
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Vjatšeslav Rukavišnikov 192919IVSB

Improving Reporting Process in CYBERS
Security Operations Center

Bachelor Thesis

Supervisor: Jürgen Erm
BSc

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Vjatšeslav Rukavišnikov 192919IVSB

Aruandlusprotsessi täiustamine CYBERS
küberkaitse operatsioonide keskuses

Bakalaureusetöö

Juhendaja: Jürgen Erm
BSc

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Vjatšeslav Rukavišnikov
Date: 16.05.22

3

Abstract

Security Operations Center support IT goals of organizations and use reporting as a primary
tool of communicating with their audience. Therefore, reporting is an integral process in
Security Operation Centers.

Existing reporting solutions do not easily integrate with existing processes and infras-
tructure in SOCs. The objective of this work is to design a system that will complement
current reporting system in CYBERS Security Operations Center. Author analyzes already
implemented solutions and discusses some other solutions and their suitability. Taking into
consideration drawbacks of implemented solutions author designs and implements a new
reporting solution for CYBERS SOC.

The result of this work is a web application that interacts with a security monitoring
solution and generates reports based on the criteria supplied by user of the application.
System retrieves data from SIEM, processes it and presents a graphical report to the user.
Web application was implemented ASP.NET Core, Entity Framework Core handles the
database interactions and Chart.js plots graphs for the report.

The thesis is in English and contains 29 pages of text, 7 chapters, 27 figures, 0 tables.

4

Annotatsioon

Aruandlusprotsessi täiustamine CYBERS küberkaitse operatsioonide keskuses

Küberkaitse operatsioonide keskus toetab organisatsioonide IT-eesmärke ja kasutab
aruandlust oma vaatajaskonnaga suhtlemise peamise tööriistana. Seetõttu on aruandlus
küberkaitse keskustes üks peamistest protsessidest.

Olemasolevad aruandluslahendused ei integreeru kergesti küberkaitse keskustes olema-
solevate protsessidega ja infrastruktuuriga. Selle töö eesmärk on välja töötada süsteem,
mis täiendaks praegust CYBERSi küberkaitse operatsioonide keskuse aruandlussüsteemi.
Autor analüüsib juba rakendatud lahendusi ja arutab mõningaid muid lahendusi ja nende so-
bivust. Võttes arvesse rakendatud lahenduste puudusi, kujundab autor ja viib ellu CYBERS
SOC-i jaoks uut aruandluslahendust.

Selle töö tulemuseks on veebirakendus, mis suhtleb turvaseire lahendusega ja genereerib
aruandeid kasutaja poolt antud parameetrite alusel. Süsteem teeb päringuid SIEM-ist,
töötleb vastuseid ja esitab kasutajale graafilist aruannet. Veebirakenduse loomiseks kasutati
ASP.NET Core, Entity Framework Core, mis vastutab andmebaasi interaktsioonide eest,
ning Chart.js, mis koostab aruande graafikud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 29 leheküljel, 7 peatükki, 27
joonist, 0 tabelit.

5

List of abbreviations and terms

API Application Programming Interface
AQL Ariel Query Language
CSV Comma Separated Values
HTTP Hyper Text Transfer Protocol
JSON JavaScript Object Notation
SIEM Security Information and Event System
SOC Security Operations Center

6

Table of Contents

List of Figures . 9
1 Introduction . 10

1.1 Problem statement . 10
1.2 Goals of the Thesis . 11
1.3 Structure of the Thesis . 11

2 Background . 12
2.1 Security Operations Center . 12

2.1.1 Metrics and their reporting in SOC 13
2.1.2 Security Information and Event Management 14

2.2 About CYBERS . 15
2.2.1 CYBERS SOC . 15
2.2.2 Reporting and Metrics Management in CYBERS SOC 16
2.2.3 Authentication Failure Reporting in CYBERS SOC 16
2.2.4 Existing reporting solutions . 17

3 CYBERS SOC Failed Authentication Reporting Process 18
3.1 Creating reports using QRadar SIEM platform 18

3.1.1 QRadar reporting system drawbacks 20
3.2 Creating reports using QReport . 20

3.2.1 QReport advantages over QRadar reporting system 22
3.2.2 QReport shortcomings . 22

4 Methodology . 23
4.1 Approach . 23
4.2 Microsoft .NET . 23
4.3 ASP.NET Core . 23
4.4 Entity Framework Core . 24
4.5 Data visualization with Chart.js . 25
4.6 QRadar API . 25

5 Implementation . 26
5.1 Application architecture . 26
5.2 QRadar API client . 26
5.3 Database . 28
5.4 Failed authentication report generation process 31

6 Solution overview . 34
6.1 Report creation process . 34
6.2 Solution analysis . 36

7

6.3 Future work . 36
7 Summary . 38
Bibliography . 39
Appendices . 41

8

List of Figures

1 A simple SIEM architecture . 14

2 Report schedule setup dialogue . 18
3 Report layout setup dialogue . 19
4 Report chart configuration window . 19
5 QReport structure . 21
6 QReport report example . 21

7 MVC pattern . 24

8 Application architecture . 26
9 QRadar API project structure . 27
10 QRadar HTTP client initialization within application 28
11 Report model in application code . 29
12 Search model in application code . 29
13 Schedule model in application code . 30
14 Application database schema . 30
15 Code retrieving data from database . 31
16 Offenses search sample . 31
17 AQL search for failed authentication events 32
18 Code grouping events by username . 32
19 Counting events by user . 33
20 Grouping events by time and event type 33

21 Report creation initial dialogue . 34
22 Search definition dialogue . 34
23 Schedule setting dialogue . 35
24 On-demand generation option . 35
25 Event details per user . 35

26 QRadar report example (obfuscated) . 42
27 New solution report example (obfuscated) 43

9

1. Introduction

As use of informational technologies became widespread, cybersecurity became a concern
of every business. Defending against targeted cyberattacks and threats has become an
every day task of IT personnel. Over time, the spectrum and amount of tasks needed
to be performed in order to maintain an adequate security posture became so large, that
organizations had to form separate teams to fulfill these tasks. These teams are known
today as Security Operations Center (SOC). SOC aims to address systems monitoring,
incident detection and incident response. SOC service daily processes are carried out by
analysts and engineers of different degrees, who process a large amount of information and
are responsible for security of IT operations in the organization. Building an in-house SOC
could prove both difficult and expensive, as organization would need to find people who
could perform complex setup, analyze business needs and choose appropriate safeguards,
implement tactics and procedures, and, finally, react to alerts. Not every organization can
afford building their own SOC, but many want to bolster their security posture [1].

To satisfy the needs of such organizations, Security Operations Center was offered as a
service. Using such service enables organizations to skip stages of building a SOC and
hiring specialists for it, while getting help from experienced cybersecurity specialists. SOC
processes a lot of information on a daily basis which should be analyzed. Reporting is
necessary to gain an overview of SOC’s performance and of quality of provided service
[2].

1.1 Problem statement

Reporting of SOC activities is crucial to gain an overview of enterprise’s security posture
and assess the effectiveness of the currently implemented security measures. Monitoring
solutions employed in Security Operations Centers may not always offer comprehensive
reporting capabilities. They may be incapable of visualizing certain metrics, convey it in a
hard-to-understand way, or reports produced by them may look out-of-date, which may
undermine the trustworthiness and decrease the value of the SOC service in customers or
management eyes. Lack of flexibility makes it challenging to integrate these solutions into
the existing procedures established in SOC. In this work, author will focus on improving
reporting capabilities of CYBERS SOC which uses IBM QRadar SIEM as its security

10

monitoring solution. The resulting application will be specifically tailored to work with
SIEM employed by CYBERS SOC.

1.2 Goals of the Thesis

The author’s goal is to design a new reporting solution which will integrate with existing
security monitoring systems and provide more modular, more modern-looking and auto-
matically generated reports, which will be fully compliant with CYBERS SOC procedures.
The author will analyze implemented reporting solutions, find their shortcomings and
attempt to fix them in the new solution while adding new functionality. New system will
be designed based based on the research of the current reporting system and requirements
of CYBERS SOC. Solution implemented by author will work specifically with QRadar
SIEM.

Author will discuss only one of the reporting processes and new solution aims to improve
it.

1.3 Structure of the Thesis

Chapter 1 described the problem and goals of this work. Chapter 2 provides necessary
background and explains certain concepts so that reader could understand the rest of this
thesis. SOC, metrics and their reporting are discussed in the background part. Chapter
3 is focused on CYBERS SOC failed authentication events’ reporting process. Existing
solutions are explained and analyzed. In chapter 4 author explains their approach to
designing new system and lists used technologies. Chapter 5 is dedicated to implementation
of the new system with explanation of the architecture and overall working principle.
Chapter 6 discusses new solution’s suitability to CYBERS SOC and describes its workflow,
suggests future improvements. Finally, chapter 7 gives conclusions of results of this work.

11

2. Background

This chapter gives an overview of the primary concepts and processes which are subjects
to imp.

2.1 Security Operations Center

The Security Operations Center, or SOC, is a dedicated team of people who ensure security
of IT operations within organization. Their duties include monitoring information sys-
tems for vulnerabilities, unauthorized activity, acceptable use/policy/procedure violations,
intrusions into and out of the network, and engaging with cyber incident response and
remediation [3].

SOC is tightly integrated with organization’s objectives. SOC develops technical processes
that support achieving business goals in a secure manner. To successfully protect a business,
SOC must fully understand business problems and weak spots to build a correct strategy
of securing the IT operations. Security team that precisely chooses the main operations of
a business and their critical aspects will bring the most value to the said business and will
prove to be the most efficient for it. Business objectives are high level, more abstract goals.
These goals are supported by SOC processes at a lower level [1][3].

SOC can support a business through various activities. These activities can be divided into
several categories. Reactive activities include monitoring for alerts, detection of anomalies,
investigation of cases, reporting of incidents, all in real time. Proactive activities are
comprised of hunting for potential threats within the environment, gathering cyberthreat
intelligence and integrating it into the monitoring systems, ensuring health of devices
and services across the network. Other activities include continuous analysis of SOC’s
performance and its improvement, training the staff, and automating the procedures in
order to make work more efficient [3].

Building a Security Operations Center requires considerable amount of effort and funds, as
there are multiple challenges on the way to building one. SOC needs a work environment:
work equipment for team and resources to accommodate technology, and people with right
set of skills, who also understand the goals of SOC. Lastly, Security Operations Center

12

relies on technologies that security monitoring and control mechanisms [1].

2.1.1 Metrics and their reporting in SOC

Metrics are used for assessing performance and identifying problems. They can be divided
into internal and external metrics. Internal metrics show the performance of systems
and procedures employed in SOC. They are used to identify problematic areas, allowing
SOC team to improve their system implementations and procedures, as well as measure
themselves for continuous improvement. External metrics must communicate the value
SOC brings to the organization and threats it faces to upper management. With this
information management can make decisions concerning risk management and further
funding of the SOC [4].

By measuring inputs and outputs of processes SOC ensures that they operate as intended.
Various SOC properties like time to react, amount of processed alerts, true-positive/false-
positive incident ratio are quantified to get a control whether key goals are achieved and
if some action needs to be taken. Ideally these metrics are collected automatically and
necessary actions to produce some of the metrics, like manual incident categorization, do
not impede the work of the analysts [4].

SOC produces large quantities of data which should be analysed and subsequently reported.
Overviews of log sources, events, threats, vulnerabilities, attacks, incident reports, investi-
gations, incidents should be given to their respective audience. Reports should take target
audience into account and deliver the message clearly. Failure to communicate could lead
SOC to losing support from management or making wrong strategical decisions. Therefore,
careful analysis and proper reporting are crucial activities within SOC [5].

Native reporting capabilities of various SOC systems (SIEMs, incident management
systems, etc.) may not meet all the requirements and therefore, will prevent SOC from
communicating effectively. On the other hand, dedicated security reporting solutions can
be better at producing desired results, but those can come at a significant price which may
render their usage infeasible depending on the SOC’s budget. Finally, there are free or
open-source alternatives for composing reports like JSReport, may include some features
as a paid add-on and will still require effort to integrate them with rest of SOC’s systems
and configure for desired results [5].

13

2.1.2 Security Information and Event Management

Security information and event management (SIEM) centrally collects, parses and cate-
gorizes logs from various sources as well as traffic captures from network points. This
tool provides enhanced visibility into the network by tracking activity of users, devices,
services. This allows for quick detection and response to anomalies in the systems that
can pose a threat to business security [6][7]. A simple SIEM architecture is illustrated on
Figure 1.

Figure 1. A simple SIEM architecture

Data that is collected from various log sources is being parsed with the purpose of extracting
attributes that describe the event. Attributes may include usernames, event types, IP
addresses, memory, processes and more. SIEM must be able to process logs of different
formats. SIEM solution includes a log parser that converts imported data into a structured
data format that the tool can understand. Many SIEM solutions provide parsing for
common data sources; however, sometimes parsing has to be customized in order for
the data to be converted to the proper structure that the SIEM solution can work with.
Extraction of attributes allows for further analysis withing rule logic as well as querying
logs based on specific attributes [6][1].

The categorization process involves adding context to the events. This can include system
events, authentication data, application logs, and more, depending on what is collected.
For example, a SIEM solution can group data about hosts, data about network devices, and

14

details from security tools into different buckets based on how the data will be analyzed.
This sorting process is critical for converting data into actionable intelligence [1].

2.2 About CYBERS

CYBERS is a company founded in 2010 that offers a variety of cybersecurity services.
Services provided by the company include, for example: vulnerability assessment, secu-
rity architecture building, Microsoft 365 cloud-services security monitoring, compliance
auditing, SOC as a Service (SOCaaS). In the context of this work, reporting process of
CYBERS Security Operations Center will be studied [8][9].

2.2.1 CYBERS SOC

CYBERS provides SOC service to other organizations. New clients’ environments are
on-boarded for security monitoring. All logs are collected and analyzed by QRadar SIEM
platforms. CYBERS specialists analyze incoming data and generated alerts, reacting where
necessary. Periodically CYBERS reports its performance and customer environment’s
status to communicate value and make decisions.

CYBERS SOC is a so-called tiered SOC where analysts are divided into 3 categories:
Level 1, Level 2 and Level 3. The day-to-day work of SOC Level 1 specialists includes,
most importantly, real-time monitoring. The Level 1 specialists are first, who see the
incoming alert, and it is also their task to verify if the incident described in the alert is a
true-positive or a false-positive. After the verification has taken place, it is then necessary
to carry out initial analysis and prioritization. If necessary, incident is further escalated,
and related parties are notified. Verified cases are then viewed by a Level 2 analyst. Other
duties of Level 1 analyst include review of different reports and sending them to their
corresponding consumers.

The task of a SOC Level 2 specialist is reading analysis and verifying work of the previous
analysts. Level 2 analyst conducts a more thorough investigation, if deemed necessary. It is
also their task to do further response and remediation in cases where Level 1 employee does
not have the access necessary tools, required training or knowledge, or time to dive deeper
into the investigation. Incidents of highest priority are passed to the Level 3 specialists.

Level 3 analysts use their expertise to help investigating and remediating the incidents.
Outside of incident response, they are occupied with threat hunting, as well as developing,
testing and fine-tuning anomaly detection systems.

15

2.2.2 Reporting and Metrics Management in CYBERS SOC

CYBERS uses reports to give overview of Security Operation Center’s performance as well
as to assess implemented security measures’ effectiveness. There is a set of common report
types which are distributed to customers. New reports are created as per customer request
or from internal initiative. When creating a new report, first step is always to review metrics
and data to collect that are required to compile the requested report. After all requirements
are reviewed, SOC team analyses the feasibility of establishing a new reporting procedure.
The most common reason for rejecting the new procedure implementation is lack of
necessary data. If new reporting procedure is approved, team starts implementing, testing
and, finally, deploying the new reporting procedure. Reports’ appearance and format are
tailored for their respective audience.

CYBERS has several different reporting procedures in use for various purposes. Monthly
for giving overview on security posture, incident report which documents the incident,
operational reports that are used to ensure health of the infrastructure. Main focus of this
work is on one of the weekly reports which is described in more detail later in this chapter.

2.2.3 Authentication Failure Reporting in CYBERS SOC

Some types of alerts that come to CYBERS SOC are not viewed on arrival due to their
constant high count or individual insignificance. This can be referred to as ’ticket queue
backlog’. But at the same time these alerts cannot be fully ignored. One of the possible
ways to deal with ’noisy’ alerts is periodically reviewing them in bulk. Authentication
failures to various resources such as Windows or Linux machines, VPN interfaces, cloud
platforms etc., are happening at a constant rate in CYBERS SOC service environment.
These alerts are not considered important if they are not followed by a successful login
to the same location by the same user, which could indicate a successful breach which is
categorized differently. In most of the cases these alerts are triggered by users mistyping
their passwords, sessions with expired passwords, or bruteforce attacks [5].

Each week these alerts are gathered into one report and report is sent to a customer on
weekly basis. Authentication failure report shows the customer all alerts as well as users
which triggered those alerts. Customer reviews the report to troubleshoot sign-in failures
for users in their organization. Reviewing authentication related events may uncover some
unexpected events. Each alert is supplied with events which contributed to it, which
customer can read to understand the root cause of the failure. It is duty of the Level 1 SOC
analysts to review the generated reports and look for suspicious occurrences [10].

16

2.2.4 Existing reporting solutions

This section mentions reporting solutions that are not used in the CYBERS SOC but could
theoretically be implemented. Author also discusses why he chose against those solutions.

Kibana is a free and open-source user interface that lets you visualize your data. It is a very
powerful visualization platform that ingests data from Elasticsearch and enables users to
plot various graphs. Flexible dashboards allow creating user-defined layouts and importing
additional design elements, resulting in an exceptionally powerful data exploration tool
[11].

Since Kibana only works in conjunction with Elasticsearch, it requires data to be fed into
the latter in order to perform its operations on the data. While Logstash, project created for
ingesting various sorts of data, supports retrieving information from a remote API endpoint,
it would still require implementation of some specifically programmed feeder due to the
fact that QRadar SIEM’s (SIEM solution used in CYBERS SOC) API is asynchronous:
request is made against one endpoint, but results are retrieved from the other endpoint.
Furthermore, to retrieve events associated with alerts triggered by SIEM’s rule logic it is
necessary to know the retrieve the alerts first. In other words, one search is dependent
on the other and can only be constructed having the results of the first search. There is
also another aspect of Kibana that prevents it from being used for reporting purpose in
CYBERS SOC. Exporting reports as PDF or PNG file format is a feature only available
with a paid subscription [11].

"jsreport" is an open-source reporting tool. It can dynamically produce reports in various
formats like pdf, excel, docx and also many other text based-formats. It doesn’t provide
any graphical interface to design reports. Instead, it relies on users defining report structure
and appearance by using code, HTML and JavaScript templating engines in particular.
This approach gives great power and flexibility to the software developers and lets them
use the knowledge they already have [12].

Similar to Kibana, data used in the report templates has to be submitted either manually or
by some program via API. Free instance is limited to only 5 report templates, which limits
the usefulness of jsreport since its report designer requires knowledge of HTML to create
templates and other features like scheduling and template management can be achieved
via other means [12].

17

3. CYBERS SOC Failed Authentication Report-
ing Process

This chapter gives an overview of reporting solutions that are already implemented in
CYBERS SOC, their workflow, capabilities and limitations.

3.1 Creating reports using QRadar SIEM platform

QRadar SIEM has built-in reporting capabilities that enables users to create, edit, distribute,
and manage reports generated based on information gathered by the system. Users can
choose from default reports and self-defined reports, which can be further customized and
branded [13].

Report creation begins with dialogue where report generation schedule is chosen. Both
periodic and manual options are available (Figure 2) [13].

Figure 2. Report schedule setup dialogue

Next dialogue window configures general layout of the report and number of charts
or tables. There are 9 variants with portrait orientation and 6 variants with landscape
orientation as portrayed on Figure 3 [13].

18

Figure 3. Report layout setup dialogue

After the layout has been configured, different charts can be chosen and assigned to their
containers. First, a chart type which defines how data appears in the report has to be
chosen. QRadar offers numerous chart types, although some of them are only usable
if system has a respective extension installed. For querying event, network flow, and
alert information "Events/Logs", "Flows" and "Offenses Over Time" chart types are used.
"Events/Logs" and "Flows" are the most configurable as they can utilize "Ariel Query
Language" - language with syntax similar to SQL used for extracting and manipulating
data from QRadar databases, allowing to perform advanced searches not available from
user interface. Figure 4 depicts main settings for the events chart. User can choose what
data they want to get by choosing an appropriate AQL search as well as the graph type to
represent the data [13][14].

Figure 4. Report chart configuration window

19

After contents of the charts were defined, user can choose file format report will be
compiled into. Next report configuration wizard’s question is report distribution method:
it is either done by sending it to the selected QRadar users or by sending it via email.
Final configuration dialogue asks for brief report’s description. With description submitted,
report is considered created. Appendix 2 illustrates an example report which contains 2
charts: top authentication offences and top authentication failure events by user [13].

3.1.1 QRadar reporting system drawbacks

System works as intended and is conveniently built into the SIEM, however, there are a
few drawbacks that made CYBERS consider another solution. These are the following in
no particular order:

■ There is no option to place alerts and events that contributed to them into one chart
to show correlation. This makes investigation of the alert more difficult because
report viewers will have to manually search events from a separate chart which is
inconvenient.

■ QRadar alert search functionality is limited to only search filters. There is no group
offences by users or certain types.

■ Generated reports are not interactive. There is no functionality to hide certain
datasets from charts or collapse certain entries in order to hide information that is
not needed at the moment.

■ Very little control over final result’s appearance. Only major appearance choice that
user can make is report layout and logotype in the corner.

3.2 Creating reports using QReport

QReport is a custom solution made in CYBERS to generate custom reports using infor-
mation retrieved from QRadar. Its purpose is to overcome QRadar reporting functionality
limitations and provide a more flexible and more configurable reporting system. Project is
a collection of Python scripts that interact with QRadar API, process retrieved information
and insert results into templates. Figure 5 shows project’s structure.

Reports are generated separately for each CYBERS SOC customer. To generate reports
QReport retrieves a list of offenses which occurred within set time period for each customer
and then, individually for each offense, it retrieves events that contributed to the offense.
After the information has been retrieved QReport groups offences into a separate list where
offences are grouped by the user that failed to authenticate. Finally, results are written

20

into 2 separate templates: first contains the offences in their order of occurrence, second
lists the offences grouped by user. Figure 6 shows report where alerts listed in order of
occurrence.

Figure 5. QReport structure

Figure 6. QReport report example

21

3.2.1 QReport advantages over QRadar reporting system

QReport improves on QRadar built-in reporting capabilities in the following key areas:

■ QReport allows additional post-processing of retrieved information: offences can be
grouped by certain parameters and operations can be performed with retrieved data
to calculate certain metrics like offence count per user, for instance.

■ QReport allows usage of custom templates which gives greater control over report’s
appearance and viewing experience.

3.2.2 QReport shortcomings

QReport has a set of disadvantages which affect its usability and future development:

■ QReport does not have a graphical user interface as it is essentially a console
application. Application configuration is only possible my modifying the source code
which requires direct access to the server. These limits CYBERS SOC employees’
ability to interact with the system.

■ QReport does not utilize a database for storing entities like customers. Adding a
new customer to reporting process requires addition of a variable to the source code
and adding filtering for certain offences requires inserting additional conditional
statements into the report generation code.

■ QReport does not have any graph plotting capabilities implemented. That leaves
viewer with only textual representation of information which can be tedious to go
through just to get an overview.

22

4. Methodology

In this chapter author describes tools and frameworks used in the new solution’s design.

4.1 Approach

Based on the study of existing reporting systems employed in CYBERS SOC author will
design a new system that is supposed to overcome their shortcomings. Resulting system
will be comprised of freely available technologies with some of them being replaceable.
Criteria for choosing technologies were ease of use, clear documentation, and being free
and open-source.

4.2 Microsoft .NET

.NET(pronounced as ’dotnet’) is a free, cross platform, and open-source(using MIT and
Apache 2 licenses) development platform for building large variety of applications: web
APIs and apps, mobile applications, desktop applications, machine learning. It is regularly
updated for security and quality [15].

4.3 ASP.NET Core

ASP.NET Core is a framework used for building modern, cloud-enabled, Internet-connected
apps. It runs on .NET runtime and has following features [16]:

■ Ability to be hosted in variety of environments: IIS, Nginx, Apache, Docker
■ Integration of modern client-side frameworks like Bootstrap
■ Tooling that simplifies modern web development

ASP.NET Core MVC allows building web application and APIs using Model-View-
Controller design pattern. MVC (Model-View-Controller) is a pattern in software design
commonly used to implement user interfaces, data managing and application control logic.
Its focal point is separation between the application’s business logic and views displayed to
the user. This "separation of concerns" provides for a better division of labor and improved
maintenance. Figure 7 illustrates MVC pattern [16][17].

23

Figure 7. MVC pattern

ASP.NET Core MVC utilizes views to handle the application’s data presentation and user
interactions. Views can be broken down into reusable components which allows to design
modular pages. This functionality is beneficial to CYBERS reporting process, as different
components can be utilized in multiple reports [18].

Implementing reporting solution as a web application solves the problem of not having a
way to interact with the system. Modern web frameworks like Bootstrap simplify interface
and report building process with the help of pre-built components [19].

4.4 Entity Framework Core

Entity Framework Core is a data access technology which supports many database engines.
It enables developers to work with a database using .NET native objects and simplifies
code by eliminating need for most of the code that handles connections to the database.
Entity Framework Core also implements ’Code First Approach’ where a database can be
created based on the models defined within application logic [20].

Storing data in database and providing users with data manipulation capabilities via web
interface will allow dynamic configuration of application as well as eliminating need for
low-level access to solution.

24

4.5 Data visualization with Chart.js

It is much easier to discover and confirm the presence of patterns, relationships, and
physical characteristics (such as outliers) through a visual display. Therefore, some data
needs to be visualized to communicate in a clearer way [21].

Chart.js is a feature-rich JavaScript library used for client-side rendering of charts and
graphs. Its wide variety of configuration options allow plotting complex graphs. Resulting
graphs are interactive and dynamic: there is a possibility to filter out certain data and scales
will be adjusted to ensure best viewing experience. Chart.js was chosen for it is relative
simplicity and object-oriented approach which matches with the rest of the technology
stack. There are other feature-rich alternatives like "D3", but those can have a steeper
learning curve. Data visualization component can be easily replaced with other variants, if
need be [22][23].

4.6 QRadar API

QRadar SIEM has an API that allows retrieving information by sending specially crafted
HTTP requests to specific endpoints. Each endpoint is responsible for specific functions
and will respond differently depending on whether you send a GET, POST, or DELETE
request. API allows integrating QRadar with other systems and taking advantage of its log
attribute parsing, analytics applied to events, and optimized data retrieval [24].

25

5. Implementation

This chapter describes overall structure of the proposed solution and its components as
well as general working principle.

5.1 Application architecture

Solution consists of a server-side application which is responsible for handling interactions
with users, making calls to QRadar API and processing the data, as well as retrieving
information from a database. Figure 8 illustrates application architecture.

Figure 8. Application architecture

5.2 QRadar API client

QRadar API has many endpoints used for different purposes but only 2 are important in
the context of this work [24]. These are as follows:

■ ariel/searches - used for making queries with AQL and retrieving results.
■ siem/offenses - used for retrieving alerts and information related to them.

QRadar API supports several response formats: JSON, CSV and XML etc, but not all
endpoints support all formats [24]. Both aforementioned endpoints support JSON format

26

and this is what the application uses as standard. While JSON is not as space efficient
as CSV, sticking to it as a default format allows for more uniform code base and easier
parsing logic, which does not depend on the order of parameters.

Communication between application and QRadar API is done via separate HTTP client
instance which encapsulates all logic related to constructing valid requests and parsing the
responses into .NET objects. QRadar API client implementation is organized into "Client"
and "Entities" namespaces (Figure 9). First contains methods for client configuration and
its interaction with QRadar API, second contains logic for mapping of entities returned by
API to .NET objects.

Figure 9. QRadar API project structure

On application initialization QRadar API client instance is registered as a service which
can be used by other components of application. This way HTTP client instance is reused
which avoids potential exhausting of available network sockets [25]. Client’s default
parameters such as base URL, accepted format and API token which is necessary since
every request is authenticated are configured also on application initialization as shown on
figure 10.

27

builder.Services.AddHttpClient<QRadarClient>(httpClient =>
{

httpClient.BaseAddress = new
Uri(builder.Configuration["QRadarBaseUrl"]);

httpClient.DefaultRequestHeaders.Add(
HeaderNames.Accept, "application/json");

httpClient.DefaultRequestHeaders.Add(
"SEC", builder.Configuration["QRadarAPIKey"]);

});

Figure 10. QRadar HTTP client initialization within application

5.3 Database

To overcome QReport’s limitation of having to edit the source code to add additional report
to the schedule application is going to utilize a relational database. Usage of a database
will allow to dynamically add and remove entries using a graphical user interface which is
provided by web application. Underlying database engine is unimportant in the context of
this work, as it can be changed out for another one.

Application’s domain consists of following models: "Report", "Search" and "Schedule".
Based on definition of these models Entity Framework Core generates database schema
which is applied to configured database instance.

"Report" model represents the authentication failure report. It has a target client’s name,
QRadar tenant ID which points to the client’s tenant in the QRadar. Figure 11 shows model
definition within application’s code.

public class Report
{

public int Id { get; set; }

[Required]
[MaxLength(128)]
[DisplayName("Client’s name")]
public string ClientName { get; set; } = default!;

[Required]
[DisplayName("QRadar Domain")]
public int QRadarTenantId { get; set; }

28

[DisplayName("Authentication failure search")]
public ICollection<Search>? Searches { get; set; }

[DisplayName("Schedule")]
public ICollection<Schedule>? Schedules { get; set; }

}

Figure 11. Report model in application code

"Search" model (Figure 12) contains 2 searches: one for retrieving alerts from the system,
another for retrieving events. It has a foreign key that points back to parent "Report" record.
"Report" and "Search" models have one-to-many relationship: report can have multiple
searches, while search can only be tied to one report at a time. Having individual search
objects for each report allows filtering to be defined within the search query and avoid
defining it withing application logic.

public class Search
{

public int Id { get; set; }

[Required]
[MaxLength(4096)]
[DisplayName("Offenses’ Search")]
public string OffenseSearch { get; set; } = default!;

[Required]
[MaxLength(4096)]
[DisplayName("Events’ Search")]
public string EventSearch { get; set; } = default!;

[MaxLength(4096)]
[DisplayName("Comment")]
public string? Comment { get; set; }

public int ReportId { get; set; }
public Report? Report { get; set; }

}

Figure 12. Search model in application code

"Schedule" model (Figure 13) represents time period for which a report is generated. Fields
marked with "Start" and "End" represent start and end times of reporting period. Fields
that have ’Due’ prefix stand for time by which report must be generated. "Due" fields
are intended to be used by a background task that will go through schedules and generate

29

reports. Once report is generated it is marked as "Done" which tells the background
tasks not to generate a duplicate. Models "Report" and "Schedule" also have one-to-many
relationship which allows one report to have several schedules for more complex scenarios.

public class Schedule
{

public int Id { get; set; }

[Required]
public DayOfWeek StartDay { get; set; };

[Required]
public TimeOnly StartTime { get; set; };

[Required]
public DayOfWeek EndDay { get; set; };

[Required]
public TimeOnly EndTime { get; set; };

[Required]
public DayOfWeek DueDay { get; set; };

[Required]
public TimeOnly DueTime { get; set; };

public bool isDone { get; set; };

public int ReportId { get; set; }
public Report? Report { get; set; }

}

Figure 13. Schedule model in application code

Based on defined models and their relationships Entity Framework Core generated a
schema for SQLite database engine (Figure 14).

Figure 14. Application database schema

30

5.4 Failed authentication report generation process

To begin report generation process program retrieves "Report" object from database based
on its primary key. Searches and schedules related to the report object are also retrieved.
Retrieval of schedules is optional in case of on-demand report generation scenario, where
report dates are supplied by user. Figure 15 shows code that retrieves the data using Entity
Framework Core.

var report = await _context.Reports
.Include(r => r.Schedules) // Optional, if manually

specified
.Include(r => r.Seaches)
.FirstOrDefaultAsync(m => m.Id == id);

Figure 15. Code retrieving data from database

Next step is to compile search queries. First alert search is compiled from template
which was retrieved from the database. Sections enclosed with "{}" are placeholders for
parameters. Program supplies QRadar tenant id, start and end times of search. A sample
of offense search is provided on Figure 16.

domain_id={0} and status=’open’ and start_time > {1} and
start_time < {2} and categories contains ’General
Authentication Failed’

Figure 16. Offenses search sample

Formatted search is sent by QRadar client to QRadar API, and result is all authentication
related alerts for set time period. After results are returned and parsed, event search query
can be compiled. Program replaces placeholders with tenant id, condition that ties events
to alerts, as well as start and end times of the search. Example AQL search template is
provided below (Figure 17).

SELECT
username AS username,
QIDNAME(qid) AS event_name,
devicetime/(4*3600*1000) AS time_span,
sum(eventcount) AS event_count
FROM events

31

WHERE domainid = {0} AND
hasoffense = TRUE AND
LOGSOURCETYPENAME(logsourceid) NOT IN (’Custom Rule Engine’,

’Device type 63’) AND
{1}
GROUP BY time_span, qid, username
ORDER BY time_span ASC
START {2}
STOP {3}

Figure 17. AQL search for failed authentication events

One major difference with previous solution, QReport, is that application described in this
work retrieves all events with one API call, whereas QReport makes a separate request per
each alert. Reduction of API call count is beneficial for performance and leaves less room
for network errors [25]. One downside of this approach is that it does not allow to tie a
group of events to a specific alert.

After source data is retrieved it is going to be processed to calculate metrics. Further
data processing is done withing the application. While making additional searches with
AQL to gather metrics like overall event and offense count, event count per user etc.
would be faster than doing it within application, it could also negatively affect QRadar’s
performance. Searches for big tenants can be computationally expensive. QRadar is
considered a mission critical component of CYBERS SOC, therefore unnecessary load is
undesirable. Authentication failure reports can tolerate longer generation times, as long as
they are generated before submission date.

First operation on retrieved data is grouping retrieved records by username (Figure 18).
This grouping is later used for further transformations.

var eventsByUser = from record in Model.Events
group record by record.Username;

Figure 18. Code grouping events by username

To count how many events there were per user goes through aforementioned grouping
and adds up event counts (Figure 19). Generated data is used to plot a main graph for
the authentication failure report. This graph can be utilized to quickly identify users with
alarming event count.

32

var eventCountByUser = from grouping in eventsByUser
select new {

Username = grouping.Key,
EventCount = grouping.Sum(e =>

e.EventCount)
};

Figure 19. Counting events by user

To display more detailed information per user, events from each user grouping are further
grouped by event names and by approximate time period of occurrence. Result gives
overview of which events occurred at what time and in what quantities. This data is used
to display events’ approximate timeline per user. While there are no event payloads to
see exactly what happened, giving a visual interactive overview should provide a better
starting point for further investigations. Application logic is provided below (Figure 20).

foreach (var userGroup in eventsByUser)
{

var eventsByNameAndByTime = from record in userGroup
group record by record.EventName
into eventGroups
select new
{

EventName = eventGroups.Key,
Events = from record in eventGroups

group record by record.TimePeriod
into timeGroups
select new {

TimePeriod = (timeGroups.Key * 4 *
3600 * 1000),

EventCount = timeGroups.Sum(g =>
g.EventCount)

},
};

}

Figure 20. Grouping events by time and event type

33

6. Solution overview

This chapter gives an overview of the resulting solution and discusses the resulting systems
benefits and negative points.

6.1 Report creation process

First step is to define customer’s name and their corresponding tenant. Figure 21 depicts a
report creation initial dialogue.

Figure 21. Report creation initial dialogue

Next step is to define searches that will be used for retrieval of data. Additionally, user can
leave a comment that explains filtering conditions within searches.

Figure 22. Search definition dialogue

34

Final step is setting the schedule for report generation.

Figure 23. Schedule setting dialogue

To generate report on-demand ’Generate’ button can be used which is displayed on the
’Reports’ tab landing page.

Figure 24. On-demand generation option

After information defined in searches had been received from QRadar and processed,
application renders the final result. Report main page is shown in Appendix 3. Figure 25
illustrates details section for a particular user.

Figure 25. Event details per user

35

Graph on Figure 25 is interactive. It allows crossing out certain event types, so that viewer
could concentrate on events that are of interest to them.

6.2 Solution analysis

Resulting application has the following benefits:

■ It is fully configurable. Every aspect of the application can be tuned. Range of reports
that can be generated using this system is only limited by source data. Modular
design allows switching out certain components like graph plotting library, if a more
suitable alternative is found and sufficiently studied.

■ Solution is extensible. Through code and components reuse, other CYBERS SOC
reporting procedures can also be implemented in this application.

■ Solution provides a web interface for report configuration and generation.
■ Database allows for more granular configuration of report generation. Searches

and schedules can be adjusted on each report individually using of graphical user
interface.

■ Data is visualized. This enables the SOC analysts to get a quick overview of the
situation. Filtering options allow viewing certain types of events. This gives a good
starting point for investigation if an anomaly is detected.

However new solution also introduces some problems and points for consideration.

■ System configuration and development requires considerable effort. Due to multi-
component nature of the application, implementation of new features or modifying
old ones require sufficient knowledge of all involved tools. Modifying graphs will
require knowledge about Graph.js etc.

■ Current ’schedule’ model limits application to only using weekdays as start and end
dates. This is unsuitable for generating monthly reports for example were start and
end of the month are not fixed to certain weekdays. Database schema likely needs to
be modified to allow multiple ways of scheduling

■ Report does not contain event’s payloads for further troubleshooting. These need to
be queried separately from QRadar.

6.3 Future work

Future development would include inclusion of alerts into the graphs to illustrate correlation
between alerts and events. Application was tested with auxiliary instance of QRadar which

36

does not include all the latest fine-tuning improvements done by CYBERS SOC team.
As a result, data retrieved from this instance contains more ’noise’ which complicates
correlation between users, events, and alerts.

To make this application suitable for production use, data that is submitted by user from
web interface must be validated for its correctness. For example, queries that are submitted
to be used in the searches have to be tested against QRadar API to ensure that query syntax
is correct, and that application is able to parse the result.

To make generated reports look coherent with the rest of the documentation, web develop-
ment tools need to be adjusted according to CYBERS report design guidelines.

37

7. Summary

The goal of this work was to improve reporting capabilities of CYBERS SOC by designing
a new system that would be integrated with existing monitoring system.

Author gave an overview of CYBERS SOC and its reporting process, as well as an overview
of reporting systems in use. Potential of alternative reporting solutions was also discussed.
Author came to a conclusion that existing reporting solutions do not easily integrate with
existing processes and infrastructure.

After reviewing CYBERS SOC reporting process and existing reporting solutions, author
identified shortcomings of current solutions. In proposed solution author attempted to
address these weaknesses by employing technologies specifically designed to solve a
certain problem. Result is a web application that provides a graphical user interface to
interact with the system and allows individual configuration of reports. New solution uses
modern technologies that simplifies development when compared to development "from
scratch". Information is presented primarily with graphs which simplifies analysis by
analysts and clients.

Focus of this work was only one of the reporting processes and proposed solution aimed to
improve it. Author managed to improve CYBERS SOC reporting process and the latter
approved the solution for use. In the future solution could be extended to implement other
reporting processes.

38

Bibliography

[1] Omar Santos Joseph Muniz Aamir Lakhani and Moses Frost. The Modern Security

Operations Center. Addison-Wesley Professional, Apr. 2021. [E-book].

[2] Check Point. SOC-as-a-Service. 2021. URL: https://www.checkpoint.
com/cyber-hub/threat-prevention/what-is-soc/soc-as-a-

service/. (visited on 16.09.2022).

[3] Don Murdoch. Blue Team Handbook. Mar. 2019.

[4] John Hubbard. Guide to Security Operations. 2020. URL: https://sansorg.
egnyte.com/dl/TLpDjvybnc. (visited on 16.09.2022).

[5] Nadhem AlFardan Joey Muniz Gary McIntyre. Security Operations Center: Build-

ing, Operating and Maintaining your SOC. Cisco Press, Nov. 2015. [E-book].

[6] Splunk. What Is SIEM? 2022. URL: https://www.splunk.com/en_us/
data-insider/what-is-siem.html. (visited on 16.09.2022).

[7] IBM. Why is SIEM important? 2022. URL: https://www.ibm.com/topics/
siem. (visited on 16.09.2022).

[8] Inforegister. SECURITY SOFTWARE OÜ. 2022. URL: https://www.inforegister.
ee/en/11924368-SECURITY-SOFTWARE-OU. (visited on 16.09.2022).

[9] CYBERS. Services. 2022. URL: https://cybers.eu/en/services.
(visited on 16.09.2022).

[10] Martin Nystrom Chris Fry. Security Monitoring. O’Reilly Media, Feb. 2009. [E-
book].

[11] Elastic. Kibana. Your window into the Elastic Stack. 2022. URL: https://www.
elastic.co/kibana/. (visited on 16.09.2022).

[12] jsreport. javascript reporting server. 2021. URL: https://jsreport.net/.
(visited on 16.09.2022).

[13] IBM. IBM QRadar Security Intelligence Platform version 7.4. 2022. URL: https:
//www.ibm.com/docs/en/qsip/7.4. (visited on 16.09.2022).

[14] IBM. Ariel Query Language Structure. 2022. URL: https://www.ibm.com/
docs/en/qradar-on-cloud?topic=aql-query-structure. (vis-
ited on 16.09.2022).

39

https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-soc/soc-as-a-service/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-soc/soc-as-a-service/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-soc/soc-as-a-service/
https://sansorg.egnyte.com/dl/TLpDjvybnc
https://sansorg.egnyte.com/dl/TLpDjvybnc
https://www.splunk.com/en_us/data-insider/what-is-siem.html
https://www.splunk.com/en_us/data-insider/what-is-siem.html
https://www.ibm.com/topics/siem
https://www.ibm.com/topics/siem
https://www.inforegister.ee/en/11924368-SECURITY-SOFTWARE-OU
https://www.inforegister.ee/en/11924368-SECURITY-SOFTWARE-OU
https://cybers.eu/en/services
https://www.elastic.co/kibana/
https://www.elastic.co/kibana/
https://jsreport.net/
https://www.ibm.com/docs/en/qsip/7.4
https://www.ibm.com/docs/en/qsip/7.4
https://www.ibm.com/docs/en/qradar-on-cloud?topic=aql-query-structure
https://www.ibm.com/docs/en/qradar-on-cloud?topic=aql-query-structure

[15] Microsoft. What is .NET? Introduction and overview. 2022. URL: https://
docs.microsoft.com/en-us/dotnet/core/introduction. (visited
on 16.09.2022).

[16] Microsoft. Overview to ASP.NET Core. 2022. URL: https://docs.microsoft.
com/en- us/aspnet/core/introduction- to- aspnet- core?

view=aspnetcore-6.0. (visited on 16.09.2022).

[17] MDN Web Docs Glossary: Definitions of Web-related terms. MVC. 2022. URL:
https://developer.mozilla.org/en-US/docs/Glossary/MVC.
(visited on 16.09.2022).

[18] Microsoft. Views in ASP.NET Core MVC. 2022. URL: https : / / docs .
microsoft.com/en-us/aspnet/core/mvc/views/overview?

view=aspnetcore-6.0. (visited on 16.09.2022).

[19] Bootstrap team. Build fast, responsive sites with Bootstrap. 2022. URL: https:
//getbootstrap.com/. (visited on 16.09.2022).

[20] Microsoft. Entity Framework Core. 2021. URL: https://docs.microsoft.
com/en-us/ef/core/. (visited on 16.09.2022).

[21] Ændrew Rininsland Andy Kirk Simon Timms and Swizec Teller. Data Visualization:

Representing Information on Modern Web. Packt Publishing, Sept. 2016. [E-book].

[22] Chart.js contributors. Simple yet flexible JavaScript charting. 2021. URL: https:
//www.chartjs.org/. (visited on 16.09.2022).

[23] Mike Bostock. Learn D3: Introduction. 2020. URL: https://observablehq.
com/@d3/learn-d3. (visited on 16.09.2022).

[24] IBM. What’s new in REST API Version 16.0. 2021. URL: https://www.ibm.
com/docs/en/qradar-common?topic=160-whats-new-in-rest-

api-version. (visited on 16.09.2022).

[25] Microsoft. ASP.NET Core Performance Best Practices. 2022. URL: https :
//docs.microsoft.com/en- us/aspnet/core/performance/

performance-best-practices?view=aspnetcore-6.0#pool-

http-connections-with-httpclientfactory. (visited on 16.09.2022).

40

https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-6.0
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/overview?view=aspnetcore-6.0
https://getbootstrap.com/
https://getbootstrap.com/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://www.chartjs.org/
https://www.chartjs.org/
https://observablehq.com/@d3/learn-d3
https://observablehq.com/@d3/learn-d3
https://www.ibm.com/docs/en/qradar-common?topic=160-whats-new-in-rest-api-version
https://www.ibm.com/docs/en/qradar-common?topic=160-whats-new-in-rest-api-version
https://www.ibm.com/docs/en/qradar-common?topic=160-whats-new-in-rest-api-version
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices?view=aspnetcore-6.0#pool-http-connections-with-httpclientfactory
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices?view=aspnetcore-6.0#pool-http-connections-with-httpclientfactory
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices?view=aspnetcore-6.0#pool-http-connections-with-httpclientfactory
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices?view=aspnetcore-6.0#pool-http-connections-with-httpclientfactory

Appendix 1 - Non-exclusive licence

I Vjatšeslav Rukavišnikov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for
my thesis "Improving Reporting Process in CYBERS Security Operations Center",
supervised by Jürgen Erm

(a) to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

(b) to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

41

Appendix 2 - QRadar report example

Figure 26. QRadar report example (obfuscated)

42

Appendix 3 - New solution report example

Figure 27. New solution report example (obfuscated)

43

	List of Figures
	Introduction
	Problem statement
	Goals of the Thesis
	Structure of the Thesis

	Background
	Security Operations Center
	Metrics and their reporting in SOC
	Security Information and Event Management

	About CYBERS
	CYBERS SOC
	Reporting and Metrics Management in CYBERS SOC
	Authentication Failure Reporting in CYBERS SOC
	Existing reporting solutions

	CYBERS SOC Failed Authentication Reporting Process
	Creating reports using QRadar SIEM platform
	QRadar reporting system drawbacks

	Creating reports using QReport
	QReport advantages over QRadar reporting system
	QReport shortcomings

	Methodology
	Approach
	Microsoft .NET
	ASP.NET Core
	Entity Framework Core
	Data visualization with Chart.js
	QRadar API

	Implementation
	Application architecture
	QRadar API client
	Database
	Failed authentication report generation process

	Solution overview
	Report creation process
	Solution analysis
	Future work

	Summary
	Bibliography
	Appendices

