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Introduction 

Molecular imprinting has become a promising method for the design of 
synthetic receptors, so-called Molecularly Imprinted Polymers (MIPs), having 
binding sites with a predetermined selectivity for a given analyte. The method of 
molecular imprinting consists in the polymerization of a mixture of functional 
monomers around a target analyte molecule that acts as a molecular template. 
During polymerization, the template induces binding sites in the reticulated 
polymer that are capable of selective recognizing the template molecules after 
removal of the templates from the polymer [1-3]. The major advantages of MIPs, 
along with their binding affinities to the target analyte comparable to a biological 
receptor [4], are related to their synthetic nature. Namely, these materials are 
robust under a wide range of chemical and physical conditions, and their 
preparation is highly reproducible and cost-effective. Moreover, MIPs can be 
easily designed for recognition of an almost unlimited number of targets, even 
those for which biological receptors are not available. Presently, the concept of 
molecular imprinting has been widely employed for the development of 
molecular recognition materials and has been applied in various fields where high 
selectivity toward an analyte is needed. Thus, MIPs have been implemented in 
chemical analysis and detection [5, 6], affinity separation and purification [7-9], 
drug delivery [10, 11], and catalysis [12-16]. 

Essentially, strategies for molecular imprinting can be grouped on the basis of 
the type of the monomer-template interaction into a covalent and a non-covalent 
imprinting method. The latter is especially applicable when imprinting a 
macromolecular template [17, 18]. The prerequisite for the formation of selective 
binding sites in a MIP supposes the presence of non-covalent interactions (self-
assembly), such as hydrogen bonds (H-bonds), van der Waals forces, ionic 
interactions, and hydrophobic effects in the pre-polymerization complex between 
a template molecule and functional monomers. It is assumed that the choice of 
functional monomers capable of forming more stable complexes with the 
template could result in a MIP with a high selectivity and affinity [9, 19]. 
Molecular interactions in these complexes are maintained during the 
polymerization and play a crucial role in the formation of complementary binding 
sites after the template removal that subsequently provides selective rebinding of 
the target to the MIP. Thus, performance of the MIP relies first of all on the 
quantity and strength of pre-existing molecular interactions in those complexes 
before polymerization of the monomers. 

In the last few decades, interest in the field of macromolecular imprinting, 
resulting in MIPs capable of selective recognition of the specific 
macromolecules, e.g. proteins, viruses, cells, in a complex medium, has 
considerably increased due to the great demand in clinical diagnostics and 
therapies aiming at replacement of expensive and readily degradable biological 
recognition elements [17, 18, 20-23]. The presence in a macromolecular template 
like a protein of a considerable amount of different functional groups creates 
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potential premises for abundant non-covalent interactions between the protein 
and functional monomers in a pre-polymerization complex before protein-MIP 
synthesis. Consequently, an estimation of all possible non-covalent interactions 
as well as their strength in the protein-monomer complex should be seriously 
considered when aiming to design a protein-MIP with highly selective 
recognition sites. 

Different computational approaches, including molecular mechanics, 
molecular dynamics [24], quantum chemical calculations (QCCs) [25], and 
molecular docking (MD), were successfully used for a rational design of MIPs 
through the prediction, simulation and estimation of molecular interactions 
between a template molecule and a monomer in a pre-polymerization complex as 
well as in a polymer matrix [26, 27]. Thus, Piletsky’s group created a virtual 
library of functional monomers, which could be screened by a molecular 
modelling software against a template molecule of interest aiming at preselecting 
a group of preferential monomers for the following generation of more selective 
MIPs [28, 29]. Dong et al. calculated the energy of H-bond interactions in 
simulated complexes between a template and a monomer using a QCC (density 
functional theory, DFT) [30]. Maciejewska’s group employed 3D alignment 
methodology to design the structure of the polymerization system by the energy 
optimization of randomly distributed molecular components. Such a system was 
able to mimic the formation of the recognition cavities in the polymer matrix as 
well as its interaction with the various analytes [31]. The hybrid quantum 
mechanical/molecular mechanical (QM/MM) approach for a rational design of 
MIPs has been applied by several authors [30, 32]. 

However, most of these reports describe the computational methods to model 
complexes of functional monomers with small molecular-weight templates [31]. 
At the same time, very few attempts have been made to use computational 
methods to rationally design a protein-MIP. These methods mostly use the 
molecular mechanics simulations [33], MD [34, 35] and lattice Monte Carlo 
simulations [36]. Among them, MD is the fastest and less resource-consuming 
computational method to estimate protein–ligand interactions that is widely used 
in the field of drug design [37]. This method can also provide reliable predictions 
of binding poses of a monomer on a protein prior to the polymerization as well 
as determination of the types of non-covalent interactions taking place by the set 
of the amino acids present near this binding pocket [34]. QCCs method allows 
the assessment of the strength of H-bond interactions occurring between the H-
bond donor and the acceptor [38]; however, its applicability for the calculation of 
protein-ligand interaction is limited due to the size of the system. 

The aim of this study was to develop a computational modeling approach 
allowing the selection of a more favorable functional monomer for building a 
polymer with macromolecular imprints capable of selective rebinding protein-
sized analytes. MD combined with QCCs were used for modeling and comparing 
molecular interactions between a model macromolecular template, 
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immunoglobulin G (IgG), and one of three electropolymerizable functional 
monomers: m-phenylenediamine (mPD), dopamine, and 3.4-
ethylenedioxythiophene, as well as to predict the probable arrangement of 
multiple monomers around the protein. MD was applied to find energetically 
favorable binding poses of a monomer on IgG as well as to predict the probable 
arrangement of multiple monomer molecules around the IgG molecule. The MD 
results were complemented with the QCCs, allowing estimation of the cumulative 
strength of multiple H-bond interactions in the prepolymerization complex 
between the proton-donor groups of monomers and the accessible proton-
acceptor groups of the protein to establish further its influence on the performance 
of the resulting IgG-MIPs. The theoretical predictions were validated by the 
experimental data on IgG rebinding to the IgG-MIPs generated from the 
candidate monomers. 
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1. Literature review 

1.1 Molecularly imprinted polymers 

Molecularly imprinted polymers (MIPs) are synthetic “tailor-made materials” 
that are capable of selective binding/rebinding a predefined target molecule [1]. 
MIP-based materials are prepared employing the molecular imprinting process 
(Fig. 1). The process starts by the formation of a pre-polymerization complex 
between a functional monomer and a target molecule that acts later on as a 
template. During the subsequent polymerization of the monomers, their 
functional groups become fixed in well defined positions around the template 
molecule. Finally, the template molecules, which are now confined in the 
polymer matrix, are removed by washing with an appropriate solvent, leaving 
behind the specific molecular-cavities that are complementary to the template 
molecule in term of size, shape and chemical functionality. The resulting 
polymeric material, MIP, is able to rebind selectively the target molecule or 
similar molecular structures. The quality and amount of template-specific cavities 
in the MIP capable of rebinding the target molecule can be affected due to the 
incomplete template removal, polymer degradation and/or polymer swelling, and 
alteration of the specific functional groups (Fig. 2) [39]. To improve the quality 
of cavities and their amount, it is important to estimate non-covalent interactions 
between the monomer and the template  that assists to select an optimal monomer 
and to wash out the solvent for the template removal procedure. 

MIPs have been already proven successful in molecular recognition of 
different analytes in molecular diagnostics [5], biotechnology [1, 40] and 
chromatography [7-9]. MIPs can be also a promising candidate for the 
replacement of natural receptors in diagnostic tools that are usually based on 
biomolecules such as antibodies and enzymes. Despite their excellent 
selectivity/specificity, exploitation of biological-origin receptors does not always 
fulfill the expectations due to the fragile nature of these molecules. Therefore, 
implementing MIP-based synthetic receptors appeared to be a promising 
alternative to the natural ones due to their chemical and thermal stability and 
reproducible and cost-effective fabrication. 

In general, strategies for molecular imprinting can be classified on the basis of 
whether the interactions in the pre-polymerization complex between a monomer 
and a template are covalent or non-covalent:  

 In covalent imprinting, the template is covalently bound to the functional 
monomer. After the polymerization, the template is chemically cleaved and 
the functional groups remaining in the binding site are capable of binding the 
target molecule by re-establishing the covalent bond [41]. The advantage of 
this approach is that the functional groups are only associated with the 
template site. However, only a limited number of compounds (alcohols, 
aldehydes, ketones, carboxylic acids and amines) can be imprinted with this 
approach. 
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 Non-covalent imprinting is based on the non-covalent forces, such as H-
bond, ion-pairing, and dipole-dipole interactions between the functional
monomer and the template [42]. Due to its simplicity, versatility and
adaptability, this method is most widely used to create MIP, particularly
MIP with macromolecular imprints [23]. However, a disadvantage of the
non-covalent imprinting is the high probability for the formation of
heterogeneous binding sites in MIP. Nevertheless, currently, this method
is by far the most widely applied and has become a general synthesis
strategy for MIPs [43].

Figure 1. Schematic illustration of the molecular imprinting process. 

Figure 2. Challenges of template molecule removal for MIP. 
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1.2 Macromolecular imprinting 

In the last few decades, interest in the field of macromolecular imprinting, 
resulting in MIPs capable of selective recognition of the specific 
macromolecules, e.g. proteins, viruses, cells, in a complex medium, has 
considerably increased due to their great demand in clinical diagnostics and 
therapies aiming at the replacement of expensive and readily degradable 
biological recognition elements [17, 18, 20-23]. Synthetic receptors based on 
protein-MIPs offer a promising alternative to biological receptors in biosensors, 
providing more stable and low-cost recognition elements [44]. However, the 
major drawback of imprinting macromolecules such as proteins is related to their 
structural and shape complexity that restricts the molecule mobility within the 
highly crosslinked polymer matrix, which consequently results in poor rebinding 
efficiency of MIP. In addition, the risk of conformational changes of protein 
limits the choice of functional monomers and polymerization solvent. 

Considerable success in protein imprinting was achieved by realizing the 
surface imprinted approach, allowing the formation of MIPs with the selective 
binding sites located at or close to their surface [45-47]. Examples of successful 
protein-MIP synthesis for bovine hemoglobin (BHb) [13], lysozyme [48], avidin 
[49, 50], melittin [4], and cytochrome C [51] have been described. MIP synthesis 
for more complex macromolecular template such as IgG is not widely described 
in literature [52]. 

While different computational approaches including molecular mechanics, 
molecular dynamics [24], QCCs [25] and MD were successfully used for a 
rational design of MIPs for small molecular-weight templates, there are very few 
attempts to rationally design macromolecular MIPs with computational methods 
mostly using the molecular mechanics simulations [33], MD [34, 35] and lattice 
Monte Carlo simulations [36]. 

1.2.1 A protein as a macromolecular template 

Proteins are functional biopolymers consisting of one or more ordered 
sequences of amino acids (polypeptides) and occasionally functional-depending 
prosthetic groups (organic small molecules and/or metals). Shapes and chemical 
properties of proteins depend on the nature of amino acid sequence in its 
polypeptides [53], their folding in bioactive form and any prosthetic groups [54], 
such as oligosaccharides, metal-chelating groups or lipid acid residues. 

In general, amino acids can be classified on the basis of their functional groups 
in "side-chain": hydrophobic (alanine, valine, isoleucine, leucine, methionine, 
phenylalanine, and tryptophan), polar uncharged (serine, threonine, glutamine, 
and asparagine), negatively charged (aspartic acid and glutamic acid), and 
positively charged (arginine, histidine, lysine). Polar uncharged and negatively 
charged amino acid residues in a protein have proton-accepting functional groups 
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able to generate H-bond interactions with a ligand. In addition, the H-bond can 
be formed between a ligand and a proton-accepting group of a prosthetic group 
of protein. For example, IgG molecule contains two carbohydrate chains in its 
Fc-fragment where the hydroxyl group and oxygen atoms in a heterocycle are the 
major proton-accepting groups capable of forming H-bonds with a ligand. 

Thus, the presence in a macromolecular template like a protein of a 
considerable amount of different functional groups creates potential premises for 
multiple non-covalent interactions (H-bond, van der Waals, electrostatic and 
hydrophobic) between the protein and functional monomers in a pre-
polymerization complex before protein-MIP synthesis [9, 19]. These interactions 
are then, to some extent, maintained during polymerization and play a crucial role 
in the formation of complementary binding sites after the template protein 
removal, thus providing the subsequent selective rebinding of the target protein 
to the protein-MIP. Consequently, an estimation of all possible non-covalent 
interactions as well as their strength in the protein-monomer complex should be 
seriously considered when aiming at designing a protein-MIP with highly 
selective recognition sites. 

1.4 Computational Methods in MIP design 

Different computational approaches including molecular mechanics, 
molecular dynamics [24], quantum chemical calculation (QCC) [25], and 
molecular docking (MD) were successfully used for a rational design of MIPs 
through the prediction, simulation and estimation of molecular interactions 
between a template molecule and a monomer in a pre-polymerization complex as 
well as in a polymer matrix [26, 27]. However, most of these reports describe the 
computational methods to model complexes of functional monomers with low 
molecular-weight templates. At the same time, there are very few computational 
studies on macromolecular MIPs that mostly use the molecular mechanics 
simulations [33], MD [34, 35], and lattice Monte Carlo simulations [36]. 

A more detailed description of QCCs and MD used in this study for 
computational modeling is provided in the following section. 

1.4.1 Quantum Chemical Calculations 

QCCs have been shown to be a promising method for the rational selection of 
a functional monomer for small molecular-weight template, allowing the 
estimation of H-bond association energy in template-monomer complexes [30]. 

The algorithm to calculate the association energy of H-bond interactions 
between a template molecule and a monomer includes firstly, the geometry 
optimization of the molecular structures of individual compounds and their 
complexes by the semi-empirical (SE) parameterization method 3 (PM3) and 
secondly, the calculation of the energies of the optimized structures by the density 
functional theory (DFT) method [30]. PM3 and Austin model 1 (AM1) are the 
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most popular among the different SE methods. Whereas PM3 and AM1 are based 
on nearly the same equations, PM3 uses a more improved set of parameters than 
AM1. In the earlier studies, AM1 was reported to calculate the heat of formation 
[55]. PM3 is more accurate than AM1 at simulating the geometry of H-bond 
interactions [56] and is commonly used for geometry optimization of the 
complexes [30]. DFT is a standard method for electronic structure calculations in 
computational chemistry. The B3LYP (Becke, three parameter, Lee-Yang-Parr) 
method is a DFT based calculation containing a combined exchange functional 
and combined correlation functional and is widely used in QCCs [31]. Despite 
the reported limitations of DFT as compared to the Hartree-Fock method [56], 
DFT at B3LYP/6-31G(d) level was adopted for molecular optimization [57] and 
association energy calculation in the MIP design [32], and has become a popular 
method for simulations of molecular interactions in pre-polymerization 
complexes between a monomer and a small-molecular weight template [58-61]. 

Gaussian 09 at B3LYP level using the 6-31G(d) basis set is a widely used 
software to estimate energies of geometrically optimized molecular structures 
and complexes [30, 31]. QCC method allows assessment of the strength of H-
bond interactions occurring between the H-bond donor and the acceptor [38]; 
however, its applicability to calculate protein-ligand interaction is limited due to 
the size of the system.  

1.4.2 Molecular Docking 

MD is the fastest and least resource-consuming computational method to 
estimate protein-ligand interactions widely used in the field of drug design [37, 
62, 63].The main goal of protein docking is to predict how a pair of molecules 
interacts, predicting accurate ligand poses and evaluating the main existing 
interactions. Molecular docking requires the structures of the molecules that form 
the complex and aims to predict correctly the binding site on the target, the 
orientation of the ligand and the conformation of both. Finally, a rank of possible 
docking poses based on the estimated free energies of binding is given. The poses 
are scored using the scoring function that approximates the ligand binding free 
energy and takes into account a number of non-covalent interaction parameters. 
For example, a widely used Glide software uses an empirical scoring function, 
GScore, that approximates the ligand binding free energy and takes into account 
a number of parameters like H-bonds, hydrophobic contacts, van der Waals, 
electrostatic, polar interactions in the binding site, metal binding term, penalty 
for buried polar group and freezing rotatable bonds [64, 65]. The scoring of the 
same receptor and ligand by a different scoring function is the commonly used 
method to validate binding poses in pharmaceutical chemistry [62, 63]. 

The application of MD for the computational modelling of protein-MIP has 
been reported by Kryscio et al. [34]. The authors studied the interactions between 
albumin and frequently employed functional monomers and used MD to 
determine the most favorable binding sites for these monomers on albumin and 
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the types of noncovalent interactions taking place based on the amino acids 
present near the binding pocket. Thus, MD can be considered as a promising 
method for protein-MIP computational design, providing reliable predictions of 
binding poses of a functional monomer on a protein prior to the polymerization. 
One of the main challenges is that MD provides the energy estimations only for 
the best-scoring bindings poses while ignores weak interactions between the 
ligand and the protein, i.e. the H-bond interactions between spatial accessible 
polar amino acid residues and monomers.  

There is a principal difference between the use of MD in drug design and for 
the selection of an optimal monomer for protein-MIP synthesis. In the drug 
design, the structure of small molecules is changed to produce the most specific 
ligand to a protein or a specific binding site aiming at the formation of the most 
stable complex. However, in the selection of an optimal monomer, MD, uses 
stable monomer structures, finds their favorable binding poses and arrangements 
around a protein.  

1.5 Synthesis of protein-MIPs by electropolymerization 

Among the various approaches for the synthesis of MIP-based recognition 
element, electrosynthesis has been shown to be a convenient method, allowing 
rapid and controlled deposition of the MIPs as films with tunable thickness [66-
68]. With electrosynthesized MIPs, polymeric films can be easily grown with 
strict adherence to conducting electrodes of any shape and size and with a 
thickness controlled by the amount of circulated charge. This feature gives the 
possibility of creating direct communication between the MIP and the surface of 
the transducer in a simple way. Moreover, the possibility to carry out the 
polymerization relatively quickly at room temperature, and in the solutions that 
are compatible with protein native conformation is especially convenient for 
protein-MIP synthesis. 

Promising results on the application of electrochemical polymerization for 
protein-MIPs fabrication were shown for a number of different polymers, such as 
poly (3,4-ethylenedioxythiophene) (PEDOT) [50, 69], poly (o-
phenylenediamine) (PoPD) [70], polypyrrole [69, 71], polydopamine (PDA) 
[47], and poly (m-phenylenediamine) (PmPD) [46]. 

In this thesis, electrosynthesized polymers, PmPD, PEDOT, and PDA, were 
used as polymeric matrices to produce IgG-MIP films owing to availability of 
multiple functional groups, biocompatibility and compatibility with aqueous 
solutions [72-74]. The properties and polymerization mechanisms of these 
polymers are discussed below. 

1.5.1 Poly (m-phenylenediamine) 

The polymers of aromatic diamines, including three isomers of 
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polyphenylenediamines, oPD, pPD and mPD, have received increased attention 
due to a unique combination of good multifunctionalities and many useful 
properties including high permselectivity to electroactive species [75], 
anticorrosion ability for metal [76], and high capacitivity [77]. The application of 
polyphenylenediamines in the fabrication of amperometric biosensors and 
permselective electrode materials has been widely investigated [78-80]. 

Although only limited information is available about the polymerization 
mechanism and structure of PmPD, it is suggested that electrosynthesized PmPD 
structure is comparable with PoPD [81] and has the 1,4-substituted benzenoid–
quinoid structure containing both primary and secondary amine groups (-NH2, -
NH- motifs) (Fig. 3) [82-84]. 

There are numerous reports on PoPD-based MIP materials intended to QCM 
sensing of glucose [66], photoelectrochemical sensing of chlorpyrifos molecules 
[85], detection of DL-phenylalanine by thickness-shear mode acoustic sensor 
[86], and amperometric sensing of triclosan [87]. However, to our best 
knowledge, the use of PmPD as polymer matrix for MIP has only recently been 
reported by Syritski’s group [46]. Nevertheless, mPD appeared to be a very 
attractive material for protein-MIP formation due to its hydrophilicity, 
compatibility with protein native conformation [88], remarkably high solvent 
resistance in organic and aqueous solutions, the presence of amine groups that 
enable the formation of H-bond interactions with accessible polar residues of 
protein. 

1.5.2 Polydopamine 

Dopamine is the most widely distributed catecholic compound that contains 
polar hydroxy- and amino-groups. It is commonly known as a hormone and 
neurotransmitter. In nature, adhesive proteins secreted by mussels for attachment 
to almost all types of surfaces consist of dopamine similar structures. Recently, 
an approach for surface modification, inspired by the mussel adhesive proteins, 
based on dopamine polymerization to form thin adherent polymer onto a wide 
range of inorganic and organic materials was reported [73]. Two main methods 
can be applied to the preparation of PDA films. The most common and the 
simplest way is a spontaneous self-polymerization of DA under weak alkaline 
conditions to produce an adherent polymer coating on virtually any substrate and 

Figure 3. A chemical structure of mPD (A) and benzenoid–quinoid 
structural unit of PmPD (B).
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catechol groups are oxidized to the quinine form. Another way is electrochemical 
polymerization that offers the possibility of fast and highly controllable PDA 
films deposition [89]. Moreover, self-limiting growth of insulating PDA ensures 
the formation of ultrathin films of the nanometer scale. The chemical structures 
of DA and its polymer unit are presented in Figure 4.  

Figure 4. The chemical structure of DA (A) and structural unit of PDA (B). 

   The existence of polar functional groups, compatibility with aqueous solutions, 
the possibility of precisely controlled thin film synthesis via electrochemical 
polymerization make dopamine an attractive monomer for MIP formation. 
Nevertheless, until now there are only a few reports on the PDA-based MIP films 
and most of them concern the PDA prepared by self-polymerization of dopamine 
at weak alkaline pH. The application of electrosynthesized molecularly imprinted 
PDA films as a recognition element for the capacitive sensing of nicotine was 
first reported by Liu’s group [87]. Recently, Syritski’s group has successfully 
applied PDA for IgG-MIP films synthesis [47]. 

1.5.3 Poly (3,4-ethylenedioxythiophene) 

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an electrically conducting 
polymer with improved chemical and thermal stability, high conductivity (ca 
400-600 S/cm) and high degree of optical transparency [90]. The chemical 
structures of EDOT and its polymer unit are presented in Figure 5 [91]. 

PEDOT doped with poly(styrenesulfonate) (PSS) (PEDOT/ PSS) is widely 
used as an antistatic coating, electronics packaging, transparent conductor in 
electroluminescent devices, photovoltaics, organic thin film transistors, and 
sensors [92] [93, 94]. PEDOT has been studied as a promising candidate for 
biosensing and biomedical application [72, 95]. 

There are also a few reports on the application of PEDOT for MIP synthesis. 
For instance, a sensing electrode modified with morphine-imprinted PEDOT was 
reported in [96]. Syritski’s group was the first to report on the PEDOT/PSS 
application as matrix for protein imprinting by introducing a synthesis approach 
for producing surface imprinted microrods for avidin selective recognition [50]. 
Later, the same group developed a novel concept to generate micropatterned 
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surface-imprinted PEDOT/PSS for avidin recognition by using standard 
photolithographic technology [49]. It was revealed that PEDOT/PSS provides a 
matrix with low nonspecific protein adsorption and, together with the 
electrochemical synthesis, offers clear advantages in terms of controling the 
deposition process and compatibility with aqueous media {Lautner, 2011 #61, 
97]. In addition, PEDOT/PSS material has functionalities that are expected to 
generate H-bonds, as well as electrostatic and p-p interactions with the protein 
template. 

1.6 Label-free detection methods 

Label-free detection methods are preferable for the investigation of binding 
events on MIP surfaces because labeling can change the interfacial activity of the 
labeled protein and influence the accuracy of measured data [98]. Label-free 
detection platforms integrated with MIPs are able to provide the relevant 
information on the target binding. This detection can be performed using various 
transducer devices, such as Quartz Crystal Microbalance (QCM), Surface 
Plasmon Resonance (SPR), and Surface Acoustic Waves (SAW). In this thesis, 
QCM and SAW were used and their principles are described below.  

1.6.1 Quartz Crystal Microbalance  

QCM is a sensing piezoelectric transducer device for detection in both air and 
liquid phase. This transducer can be used to monitor mass-change processes in a 
label-free manner on the sensing surface in the liquid phase via detecting 
frequency and resistance changes [99]. The sensing part of the QCM consists of 
a thin disk-shaped quartz crystal covered by gold electrode layers on both sides 
(Fig. 6) [100]. Internal mechanical stress is being produced by a piezoelectric 
material when an external electrical potential is applied to it. A resonant 
oscillation is achieved by including the crystal in an oscillation circuit, which has 
electric and the mechanical oscillations close to the fundamental frequency of the 
crystal. The fundamental frequency depends on the thickness of the wafer, its 
chemical structure, shape and mass plated on it [101]. 

Figure 5. Chemical structures of EDOT (A) and structural units of PEDOT (B). 
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The first quantitative investigation of the piezoelectric effect was performed 
by Sauerbrey who derived the relationship for the change in the frequency F (in 
Hz) caused by the added mass m (in g): 

    (1) 

     (2) 

where ∆F – resonant frequency change (Hz), Δm – mass change (g/cm2), Cf – 
sensitivity factor (for 5 MHz quartz crystal, 56.6 Hz·μg-1·cm2), Tf - thickness of 
the film in cm, - density of film material in g cm-3[102]. 

If an increase of the mass takes place on the sensing surface, the oscillation 
frequency will decrease. According to the Sauerbrey equation, the observed 
frequency change is directly proportional to the increase in mass and deposited 
films thickness can be correlated with the amount of analyte binding [103]. The 
electrodes are connected with the  oscillation circuit board and an alternating high 
frequency electrical field is applied across the plane of the quartz crystal, inducing 
its vibration in a mechanically resonant shear mode. 

As an extremely sensitive surface mass sensor, QCM  has been described  for 
the measurement of mass change in a variety studies, such as underpotential 
deposition of metals [104], dissolution studies [105], DNA immobilization [106] 
and subsequent hybridization in solution phase [107, 108], protein adsorption on 
solid surface [109-111] and immunologic studies [112-114], and studies related 
to cell–substrate interactions in situ and measurement of the dynamics of 
exocytosis and vesicle retrieval at cell populations [115, 116]. Applications to the 
rebinding studies for molecularly imprinted films have been reported in [66, 117]. 

In this thesis, measurements on QCM were used to optimize synthesis 
parameters of homogeneous polymer films. The measurement of IgG adsorption 
on PDA-based IgG-MIP was performed on a QCM sensor combined with the 
method of Flow Injection Analysis (FIA) for real-time monitoring of the IgG 
binding [47]. The combination of QCM with electrochemistry (EQCM) was used 
to control synthesized film thickness during polymerization [46, 47]. 

 

Figure 6. A schematic representation of a QCM sensor. 
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1.6.2 Surface Acoustic Wave 

SAW sensors are acoustic wave-based piezoelectric sensing platforms. 
Initially, the piezoelectric effect was described by Pierre and Paul-Jacques Curie. 
Later, the properties of the surface acoustic wave mode of propagation were 
reported by John William Strutt. A surface acoustic wave (SAW) is an acoustic, 
mechanical wave that propagates confined to the surface of a cut piezoelectric 
crystal. Coupling to any medium contacting the surface affects strongly the 
velocity and/or amplitude of the wave. Further development of photolithographic 
techniques for computer chips and telecommunication devices to transfer micro- 
and nanostructure patterns optically onto a substrate, allowed fabrication of 
micro- and nanostructures implemented in modern biosensors. In a typical 
approach, an electrical signal is converted at interdigital transducers (IDTs) into 
polarized transversal waves travelling parallel to the sensing surface, utilizing the 
piezoelectric properties of the substrate material. This approach is very sensitive 
to specific biological interactions with the sensor surface [118]. Typically, the 
wave is transmitted confined to an independent guiding layer and not the 
substrate. Thus, the acoustic energy is concentrated within the guiding layer 
rather than in the bulk of the piezoelectric material. The sensitivity of the sensor 
for surface modifications is increased by the choice of the material and the design 
of the guiding layer [119, 120] as well as by the structure of the sensor and the 
transducers [121]. The waves are travelling across the sensitive area, altered by 
biochemical events at its surface. Afterwards, the wave is converted back at 
another IDT into an electrical signal. Input and output signals are transformed, 
for example, into a resulting signal of frequency or phase changes, which can 
then be correlated to the corresponding mass and mechanical properties in the 
fluid contacting the sensitive surface. The components necessary for the 
measurement of aqueous or other fluid components are displayed in Figure 7. 

Figure 7. A) The SAW biosensor system. B) SAW chips with four sensor 
elements each. 

Three types of SAW sensors are commonly used: Rayleigh-SAW sensors, 
Lamb-wave sensors, and Love-wave sensors. The material waves in Rayleigh and 
Lamb-wave sensors are displaced in the y axis in the direction of the medium. 
The waves in Rayleigh acoustic wave sensors can be excited at the opposite 
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surface from the detection surface. The energy is distributed across the complete 
substrate material and not at the detection surface. Due to liquid medium damped, 
these medium Rayleigh- and Lamb-wave sensors are commonly used as gas 
sensors. The Love-Wave sensors are a member of the family of SAW sensors in 
which acoustic oscillation energy is highly coupled to the wave guiding layer. 
This additional layer minimizes the energy dissipation losses into environmental 
media, making these Love-configured sensors, besides their extremely high 
sensitivity towards surface effects, well suited for operation in aqueous medium 
[118, 122]. Compared with QCM, the Love-wave SAW sensor has a distinct 
advantage in extremely high sensitivity due to higher operating frequency (100 
MHz to a few GHz). Another remarkable advantage of the SAW technology is a 
multiplexing capability (combination of multiple sensor elements in a single chip) 
that allows considerable reduction in experimental time and expenses. Thus, the 
SAW platform can provide relevant information on binding events on MIP 
surfaces in real-time and label-free manner to validate the computational 
predictions. 

1.7 Methods for assessment of performance of MIPs in binding 
assays 

A systematic approach that enables the evaluation of the effectiveness of MIPs 
is very important during their study since it allows finding out which of the 
fabrication parameters improves the performance of a MIP. 

Analysis of the kinetics of the processes following the receptor (MIP) and the 
ligand (target molecule) reversible association and dissociation in terms of kinetic 
constant (rate constant) and the amount of an analyte adsorbed at an equilibrium  
(Qeq) can help to assess the performance of MIPs. The analyte injection period or 
association phase is characterized by association and dissociation processes, 
while dissociation phase occurs only by dissociation. The fitting of the 
association phase to an appropriative kinetic model provides the rate constant of 
the process (k) and the response at equilibrium conditions. The adsorption 
kinetics models, pseudo-first-(3) and pseudo-second-order (4) describe the 
adsorption process as kinetics of active sites (cavity) occupation with adsorbate 
(target molecule). 

Q = Qeq[1-e-k1t]     (3) 

 

Q = [Qeq
2k2t]/[1+Qeqk2t]    (4) 

 

where Q - response upon target rebinding at time t, Qeq
 - Q value at quilibrium, 

k1 - pseudo-first rate constant, k2 - pseudo-second order rate constant. 

In the first order reaction kinetics, only a single active site on the sensor surface 
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is physically bound by the target molecules. The rate of target molecule 
occupation of the active sites follows a proportionality to the amount of 
unoccupied sites [123]. In a pseudo-second order kinetics, the rate-limiting step 
is a chemisorption process in which case there is exchange of electrons between 
the target molecules and the sensor. The occupation rate of the adsorbed target is 
directly related to the square of the remaining number of unoccupied sites [124, 
125]. Both kinetic models were successfully applied to the analysis of binding on 
the MIP surfaces [126]. 

Adsorption isotherms represent the dependence of the equilibrium 
concentration of a bound target on the concentration of the target in the solution, 
providing useful information on the binding properties of the film. The Langmuir 
isotherm (5) is commonly used to fit various adsorption data. This model is based 
on the following assumptions: equivalence of adsorption sites (one molecule per 
one site), homogeneity of the surface, the absence of other interactions in the 
solution. All these assumptions are rarely observed in practice and  to modify for 
the real experiment, an equation is needed.  

 

Q = QmaxC/(C+KD)    (5) 

 

where C - concentration of the analyte in the solution, KD - equilibrium 
dissociation constant, and Q and Qmax - fractions of bound analyte and its 
saturation value, respectively. The real MIP has different variations of imprinted 
cavities. Bi-Langmuir equation takes into account the situation of two types of 
adsorption sites (6) [126]. 

 

Q = Qmax1C/(C+KD1) + Qmax2C/(C+KD2)  (6) 

 

Another challenge of using MIPs as films is a high degree of heterogeneity of 
the surface. Freundlich (7) and combined Langmuir-Friendlich (8) models can 
take into account surface roughness, heterogeneity, and interactions in the analyte 
solution [127, 128]. Thus, Langmuir-Freundlich isotherm models the binding 
behavior of MIP and NIP films more accurately when the heterogeneity index m 
is below 1. 

 

 Q = aCm     (7) 
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Q = QmaxCm/(Cm+KD)     (8) 

 

where C - concentration of the analyte in the solution, KD - equilibrium 
dissociation constant, and Q and Qmax - fractions of bound analyte and its 
saturation value, respectively, m - surface heterogeneity index. 

Thus, using the values of Qeq and the Langmuir–Freundlich (LF) binding 
model, the maximum response of the sensors, Qmax(MIP) and Qmax(NIP), is 
determined [46].  

Imprinting factor (IF) indicates the capacity of a MIP towards a target 
molecule, showing the ratio of target molecule binding on a MIP to a control NIP 
that was calculated according to the following equation (9): 

  

IF = Qmax(MIP)/Qmax(NIP)     (9) 

  

where Qmax(MIP) - the maximum adsorption capacity of MIP and Qmax(NIP) - 
maximum adsorption capacity of NIP. 

To compare performances of MIP films with the applied one concentration, it 
is acceptable to calculate IF at the equilibrium achieved according to the 
following equation (10): 

 

IF = Qeq(MIP)/Qeq(NIP)     (10) 

 

where Qeq(MIP) - the maximum adsorption capacity of MIP and Qeq(NIP) - 
maximum adsorption capacity of NIP. 

1.8 Summary of literature review and objectives of the study 

Molecular imprinting is one of the state-of-the-art techniques allowing 
generation of robust molecular recognition materials - MIPss that might have 
antibody-like ability to bind and discriminate between molecules. These materials 
can be promising alternatives to natural biological receptors in biosensing as they 
provide selective, stable and renewable recognition elements. 

In general, strategies for molecular imprinting can be classified on the basis of 
whether the interactions in the pre-polymerization complex between a monomer 
and a template are covalent or non-covalent. The latter is by far the most applied 
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and has become a general synthesis strategy for MIPs.  

In the last few decades, interest in the field of macromolecular imprinting, 
resulting in MIPs capable of selective recognition of the specific 
macromolecules, e.g. proteins, viruses, cells, in a complex medium, has 
considerably increased due to the great demand in clinical diagnostics and 
therapies aiming at the replacement of expensive and readily degradable 
biological recognition elements. 

However, imprinting macromolecules, in particular proteins, encountered 
difficulties related to their structural and shape complexity. This limits mass 
transport of such macromolecules in highly reticulated polymeric networks and 
leads, thus, to their entrapment during imprinting rather than to binding sites 
permitting free ligand exchange with the sample solution. Additional challenges 
arise owing to the flexibility of the protein conformation and its susceptibility to 
environmental conditions as well as to the inherent complexity and diversity of 
the interactions between macromolecules and MIPs. The presence in a 
macromolecular template like a protein of a considerable amount of different 
functional groups creates potential premises for multiple non-covalent 
interactions (H-bond, van der Waals, electrostatic and hydrophobic) between the 
protein and functional monomers in a pre-polymerization complex before 
protein-MIP synthesis. These interactions are then, to some extent, maintained 
during polymerization and play a crucial role in the formation of complementary 
binding sites after the template protein removal, thus providing the subsequent 
selective rebinding of the target protein to the protein-MIP. Consequently, an 
estimation of all possible non-covalent interactions as well as their strength in the 
protein-monomer complex should be seriously considered when aiming at 
designing a protein-MIP with highly selective recognition sites. 

While different computational approaches, including molecular mechanics, 
molecular dynamics, QCCs and MD, were successfully used for a rational design 
of MIPs for small molecular-weight templates, there are very few attempts to 
rationally design macromolecular MIPs by computational approaches. 

Among the various approaches for the synthesis of MIP-based recognition 
element, electrosynthesis has been shown to be a convenient method, allowing 
rapid and controlled deposition of the MIPs as films with tunable thickness. With 
electrosynthesized MIPs, polymeric films can be easily grown with strict 
adherence to conducting electrodes of any shape and size and with a thickness 
controlled by the amount of circulated charge. This feature gives the possibility 
of creating a direct communication between the MIP and the surface of the 
transducer in a simple way. 

The label-free sensing platforms, such as SAW, provide relevant information 
on binding events on MIP surfaces. This platform has high sensitivity towards 
molecular interactions happening on its surface and thus, is considered very 
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suitable for the study of binding properties of the MIP films in real-time and label-
free manner to validate the developed computational approach. 

1.9 Objective and aims of the study 

The main objective of this thesis was to develop a computational modeling 
approach allowing the rational selection of a functional monomer for building a 
polymer with binding sites capable of selective capturing of macromolecular 
analytes. This approach has to provide criteria to select an optimal functional 
monomer for building the macromolecular MIP considering the intrinsic energy 
of the monomers-macromolecule complex. Thus, the specific aims of the thesis 
are as follows: 

 To find the energetically favorable binding poses of a candidate monomer and 
their distribution over a model protein (IgG) and to estimate the energy of non-
covalent interactions in these binding poses; 

 To estimate the cumulative strength of multiple H-bond interactions between 
the sterically accessible polar amino acid or monosaccharide residues of IgG 
and candidate monomers; 

 To generate IgG-MIPs from the candidate monomers by electrochemical 
polymerization and study their ability of  selective rebinding of IgG by the label-
free detection method; 

 To validate the results of the computational modeling approach by finding a 
correlation between the theoretical predictions and performance of the IgG-
MIPs. 
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2. Experimental part 

2.1 Computational approach 

The computational modeling approach was used for the rational selection of a 
more advantageous functional monomer for building a MIP with macromolecular 
imprints capable of selective rebinding of protein-sized analytes. In this approach, 
the interactions between IgG as a model protein, and mPD, DA, EDOT as 
functional monomers in the pre-polymerization complex were modeled by using: 
(i) MD of each of the monomers in IgG to determine the energetically favorable 
binding poses, and (ii) QCCs to assess the cumulative strength of H-bond 
interactions between the monomers and the sterically accessible proton-acceptor 
groups of IgG, such as polar amino acid and sugar residues. 

2.1.1 Molecular Docking 

To find energetically favorable binding poses of candidate monomers on a 
model IgG and to predict the probable arrangement of multiple monomer 
molecules around IgG, MD was performed. To overcome MD limitations, 
quantum mechanical polarized ligand docking (QPLD) was used. This software 
is capable of estimating binding energies in simulated poses using an inner QCC 
tool to increase the accuracy of performance [129]. The QCC tool of QPLD is 
based on the DFT method using the 6-31G*/LACVP* basis set, B3LYP density 
functional, and “Ultrafine” SCF accuracy level (iacc=1, iacscf=2) to estimate 
atom charges of monomers in the field of the receptor. This MD software 
calculates the charges for monomer atoms by these internal QCCs and after 
charge reassignment to the monomer, performs more accurate energy estimation 
in the binding poses. Thus, MD studies were carried out by using the QPLD 
workflow based on Glide [65, 129, 130] using Optimized Potentials for Liquid 
Simulations (OPLS-2005) force field [131, 132] and for comparison with 
Autodock. The crystal structure of IgG (1HZH) deposited in Protein Data Bank 
(PDB) was processed within the Protein Preparation Wizard in Maestro [133], 
performing progressive minimizations until the average root mean square 
deviation of the non-hydrogen atoms reached 0.3 Å. The structures of the 
monomers (mPD, EDOT, and DA) were generated in Maestro [133] and 
processed within the Ligand Preparation Wizard [134]. The monomers and the 
protein were converted to MAE format (Maestro). For rigid docking, a rigid 
receptor grid defined by an inner box of 50x50x50 Å3 was generated in the 
different fragments of IgG, such as Fab-fragment with the center at 94.725; 
86.582; 94.166 Å; hinge fragment with the center at 76.565; 111.963; 136.892 Å 
and Fc-fragment with the center at 53.311; 128.675; 112.692 Å. All candidate 
monomers were docked in the protein structure using standard precision (SP) 
QPLD (quantum mechanics–polarized ligand docking implemented in the 
Schrödinger suite (http://www.schrodinger.com/), including initial docking, 
monomer charge estimation via implemented QCCs and docking on the basis of 
estimated charges. 
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The energy-minimized poses were scored using an empirical scoring function, 
GScore that approximates the ligand binding free energy and takes into account 
a number of parameters like H-bonds, hydrophobic contacts (Lipo), van der 
Waals (vdW), electrostatic (Coul), polar interactions in the binding site (Site), 
metal binding term (Metal), penalty for buried polar group (BuryP), and freezing 
rotatable bonds (RotB) (11) [64, 65]:  

 

GScore = 0.065*vdW + 0.130*Coul + Lipo + H-bonds + Metal + BuryP + RotB 
+ Site (11) 

 

The hydration effect has a key role in ligand-protein interactions as well in 
controling the stability and conformation of protein structure. This effect term has 
become an integral part of many scoring functions used in protein-ligand docking 
including GScore, as stated by Shrödinger, the software provider. Thus, GScore 
already includes the specific term that accounts the solvation effect and the results 
of the docking simulations presented in this study comprises the solvent effects. 

To validate the simulated geometries, Autodock4.2.6 (from the Scripps 
Research Institute) was applied to the same fragments of IgG as QPLD with the 
same rigid receptor grid-box. Docking procedures with Autodock4.2.6 were 
performed on the grid-centers used by QPLD. For Autodock, the crystal structure 
of IgG (1HZH) deposited in Protein Data Bank (PDB) and monomer structures 
were processed within the AutoDockTools (ADT) software performing structure 
preparation procedures. The monomers and the protein were converted to ADT 
format (into .pdbqt files). The initial files for grid-box generation (.gpf) and 
docking procedure (.dpf) were prepared with ADT and processed with the 
software. The predicted poses were geometrically agreed with QPLD results with 
selection spacing 0.375 A, Grid 50x50x50A3 and genetic algorithm with 
population 150. This software uses a scoring function ∆GScore (12).  

 
∆GScore = vdW + Coul + Hbond + Desolv + Tors  (12) 

The geometry of a pose validated by two different scoring functions are more 
realistic than predicted by only one software. To compare compatibility and 
preferability of using both softwares in terms of docking to IgG, the resulting 
scoring energies were compared. To determine conformational risks, the flexible 
variant of Autodock was used (no published data) and to improve the accuracy of 
energy estimation QPLD software was used with the same receptor grids and 
ligands that were prepared for geometry simulations by Glide. 

It should be noted that GScore already includes the specific term that accounts 
for the solvation effect [64]. The monomer, which formed the lowest-energy 
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(GScore) docked complex with the selected IgG regions, was considered as more 
favorable for the formation of an IgG-MIP in terms of its selectivity towards IgG. 

To predict the probable arrangement of multiple monomer molecules around 
the protein, the sequential docking protocol was applied using the same 
parameters as initial docking; however, each successive docking of the monomer 
was performed to the complex of IgG and the monomer resulting from the 
previous docking step [135]. The sequential docking was repeated until the 
software was unable to predict a binding pose for the next monomer in the 
previously simulated protein and monomer complex. 

2.1.2 Quantum chemical calculations  

Since MD estimates only preferable bindings and ignores other interactions, 
we performed QCCs to estimate hydrogen binding energies between IgG and 
monomers. QCCs were used to assess the cumulative strength of H-bond 
interactions between the monomers and the sterically accessible proton-acceptor 
groups of IgG, such as polar amino acid and sugar residues. 

The binding energies of hydrogen interactions between proton-accepting 
groups of template molecule and candidate monomers were estimated using 
Gaussian09 (GaussView 5.0.9 software). To begin with, all structures and 
complexes were geometrically optimized with the PM3 SE method. The 
optimized objects were subjected to binding energies, ∆E, and Mulliken charge 
calculations using the DFT method at level B3LYP/6-31G(d) level [32]. Binding 
energies were computed as the difference between the energy of the complex and 
the energy of each molecule by equation (13) [31, 32, 136]. 

∆E  = EX+M - (EX + EM)  (13) 

where EX+M, EX and EM are the potential energies of the complex (X+M) and its 
isolated molecular components, the amino acid or monosaccharide (X) and 
monomer (M), respectively. EX+M, EX and EM were computed by Gaussian 09 at 
Becke’s three-parameter exchange functional combined with gradient corrected 
functional of Lee-Yang-Parr (B3LYP) level using the 6-31G(d) basis set. 

The strength of H-bond interactions between IgG and the monomers was 
calculated as a sum of association energies (∑∆E) between the amino acid or 
monosaccharide associated with the residues found and the monomer (14): 

∑∆E = ∑[EX+M - (EX + EM)]  (14) 



 

33 

  

It is necessary here to clarify that QCCs were performed in vacuum and no 
solvent effect on the simulated complexes was considered. It is assumed that in 
the complex of the monomer with the isolated polar residue, the solvent effect 
would strongly differ from that occurring in the complex with the same residue 
in the protein chain. 

2.2 Polymer synthesis 

2.2.1 Electrode cleaning and IgG immobilization 

The gold electrode of SAW chip (NanoTemper Technologies, GmbH, 
München, Germany) was cleaned by immersion in fresh ammonium-hydrogen 
peroxide solution (30% NH3 : 30% H2O2:MQ 1:1:5 volume ratio) with heating 
for 20 min, followed by a cleaning step in a UV/ozone cleaner. Then the electrode 
was rinsed with distilled water and dried in a nitrogen stream. The gold electrodes 
of a 5 MHz QCM sensor (Maxtek, Inc.) were cleaned by fresh piranha solution 
(97% H2SO4 : 30% H2O2, 3:1 volume ratio) for 10 min and then rinsed abundantly 
with MQ water. 

Then the clean electrodes were immersed in the ethanolic solution of 0.1 M 4-
ATP for 1 h to form the amine-terminated self-assembled monolayer, after which 
the electrode was thoroughly rinsed with ethanol to remove the unreacted thiols. 
The amine-modified electrode was subsequently incubated in the PBS buffer (pH 
7.4) containing 10 mM of a cleavable amine-reactive cross-linker, DTSSP, for 30 
min followed by rinsing with MQ water. Then, the IgG-modified electrode was 
achieved by subsequent incubation in PBS buffer (pH 7.4) containing 1 mg mL-1 
of IgG for 30 min, followed by rinsing with MQ water.  

2.2.2 Electrochemical deposition of the polymer films 

EQCM measurements were performed using the QCM system (QCM100, 
Stanford Research Systems, Inc., Sunnyvale, CA, USA) connected to the 
potentiostat (Reference 600TM, Gamry Instruments, Inc.) and the frequency 
counter (PM6680B, Fluke Corporation). Electrochemical syntheses were 
performed in a three-electrode 1 mL Teflon electrochemical cell. Gold plated 
SAW or QCM sensor chip was used as a working electrode, while a rectangular 
shaped platinum plate (4×1.5 cm2) and Ag/AgCl/KClsat as a counter and a 
reference electrode, respectively. 

The electrochemical polymerization of three functional monomers: mPD, 
EDOT, and DA, on IgG-modified as well as non-modified gold electrodes of 
QCM sensor were studied by the EQCM technique. Synthesis parameters for 
producing homogeneous polymer films are described in Table 1. 
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2.2.3 IgG-MIP preparation and rebinding study 

IgG-MIP films were prepared according to the surface imprinting strategy 
developed by Syritski’s group (Paper I and II). Thus, the electrodeposition of the 
PmPD films was performed on the IgG-modified SAW chip in PBS containing 
10 mM of mPD by applying potential 0.9 V for 3 s vs Ag/AgCl. Other polymers 
were synthesized under the following conditions: PDA from 5 mM dopamine 
solution in PBS by cyclic voltammetry -0.45 to 0.55 V vs Ag/AgCl for 42 cycles 
and PEDOT-PSS from 10 mM EDOT/25 mM PSS solution in MQ by applying 
potential 0.8 V for 21 s vs Ag/AgCl. The thicknesses of the deposited films are 
expected at 11 nm. 

IgG was removed from the polymer by the incubation of the polymer-modified 
SAW chip in 100 mM solution of 2-mercaptoethanol in PBS buffer for 1h to 
cleave DTSSP disulfide bond, followed by washing in DMSO for 15 min with 
stirring. DMSO is an appropriate H-bond disrupting solvent for biomolecules. 
Finally, the resulting IgG-MIP sensor was washed thoroughly with ultrapure 
water and subjected to protein rebinding studies using SAW instrument. IgG 
rebinding to the IgG-MIP-modified SAW chip was carried out using the SAW 
technique. A constant flow of filtered and degassed PBS buffer solution (pH 7.4) 
flowed over the sensor until a constant baseline with a flow rate of 25 μL min-1. 
Subsequently, PBS buffer solutions containing IgG at the concentration of 8 × 
10-3 mg mL-1 were injected into the flow stream via an injection loop (500 μL) 
and allowed to interact with the IgG-MIP or NIP modified sensor chip. 

To compare the IgG-MIPs in terms of their affinity to IgG molecule, a non-
imprinted polymer (NIP) structure was also tested. NIP films were synthesized 
under the same conditions as IgG-MIP, but excluding the cleavage step. In this 
case, the polymer film, even if it contains the template protein, has no cavities on 
its surface. 

Table 1. Synthesis parameters used for the electrochemical polymerization of the 
mPD, EDOT, and DA on the IgG-modified gold surface 

Monomer  
Polymerization 
solution 

Electrochemical 
technique 

Potential, V  
(vs 
Ag/AgCl/KClsat) 

Synthesis 
time for 11 
nm film, s  

mPD 
10 mM mPD in 
PBS 

Chronocoulometry 0.9 3 

EDOT 
10 mM EDOT 
in 25 mM 
PSS/MQ 

Chronocoulometry 0.8 21 

DA 
5 mM DA in 
PBS 

Cyclic 
Voltammetry 

-0.45 to 0.55 (50 
mV/s) 

840 
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The real-time label-free protein binding measurements were performed using 
Surface Acoustic Wave (SAW) sensing system Sam®X (NanoTemper 
Technologies, GmbH, München, Germany) comprising an autosampler with a 
six-port injection valve, a small volume (8 μl) flow cell and two sensor chips with 
eight sensing channels. The software packages SensMaster and SequenceMaster 
(SAW Instruments GmbH) were used to control the sensing system Sam®X. The 
data were recorded with a time resolution of 1.2 sec. Data analysis was performed 
using the Origin 9.0 (Originlab corp.) software. A constant flow of filtered and 
degassed PBS buffer solution (pH 7.4) flowed over the sensor until a constant 
baseline with a flow rate of 25 μL min-1. Subsequently, PBS buffer solutions 
containing IgG at the range of concentrations of IgG (6.4 × 10-5 - 8 × 10-3 
mg mL-1) were injected into the flow stream via an injection loop (500 μL) and 
allowed interaction with the IgG-MIP or NIP modified sensor chip. 
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3. Results and Discussion 

3.1 Computational simulations 

It is widely accepted that non-covalent interactions, such as H-bonds, van der 
Waals, electrostatic and hydrophobic interactions occurring between monomer 
and protein in the prepolymerization complex, all play a role in specific binding 
poses formation during the imprinting process. Consequently, the success of a 
protein-MIP strongly depends on the stability and strength of its monomer-
template complex prior to polymerization. Thus, simulating all noncovalent 
interactions in a protein-MIP prepolymerization mixture can provide a more 
accurate insight into the molecular-level events underlying the imprinting 
process. 

In this study, the computational approach to model the interactions between 
IgG as a model template and a monomer was based on the two main steps: (i) 
determination of the energetically favorable binding poses for a monomer on 
protein body by MD and (ii) prediction of hydrogen-bonding ability of the 
spatially accessible proton-accepting groups of IgG such as polar amino acid 
residues and a carbohydrate moiety, with the monomer by QCCs. The simulation 
approach allowed determination of the amino acids surrounding the monomer 
when it is at its most favorable binding pose on IgG as well as the types of 
interactions that are likely to occur considering the distance between the polar 
atoms of the amino acid and the monomer and the type of the side chain group of 
the amino acid residue. In addition, the hydrogen bonding probability between 
the monomer and the spatially accessible proton-accepting groups of IgG were 
taken into account. 

3.1.1 Molecular docking 

Considering a complex structure of IgG and docking software limitations, the 
MD of a monomer was performed separately to the three selected fragments of 
the IgG molecule: Fab, a hinge, and a Fc-fragment (Fig. 8) using both software 
(QPLD and Autodock) (Table 2). 

Table 2. Binding energy estimation for IgG-mPD by QPLD and Autodock , kJ 
mol-1 

Fragment of IgG 
GScore energies, kJ mol-1 

QPLD Autodock (optimized parameters) 

Fab-fragment -20.01 ÷ -17.49 -14.35 ÷ -13.68 

Hinge-fragment -19.54 ÷ -16.28 -13.35 ÷ -12.13 

Fc-fragment -21.17 ÷ -20.21 -16.61 ÷ -16.23
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The lowest scoring energy (GScore) for each monomer in the selected 
fragment of IgG as well as the energies of van der Waals, lipophilic, electrostatic 
interactions taking place in these binding poses were specified by QPLD. The 
results are summarized in Table 3. 

Figure 8. Schematic diagram of IgG, showing the Fab, Fc and Hinge fragments.

 The monomers with lower interaction energies (GScore) in the studied 
fragment can be considered as the most favorable for polymer matrix formation. 
The GScore values for the best-scoring binding poses of all three monomers 
docked to the selected regions of IgG had almost similar ranging between -19.54 
and -22.38 kJ mol-1, besides EDOT, which demonstrated no interaction with the 
hinge region (Article I). This indicates that both mPD and DA are able to form 
more stable pre-polymerization complexes with IgG through the non-covalent 
interactions, and can be considered as more appropriate functional monomers 
for IgG-MIP fabrication than EDOT.

  It is expected that if a protein solution contains a monomer at a high molar 
excess, there is far more than one ligand per protein molecule. Since MD gives 
an indication of the ligand preferential pose in the protein, sequential docking 
protocol of each of these grids will demonstrate the saturation by ligand when 
all favorable places have already been occupied [135]. Thus, IgG was docked 
with each of monomer to achieve full saturation using QPLD (Table 4).
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It was found that EDOT and DA are distributed non-uniformly over IgG, being 
preferably concentrated in the Fc (9 molecules of EDOT) and hinge (9 molecules 
of DA) regions, while mPD tends to be arranged more uniformly (6 molecules - 
on Fab, 6 molecules - on hinge, 2 molecules - on Fc regions) (Article I).  

Table 3. Energies of interactions and GScore values (kJ mol-1) for the best-
scoring binding poses of mPD, DA and EDOT docked to the selected regions of 
IgG (averaged QPLD data)  

Monomer 
Van der Waals 
interaction,  
kJ mol-1 

Lipophilic  
Interaction, 
 kJ mol-1 

Electrostatic 
Interaction, 
kJ mol-1 

Hydrogen 
interaction, 
kJ mol-1 

GScore, 
kJ mol-1 

Fab-fragment 

mPD -52.46 -6.42 -5.20 -1.19 -20.01 

DA -67.78 -8.84 -7.91 -1.23 -20.56 

EDOT -57.28 -8.17 -2.70 -1.27 -22.02 

Hinge-fragment 

mPD -50.67 -6.97 -0.25 -1.26 -19.54 

DA -63.37 -7.87 -15.14 -1.17 -20.79 

EDOT - - - - - 

Fc-fragment 

mPD -38.76 -7.26 -0.38 -2.52 -21.17 

DA -73.93 -10.26 -0.54 -1.54 -22.38 

EDOT -62.75 -7.36 -1.44 -1.21 -20.64 

Table 4. The distribution of various monomers on IgG as a result of 
the sequential docking by QPLD. 

Fragment of IgG 
Monomer (number of docked molecules) 

mPD DA EDOT 

Fab-fragment 3 4 4 

Hinge-fragment 6 9 0 

Fc-fragment 2 1 9 
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Table 5. The non-covalent interactions of mPD in the poses predicted by QPLD 

Number of docked mPD 
Amino acid/monosaccharides around associated 
monomer, estimated for 4 Å 

Fab-fragment (3) 

1 LYS62K, TYR96M, THR97M, PHE98M 

2 ARG44K, GLU46K, LYS62K 

3 
GLN39K, ARG44K, GLN43K, TYR87M, 
GLN100M 

Hinge fragment (6) 

1 
LYS228K, PRO227K, PRO240H, PRO241H, 
ASP232K,CYS230K 

2 PRO240H, SER195K, ALA138K 

3 
PRO240H, CYS239H, CYS239K, PRO240K, 
PRO241K 

4 
ASN314H, ALA244K, CYS242K, PRO243K, 
PRO243H, PRO245H 

5 
CYS239H, PRO240H, PRO241H, PRO243H, 
PRO241K, PRO243K 

6 PRO240H, CYS242H, PRO241H 

XP SER127K, ASP232K, PRO241H, NMA127K 

Fc-fragment (2) 

1 
MAN485H, BMA481H, GAL484H, MAN482H, 
NAG483H, BMA481K, MAN482K 

2 NAG483H, MAN482H, NAG479K 

Obviously, a more uniform arrangement of mPD around IgG would 
facilitate cavities for IgG than those of IgG-MI-PDA and IgG-MI-
PEDOT. In summary, mPD is considered as an optimal monomer for the 
formation of IgG-MIP. The poses of mPD simulated by QPLD 
demonstrate the important role of polar groups in amino acids (glutamic/
aspartic acid, serine, rarely by threonine, tyrosine) and monosaccharides 
in the formation of non-covalent interactions between mPD and IgG 
(Table 5).
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3.1.2 Quantum chemical calculation 

The MD results were complemented with the QCCs, allowing estimation of 
the cumulative strength of multiple H-bond interactions in the prepolymerization 
complex between the proton-donor groups of monomers and the accessible 
proton-acceptor groups of IgG. 

Figure 9 visualizes the positions of the sterically accessible polar O-atoms of 
the amino acids and sugars (monosaccharide) in the residues of IgG, which might 
be engaging in strong H-bond interactions with proton-donor groups of the 
monomers. It is interesting to note that O-atoms, which are associated with the 
amino acids, are uniformly distributed around the protein, while those associated 
with sugars are predominantly concentrated in the carbohydrate moiety of the Fc-
fragment. 

Since usage of QCCs for the study of protein-monomer interaction is limited 
due to the size of the system, the calculations were performed for the isolated 
complexes of the monomer-polar residue and the results were eventually 
summarized to represent the total strength of H-bond interactions in the IgG-
monomer complex. Although the approach neglects the contribution of the 

Figure 9. 3D map of steric accessible proton-accepting (oxygen) atoms in the 
polar amino acid of IgG. 
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Table 7 summarizes the association energies (∆E) of interaction between the polar 
amino acid or monosaccharide residues of IgG and the different monomers (mPD, DA, 
EDOT), as calculated by QCC. The comparison of these values shows that mPD forms 
the strongest network of H-bond interactions around IgG molecule, as compared to the 
other two monomers. Thus, one can expect that the IgG-MI-PmPD might possess 
stronger H-bonding ability with IgG than IgG-MI-PEDOT and IgG-MI-PDA. 
Moreover, the detected presence of multiple H-bond interactions between IgG and 
monomer might necessitate the optimization of IgG removal procedure from the 
formed polymer by means of complementary treatment of the polymer with a solvent, 
which readily dissociates the H-bonds in order to further facilitate the release of IgG 
from the polymer and convert it efficiently into IgG-MIP (Article I).  

summarized to represent the total strength of H-bond interactions in the IgG-
monomer complex. Although the approach neglects the contribution of the 
neighboring residues surrounding the polar residue in the polypeptide chain of IgG to 
the association energy of the isolated complex, the validity of its application has been 
proved by the additional calculations, revealing only insignificant or no difference in 
the association energies of the complexes of the monomer-amino acid and the 
monomer-tripeptide, comprising the polar amino acid joined with two neighboring 
residues on N- and C- terminals (Table 6).  

Table 6. The association energies of complexes of mPD-amino acid and mPD-
tripeptide comprising the amino acid joined with two neighboring residues on N- and 
C- terminal 

Amino acid or 
tripeptide-mPD 

Association energy
(∆E), kJ mol-1 

Amino acid or
tripeptide-mPD

Association energy
(∆E), kJ mol-1 

ASN 39.38 GLU 28.88 
Ser-ASN-Phe 41.08 Ile-GLU-Gly 28.89 
Ile-ASN-Pro 39.38 Gly-GLU-Asn 28.80 
Tyr-ASN-Gly 39.38 Phe-GLU-Gly 29.19 
Gly-ASN-Lys 39.38 Tyr-GLU-Lys 29.09 
SER 36.75 GLN 39.38 
Asn-SER-Phe 36.76 Asn-GLN-Phe 39.00 
Ile-SER-Pro 36.79 Ile-GLN-Pro 39.50 
Tyr-SER-Gly 36.71 Tyr-GLN-Lys 40.00 
Gly-SER-Lys 36.75 Gly-GLN-Asn 39.67 
TYR 26.25 ASP 34.13 
Ser-TYR-Gly 26.26 Ile-ASP-Gly 34.71 
Ile-TYR-Pro 26.30 Phe-ASP-Asn 34.89 
Gly-TYR-Lys 26.29 Tyr-ASP-Lys 34.24 
Asn-TYR-Phe 26.22 Gly-ASP-Pro 34.50 
THR 49.88 
Asn-THR-Phe 49.88 
Ile-THR-Pro 50.51 
Gly-THR-Lys 49.91 
Tyr-THR-Gly 51.00 
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3.2 Preparation of IgG-MIPs and study of IgG rebinding  

To further support the MD and QCCs results, the PmPD-, PDA- and PEDOT-
based IgG-MIPs and NIPs were synthesized electrochemically and their 
performances were compared (Article I). The electrochemical synthesis 
parameters and polymer film thickness were optimized (Articles II and III). 

Additionally, the different solvents such as HCl, NaOH, and DMSO were 
applied separately in order to elucidate their capability to disrupt the multiple H-
bond interactions between IgG and the polymer matrix.  

Because of numerous H-bonds simulated between a monomer and the protein, 
washing out process was optimized by DMSO as effective aprotic H-bonds 
disruptive reagent successfully used to dissociate H-bonds in biomolecules [137]. 
DMSO is a polar aprotic solvent that can accept H-bonds to oxygen but lacks 
polar hydrogen to donate in an H-bond. DMSO can form an H-bond with an 
amino group in the PmPD backbone, replacing the H-bond between the protein 
and PmPD, while it cannot form an H-bond with itself or with another proton-
donor group. Thus, DMSO can be an appropriate H-bond disrupting solvent for 
the protein-PmPD system acting via the competitive mechanism.  

Table 7. The association energy of the complexes (∆E) between polar amino 
acid or monosaccharide residues of IgG and the monomers (mPD, DA, EDOT) 
as estimated by QCC 
Polar residue of IgG Association energy (∆E), kJ mol-1 
 mPD DA EDOT 
Glu (64*, violet**) 1848.32 1680.64 39.38 
Tyr (51, brown) 1338.75 803.25 0.53 
Ser (146, yellow) 5365.50 383.98 18.38 
Gln (54, green) 2126.52 1134.00 24.94 
Asp (51, salmon) 1740.63 267.75 39.38 
Asn (50, cyan) 1969.00 656.50 93.47 
Thr (90, blue) 4489.20 1181.70 26.26 
Carbohydrate OH (47, red) 617.11 4195.69 17.59 
Carbohydrate CO (8, red) 147.04 63.04 - 
Carbohydrate O in heterocycle (18, red) 614.34 661.68 - 
Carbohydrate O between cycles (16, red) 84.00 651.04 - 
   
Total ***(∑∆E) 20340.41 11679.27 16449.60 

*Number of sterically accessible units in the IgG. 

**See 3D map of IgG representing the color-coded positions of the polar residues with the proton 
acceptor groups (Fig. 9). 

***The total association energy was taken as the sum of the individual association energies of the 
sterically accessible residues in IgG. This ∑∆E estimates the cumulative strength of H-bond 
interactions between the monomers and IgG, but neglects solvent effect. Fig. 10 
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Among the IgG-MIPs washed out with different procedures, the most 
pronounced imprinting effect (IF 2.68) was observed for the IgG-MIP washed 
with DMSO. In this case, the value of KD, which is considered as a measure of 
IgG affinity towards the MIP, was found to be approximately one order of 
magnitude higher for the IgG-MIP than that for the corresponding NIP (Article 
III). Based on the performed experiments, DMSO appeared to be an optimal agent 
assisting IgG removal from the polymer matrix, increasing the number of the 
complementary cavities, but at the same time treating the NIP gently, making it 
well-suited for the reference purpose, as demonstrated by the highest IF value 
(2.68) of IgG-MI-PmPD(DMSO) (Fig. 10, Table 8). 

It was decided, therefore, to use DMSO in the following experiments where 
the PmPD, PDA and PEDOT-based IgG-MIPs/NIPs were synthesized, and their 
Qeq and IF (Eq. 10) values upon the single injection of IgG (53.3 nM, Fig. S4 in 
Article III) were compared (Fig. 11). In the same way, the IgG-MI-
PmPD(DMSO) was given the highest IF that agrees well with the results 
predicted above by MD and QCCs, showing the advantage of mPD as a functional 
monomer for the synthesis of IgG-MIP (see section 3.1). 

Figure 10. (a) Qmax values derived from the binding isotherms, as measured by
SAW for the IgG-MI-PmPD NI-PmPD-modified sensor surfaces and for those 
additionally treated in either HCl, NaOH or DMSO (IgG-MI-PmPD(HCl), IgG-
MI-PmPD(NaOH), IgG-MI-PmPD(DMSO)), and for the reference NIP systems 
(NI-PmPD(HCl), NI-PmPD(NaOH), NI-PmPD(DMSO)). (b) The values of IFs 
for the respective pairs of IgG-MIPs and NIPs were calculated by Eq. (9). 
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In addition, comparison of the dissociation constants, KDs, derived from 
binding kinetics, might shed light on the binding affinity between IgG and the 
synthesized IgG-MIPs [50, 138, 139]. The calculated Kd values (3.1 nM, 4.8 nM 
and 5.0 nM for IgG-MI-PmPD, IgG-MI-PDA, IgG-MI-PEDOT, respectively) 
were consist with the conclusions above, demonstrating somewhat higher binding 
affinity of IgG to IgG-MI-PmPD. However, the Kd values did not differ enough 
to justify reliably which of the polymers provided IgG-MIP having the higher 
affinity to IgG. 

Table 8. Rebinding data recalculated for MIP-surfaces with different washing 
out solvents 

Treatment  Qmax(MIP) Qmax(NIP) IF 

Standart WO 8.8±1.3 5.4±1.8 1.66 

Standart WO + SDS 8.4±1.3 7.5±2.5 1.12 

Standart WO + HCl 16.1±5.5 12.4±2.8 1.33 

Standart WO + NaOH 16.1±7.5 11.7±5.8 1.38 

Standart WO + DMSO 15.6±1.4 5.5±1.9 2.68 

Figure 11. (a) Qeq values derived from the kinetic analysis of the sensorgram
association phase upon injection of IgG (53.3 nM), as measured by SAW for the
IgG-MIP (IgG-MI-PDA(DMSO), IgG-MI-PEDOT(DMSO), IgG-MI-
PmPD(DMSO)) and for the reference NIP films. The respective films were 
synthesized from either DA, EDOT or mPD and subjected to the additional
DMSO treatment. (b) The values of IFs for the respective pairs of IgG-MIPs and 
NIP films, as calculated by Eq. (10). All signal data were adopted from cleaved
films (MIP), subtracting background signal measured from the films washed
without the cleavage procedure (NIP). 
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Conclusions 

The aim of this thesis was to develop a computational modeling approach 
allowing the rational selection of a functional monomer for building a MIP having 
binding sites capable of selective capturing of macromolecular analytes. In this 
approach, MD combined with QCC were used for modelling and comparing 
molecular interactions between a model macromolecular template (IgG) and one 
of three electropolymerizable functional monomers (mPD, DA, EDOT). The 
approach allows us to draw the following conclusions:  

● The energetically favorable binding poses of the monomer on the 
different regions of IgG, their distribution over the whole molecule of 
IgG, and energies of non-covalent interactions (GScore) at these poses 
can be readily estimated using MD. Although all three studied monomers 
demonstrated almost similar GScore values, ranging between -19.54 and 
-22.38 kJ mol-1, mPD molecules were found to be arranged more 
uniformly around IgG as compared to DA and EDOT. 

● The association energies (∆E) of hydrogen interaction between the polar 
amino acid or monosaccharide residues of IgG and the different 
monomers can be calculated by QCC. The results showed that mPD 
formed the strongest network of H-bond interactions around IgG 
molecule as compared with the other two monomers.  

● According to the above mentioned computational predictions, mPD can 
be considered as a more optimal monomer for the synthesis of IgG-MIP 
than DA or EDOT. 

● The computational predictions were validated experimentally comparing 
performances of the IgG-MIPs synthesized from mPD, DA or EDOT. 
Namely, the PmPD-based IgG-MIPs (IgG-MI-PmPD) had relatively 
higher binding capacity towards IgG than those generated from PDA 
(IgG-MI-PDA) and PEDOT (IgG-MI-PEDOT), as judged by their IF 
values, which were 3.1, 1.5 and 1.8 for IgG-MI-PmPD, IgG-MI-PDA and 
IgG-MI-PEDOT, respectively.  

● It was revealed that among the solvents, NaOH, HCl and DMSO, the 
latter was found to be a more suitable solvent to disrupt the multiple H-
bond interactions between IgG and the polymer matrix, while minimally 
affecting the binding properties of the control polymer. This was judged 
by the IF value, which was the highest for IgG-MIP films additionally 
treated in DMSO (IgG-PmPD(DMSO)). 

Finally, the computational approach presented in this thesis is novel, valid and 
reasonable. The approach provides means for understanding macromolecular 
imprinting phenomena, i.e. potency of the MIPs to selective recognizing of 
macromolecules such as proteins. Therefore, future work will be substantially 
facilitated by the developed approach to design MIPs for the detection of the 
range of clinically relevant proteins, such as prostate specific antigen (PSA), 
neurothrophic factor proteins (CDNF, BDNF) and other proteins.  
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Abstract 

Molecular imprinting is one of the state-of-the-art techniques to generate 
robust molecular recognition materials with antibody-like ability to bind and 
discriminate between molecules. The technique can be defined as the process of 
template-induced formation of selective molecular recognition sites in a polymer 
matrix material. In this process, a mixture of functional monomers is polymerized 
around a target analyte molecule that acts as a molecular template. During the 
polymerization, the template induces binding sites in the reticulated polymer that 
are capable of selective recognition of the target analyte molecules after removal 
of the templates from the formed polymer. The main benefits of these polymers, 
so-called Molecularly Imprinted Polymers (MIPs), are related to their synthetic 
nature, i.e. excellent chemical and thermal stability associated with reproducible, 
cost-effective fabrication. MIP materials have been shown to be a promising 
alternative to natural biological receptors in biosensors providing paths to 
synthesize more stable and low-cost recognition elements. 

The prerequisite for the formation of selective binding sites for a 
macromolecular target in a MIP supposes the presence of non-covalent 
interactions (self-assembly), such as H-bonds, van der Waals forces, ionic 
interactions, and hydrophobic effects in the pre-polymerization complex between 
the macromolecular template molecule and the functional monomers. It is 
assumed that the choice of functional monomers capable of forming more stable 
non-covalent complexes with the template could result in a MIP with a high 
selectivity and affinity. Thus, performance of the MIP relies first of all on the 
quantity and strength of pre-existing molecular interactions in those complexes 
before the polymerization of the monomers. This aspect is particularly crucial for 
the formation of selective binding sites in a MIP for a macromolecular structure, 
such as, e.g., a protein (protein-MIP) where a considerable amount of different 
functional groups enables multiple non-covalent interactions between the protein 
and a functional monomer in the pre-polymerization complex. Therefore, an 
estimation of all possible non-covalent interactions as well as their strength in the 
protein-monomer complex should be seriously considered when aiming to design 
a protein-MIP with highly selective recognition sites. 

Different computational approaches, including molecular mechanics, 
molecular dynamics, quantum chemical calculation (QCC) and molecular 
docking (MD), were successfully used for a rational design of MIPs through the 
prediction, simulation and estimation of molecular interactions between a small 
molecular weight molecule and a monomer in a pre-polymerization complex. 
However, there are very few computational studies on MIPs that are selective 
towards a macromolecular molecule. These studies mostly use the molecular 
mechanics simulations, MD and lattice Monte Carlo simulations. Among them, 
MD is the fastest and least resource-consuming computational method to estimate 
protein-ligand interactions, and it is widely used in the field of drug design. MD 
provides reliable predictions of binding poses of a monomer on a protein prior to 
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the polymerization, as well as determination of the types of non-covalent 
interactions taking place by the set of the amino acids present near this binding 
pocket. However, MD limits estimation of energy only for interactions happening 
in the areas with the best-scoring bindings poses ignoring as well weak 
interactions between the ligand and the protein, i.e. the H-bond interactions 
between spatial accessible polar amino acid residues and monomers. At same 
time, QCC allows precise assessing of such H-bond interactions; however, its 
applicability to the calculation of the protein-ligand complex is limited due to the 
size of the system.  

Therefore, the main objective of this thesis was to develop a computational 
modeling approach allowing the rational selection of a functional monomer for 
building a polymer with binding sites capable of selectively capturing 
macromolecular analytes. In this approach, MD combined with QCC were used 
for modeling and comparing molecular interactions between a model 
macromolecular template (IgG), and one of three electropolymerizable functional 
monomers (mPD, DA, EDOT). MD was applied to find the energetically 
favorable binding poses of the monomer on IgG as well as to predict the probable 
arrangement of the multiple monomer molecules around IgG. Although all three 
studied monomers demonstrated almost similar GScore values ranging between 
-19.54 and -22.38 kJ mol-1, mPD molecules were found to be arranged more 
uniformly around IgG as compared to DA and EDOT. The MD results were 
complemented with the QCC, allowing estimation of the cumulative strength of 
multiple H-bond interactions in the prepolymerization complex between the 
proton-donor groups of the monomers and the accessible proton-acceptor groups 
of IgG to establish further its influence on the performance of the resulting IgG-
MIPs. The comparison of the association energies (∆E) of interaction between 
the polar amino acid or monosaccharide residues of IgG and the different 
monomers calculated by QCC showed that mPD formed the strongest network of 
H-bond interactions around IgG molecule, versus the other two monomers that 
further justified the selection of mPD as an optimal monomer for the synthesis of 
IgG-MIP. 

The computational predictions were validated experimentally by the SAW 
biosensing platform, which was used to compare performances of the IgG-MIPs 
synthesized from the candidate monomers. The experimental results showed that 
the PmPD-based IgG-MIPs (IgG-MI-PmPD) had a relatively higher binding 
capacity towards IgG than that generated from PDA (IgG-MI-PDA) and PEDOT 
(IgG-MI-PEDOT), as judged by their IF values, which were 3.1, 1.5 and 1.8 for 
IgG-MI-PmPD, IgG-MI-PDA and IgG-MI-PEDOT, respectively. It was revealed 
that among the solvents, NaOH, HCl and DMSO, the latter was found to be a 
more suitable solvent to disrupt the multiple H-bond interactions between IgG 
and the polymer matrix, while minimally affecting the binding properties of the 
control polymer. 
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Therefore, the computational approach presented in this thesis is novel and 
provides means for understanding the macromolecular imprinting phenomena, 
i.e. potency of the MIPs to recognize selectively macromolecules such as 
proteins. 
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Kokkuvõte 

Molekulaarne jäljendamine on kaasaegne tehnoloogia antikeha-analoogsete 
materjalide valmistamiseks molekulaarsel tasemel teatud sihtmolekulide 
sidumiseks ja eristamiseks. Molekulaarse jäljendamise tehnoloogia põhineb 
sihtmolekulide suhtes tundlike „mälupesade“ loomises polümeeri maatriksis. 
Selleks polümeriseeritakse monomeer koos vastava sihtmolekuliga moodustades 
polümeerse kompleksi sihtmolekuli ja monomeeri vahel. Järgnevalt 
eemaldatakse sihtmolekul polümeeri maatriksist nii, et polümeeri maatriksis 
säilib sihtmolekuli jälend, mis on võimeline uuesti siduma uuritavast keskkonnast 
sihtmolekuli. Selliselt valmistatud molekulaarselt jäljendatud polümeeride (MJP) 
eeliseks võrreldes looduslike retseptoritega on võimalus neid laboritingimustes 
sünteesida, tagades sellega parema keemiliste omaduste stabiilsuse, hea 
temperatuuritaluvuse, omaduste reprodutseeritavuse ja odavama hinna võrreldes 
looduslike analoogide – retseptoritega. 

MJP efektiivsus sõltub olulisel määral sihtmolekuli ja monomeer 
polümerisatsioonil tekkivate mittekovalentsete sidemete – vesiniksidemete, van 
der Waalsi, ioonsete aga ka hüdrofoobsete sidemete - iseloomust. 
Polümerisatsioonil tekkivad sidemed peavad olema stabiilsed molekulaarselt 
jäljendatud polümeeri püsivuse tagamiseks, kuid samal ajal peavad ka 
võimaldama eemaldada sihtmolekuli polümeeri maatriksist nii, et säiliks tervena 
sihtmolekuli „mälupesa“ ja polümeeri maatriks. 

Sihtmolekuli ja monomeeri vahel tekkivate võimalike sidemete arvu, liigi ja 
tugevuse prognoosimisel arvutimodelleerimise abi kasutatkase tavaliselt 
molekulaarmehaanilist ja molekulaardünaamilist lähendust, molekulaarsildamist 
(molecular docking, MD) ja kvantkeemilisi arvutusi (quantum chemical 
calculations, QCCs). Selline prognoosimine enne praktilist polümerisatsiooni 
annab väga olulist teavet optimaalse monomeeri valikuks ja kui seda teha arvutil 
modelleerimise abil siis on võimalik märkimisväärselt hoida kokku töömahukate 
katsete ja kallite reagentide arvelt. Peab märkima, et suurem osa kirjanduse 
allikatest kirjeldab molekulaarmodelleerimise protsessi funktsionaalsete 
monomeeride ja madalmolekulaarsete sihtmolekulide vahel, kuid väga vähe on 
uuritud sidemete arvu, liigi ja tugevuse prognoosimise võimalusi 
makromolekulaarsete sihtmolekulide (proteiinide) korral. Makromolekulaarsete 
sihtmolekulidega MJP molekulaarmodelleerimisel on kasutatud peamiselt 
molekulaarmehaanilist lähendust, MD ja Monte Carlo simulatsioone. 
Ülalnimetatud meetoditest on MD kõige kiirem ja säästlikum arvutil 
modelleerimise meetod proteiin-ligandi vaheliste sidemete prognoosimiseks ning 
seda kasutatakse peamiselt ravimite molekulaardisainis. Meetod võimaldab 
prognoosida võimalikku sidemete teket polümerisatsioonil aga ka ennustada 
eeldatavate sidemete iseloomu. Samas on MD meetodil teatud puudused. MD 
toob välja vaid eelistatud sidemed ja ei võimalda täpselt hinnata kõikide 
võimalike sidemete tekkeenergiaid. Näiteks ei arvestata vesiniksidemeid 
monomeeri ja võimalike proteiinis esinevate polaarsete aminohapete ja suhkrute 
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prooton-aktseptor rühmade vahel. Kvantkeemiliste arvutustega on küll võimalik 
hinnata paremini erinevate sideme tüüpide energiaid, kuid selle meetodi 
rakendamine proteiin-ligandi vaheliste sidemete hindamiseks on raskendatud 
süsteemi suurte mõõtmete tõttu. 

 Käesoleva doktoritöö eesmärgiks oli monomeeride valiku protsessi 
molekulaarne modelleerimine optimaalse monomeeri leidmiseks MJP 
valmistamiseks proteiini selektiivseks määramiseks. Mudelproteiiniks 
(sihtmolekuliks) valiti Immuunoglobuliin G (IgG) kui üks enim esindatud 
antikehi inimese seerumis. Polümeermaatriksi moodustamiseks analüüsiti kolme 
elektrokeemiliselt polümeriseeritavat monomeeri – m-fenüleendiamiini (mPD), 
dopamiini (DA) ja 3.4-etüleendioksütiofeeni (EDOT). MD ja kvantkeemiliste 
arvutuste abil modelleeriti kõigi kolme monomeeri ja sihtmolekuli 
polümerisatsioonil tekkivate eelistatud sidemete teket ja paigutust proteiini 
suhtes ning samuti tekkivate sidemete energiaid. Modelleerimisel kasutati MD 
meetodit eelistatud sidemete prognoosimiseks monomeeri ja IgG vahel ja nende 
jaotus monomeeride ja erinevate IgG molekuli fragmentide suhtes, samuti 
tekkivate mittekovalentsete sidemete energiad. Kõigi kolme analüüsitud 
monomeeri ja IgG vahelised sidemeenergiad langesid vahemikku -19.54 and -
22.38 kJ mol-1, kuid mPD molekulid jaotusid IgG molekuli suhtes kõige 
ühtlasemalt. MD meetodit täiendati kvantkeemiliste arvutustega võttes arvesse 
vesiniksidemete summaarset energiat, mis tekib monomeeri prooton- doonor 
gruppide ja proteiini prooton- aktseptor gruppide vahel. Näidati,et kõige 
stabiilsemad sidemed moodustatakse IgG molekuli suhtes polümerisatsioonil 
monomeeri m-fenüleendiamiiniga (mPD). Arvutusliku modelleerimise 
kokkuvõtteks leiti, et optimaalseks monomeeriks IgG sidumisks molekulaarselt 
jäljendatud tehnoloogia abil on m- fenüleendiamiin (mPD). 

Arvutusliku modelleerimise tulemusi kontrolliti eksperimentaalselt hinnates 
IgG sidumise efektiivsust uuritud monomeeridest valmistatud MJP (IgG-MIP) 
kiledel pinna akustilise laine (surface acoustic wave, SAW) meetodil. IgG 
sidumise efektiivsuse parandamiseks uuriti täiendavalt erinevate lahustite 
kasutamise efektiivsust sihtmolekuli väljapesemisel mälupesade arvu 
suurendamiseks. Analüüsiti kolme lahustaja: NaOH, HCl ja DMSO kasutamise 
mõju mälupesade tekitamiseks, määrates erinevate lahustajatega töödeldud IgG-
MIP efektiivsust ja leiti, et ülalnimetatud lahustajatest toimib kõige 
efektiivsemalt DMSO seejuures kõige vähem kahjustades polümeeri maatriksit. 
IgG-MIP efektiivsuse võrdlemine SAW meetodil erinevate monomeeride korral 
näitas, et DMSO lahustaja kasutamisel saadi monomeeri mPD kasutamisel IgG-
MI-PmPD spetsiifilise sidumise efektiivsuseks IF=3.1 võrreldes IgG-MI-PDA 
(IF=1.5) ja IgG-MI-PEDOT (IF=1.8). 

Kokkuvõtteks järeldati, et doktoritöös välja pakutud molekulaarse 
modelleerimise meetod optimaalse monomeeri leidmiseks makromolekulaarsete 
sihtmolekulide (IgG) jaoks töötab hästi mida kinnitasid ka IgG-MIP sidumise 
efektiivsuse analüüsi tulemused. 
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PAPER III 

A. Tretjakov, V. Syritski, J. Reut, R. Boroznjak, A. Öpik, Molecularly 
imprinted polymer film interfaced with Surface Acoustic Wave technology as a 
sensing platform for label-free protein detection. Anal Chim Acta 2016, 902. 182-
188, DOI: 10.1016/j.aca.2015.11.004. 
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