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Abstract

Sniffing Bluetooth Low Energy communications has been historically problematic due to
the Adaptive Frequency Hopping technique used by the protocol. Currently, the problem
of AFH is solved either by expensive Software Defined Radios that capture the full RF
spectrum or by low-cost hardware that has to acquire connection parameters and follow
the AFH sequence.
This study focuses on acquiring connection parameters for encrypted connections after they
change. The behavior of several most popular BLE stacks has been observed. Collected
data has been visualized and analyzed. Using the collected data, a solution has been
developed for connection parameter and PHY mode updates. The solution has been
implemented on an open-source platform - Sniffle. This study also includes data that will
be useful for future work on Channel Map updates.

The thesis is written in English and contains 67 pages of text, 5 chapters, 59 figures, 2
tables.
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Annotatsioon

Bluetooth-i madala energiatarbega (ingl. Low Energy) side liikluse üleskirjutamine on ol-
nud ajalooliselt problemaatiline protokolliga kasutatavale adaptiivse sagedusega hüppamise
(ingl. Adaptive Frequency Hopping) tehnika pärast. Praegu lahendavad AFH probleemi
kas kallima tarkvaraga määratletud raadiod (ingl. Software Defined Radios), mis hõivavad
kogu raadiospektri, või odav riistvara, mis peab hankima ühenduse parameetrid ja järgima
AFH järjestust.
Käesolev magistritöö keskendub krüpteeriitud ühenduste ühenduse parameetrite han-
kimisele pärast nende muutumist. Uuringu käigus on täheldatud mitme populaarseima
BLE stack-i käitumist. Kogutud andmeid on visualiseeritud ja analüüsitud. Kasutades
kogutud andmeid on välja töötatud lahendus ühenduse parameetrite ja PHY-režiimi värsk-
endamiseks. Lahendus on rakendatud avatud lähtekoodiga platvormil - Sniffle. Käesolev
magistritöö sisaldab ka andmeid, mis on kasulikud edasiste Channel Map tööde läbivi-
imiseks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 67 leheküljel, 5 peatükki, 59
joonist, 2 tabelit.
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1. Introduction

1.1 Motivation

The number of smart devices with wireless connectivity is growing as the Internet of
Things (IoT) gains prominence in many application domains [1]. With industry estimates
predicting 5 billion Bluetooth-powered devices shipping in 2021 [2], Bluetooth technology
will play a key role in the growing ecosystem of connected devices. The Bluetooth Special
Interest Group (SIG) has implemented, beginning with version 4.0 of the Bluetooth Core
Specification, a new version of the protocol called BLE, which is not backward-compatible
with previous versions of the standard. For devices that have low data rate demands and
strict power usage limits, BLE is best suited, thereby being the unwritten standard for
many IoT applications. It is important to explore the security and privacy implications of
BLE due to the growth of BLE-embedded IoT applications. The wireless sniffing attack is
the leading attack on BLE computers, leading to more harmful attacks such as relay attack,
jamming, encryption breaking, or system penetration.

Smart locks are a new advancement of the Internet of Things (IoT) that offers an access
management solution that targets specific customers. They have been found to be suscep-
tible to relay attacks against their Bluetooth communications [3, 4], among a number of
other critical vulnerabilities commonly found in IoT devices. In particular, Bluetooth has
been shown to be extremely vulnerable to relay attacks [5], partially due to its high and
inconsistent latency, which decreases the efficiency of latency-based distance-bounding
[6].

There is another common reason for capturing BLE traffic: troubleshooting and an alterna-
tive way to capture it: Host Controller Interface (HCI) snoop logging. One downside of
HCI logging is that what is going over HCI is not the same as what is going over the air.
Bluetooth controller performs several transformations, including encryption. Also, there is
no visibility into lower-level processes. When you are trying to troubleshoot issues in a
Bluetooth controller, it is useful to have the ability of low-level capture. A situation when
over-the-air sniffing is the only solution is when two embedded devices, where you do not
have much control over either of them, are communicating with each other over BLE.
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1.2 Research problem

The problem with sniffing encrypted BLE traffic is that in order to successfully follow
frequency hops and capture traffic using hardware that can sniff only one channel at a
time, all connection parameters need to be known. These connection parameters do get
updated periodically throughout an active connection. New parameters are encrypted,
but the fact of exchanging new connection parameters before they get applied, can be
identified. Unless new connection parameters are acquired, it is not possible to follow
frequency hopping sequence, and accordingly, it is not possible to capture traffic either. An
algorithm that can obtain new connection parameters is described in Mike Ryan’s paper
[7]. This algorithm is implemented in modern sniffers like BtleJack [8] and Ubertooth
[9]. The algorithm is reliable but slow, since it is looking for new parameters almost from
scratch, although usually, only a few parameters change. Ryan’s algorithm is better suited
for obtaining connection parameters for long-lived connections, rather than maintaining
ability to follow frequency hopping on already established sniffing sessions.

1.3 Usage

1.3.1 Relay attack

This study is a step towards building a solution that is able to perform relay attacks on
link layer. Existing solutions, like BtleJuice [10] and GATTacker [11], described in more
detail later in the paper, are operating above the GATT layer, and it brings limitations to
its usage. These attacks tend to have high latency, and they do not work with encrypted
connections that have an unknown key. Performing a relay attack on link layer level will
allow relaying packets without the need to understand their content, therefore allowing
relaying encrypted packets, as well as unencrypted ones.

"In the relay attacks, adversary C talks to victim A posing as victim B, and to B posing
as A. All authentication messages that C needs are generated by real A and B. C conveys
these messages from A/B to B/A." [5]
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Figure 1. Relay attack scheme on a smart-lock example

1.3.2 Combining with Crackle

Crackle [12] is a tool by Mike Ryan that can, in some scenarios, extract Long Term
Key (LTK) from captured pairing packets. Pairing act is usually followed by enabling
encryption. LTK can later be used for decrypting captured data. Since encryption is
enabled after pairing, it is crucial for a sniffer to be able to guess connection parameter
changes. Otherwise, it will not be able to continuously capture encrypted data.

Another way of combining sniffing with Crackle would be trying to crack LTK without
losing synchronization with the target and then decrypt the traffic on the fly using the
obtained LTK. This approach can work, but in the time frame between enabling encryption
and retrieving LTK, the communication content will still be unknown to the sniffer. As a
result, when connection parameter update happens before Crackle can retrieve the LTK,
synchronization will be lost. Ability to guess new parameters will increase reliability of
such a solution.
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1.4 Scope and contribution

This work explores the possibility of obtaining new connection parameters for encrypted
connections after new connection parameters are exchanged on established sniffing sessions.
This means that this paper will not be focused on obtaining the initial synchronization.

This study will cover the scenario when connection LTK is unknown, and we have a cheap
- therefore physically limited hardware, that can sniff only one channel at a time.

The goal of this study is to research different popular Bluetooth stack implementations in
hopes of finding any weaknesses or shortcuts that were taken by their developers.

The contribution of this study is twofold. First, it provides collected data and data analy-
sis for different popular Bluetooth stack implementations. The data is both used in this
study and will be useful for future studies addressing channel map update procedure.
The collected data is related to connection parameter and channel map update proce-
dures. Second, the study provides solutions for LL_CONNECTION_UPDATE_IND and
LL_PHY_UPDATE_IND updates.

The study will cover connection parameter update and channel map update process for
most widespread platforms: Android, iOS, Windows, Mac, and Linux.

1.5 Limitations

This study relies on control packet sizes to recognize them when their content is encrypted.
It is thoroughly explained in chapter 2.2.
The limitation comes from BLE v5.2 protocol introducing LE Power Control features that
brought LL_POWER_CONTROL_RSP and LL_POWER_CHANGE_IND packets that
have the same 12-byte length as the LL_CONNECTION_UPDATE_IND packet that we
are interested in.

BLE v5.2 was released in January 2020, but as of May 2021, it is not widespread yet. The
latest iPhone 12 released in October 2020 has Bluetooth v5.0. The latest MacBooks have
BT v5.0 as well. Also, author was not able to find a BT v5.2 USB dongle. BT v5.0 is
prevailing among USB dongles on major online shopping platforms, with few supporting
BT v5.1. Only a few android phones support BT v5.2 - hence it is not yet possible to
determine how big of an obstacle the new power control features are. This issue will
become relevant in a couple of years.
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1.6 Research questions

� Is it possible to affect connection parameters by controlling the data that is being
sent between two devices?

� Is it possible to identify data exchange patterns, that were able to trigger connection
parameter updates, by observing the connection?

� Is it possible to affect channel mapping by producing RF noise?
� Is it possible to correlate Wi-Fi RF noise with BLE channel map?
� Which PHY modes are commonly used and what is the general pattern of switching

between modes?
� How effective is the solution for recovering LL_CONNECTION_UPDATE_IND

parameters?
� How effective is the solution for recovering LL_PHY_UPDATE_IND parameters?

1.7 Research methodology

The methodology used in this research involves mostly an observational approach. Various
popular BLE stack implementation’s natural behavior has been observed. The primary
quantitative data has been collected using a custom extension written for Sniffle [13]
platform described in the chapter 3.2. Data has later been visualized for further analysis
using a custom script mentioned in chapter 3.3

Semi-controlled experiments have been set up in order to measure the influence of RF noise
on BLE channel map. The results would have been more accurate if the experiments were
conducted in a faraday cage environment, but the setup described in chapters 3.5.1 and 3.5.2
was enough to show strong dependency. Although, the imperfectness of environmental
conditions has produced several artifacts, like in chapter 3.5.2

Data was collected by observing unencrypted communications that happen before two
devices are bonded.

1.8 Ethics

Since over-the-air data sniffing is involved, author was especially careful to capture only
the data that is considered public: e.g., advertisement data. Private communication data
was captured using only devices that author owns, or has taken permission to use for
capturing purposes.
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2. Background

Forward and backward snowballing techniques were used during the literature review
[14]. The initial set of literature was built by results of searches that included keywords:
BLE sniffing, Bluetooth sniffing, BLE Advanced Frequency Hopping, Bluetooth Advanced

Frequency Hopping, BLE connection parameters, Bluetooth connection parameters, BLE

connection parameter update, Bluetooth connection parameter update, BLE relay attack,

Bluetooth relay attack. For the initial set, Scopus 1 and Google Scholar 2 were used. It
helped in avoiding potential bias when only looking at particular journals [14]. In addition
to the set, papers describing officially recognized vulnerabilities listed on Bluetooth’s web
page were included [15].

The following chapters include grey literature sources in addition to academic papers.
Because BLE sniffing is a theoretical as well as a highly practical field of study, grey
literature is important for comprehensive literature analysis.

2.1 Literature review

When researching BLE - capturing traffic is one of the steps that have to be taken, and it
has been historically problematic. In the Bluetooth world, capturing traffic is not as easy as
launching Wireshark. Multiple solutions exist for capturing packets that are sent over the
air [8, 9, 10]. “Several attempts were made to build a low-cost and open-source Bluetooth
sniffer for over the air eavesdropping [9], [16], [17]. Unfortunately, an affordable and
reliable solution is still not here.” [18] “To reverse engineer the board’s Bluetooth firmware,
we load the dumped ROM, the symbols, the RAM, and the patch RAM regions into a
Ghidra project” [18].

Antoniolli and his team, who have discovered more than half of the officially recognized
vulnerabilities listed on Bluetooth’s webpage [15], state the same in all of their research
papers [18, 19, 20]. Mike Ryan calls Ubertooth [9] unreliable and says that the most
reliable way to capture Bluetooth traffic is via HCI snooping. [21]

1Scopus https://www.scopus.com/
2Google Scholar https://scholar.google.com/
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The sniffing problem comes from the physical limitations of hardware, which allows
sniffing only one channel at a time.

Some older papers like “Bluetooth: With Low Energy comes Low Security” [7] and
“A Robust Algorithm for Sniffing BLE Long-Lived Connections in Real-time” [22] are
addressing connection parameter recovery problem, but they are focusing on doing it from
scratch - when it is considered that nothing is known about the connection. Their methods
are robust, but they can take a long time to complete - up to a minute. These methods
are better suited for obtaining an initial synchronization with a connection rather than
maintaining it. The goal of this study is to recover parameter changes within several hops.
Depending on the hopping interval value, it would mean 30-300 milliseconds. Furthermore,
these methods are using conclusions that are specific to CSA #1 specifications and will not
apply to CSA #2, which is becoming a new standard since Bluetooth v5.

There have been several attempts to address the sniffing problem: “One GPU to Snoop
Them All: a Full-Band Bluetooth Low Energy Sniffer” [23] is using SDR that can si-
multaneously track the traffic on all the 40 BLE channels and is out of the scope of our
study.

AdaptaBLE [24] is a framework that describes ways of optimizing BLE connection
parameters in a way that would ensure low power consumption while ensuring satisfactory
quality of service. The author was not able to find out whether described principles
are actually implemented by any vendor, but even if vendors use different optimization
methods, the methods would be close to the ones described in the paper.

2.2 Relevant technical specifications

In the world of radio frequency-based devices, there is a relevant problem of wave interfer-
ence. For Wi-Fi, it is solved by having 13 different channels and automatically choosing
the least busy one. Since Wi-Fi routers are usually physically static and the picture of
surrounding existing devices does not change frequently, it is a solution that proved itself
to be reliable. However, in Bluetooth world, operation conditions are different. Although
it operates in the same frequency band - the signal strength is significantly weaker than in
Wi-Fi. Plus, devices are constantly moving around and constantly entering and leaving
each other’s area of coverage. It creates a need for a different approach to solve the problem
of wave interference. The solution for the problem that Bluetooth SIG came up with is the
main problem of over-air Bluetooth sniffing, and it is Adaptive Frequency Hopping [25].
More advanced functions are proposed and integrated with the legacy AFH technology to
improve the performance of AFH-based Bluetooth transmission [26, 27, 28, 29]
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BLE operates in the 2.4 GHz ISM band at frequencies 2408 – 2483.5 MHz. The spectrum
is divided into 40 channels, indexed from 0 to 39. The spacing between channels is 2 MHz.
Channels 37, 38, and 39 are used for advertising and the other 37 channels are used for
data transmission. Although advertising channel indexes go in a row, on a physical layer –
channel 37 is located at the beginning of the designated range, channel 39 is in the end and
channel 38 is around the middle of the range.

Figure 2. RF channel scheme
[30]

In essence, Frequency Hopping means that instead of choosing a less busy frequency and
continuously operating on it, connection constantly switches from channel to channel,
thereby decreasing the chance of interfering with other signals. In the first implementation
of Bluetooth low energy, the channel selection algorithm was slightly more complicated
than just increasing the current channel number by one. It was:

currentChannelNumber + x (mod 37) (2.1)

Where x is a variable connection parameter that is exchanged during pairing. Channel
selection algorithm is responsible for generating a hopping sequence. Hopping sequence is
a sequence of channel numbers that the connection will follow when hopping from channel
to channel. The described algorithm is called Channel Selection Algorithm #1 (CSA #1)
and is used in BLE v4.2 and below. Starting from BLE v5.0 - CSA #2 was introduced,
which uses Pseudo-Random Number Generator and is more complicated than CSA #1

Figure 3. Unmapped channel selection process
[25]
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As displayed in Figure 3, PRNG takes 2 arguments: counter and channel identifier as
arguments and uses them as seeds, as is displayed in Figure 4, to generate a random
number, that will later have modulo 37 applied to it. If not all channels are used - the result
value goes through channel remapping process. CSA #2 generates a channel sequence that
consists of 65535 channels which are being hopped circularly.

Figure 4. Event pseudo-random number generation
[25]

The passed argument named Counter is sometimes referred to in BT specs as Connection
Event Counter, and sometimes just counter, but it represents the same concept. It represents
the current position in the hopping sequence. In the current context, Connection Event
can be viewed as a synonym to hop, since it represents an act of exchanging empty PDUs
between master and slave devices after they both hop to the next channel in a sequence.

Channel Identifier is first 16 bits of AA (Access Address) XOR-ed with last 16 bits: "The
16-bit input channel Identifier is fixed for any given connection or periodic advertising
train; it is calculated from the Access Address by: channelIdentifier = (Access Address

31-16) XOR (Access Address 15-0)" [25]

AA is a part of a Link Layer data PDU (Figure 5) and it is a randomly generated 32-bit
value that substitutes source and destination mac addresses, that would be 96 bits in total.
AA represents a connection. Devices involved in a connection determine if a packet is
addressed to them according to AA, instead of a mac address.
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Figure 5. Link Layer: data PDU

As Damien Cauquil has mentioned in his DEF CON talk [31], unlike other PRNG number
generators, that use some hidden internal device state-related number as a seed, the seed of
CSA #2 PRNG - Channel Identifier - can be considered public, since it is derived from
Access Address, which is transmitted publicly with every packet and which never gets
encrypted.

The minimal number of connection parameters that are required to be known to follow a
connection are:

� Connection Interval
� Connection Event Counter
� Channel Map
� PHY mode

"Connection interval is the amount of time between two connection events in units of 1.25
ms. The connection interval can range from a minimum value of 6 (7.5 ms) to a maximum
of 3200 (4.0 s)" [25]

PHY mode - BLE 5.0 standard introduced 2 new physical modes on top of previously
existed "LE 1M PHY": LE 2M PHY and LE Coded PHY

Channel Map - Though there are 37 data channels available, not all of them are used all
the time. Devices may decide to stop using one or several ranges of channels and transfer
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data only through the ones that are left. Channel map describes which channels will be
used during the connection.

There are also other important connection parameters that are worth mentioning but do not
constitute a significant obstacle for sniffing: Connection timeout and Slave Latency.

Slave Latency allows a slave to use a reduced number of connection events. It defines the
number of consecutive connection events that the slave device is not required to listen for
the master. It allows a slave device to skip several empty PDU exchanges for power-saving
purposes, without losing a connection with the master device.

Connection Timeout describes time without a valid packet received from a slave device, in
order for the connection to be considered lost.

Connection parameters listed above do get updated throughout a connection. The connec-
tion parameter update procedure involves several other parameters that do not affect an
established connection, but are required to know in order to follow the connection update.

� Instant
� Window offset
� Window size

Connection parameters get updated through LL Control PDUs. There are 37 of them in BLE
5.0 and they are used for controlling different technical aspects of connection, but we are
interested in 3 of them: LL_CONNECTION_UPDATE_IND, LL_CHANNEL_MAP_IND,
and LL_PHY_UPDATE_IND.

Figure 6. LL_CONNECTION_UPDATE_IND packet example
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As we can see in Figure 6, LL_CONNECTION_UPDATE_IND has all 3 parameter-update-
specific parameters.

Instant represents a Connection Event Counter, when devices should apply the new
parameters Window size represents a period of time during which the first packet of
connection with new parameters should be sent, and Window offset represents the length
of a pause, that has to be taken between reaching the Instant and Transmit Window (Figure
7)

Figure 7. Connection event timing in the case of connection parameter update
[25]

LL_CHANNEL_MAP_IND (Figure 8) and LL_PHY_UPDATE_IND (Figure 9) only have
Instant.

Figure 8. LL_CHANNEL_MAP_IND packet example
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Figure 9. LL_PHY_UPDATE_IND packet example

When connection gets encrypted, only the PDU payload (Figure 5) gets encrypted, and
Access Address and PDU header remain unchanged. PDU header contains LLID that
indicates packet type and lets us tell if it is a data PDU or control PDU.

In the Bluetooth 5.2 core spec [25], there are 37 different control PDU types de-
fined. They vary in the number of parameters and their sizes. Their payload size,
that is publicly transmitted in the PDU header, can become a mean of packet type
identification: payload length of 5 bytes belongs only to LL_PHY_UPDATE_IND,
8 byte length is unique for LL_CHANNEL_MAP_IND, but 12 byte length as well as
LL_CONNECTION_UPDATE_IND can also be representing LL_POWER_CONTROL_RSP
and LL_POWER_CHANGE_IND. Since power control features were added in BT v5.2
and as mentioned in chapter 1.5, BT v5.2 is not widespread - this study will not take
existence of related packets into account.

When the connection is encrypted, 4 byte MIC value is added to the payload, so every
control PDU’s length will be increased by 4 bytes in the encrypted mode, compared to
unencrypted mode.
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2.3 Existing solutions

2.3.1 Ubertooth

Ubertooth [9] is the most popular Bluetooth sniffing solution at the moment of writing this
paper. It has ~1450 stars on Github, as of March 2021, and the last commit to the master
branch was done on December 2020.
Ubertooth One is an open-source 2.4 GHz wireless development platform designed for
Bluetooth experimentation and hacking. It was created by Michael Ossmann and Dominic
Spill from Great Scott Gadgets 3. It is considered to be one of the most capable Bluetooth
network sniffing, real-time traffic monitoring and penetration testing platform, because it
is the only low-cost sniffer that supports Bluetooth Classic.

Architecture

� RP-SMA RF connector: connects to test equipment, antenna, or dummy load
� CC2591 RF front end
� CC2400 wireless transceiver
� LPC175x ARM Cortex-M3 microcontroller with Full-Speed USB 2.0
� USB A plug: connects to host computer running Kismet or other host code [9]

Features

� 2.4 GHz transmit and receive
� Transmit power and receive sensitivity comparable to a Class 1 Bluetooth device
� Standard Cortex Debug Connector (10-pin 50-mil JTAG)
� In-System Programming (ISP) serial connector
� Expansion connector: intended for inter-Ubertooth communication or other future

uses six indicator LEDs [9]

Ubertooth’s popularity results not only in the biggest numbers of stars on Github, but it
also is frequently used in BLE related projects and researches, like "A Robust Algorithm
for Sniffing BLE Long-Lived Connections in Real-Time" [22], where they use 2 devices at
the same time, or "Revisiting Bluetooth Adaptive Frequency Hopping Prediction with a
Ubertooth" [32]
In "Practical Bluetooth Traffic Sniffing: Systems and Privacy Implications" [17] researchers
are also simultaneously using 2 Ubertooths.

3Great Scott Gadgets https://greatscottgadgets.com/
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Another indicator that Ubertooth may be developer-friendly is existence of major firmware
extensions, like Bluetooth Low Energy Multi (BLE-Multi) [33] "It is a firmware extension
to Ubertooth One which enables tracking of multiple simultaneous long-lived connections.
It uses transmission of empty packets to determine the anchor point of each connection
event and connection timing. Moreover, it achieves multi-connection sniffing by oppor-
tunistically switching between connections when they move from active to sleep mode."
[22]

License type: GNU General Public License v2.0

Price with shipping to Estonia: From C130 on amazon.de, to C230 in local shops

2.3.2 BtleJack

BtleJack [8] is also a very popular sniffing platform that has ~1460 stars on Github and the
last commit to the master branch was done in October 2019, as of March 2021.
"Btlejack provides everything you need to sniff, jam and hijack Bluetooth Low Energy
devices. It relies on one or more BBC Micro:Bit.4 devices running a dedicated firmware.
You may also want to use an Adafruit’s Bluefruit LE sniffer 5 or a nRF51822 Eval Kit, as
we added support for these devices."[8]
"Current version of this tool (2.0) supports BLE 4.x and 5.x. The BLE 5.x support is
limited, as it does only support the 1Mbps Uncoded PHY and does not support channel
map updates." [8]

BtleJack can not only sniff, but also take control of a link by actively disconnecting the
master and taking its place in the connection.

Features

� Sniffing an existing BLE connection
� Sniffing new BLE connections
� Jamming an existing BLE connection
� Hijacking an existing BLE connection
� Exporting captured packets to various PCAP formats [8]

License type: MIT License

4Micro:Bit https://microbit.org/
5Adafruit’s Bluefruit LE sniffer https://www.adafruit.com/product/2269
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Price with shipping to Estonia: C23 for Micro:Bit v2 on lemona.ee and C50 on
amazon.de for Adafruit’s Bluefruit LE sniffer

2.3.3 BtleJuice

BtleJuice framework [10] was developed by Damien Cauquil, who is the author of BtleJack,
but it has some major differences with BtleJack.
BtleJuice does not use any specialized hardware and requires 2 Bluetooth 4.0+ adapters to
operate.

Cauquil, in his talk [34] at GreHack, explains how it works and describes the concept of
the framework to be close to how HTTP(S) proxies, such as Burp Suite or OWASP Zap,
operate.
BtleJuice, in essence, simulates master device for the slave device and vice-versa, so that
target devices would think that they are talking to each other. It establishes 2 separate
connections and forwards the exchanged data to one another, capturing it in between.
According to Cauquil [34], one of the biggest drawbacks of the method is that Linux
Bluetooth stack does not fully support more than 1 Bluetooth adapter functioning at the
same time, so he proposes using another machine, or VM to overcome this issue.

BtleJuice has ~530 stars on Github, and the last commit to the master branch was done in
October 2018, as of March 2021

License: without limitation, the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies.

2.3.4 GATTacker

GATTacker [11] is a tool by Slawomir Jasek and is very similar to BtleJuice. It similarly
uses 2 Bluetooth 4 adapters, impersonating master and slave device for target devices and
essentially transferring data between Bluetooth adapters via WebSockets.

GATTacker offers a possibility to intercept and modify traffic between adapters via web
intercepting proxies like Burp Suite. The requests are being transferred in JSON format.

"Currently the tool works for devices which do not implement Bluetooth LE link-layer
pairing/encryption. However there is surprisingly lot of such devices.
Possible attacks against encrypted connections are described in whitepaper [35]" [11]
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GATTacker has ~500 stars on Github and the last commit to the master branch was done
in October 2018, as of March 2021

License type: MIT License

2.3.5 Sniffle

Sniffle [13] is a tool by Sultan Qasim Khan that is based on Texas Instruments’ TI
CC1352/CC26x2 hardware that supports the newest features of Bluetooth 5.0+

Some of Sniffle’s key features are:

� Support for BT5/4.2 extended length advertisement and data packets
� Support for BT5 Channel Selection Algorithms #1 and #2
� Support for all BT5 PHY modes (regular 1M, 2M, and coded modes)
� Support for channel map, connection parameter, and PHY change operations
� Support for BT5 extended advertising (non-periodic)
� Support for capturing advertisements from a target MAC on all three primary ad-

vertising channels using a single sniffer. This makes connection detection nearly 3x
more reliable than most other sniffers that only sniff one advertising channel. [13]

Sniffle has ~400 stars on Github, and the last commit to the master branch was done in
October 2020, as of March 2021

License type: GNU General Public License v3

Price with shipping to Estonia: C60 for CC26x2
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3. Data collection

3.1 Choosing a platform

When looking for a platform to perform the research on, it soon becomes apparent that
most of the existing solutions are becoming outdated due to new BLE 5 specifications.

BLE 5 brought several new features to the physical layer and many microcontrollers that
are used by various low-cost sniffers, simply do not support them. Unless they are ported
to newer hardware, they will not be able to implement BLE 5 support to the fullest. Given
the fact that BLE 5 has been out for more than 4 years, and that porting software to a
different microcontroller architecture can be tricky, and the fact that it has not been ported
yet – the best option would be to go for a platform that currently supports all new features.
Sniffle [13] not only has the biggest hardware support, compared to other options, but also
has the biggest number of BLE 5 compliant features implemented software-wise.
Sniffle supports channel map updates for CSA #2, while BtleJack does not [8].
Proxying solutions (BtleJuice and GATTacker) work poorly with devices that have encryp-
tion enabled. They also will not allow tapping into long-lived connections.

Table 1. Comparison to Low-Cost Sniffers [36]

Sniffle Ubertooth TI Sniffer v1
(CC2540)

TI Sniffer v2
(CC26xx)

Nordic nRF51 Nordic nRF52 BtleJack 2

Cost $40 $120 $40 $40 $40 $40 $15

Open source Yes Yes No Yes No No Yes

Data Length
Extension

Yes Yes No Yes Yes Yes Yes

BT5 PHY Yes No No No No 2M No

BT5 CSA #2 Yes No No No No No Yes

BT5 Ext. Adv Yes No No No No No No

Sniff 37/38/39 Yes No No No No No No

Tapping
into existing
connections

No (but
can be im-
plemented)

Yes No No No No Yes
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Table 2. Comparison to Commercial Sniffers [36]

Sniffle Ellisys Bluetooth Tracker Pro Frontline BPA LE Frontline Sodera LE WB

Cost $40 From $10 000 $5 000 $10 000

Open source Yes No No No

Data Length
Extension

Yes Yes Yes Yes

BT5 PHY Yes Yes No Yes

BT5 CSA #2 Yes Yes No Yes

BT5 Ext. Adv Yes Yes No Yes

Sniff 37/38/39 Yes Yes (full SDR) Yes (simultaneous) Yes (full SDR)

3.2 Setup

Texas Instruments’ CC2652R1 microcontroller was obtained to be used for this research,
and Sniffle was installed on it according to the instruction [13] on GitHub. During the
software setup, no issue has arisen that the said instruction did not cover.

When looking for a method for data processing, at first, pcap file parsing was considered
since Sniffle already supports dumping captured data to pcap, but it soon became apparent
that it would not work.
One of the important parameters - Instant - is exchanged and therefore dumped as an
index number on the hopping sequence. The number we need to know is the difference
between the current connection event counter and the instant (Ex: on figure 9 we can
see that instant is 1504, and it points the devices at a particular hop number, where the
update should occur. The counter value would be around 1495 at that particular moment).
The counter value is a part of internal state of the devices that communicate, and is
never transferred over the air. Sniffle stores the counter value as well, since it is a vital
parameter and can calculate the difference. It was decided to add a small extension to
Sniffle’s code that would log relevant parameters from all captured control PDUs to a
separate text file. Example of the captured data can be seen on Figure 10. The code
can be found on the following link: https://github.com/stas-me/Sniffle/
commit/765e149961cc3505f49bca32d1b96e5880886930
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Figure 10. Example of captured data

3.3 Metrics

As explained in the previous chapter, Instant is a value that represents an index number
on a hopping sequence. The value of the instant itself is not useful for this research, but
the difference between instant and connection event counter is. Throughout this paper, the
difference is referred to as Instant.
We are collecting Instant value statistics separately for all control PDUs that we are
interested in, to test if there is any dependency on packet type.

When manually observing collected data - it became apparent that disabled channels are
mostly grouped together, rather than scattered across the map spectrum. These groups are
going to be called Ranges throughout the paper. It will be useful to have information about
the number of ranges and their sizes to develop a smarter channel map recovery algorithm.
Data about channel map update frequency will be useful for working on tapping into
long-lived connections.

It will also be useful to collect data regarding used PHY modes and their frequency, as
well as Window offset, Window size and interval values and frequency of their values,
to be able to react to LL_CONNECTION_UPDATE_IND and LL_PHY_UPDATE_IND
updates.

A custom script has been written in order to parse and visualize the data mentioned in
the previous chapter. The code can be found on the following link: https://github.
com/stas-me/Sniffle/commit/2047e48eaf49c1abef3d3833a6c043c7a84f5f03
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3.4 Chart specifications

Channel map (Ex: Figure 13): Horizontal axis represents data-channel number and
vertical axis represents number of times that the channel has been turned off during an
update. Note: it also includes data collected from CONNECT_IND PDU, which represents
the initial map, before it gets updated.

Map ranges (Ex: Figure 14): Range is a sequence of data channels that are turned off and
are placed directly one after another, without an active channel placed in between. Channel
map can have one or multiple ranges deactivated during an update. 0 ranges means that all
37 channels were set to be active.

Time between channel map updates (Ex: Figure 15): Horizontal axis represents time
in seconds. Time was measured with microsecond precision and then decimal part was
dropped off, so for example the "2" bar includes every value in the range 2 ≤ n < 3.
Grouped bars, like 14-17 represent values in range 14 ≤ n < 17

Instants (Ex: Figure 19): Horizontal axes represent instant value for corresponding PDU.
The last chart displays combined data of previous charts.

Connection parameters (Ex: Figure 20): Horizontal axes represent corresponding con-
nection or connection update parameter values.

3.5 iOS

All of the iOS tests were performed using iPhone 11 as a master and Xiaomi Mi 9T Pro as
a slave. Both devices were using nRFConnect [37] to communicate with each other.
As we can see from Figure 11 - iPhone 11 supports Bluetooth v5 features like LE 2M PHY,
LE Coded PHY, and CSA #2
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Figure 11. iPhone 11 features retrieved from LL_FEATURE_RSP packet

3.5.1 By a router

Test description: both master and slave devices are placed within 0.5 metres from a router
that is used for active and continuous downloading of a big file on the maximal available
speed of 50 Mbit/s.
Both devices remain within the 0.5m range throughout the whole capturing process,
including capturing the initial connection event.

Expected result: it is expected that close proximity to a device that actively emits interfer-
ing RF signal will significantly affect the transmission performance and force channel map
to adjust in order to prevent the interference.

Test process: connection is established between two devices, and then they are lying still
until enough data is collected. Figure 12 displays the Wi-Fi RF environment at the moment
of performing the test. The environment was captured using NetSpot1 application.

1NetSpot https://play.google.com/store/apps/details?id=com.etwok.
netspotapp
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Figure 12. Wi-Fi environment during the test captured with NetSpot

Results:

Figure 13. iOS channel map by a router

Figure 14. iOS map ranges by a router
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Figure 15. iOS time between map updates by a router

The test was running for 21 minutes and involved 52 channel map updates. As it is evident
from Figure 13, channels 0-12 were turned off for all 52 updates and they were turned off
during the connection event (in CONNECT_IND packet) as well. Wi-Fi channel 1 operates
in 2401–2423 MHz frequency range, which correlates with 0-9 BLE data channels that
operate in 2404-2422 MHz range (Figure 8). It is evident that a strong Wi-Fi signal in
close proximity affected channel map updates. Much of the time, more than one range was
switched off. Channel maps mostly looked like a big range of disabled channels closely
followed by another smaller range.

3.5.2 Away from Wi-Fi networks

Test description: Both master and slave devices were brought to a place where the closest
building was located 150 metres away (Figure 16).

Figure 16. Location of the performed test

Expected result: it is expected that staying away from a big source of 2.4 GHz RF noise,
that is house Wi-Fi access points, will positively affect the quality of communication
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between devices and therefore hopefully let devices communicate using all of the available
channels.

Test process: connection is established between two devices, and then they are lying still,
until enough data is collected. Most of the time, no Wi-Fi signal was being captured,
but occasionally a channel with minimal RSSI would appear on the map and then soon
disappear (Figure 17).

Figure 17. Wi-Fi environment during the test

Results:

Figure 18. iOS channel map away from Wi-Fi networks

The test was running for 13 minutes. The connection was established with all 37 data
channels enabled. The channel map update from Figure 18 happened 30 seconds before the
end of the test, and author failed to notice it on the spot, so Wi-Fi noise at that particular
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moment is unknown, but the communication was performed with all of the channels
enabled for most of the time.

3.5.3 Combined data

Figure 19. iOS instants combined

Figure 20. iOS connection parameters combined

The data was retrieved from a total of around 88 minutes of captured traffic that involved
47 connection initiations. Both the most frequent and the biggest instant was 8. 2M PHY
was turned on within seconds from the connection initiation and has never been observed
to be switched back to 1M PHY or to Coded PHY. Window offset varies a lot in size, but
Window size was always equal to 3, and Interval was never observed to be different from
24.
Several attempts were made to affect Interval value, but none were successful. nRFCon-
nect’s Macros functionality was used to repetitively send 18 byte long strings with maximal
frequency. 18 byte was the maximal length of data fitting in a single PDU, and anything
bigger than that was being split into segments. The frequency ended up being around 12
packets per second. In one test, macros was turned on for 3 minutes and in the other one
for 10 minutes, but no Interval change has occurred.
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3.6 Android

All of the Android tests were performed using Xiaomi Mi 9T Pro as a master and OnePlus
8 Pro as a slave. Both devices were using nRFConnect [37] to communicate with each
other.
As we can see from Figure 21, Xiaomi Mi 9T Pro supports Bluetooth v5 features like LE
2M PHY, LE Coded PHY, and CSA #2

Figure 21. Xiaomi Mi 9T Pro features retrieved from LL_FEATURE_RSP packet

3.6.1 By a router

The same test as described in Chapter 3.5.1 was performed for Android, so the test
description, expected result, and test process are the same. The Wi-Fi environment during
the test is presented on Figure 22

Figure 22. Wi-Fi environment during the test captured with NetSpot
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Results:

Figure 23. Android channel map by a router

Figure 24. Android map ranges by a router

Figure 25. Android time between map updates by a router

15 minutes of communication was captured for the test, and it involved 74 map updates.
During the test, connection was established 9 times, and all of the times, unlike iOS
(Chapter 3.5.1), communication started with all channels activated.
Capturing data for this particular test was rather problematic. OnePlus 8 Pro was observed
to have noticeably lower RSSI compared to Xiaomi Mi 9T Pro. Generally, in less noisy
conditions, when both devices were located within 20 cm from the CC2652R1 board,
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Xiaomi had RSSI between -30 and -40, while OnePlus was rarely going above -60.
CC2652R1 had trouble capturing advertisement packets on channel 37, since it is located
at the very beginning of the 40 channel spectrum (Figure 2). Packets were getting lost,
and it negatively affected Sniffle’s ability to follow advertisements on channels 38 and 39,
since the functionality is dependent on packet reception time measurement. In addition to
that, whenever connection initiation happened, and Sniffle was able to capture it, the first
map update was happening only after about 200 hops. Before it was getting updated - the
full channel spectrum was used for communication. Packets were continuously getting lost,
and even though Sniffle has slave latency parameter internally increased by 3, to tolerate
occasionally missed packets, it was not enough, and connection was getting considered
lost. On one occasion, it took 7 successfully captured connection initiations in a row to get
one that would live through 200 hops until the first channel map update.
Close proximity to the router affected only CC2652R1’s ability to capture packets, though.
Xiaomi and OnePlus were connecting and operating without any noticeable issue.
As it is evident from Figure 23, channels 0-10 were turned off for all 74 updates. Wi-Fi
channel 1 operates in 2401–2423 MHz frequency range, which correlates with 0-9 BLE
data channels that operate in 2404-2422 MHz range (Figure 8). It is evident that a strong
Wi-Fi signal in close proximity affected channel map updates. Much of the time, only one
range was switched off. Channel maps mostly looked like a big range of disabled channels
located at the beginning of the spectrum. Sometimes it was closely followed by another
range that was smaller in size.
55% of the updates happened within 5 seconds from the preceding update.

3.6.2 Away from Wi-Fi networks

The same test as described in Chapter 3.5.2 was performed for Android, so the test
description, expected result, test process and the test environment are the same. Tests were
performed one after another in the same time window.

Result: Test was running for 13 minutes. Connection was established with all 37 data
channels enabled, and channel update has not happened during the experiment.
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3.6.3 Combined data

Figure 26. Android instants combined

Figure 27. Android connection parameters combined

The data was retrieved from a total of around 187 minutes of captured traffic that involved
16 connection initiations. Instants were in the range from 7 to 12, and the most frequent
instant was 9. It was observed in 87.5% of cases. Instants 8 and 10 are 10.9% in total, and
the 1.6% was for other values.
Android, unlike iOS (Chapter 3.5.3), was not switching to 2M PHY right away. Cases
have been observed, where communication was switched to 2M PHY only after 5 minutes
from the connection initiation. It has also been observed to be switched back to 1M PHY.
Coded PHY has never been used. Window offset varies a lot in size, but Window size was
always equal to 1, and Interval was never observed to be different from 36 or 6.
The same test as described in Chapter 3.5.3 was performed for Android to try to affect
interval value and it did not have any effect.
Connection was always initialized with an Interval value of 36. Then, within 0.5 - 3 seconds
Interval changed to 6, the devices exchanged GATT characteristics in 5-10 seconds, and
then Interval was updated back to 36 and did not change afterwards.
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3.7 Android - Gabeldorsche

Gabeldorsche is a Bluetooth stack for Android developed by Google. As of April 2021,
it is under development, and Google has not announced its release date, or version of
Android that will have Gabeldorsche as the main stack yet, but it is already available for
some devices running Android 11 and can be turned on in developer options.

All of the Gabeldorsche tests were performed using OnePlus 8 Pro as a master and Xiaomi
Mi 9T Pro as a slave. Both devices were using nRFConnect [37] to communicate with
each other.
As we can see from Figure 28, OnePlus 8 Pro supports all of the Bluetooth v5 features.

Figure 28. OnePlus 8 Pro with enabled Gabeldorsche stack features retrieved from
LL_FEATURE_RSP packet

3.7.1 By a router

The same test as described in Chapter 3.5.1 was performed for Gabeldorsche, so the test
description, expected result, and test process are the same. The Wi-Fi environment during
the test is presented on Figure 29
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Figure 29. Wi-Fi environment during the test captured with NetSpot

Results:

Figure 30. Gabeldorsche channel map by a router
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Figure 31. Gabeldorsche map ranges by a router

Figure 32. Gabeldorsche time between map updates by a router

13 minutes of communication was captured for the test, and it involved 60 map updates.
Unlike iOS (Chapter 3.5.1), communication started with all channels activated, as it was
with Android (Chapter 3.6.1) and Mac (Chapter 3.8.1).
Unlike Android, iOS, and Mac, it did not have these channels turned off during the whole
connection. There was a period between 203 and 228 seconds of the connection, where all
of the channels were enabled. This behavior is unexpected, but can probably be neglected
due to the stack still being under development. It happened only 1 time out of 60.
As it is evident from Figure 30, channels 0-9 were turned off for 59 updates out of 60,
and channel 10 was turned off 58 times. Wi-Fi channel 1 operates in 2401–2423 MHz
frequency range, which correlates with 0-9 BLE data channels that operate in 2404-2440
MHz range (Figure 8). It is evident that a strong Wi-Fi signal in close proximity affected
channel map updates.
Unlike other platforms, Gabeldorsche only had 1 map range at a time.

As we can see from Figure 32 - 38% of the updates happened within 6 seconds from the
preceding update. The general pattern of the changes was as follows: when the range was
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towards its biggest size, it tried to narrow it down and then in 5-6 seconds made it bigger
again.

3.7.2 Away from Wi-Fi networks

The same test as described in Chapter 3.5.2 was performed for Gabeldorsche, so the test
description, expected result, test process, and the test environment are the same. Tests were
performed one after another in the same time window.

Result: Test was running for 11 minutes. Connection was established with all 37 data
channels enabled, and channel update has not happened during the experiment.

3.7.3 Combined data

Figure 33. Gabeldorsche instants combined

Figure 34. Gabeldorsche connection parameters combined

The data was retrieved from a total of around 45 minutes of captured traffic that involved
24 connection initiations. 94% of instants were equal to 9, and 6% was equal to 8. No
other value has been observed. Gabeldorsche’s pool of available instants seems to be much
smaller than Android’s (Chapter 3.6.3)
Gabeldorsche uses PHY modes exactly like Android does: does not switch to 2M PHY
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right away, never used Coded PHY, has switched back to 1M PHY.
Window offset varies a lot in size, but Window size was always equal to 1, and Interval
was never observed to be different from 36 or 6.
The same test as described in Chapter 3.5.3 was performed for Gabeldorsche to try to
affect interval value, and it did not have any effect.
Like for Android - connection was always initialized with an Interval value of 36. Then,
within 0.5 - 3 seconds Interval changed to 6, the devices exchanged GATT characteristics
in 5-10 seconds, and then Interval was updated back to 36 and did not change afterwards.
Gabeldorsche was never observed to have more than 1 channel map range disabled.

3.8 Mac

All of the Mac tests were performed using Macbook Air 2020, which is advertised to have
Bluetooth 5.0 support, as a master and Xiaomi Mi 9T Pro as a slave. Xiaomi was using
nRFConnect [37], and Macbook was using BlueSee [38] to communicate with each other.
As we can see from Figure 35, Macbook Air 2020 does not support Bluetooth v5 features
like LE Coded PHY and CSA #2, and as it becomes evident from the performed tests, it
does not use LE 2M PHY.

Figure 35. Macbook Air 2020 features retrieved from LL_FEATURE_RSP packet

3.8.1 By a router

The same test as described in Chapter 3.5.1 was performed for Mac, so the test description,
expected result, and test process are the same. The Wi-Fi environment during the test is
presented on Figure 36.
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Figure 36. Wi-Fi environment during the test captured with NetSpot

Results:

Figure 37. Mac channel map by a router

Figure 38. Mac map ranges by a router
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Figure 39. Mac time between map updates by a router

22 minutes of communication was captured for the test, and it involved 16 map updates.
Unlike iOS (Chapter 3.5.1), communication started with all channels activated, as it was
with Android (Chapter 3.6.1) and Gabeldorsche (Chapter 3.7.1).
Wi-Fi channels 1-5 operate in 2401–2443 MHz frequency range, which correlates with
0-17 BLE data channels that operate in 2404-2440 MHz range (Figure 8). It is evident that
a strong Wi-Fi signal in close proximity affected channel map updates.
Most of the time, only one range was disabled, and the 3 times when there were 2 ranges,
it was 1 big range + 1 channel (28 or 29)

3.8.2 Away from Wi-Fi networks

The same test as described in Chapter 3.5.2 was performed for Android, so the test
description, expected result, test process, and the test environment are the same. Tests were
performed one after another in the same time window.

Result:

Figure 40. Mac channel map away from Wi-Fi networks
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Figure 41. Mac channel map ranges away from Wi-Fi networks

Figure 42. Mac time between map updates away from Wi-Fi networks

The test was running for 12 minutes. Connection was established with all 37 data channels
enabled. 4 channel updates happened during the experiment, disabling 1-3 channels at a
time.

3.8.3 Combined data

Figure 43. Mac instants combined
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Figure 44. Mac connection parameters combined

The data was retrieved from a total of around 46 minutes of captured traffic that involved
13 connection initiations.
81% of instants were equal to 7, 16% was equal to 6. Instant values of 12 and 13 were
observed 1 time each.
Interval was never observed to be different from 12.
2M PHY was never observed to be used.
Window offset is mostly 12, and Window size was always equal to 3, and Interval was
never observed to be different from 12.
The same test as described in Chapter 3.5.3 was performed for Mac to try to affect interval
value, and it did not have any effect.

3.9 Linux

All of the Linux tests were performed using ASUS USB-BT500 dongle on Ubuntu 21
with BlueZ Bluetooth stack as a master and Xiaomi Mi 9T Pro as a slave. Xiaomi was
using nRFConnect [37], and Linux was using bluetoothctl utility from bluez-utils pack to
communicate with each other. As we can see from Figure 45, ASUS USB-BT500 + BlueZ
support Bluetooth v5 features like LE 2M PHY, LE Coded PHY, and CSA #2
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Figure 45. ASUS USB-BT500 features retrieved from LL_FEATURE_RSP packet on linux

Author could not organize "By a router" and "Away from Wi-Fi networks" experiments for
Linux, so data was collected in a residential building environment. The goal is to have a
look at other parameters. The Wi-Fi environment during the test is presented on Figure 46

Figure 46. Wi-Fi environment during the test captured with NetSpot

Results:
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Figure 47. Linux channel map by a router

Figure 48. Linux map ranges by a router

Figure 49. Linux time between map updates by a router

Figure 50. Linux instants combined
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Figure 51. Linux connection parameters combined

The data was retrieved from a total of around 68 minutes of captured traffic that involved 5
connection initiations. Both the most frequent and the biggest instant was 10. It was used
88.6% of the time. The second most frequent was instant 9 with 9.3%, and the rest was
instant 6, 7, and 8.
Neither 2M, nor Coded PHYs have ever been observed to be used.
Window offset in 71% cases was equal to 0 and in 39% equal to 36. 2 different values
were observed for Window size: 5 and 8, and Interval was never observed to be different
from 36 or 6.
The same test as described in Chapter 3.5.3 was performed for Linux to try to affect interval
value, and it did not have any effect.
Like for Android (Chapter 3.6.3) - connection was always initialized with an Interval value
of 36. Then, within 0.5 - 3 seconds Interval changed to 6, the devices exchanged GATT
characteristics in 5-10 seconds, and then Interval was updated back to 36 and did not
change afterwards.
One of the 5 connection initiations was noticed to have 2 ranges disabled on the channel
map.

3.10 Windows

All of the Linux tests were performed using ASUS USB-BT500 dongle on Windows 10
as a master and Xiaomi Mi 9T Pro as a slave. Xiaomi was using nRFConnect [37], and
Windows’ native GUI interface was used to discover and connect to Xiaomi device. As we
can see from Figure 45, ASUS USB-BT500 + Windows support the same list of Bluetooth
v5 features as USB-BT500 + BlueZ, like LE 2M PHY, LE Coded PHY, and CSA #2
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Figure 52. ASUS USB-BT500 features retrieved from LL_FEATURE_RSP packet on
Windows

Author was not able to organize "By a router" and "Away from Wi-Fi networks" experi-
ments for Windows, and also was not able to find a GATT client application for Windows
that would allow the connection to last more than 30 seconds, so data was collected in a
residential building environment, and each connection was lasting only 30 seconds, but it
was still enough to collect some data. The Wi-Fi environment during the test is presented
on Figure 53

Figure 53. Wi-Fi environment during the test captured with NetSpot

Results:
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Figure 54. Windows channel map by a router

Figure 55. Windows map ranges by a router

Figure 56. Windows time between map updates by a router
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Figure 57. Windows instants combined

Figure 58. Windows connection parameters combined

The data was retrieved from a total of around 6 minutes of captured traffic that involved 12
connection initiations. Both the most frequent and the biggest instant was 10. It was used
94% of the time, and the rest was Interval 9.
Neither 2M, nor Coded PHYs have been observed to be used. Window offset varies in size,
but for Window size, only 2 different values have been observed: 5 and 8.
Window offset varies in size, but mostly was equal to 0. 2 different values were observed
for Window size: 5 and 8. Interval was never observed to be different from 48 or 6.
Author could not perform the test described in Chapter 3.5.3, so it is unknown if repetitively
sending data can affect interval value on Windows.
Like for Android (Chapter 3.6.3) - connection was always initialized with a big Interval
value. Then, within 0.5 - 3 seconds Interval changed to 6, the devices exchanged GATT
characteristics in 5-10 seconds, and then Interval was updated back to the original value.
The only difference from android is the value of the initial interval. It was 48, instead of
36.
One of the 12 connection initiations was noticed to have 2 ranges disabled on the channel
map.
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The high spike on Wi-Fi channel 4 (Figure 53) was supposed to lead to disabling 9-13 BLE
channels, but has not (Figure 54)) and the reason for that is not clear. Data for Windows
was collected using the same hardware located at the same spot as Linux test and their
channel maps correlate with each other (Figure 47)).

3.11 Summary

One of the common characteristics that all platforms share is that none of them have used
Coded PHY even once. This fact makes it safe to assume that whenever a control PDU
with a 5-byte length specifier in the header is observed, it means that if the current PHY
used is 1M - switch to 2M is about to happen and vice versa.

Windows, Mac, and Linux were found to be using 1M PHY only.

LL_CONNECTION_UPDATE_IND connection parameters were not found to be reacting
to the amount of data exchanged between devices, and the only situation when Interval got
changed - was GATT parameter exchange. The Interval value got decreased to 6 for a short
period of time (5-10 seconds) and then restored to its original value. GATT parameter
exchange was starting within 0.5 - 3 seconds from the initial connection on every platform.
Interval value decrease happened on every platform besides iOS and Mac. iOS and Mac
were using constant Interval values for every connection all the time.

Channel map on every platform was found to be highly influenced by surrounding Wi-Fi
RF Noise.

58



4. Development and evaluation

4.1 LL_PHY_UPDATE_IND

Successful maintaining of synchronization has several prerequisites:

� fact of LL_PHY_UPDATE_IND sending has to be identified
� new PHY mode has to be guessed
� Instant should be guessed

We know from the collected data that no platform is using Coded PHY, therefore observing
this packet with a 100% probability means switching from 1M to 2M PHY or vice versa.
The current PHY mode for a connection is always known, so Sniffle will have to switch to
the other one.

LL_PHY_UPDATE_IND is the only control PDU that has a 5-byte length, so whenever a 9
byte (5-byte payload + 4-byte MIC) long encrypted control PDU is observed, it represents
LL_PHY_UPDATE_IND with 100% probability

We know from the collected data that Instant value across all platforms is within the 6-12
range. Values are not evenly distributed on the range, and each platform has an obvious
most popular value. The most popular value is not the same for every platform, so we need
to somehow identify a platform.

A wrong guess of the Instant value will not lead to losing synchronization with the
connection, but would mean that abs(correctInstant - guessedInstant) number of hops are
missed.
The collected data showed that we can identify a platform by Interval value:

� Interval 24 is only used by iOS
� Interval 12 is only used by Mac
� Interval 48 is only used by Windows
� Interval 36 is shared by Android, Gabeldorsche, and Linux
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Instant value can be guessed according to the platform. Although Android, Gabeldorsche,
and Linux can not be distinguished by this method - luckily, it is not required to pick the
best Instant: Linux can be ignored since it only uses 1M PHY and both Android’s and
Gabeldorsche’s most frequent and therefore most probable Instant is 9.

� For Android - Instant 9 would mean an 87.5% chance of not missing a single hop
� For Gabeldorsche - Instant 9 would mean a 94% chance of not missing a single hop
� For iOS - Instant 8 would mean a 95% chance of not missing a single hop

4.2 LL_CONNECTION_UPDATE_IND

For successful maintaining of synchronization:

� fact of LL_CONNECTION_UPDATE_IND sending has to be identified
� new Interval has to be measured
� Instant value should be guessed
� Window offset existence has to be addressed, since it shifts anchor point
� Window size existence has to be addressed, since may shift anchor point

Although, according to the BT core spec [25], LL_CONNECTION_UPDATE_IND is not
the only control PDU that has 12-byte payload length - as mentioned in the chapter 1.5 -
BT v5.2 is not widespread yet. It means that the fact of LL_POWER_CONTROL_RSP
and LL_POWER_CHANGE_IND packet existence can be ignored for now. We assume
that whenever a 16 byte (12-byte payload + 4-byte MIC) long encrypted control PDU is
observed - it is LL_CONNECTION_UPDATE_IND and we should react accordingly.

If power control features in upcoming years become an obstacle in the identification of
LL_CONNECTION_UPDATE_IND packets - Sniffle can look into FEATURE_RSP (Ex:
Figure 11) packet content. It represents a list of features that devices support. If any of the
2 communicating devices have "0" flag for the "LE Power Class 1" feature - it means that
current identification approach is still applicable for the connection.

Every packet has a "More Data" flag in its header, and it does not get encrypted, since
headers are always exchanged in plain text. More Data flag indicates if there is any more
data to be transferred on the current channel. When the value is False - it is safe to start
listening to the next channel in the channel sequence.
Instant hopping behavior - when Sniffle switches to listening data from the next chan-
nel in the sequence as soon as the More Data flag is received and does not work
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according to Interval value anymore - can be activated with a guessed Interval after
LL_CONNECTION_UPDATE_IND packet is received.
Instant hopping will address issues created by Window offset and Window size, since it
will basically be waiting on the channel and waiting for the data to be received. After
that, it would require just several successfully captured packets to be able to calculate new
Interval value from packet reception timestamps.

The downside of instant hopping is that in case some packet gets lost, Sniffle will wait
forever for the packet to be received. It will result in synchronization loss. Generally,
sniffing should happen according to the hopping Interval, but it is acceptable to switch to
instant hopping mode for a short period of time.

An optimal Instant has to be guessed in order to minimize the time spent in instant hopping
mode. The goal is to minimize the risk of losing synchronization due to a lost packet.

When guessing an Instant for LL_CONNECTION_UPDATE_IND, it is important to
consider the risks of a wrong guess:
In case the guessed value is smaller than the actual one - Sniffle will spend more time in
instant hopping mode than is necessary and in case a packet gets lost - lose synchronization.
In case the guessed value is bigger than the actual one Window offset will come before the
instant hopping mode gets turned on and Sniffle will lose the synchronization right away.
Therefore it is safer to go with a smaller guess, since a bigger guess is a guaranteed failure.
Same principle as described in Chapter 4.1 can be used to determine the platform by
current Interval.

For Interval 36 - the best guess of Instant would be 6. Even though Instant 6 was observed
only on Linux, that is a less popular platform than Android, and only 0.2% of times -
immediate failure is too big of a risk, and it overweights the possibility of losing a packet.
If the environmental conditions lead to packet loss - there are plenty of other reasons that
may lead to losing synchronization.
For Interval 24 - the best guess is 6
For Interval 12 - the best guess is 6
For Interval 48 - the best guess is 9
For Interval 6 - the best guess is 6.

4.3 Evaluation

Implementation of the solution on the Sniffle platform can be found on the following links:
https://github.com/nccgroup/Sniffle/commit/c3ee3b20363ad2d628fb7696e7e6114f530182ba
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https://github.com/nccgroup/Sniffle/commit/4b9fa07b752ab3ae8a883f9ff4898a958bf1eefe

Since this paper is not addressing the channel map update issue - synchronization will be
lost when LL_CHANNEL_MAP_IND packet gets transmitted. Therefore it is not possible
to test this solution on the same platforms that were used for data collection. Nordic
Semiconductor nRF52840 Dongle1 was used in combination with nRF Connect Desktop2

application in order to confirm that the implementation works. What allows nRF52840 to
be used for evaluation is that it does not perform channel map updates at all. It constantly
works with all channels activated. Another feature that makes testing convenient is that
nRF Connect Desktop allows manual triggering of PHY and connection parameter updates.
It also allows controlling certain values (Figure 59).

Figure 59. nRF Connect Desktop PHY and connection parameter update windows

nRF52840 was used as a master, and OnePlus 8 Pro was used as a slave. Devices got
paired, since pairing enables encryption.

After pairing LL_PHY_UPDATE_IND was triggered 50 times by switching from 1M to
2M PHY and back from 2M to 1M 25 times. Sniffle was able to identify every event and
successfully react to them without losing synchronization.

After pairing LL_CONNECTION_UPDATE_IND was triggered 60 times in total. Interval
36 (36 * 1.25 = 45ms) was switched to 6 and back from 6 to 36 - 10 times. Then Intervals
12, 24 and 48 were set 10 times in rotation. Then random Intervals in the range between
15 and 50 were set 10 times. Sniffle was able to identify every event and successfully react
to them without losing synchronization.

1nRF52840 Dongle https://www.nordicsemi.com/Software-and-tools/
Development-Kits/nRF52840-Dongle

2nRF Connect Desktop https://www.nordicsemi.com/Software-and-tools/
Development-Tools/nRF-Connect-for-desktop
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5. Conclusion and future work

This study fulfills the objectives we set in the introduction part:

� Collected and analyzed data for popular Bluetooth stack implementations.
� Found characteristics that were useful for solving connection parameter and PHY

mode updates.
� Provided reliable solution for connection parameter and PHY mode updates.
� Found characteristics that will be useful for future work - solving channel map

updates.

Furthermore, the study successfully answered research questions asked in the introduction:

� Is it possible to affect connection parameters by controlling the data that is being
sent between two devices?

� Is it possible to identify data exchange patterns, that were able to trigger connection
parameter updates, by observing the connection?

� Is it possible to affect channel mapping by producing RF noise?
� Is it possible to correlate Wi-Fi RF noise with BLE channel map?
� Which PHY modes are commonly used and what is the general pattern of switching

between modes?
� How effective is the solution for recovering LL_CONNECTION_UPDATE_IND

parameters?
� How effective is the solution for recovering LL_PHY_UPDATE_IND parameters?

None of the tested Bluetooth stacks’ connection parameters were found to be affected
by the amount of transferred data. There was one scenario when connection interval
got updated - right after the initial connection, it would change to 6 to exchange GATT
characteristics and then soon back to its original value.

Channel map was found to be highly affected by surrounding Wi-Fi RF noise, and channel
map was found to be correlating with it.

Coded PHY has never been observed to be used and whenever PHY mode change has
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occurred - it was either change from 1M to 2M PHY or vice versa.

Provided PHY mode update solution with roughly 90% probability does not miss a single
packet and misses not more than 1-3 hops in less lucky cases.

Provided connection parameter update solution does not miss packets on the merit of
instant hopping, and the risk of malfunction is minimized by smart instant selection.

For further research, it would be interesting to look into tapping into long-lived connections.
Existing solutions do not take into consideration the possibility of channel map updates
and hopping interval changes. The observed frequency of channel map updates is a critical
obstacle for current solutions. They treat the collected data as reliable, while it can not be
trusted to the fullest. This issue has to be somehow addressed.
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