

vähenemist kuni 25%. Kui RL-agent on ümber õpetatud käesolevas töös esitatud 

astmelise õppimise meetodiga, suudab ta seda isegi kuni 15% ulatuses kompenseerida. 

See tähendab, et isegi juhul, kui PD-regulaator laguneb ja jätab kriitiliselt oma 

juhtimismehhanismi välja, võib RL-agent olla lahenduseks süsteemi katkematu 

toimimise tagamiseks. Kavandatud PD-regulaatorite täiustamise meetodit saab 

kasutada tööstuses, kus PD-regulaatorid on kõige levinum ja odavam juhtimismeetod. 

Kuna seadmete mehaaniline kulumine on loomuululik, võib RL-agendi abil täiustatud 

PD-regulaator jätkata tööd ilma ümberhäälestamiseta. 

 

Kui MLS2EMi uuemad riistvara draiverid on laboris olemas, saab simulatsioonis eelnevalt 

treenitud RL-agenti üle kanda tegeliku seadme kontrollimiseks. Lõputöös leitud 

MLS2EMi hinnangulisi parameetreid saab kasutada selleks, et vähendada erinevusi 

simulatsioonimudeli ja reaalajas toimiva süsteemi vahel. Kui RL-agent on eelnevalt 

treenitud, saab soovitud jõudluse saavutamiseks reaalajasüsteemis ümber treenida ka 

veebipõhiselt.  
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Appendix 1 MATLAB code for training NARX network 

 

% Preparing data   

 
u=input1'; % input data 
y=output'; % target data 
 
% Data conversion   
 
u = con2seq(u); 
y = con2seq(y); 
 
% Time delays 
 
d1 = [1:2];   
d2 = [1:2]; 
 
% Design of NARX network 
 
narx_net1 = narxnet(d1,d2,10); 
narx_net1.divideFcn = ''; 
narx_net1.trainParam.min_grad = 1e-10; 
narx_net1.trainParam.epochs = 300; 
[p,Pi,Ai,t] = preparets(narx_net1,u,{},y); 
 
% Training NARX network 
 
narx_net1 = train(narx_net1,p,t,Pi); 
 
% Open-loop to closed-loop modification 
 
narx_net1_closed = closeloop(narx_net1); 
 
%view(narx_net1) 
%view(narx_net1_closed) 
 
% Get a controller 
 
gensim(narx_net1_closed, 0.001) 
 
% Simulate closed-loop NARX and compare with PD output 
 
ou_sim1=sim(narx_net1_closed, u); 
ou_sim1=cell2mat(ou_sim1); 
ou_sim1=ou_sim1'; 
 
% Fit  
 
mse = (output1-ou_sim1).^2; 
mean_mse=mean(mse); 
 
% Plots  
 
figure('WindowState','maximized','Color',[1 1 1]); 
plot(t1, output1'); % pd output  
hold on; 
plot(t1, ou_sim1); % narx output  
title('NARX output and PD output'); 
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xlabel('Time, s'); 
ylabel('Control action'); 
legend('NARX','PD'); 
 

figure('WindowState','maximized','Color',[1 1 1]); 
plot(t1,mse); 
title('Squares of errors'); 
xlabel('Time, s'); 
ylabel('SE'); 
ylim([-0.5 2.5]); 
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Appendix 2 DDPG Algorithm [39] 

 

Randomly initialize critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and actor 𝜇(𝑠|𝜃𝜇) with weights 𝜃𝑄 and 𝜃𝜇 

Initialize target network 𝑄′ and 𝜇′ with weights 𝜃𝑄
′
← 𝜃𝑄, 𝜃𝜇

′
← 𝜃𝜇 

Initialize replay buffer 𝑅 

for episode = 1, M do 

 Initialize a random process 𝒩 for action exploration 

 Receive initial observation state 𝑠1 

 for t = 1, T do 

Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃
𝜇) +𝒩𝑡 according to the current policy and 

exploration noise 

Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe new state 𝑠𝑡+1 

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝑅 

Sample a random minibatch of 𝑁 transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝑅 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃
𝜇′)|𝜃𝑄

′
)  

Update critic by minimizing the loss: 𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖  

Update the actor policy using the sampled policy gradient: 

∇𝜃𝜇𝐽 ≈
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃

𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)
𝑖

∇𝜃𝜇𝜇(𝑠|𝜃
𝜇)|𝑠𝑖 

Update the target networks: 

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
 

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
 

end for 

end for 
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Appendix 3 MATLAB code for building the environment 

 

% Create observations 

 
obsInfo = rlNumericSpec([3 1],...  
    'LowerLimit',[0 -inf -inf]',...  
    'UpperLimit',[inf inf inf]'); 
 
obsInfo.Name = 'observations'; 
obsInfo.Description = 'position, error, integral error'; 
numObservations = obsInfo.Dimension(1); 
 
% Create actions 
 
actInfo = rlNumericSpec([1 1]); 
 
actInfo.Name = 'control'; 
numActions = actInfo.Dimension(1);  
 
% Build the environment interface object 
 
env = 
rlSimulinkEnv('control_1_NARX_vs_PID_RL_sim_1em','control_1_NARX_vs_PID_RL_sim_
1em/DDPG Agent',...  
    obsInfo,actInfo); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

108 

Appendix 4 MATLAB code for creating actor and critic networks 

 
% Actor NN design  
 
lgraph_actor = layerGraph(); 
layers = [ 
    featureInputLayer(3,"Name","input_1") 
    fullyConnectedLayer(25,"Name","fc_1") 
    tanhLayer("Name","tanh_1") 
    fullyConnectedLayer(25,"Name","fc_2") 
    tanhLayer("Name","tanh_2") 
    fullyConnectedLayer(1,"Name","output") 
    ]; 
lgraph_actor = addLayers(lgraph_actor,layers); 
 
% Critic NN design  
 
lgraph_critic = layerGraph(); 
 
% state path 
 
tempLayers = [ 
    featureInputLayer(3,"Name","input_1") 
    fullyConnectedLayer(50,"Name","st_fc_1") 
    reluLayer("Name","relu_1") 
    fullyConnectedLayer(25,"Name","st_fc_2") 
    ]; 
lgraph_critic = addLayers(lgraph_critic,tempLayers); 
     
% action path 
 
tempLayers = [ 
    featureInputLayer(1,"Name","input_2") 
    fullyConnectedLayer(25,"Name","act_fc_1") 
    ]; 
lgraph_critic = addLayers(lgraph_critic,tempLayers); 
 
% add 
 
tempLayers = [ 
    additionLayer(2,"Name","concat") 
    reluLayer("Name","relu_output") 
    fullyConnectedLayer(1,"Name","output_1") 
    ]; 
lgraph_critic = addLayers(lgraph_critic,tempLayers); 
 
% clean up helper variable 
 
clear tempLayers; 
 
% state path 
lgraph_critic = connectLayers(lgraph_critic,"st_fc_2","concat/in1"); 
 
% action path 
lgraph_critic = connectLayers(lgraph_critic,"act_fc_1","concat/in2"); 
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% Plot graphs 
 
figure; 
plot(lgraph_actor); 
 
figure; 
plot(lgraph_critic); 
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Appendix 5 MATLAB code for setting RL-training options 

 

% Sample time and Simulation time  
 
Ts = 0.001;  
Tf = 10; 
 
% Specify options for actor and critic representation  
 
actorOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);  
 
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1); 
 
% Specify the DDPG agent options 
 
agentOpts = rlDDPGAgentOptions(...  
    'SampleTime',Ts,... 
    'TargetSmoothFactor',1e-3,... 
    'DiscountFactor',0.99, ...  
    'MiniBatchSize',128, ...  
    'ExperienceBufferLength',1e6);  
 
agentOpts.NoiseOptions.Variance = 0.02;  
 
 
% Create the DDPG agent 
 
agent = rlDDPGAgent(actor,critic,agentOpts);  
 
% Training options 
 
maxepisodes = 10000;  
maxsteps = ceil(Tf/Ts);  
 
trainOpts = rlTrainingOptions(...  
    'MaxEpisodes',maxepisodes, ... 
    'MaxStepsPerEpisode',maxsteps, ... 
    'ScoreAveragingWindowLength',5, ...  
    'StopTrainingCriteria','EpisodeReward', ... 
    'StopTrainingValue',20000, ... 
    'SaveAgentCriteria', 'EpisodeReward', ... 
    'SaveAgentValue', 20000, ... 
    'Verbose',false, ... 
    'Plots','training-progress' ... 
    ); 
 
% Train the DDPG agent 
  
trainingStats = train(agent,env,trainOpts);  
 
% Validate the trained DDPG agent  
 
simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');  
experiences = sim(env,agent,simOpts); 
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Appendix 6 Training progress for the case of graded learning 

 

 

Figure A.1 Training progress of "wt_agent1_100" 

 

Figure A.2 Training progress of "wt_agent1_075" 

 

Figure A.3 Training progress of "wt_agent1_050" 
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Figure A.4  Training progress of "wt_agent1_025" 

 

Figure A.5 Training progress of "wt_agent1_000" 

 

Figure A.6 Training progress of "wt_agent2" 

 

 



  

Appendix 7 MATLAB code for calculating MSE and building plots 

 

% PD 
 
ERR=0; 
SSE=0; 
 
ERR = out.refer - out.pid;                           % ERR 
SSE = sum(ERR.^2);                        % Sum-Squared Error 
MSE_pid = mean(ERR.^2)  
 
% NARX 
 
ERR=0; 
SSE=0; 
 
ERR = out.refer - out.narx;                           % ERR 
SSE = sum(ERR.^2);                        % Sum-Squared Error 
MSE_narx = mean(ERR.^2)  
 
% PD with RL-agent 
 
ERR=0; 
SSE=0; 
 
ERR = out.refer - out.pid_rl;                           % ERR 
SSE = sum(ERR.^2);                        % Sum-Squared Error 
MSE_pid_rl = mean(ERR.^2)  
 
 
% Building plots 
 
fig1 = figure('WindowState','maximized','Color',[1 1 1]); 
plot(out.time',out.refer','green'); 
hold on; 
plot(out.time,out.pid) 
title('Exp.1. Performance of the PD-controller, NARX-based controller, PD-
controller with RL-agent'); 
plot(out.time,out.narx); 
plot(out.time,out.pid_rl,'blue'); 
xlabel('Time, s'); 
ylabel('Position of the ball, m'); 
ylim([0.004 0.015]); 
legend('Reference', 'PD control', 'NARX control', 'PD+RL control'); 
grid on; 

 
saveas(fig1,'fig1','fig'); 
saveas(fig1,'fig1','png'); 
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Appendix 8 Plots in experiments for controller 1 
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Appendix 9 Plots in experiments for controller 2 
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Appendix 10 Plots in experiments for controller 4 
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Appendix 11 Plots in experiments for controller 1 with graded learning 
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