
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Artem Filipenko 214035IVSM

DATA AUGMENTATION TECHNIQUES FOR
ADVANCED END TO END KEYPHRASE

EXTRACTION FROM TEXT
Master’s thesis

Supervisor: Tanel Alumäe, PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Artem Filipenko 214035IVSM

ANDMETE AUGMENTEERIMISE TEHNIKAD
VÕTMESÕNADE EKSTRAHEERIMISEKS

TEKSTIST TÄISAHELA MEETODIL
Magistritöö

Juhendaja: Tanel Alumäe, PhD

Tallinn 2023

Abstract

This thesis is focused on applying data augmentation approaches to increase performance of

the sequence-to-sequence model, trained to extract keyphrases from the text. Keyphrase

extraction describes the process of automatically identifying the most important words or

phrases in a text document. Other than that, it is an important component of natural language

processing. In the scope of the current thesis both extractive (mentioned directly in the text)

and abstractive (describing an abstract context) keyphrases are taken into account.

Data augmentation techniques are used to improve the training data, introducing more

diversity to the dataset. The goal is to increase performance metrics due to lower overfitting

and/or better generalization. The large amount of diverse training data forces the model to

handle unseen inputs with a better performance due to a larger number of unusual training

samples.

The work presented contains various experiments with a wide spectrum of data augmentation

techniques applied, from simple shuffling to more complex approaches, including separate

models or algorithmic tools like WordNet to generate unseen data based on the default

dataset. The thesis is mainly focused on the Inspec dataset due to its smaller size, allowing a

larger number of experiments while saving computational resources and time.

The main focus of this thesis is discovering an approach, giving the best abstract keyphrases

extraction performance. This method includes augmenting the data by replacing certain

words with their synonyms to get as diverse default dataset multiplications as possible. The

relative increase in models’ performance after training on the generated dataset reached

~68% for abstractive keyphrases and ~11% for extractive ones, compared to the basic

approach.

This thesis is written in English and is 42 pages long, including 7 chapters, 14 figures and 15

tables.

3

Annotatsioon
Käesolev lõputöö keskendub andmete augmenteerimise lähenemisviiside rakendamisele, et

suurendada märksõnade tekstist eraldamise täpsust n-ö otsast-lõpuni närvivõrgupõhises

mudelis. Märksõnade eraldamine on tekstidokumendi kõige olulisemate sõnade või fraaside

automaatne tuvastamine. Lisaks on see loomuliku keele töötluse oluline komponent.

Käesoleva lõputöö raames võetakse arvesse nii ekstraktiivseid (tekstis otseselt mainitud) kui

ka abstrahhiivseid (abstraktset konteksti kirjeldavaid) võtmesõnu.

Treeningandmete augmenteerimise tehnikaid kasutatakse masinõppe andmete täiustamiseks,

mis muudavad andmestiku mitmekesisemaks. Eesmärk on parandada mudeli täpsust tänu

väiksemale ületreenimisele ja/või paremale üldistamisele. Masinõppe erinevate

sisendandmete mitmekesisus suunab mudelit käsitlema uusi sisendandmeid parema täpsusega

tänu suuremale arvule erinevatele treeningnäidetele.

Esitatud töö sisaldab mitmesuguseid eksperimente erinevate andmete augmenteerimise

tehnikatega, alates lihtsast võtmesõnade ümberpaigutamisest kuni keerukamate

lähenemisviisideni, sealhulgas eraldi mudelid või algoritmilised tööriistad nagu WordNet, et

luua esialgsel eandmekogumil põhinevaid seniesinemata andmeid. Lõputöö keskendub

peamiselt Inspeci andmekogumile tänu selle väiksusele, mis võimaldab suuremat arvu

eksperimente, säästes samal ajal arvutusressursse ja -aega.

Käesoleva lõputöö põhieesmärk on leida lähenemine, mis annab parima abstraktsete

võtmefraaside eraldamise jõudluse. See meetod hõlmab andmete augmenteerimist, asendades

teatud sõnad nende sünonüümidega, et saada võimalikult erinevaid treeningandmete

kogumeid. Mudelite täpsuse suhteline kasv võrreldes tavapärase lähenemisviisiga oli pärast

genereeritud andmekogumiga masinõpet kuni ~68% abstraktsete märksõnade puhul ja kuni

~11% ekstratiivsete märksõnade puhul.

Käesolev lõputöö on kirjutatud inglise keeles ja koosneb 42 leheküljest, sealhulgas 7

peatükist, 14 joonisest ja 15 tabelist.

4

List of abbreviations and terms

OED Oxford English Dictionary

EDR Electronic dictionary

TF Term frequency

NLP Natural language processing

ML Machine Learning

MT Machine Translation

POS Part of speech tag

LSTM Long short-term memory

BERT Bidirectional Encoder Representations from
Transformers

BART Bidirectional Auto-Regressive Transformers

SLURM Simple Linux Utility for Resource Management

NLTK National Language ToolKit

5

Table of contents

1 Introduction... 9
1.1 Problem statement... 9
1.2 Research objective...9
1.3 Research questions.. 10
1.4 Outline... 10

2 Background..11
2.1 Relevant concepts and theory.. 11

2.1.1 Statistical method... 11
2.1.2 Linguistic approach..12
2.1.3 Machine Learning approach...13

2.2 Research design... 13
2.3 Results validation metric... 14

3 Related work..18
4 Methodology.. 20

4.1 Choice of the base package... 20
4.2 Choice of the dataset..21
4.3 Choice of the base model...23
4.4 Data preprocessing.. 25
4.5 Future evaluation problems... 26

5 Experiments...28
5.1 Experiment 1 - Basic approach..30
5.2 Experiment 2 - Shuffling as a basic data augmentation.. 32
5.3 Experiment 3 - Advanced shuffling techniques.. 34
5.4 Experiment 4 - Generating new training data (back-translation inspired)................................ 35
5.5 Experiment 5 - Round-trip translation approach... 38
5.6 Experiment 6 - Synonyms processing... 42

6 Discussion and future work..48
7 Conclusion..50
References... 51
Appendix 1 - Links to the codebase and the best model along with the modified dataset............ 56
Appendix 2 - Non-exclusive license for reproduction and publication of a graduation thesis......57

6

List of figures

Figure 1. Keyphrase extraction task approaches [41]. 11

Figure 2. The human factor errors present in datasets. 17

Figure 3. Example target string with both extractive and abstractive keyphrases 26

Figure 4. Example target string with only abstractive keyphrases 26

Figure 5. Example of formatting problem for midas/inspec dataset [13] 27

Figure 6. The structure of a single sample, which is a Python dictionary 36

Figure 7. Example generated data sample 37

Figure 8. Example document from the default Inspec dataset (id 1015) 40

Figure 9. Example document after back-translation from German (id 1015) 40

Figure 10. Example document after back-translation from French (id 1015) 41

Figure 11. Example document after back-translation from Spanish (id 1015) 41

Figure 12. Resulting tuples with grammatical categories of each token 43

Figure 13. Example of ranking process for word synonyms 43

Figure 14. An example of paraphrased sentence from the Inspec document (id 1015) 44

7

List of tables

Table 1. Example F-scores for extractive keyphrases (taken from [12]) 15

Table 2. Example F-scores for abstract keyphrases (taken from [12]) 16

Table 3. Comparison of the number of abstract keyphrases in midas/inspec dataset 17

Table 4. Diversity of BART models (data is taken from [25]) 24

Table 5. Example inconsistency of midas/inspec sample (train split, id 114) 27

Table 6. Extractive F1 score comparison with the baseline 31

Table 7. Abstractive F1 score comparison with the baseline 31

Table 8. Extractive F1 scores for basic shuffling approach (3 epochs) 33

Table 9. Abstractive F1 scores for basic shuffling approach (3 epochs) 33

Table 10. F1 scores for basic shuffling approach on various epochs amount 34

Table 11. F1 scores for proposed advanced shuffling methods 35

Table 12. Comparison of using the newly generated dataset with default one 38

Table 13. Comparison of using the back-translated dataset with the previous best 42

Table 14. Comparison of using the synonyms dataset with the previous best 45

Table 15. Performance boost, gained by applying advanced data augmentation techniques 46

8

1 Introduction

1.1 Problem statement

Keyphrase extraction is the process of automatically identifying the most important words or

phrases in a text document. It has become an increasingly important research area in natural

language processing and information retrieval due to its ability to provide concise summaries

and meaningful representations of large amounts of textual data. Keyword extraction is

important nowadays in the sphere of text data classification, when it is not possible to manage

the huge amount of information manually. The extraction of keyphrases can be valuable in a

wide range of applications, such as document classification, information retrieval, automatic

summarization and text mining. Precisely, in real life it can be used for articles, news or other

complex textual information as even now often this work is done manually by the writer or

publisher. The reason for having a keyword list for, let’s say, articles is to simplify the

navigation through the significant data amount and give an overview of the contents more

precisely. According to statistics, 80% of the generated data is unstructured [1], which created

noticeable problems with analyzing and processing. So, keyword extraction is an extremely

useful base to mark and structure any data without having to waste human working hours for

this.

To conclude, the most common places to use such systems are news portals, abstract and

citation databases, blog platforms etc. Using the automated systems allows to get rid of the

human factor, makes extraction follow the same logic and be consistent regardless of a

certain author style and helps writers to save their work time.

The main contribution of the current work is introducing an advanced data augmentation

technique to get a significant boost in abstractive performance for keyphrases, not mentioned

directly in the text, by applying additional algorithmic NLP approaches to the default training

data.

1.2 Research objective
The research objective of this article is to figure out a method to create a keyphrase extraction

model capable not just to extract keyphrases from the text, but also abstract meanings and

topics not mentioned explicitly, transforming them to semantically correct phrases. Another

objective is to propose some methods to improve its performance and test that approach using
9

the same evaluation dataset as for the starting model. The goals are like that as by

understanding the best methods for keyphrase extraction, we can enable more efficient and

accurate analysis of large volumes of textual data, ultimately improving the effectiveness of

many natural language processing applications.

1.3 Research questions
During this research the main goal is to verify whether the success rate of existing keyword

extraction models can be improved. This task implies that to accomplish this a certain

approach should be tried and tested, therefore this work requires a practical research.

Therefore, the following research questions were formulated:

● RQ1: Which data augmentation technique should be considered as the best one for the

abstractive keyphrase extraction task in English?

● RQ2: What are the underlying mechanisms by which the chosen data augmentation

approach improves the models’ performance?

● RQ3: How big is relative model performance improvement, gained by applying the

chosen data augmentation technique?

1.4 Outline
The current work consists of seven chapters. The first one introduces the problem statement,

explaining why this topic is important nowadays along with the research goals and

contribution. The next, second chapter gives theoretical information and the history of

techniques to solve the problem in the academic sphere. Third chapter gives an overview of

existing papers and works in the area of the problem, allowing us to compare the techniques

applied. The fourth chapter describes the methodology and preparation for the experiments

part, described in the fifth chapter. In the experimentation part various techniques are tested

and compared, giving also the possible reasons for certain approaches to fail or be successful.

Also it proves the main discovered data augmentation technique (synonyms replacement)

actually worked as expected by introducing the additional experiment. The sixth chapter

proposes some possible future improvements to the latest approach, described in the fifth

chapter. The final, seventh chapter makes the final conclusion and gives the most noticeable

results overview.

10

2 Background

2.1 Relevant concepts and theory
The main problem of the task is to choose the right methodics to compare the value of the

word/phrase in the sentence along with sentence importance assessment. It's not a secret that

the main field for these kinds of tasks is NLP - Natural Language Processing. It involves the

development of algorithms and techniques to analyze and process human language. In the

context of keyphrase extraction, natural language processing is used to identify the most

important words and phrases in a given text. Another involved concept is an information

retrieval topic - a part of NLP, which allows to work with large amounts of data and extract

valuable information from them to be analyzed by more precise NLP methodics. There are

three main approaches to solve this task - Statistical, Linguistic and using Machine Learning

[2]. Also, it is possible to combine these methods resulting in the fourth Hybrid method with

various possible proportions and methodics used. To choose the right approach it would be

good to review how they work and which one is the most suitable for the keyword extraction

purpose (see Figure 1).

Figure 1. Keyphrase extraction task approaches [41].

2.1.1 Statistical method

Statistical method is the simplest one in the meaning of required resources, however they are

not flexible and the algorithm is very predictable and straightforward. The main idea is

determining keyphrase importance by analyzing its frequency in the text. The more it is being
11

mentioned, the more important it is going to be marked. Also phrase length and positions in

the text can be taken into account [3]. Some statistical techniques mentioned can be found in

Figure 1, however, that’s a rare case, when these methods are used alone due to the high error

probability and low flexibility. So, often people use combinations of these approaches, such

as:

● TF-IDF - terms are sorted by term frequency (TF) in the text and the number of

mentions in other documents (IDF) [4].

● TW-IDF - mostly used for retrieving user-related information from the text (however

can also be applied for keyphrase extraction), the main difference from TF-IDF is that

it takes into account term weight instead of term frequency, which allows to consider

not only the number of mentions, but also the importance in the context [5].

Important to mention, that some parts of statistical methods can be applied for data

augmentation with the ML approach. For example, it is possible to statistically analyze

training data and increase the number of samples with rarely mentioned keyphrases, which

can make the model pay more attention to them as well. This can be helpful as usually the

training data is highly unbalanced and contains much more majority class samples than

minority ones [6].

2.1.2 Linguistic approach

Linguistic approach uses grammar analysis and is dedicated to extract not just words, but the

term semantics, which allows to get better results as this system can recognize semantically

similar keywords and unify them in the answer [3]. Out of the mentioned methodics in Figure

1 only the combinations of the methodics can give decent results as well as with statistical

approach. That becomes obvious after a closer look on some of the mentioned linguistic

methods:

● Electronic dictionary (EDR) and WordNet are two possible options to fetch the lexical

information about the word (e.g. whether the word is a verb, divide it into the parts

etc.).

● Discourse analysis - according to the OED this is a method of analyzing the texts or

utterances longer than one sentence, taking into account both their linguistic content

and their sociolinguistic context. This can be applied for keyword extraction tasks by

comparing the summed scores of the candidates, which are calculated by the term

dominance throughout the text [7].

12

● POS pattern - part of a speech pattern, usually is used to get n-grams needed based on

their POS tag pattern.

That’s important to mention, that the most interesting for my thesis topic linguistic approach

is to use either the WordNet library or EDR to augment the training data with word

synonyms, increasing the number of diverse samples to train on. The final decision on which

of the two should be chosen has to consider the EDR not being freely available [8].

2.1.3 Machine Learning approach

However, statistical and linguistic approaches used separately are incapable of finding

keywords not mentioned directly in the text (e.g. sphere of knowledge etc). For this case

neural networks along with machine learning are the main option to use. However, the best

results can be achieved only by combining all three approaches. In the case of keyphrase

extraction it means taking the most powerful ML approach as a base and applying statistical

and linguistic methods for modifying the training data to get the best set to train on.

2.2 Research design
The main challenge while handling cases when the task is to extract abstract keyphrases

absent in the input text as they have to be semantically and grammatically correct. Often even

if the keyphrase is extractive (present in the input text), it can still be mentioned in a variety

of different forms, so it is important to consider them to be the same and avoid self-repetitive

ones. This problem forces developers to apply Natural Language Processing techniques based

on the text generation to not only extract some information, but to generate it based on the

extracted data. This allows the model to distinguish the information about key terms present

in the text and the actual list of keyphrases it has to deliver. One of the main candidate

approaches is to use pre-trained NLP models for text generation (such as BART) as a base for

keyword extraction model training and then launch a learning process using the

Sequence-to-Sequence approach [9]. This method allows mapping an input sequence (full

text) to a yield of a succession of output sequence (keyphrases list) [10]. Using the proposed

methodology the resulting model should be more adapted to construct semantically correct

and meaningful phrases to describe the abstract meanings not mentioned directly in the text.

One of the problems is how to order target keyphrases in output sequences for the model

training process. Most of the existing approaches just concatenate extractive and abstractive

arrays and form a single string using some delimiter (comma, semicolon etc.). The problem

13

with this approach is that in this case our model can be too precise in the meaning of ordering

extractive and abstractive phrases, as in the learning target sample string they are always

present as two consecutive subsets (e.g., “ext, ext, ext, abs, abs”). Then the model can lose

efficiency trying to follow the same rule for all input texts. One of the possible approaches

could be “shuffling” keyphrases in the dataset before training process randomly or using

more specific algorithm (e.g., save the order of extractive but shuffle abstractive among them,

change the order of extractive to perfectly match the order in the input text etc.). This can

make abstractive ones more predictable, as the model won’t try to predict them closer to the

end of the generated sequence.

Another possible improvement is closely related to the actual generation process of NLP

models. To generate an output sequence, the model predicts a certain number of candidates

for the next chunk (or substring) and chooses the one with the highest probability. In case the

beam search is applied, the model is going to take the chunk with the highest average

probability of this chunks’ possible descendants [11]. The sequence is considered to be ready

when the EOS (End of String) symbol has the highest probability. Taking this into account,

the generation process can be manually modified to make the model predict the specified

number of keyphrases. This can noticeably improve the usability as the approach in the

baseline paper allows only to take up to N entries out of the generated sequence without

possibility to have a larger output set.

2.3 Results validation metric

To validate the performance of the model the best way is to use a metric called F-score. It

includes such parameters as the number of predicted keyphrases (True Positives), missed

ones (False Negatives) and predicted incorrectly (False Positives). To calculate F-score,

precision and recall should be found as the formula is:

F-score = (2 * 𝑅𝑒𝑐𝑎𝑙𝑙 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛).

● Recall is the ratio of correctly and incorrectly predicted labels. It can be calculated

using the formula:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑐𝑜𝑢𝑛𝑡/(𝑇𝑃𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑃𝑐𝑜𝑢𝑛𝑡)

● Precision is the ratio of correct and missed labels. Formula:

14

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑐𝑜𝑢𝑛𝑡/(𝑇𝑃𝑐𝑜𝑢𝑛𝑡 + 𝐹𝑁𝑐𝑜𝑢𝑛𝑡)

So, as the performance of the model is an F-score value, which could be quite low even for a

decent–performing model, it is possible to have some baseline paper with results that could

be outperformed, meaning that the new methodics worked better for the implemented system.

This would be the “Applying a Generic Sequence-to-Sequence Model for Simple and

Effective Keyphrase Generation” [12] mentioned above, one of the latest theses on this topic.

The main purpose of the current research is to figure out if it is possible to improve the results

and to describe the methods tried. The success criteria is whether the trained model works

better than it used to in the baseline or other peoples’ works.

2.4 Possible evaluation data problems

In these kinds of tasks the results evaluation is the most arguable topic as there is no clear

“ground truth” (which is quite common for NLP tasks in particular). For the approach chosen

(Machine Learning) usually some part of the dataset is considered to be the test/evaluation

one, however, as they are written by humans, especially a lot of different humans with diverse

way of thinking nobody can guarantee the logic for them was the same and all the samples in

the dataset follow the same logic to extract keyphrases. This leads the resulting performance

to be relatively small. Below you can review the results of the related thesis paper with the

name “Applying a Generic Sequence-to-Sequence Model for Simple and Effective Keyphrase

Generation” [12] (only part of the table was extracted into Table 1):

Inspec
F@10

NUS
F@10

SemEval
F@10

Kp20K
F@10

Krapivin
F@10

CopyRNN 33.6 31.7 29.6 25.5 25.2

CorrRNN - 33.0 32.0 - 27.8

CatSeq 30.0 34.9 30.6 27.3 27.4

CatSeqD 33.3 36.6 35.2 29.8 28.5

bart-base-kp 35.6 35.3 31.1 30.9 25.8

bart-large-kp 38.7 38.0 32.3 31.1 25.0
Table 1. Example F-scores for extractive keyphrases (taken from [12])

15

The first row of the table represents the datasets used along with the number of keyphrases

taken into account (F@10 means F-score for top 10 predicted keyphrases). The first column

are the names of the models trained and evaluated on mentioned datasets. The two models

below have been trained and evaluated by paper authors. F-scores here are presented in

percentage (the maximum value is 100). As a result, the ⅓ of efficiency using F-score metrics

is considered to be the base one for such systems.

The situation is even worse if the abstractive keyphrases need to be extracted (Table 2):

Inspec
F@10

NUS
F@10

SemEval
F@10

Kp20K
F@10

Krapivin
F@10

CopyRNN 5.1 7.8 4.9 11.5 11.6

CorrRNN - 5.9 4.1 - -

CatSeq 2.8 3.7 2.5 6.0 7.0

CatSeqD 5.2 8.4 4.6 11.7 12.0

bart-base-kp 4.8 5.6 3.0 6.1 11.2

bart-large-kp 5.4 4.4 2.8 6.1 13.2
Table 2. Example F-scores for abstract keyphrases (taken from [12])

That is true even despite the fact that the sequence-to-sequence model takes into account the

whole input text string on each char generation step, therefore theoretically it should be able

to extract some general meanings not mentioned in the text directly. The problem here is that

datasets are constructed by humans and the content can be only assumed to be correct, as the

human factor and differences in thinking process can influence the resulting set a lot. To

make some examples with existing problems on some datasets available I can take the

midas/inspec Hugging Face dataset [13]. Sometimes for certain texts it contains a lot of

knowledge areas of the topic as abstract keyphrases, while for some others not. In the

example below it can be seen how unbalanced this is, especially according to the fact that the

input text size is even bigger for the sample with id 1036 (Table 3):

16

Sample
ID

Abstract keyphrases

1024 "variable-resolution compression", "hierarchical pyramid spatial relationship",
"successive-approximation quantization", "behavioral inconsistency avoidance",
"image encoding", "embedded coding", "rate control optimization", "decision
problem", "progressive transmission utility functions", "information theoretic
measure"

1036 "feedback"
Table 3. Comparison of the number of abstract keyphrases in midas/inspec dataset

Also, the human factor can be evidently seen by some simple mistakes, which cannot

influence the resulting model performance (as the model doesn’t care if the keyphrase is

extractive or not), but indeed influences the evaluation results in case extractive and

abstractive F-score are calculated separately. For example, in the following example (Figure

2) the obvious extractive keyphrase is considered to be abstractive (despite the fact it is

present in the text):

Figure 2. The human factor errors present in datasets.

Therefore, there are two ways to deal with data imperfection - either try to improve it by

applying some filtering before augmentation attempts or just ignore the problem as quite a lot

of papers do the same and relative results should be similar for the same actual performance.

The second option is preferable, as I would like to get as clean relative results as possible,

without artificial boost by solving some evaluation data issues.

17

3 Related work
Keyphrase extraction can be performed using the various approaches, and using the machine

learning approach doesn’t automatically guarantee the best result. Sometimes algorithmic

preprocessing like constructing a word graph based on the co-occurence relationship can help

to reduce the amount of noise in the text, as introduced in [14]. While some researchers are

focusing on combining neural models with algorithmic approaches, other ones try to improve

the performance of the chosen model type. One of such works [12] is going to be considered

a baseline for the current theses, despite the fact the slightly different approach was chosen

for extracting the data. Despite the same sequence to sequence approach is used, the proposed

solution allows to control the number of keyphrases extracted, which can be both an

advantage and the weak point of such method as the number of keyphrases present in the

input text is better to be figured out by the model relying on the context of the whole

document given. The resulting effect in relative evaluation results is especially visible on the

datasets with a large amount of pre-defined keyphrases in the training data (like in Inspec),

when the dataset contains a larger amount of phrases, considered to be the most important

and representing the text context.

So, although most neural network models heavily depend on the quality of the training and

evaluation data, the chosen model type and evaluation approach also matters a lot. Some

researchers concentrate on using LSTM models [15] to validate the pre-processed list of

candidate keyphrases, others are working on the fully end-to-end models [16], allowing to get

the result using only the model pipeline (sequence to sequence type is the best for this

purpose). However, when using these approaches the performance of the resulting system

heavily depends on the training data quality and overall training process along with the base

model and hyperparameters values chosen. Using a single end to end sequence to sequence

model gives a list of keyphrases directly, avoiding the step of filtering them out of the

candidates list, so the model has to correctly guess the number of keyphrases for the current

input text, which is again highly tight with the quality of the training data.

Also, although keyphrase extraction and generation terms are often considered to be the same

[17], in the machine learning field it makes a huge difference when coming to a decision on

which base model is the best to use. Extraction is mainly used to find related features in the

input text, so in the scope of this thesis this approach is mainly suitable for outlining

extractive keyphrases. For these approaches extractive base models like BERT [18] are often

18

the best choice. Generation should be less focused on the features in the input text, taking into

account the abstract context of the whole document, so it is more suitable to outline

abstractive features with BART [19] as a base model.

19

4 Methodology

Before starting experimenting, a couple of things should be clarified. The first problem is to

choose the Python package for training/evaluation. The main requirement for it is to be as

configurable as possible and allow to add a custom behavior for data manipulation (including

some preprocessing before tokenization), custom evaluation function and easily configurable

hyperparameters. After the step above is finished, the next one would be to choose some

datasets to use as a base, as this would influence the variety of text topics covered along with

GPU computing time and the VRAM size needed for a certain number of batches. The next

step is to choose some general language model as a base one to fine-tune on (or move to

doing everything from the scratch). The main reason to consider using a pretrained model as

a base is to increase the models’ dictionary and capability to work with English text data

better [20]. If everything is ready, the main experimentation part can start, which includes

generating different datasets, data preprocessing or rearranging, changing the

hyperparameters value etc.

For training purposes the SLURM workload manager of the UT computational cluster will be

used. The configuration includes using 4 CPU cores, 32GB RAM and either Tesla with 32GB

VRAM (suitable when training on smaller datasets like Inspec) or A100 with 40GB VRAM

(the best choice for larger Kp20k dataset) as a GPU for CUDA computing.

For theoretical questions while preparing and doing the experimentation part the advanced

AI-based tools were used to simplify the theoretical research (such as ChatGPT as an

advanced Google Search), as well as Grammarly and Microsoft Word as a writing aid when

writing the thesis.

4.1 Choice of the base package

As the main goal is to simplify the process as much as it is possible, the best option to use is

to join the Hugging Face ecosystem, which is an excellent aggregator for datasets, models

and Python libraries used in scripts.

Hugging Face Transformers is a Python package that makes it easy to work with pre-trained

models for Natural Language Processing (NLP) tasks like language modeling, text

classification, and question answering. The package is built on top of PyTorch and

TensorFlow and offers a range of pre-trained models like BERT [18] or BART [19] along

20

with their variations, which are the most interesting to me within the keyphrase extraction

topic.

One of the best things about the Hugging Face Transformers package is that it's easy to use.

You can load pre-trained models, process text inputs, and generate outputs with just a few

lines of code. For example, you can load a pre-trained BERT model and generate embeddings

(in this certain case a set of possible sentence endings) for a sentence like "In theory, I can

generate a custom sample here…" by using the AutoTokenizer and AutoModel classes from

the package, which can automatically find suitable implementations for your particular

model.

You can also fine-tune pre-trained models on custom tasks like text classification or named

entity recognition using the package's simple API. This means that you can quickly adapt

pre-trained models to your specific needs without having to train them from scratch.

As the base for the script I’ll be working on, the best choice is to use the

run_summarization.py from examples folder. The topic is quite close, as keyphrase extraction

is a subtask of summarization, and more importantly it shows the process of

sequence-to-sequence model training, including where data can be preprocessed, tokenized

and where the results can be evaluated after training.

4.2 Choice of the dataset

Not many datasets are available for keyphrase extraction topics. The main five worth

mentioning are KP20k [21], OpenKP [22], KPTimes [23], Krapivin [24] and Inspec [13]. To

choose the best dataset to proceed with I would review them and make a conclusion about

each:

● KP20k: This dataset contains 532,422 English scientific articles along with their

associated keyphrases. The dataset is large and diverse, covering a wide range of

scientific fields. However, the keyphrases are sometimes incomplete or contain errors.

● OpenKP: This is a collection of open-access papers from various scientific fields,

along with their keyphrases. The dataset is smaller than KP20k, but the keyphrases

are generally more accurate. One downside is that the dataset only covers scientific

articles.

21

● KPTimes: This dataset contains articles from the New York Times, along with their

associated keyphrases. The dataset is relatively small, but the keyphrases are

high-quality and cover a diverse range of topics.

● Krapivin: This is a collection of scientific articles and their keyphrases from various

fields. The dataset is relatively small, but the keyphrases are generally high-quality

and complete.

● Inspeс: This dataset contains abstracts from scientific articles in the field of physics,

computer science, and engineering. The dataset is relatively small - only 2000

samples, but the keyphrases extracted are quite decent (except the minor problems I

described in the Chapter 2.4) and the dataset covers a diverse range of topics for such

a small size.

After reviewing possible options I proceed with two border options - KP20k and Inspec

dataset.

Important to mention, that the needed data can be also obtained manually in a custom dataset

either by extracting it raw from some data aggregator with subsequent formatting, by

combining existing datasets or by generating data using previously trained models. To create

a new dataset, the following steps can be followed:

1. Find some data to make the future model find similar patterns and logic in it.

2. Split this data into two or more datasets - usually training and test (evaluation),

sometimes also the validation one can be added.

● Training set: This is the subset of the dataset that is used to train the machine

learning model. The model learns the patterns and relationships in the training

set data, and then uses this knowledge to make predictions on new data.

● Test set: This is the subset of the dataset that is used to evaluate the final

performance of the model after it has been trained and tuned on the training

and validation sets. The test set should be representative of the real-world data

that the model will be used on, and it should not be used during training or

hyperparameter tuning.

● Validation set: This is the subset of the dataset that is used to tune the

hyperparameters of the model. Hyperparameters are settings of the model that

are not learned during training, such as the learning rate, regularization

strength, or number of hidden layers. The validation set helps to assess how

22

well the model generalizes to new data and to find the best hyperparameters

that minimize the error.

3. Save the dataset as a JSON file, containing the list of samples. If needed, the resulting

dataset can be loaded to the Hugging Face dataset repository and accessed there by

anyone.

4.3 Choice of the base model

To improve the results, it is recommended to use some pre-trained model to fine-tune. There

are two main models, which are mostly used for that purpose - BERT [18] or BART [19].

Their performance can vary depending on the certain task, but in the case of keyphrase

extraction an answer to this question is complicated.

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained

transformer-based language model that uses a masked language modeling task to learn

contextualized word embeddings. BERT is trained on a large corpus of text and can be

fine-tuned on specific NLP tasks by adding a task-specific layer on top of the pre-trained

model. BERT has achieved state-of-the-art performance in various NLP tasks, including

question answering, sentiment analysis, and named entity recognition.

On the other hand, BART (Bidirectional and Auto-Regressive Transformers) is a pre-trained

transformer-based language model that is designed to handle sequence-to-sequence tasks

such as text summarization, machine translation, and text generation. BART is trained on a

large corpus of text using both bidirectional and auto-regressive modeling objectives. BART

has achieved state-of-the-art performance in various sequence-to-sequence tasks, including

summarization and machine translation.

An important criteria to decide on which one of these models should be used is whether the

information needed is directly mentioned in the text or not. As in the current scope both

extractive and abstractive keyphrases have to be extracted, the best way is to proceed with

BART. This is because BART has been specifically designed to handle sequence-to-sequence

tasks such as text generation and summarization.

To extract abstractive keyphrases using BART, we can use an encoder-decoder architecture

that takes the input text and generates the keyphrases as an output. We can train the model on

a corpus of text with annotated abstractive keyphrases using a sequence-to-sequence

approach, where the model is trained to generate keyphrases that are not explicitly mentioned

23

in the input text. During inference, the model can generate a list of relevant keyphrases that

are not mentioned in the input text but are related to the content.

In conclusion, while BERT is better suited for keyphrase extraction when the task involves

identifying relevant keyphrases from the input text, BART is better suited for the extraction

of abstractive keyphrases that are not explicitly mentioned in the input text. This is because

BART has been specifically designed to handle sequence-to-sequence tasks such as text

generation and summarization, which are necessary for generating abstractive keyphrases as

in that case the model has to construct meaningful phrases from the scratch.

There are multiple variations of BART-like models (see Table 4 below), so it is crucial to

decide which one to use. In the case of using the midas/kp20k dataset with the highest variety

of covered topics, the most logical way is to use a widely specialized base model, such as

facebook/bart-large from Hugging Face [25]. However, the same base model can be used for

midas/inspec dataset as well, as despite it covers quite a number of topics, they are highly

specific scientific ones, which makes them require a broader model knowledge. Still, there is

an alternative for the mentioned large model - facebook/bart-base, introduced under the same

paper [25], which can be tried as well. The main difference between facebook/bart-base and

facebook/bart-large is the size of the model and the number of parameters.

Description Params
number

bart-base bart model - 6 encoder + 6 decoder layers 135M

bart-large bart model -12 encoder + 12 decoder layers 406M

bart-large-mnli bart-large fine-tuned on MNLI dataset (Multi-Genre
Natural Language Inference)

406M

bart-large-cnn bart-large fine-tuned on CNN Daily Mail dataset 406M

bart-large-xsum bart-large fine-tuned on Extreme Summarization XSum
dataset

406M

Table 4. Diversity of BART models (data is taken from [25])

The base one has 12 layers of transformers with a hidden size of 768 and 135 million

parameters, while the large one has 24 layers of transformers with a hidden size of 1024 and

406 million parameters. Also it would be important to mention, that while base models
24

bart-base and bart-large were trained using self-supervised objective, the fine-tuned versions

are trained in supervised way. As a result, BART-large is a larger and more powerful model

that can handle more complex tasks than BART-base. To ensure stability and avoid

overfitting the best way is to go with the most powerful default variant - facebook/bart-large.

4.4 Data preprocessing

The first thing to consider here is the format of existing datasets. For instance, the generation

subset of midas/kp20k dataset consists of three columns:

● The document is the input text, saved as an array of words.

Example: ["The", "self-organizing", "map", … ,"article."].

● Column extractive_keyphrases represents keyphrases directly mentioned in the text.

The format is an array of phrases.

Example: ["self-organizing map", "learning vector quantization"].

● Column abstractive_keyphrases represents keyphrases, which describe contents, but

are not mentioned in the text directly. The format is an array of phrases.

Note: only the document array is guaranteed to be a non-empty array. Both

extractive_keyphrases and abstractive_keyphrases can be an empty array.

Now, when the data structure is known, the main preprocessing can start. The chosen model

type is Sequence-to-Sequence, which means it requires a tokenized text as an input, and

produces some tokenized text as an output. Therefore, the first step is to concatenate the input

document into a single string, along with preparing the output single string with keyphrases,

separated by some delimiter (“, “ as the most default option). The main complication here is

that on the evaluation step it will be necessary to distinguish the predicted extractive and

abstractive keyphrases, as the expected output is just a string with phrases, listed with comma

as a separator. To fix that, two possible approaches can be used:

The first option is to delegate the classification to the model by adding two special tokens to

the training target strings, defining the type of keyphrases after it. Let them be “EXT: “ for

extractive keyphrases and “ABS: ” for abstractive ones (Figure 3).

25

Figure 3. Example target string with both extractive and abstractive keyphrases

In case of using both tokens there is also an option to store the target string for cases, when

either extractive or abstractive keyphrases are absent (Figure 4):

Figure 4. Example target string with only abstractive keyphrases

The alternative approach is more complicated on the evaluation step, but is reliable and

logical in the distinction of extractive and abstractive keyphrases. In this case any special

tokens can be skipped, except keyphrase delimiter “, “, resulting in the simpler string with

keyphrases, listed with commas. On the evaluation step, however, the system should be

implemented to effectively search keyphrase entries over the text. The criteria for the

keyphrase to be extractive is whether it can be found in the text. However, there are cases in

the text, when some entries are interrupted with punctuation marks or extra spaces, added

accidentally on the text concatenation step. Detailed explanation continues on the next

subchapter.

4.5 Future evaluation problems

To explain the last problem more precisely, it is necessary to remind, that the document

column in any dataset contains each text as an array of separate words. Therefore, to get a

single string these words have to be concatenated with a space sign as a delimiter. This is the

26

easiest option to proceed with, as the model doesn’t care whether input data contains any

extra space or punctuation mark, only output should be properly formatted to ensure the

correct answer format. However, this can lead to certain problems when looking for a specific

keyphrase entry in the text, as in some datasets apostrophes can lead to the word being

considered as two separate words, splitted by this sign (see Figure 5 for an example).

Figure 5. Example of formatting problem for midas/inspec dataset [13]

To get around this problem, both the document and the keyphrase can be converted to

searchable format by removing all characters except letters (example is in the Table 5). This

way the problem is solved in the most optimized way and any possible formatting issue is

covered, ensuring that extractive keyphrases in the model output are distinguished correctly.

Before transformation After transformation

Cooperative three - and four-player quantum
games A cooperative multi-player quantum
game played by 3 and 4 players has been
studied . A quantum superposed operator is
introduced in this work which solves the
non-zero sum difficulty in previous
treatments . The role of quantum
entanglement of the initial state is discussed
in detail

cooperativethreeandfourplayerquantumgame
sacooperativemultiplayerquantumgameplaye
dby3and4playershasbeenstudiedaquantumsu
perposedoperatorisintroducedinthisworkwhi
chsolvesthenonzerosumdifficultyinprevioust
reatmentstheroleofquantumentanglementoft
heinitialstateisdiscussedindetail

Extractive keyphrases of the text

quantum entanglement
initial state
quantum superposed operator
nonzero sum difficulty

quantumentanglement
initialstate
quantumsuperposedoperator
nonzerosumdifficulty

Table 5. Example inconsistency of midas/inspec sample (train split, id 114)

27

5 Experiments

The mainly used ways to improve the model performance can vary depending on the specific

problem, type of the model and specific characteristics of the training data. Out of them the

following ones are mostly used:

● Modifying of the training data, solving its main imperfections by applying various

techniques, mainly known as feature engineering [26]. Here are some main

approaches to do that:

○ Scaling - a process of transforming the input data to some consistent range of

values. The goal is to prevent some features from being dominant over others,

which in some cases can lead the model to be overfitted to recognize certain

features (keyphrases in the current case).

○ Normalization - similar process to scaling, with the main difference in the goal

of transformation. While scaling adjusts values to a consistent range,

normalization transforms input features to make them comparable, without

changing relative relationships among them.

○ One-hot (also known as label) encoding allows us to represent categorical

input values as numerical data. The general idea is to create a new binary

column for each possible state of the categorical number (if the number of

categories is limited).

● Hyperparameter tuning, which involves picking the optimal set of hyperparameters to

improve the models’ performance [27]. The following hyperparameters can be tuned:

○ Learning rate - represents the size of the step to update the weights of the

model during training. If the value is too small, the training process can take a

long time to reach an optimal state. On the other hand, with large learning rate

values the model can fail to achieve appropriate results at all.

○ Dropout rate - the probability of each neuron being randomly dropped out (set

to zero). The main goal to use it is to prevent overfitting on a large amount of

non-normalized data by resetting individual neurons from being too dependent

on each other. Can be useful on a large number of epochs over the same

dataset, allowing the model to concentrate on the minor features.

○ Batch size - a hyperparameter, which controls the number of samples

processed simultaneously at each iteration. A smaller batch size leads the

28

model to be updated more frequently with smaller amounts of data, resulting

in faster convergence and better generalization, however increasing the noise

in estimates. Larger sizes provide better training timings, however can lead to

overfitting and poor generalization. The maximum number of samples

depends on the sample size and GPU memory used. Also there is a possibility

to emulate the higher value of batch size with limited GPU memory by

increasing the gradient accumulation, leading to the model being updated only

after N subsequent smaller batches are processed.

○ Regularization strength - used to prevent overfitting by adding a penalty term

to the loss function while training [28]. This forces the model to have smaller

weights (in other words, to be simpler). The smaller value in this case leads to

an overcomplicated model with more overfitting, while a higher one allows to

get a simpler model. Important to note, that simpler model doesn’t mean it will

operate better over the validation subset, so increasing the value doesn’t

guarantee the better result.

● Transfer learning means using some pre-trained model as a base to fine-tune [42],

which leads to improvement in performance in most of the cases. It is especially

useful in the case of limited training data available (in the case of the current work the

midas/inspec dataset can be considered to be the case).

● Data augmentation [29] (which was chosen as the main tested approach of the current

paper) involves creating new training data by applying transformations to existing

data or generating new one using some text generation model, fine-tuned to generate

data backwards (in the case of keyword extraction, the model to generate texts from

keyphrases can be implemented).

● Batch normalization is used to balance the inputs to each layer in the model to

improve its stability and training speed. On the other hand, it has been reported that

such kinds of normalization can increase adversarial vulnerability of the model [30].

In the current paper the main research target is to test data augmentation techniques mainly,

however often the most significant boost can be obtained by combining several approaches.

To choose the appropriate set of model performance boost methods, various factors have to

be taken into account, including the nature of the data, the complexity of the model, the size

of the dataset, and the computational resources available.

29

Out of the approaches listed above, only feature engineering can be excluded as it refers to

modifying the initial training data and can interfere with data augmentation techniques. So it

can be relatively safely excluded out of the scope to avoid influencing the performance

measurement.

One of the approaches, which is going to be used for sure, is transfer learning, as the

BART-large model is used as a base for fine-tuning. Using a base model, trained on a huge

amount of unlabeled data can give much better results when fine-tuned with a relatively

small amount of labeled samples [31].

Another method which can be used in parallel is hyperparameters modification. This

technique is especially useful with increased sizes of the training data as a result of data

augmentation, as in this case there is a high probability of overfitting. Generated or modified

data still has relatively the same structure as an initial training one, so it is important to make

sure the model considers as many newly constructed features from the generated dataset as

possible, ignoring repetitive ones to hold a balance between them. This issue can be handled

by a dropout rate modification, but also the possibility to control model weights update

frequency can be useful, for which learning weight and batch size can be modified.

5.1 Experiment 1 - Basic approach

On this step only the basic data preprocessing has to be implemented along with the basic

evaluation function to calculate F1 score. The only operation performed before data

tokenization is keyphrase concatenation into a single string. Hyperparameters used are either

default or taken from the paper considered to be a baseline [12]. The number of epochs is

considered to be three, if not explicitly stated otherwise.

The following two datasets are going to be used for this experiment: midas/kp20k and

midas/inspec. The first one was chosen for its complexity and variety of topics, while Inspec

is an example of a smaller, but fine-grained dataset.

To make a better overview of an impact, the new type of metrics absent in the baseline paper

is going to be added - F@O, which takes the whole set of predicted keyphrases instead of top

five for F@5 or top ten in the case of F@10. This became possible because of the approach

difference with the baseline, as instead of several ranked sequences the concatenated string

with the whole set of predicted keyphrases is produced by the model. The extractive results

are listed in the Table 6 below, along with the abstractive ones in Table 7.

30

Inspec Kp20K

F@5 F@10 F@O F@5 F@10 F@O

CopyRNN
[32] 29.2 33.6 - 32.0 29.6 -

CatSeq
[33] 29.0 30.0 - 31.4 27.3 -

CatSeqD
[33] 27.6 33.3 - 34.8 29.8 -

bart-base-k
p 33.1 35.6 - 32.8 30.9 -

bart-large-
kp 35.2 38.7 - 33.1 31.1 -

The basic
approach
(mine)

44.3 48.5 48.7 24.4 24.4 24.5

Table 6. Extractive F1 score comparison with the baseline

Inspec Kp20K

F@5 F@10 F@O F@5 F@10 F@O

CopyRNN
[32] - 5.1 - - 11.5 -

CatSeq
[33] - 2.8 - - 6.0 -

CatSeqD
[33] - 5.2 - - 11.7 -

bart-base-k
p - 4.8 - - 6.1 -

bart-large-
kp - 5.4 - - 6.1 -

The basic
approach
(mine)

13.1 13.7 13.5 4.8 4.9 4.5

Table 7. Abstractive F1 score comparison with the baseline

31

The first conclusion can be already made by looking at the results. While performance of the

model, trained on the kp20k dataset is poor as expected (as no techniques were applied yet),

the results for Inspec dataset surprisingly exceed the metrics reported in the baseline. The

possible reason is not connected with the evaluation function implementation, as kp20k

results are the same as expected. Looking at some other models, trained or fine-tuned using

midas/inspec dataset it can be clearly seen, that the results reported in the baseline for this

dataset are surprisingly bad. Self-reported F1 Seqeval (both extractive and abstractive

keyphrases) score for ml6team/keyphrase-extraction-distilbert-inspec [35] (fine-tuned on the

distilbert [36], modification of BERT) is 50.9, exceeding the basic approach result.

According to the initial assumption, described in the 4.3 Choice of the base model chapter,

BART can be expected to be more suitable for keyphrase extraction tasks with abstractive

entries, so the results, reported by [12] when using midas/inspec don’t seem to be valid

enough.

5.2 Experiment 2 - Shuffling as a basic data augmentation

As the training target data in our case is a single string (keyphrases, splitted by commas), the

most obvious problem is that during the training process the model can pay too much

attention to certain positions of keyphrases in the target string. In theory, this can lead to the

model producing the wrong keyphrase just because it was often present at the same position

in a significant part of the training data. The first approach tried is simple - instead of doing

the N number of epochs over the same target data, it can be re-shuffled before each epoch. As

on some frameworks this task can be too complicated and to avoid re-tokenization in the

process of training, it is also possible to perform only one epoch over the data, multiplied N

times. This method is less effective in terms of RAM usage, but is much faster and simpler in

implementation. This way it is possible to get N copies of the data, with target keyphrase

strings reshuffled on each virtual epoch. The results are listed in Table 8 (extractive) and

Table 9 (abstractive).

32

Inspec Kp20K

F@5 F@10 F@O F@5 F@10 F@O

bart-large-
kp 35.2 38.7 - 33.1 31.1 -

The basic
approach 44.3 48.5 48.7 24.4 24.4 24.5

Basic
shuffling
(current)

45.1 50.8 49.4 31.6 31.8 31.4

Table 8. Extractive F1 scores for basic shuffling approach (3 epochs)

Inspec Kp20K

F@5 F@10 F@O F@5 F@10 F@O

bart-large-
kp - 5.4 - - 6.1 -

The basic
approach 13.1 13.7 13.5 4.8 4.9 4.5

Basic
shuffling
(current)

21.1 23.7 23.5 9.8 10.0 9.8

Table 9. Abstractive F1 scores for basic shuffling approach (3 epochs)

Even though the basic approach results were incomparable with the baseline, the

improvement when using even the simplest shuffling is obvious. The improvement is

especially clear for abstractive keyphrases, where the model performs twice as better for both

Inspec and Kp20K datasets. The possible explanation is that for abstractive keyphrases it is

crucial to let the model understand the position of this keyphrase in the target training

sequence is not connected with a certain part of the input text, but only with the whole text as

it is.

Another interesting question is how related is the number of epochs to the resulting model

performance. To test this, the Inspec dataset is the best choice, as every training iteration for

Kp20K can take up to several days for a large number of epochs, while Inspec is compact

enough to fit in hours. The results for Inspec dataset are below (Table 10):

33

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Basic
shuffling -
3 epochs

45.1 50.8 49.4 21.1 23.7 23.5

Basic
shuffling -
6 epochs

44.7 51.9 51.6 20.7 23.7 23.7

Basic
shuffling -
12 epochs

44.9 53.2 53.9 19.8 22.4 22.7

Table 10. F1 scores for basic shuffling approach on various epochs amount

The conclusion is that increasing the number of epochs does work for extractive keyphrases,

however leads to a slight decrease in the abstractive extraction performance.

However, this was only the basic shuffling, and the approach seems to be perspective enough,

so now some advanced shuffling techniques can be tried.

5.3 Experiment 3 - Advanced shuffling techniques

Shuffling of the keyphrases in target training sequences allowed to improve the evaluation

results significantly (especially for abstractive keyphrases), so experiments can be continued.

The following algorithm modifications can be tried:

● Order extractive keyphrases in the target sequence by their occurrence in the source

text and insert abstractive ones randomly among them.

● Order keyphrases in target sequences by their global occurrence over the dataset train

split.

● Apply shuffling to not only the target sequence with keyphrases, but also to the source

text (e.g. shuffle sentences).

The experimentation results are as following (Table 11):

34

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Basic
shuffling 45.1 50.8 49.4 21.1 23.7 23.5

Occurrence
in the text 46.1 52.7 52.9 18.2 23.2 23.1

Global
occurrence 43.7 49.9 50.0 17.4 22.0 21.9

Shuffled
sentences 45.5 53.3 51.6 19.6 22.2 22.0

Table 11. F1 scores for proposed advanced shuffling methods

From the table it can be clearly seen that there are two techniques, providing best

performance - ordering extractive keyphrases by occurrence in the source text and shuffling

sentences of input texts. For further experiments these two are the best option to apply over

any other data augmentation technique, as they can be combined with most of the other

possible approaches.

5.4 Experiment 4 - Generating new training data (back-translation

inspired)

There is one more approach, often used in MT - using the back-translation based data

augmentation. The idea is to involve a separately trained backwards model, trained to

generate text from the given list of keyphrases. This idea comes from the human

double-checking techniques in math, when something can be verified by applying reverse

logic and going from the result to given conditions [34]. The same facebook/bart-large model

can be used as a base to fine-tune. The only difference from the training process of the default

keyphrase extraction model is that texts are given as model inputs and keyphrase lists as

targets in the training data (of course, evaluation step in the end can be skipped, as there is no

explicit criteria for such a model to be considered as well-performing). Then, this model can

be used to generate any amount of the new training data, using the capabilities of the basic

language model used.

35

The possible profit is the possibility to get a large amount of various training data, increasing

the number of diverse samples, which, in theory, would provide a noticeable performance

boost compared to training on the same data for several epochs due to lower overfitting

chance.

The dataset, used for such generation will be midas/inspec (due to the significantly lower

size, compared to kp20k). As the default dataset size is 2000 samples, the optimal amount of

the new data to be generated is 10000 samples more, to get an analogue of 6 epochs after

dataset concatenation.

To control the number of keyphrases, given as an input to the model, this amount can be

either randomly generated in a certain range for each sample or preserved the same as in the

basic dataset. The first approach should be better, as it provides better sustainability and

keyphrase number balance will be preserved the same, as in the base dataset. The easiest way

to do that is to save keyphrase amounts of the basic dataset to a list, and then use them in the

generation process.

Hugging Face tools allow you to use the datasets as a json file in various formats. In the

current work it is going to be the list of Python dictionaries (each is a separate sample).

Figure 6. The structure of a single sample, which is a Python dictionary

To implement such a system, the following steps should be done:

1. Train the backwards model to generate texts out of lists of keyphrases.

2. Obtain the list of unique keyphrases for the whole Inspec dataset.

3. Save the number of keyphrases for each sample to the separate list.

4. Form the list of batches to give as an input to the backwards model, trained on the

first step. To preserve the balance of keyphrase amounts the same as in the basic

36

model, the lengths from the third step should be taken successively out of the formed

circle-closed array.

5. Tokenize resulting batches and pass them to the model input.

6. Decode resulting texts.

7. Split the input keyphrases into two categories (extractive or abstractive), based on

their occurrence in the generated text.

8. Save the resulting document, extractive and abstractive keyphrases into the output

json file.

Figure 7. Example generated data sample

As a result, the new dataset with 10000 samples is saved. From the human point of view,

texts don't have much sense, however it should now matter for the process of extractive

keyphrases detection. On the other hand, it can become a problem for abstractive ones, as the

background meanings of the resulting document can conflict with a given list of abstractive

keyphrases.

37

The only way to validate the model performance after training on this new dataset is to make

a test. After concatenation with the default Inspec dataset the number of samples became 12,

which is an equivalent of 6 epochs for the default dataset, so there is no need to have more

than 1-2 epochs. The results can be seen in the Table 12 below:

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Shuffled
sentences
(previous
best)

45.5 53.3 51.6 19.6 22.2 22.0

Generated
dataset only 37.1 43.8 42.3 15.7 16.6 16.5

Generated
dataset + 6x
default
Inspec

44.6 52.5 51.8 19.3 21.8 21.6

Table 12. Comparison of using the newly generated dataset with default one

From the results it can be seen that the approach didn’t work as expected and can be

discarded. The possible reason for that is the evaluation subset of the default Inspec is being

used, and the context in generated documents can be changed compared to the default dataset.

However, despite the doubts, the performance for abstractive keyphrases is not as awful as

expected, which means the backwards model was able to catch the abstractive context and

put it into the generated documents.

5.5 Experiment 5 - Round-trip translation approach

As the previous approach (generation of new samples) hasn't given the desired result, it

would be better to stick to the context of the original dataset without changing initial

documents much. The idea is to focus on paraphrasing the existing information, making sure

that extractive keyphrases are still recognizable. This approach may enhance the model's

ability to identify repeated keyphrases while minimizing attention on extraneous content,

which may be variable in nature.

38

One way to do this is to use a round-trip translation approach. The assumption under this

strategy is that after translating some piece of information to various languages in a pipeline,

the overall meaning will stay the same, but paraphrased [37].

The implementation strategy is mostly the same, as for new datasets generation, but instead

of pre-trained backwards model only existing translation models should be used. The easiest

approach is to translate the English text to some other language and then back. This can be

repeated N times to get N new paraphrased copies of an original Inspec dataset. For

experimentation, three foreign languages would be enough to get three copies of the original

Inspec dataset. The chosen languages are: German, French and Spanish. For translation, the

set of models from Helsinki-NLP seems to be the most convenient. However, they are based

on the OPUS dataset [38], which is not specifically scientific as the Inspec dataset is and

covers a wide amount of topics. This can be the problem if translating some poorly spreaded

scientific terms, but there is no way to find any specifically scientific translation model.

So, the following models [39] were picked to create the paraphrased datasets:

1. Helsinki-NLP/opus-mt-en-de for English-German translation.

Helsinki-NLP/opus-mt-de-en for German-English back-translation.

2. Helsinki-NLP/opus-mt-en-fr for English-French translation.

Helsinki-NLP/opus-mt-fr-en for French-English back-translation.

3. Helsinki-NLP/opus-mt-en-es for English-Spanish translation.

Helsinki-NLP/opus-mt-es-en for Spanish-English back-translation.

39

Figure 8. Example document from the default Inspec dataset (id 1015)

Figure 9. Example document after back-translation from German (id 1015)
40

Figure 10. Example document after back-translation from French (id 1015)

Figure 11. Example document after back-translation from Spanish (id 1015)
41

From the generated datasets it can be clearly seen that the resulting documents look nearly

the same with minimum differences in phrasing (e.g. popularization/popularizing,

false/wrong, lie/falsehood etc.). This difference results in the slight abstractive performance

boost, described in the Table 13:

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Shuffled
sentences
(previous
best)

45.5 53.3 51.6 19.6 22.2 22.0

Translated
dataset only 42.1 47.5 47.2 17.3 18.7 18.8

Translated
dataset + 6x
default
Inspec

45.1 53.2 52.9 19.0 22.5 22.8

Table 13. Comparison of using the back-translated dataset with the previous best

This experiment evidently shows that the back-translation approach allows the model to

perform much better than generating completely new samples, but the abstractive

improvement is only a bit better than for the regular shuffled sentences approach, described

in Chapter 5.2. The conclusion is that there is no need in changing initial training data

semantic content, but the diversity of paraphrasing should be increased.

5.6 Experiment 6 - Synonyms processing

The only way to change the document phrasing significantly without changing semantics is to

replace as many words as possible with their synonyms. The only criteria to avoid replacing

the word is if it is used as a part of an extractive keyphrase to prevent the model from

extracting a false-positive keyphrase.

The most convenient tool for this purpose is the NLTK (Natural Language Toolkit) library for

Python with a WordNet extension package (an electronic lexical database [40]). This

extensive library is designed to provide easy natural language processing, and is especially

useful for the purpose of synonyms replacement.
42

To replace only related words with synonyms, the input document can be tokenized using the

NLTK method word_tokenize to get tags for each token with method pos_tags. This method

provides the detailed information about each token - grammatical category of the token

(noun, verb, adjective, or adverb) and, optionally, the wordnet sense (unique identifier for the

tokens’ meaning). It is also possible to skip tokenization, as documents in the dataset are

already splitted to separate words.

Figure 12. Resulting tuples with grammatical categories of each token

Out of these POS tags, the only information needed to decide whether this word can be

replaced by a synonym is the first character, which means part of the speech. For the current

experiment, I’m going to replace only nouns (N), verbs (V), adjectives (J) and adverbs (R).

Another check is to verify the word is not one of the extractive tokens, defined before using

the list of current extractive keyphrases.

After the word is identified as suitable to be replaced, the wordnet library capabilities can be

used to get a list of synonyms first, then rank them with a similarity score. This allows you to

get N copies of the same text, which use different synonyms based on the similarity rank and

the current allowable similarity index (the first copy should use only most relevant synonyms,

then the second relevant synonym etc).

Figure 13. Example of ranking process for word synonyms

43

The result is that it becomes possible to get a large number of rephrased documents with the

same structure and semantics:

Figure 14. An example of paraphrased sentence from the Inspec document (id 1015)

Overall, in most cases even with the fifth rank of similarity the resulting paraphrased

sentence looks meaningful and its context is still clear. The small mistakes like a wrong

article in “a engagement” are allowable in this case, as they should not influence the process

of keyphrase extraction and it would be much harder to avoid them using just an algorithmic

processing with WordNet.

As a result the dataset with 5 paraphrased Inspec datasets (5000 samples) is ready and can be

used for training after combination with either default dataset or any previously generated

ones. The experiments with dataset combinations (original, generated, back-translated and

synonyms) were not successful, as using the generated dataset always led to the noticeable

decrease in performance, while using back-translated dataset was leading to overfitting and

performance stagnation. At the end the best solution was to use only the original and

44

synonyms dataset, which led to a first significant improvement since using advanced

shuffling techniques.

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Shuffled
sentences
(previous
best)

45.5 53.3 51.6 19.6 22.2 22.0

Synonyms
dataset only
(1 epoch)

39.6 47.7 47.5 17.6 20.5 20.4

Synonyms
dataset + 3x
default

45.89 54.03 54.27 20.15 23.07 23.15

Synonyms
dataset + 3x
default +
shuffled
sentences

43.9 52.3 51.9 19.3 22.3 22.5

Table 14. Comparison of using the synonyms dataset with the previous best

So, the best performance model acquired after training for 3 epochs on a combined synonyms

and original dataset, and in comparison with the basic approach before applying any data

augmentation technique the improvement is noticeable (Table 15, Acquired compared to

basic row).

45

Inspec (extractive) Inspec (abstractive)

F@5 F@10 F@O F@5 F@10 F@O

Basic
approach 44.3 48.5 48.7 13.1 13.7 13.5

Basic
approach
(24 epochs)

46.2 52.1 52.2 5.6 15.5 15.3

Synonyms
replacement 45.89 54.03 54.27 20.15 23.07 23.15

Acquired
compared to
basic

+3.5% +11.5% +11.4% +53.8% +68.4% +71.5%

Acquired
compared to
basic (24
epochs)

-0.7% +3.7% +3.9%
+359.8%
(the reason
explained
further)

+48.8% +51.3%

Table 15. Relative performance boost, gained by applying advanced data augmentation techniques

Important to keep in mind that applying data augmentation is not the only difference with the

basic approach, because often data augmentation leads to increasing the number of samples.

For the basic approach the default dataset (Inspec) and epoch number (3) were used, while for

the most advanced approach tested the combination of synonyms (5000 samples) and three

default Inspec datasets (3000) were used with the default number of epochs. This way, the

total number of samples for the basic approach is 3000, while for the most advanced one it

reaches the relatively huge number - (5000 + 3000) * 3 = 24000. The same number of

samples for basic approach is the equivalent for running training for 24 epochs, therefore

there could be a concern that with such size of the training samples with constant dataset

could give the same results, but here comes the overfitting problem.

For the purity of the experiment there is a point in running the basic approach without

applying any data augmentation techniques and verify, whether the F1 score is reaching any

reasonable performance rate. The results are listed above in the Table 15, Acquired compared

to basic (24 epochs) row. The extremely high relative improvement rate for abstractive F@5

is connected with the evaluation logic, which takes into account only top 5 predictions, which

are more likely to be extractive keyphrases here. The reason for this behavior is that using a

46

basic approach, keyphrases are just concatenated to a target training sequence as

extractive_keyphrases + abstractive_keyphrases, which leads the model to be overfitted to

predict extractive ones first on this number of epochs.

So, the experiment evidently showed that despite using a basic approach on the same amount

of samples to achieve decent performance for extractive performance, it is still relatively poor

for an abstractive one. So, when top 5 predictions are taken, there is a higher probability they

are extractive and less abstractive ones are likely to fit there. The overfitting is also a reason

for a poor overall abstractive performance, as the model starts paying too much attention to

the explicitly mentioned keyphrases over a static context.

47

6 Discussion and future work

As a result, the best applied data augmentation technique was multiplying training data by

replacing words with N-similar synonyms. Variable N in this case defines the number of

dataset multiplications possible, but is limited by the number of suggested WordNet

keyphrases. As the implementation considers similarity-ranked keyphrases array as

circle-closed, the N value can be much bigger, leading to various combinations of synonyms

in the new text. However, for the current work the number 5 was considered to be the best, as

with this value it is almost guaranteed that the non-extractive noun, verb, adjective or adverb

replaced will be unique for each newly generated dataset (as the number of synonyms

suggested is usually bigger). The improvement after using the technique described was also

proved by training a new model over the unmodified training data for the equivalent amount

of samples. In this case extractive performance was not much worse, unlike the abstractive

one, where using the dataset, modified with data augmentation technique proposed, led to a

51% relative improvement over the 24 epochs basic approach and 71.5% over the same

approach with 3 epochs of training.

The underlying mechanism for the approach chosen to work most likely is due to the

increasing the ability of the model to get the text context better by making relations between

synonyms used stronger. Therefore, the model can extract the abstractive context from a

broader specter of paraphrased sentences with the same meaning. On the other hand, the

approach proposed also slightly increases the ability to spot extractive keyphrases, which

probably can be explained by preserving them untouched in the newly generated texts,

making them more outlined for the model among paraphrased surroundings. The actual

numbers of relative improvement are 3% compared to the 24 epochs basic approach and

11.5% compared to the same approach with 3 epochs of training.

In future the system can still be improved by developing the idea of augmenting training data

with synonyms by increasing the described N value (leading to a significant increase of

newly generated training data, but resulting in less uniqueness of every separate text) or by

applying more advanced paraphrasing techniques.

One of the possible approaches is to use some external model to get the ability to not only

replace words with synonyms, but also apply a broader paraphrasing, keeping semantics the

same with even larger possible number of word combinations. The main challenge I see for

now with this proposed approach is whether it is necessary to aim at keeping extractive
48

keyphrases non-paraphrased or does ignoring this problem completely lead the model to even

better extractive performance. In the case preserving extractive extractive keyphrases is

considered to be unnecessary, the evaluation function should be modified to the initial

implementation with special tokens in the target sequence (‘EXT:’ and ‘ABS:’), as the current

implementation relies on extractive keyphrases being explicitly mentioned in the text to

distinguish them from abstractive ones in the output sequence.

Another possible experiment would be to try any of the mentioned approaches on some

language other than English. An interesting outcome could be whether mentioned methods

provide the same performance boost to those languages and whether data augmentation

techniques are universal for any language in the world.

49

7 Conclusion

In this work a lot of data augmentation techniques were presented and tested including the

one, which gives significant performance boost for keyphrases detection. Replacing words

with synonyms (Chapter 5.6) in the training data introduced an evident boost to the

abstractive keyphrase extraction (up to 71.5% relative F1@O improvement, compared to the

base approach, which can be seen in the Table 15), giving the model a broader ability to dig

into the abstract context of the document by considering a large number of synonyms for

various document phrasing. The resulting model was able to outperform simpler training

methods and combined the machine learning and algorithmic NLP algorithms using NLTK

and wordnet to achieve the result and generate a new dataset. It also worked quite well for

extractive performance, leading to the relative improvement of 11.5% for F1@10. This

means that the described synonyms approach can be used to get the significant abstractive

performance boost without having to sacrifice the extractive one, but even increasing it a bit

as well.

However, there were certain improvements spotted for other approaches as well. The

MT-based approach also was able to give a slight relative abstractive performance boost,

described in Table 13. The abstractive F1@O score improvement jumped from 22.0 to 22.8.

So, the relative improvement was only 3.6%, however this was enough to show that

introducing diversity of phrasings really makes a difference and this approach should be

developed more to increase the rate of paraphrasing, as it was relatively small for the

MT-based approach, described in the Chapter 5.5.

The easiest working data augmentation technique applied was a regular shuffling of

keyphrases before every new epoch, described in the Chapter 5.2. The improvement,

provided by using this technique (see Table 8 for extractive and Table 9 for abstractive) was

the best for abstractive performance (F1@10 score 13.7 -> 23.7 for Inspec dataset and 4.9 ->

10.0 for Kp20k, the performance rate almost doubled), however extractive performance was

also boosted (F1@10 score 48.5 -> 50.8 (+4.7%) for Inspec dataset and 24.4 -> 31.8

(+30.3%) for Kp20k). The reason for this approach to work so effectively for Kp20k is due to

the size and unbalanced structure, leading the model to be overfitted to spot certain sequences

with an unshuffled approach.

50

References
[1] Eberendu, Adanma. (2016). Unstructured Data: an overview of the data of Big Data.

International Journal of Computer Trends and Technology. 38. 46-50.

10.14445/22312803/IJCTT-V38P109.

[2] Ghazi, Ahmed & Haggag, Mohamed. (2014). Keyword Extraction using Clustering

and Semantic Analysis. International Journal of Science and Research (IJSR). 3.

1128-1132.

[3] M. Ramakrishna Murty, J. V. R. Murthy, P. V. G. D. Prasada Reddy & Suresh Chandra

Satapathy (2012). Statistical Approach Based Keyword Extraction Aid

Dimensionality Reduction. Springer Berlin Heidelberg.

10.1007/978-3-642-27443-5_51

[4] Qaiser, Shahzad & Ali, Ramsha. (2018). Text Mining: Use of TF-IDF to Examine the

Relevance of Words to Documents. International Journal of Computer Applications.

181. 10.5120/ijca2018917395.

[5] François Rousseau and Michalis Vazirgiannis. 2013. Graph-of-word and TW-IDF:

new approach to ad hoc IR. Proceedings of the 22nd ACM international conference

on Information & Knowledge Management (CIKM '13). Association for Computing

Machinery, New York, NY, USA, 59–68. https://doi.org/10.1145/2505515.2505671

[6] Decui Liang, Bochun Yi, Wen Cao, Qiang Zheng, Exploring ensemble oversampling

method for imbalanced keyword extraction learning in policy text based on three-way

decisions and SMOTE, Expert Systems with Applications, Volume 188, 2022,

116051, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2021.116051.

[7] Shibata, Tomohide & Kato, Norio & Kurohashi, Sadao. (2007). Automatic object

model acquisition and object recognition by integrating linguistic and visual

information. 383-392. 10.1145/1291233.1291327.

[8] Der, Lonneke & Pallotta, Vincenzo & Rajman, Martin & Ghorbel, Hatem. (2004).

Automatic Keyword Extraction from Spoken Text. A Comparison of two Lexical

Resources: the EDR and WordNet.

[9] Glazkova, Anna & Morozov, Dmitry. (2022). Applying Transformer-based Text

Summarization for Keyphrase Generation. 10.48550/ARXIV.2209.03791

[10] Yousuf, Hana & Gaid, Michael & Salloum, Said & Shaalan, Khaled. (2020). A

Systematic Review on Sequence to Sequence Neural Network and its Models.

51

International Journal of Electrical and Computer Engineering. 11.

10.11591/ijece.v11i3.pp2315-2326.

[11] Markus Freitag and Yaser Al-Onaizan. (2017). Beam Search Strategies for Neural

Machine Translation. 10.18653/v1/w17-3207

[12] Chowdhury, Md. Faisal Mahbub & Rossiello, Gaetano & Glass, Michael &

Mihindukulasooriya, Nandana & Gliozzo, Alfio. (2022). Applying a Generic

Sequence-to-Sequence Model for Simple and Effective Keyphrase Generation.

[13] Kulkarni, Mayank and Mahata, Debanjan and Arora, Ravneet and Bhowmik,

Rajarshi. (2021). Learning Rich Representation of Keyphrases from Text,

arXiv:2112.08547

[14] H. Dong, J. Wan and Z. Wan, "Keyphrase Extraction Based on Multi-Feature," 2019

International Conference on Machine Learning, Big Data and Business Intelligence

(MLBDBI), Taiyuan, China, 2019, pp. 208-213, doi:

10.1109/MLBDBI48998.2019.00047.

[15] N. T. A. Meem, M. M. H. Chowdhury and M. M. Rahman, "Keyphrase Extraction

from Bengali Document using LSTM Recurrent Neural Network," 2018 4th

International Conference on Electrical Engineering and Information &

Communication Technology (iCEEiCT), Dhaka, Bangladesh, 2018, pp. 461-466, doi:

10.1109/CEEICT.2018.8628090.

[16] E. Doostmohammadi, M. H. Bokaei and H. Sameti, "Persian Keyphrase Generation

Using Sequence-to-Sequence Models," 2019 27th Iranian Conference on Electrical

Engineering (ICEE), Yazd, Iran, 2019, pp. 2010-2015, doi:

10.1109/IranianCEE.2019.8786505.

[17] E. Doostmohammadi, M. H. Bokaei and H. Sameti, "PerKey: A Persian News Corpus

for Keyphrase Extraction and Generation," 2018 9th International Symposium on

Telecommunications (IST), Tehran, Iran, 2018, pp. 460-465, doi:

10.1109/ISTEL.2018.8661095.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. (2019). BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for

Computational Linguistics.

52

[19] Sparapani R, Spanbauer C, McCulloch R (2021). “Nonparametric Machine Learning

and Efficient Computation with Bayesian Additive Regression Trees: The BART R

Package.” Journal of Statistical Software, 97(1), 1–66. doi:10.18637/jss.v097.i01.

[20] L. Zhang and Y. Hu, "A fine-tuning approach research of pre-trained model with two

stage," 2021 IEEE International Conference on Power Electronics, Computer

Applications (ICPECA), Shenyang, China, 2021, pp. 905-908, doi:

10.1109/ICPECA51329.2021.9362566.

[21] Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and

Brusilovsky, Peter and Chi, Yu. (2017). Deep Keyphrase Generation. In proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 582-592, Vancouver, Canada. Association for

Computational Linguistics, http://aclweb.org/anthology/P17-1054

[22] Lee Xiong and Chuan Hu and Chenyan Xiong and Daniel Fernando Campos and

Arnold Overwijk. (2019). Open Domain Web Keyphrase Extraction Beyond

Language Modeling. In EMNLP.

[23] Gallina, Ygor and Boudin, Florian and Daille, Beatrice. (2019). KPTimes: A

Large-Scale Dataset for Keyphrase Generation on News Documents. In Proceedings

of the 12th International Conference on Natural Language Generation, pages 130-135

[24] Mikalai Krapivin and Aliaksandr Autaeu and Maurizio Marchese. (2009). Large

Dataset for Keyphrases Extraction.

[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov and Luke Zettlemoyer. (2019). BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. http://arxiv.org/abs/1910.13461

[26] A. Zheng and A. Casari, Feature Engineering for Machine Learning: Principles and

Techniques for Data Scientists. Sebastopol, CA, USA: O’Reilly Media, Inc., 2018.

[27] B. Wang and N. Z. Gong, "Stealing Hyperparameters in Machine Learning," 2018

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2018, pp.

36-52, doi: 10.1109/SP.2018.00038.

[28] K. Kim, "Time-Sensitive Adaptation of Regularization Strength of Recurrent Neural

Networks for Accurate Learning," 2017 16th IEEE International Conference on

Machine Learning and Applications (ICMLA), Cancun, Mexico, 2017, pp. 194-198,

doi: 10.1109/ICMLA.2017.00036.

53

[29] J. Han and J. Kim, "Selective Data Augmentation for Improving the Performance of

Offline Reinforcement Learning," 2022 22nd International Conference on Control,

Automation and Systems (ICCAS), Jeju, Korea, Republic of, 2022, pp. 222-226, doi:

10.23919/ICCAS55662.2022.10003747.

[30] P. Benz, C. Zhang and I. S. Kweon, "Batch Normalization Increases Adversarial

Vulnerability and Decreases Adversarial Transferability: A Non-Robust Feature

Perspective," 2021 IEEE/CVF International Conference on Computer Vision (ICCV),

Montreal, QC, Canada, 2021, pp. 7798-7807, doi: 10.1109/ICCV48922.2021.00772.

[31] K. Taneja and J. Vashishtha, "Comparison of Transfer Learning and Traditional

Machine Learning Approach for Text Classification," 2022 9th International

Conference on Computing for Sustainable Global Development (INDIACom), New

Delhi, India, 2022, pp. 195-200, doi: 10.23919/INDIACom54597.2022.9763279.

[32] Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and Yu

Chi. 2017. Deep keyphrase generation. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics, pages 582–592, Vancouver, Canada.

Association for Computational Linguistics

[33] Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker, Peter Brusilovsky, Daqing

He, and Adam Trischler. 2020. One size does not fit all: Generating and evaluating

variable number of keyphrases. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 7961– 7975, Online. Association

for Computational Linguistics

[34] Qianying Liu, Wenyu Guan, Sujian Li, Fei Cheng, Daisuke Kawahara and Sadao

Kurohashi. (2021). Reverse Operation based Data Augmentation for Solving Math

Word Problems. https://arxiv.org/abs/2010.01556.

[35] ML6Team. (2021). Keyphrase Extraction model using distilbert as a base and

fine-tuned on the Inspec dataset. [Token Classification]. Hugging Face's model hub.

Referenced on April 30, 2023.

https://huggingface.co/ml6team/keyphrase-extraction-distilbert-inspec

[36] Victor Sanh, Lysandre Debut, Julien Chaumond and Thomas Wolf, "DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter", 2019,

arXiv:abs/1910.01108.

[37] Jean-Philippe Corbeil and Hadi Abdi Ghadivel. (2020). BET: A Backtranslation

Approach for Easy Data Augmentation in Transformer-based Paraphrase

Identification Context. https://arxiv.org/abs/2009.12452
54

[38] Biao Zhang, Philip Williams, Ivan Titov and Rico Sennrich. (2020). Improving

Massively Multilingual Neural Machine Translation and Zero-Shot Translation.

https://arxiv.org/abs/2004.11867

[39] [OPUS-MT – Building open translation services for the World]

(https://aclanthology.org/2020.eamt-1.61) (Tiedemann & Thottingal, EAMT 2020)

[40] Fellbaum C (1998). WordNet: An Electronic Lexical Database. Bradford Books.

https://mitpress.mit.edu/9780262561167/

[41] Bharti, Drsantosh & Babu, Korra. (2017). Automatic Keyword Extraction for Text

Summarization: A Survey. http://arxiv.org/abs/1704.03242.

[42] A. Dridi, H. Afifi, H. Moungla and C. Boucetta, "Transfer Learning for Classification

and Prediction of Time Series for Next Generation Networks," ICC 2021 - IEEE

International Conference on Communications, Montreal, QC, Canada, 2021, pp. 1-6,

doi: 10.1109/ICC42927.2021.9500507.

55

Appendix 1 - Links to the codebase and the best model along with
the modified dataset

Codebase for experiments can be found at:

https://github.com/lordofelectrons/keyphrase-extraction-scripts

Data augmented Inspec dataset for synonyms approach can be found at:

https://huggingface.co/datasets/artemfilipenko/synonyms-augmented-5x-inspec

The best model, trained on a combined default and data augmented Inspec dataset is publicly

accessible here:

https://huggingface.co/artemfilipenko/keyphrase-generation-bart-large-trained-on-augmented

-and-default-inspec

56

Appendix 2 - Non-exclusive license for reproduction and
publication of a graduation thesis1

I, Artem Filipenko

1. Grant Tallinn University of Technology free license (non-exclusive license) for my

thesis “Data Augmentation Techniques for Advanced End to End Keyphrase

Extraction From Text”, supervised by Tanel Alumäe.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library

of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the

non-exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

07.05.2023

1 The non-exclusive license is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean, except
in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is
based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the
set deadline, the student defending his/her graduation thesis consent to reproduce and publish the graduation
thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive license, the non-exclusive license shall not be
valid for the period.

57

