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INTRODUCTION 

Marine ecosystems are living multi-species systems that are challenged and adapt 
to environmental changes. Corals are integral species in major marine ecosystems 
worldwide and are endangered due to biotic and abiotic stressors. Understanding 
the interplay between stress elicitors and early responses generated would 
improve the predictive power and measures for preventing the loss or decline in 
coral reefs. Because corals are some of the simplest animal species, they further 
represent valuable model organisms to study stress and adaptation. Thus, the 
basic results of oxylipin pathways obtained in corals are likely applicable to 
higher animals, which, due to their complexity and restrictions, are difficult to 
study in vivo. 

Oxylipins are well-established stress mediators in vertebrates and plants, 
synthesized mainly by lipoxygenase (LOX) and cyclooxygenase (COX), and 
LOX and allene oxide synthase (AOS) pathways, respectively. In corals, besides 
COX and LOX enzymes, the initial oxidation of arachidonic acid (AA) is 
catalyzed by a natural fusion protein, comprised of a catalase related peroxidase 
and a lipoxygenase (AOS-LOX). The product of the C-terminal LOX domain 
(8R- hydroperoxide) is sequentially converted by the N-terminal AOS to an 
unstable allene oxide (AO), which decomposes in water into 8-hydroxy, 9-keto-
5Z,11Z,14Z-trienoic acid (α-ketol) and 9-oxo-prosta-5Z,10,14Z-trienoic acid 
(cyclopentenone/ preclavulone A). Although AOS-LOX and derived eicosanoids 
have been detected in two soft coral species, the biological significance of AOS-
LOX metabolites in corals has not been established. 

The biosynthesis of eicosanoids varies among corals. For example, in addition 
to metabolites of LOX and AOS-LOX pathways, large amount of COX products, 
endogenous prostaglandins (PGs), are present in Plexaura homomalla, but no 
COX activity is detected in vitro. However, conclusive evidence shows that COX 
enzymes are responsible for PG synthesis in P. homomalla. Whereas both 
endogenous PGs, and COX activity in vitro are detected in Gersemia fruticosa, 
in some corals neither PGs nor COX are found. Based on the genome of Acropora 
digitifera, stony corals are devoid of the COX gene. At the same time, the AOS-
LOX gene is present in both soft and stony corals. The biological function of this 
widely distributed AOS-LOX pathway in corals is unknown. 

According to previous studies conducted by our group, G. fruticosa contains 
all of the aforementioned AA pathways. Unfortunately, due to its extreme natural 
environment, the coral is unsuitable for in vivo experiments. In order to find a 
more convenient model for stress experiments, the octocorals Capnella 
imbricata, Sarcophyton sp., Lobophyton sp. and Xenia sp. were analyzed for their 
fatty acid content. Eventually, due to its high AA content, easily cultivated and 
fast growing C. imbricata was chosen for further studies of the oxylipin 
metabolism.  

In this thesis the biosynthetic AOS-LOX pathway, which converts AA to 
allene oxide, was established for the Arctic G. fruticosa and Indo-Pacific C. 
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imbricata, and identified as a fast and sensitive pathway induced in response to 
mechanical and thermal stress in C. imbricata in vivo. Observed changes suggest 
the importance of the AOS-LOX pathway in mediating the early stress response 
of coral. 
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ABBREVIATIONS 
 
8R-HETE  8R-hydroxy-(5Z, 9E, 11Z, 14Z)-eicosatetraenoic acid  
8R-HpETE  8R-hydroperoxy-(5Z, 9E, 11Z, 14Z)-eicosatetraenoic acid  
α-ketol  8-hydroxy, 9-keto-(5Z, 11Z, 14Z)-eicosatrienoic acid  
AA  arachidonic acid, (5Z, 8Z, 11Z, 14Z)-eicosatetraenoic acid 
ALA α- linolenic acid, (9Z, 12Z, 15Z)-octadecatrienoic acid 
AO allene oxide; 8, 9- epoxy-(5Z, 9E, 11Z, 14Z)-eicosatetraenoic 

acid 
AOC  allene oxide cyclase 
AOS  allene oxide synthase 
AOS-LOX allene oxide synthase-8R-lipoxygenase fusion protein 
COX  cyclooxygenase 
Cyclopentenone  9-oxo-prosta-(5Z, 10, 14Z)-trienoic acid 
CYP  cytochrome P450 family proteins 
dnOPDA dinor-oxo-phytodienoic acid; 10-oxo-(8, 13Z)-phytodienoic 

acid 
DES divinyl ether synthase 
EPA  (5Z, 8Z, 11Z, 14Z, 17Z)-eicosapentaenoic acid 
Grp78/BiP  glucose-regulated protein 78/binding immunoglobulin protein 
HPL  hydroperoxide lyase 
HETE  hydroxyeicosatetranoic acid 
HpETE  hydroperoxyeicosatetranoic acid  
HSF  heat shock factors 
HSR  heat shock response 
Hsp(70) heat shock protein (70 kDa) 
JA  jasmonic acid; (+)-7- iso-jasmonic acid 
LA   linoleic acid, (9Z, 12Z)-octadecadienoic acid 
LOX  lipoxygenase 
OPDA oxo-phytodienoic acid; (+)-12-oxo-(10, 15Z)-phytodienoic acid 
PUFA  polyunsaturated fatty acid 
qPCR  quantitative real-time polymerase chain reaction 
ROS  reactive oxygen species 
RP-HPLC reverse phase-high performance liquid chromatography  
RT-PCR reverse transcription polymerase chain reaction 
TXA2  thromboxane A2 
UPC   unidentified polar compounds 
UPR  unfolded protein response 
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1. REVIEW OF THE LITERATURE 

1.1. Oxylipin pathways 

Oxylipins are commonly found in aerobic organisms (plants, animals and fungi) 
(Blee 1998,2002; Rowley et al. 2005; Wasternack 2007; Serhan et al. 2008a; 
Wasternack and Hause 2013a). They are formed from polyunsaturated fatty acids 
(PUFA) by pathways involving at least one mono- or dioxygen-dependent 
oxidation (Gerwick et al. 1991). The main precursors of oxylipins are C16 and 
C18 PUFAs in plants (Wasternack and Hause 2013a) and C20 (C22) PUFAs in 
animals (Wymann and Schneiter 2008). PUFAs are converted to corresponding 
oxylipins by the activity of lipoxygenase (LOX), cytochrome P450 (CYP) and 
alpha-dioxygenases (DOX) in plants (Fig. 1a) and LOX, cyclooxygenase (COX) 
and CYP enzymes in animals (Fig. 1b) (Blee 2002). It should be noted that while 
plants lack COXs, some CYP families (e.g. CYP74) are not present in higher 
animals (Nelson et al. 2013). Due to the labile nature of the compounds, oxylipins 
are messengers acting in an auto-paracrine manner, and mostly are not stored in 
tissues, but rather are formed in response to various stimuli (Serhan et al. 1996; 
Blee 1998; Serhan et al. 2008a). At the same time, some oxylipins (e.g. 
phytoprostanes) are also formed non- enzymatically under conditions of oxidative 
stress via the action of reactive oxygen species (ROS) (Mueller 2004; Mueller 
and Berger 2009), generating highly complex oxylipin patterns. 

 
Figure 1. Oxidative metabolism of PUFAs in plants (a) and mammals (b) (adapted from 
(Blee 2002)). 

1.1.1. Plant-derived oxylipins 

Different classes of oxylipins are formed from hexatrienoic (C16:3), linoleic (LA, 
C18:2) or α-linolenic (ALA, C18:3) acids by at least six different enzyme families 
(Fig. 1a) (Blee 2002; Feussner and Wasternack 2002; Mosblech et al. 2009; 
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Wasternack and Kombrink 2010; Wasternack and Hause 2013a). LOXs and 
DOXs conduct the formation of regio- and stereospecific fatty acid 
hydroperoxides (Hamberg et al. 2003; Wasternack and Hause 2013a). Fatty acid 
hydroperoxides formed by LOXs are substrates for downstream CYP family 
proteins, including allene oxide synthase (AOS), hydroperoxide lyase (HPL) and 
divinyl ether synthase (DES), leading to the formation of unstable allene oxides 
(AO), short chain aldehydes and divinyl ether containing PUFAs, respectively 
(Fig. 2) (Howe and Schilmiller 2002; Lee et al. 2008). The relative levels of 
jasmonic acid (JA), oxo-phytodienoic acid (OPDA) and C16 derived dinor-oxo-
phytodienoic acid (dnOPDA) are oxylipin signatures of plants. It is notable that 
under normal conditions the oxylipin signatures in different plant species are 
similar, but not identical (e.g. potatoes versus Arabidopsis thaliana) (Weber et al. 
1997). In general, oxylipin synthesis is induced by wounding, and the metabolites 
formed up-regulate its synthesis pathway (Wasternack 2007). 

 

Figure 2. Plant oxylipin pathways. LOXs convert LA and ALA to corresponding 9- and 
13-hydroperoxides. AOS converts fatty acid hydroperoxide to allene oxide, HPL into 
volatile compounds and DES into divinyl ether containing fatty acids. R and R’ vary 
according to the substrate. 

As previously described, a great number of enzymes are responsible for the 
metabolism of fatty acids. Here the focus is on the biosynthesis of oxylipins 
initiated by the LOX and followed by either AOS or HPL. 

The best-characterized pathway of plant oxylipins is the formation of the stress 
mediator JA via its precursor OPDA (Wasternack and Kombrink 2010). 
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Accordingly, the biosynthesis of JA is catalyzed from ALA by sequential 
activities of LOX, AOS and allene oxide cyclase (AOC) (Blee 2002; Block et al. 
2005). While the non-enzymatic cyclization of AO leads to a racemic mixture of 
OPDA, AOC catalyzes the stereospecific formation of 9S, 13S enantiomer 
essential in the formation of JA (Ziegler et al. 1997). The first steps of JA 
synthesis (up to OPDA formation) take place in the plastids, while the shortening 
of the carboxylic acid side-chain and the formation of JA are conducted in 
peroxisomes (Fig. 3) (Wasternack 2007). JA is elicited in response to injury, 
pathogenesis and herbivory (Farmer et al. 2003; Schilmiller and Howe 2005). 
Jasmonates, which are comprised of JA, methyl ester- and amino acid conjugates 
of JA, are involved in growth and development, and are essential in the local and 
systemic signaling of defense (Wasternack and Kombrink 2010; Wasternack and 
Hause 2013a). However, OPDA, the precursor of JA, is a signal mediator in 
tendril coiling in the climbing plant Bryonia dioica (Blechert et al. 1999), which 
has been found to be a potent regulator of the wound response in A. thaliana 
(Stintzi et al. 2001). Importantly, OPDA and JA regulate a distinct set of genes in 
response to wounding (Taki et al. 2005). 

 

Figure 3. Localization of the lipoxygenase pathway in a plant cell (Wasternack 2007). 

In parallel with the AOS route, the HPL pathway mediates the conversion of 
13S- fatty acid hydroperoxide to non-volatile traumatin (C12 oxo-acid) and 
volatile C6 aldehydes (Fig. 2) (Zimmerman and Coudron 1979; Vick and 
Zimmerman 1987; Bate et al. 1998; Howe et al. 2000; Grechkin and Hamberg 
2004; Halitschke et al. 2004). The volatile compounds are instantly synthesized 
at the chloroplast membranes in response to wounding, e.g. the unstable (Z)-3-
hexenal generated is detected 1-2 s after injury (Fall et al. 1999), stimulating the 
healing of the wound and inducing the expression of the prosystemin gene, which 
in turn acts as a positive feedback loop enhancing wound signal. Metabolites of 
the unstable (Z)-3-hexenal are (E)-2-hexenal, hexenols and hexenyl acetates. 
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Hexanals and hexenals have antibacterial (Croft et al. 1993) and antifungal 
properties (Major et al. 1960; Gueldner et al. 1985; Sivasankar et al. 2000). In 
addition, they function as messengers in plant-to-plant signaling (Bate and 
Rothstein 1998) and “attract” or “repel” insects (Croft et al. 1993; Turlings et al. 
1995). The volatile aldehydes have a compound specific aroma, also detectable 
by humans. For example, the leaf aldehyde (E)-2-hexenal in a 1:1 mix with 
hexenol emits a “fresh green” scent of newly mown grass. Hexanal or (E)-3-
hexanal, the result of 13- hydroperoxide break-down, emits a beany-grassy odor. 
(E)-3-noneal or (E)-3, (E)-6 nonadienal, produced from 9-hydroperoxide, emit a 
cucumber-pear-like odor (Noordermeer et al. 2001b). For humans, the “green 
odor” has anti-stress properties (Oka et al. 2008). Accordingly, the volatiles 
(including JA) are used as scents in fragrances. 

Traumatin and traumatic acid are formed from the carboxyl end of the fatty 
acid hydroperoxides; they are wound hormones that promote growth 
(Zimmerman and Coudron 1979). For example, 9-OH traumatin is involved in 
the fast wound response, produced non-enzymatically and enzymatically within 
the first hour, and is not stored (Kallenbach et al. 2011). 

1.1.2. Animal-derived oxylipins 

Eicosanoids are the main branch of oxylipins synthesized in animals from 
arachidonic acid (AA, C20:4ω6) and other C20 polyenoic acids by fatty acid di- 
and monooxygenases, LOX, COX and cytochrome P450 epoxygenases, 
respectively (Fig. 1b and Appendix 1) (Brash 1999; Rouzer and Marnett 2003; 
Nelson et al. 2013). In addition to AA, other PUFAs, such as eicosapentaenoic 
acid and docosahexaenoic acid (DHA, C22:6ω3), are the precursors for important 
PUFA derivatives: resolvins and protectins (Serhan et al. 2002; Serhan et al. 
2008a), which mediate the resolution of inflammation. 

Vertebrate eicosanoids 

Animal 5-, 8-, 11-, 12- and 15-LOXs (E.C. 1.13.11.-) catalyze the conversion 
of AA into corresponding 5-, 8-, 11-, 12- and 15- hydroperoxyeicosatetraenoic 
acids (HpETEs) (Brash 1999) (Appendix 1, b). Depending on the species and 
cell-type specific expression of enzymes, the content and distribution of 
eicosanoids vary. For example, six LOXs with 5-, 12-, 15- specificity are 
expressed in human (Horn et al. 2013), while additional 8-LOX is expressed in 
mouse skin (Jisaka et al. 2000). Thus far, the LOX with 11R-specificity has been 
identified only in marine invertebrates, such as hydra (Di Marzo et al. 1993), sea 
urchins (Hawkins and Brash 1987) and corals (DiMarzo et al. 1996; Varvas et al. 
1999; Mortimer et al. 2006). In terrestrial organisms, the prevalent 
stereoconfiguration of LOX products is S, while R stereospecificity is more 
pronounced in marine invertebrates.  
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HpETEs are involved in cell migration (chemotactic) and are potent pro- and 
anti-tumorigenic agents. For example, 5- and 12-HETEs formed by 5- and 12-
LOX, and 13-HODE formed by 15-LOX are involved in the proliferation and 
inhibition of apoptosis, angiogenesis, cancer invasion and metastasis, while 15- 
and 8-HETE formed by 15-LOX2 and 8-LOX are involved in the differentiation, 
growth arrest and induction of apoptosis (Pidgeon et al. 2007; Moreno 2009). In 
addition, they mediate atherosclerosis (15-HETE) and allergic inflammation 
(Duroudier et al. 2009). Downstream LOX cascades produce leukotrienes and 
lipoxins, which promote inflammation and are involved in the initiation and 
resolution of inflammation, respectively (Funk 2001; Serhan and Chiang 2002; 
Haeggström and Funk 2011). 

Another oxygenation route converting AA to prostaglandins (PGs) is 
catalyzed by COXs, also known as prostaglandin endoperoxide synthases (E.C. 
1.14. 99.1). All vertebrates have two COX isozymes, a constitutive COX-1 and 
an inducible COX-2 (Funk 2001). Both COXs catalyze the formation of PGG2 
(cyclooxygenase activity) and its reduction to PGH2 (peroxidase activity) (Rouzer 
and Marnett 2003; Schneider et al. 2007). The main differences between COX-1 
and COX-2 are their genetic regulation and function (Rouzer and Marnett 2005; 
Blobaum and Marnett 2007). The formation of PGH2 by COXs is a rate-limiting 
step in its downstream conversion to prostaglandin E2 (PGE2), PGF2α, and PGD2, 
as well as the conversion to thromboxane A2 (TXA2) and prostacyclin (PGI2) by 
corresponding isomerases or synthases (Fig. 4 and Appendix 1, a) (Rouzer and 
Marnett 2011).  

Inhibition of COX reduces inflammation, pain and fever (Flower 2006). The 
anti-inflammatory effect of non-steroidal anti-inflammatory drugs (NSAIDs) is 
related to COX-2 inhibition (Vane and Botting 1998). COX-2 is also involved in 
the promotion and progression of cancer, although, the role is tumor specific 
(Krishnamoorthy and Honn 2011; Moga 2013). In conferring their biological 
function, e.g. evoking an inflammatory response after injury, PGs have opposite 
effects. For example, depending on the timing and course of inflammation, they 
can either induce vasoconstriction (PGF2α, TXA2, TXB2) or vasodilation (PGE1, 
PGE2, PGI2), inhibition of platelet aggregation (PGD2, TXA1, PGE1, PGI2) 

(Murakami 2011; Ricciotti and FitzGerald 2011) or aggregation of platelets 
(PGE2) (Howie et al. 1973; Kobzar et al. 1997). In addition, elevated levels of 
PGE2 sensitize spinal neurons (inducing the sense of pain) (Grace et al. 2014), act 
on the hypothalamus to cause fever (Coceani and Akarsu 1998), and are involved 
in the complex process of labor (e.g. cervical ripening and contractions) (Kelly et 
al. 2009). 

Animal CYPs catalyze the biotransformation-oxygenation of drugs and 
xenobiotic toxicants, as well as endogenous PUFAs (Capdevila et al. 2000; 
Nelson et al. 2013). For example, CYP1B, CYP2A, CYP2B, CYP2C, CYP2E, 
CYP2J, CYP4A and CYP11 monooxygenases are present in the human heart, and 
all require O2, CYP reductase and NADPH for catalysis (Seubert et al. 2007). 
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Using AA as a substrate, they produce various hydroxy fatty acids, e.g. 16- 
and 20-HETE, and four regioisomers of epoxyeicosatrienoic acid (EETs). For 
example, the epoxygenation of AA leads to 5,6-, 8,9-, 11,12-, and 14,15-EETs in 
humans (Appendix 1, c) (Rouzer and Marnett 2011). EETs are further converted 
to corresponding dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase, 
e.g. 14, 15-DHET is formed from 14, 15-EET (Zeldin et al. 1993). In vertebrates, 
the representatives of CYP family converting fatty acid peroxides are CYP5A1 
(thromboxane synthase) and CYP8A1 (prostacyclin synthase) (Brash 2009). 

The bioactivity of EETs depends on the specific regioisomer and the cellular 
context. EETs regulate ion transport and blood pressure (vasodilators) (Larsen et 
al. 2006; Capdevila 2007), sodium excretion (Capdevila and Falck 2002; 
Capdevila et al. 2014) and angiogenesis (Wang 2005). EETs are involved in 
cardio-protection after injury (Seubert et al. 2007). Endothelial-derived EETs 
promote tissue growth, e.g. liver regeneration and compensatory growth of the 
kidney and lung in vitro (Panigrahy et al. 2013). 5,6- and 8,9-EETs promote 
endothelial cell migration and angiogenesis (Pozzi et al. 2005), while 11,12-EET 
is anti-inflammatory (Node et al. 1999) and anti-migratory for vascular smooth 
muscle cells (Sun et al. 2002; Spector and Norris 2007). 20-HETE produced by 
ω-hydroxylases is a vasoconstrictor inhibiting Ca2+- sensitive K+ channels 
(Seubert et al. 2007), and promotes endothelial cell proliferation (Guo et al. 
2007). 

Coral eicosanoids 

Corals are invertebrate animals (Kingdom Animalia; phylum Cnidaria; class 
Anthozoa) (Hyman 1940) that are divided into two major subclasses: reef-
building Hexacorallia and soft corals Octocorallia (Zhang 2011), both comprised 
of azooxanthellate or zooxanthellate, the latter living in symbiosis with 
unicellular algae, Symbiodinium sp. species. 
Coral oxylipin studies started with the detection of large quantities of PG and PG-
esters (2-3% of dry weight) in the soft coral Plexaura homomalla (Weinheimer 
and Spraggins 1969). Thereafter, a plethora of eicosanoids have been discovered, 
which vary depending on the species and location (Corey et al. 1973; Brash et al. 
1987; Corey et al. 1987; Corey et al. 1988; Varvas et al. 1993; Varvas et al. 1999). 
In soft corals, AA is an abundant fatty acid (10-25%), being the primary precursor 
of eicosanoids (Imbs et al. 2006; Imbs and Yakovleva 2011). To a lesser degree 
(3-10%) AA also contributes to the fatty acid content of stony corals (Latyshev 
et al. 1991; Figueiredo et al. 2012; Voolstra et al. 2012). Free AA is metabolized 
by COX (Varvas et al. 1994a; Koljak et al. 2001; Valmsen et al. 2001) or LOX 
(Brash et al. 1996; Mortimer et al. 2006) into PGs or H(p)ETEs, respectively (Fig. 
4). In addition to 11R-LOX (Mortimer et al. 2006; Eek et al. 2012; Jarving et al. 
2012), a unique allene oxide synthase- 8R-lipoxygenase (AOS-LOX) fusion 
protein pathway was discovered in corals (Koljak et al. 1997). In this naturally 
occurring protein, a LOX (with 8R-stereospecificity) is fused to an AOS and thus 
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mediates two sequential catalytic steps: AA oxidation into 8R-
hydroperoxyeicosatetraenoic acid (8R-HpETE) and the conversion of 
hydroperoxide to labile allene epoxide (Fig. 4) (Koljak et al. 1997; Boutaud and 
Brash 1999). 

 

Figure 4. Endogenous eicosanoids identified in the soft coral G. fruticosa (Varvas et al. 
1993; Varvas et al. 1999).  AOS-LOX pathway is depicted in red. 

In essence, the coral AOS-LOX pathway is similar to the plant JA pathway 
(Fig. 5), except for the separately expressed LOX and AOS proteins in plants 
(Wasternack 2007), and the non-enzymatic decomposition of AO into a mixture 
of α-ketol and cyclopentenone in corals (Fig. 5) (Koljak et al. 1997). Initially, the 
cyclopentenone was thought to be the precursor of coral PGs, but the cloning and 
characterization of functional coral COXs indicated the existence of parallel 
oxygenation routes (Koljak et al. 2001; Valmsen et al. 2001). 
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Figure 5. Formation of oxylipins containing the cyclopentenone moiety by corals and 
plants, (adapted from (Koljak et al. 1997)). PUFA- polyunsaturated fatty acid substrate; 
HP- fatty acid hydroperoxide. AOS-LOX pathway is depicted in red. 

Interestingly, while P. homomalla contains a considerable amount of PGs, 
during biosynthesis with exogenous AA no PGs are formed (Corey et al. 1973; 
Corey et al. 1988). On the contrary, besides the PGs detected as free acids in coral 
extracts of G. fruticosa, the coral homogenate biosynthesizes optically active PGs 
in vitro (Varvas et al. 1993; Varvas et al. 1999). However, Clavularia viridis 
converts AA via 8R-HpETE to clavulones (preclavulone A) (Corey et al. 1987), 
bromovulones and iodovulones (Fig. 6) (Honda et al. 1987; Watanabe et al. 
2001). Altogether, this data is indicative of species-specific eicosanoid 
biosynthesis. Although AOS-LOXs are not involved in the biosynthesis of coral 
PGs, they still might be involved in the synthesis of clavulone-like derivatives.  

Current literature on coral eicosanoids contains data on the identification of 
naturally occurring compounds (Corey et al. 1973; Corey et al. 1985; Varvas et 
al. 1993; Varvas et al. 1994b), the elucidation of metabolic pathways involved in 
their biosynthesis (Brash et al. 1987; Corey et al. 1987; Koljak et al. 1997; Varvas 
et al. 1999; Koljak et al. 2001), and the effects of lipid extracts or isolated 
compounds on other systems (Hashimoto et al. 2003). But to date, only the role 
of prostaglandins in the chemical defense of the coral P. homomalla has been 
proposed (Pawlik et al. 1987; Gerhart 1991; O'Neal and Pawlik 2002; Whalen et 
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al. 2010). In spite of the wide occurrence of different oxylipins (hydroxy fatty 
acids, prostaglandins and their derivatives, chlorovulones, punaglandis etc.) in 
invertebrates (Brash et al. 1987; Rowley et al. 2005), their exact functions in those 
organisms are unclear. 

 

Figure 6. Atypical eicosanoids isolated from C. viridis. 

1.2. Key enzymes of the Lipoxygenase pathway 

1.2.1. Lipoxygenases (EC 1.13.11.-) 

LOXs are non-heme iron containing dioxygenases that catalyze the stereo-
specific peroxidation of PUFAs containing at least one 1-cis, 4-cis-pentadiene 
system to form biologically active mediators (Fig. 1) (Brash 1999). LOXs are 
classified in terms of their positional specificity. Plant LOXs are comprised of 
linoleate 9- and 13-LOXs (Feussner and Wasternack 2002) while animal LOXs 
are arachidonate 5-, 8-, 11-, 12- and 15-LOXs (Brash 1999; Brash et al. 1999). 
For example, plant 9- and 13-LOXs catalyze the oxidation of ALA at the carbon 
C9 or C13 and the formation of 9S- and 13S-hydroperoxy fatty acids, respectively 
(Fig. 2), and animal 5- and 15-LOXs catalyze the oxidation of carbon C5 or C15 
of AA and the formation of 5S- and 15S-hydroperoxy fatty acids, respectively 
(Brash et al. 1999). Although not containing substrate PUFAs, LOXs are also 
isolated from gram-negative bacteria (Hansen et al. 2013). In addition, not only 
AA, EPA and DHA but also LA and ALA are oxygenated by animal LOXs, e.g. 
15-LOX converts LA to 13-hydroperoxy- octadecadienoic acid in human 
epidermis (Ziboh et al. 2000).  
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Mechanism of catalysis 

Fatty acid oxygenation by LOXs contains four steps: 1) stereoselective 
hydrogen abstraction from the bis-allylic methylene group, either from the carbon 
7 (C7), C10 or C13 of AA, 2) radical rearrangement, resulting in delocalized 
carbocation, 3) regioselective oxygen addition to the antarafacial plane (an 
antarafacial relationship between the initial hydrogen-abstraction and sequential 
oxygenation), and 4) reduction of a peroxy radical to form the fatty acid 
hydroperoxide, resulting in either R- or S-stereoconfiguration of the peroxyl 
group formed (Fig. 7) (Brash 1999; Schneider et al. 2007). Altogether, twelve 
possibilities for AA oxygenation exist (the hydroperoxide in R- or S-
stereoconfiguration is formed at C5, C8, C9, C11, C12 or C15) (Schneider et al. 
2007). 

 

Figure 7. Lipoxygenase-catalyzed reaction. Hydrogen abstraction and antarafacial 
insertion of oxygen into AA by 8R-LOX. 

Structure 

Overall, plant LOXs are larger (94-104 kDa) than their animal counterparts 
(75-80 kDa) (Brash 1999; Kuhn et al. 2005). To date, the crystal structures of 
soybean LOX-1 and -3 (Minor et al. 1996; Skrzypczak-Jankun et al. 1997), rabbit 
reticulocyte 15-LOX-1 (Gillmor et al. 1997), human 12-LOX (Xu et al. 2012), 
coral 8R-LOX of AOS-LOX fusion protein (Neau et al. 2009) and 11R-LOX (Eek 
et al. 2012) have been defined. All LOX monomers are comprised of the N-
terminal β-barrel and C-terminal catalytic domain.  

The regulatory β-barrel is known as the PLAT (Polycystin-1, LOX, Alpha-
Toxin), LH2 (LOX homology) or C2-like domain (similar to the calcium-
dependent membrane-binding domain of phospholipases and kinases), and is 
involved in binding Ca2+ and interactions with membranes (Hammarberg et al. 
2000; Kulkarni et al. 2002; Walther et al. 2004; Oldham et al. 2005b; Gilbert et 
al. 2008). At the same time, it is not essential for the catalysis per se (Walther et 
al. 2011). Still, the interactions between the β-barrel and the catalytic domain 
ensure the stability and full activity of the whole protein (Ivanov et al. 2011). 
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Based on sequence alignments, the catalytic center is conserved throughout 
the LOX gene family. Accordingly, structures of their active sites, where LOXs 
incorporate a non-hem iron, are almost superimposable (Hammarberg et al. 2000; 
Walther et al. 2004; Kuhn et al. 2005; Oldham et al. 2005b). Atypically, Mg2+ can 
be incorporated within LOXs as a co-factor (Oliw et al. 2004). The R- or S-
stereospecificity of LOXs is defined by the sequence determinant located near the 
substrate entry site, Ala in S- or Gly in R-LOXs (Coffa et al. 2005).  

Mostly LOXs are dependent on free fatty acid substrates, but some of them 
require their substrate directly from membranes (Takahashi et al. 1993; 
Maccarrone et al. 1994; Upston et al. 1997). Upon membrane binding by the 
PLAT-domain, intramolecular conformational changes occur, activating and 
enhancing the activity of LOX (Ivanov et al. 2010; Ivanov et al. 2011; Jarving et 
al. 2012; Di Venere et al. 2014). LOX insertion into membranes is additionally 
facilitated by surface amino acids of the catalytic domain (Walther et al. 2004; 
Jarving et al. 2012). 

1.2.2. CYP74s of Cytochrome P450 

Plant atypical heme-dependent fatty acid hydroperoxide-metabolizing enzymes 
belong to the CYP74 subfamily (EC 4.2.1.92) of the large and variant cytochrome 
P450 monooxygenase superfamily (P450/CYP). A study conducted on plant 
P450 revealed the presence of the CYP74 subfamily in all six plant genomes 
currently available (Nelson et al. 2008). The CYP74 subfamily is comprised of 
AOS (CYP74A) (Song and Brash 1991b; Laudert et al. 1996; Howe et al. 2000), 
13- HPL (CYP74B), 9 and 13-HPL (CYP74C) (Vick and Zimmerman 1987; Tijet 
et al. 2001; Grechkin and Hamberg 2004) and DES (CYP74D) (Itoh 2000), which 
however are not equally present in all plant species. A. thaliana encodes one AOS 
and HPL per genome, while tomatoes have six CYP74s: AOS1, AOS2; HPL, 
CYP74C3, CYP74C4 and DES (Nelson et al. 2008). In plants, either 9S- or 13S- 
hydroperoxy fatty acids are the substrate for specific 9- or 13-AOSs. The 
subcellular location is an important switch defining the “selection” between the 
alternative pathways. 9-LOX is cytosolic, while 13-LOX and 13-AOS are located 
in plastids (Fig. 3) (Feussner and Wasternack 2002; Farmaki et al. 2006). 

Mechanism of catalysis 

CYP74s are specialized for the metabolism of fatty acid hydroperoxides (Tijet 
and Brash 2002). AOS dehydrates the hydroperoxy fatty acids into unstable AOs, 
which in water hydrolyze into α- and γ-ketols or are cyclized by a sequential 
allene oxide cyclase step (Feussner and Wasternack 2002). In contrast to other 
monooxygenase P450s, they use their hydroperoxide substrates as a source of 
oxygen donor and for reducing equivalents (Fig. 8) (Howe and Schilmiller 2002; 
Brash 2009). Two other P450s that also share those catalytic features, but do not 
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belong to the CYP74 family, are prostacyclin synthase and thromboxane synthase 
(Brash 2009). 

 
Figure 8. Proposed radical and ionic pathways to CYP74 products catalyzed by AOS, 
HPL and DES (Brash 2009). 

Plant HPLs cleave the C-C bond adjacent to the hydroperoxy group of fatty 
acid hydroperoxide substrates. Consequently, oxo-acids and volatile aldehydes 
are formed (Fig. 2) (Bate et al. 1998; Tijet et al. 2001; Brash 2009). The 3Z-
aldehydes formed can isomerize to their 2E-isomers and be reduced by alcohol 
dehydrogenase to corresponding alcohols (Bate and Rothstein 1998; 
Noordermeer et al. 2001b). 

Structure 

According to the crystal structures of plant CYP74s, 13-AOSs from A. 
thaliana and guayule Parthenium argentatum (Chang et al. 2008; Lee et al. 2008), 
they share a common fold with other P450s. However, all CYP74 sequences are 
devoid of conserved motifs (e.g. I-helix) of P450s and contain a unique nine 
amino acid insert at the heme-binding region responsible for the specific reactions 
catalyzed (Nelson et al. 2008). AOS and HPL proteins are both located in 
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membranes (Froehlich et al. 2001) and their interaction with membranes is 
mediated via the large hydrophobic surface area (Lee et al. 2008). Accordingly, 
the presence of membranes regulates the activity of HPL in vitro (Noordermeer 
et al. 2001a).  
The structure-reaction coupling within the CYP74 family was further enhanced 
by a study with the AOS of tomatoes, where a single amino acid mutation (either 
Phe295Ile or Ser297Ala) converted the AOS activity to HPL (Toporkova et al. 
2008). The same conversion was indicated by the A. thaliana AOS Phe137Leu 
mutant, whereas HPL activity was further enhanced by an additional mutation, 
Ser155Ala (Lee et al. 2008). 

In order to study the direct effect of specific genes and their products, targeted 
gene knock-out studies were conducted. In animals, knock-out mice deficient in 
5-LOX are less sensitive to asthma (Chen et al. 1994), and 12-LOX knock-out 
mice die after birth due to dehydration via skin (Epp et al. 2007), while the 
disruption of 12/15-LOX protects against atherosclerosis (Cyrus et al. 1999).  

In plants, LOX-3, -4 mutants (devoid of JA) are male sterile (Caldelari et al. 
2010). As previously noted, A. thaliana has only one AOS and one HPL gene per 
genome (Nelson et al. 2008). Similarly to plants lacking LOX, knock-out plants 
devoid of AOS are not able to synthesize JA; consequently, they have invalid 
wound response and are male sterile (Park et al. 2002). At the same time, normal 
growth and development are not affected by the lack of active HPL (Duan 2005). 
Both being located in thylakoid membranes in potatoes, AOS and HPL compete 
for the same substrate (Farmaki et al. 2006). Accordingly, silencing the activity 
of HPL in Nicotiana attenuata reduces the release of volatiles and amplified JA 
production and accumulation, and vice versa (Halitschke et al. 2004). 

1.2.3. Coral allene oxide synthase-lipoxygenase fusion proteins  

One coral specific branch of the arachidonate metabolism is catalyzed by the 
unique fusion protein comprised of N-terminal AOS and C-terminal 8R-LOX 
domains. Coral and plant AOS catalyze identical reactions (Fig. 5). Based on the 
structural determinants, the coral AOS is related to bovine catalase, although their 
amino acid sequence identity is only ~11% (Koljak et al. 1997; Oldham et al. 
2005a). Also, the 8R-LOX domain of coral AOS-LOX fusion protein is more 
similar in size, sequence and substrate specificity to mammalian than to plant 
LOXs (Boutaud and Brash 1999; Neau et al. 2009). The structure of the separately 
expressed AOS and LOX domains (Oldham et al. 2005b,a; Neau et al. 2009), as 
well as the structure of the whole coral AOS-LOX fusion protein have been 
resolved (Fig. 9) (Gilbert et al. 2008). The crystal structure reveals a close 
interaction between AOS and LOX domains, which might directly influence the 
catalytic activities of the fusion protein. The covalent link between AOS and LOX 
domains assures the correct location of both proteins within a cell, as well as the 
timing of the products formed (spatial and temporal regulation). When expressed 
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separately, Ca2+ induces membrane association of the 8R-LOX domain in vitro, 
but AOS is not bound to membranes unless covalently linked to 8R-LOX and 
expressed as a fusion protein (Gilbert et al. 2008). 

 

Figure 9. The structure of P. homomalla AOS-8R-LOX fusion protein. N-terminal AOS 
domain on the left side (multi-colored) and C-terminal LOX on the right side (golden). 
Red circle, β-barrel domain of LOX with bound Ca2+ (Gilbert et al. 2008). 

As in other LOXs, the interaction of the LOX domain with Ca2+ is mediated 
by its N-terminal C2-like β-barrel (PLAT) domain (Oldham et al. 2005b). 
Another calcium-related feature is that LOX binds to membranes only in the 
presence of Ca2+. The amino acids involved in membrane binding are Trp41, 
Phe42 and Trp77; the numbering of the LOX domain, designated as A2, starts 
from A374 of the fusion protein. The catalytic non-heme iron of LOX domain is 
coordinated by His385, His390, His571, Asn575, and Ile694. The substrate 
binding channel of LOX is lined with Leu386 and Leu628, assuring the right 
substrate position in the active site, while Gly428 determines the R-
stereoconfiguration of the 8-HpETE formed (Oldham et al. 2005b). 

The U- shape substrate binding channel of the AOS domain is well suited for 
fatty acid hydroperoxide substrates. The formation of AO is mediated by the 
His67 and Asn137 of the AOS domain (Oldham et al. 2005a). Although, there is 
enough space for H2O2 to access catalytic heme, AOS does not confer the catalase 
reaction. It was proposed that instead of a heterolytic bond cleavage, as in catalase 
reaction, homolytic cleavage takes place by coral AOS, similar to the reaction 
catalyzed by plant CYPs (Oldham et al. 2005a). 
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Although many details are known about the structure and catalytic properties 
of the AOS-LOX fusion protein and the up-regulation of AOS-LOX transcript in 
response to white band disease (Söderhäll et al. 2013), elevated UV radiation 
(Aranda et al. 2011) and temperature have been detected recently (Polato et al. 
2013), there are no data available about the produced eicosanoids or their function 
in corals. 

1.3. Biological functions of lipid mediators 

In all species studied to date, lipid mediators mediate important adaptation 
responses to cellular stress. Organisms continuously sense and respond to 
environmental conditions to maintain their homeostasis under changing 
conditions and survive, at whatever cost, to produce offspring and maintain the 
species. Still, the cellular resources are often, if not always, limited. For example, 
the amount of energy available for growth or reproduction under normal 
conditions does not change while under stress. Rather, the same resources are re-
evaluated and “spent” on alternating the metabolism to adequately respond, 
tolerate/sustain and overcome the stress (Fig. 10). This results in decline in other 
possible routes, e.g. decreased metabolism and growth (Spriggs et al. 2010). For 
example, the detection systems plants use to perceive herbivore attack are 
intermingled with the hormone pathways that reprogram the plant; this also 
applies to the detection of other stressors, followed by sequential reprogramming 
(Mittler et al. 2012). 

Figure 10. Simplified illustration of relationships between applied stress and the stress 
response generated with possible outcomes. 

In physical terms, stress is defined as mechanical force (tension, compression 
or shear) per unit area applied to an object, resulting in mechanical deformation 
(Park and Lakes 2007). Due to the complexity of a biological system, it is difficult 
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to define stress in biological terms. In general, stress is defined as a condition that 
disturbs the normal function of the biological system or a condition that decreases 
a fitness (Bijlsma and Loeschcke 2005). The most practical definition of 
biological stress is: an adverse force or condition which inhibits the normal 
functioning and well-being of a biological system (Jones et al. 1989). At the same 
time, a condition which may be stressful for one organism may be the optimum 
for another organism. Thus, the definition of stress is true only for an organism 
experimentally tested within a certain, specified setting. Overall, external 
stressors may be biotic (pathogens, herbivores and carnivores) or physical 
(temperature, salinity, water, nutrient deprivation in soil, chemicals and 
pollutants, oxidative stress, mechanical stress and radiation). 

1.3.1. Response to wounding 

The initial wound response in animals and plants aims for a rapid and efficient 
isolation of the wound to minimize both the loss of vital fluids and environmental 
challenges (Maffei et al. 2007; Proksch et al. 2008; Rodriguez et al. 2008; Palmer 
et al. 2011; Ariel and Timor 2013). 

Plant wound response 

The wound response in plants includes the instant release of Ca2+, ROS, leaf 
volatiles and traumatin (Leon et al. 2001; Maffei et al. 2007), accompanied by 
the rapid synthesis and accumulation of the stress hormone JA via a lipoxygenase 
pathway, involving LOX, AOS and AOC steps (Reymond et al. 2000; Kombrink 
2012; Wasternack and Hause 2013b). After the wounding, the AOS route leads 
to the formation of JA (Song et al. 1993; Laudert et al. 1996), while volatile C6 
aldehydes and non-volatile oxylipins are instantly generated by HPL (Table 1) 
(Vick and Zimmerman 1987; Bate et al. 1998; Howe et al. 2000; Halitschke et al. 
2004). To induce the synthesis of JA, only one of four A. thaliana 13(S)-LOXs is 
up-regulated an hour upon wounding (Bell et al. 1995; Schommer et al. 2008; 
Glauser et al. 2009). Matching the same time window, the sequential step 
catalyzed by AOS is also up-regulated at the transcriptional (Laudert et al. 1996; 
Bate et al. 1998) and translational level (Gfeller et al. 2011), and is further 
enhanced by positive feedback regulation by JA and OPDA. A similar principle 
is used in jasmonate, auxin, gibberellin and ethylene perception and signaling 
(Wasternack and Hause 2013a). 
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Animal wound response 

The initial wound response in animals, including corals, aims for rapid and 
efficient provisional plugging of the wound to minimize both the loss of vital 
fluids and environmental challenges (e.g. bacterial contamination) (Proksch et al. 
2008; Rodriguez et al. 2008; Palmer et al. 2011; Ariel and Timor 2013). In 
vertebrate animals, the immediate release of cell-derived damage signals, 
including Ca2+, ATP and ROS, defines the wound area and severity of damage 
within the first minutes after injury (Cordeiro and Jacinto 2013). On a cellular 
level, the wound repair in vertebrates has four phases: 1) hemostasis/coagulation, 
2) inflammation, 3) proliferation and 4) remodeling (Singer and Clark 1999; 
Maderna and Godson 2009; Schultz et al. 2011). The same wound repair phases 
are observed in cnidarians (Olano and Bigger 2000; Palmer et al. 2008; Reitzel et 
al. 2008). Coral wound response includes the recruitment of granular 
amoebocytes (Mydlarz et al. 2008; Palmer et al. 2008), which are important in 
pathogen clearance. 

Acting cooperatively, eicosanoids mediate the initial stages of wound 
response (e.g. vasoconstriction and clot formation in higher animals) and the 
onset of the secondary inflammatory phase. For example, TXA2 induces platelet 
aggregation (Ricciotti and FitzGerald 2011), while leukotriene C4 (LTC4) and 
leukotriene D4 (LTD4) are involved in increasing blood vessel permeability, and 
LTB4 recruits neutrophils to the site of injury (Serhan et al. 2008b; Haeggström 
and Funk 2011). Additionally, HETEs are involved in the onset and end of the 
inflammatory phase of wound repair, promoting cell migration and modulating 
the central signal pathways involved in cell cycle control (Moreno 2009). The 
aforementioned eicosanoids are pro-inflammatory and chemotactic to innate 
immune system cells (Serhan et al. 2008b; Moreno 2009), while the formation of 
lipoxins indicates the resolution of the inflammatory phase (Serhan et al. 2007; 
Maderna and Godson 2009). 

Although oxylipin pathways have been thoroughly studied in plants and 
higher animals, their role in corals remains unknown. 

1.3.2. Thermal stress response 

Temperature impacts all levels of life. Sessile terrestrial organisms are well 
adapted to temperature changes in large amplitudes, whereas sessile marine 
organisms, such as corals, have evolved in more stable environments. Due to 
global climate warming corals have reached their upper tolerance threshold 
values (27-28°C), the exceeding of which results in bleaching events, the loss of 
symbiotic algae (Symbiodinium sp.) (Jokiel and Coles 1990). The average 
temperature change depends on the location and depth. The annual sea surface 
temperature (SST) of tropical waters varies between 25.5-30°C (Hoegh-Guldberg 
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1999). In comparison, acute heat exposures up to 5–8 degrees have been observed 
in shallow waters within a few hours (Jokiel 2004; Matz et al. 2012). 

The molecular events involved in coral thermal stress response have been 
well-studied in reef-building corals (Table 2 and the references therein) and the 
sea anemone Nematostella vectensis (Goldstone 2008), revealing a conserved 
response to elevated temperature via heat shock proteins and antioxidant enzyme 
systems (Lesser and Farrell 2004; DeSalvo et al. 2008; Fitt et al. 2009). 

To be able to respond quickly and adequately, and to induce a heat shock 
response (HSR) on time, the cell’s sensory system must effectively integrate 
various stress signals (lipid mediators, ROS and unfolded proteins, as well as 
changes in the RNA and DNA topology). One hallmark of thermal stress is the 
unfolding of proteins and the exposure of their hydrophobic interiors. Stress-
induced accumulation of unfolded proteins is detected by Hsps. Under normal 
conditions Hsps are bound with heat shock factors (HSFs). When Hsps interact 
with unfolded proteins, HSF transcription factors are released, which in turn 
initiate the transcription of Hsp genes through binding to heat shock elements, 
altogether being the essence of the unfolded protein response (UPR) that directs 
the survival and apoptotic signaling pathways. 

Highly conserved heat shock proteins (Hsps) are present in bacteria, plants 
and animals, including marine invertebrates (Lindquist 1986). In addition to heat, 
Hsps are also up-regulated in response to oxidative stress, chemicals and heavy 
metals (Søørensen et al. 2003). Although they are recognized as molecular 
chaperones, it is now clear that most HSPs are not chaperones, and vice versa, 
most chaperones are not HSPs (plant versus human chaperone network (Finka et 
al. 2011)). Hsps are grouped based on their molecular weight into small, 60, 70 
and 90 kDa Hsps. 70 kDa Heat Shock Proteins (Hsp70) have important functions 
in protein biogenesis and stress tolerance (Lindquist 1986). Hsp70 up-regulation 
is widely used as a stress marker for estimating coral well-being (reviewed in (van 
Oppen and Gates 2006)). Although similarly affected by climate change and 
temperature, the heat stress response in soft corals remains poorly studied. 
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Alteration in lipids in response to heat 

When cells are exposed to elevated temperatures, AA is released (Calderwood 
et al. 1989). As membranes are the dynamic source of AA, the eicosanoid 
repertoire generated is highly dependent on membrane composition and cellular 
context. Cell membranes are not static but dynamic and, as such, they can act as 
sensors for cell stress and activators of HSR (Nagy et al. 2007). Thus, when 
estimating stress response, the membrane-associated heat-sensitive proteins and 
their role in membrane quality control and downstream signaling should also be 
considered (Horvath et al. 2008). The fluidity of the membrane is dependent on 
the relative proportion of unsaturated fatty acids in the membrane (Steponkus 
1984). For example, higher proportions of saturated fatty acids are detected in 
chilling-sensitive plants; therefore, they have a higher transition temperature. In 
contrast, chilling-resistant species contain a higher proportion of unsaturated fatty 
acids and have a lower transition temperature (Webb et al. 1994). While 
acclimation to low temperatures is associated with increases in membrane 
fluidity, the increase in heat stress resistance depends on increases in membrane 
rigidity (Iba 2002; Upchurch 2008). Accordingly, the content of membrane 
PUFAs is regulated in response to elevated temperatures in corals (Imbs and 
Yakovleva 2011). 

Overall, cellular fatty acid signaling is a complicated network of interactions, 
in which effective combinations vary depending on location and timing, all 
together forming a finely tuned “concert”, assuring the correct signal pattern 
generated in response to a stressful event. Unfortunately, different metabolic-
signaling routes have mostly been investigated in isolation. In order to gain 
insight into these complex relationships, studies combining different “-omics” 
(transcriptomics, proteomics and metabolomics) are needed. 
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2. AIMS OF THE STUDY 

The main overall aim of this study was to investigate whether the AOS-LOX 
fusion protein pathway, responsible for AO biosynthesis is common among 
octocorals, and whether it contributes biologically to coral homeostasis in vivo. 

Consequently, the specific aims were to: 

 Find a suitable model for elucidating the biological role of the AOS-LOX 
pathway and, as a result to identify the endogenous metabolites of AA and 
the in vitro activity of AOS-LOX in various octocorals 

 Clone, express and characterize the enzymes involved in AO synthesis 
 Evaluate changes in the gene expression and metabolite synthesis of coral 

response to mechanical injury 
 Test the sensitivity of the coral AOS-LOX pathway to thermal stress 
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3. MATERIALS AND METHODS 

All procedures were performed according to the manufacturer’s instructions or 
according to the standard protocols described in detail in corresponding 
publications: 

Publication I 

RNA extraction 
PCR cloning (Reverse Transcription-PCR and 5’-3’ RACE) 
Protein expression 
RP-HPLC coupled with ion trap MSMS or Radio flow detector 
Normal-phase high-performance liquid chromatography 
Chiral-HPLC 

Publication II 

Coral cultivation and propagation in a laboratory reef aquarium 
RNA extraction 
PCR cloning (Reverse Transcription-PCR and 5’-3’ RACE) 
Artificial wounding experiments 
Quantitative real-time PCR (qPCR) 
Protein expression 
In vitro incubations of the radio-labeled substrate with recombinant 
protein or coral tissue preparations 
RP-HPLC coupled with ESI Q-TOF MSMS or Radio flow detector 

Publication III 

Coral cultivation and propagation in the laboratory reef aquarium 
RNA extraction 
RT-PCR 
Thermal stress experiments 
qPCR 
In vitro incubations of the radio-labeled substrate with coral tissue 
preparations 
Extraction of endogenous eicosanoids 
RP-HPLC coupled with ESI Q-TOF MSMS or Radio flow detector 

cDNA sequences obtained and uploaded to the GeneBank with accession 
numbers: 
AOS/8R-LOX of G. fruticosa (EU082210.1) 
AOS-LOXa and AOS-LOXb of C. imbricata (KF000373.1 and KF000374.1, 
respectively) 
Hsp70s of C. imbricata (KJ452159 and KJ452160)  
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4. RESULTS 

Publication I 

 AOS-LOX fusion protein was cloned from the Arctic octocoral G. 
fruticosa (Fig. 11), sharing the amino acid identity of 84% and 87% with 
AOS-LOX fusion proteins of P. homomalla and C. viridis, respectively. 

 The fusion protein was expressed as an active fusion enzyme, as well as 
AOS and LOX domains separately in the bacterial expression system. 
The fusion protein converted [1-14C] AA into labile AO via 8R-HpETE 
intermediate, detected by the formation of stable end products: α-ketol 
(8-hydroxy, 9-keto-5Z, 11Z, 14Z-trienoic acid) and cyclopentenone (9-
oxo-prosta-(5Z, 10, 14Z)-trienoic acid). The product patterns formed by 
AOS-LOXs of G. fruticosa and P. homomalla were identical. 

 

Figure 11. The structure of the AOS-LOX fusion protein of G. fruticosa, A) coding 
sequence, M- methionine, *- stop; B) the structure model of the AOS-LOX fusion protein: 
N- terminal AOS domain (amino acids 1-373, blue) with hem (light green); C- terminal 
LOX domain, PLAT-domain (374-489, yellow) and catalytic domain (490-1066, red), 
non-hem iron (dark-green) with coordinating amino acids (black). The model was created 
with CPH 3.0., using P. homomalla AOS-LOX (Protein Data Bank code: 3DY5) as a 
template. 

Publication II 

 In the Indo-Pacific octocoral C. imbricata (Fig. 12), AA is an abundant 
fatty acid. Exogenously added [1-14C] AA is metabolized by the crude 
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coral homogenate mainly into 8-HETE and by the diluted homogenate 
into unidentified polar compounds (UPC), α-ketol and cyclopentenone. 

        a)        b)  

Figure 12. Soft coral C. imbricata, a) polyps and b) sclerites. Photos by Lõhelaid, H. (a) 
and Ekins, M. (b). 

 Besides the metabolites of the AOS-8R-LOX route, several HETEs (LOX 
products), but no PGs (COX products) were detected (Fig. 13). 

 Two AOS-LOX isoforms, designated as AOS-LOXa and AOS-LOXb, 
were cloned from C. imbricata. The isoforms shared 88% amino acid 
identities, whereas identities with G. fruticosa AOS-LOX were 82% and 
81%, respectively). 

 Both fusion proteins were expressed in a bacterial expression system. 
AOS-LOXa converted [1-14C] AA into previously known AOS-LOX 
metabolites: α-ketol and cyclopentenone (70% and 14% of total 
radioactivity, respectively), while AOS-LOXb products were volatile 
short-chain UPC (90% of total radioactivity). Trapping the intermediate 
product 8-H(p)ETE as 8-HETE by a mild reducing agent indicated that 
the initial oxidation of [1-14C] AA by LOX domains of both fusion 
proteins was identical (Fig. 13). 

 From the two isoforms cloned from C. imbricata, only AOS-LOXa 
transcript was up-regulated in response to incision wounding, 
accompanied by enhanced levels of AOS-LOXa metabolites. 
Concurrently, AOS-LOXb expression remained stable, and its product 
level decreased in response to stress (Fig. 13). 

Publication III 

 The transcript and metabolite levels of AOS-LOXs were recorded in 
response to modest (28°C) and severe (32°C) thermal stress within 24h. 
In response to thermal stress, only AOS-LOXa transcript was up-
regulated, whereas higher up-regulation folds were detected in response 
to modest temperature elevation. 

 Two heat shock proteins, Hsp70 and Grp78/Bip used as positive stress 
indicators, were up-regulated in response to elevated water temperature. 
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In both cases, higher transcript levels were detected in response to severe 
temperature change. 

 Similarly to wounding, in response to elevated temperature the level of 
α-ketol formed from [1-14C] AA by AOS-LOXa increased while UPC 
synthesized by AOS-LOXb decreased (Fig. 13). The conversion of AA 
to α-ketol was higher in response to severe temperature elevation. 

 To gain further insight into the endogenous metabolites formed, the level 
of eicosanoids was determined in ethyl acetate (EtOAc) extracts of 
freshly homogenized coral. Under normal conditions, cyclopentenone 
and α-ketol were abundant with UPC as a minor metabolite detected. 

 An increase in endogenous α-ketol levels was also detected in response 
to thermal stress, corresponding to the rise in α-ketol formation from the 
exogenous AA. However, in both cases, the detected levels of α-ketol 
were higher in response to the severe heat stress. 

 In summary, a model indicating the possible place for AOS-LOX in the 
coral thermal stress was proposed (Fig 14). 

 

Figure 13. AA metabolism in normal and stressed C. imbricata (II and III). Stress induces 
the gene expression (thick black arrow) and metabolite levels of AOS-LOXa (α-ketol,). 
However, the gene expression of AOS-LOXb level remains stable and the product level 
decreases (UPC,). Products formed from [1-14C]AA by the G. fruticosa AOS-LOX and 
C. imbricata AOS-LOXa fusion proteins are identical (I and II). Photos are intended to 
indicate the difference between normal and stressed coral colonies (by Lõhelaid, H.). 
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5. DISCUSSION 

Most of the stress studies have been conducted on stony corals, the model of soft 
corals used here is a complementary system for in vivo analysis of the lipid 
mediator biochemistry and physiology of organisms. The work of this thesis 
identifies the presence of an active AOS-LOX fusion protein pathway in different 
octocoral (soft coral) species and its functional significance in their homeostasis 
and stress response. The findings further identify novel products synthesized by 
the fusion proteins. 

In short, the results of this thesis are as follows. (I) Two AOS-LOXs with 
identical product profiles to that of the AOS-LOX fusion protein of P. homomalla 
were cloned from soft corals G. fruticosa and C. imbricata. The data suggest that 
AOS-LOX is a general eicosanoid metabolic pathway widely distributed in soft 
corals. (II) The fast-growing soft coral C. imbricata was found to be a suitable 
model to study the eicosanoid metabolism in vivo. (III) As a proof of the concept, 
the coral AOS-LOX fusion protein was found to be involved in the early stress 
response to various stressors. In corals, as in other organisms, eicosanoids act as 
potential early stress mediators. (IV) AOS-LOXa or its metabolites could be used 
as biomarkers to detect the stress response in corals. (V) The second AOS-LOX 
isozyme of C. imbricata, AOS-LOXb, converts exogenous AA to unidentified 
compounds: UPCs. In essence, UPCs are coral analogs of the products formed by 
plant HPLs, suggesting a novel HPL-like activity in corals. 

The soft corals studied are found in a wide range of different living habitats, 
including Caribbean, Arctic and Indo-Pacific waters. The data for eicosanoid 
content now reveal that different AA metabolic routes are used in combination, 
even within corals belonging to the same phylogenetic taxa. While COX, LOX 
and AOS-LOX pathways (transcripts, as well as metabolites) were present in 
Arctic G. fruticosa and Caribbean P. homomalla (Varvas et al. 1993; Koljak et 
al. 1997; Varvas et al. 1999; Koljak et al. 2001; Valmsen et al. 2001), only the 
transcripts and metabolites of LOX and AOS-LOX were detected in the Indo-
Pacific C. imbricata (Fig. 13). This finding is in accordance with a previous 
octocoral study reported for Pseudoplexaura porosa which contains only 
abundant levels of 8R-HETE, less 15-HETE (90% and 10% of total HETE 
content, respectively) and no PGs (Bundy et al. 1986). This supports the fact that 
eicosanoid profiles are species-specific and can vary even within the same 
species. For example, depending on the location, 15R- and 15S- PGs are formed 
in P. homomalla (Valmsen et al. 2004). Another principal finding of this study 
was that several AOS-LOX fusion proteins are expressed and produced different 
metabolites in parallel within a single organism. In plants, LOX, AOS and HPL 
are all expressed separately. LOX generates the hydroperoxy fatty acid precursors 
for sequential AOS and HPL catalytic steps. Thus, both routes compete for the 
same substrate, resulting in different oxylipin profiles necessary for the induction 
of the appropriate stress response (Kallenbach et al. 2011). From the evolutionary 
standpoint, the act of fusion of two enzymes is related to catalyzing consecutive 



 

38 

steps within a certain pathway (Marcotte et al. 1999). The functional coupling of 
both alternative plant pathways in coral further indicates the importance of the 
coupling of both 8R-HpETE conversion to AO or volatiles and their control over 
time and space. Although the distinct roles of these metabolites in coral remain 
unknown, the alternative-competitive pathways could be needed for the temporal 
regulation assuring the correct metabolite profile generated in response to stress. 
As both fusion proteins of C. imbricata use AA as a substrate, it would be of 
interest to examine their locations within intact cells. 

Although plethora of eicosanoids have been detected in soft corals (Corey et 
al. 1973; Corey et al. 1985; Brash et al. 1987; Corey et al. 1988; Brash 1989; Song 
and Brash 1991a), the biological significance of those compounds in coral has 
remained unknown. According to different lines of evidence provided here, 
including the up-regulation of transcripts and metabolites in response to various 
abiotic stressors, the involvement of an AOS-LOX pathway in the general stress 
response of coral has been confirmed. As we detected, AOS-LOXa is up-
regulated at early stages of the stress response (within the first 24 hours). Thus, 
the gene expression profile generated by C. imbricata AOS-LOXa matches the 
immediate wave pattern (Wenemoser et al. 2012). Similar expression patterns 
were observed for plant LOX in potatoes (Farmaki et al. 2006) and AOS in A. 
thaliana, flax and tomatoes (Harms et al. 1998; Laudert and Weiler 1998; Howe 
et al. 2000) in response to wounding. 

The AOS-LOX role in stress response 

Depending on different aspects, such as growth conditions, nutrition, health 
etc., challenging environmental conditions generate multiple signals that induce 
several cellular pathways in parallel (Kultz 2005; Finka et al. 2011). All of those 
signals converge at cellular checkpoints. Sequentially, a specific - highly context 
dependent - response is generated, which ensures the adequate response to 
overcome stress under defined conditions. Furthermore, ensuring that the “new” 
balance falls into the correct homeostasis (survival) window, two parallel higher 
order control systems are present. A cellular stress response adjusts the system to 
sustain, tolerate and eventually overcome stressful conditions. A cellular 
homeostasis response is a set of measures that helps to restore normal 
homeostasis, similar to the state prior to stress occurrence. Here we focus on the 
early cellular stress response. 

According to our data, literature and annotated databases, we have proposed a 
mechanism of stress in corals (Fig. 14). To sum up, AOS-LOXa metabolites are 
part of a general stress response acting at early stages of stress. Hsp70 is indicative 
of heat and oxidative stress, accumulation of unfolded proteins and ROS in the 
cytoplasm. Hsp70 mediates the induction of HSR and UPR via HSF responsive 
genes, whereas the up-regulation of Grp78 indicates ER stress and mediates the 
UPR via PERK, ATF6 and IRE1 (Fig. 14). 
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In response to heat or injury, various signals from different pathways merge 
and regulate the downstream cascades leading either to cell survival or apoptosis. 
In both cases, the first cellular signals generated are Ca2+, ATP and ROS (Leon 
et al. 2001; Maffei et al. 2007; Mittler et al. 2012; Wenemoser et al. 2012). Their 
gradients initiate downstream cascades (either the heat shock response or the 
wound response) in plants and animals (Sung et al. 2003; Maffei et al. 2007; Finka 
et al. 2011; Moreno and Orellana 2011; Mittler et al. 2012; Balogh et al. 2013). 
The eicosanoid cascades are additionally regulated by stress-induced protein 
kinases: JNK, PKC, ERK1/2 and p38MAPK (Fig. 14) (Berenbaum et al. 2003; 
Balboa and Balsinde 2006; Radmark and Samuelsson 2009; Haeggstrom and 
Funk 2011). In the case of thermal stress, survival or apoptosis is determined by 
the overall balance between ERK and SAPK/JNK/p38MAPK-activated cascades 
(Park et al. 2005). 

Oxidative stress is closely connected with thermal stress (DeSalvo et al. 2008; 
Voolstra et al. 2009a). The thermal stress-induced accumulation of unfolded 
proteins and oxidative stress is detected by Hsp70s (Fig. 14) (van Oppen and 
Gates 2006). In different coral species, elevated levels of ROS have been detected 
in response to heat stress (Lesser 2006; Mydlarz and Jacobs 2006). For instance, 
the direct sensing of hydrogen peroxide by HSFs leads to the induction of heat 
shock response (Fig. 14) (Zhong et al. 1998). 
Under normal conditions, the ER-specific glucose-regulated protein 78 (Grp78 or 
BiP) is constitutively expressed. Its levels are induced against protein 
denaturation, glucose deprivation and perturbed calcium levels (Resendez et al. 
1988), as well as being increased by elevated temperature, indicative of ER stress 
(Lee 2005; Luan et al. 2009). In corals, the up-regulation of Grp78 has also been 
detected in response to UV radiation (Aranda et al. 2011). Similar to other 
Hsp70s, the induction of Grp78 is regulated at the transcriptional level by 
transcription factor complexes (including ATF6) attached to the conserved stress 
response element (ERSE) (Fig. 14) (Parker et al. 2001). Grp78 with other Ca2+-
buffering chaperones affects the Ca2+ level within the ER and the release into the 
cytosol (Lievremont et al. 1997; Coe and Michalak 2009) (Fig. 14). Moreover, 
Grp78 is the key regulator of ER transmembrane proteins (Ire1, Atf6 and PERK 
and their homologs) (Fig. 14), which are the main initiators of the UPR 
throughout Metazoa (Schroder and Kaufman 2005; Hollien 2013). As the UPR 
directs survival and apoptotic signaling pathways, it is an important checkpoint 
measuring the severity of stress, which eventually determines the cell’s fate, 
either survival or apoptosis. 

Although the up-regulation of HSPs in response to elevated temperature is a 
general feature in the living organisms, the direct mechanism of action of the 
AOS-LOX pathway in coral stress response remains elusive. 
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The cyclopentenone formed by AOS-LOXa possesses a high resemblance to 
stress mediators in plants (Stintzi et al. 2001) and other compounds with 
cyclopentenone moiety (Amici et al. 1992). Due to their electrophilic properties 
(α, β- unsaturated carbonyl groups), cyclopentenones have the potential to 
promote the transcription of Hsp70s through the release of HSF1 (Fig 14) (Amici 
et al. 1992; Elia 1996; Jacobs and Marnett 2007; Higdon et al. 2012; West et al. 
2012). Still, despite the electrophilic moiety of cyclopentenone, the AO as a 
potential mediator should not be overlooked, especially when only the level of α-
ketol increases during the coral stress response and the level of cyclopentenone 
remains stable. This contradicts of the assumed non- enzymatic degradation of 
AO, by which the ratio of α-ketol and cyclopentenone as degradation products 
should remain the same, even in the case of elevated formation of AO. There are 
other enzymes that either prevent the formation of cyclopentenone or direct the 
formation of α-ketol. Nevertheless, elevated levels of AOS-LOXa transcript and 
α-ketol univocally indicate the presence of the elevated level of stress in C. 
imbricata. 

The production of eicosanoids is up-regulated in response to various stressors, 
but transcript levels, as well as protein levels, are not the sole determinants of 
enzyme activity. For example, 5-LOX activity can be modulated by many factors, 
including the availability of substrate, serine phosphorylation and translocation 
(from the cytosol to the nuclear envelope) (Radmark and Samuelsson 2008). 
Upstream regulation of AA release occurs predominantly via phospholipase A2 
(PLA2) (Serhan et al. 1996; Balsinde et al. 2002; Schaloske and Dennis 2006) and 
to a lesser extent by phospholipase C (PLC) (Harden and Sondek 2006). 
Phospholipases are activated via different receptors (e.g. G-protein coupled 
receptors) in response to a range of stimuli (Harden and Sondek 2006), including 
Ca2+ (Evans et al. 2001), lipid peroxides (Ermak and Davies 2002) and heat 
(Jurivich et al. 1996). Consistently high activities of PLA2 are detected across 
Cnidaria (Nevalainen et al. 2004; Romero et al. 2010), indicating a conserved 
pathway. Indicative of the crosstalk between Ca2+ and eicosanoid formation in 
corals, the LOX domain of the AOS-LOX fusion protein binds membrane in a 
Ca2+-dependent manner (Gilbert et al. 2008), and the enzymatic activity of AOS-
LOX in vitro is enhanced by Ca2+ (Boutaud and Brash 1999).  

Besides Ca2+ and H2O2 gradients formed at the wounding site, eicosanoids 
could also serve as chemotactic agents in corals. The migration-invasion of coral 
immune cells (phagocytic granular amoebocytes, phagocytic cells and melanin-
containing granular cells) from the surrounding tissues to the site of injury is a 
well-established phenomenon (Olano and Bigger 2000; Vargas-Ángel et al. 2007; 
Mydlarz et al. 2008; Palmer et al. 2008; Palmer et al. 2011). However, currently 
it is not established which coral cells contribute to the synthesis and release of 
eicosanoids in vivo. Thus, the next challenge is to determine the exact location of 
the eicosanoid synthesis and to estimate the changes in protein profiles in 
response to stress. 
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Implications and outlook 

Due to the continuously evolving climate warming, corals in several habitats 
are endangered (Hoegh-Guldberg and Bruno 2010). Accordingly, field studies are 
strictly regulated by protective laws. Collecting coral specimens for the 
laboratory is just as complicated. Another hurdle is the labile nature of oxylipins, 
which must be taken into account in every step of collection, transportation, 
sampling and analysis. In this light, the in vivo results of the current thesis are 
even more notable. For the first time, oxylipins were detected and elevated from 
fresh coral homogenate preparations. This minimized artifacts which otherwise 
compromise biochemical analysis of lipid mediators from corals after harvest. In 
addition, the workflow was optimized for speed and quality of extraction. 

Coral eicosanoid pathways emerge as conserved regulators of cell stress 
responses, with potential as biomarkers to detect stress in both soft and stony 
corals. Although a part of the fauna of the endangered Great Barrier Reef, C. 
imbricata itself is not on the list of protected species. We suggest the use of C. 
imbricata as an indicator species to detect the severity of stress.  

Besides the other cnidarian genomes: Nematostella (Putnam et al. 2007) and 
Hydra (Zacharias et al. 2004; Chapman et al. 2010), the only coral genome 
available belongs to Acropora digitifera (Shinzato et al. 2011). Serving as a 
convenient object of research, most of the stony coral stress-studies are conducted 
on A. millepora (Table 2, and the related references). Based on the data available, 
AOS-LOX is also present in stony (reef-building) corals (Lee et al. 2008), while 
COXs are not (unpublished data). Although the up-regulation of AOS-LOX 
transcripts in response to white band disease (Söderhäll et al. 2013), elevated UV 
radiation (Aranda et al. 2011) and temperature (Polato et al. 2013) have been 
detected by transcriptome studies, the eicosanoid profiles generated by stony 
corals are still not known. The detection of oxylipins and functional 
characterization of the AOS-LOX pathway in stony corals will be the subject of 
future studies.  
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CONCLUSIONS 

This is the first study of the biological role of eicosanoids in coral homeostasis. 
Our data suggests that: 

 The AOS-LOX fusion protein pathway of AA metabolism is common in 
octocorals. 

 Despite the high sequence identity, the AOS-LOXa and -b isoforms of C. 
imbricata convert AA to different products and undergo differential 
regulation during the stress response in corals. 

 C. imbricata is a suitable model organism for estimating stress response 
in soft corals via the AOS-LOX pathway. 

 In C. imbricata, AOS-LOXa is involved in the mediating early response 
to wound and temperature stress in vivo. 

Therefore, AOS-LOX emerges as part of the general early stress response in 
Cnidaria.  
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APPENDIX 1: continued 

 

Figure 1. Animal eicosanoids. Cyclooxygenase (a), lipoxygenase (b) and cytochrome 
P450s pathways (c) of AA metabolism (Rouzer and Marnett 2011). 
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ABSTRACT 

In mammals and plants, oxylipins are recognized as important stress mediators. 
The allene oxide synthase-lipoxygenase (AOS-LOX) fusion protein, comprised 
of allene oxide synthase (AOS) and 8R-lipoxygenase (LOX) domains, is the 
central enzyme metabolizing arachidonic acid (AA) in certain corals. 
Recombinant AOS-LOX of P. homomalla converts AA via 8R-HpETE to a labile 
allene oxide, which spontaneously decomposes to the stable end-products α-ketol 
and cyclopentenone. However, the distribution and role of AOS-LOX and its 
metabolites in coral homeostasis in vivo remain unclear. In this thesis, the AOS-
LOX pathway in the soft corals G. fruticosa and C. imbricata was resolved by 
biochemical and molecular strategies. As a central hypothesis, the up-regulation 
of gene expression and metabolite synthesis of coral AOS-LOX during the coral 
stress response to mechanical injury and thermal stress were established in C. 
imbricata in vivo. 

An AOS-LOX was cloned and characterized as a functional enzyme from the 
Arctic coral G. fruticosa. Recombinant AOS-LOX converted exogenous AA to 
α-ketol and cyclopentenone, identical with the products of P. homomalla AOS-
LOX. However, when the Indo-Pacific coral C. imbricata was tested for AA 
conversion, additional novel products, designated UPC, were detected, consistent 
with C8 oxo-acid based on HPLC/MSMS analysis. Two AOS-LOX isoforms 
(AOS-LOXa and AOS-LOXb) which share 88% amino acid sequence were cloned 
from C. imbricata, and expressed as active fusion enzymes in E. coli. While the 
products of the recombinant AOS-LOXa were identified as α-ketol and 
cyclopentenone (70% and 14%, respectively), the AOS-LOXb products (90%) 
were identical to the previously detected UPC/C8 oxo-acid. The formation of C8 
oxo-acid thus indicates the presence of a novel, plant hydroperoxide lyase-like 
activity in corals.  

To assess the role of AOS-LOX in the coral stress response, mRNA of AOS-
LOX isoforms and corresponding metabolite levels in C. imbricata under normal 
and incision wound conditions were determined by qPCR and HPLC, 
respectively. Wounding caused an increase in α-ketol and decrease in UPC level, 
with an increase in AOS-LOXa transcript levels in the tissue adjacent to the 
wound, as well as in distal tissues. Conversely, AOS-LOXb expression remained 
stable. Likewise, exclusive AOS-LOXa and downstream metabolite synthesis was 
increased in response to elevated water temperature, another environmentally 
relevant stressor. Two HSPs (Hsp70 and Grp78), used as positive indicators of 
coral thermal stress were up-regulated concurrently with AOS-LOXa. In contrast 
to HSPs, AOS-LOXa was more responsive to moderate stress. Our results and data 
from literature suggest AOS-LOXa-produced eicosanoids are parts of a general 
stress response of corals, with Hsp70 as an indicator of heat and oxidative stress 
and Grp78 of ER stress. 

In conclusion, the increase in α-ketol synthesis, both in vitro and in vivo, 
indicates that AOS-LOXa is a sensitive response element to moderate stress. 
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KOKKUVÕTE 

Taimedes ja selgroogsetes organismides on oksülipiinid stressi vahendavad 
signaalmolekulid. Korallides leiduv alleenoksiidi süntaasist ja 8R-
lipoksügenaasist koosnev liitvalk (AOS-LOX) on kesksel kohal nende 
organismide arahhidoonhappe (AA) metabolismis. Pehme koralli Plexaura 
homomalla AOS-LOX katalüüsib AAst läbi 8R-HpETE vaheühendi, labiilse 
alleenoksiidi (AO) sünteesi, mis vesikeskkonnas laguneb mitte-ensümaatiliselt 
stabiilseteks lõpp-produktideks, peamiselt α-ketooliks ja tsüklopentenooniks. 
Tänaseni on aga selgusetu funktsionaalse AOS-LOX raja olemasolu erinevates 
korallides ning sünteesitud produktide bioloogiline roll koralli homöostaasis. 
Käesolevas töös uuriti pehmetes korallides Gersemia fruticosa ja Capnella 
imbricata leiduvaid AOS-LOXi radu. Otsiti sobivat mudelorganismi in vivo 
stressikatsete jaoks ning testiti sobivaks osutunud korallis C. imbricata 
mehaanilise vigastuse ja temperatuuri mõju AOS-LOX-i geenide ekspressioonile 
ning vastavate metaboliitide sünteesile. 

Esmalt tehti kindlaks funktsionaalse AOS-LOX-i olemasolu arktilises korallis 
G. fruticosa. Selleks kloneeriti ja ekspresseeriti G. fruticosa AOS-LOX ning 
kasutades kromatograafilisi meetodeid (HPLC) identifitseeriti liitvalgu poolt 
eksogeensest AA-st sünteesitud vahe- ning lõpp-produktid. Detekteeritud 
ühendid osutusid identseteks P. homomalla AOS-LOX liitvalgu produktidega. 
Sarnaselt määrati tekkivate produktide muster eksogeense AA inkubatsioonil C. 
imbricata koehomogenaadiga. Lisaks tuntud AOS-LOX-i raja produktidele 
sünteesiti AA-st ka tundmatud polaarsed ühendid (UPC - unidentified polar 
compounds), mis identifitseeriti ühendi väljumisaja ja massi-spektri järgi kui 8-
oksoheksaeenhape. Seejärel kloneeriti korallist C. imbricata kaks AOS-LOX-i 
isovormi, AOS-LOXa ja AOS-LOXb. Vastavate liitvalkude tuletatud aminohappe 
järjestused on identsed 88% ulatuses. Mõlemad isovormid ekspresseeriti 
funktsionaalsena E. coli rakukultuuris. Rekombinantse AOS-LOXa peamiste 
produktidena identifitseeriti α-ketool ja tsüklopentenoon (vastavalt 70% ja 14%). 
Erinevalt oodatust detekteeriti AOS-LOXb produktidena ainult polaarseid 
ühendeid (90%), mis langesid kokku koralli homogenaadi inkubatsioonil 
detekteeritud UPC-ga. Ensüümi poolt spetsiifiliselt katalüüsitud 8-
oksoheksaeenhappe tekkimine tõendab uudse, seni taimedele omase 
hüdroperoksiidlüaasse aktiivsuse olemasolu tuvastamist korallis. 

Stressi mõju uurimiseks määrati C. imbricata AOS-LOX-i isovormide mRNA 
tasemed ning vastavate valkude poolt sünteesitud metaboliitide sisaldus nii 
koralli normaalolekus kui ka stressi tingimustes, kasutades vastavalt qPCR ja 
HPLC meetodeid. Vigastamise järgselt suurenes eksogeense AA konversioon α-
ketooliks, samal ajal kui UPC sisaldus langes. Lõikehaava lähedal täheldati AOS-
LOXa ekspressioonitaseme märkimisväärset tõusu juba üks tund peale 
vigastamist. Samas, AOS-LOXb ekspressiooni vigastamine ei mõjutanud. 
Vigastamisele sarnast stressivastust detekteeriti ka kõrgenenud veetemperatuuri 
puhul, kus samuti indutseeriti ainult AOS-LOXa ekspressioon ja vastavate 
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metaboliitide süntees. Seejuures, suurem tõus AOS-LOXa geeniekspressioonis 
detekteeriti vastuseks nõrgemale stressile. Samas, kui geeniekspressioon oli 
kõrgem nõrgema stressi korral, siis veidi suuremat α-ketooli taset detekteeriti 
kõrgema temperatuuri elik tugevama stressi korral.  

AOS-LOXide kõrval kasutati positiivse temperatuuristressi indikaatorina 
koralli kuumašhoki valke, Hsp70 ja Grp78. Tuginedes enda ja kirjanduse 
andmetele pakuti välja võimalik skeem AOS-LOX rollist koralli stressivastuses, 
kus Hsp70 vahendab oksüdatiivset ja termaalset stressi, Grp78 ER stressi ning 
AOS-LOXa produktided osalevad üldise stressivastuse vahendamise esmases 
faasis. 

Kokkuvõtteks, AOS-LOX rada on laialt levinud nii pehmetes kui ka kõvades 
korallides. Töös kirjeldatud muutused, nii AOS-LOXa transkriptsiooni kui ka 
oksülipiinide tasemetes, viitavad AOS-LOX-i raja olulisusele korallide esmases 
stressi vastuses. 
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