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S U M M A R Y

Cardiovascular diseases are one of the major causes of death in the world.
To understand what is going on inside the heart one should be able to make

conclusions that link the mechanical work done by the heart with the metabolism
of the heart. This thesis focuses on that link at the single cell level. Two ap-
proaches were used to study this relationship: mathematical modeling and ex-
periments done on isolated cells of an adult mammalian heart.

Mathematical modeling helps to understand the underlying processes involved
in the contraction event. Experimental studies on di�erent preparations, from the
whole heart to the single cell level, have shown that the energy consumption de-
pends on a certain mechanical index developed during one beat and that relation
is independent of contraction mode (isometric, isotonic, physiological). Based on
that knowledge, it is possible to estimate the chemical reaction rate constants and
other important parameters using the mathematical model of the contracting cell.
The contraction process of the cell is found to be cooperative. However, including
this cooperativity into the mathematical description has been a problem. This the-
sis gives a solution how to include cooperativity to a deterministic cross-bridge
model in a thermodynamically consistent way.

Using an isolated cell as a sample allows estimating cell properties without the
in�uence of the connective tissue. Also, it gives an opportunity to study cells at
a subcellular level. Intact cell experiments are usually performed under unloaded
conditions. In this doctoral study, cell contraction experiments were performed
under full control of cell lengthening and force generation and, at the same time,
biochemical processes were estimated from the �uorescence signal. As part of
the design of the experimental setup, an algorithm was developed to estimate the
mean sarcomere length from microscopy images in real time.

In summary, the main contribution of this thesis to the �eld of cardiovascu-
lar research is a thermodynamically consistent mathematical description of car-
diomyocyte contraction and an experimental setup for single cell experiments
with full control over cell loading conditions and the ability to measure biochem-
ical parameters in parallel.
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K O K K U V Õ T E

Südame ja veresoonkonna haigused on üheks peamiseks surmapõhjuseks kogu
maailmas.  Sellest   tulenevalt  on oluline õppida paremini  tundma  südant  töös

hoidvaid  mehhanisme.  Selles  doktoritöös on keskendutud südame poolt tehtava 
mehaanilise töö ja selleks kuluva biokeemilise energia seosele ühe raku tasandil.

Töös on  kasutatud  kahte uurimismeetodit  eelneva  seose uurimiseks: matemaati-
list  modelleerimist ja eksperimetaalsete meetodite rakendamist isoleeritud rakkudel.

Katsed, mis on läbi viidud kogu südame preparaadis, lihaskius ja isoleeritud 
rakus, on näidanud, et biokeemiline energia, mida tarbitakse südames ühe kokku-
tõmbe jooksul, on sõltuv teatud mehaanilisest indeksist. Samas ei mõjuta seda sõl-
tuvust kokkutõmberežiim (isomeetriline, isotooniline või füsioloogiline). Kasuta-
des seda katsetest saadud teadmist ja matemaatilise modelleerimise vahendeid, on 
võimalik hinnata keemiliste reaktsioonide kiirusi ja teisi olulisi parameetreid.

Katseliselt on näidatud, et raku kokkutõmbe protsess on kooperatiivne. Selle 
kooperatiivsuse kirjeldamine matemaatilise mudeliga on siiani olnud lahtiseks 
probleemiks. Antud doktoritöös on ära toodud deterministlik ristsillakeste mudel, 
milles on kooperatiivsust kirjeldatud termodünaamiliselt korrektsel viisil.

Et katsetest määrata ühe raku poolt sooritatud mehaanilist tööd ning selleks 
kulutatud biokeemilist energiat, on vajalik kasutada isoleeritud rakke. Isoleeri-
tud südamelihasrakud on vabad sidekoest, mis võib oluliselt mõjutada mõõde-
tavaid mehaanilisi suurusi. Lisaks on üksikut rakku vaadeldes võimalik uurida 
raku sees toimuvaid protsesse. Isoleeritud rakul läbi viidud katsetes ei ole täidetud 
kogu südamele iseloomulikud füsioloogilised tingimused. Selleks, et üht rakku 
vaadelda füsioloogilistele tingimustele võimalikult lähedastel tingimustel, koos-
tati selle doktoritöö vältel katsesüsteem, mis võimaldab kontrollida raku kont-
raktsiooni, kasutades süsinik�ibri tehnikat ja hinnata raku biokeemilisi omadusi 
fluorestsentssignaalist.

Selles doktoritöös on leitud  lahendus proleemile, kuidas  kaasata raku kontra-
heerumist kirjeldavasse  matemaatilisse mudelisse  kooperatiivsus, mis tuleneb kalt-
siumi ja müosiinipea  kooperatiivsest kinnitumisest  aktiinile. Samuti on välja tööta-
tud efektiivne ja  töökindel meetod, mis hindab sarkomeri  pikkust reaalajas, ja mis 
on aluseks, et viia läbi  katseid raku mehaanilisite parameetreite  hindamiseks.
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T H E S I S





1
I N T R O D U C T I O N

The subject of this doctoral study is a contracting cardiomyocyte: one very
small, but very important component of the heart, which works incessantly

and involuntarily as long as the organism lives. Because the fatigue of the heart
would be fatal, myocytes are highly specialized in maintaining a high power out-
put for a long period of time without developing energy de�ciency. The energetic
requirements are mainly met by mitochondrial respiration. The rate of respiration
is accurately regulated so that energy production matches energy consumption.
Investigating this regulation with mathematical modeling and experimental stud-
ies at a single cell level is fundamental for understanding the mechanoenergetics
of the whole heart.

To pump blood, heart cells need to contract. Contraction of the cell is a result
of the shortening of the basic unit of a cell called sarcomere. There are several the-
ories that describe the process of sarcomere shortening [22]. One of the widely
used theory was proposed by A. F. Huxley and R. Niedergerke and H. E. Huxley
and J. Hanson about 60 years ago. Based on �ndings from observing the sarcom-
ere during the shortening of the muscle tissue [9, 10], they proposed the sliding
�lament theory: the muscle tension is generated when the actin �lament slides
along the myosin �lament using the energy from adenosine triphosphate (ATP)
hydrolysis.

In this thesis, the contraction of the single cardiomyocyte is studied via

• mathematical modeling to describe the contraction of the cell theoretically;

• carbon �ber technique to describe the contraction experimentally.

1.1 mathematical modeling

Based on the sliding �lament theory, a number of descriptions of cross-bridge
interactions have been developed [24]. All these descriptions use slightly di�erent
assumptions, for instance a di�erent number of biochemical states, di�erent level
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introduction

of phenomenological modeling, di�erent level of complexity to describe the cross-
bridge cycle, etc.

In this work, the mathematical theory of stochastic processes is used to link
the developed mechanical work of a cell to the biochemistry of di�erent cross-
bridge con�gurations in a thermodynamically consistent manner. In general, two
approaches that are able to ensure thermodynamical consistency are molecular
dynamics (MD) simulations and development of Huxley-type models. When the
ultimate target is the development of a whole heart model, then Huxley-type
models are preferred to describe contracting elements. The MD simulations are
just too time consuming and would require too much of computer resources. In
addition, Huxley-type models allow taking into account the free energy available
from the hydrolysis of ATP, the amount of mechanical work performed by cross-
bridges, and the free energy of di�erent cross-bridge con�gurations (Publication
I) when building up a thermodynamically consistent model.

One of the main assumptions in cross-bridge models is that all myosin heads
are considered to act independently from one another. Based on the experimental
results [33], it has become a general agreement that nearest-neighboring cooper-
ativity exists between cross-bridges. How to include that cooperativity into the
cross-bridge model has been a major problem in the �eld. To circumvent this
problem, phenomenological models are often used. For example, cooperativity
has been included in a phenomenological activation model [34] or assuming that
developed force depends on sarcomere shortening velocity [15]. However, to my
best knowledge, no thermodynamically consistent description of cooperativity
for Huxley-type models has been developed yet.

The aim of this work is to introduce nearest-neighboring cooperativity in a
cross-bridge model in a thermodynamically consistent way (Publication II). For
that, ensembles of cross-bridge groups that are connected by elastic tropomyosin
are de�ned. Within the groups, each cross-bridge is in�uenced by its neighbors
and cooperativity is induced by tropomyosin movement. This assumption leads
to a thermodynamically consistent description of cooperativity, as demonstrated
in the thesis.

1.2 experimental study

To estimate mechanical and biochemical properties of the cardiac muscle, the
whole heart or �ber preparations are often used [3, 27]. However, the use of the
whole heart does not allow describing subcellular activities during contraction.
Also the use of a trabecula is complicated because the experimental protocol is
sensitive to tissue motion. Therefore, the use of single cells seems an ideal solu-
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1.3 layout of the thesis

tion for studying subcellular mechanisms. However, most experiments on single
intact cells are still performed under unloaded conditions, which are far from
physiological conditions.

The aim of this work is to take advantage of the accessibility of isolated cells
and at the same time apply the physiological mechanical load of tissue or heart
preparation. Several research groups have elaborated experimental systems to
control mechanical deformation and developed stress of a single isolated car-
diomyocyte [11, 20, 23] using slightly di�erent approaches. Within this project,
an experimental setup similar to those used in [11, 20, 23] was constructed, with
an additional ability to measure bioenergetics parameters in parallel with me-
chanical control. This is crucial for analyzing energy �uxes during cardiomyocyte
contraction.

For studying the single cell contraction experimentally, it is important to accu-
rately determine the sarcomere length of the cell. For that, an accurate and e�-
cient computational method was developed for determining the mean sarcomere
length from transmission images of a single contracting cardiomyocyte (Publica-
tion III).

1.3 layout of the thesis

In this thesis, intracellular energy �uxes in contracting cardiomyocytes are stud-
ied. For that, a combination of mathematical modeling and experimental tech-
niques is used. A mathematical description of actomyosin mechanoenergetics is
composed with cross-bridge cooperativity incorporated into Huxley-type cross-
bridge models in a thermodynamically consistent way. The description of the
cross-bridge model is outlined in Chapter 2. The experimental part of the study
involved constructing a system that allows simultaneous analysis of the mechan-
ical contraction and bioenergetics of an isolated cardiomyocyte. This approach
makes measurement of parameters describing the biochemical state of a cell at
di�erent workloads feasible. The experimental part is summarized in Chapter 3.
The main conclusions are drawn in Chapter 4.
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2
M O D E L I N G C E L L C O N T R A C T I O N

During my doctoral study, two important aspects were introduced into the
mathematical description of cross-bridge interaction

• the model of Vendelin et al. [34] was extended by incorporating the in�u-
ence of the myosin head rotation into the free energy pro�le of myosin–
actin interaction;

• cooperativity was incorporated into the Huxley-type model in a thermody-
namically consistent way.

2.1 huxley-type cross-bridge model: the basic idea

The basic contracting unit of a muscle, the sarcomere, consists of two types of
protein �laments: a thick �lament, formed mostly of protein myosin, and a thin
�lament, formed from three proteins called actin, troponin, and tropomyosin. Ac-
cording to the sliding �lament theory, the thick and thin �laments slide along
each other using the energy from ATP hydrolysis when the cardiomyocyte is
contracting.

The model of Vendelin et al. [34] is a self-consistent Huxley-type model based
on the T. L. Hill formalism [8] that links the free energy pro�le of the reactions
with the mechanical force developed during the contraction. As MD simulations,
Huxley-type models based on the T. L. Hill formalism allow of a description of
the contraction process in a thermodynamically consistent way.

Cross-bridge, as de�ned by T. L. Hill [8], is a projection of the myosin head
(attached or not) to binding sites on actin. The original Huxley-type model has
two biochemical con�gurations for cross-bridges: detached and attached. The rate
constants that describe the transition between those con�gurations are functions
of relative distance, denoted by x, between the nearest cross-bridge equilibrium
position and the actin binding site. As commonly done, we assume that a cross-
bridge has exactly one head that is able to bind to one actin site. Every cross-
bridge acts independently from other cross-bridges and can be in di�erent bio-
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modeling cell contraction

chemical con�gurations. The attached cross-bridge is assumed to produce elastic
force F, which depends on the distance x, along myosin and actin �laments. Ac-
cording to T. L. Hill [8], this force F is related to the free energy G of the corre-
sponding state: F = ∂G/∂x. This relationship establishes the link between the
mechanical force and chemical reactions. Namely, the ratio of the forward and
reverse rate constants (kA,B and kB,A) between states A and B is determined by
the di�erence in the free energies of the corresponding biochemical states:

kA,B(x)

kB,A(x)
= exp

(
−
GB(x) −GA(x)

RT

)
, (2.1)

where R is universal gas constant and T is absolute temperature.
According to T. L. Hill formalism, cross-bridges are divided into subensembles

of cross-bridges with the same x. Due to the lack of register between myosin and
actin, the number of cross-bridges in the subensembles is the same for any x.

Taking into account the assumption that the cross-bridges can interact only
with the closest actin binding site, the state of the cross-bridges can be described
by fractions nA(x, t) of cross-bridges that are in the same state A at time t in
the subensemble at x. Assuming that the distance between the closest actin bind-
ing sites is d, the fractions nA(x, t) of all possible states are de�ned for x in
the interval (−d

2 , d2 ). At any time t, all cross-bridges are in one of the states∑
A nA(x, t) = 1. Changes in cross-bridge states are induced by chemical tran-

sitions from one state to another or the sliding of actin and myosin �laments
relative to each other with the rate v(t) of sarcomere lengthening. For example,
if A is a detached state and B is an attached state, then the governing equation
for the state A is

∂nA
∂t

+
∂nA
∂x

v(t) = kB,AnB − kA,BnA. (2.2)

See the theory part of Publication II for a more detailed overview of the Huxley-
type cross-bridge model.

2.2 optimizing free energy profiles

The mathematical model of Vendelin et al. [34] comprises three biochemical con-
�gurations for cross-bridges: one weakly bound state W and two strongly bound
force generating states S1 and S2. In [34], the locations of free energies minima of
strongly bound states are assumed to be the same. However, the con�guration of
the cross-bridge is changed during the stroke (transition from S1 to S2) and that
should lead to di�erent free energy minima locations for states S1 and S2.
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2.3 incorporating cooperativity into a huxley-type model

Figure 1 – Scheme of a possible set of free energy pro�les and transition trajectory (black
solid line) from the state where a cross-bridge is in the weakly bound state with ATP attached
to myosin to the weakly bound state where ATP is hydrolyzed.G1,G2 and x1 are parameters
that describe the minimum points of free energy pro�les for the states S1 and S2. Note that
the left scheme describes the model of Vendelin et al. [34] and the right one the model in
Publication I to illustrate the main di�erence between the models. In scheme A correspond
to actin, M to myosin.

To adjust the model of Vendelin et al., a set of free energy pro�les (shown
in Figure 1) with di�erent minimum positions for force producing states of the
cross-bridge were found, so that the model would replicate the linear dependence
between the oxygen consumption and the stress–strain area (SSA) in the cardiac
muscle. A 3-state Huxley-type model with the phenomenological Ca2+-induced
activation model was used for modeling cross-bridge interaction.

The developed mathematical model was �t against experimental data [13] for
isometric contraction at di�erent half-sarcomere lengths as well as the linear
dependence between the SSA and oxygen consumption. Simulation results are
shown in Figure 2. Although the computed stress development of isometric con-
traction is underestimated compared with experimental data, twitch dynamics is
mimicked well. The increase in the maximal stress with the increase in the sar-
comere length is similar to experimental data. The stress development during the
relaxation phase models experimental data without under- or overestimating it
as other simulation results tend to do [16, 21, 25]. Prolongation of the twitch with
the increase of the sarcomere length is reproduced as well.

Details of this model and the result are given in Publication I.

2.3 incorporating cooperativity into a huxley-type model

Huxley-type models assume that each cross-bridge acts independently from all
others. Experimental evidence shows that the binding of Ca2+ to troponin and
myosin head to actin are cooperative [33]. It has been suggested that coopera-
tivity e�ects are due to the movement of tropomyosin around actin [26]. Such a

21



modeling cell contraction

Figure 2 – Results of the simulation performed by the mathematical model. A: Stress in iso-
metric contraction as a function of time at di�erent half-sarcomere lengths (solid lines) com-
pared with experimental measurements (crosses) [13]. B: Total amount of consumed ATP
molecules per myosin head during a cardiac cycle as a function of SSA for isometric and
shortening contractions.

displacement of tropomyosin is a result of Ca2+ [35] and myosin head [1] bind-
ings.

Incorporating nearest-neighboring cooperativity into the description of cross-
bridge interaction has been an open problem in the �eld for a long time. To my
best knowledge, models that are used to describe this cooperativity have often
been MD models or phenomenological models. For example, cooperativity has
been included through the force–length relationship by making the developed
force dependent on the sarcomere shortening velocity [15], or cooperativity from
Ca2+ activation has been used [34].

A thermodynamically consistent description of cooperativity in deterministic
cross-bridge models has been lacking so far. A thermodynamically consistent de-
scription means that the rate constants comply with the principle of microscopic
reversibility. This principle declares that the lowest-energy pathway for the for-
ward direction will be also the lowest-energy pathway in the reverse direction.
In addition, there must be a link between the mechanical work and the energy
available through chemical reactions, as in T. L. Hill [8], where force development
depends on the free energy pro�le. This relationship ensures that even if the con-
�guration of the state is not changed, the movement of the myosin head due to
the shortening of the sarcomere is taken into account. Such a system does not
produce more work than there is energy that the underlying chemical reaction,
ATP hydrolysis, provides to do that work.
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2.3 incorporating cooperativity into a huxley-type model

The original Huxley-type model does not include a Ca2+-activation model.In
Vendelin et al. [34] and Publication I, a phenomenological Ca2+-activation model
that included cooperativity e�ects of Ca2+ binding to tropomyosin was used. This
phenomenological model describes the dynamics of Ca2+ binding to troponin C
as a function of sarcomere length. To characterize the dynamics of Ca2+ during
contraction, the activation function A(t) was used, as in [30, 31]. The activation
function describes stress development and depends on sarcomere length as well as
Ca2+ concentration evolution during the beat. However, the kinetic mechanism
of Ca2+ activation was not given in the phenomenological Ca2+-activation model,
so it can not be considered as a thermodynamically consistent model. Here an
attempt is made to incorporate cooperativity into the Huxley-type cross-bridge
model in a thermodynamically consistent way.

To include cooperativity into the description of actomyosin interaction
(i) the phenomenological model must be replaced with the chemical description

of Ca2+ activation;
(ii) the assumption of cross-bridges independence must be revised so that the

state change of one cross-bridge will in�uence at least the neighboring cross-
bridges.

To avoid using phenomenological approach in the Ca2+-activation model, two
new states are introduced into the mathematical description. Figure 3 illustrates
the di�erence between the descriptions in Publication I and Publication II. The

Figure 3 – Kinetic scheme of actin and myosin interaction used in the three-state Huxley-
type model with phenomenological Ca2+-induced activation and in �ve-state Huxley-type
model.
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modeling cell contraction

description in Publication I consists of one weak binding state W and two strong
binding states S1 and S2. The new description in Publication II introduces state T,
where the myosin binding state on actin is "blocked" by tropomyosin. In addition,
the second strong binding state S2 is split into two states: state S2Ca, where Ca2+ is
bound to troponin and the cross-bridge is strongly bound, and state S2, where the
cross-bridge is strongly bound.

Huxley-type models based on the T. L. Hill formalism of ensembles assume
that cross-bridges act independently from one another. The main hypothesis of
the new description is that cooperativity between cross-bridges is induced by
tropomyosin movement when Ca2+ binds to troponin or the myosin head binds to
actin. In terms of the T. L. Hill formalism, an ensemble is formed from cooperative
cross-bridge groups.

Publication II de�nes the ensemble as a group of �ve consecutive cross-bridges,
as an example. The �rst and the last cross-bridge in the group are always in the
unbound state (Figure 4).

Because tropomyosin connects all cross-bridges in a group, the elastic defor-
mation of tropomyosin due to the binding of calcium to troponin or cross-bridge
to actin binding state will in�uence the free energy of the group. Assuming that
tropomyosin is an elastic string, its movement requires mechanical work. The
treatment of cooperativity involves the formulation of the free energy function
for a set of neighboring cross-bridges that includes the energy required to dis-
place tropomyosin from its initial state to a new state. The transitions of cross-
bridge groups can be induced either by chemical reactions or changes in the half-
sarcomere length. As a result, the kinetics of cross-bridge cycling is described by

Figure 4 – Incorporating cooperativity into sarcomere activation and force generation. Ar-
rows indicate the in�uences of the neighboring binding states due to elastic deformation on
tropomyosin, which connects all cross-bridges in a group, on the binding of Ca2+ or force
generation.
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2.3 incorporating cooperativity into a huxley-type model

the following system of partial di�erential equations for ensemble state density
functions NA(x1, . . . , xq, t):

∂NA
∂t

+
∂NA(x1 + ξ, . . . , xq + ξ, t)

∂ξ

∣∣∣
ξ=0
v =

∑
B

(kB,ANB − kA,BNA) , (2.3)

where kA,B = kA,B(x1, . . . , xq, t) is the rate constant for the transition of the
group from state A to B, v = v(t) is the rate of the half-sarcomere lengthening,
and (x1, . . . , xq) are distances of every cross-bridge from its equilibrium position.

A �ve-state model was optimized against measured values of active stress dur-
ing a beat [13], requiring a match of the end-systolic points of isometric and phys-
iological contraction. In addition, the linear relationship between ATP consump-
tion and SSA for both contraction modes is requitred to match. To demonstrate
that this model can be used to study cooperativity, the force production at di�er-
ent Ca2+ concentrations was also investigated. The developed formalism demon-
strates that it is possible to use deterministic models such as the new �ve-state
model to study the cooperativity of muscle contraction. Details of this model and
the result are given in Publication II.

The main problem faced in describing the actin and myosin interaction is the
realistic description of cooperativity. During this doctoral study, a thermodynami-
cally consistent way to incorporate cooperativity into a Huxley-type cross-bridge
model was developed. Note that this model was composed as an example to show
that the developed theory was able to �t the data reasonably well. However, to
increase the level of cooperativity, the model has to be developed further by for
example enlarging the number of cross-bridges in the group or optimizing kinetic
constants, etc.
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3
M E A S U R I N G C E L L C O N T R A C T I O N

One aim of my doctoral work was to build an experimental setup that would
allow modi�cation of the work loop of a single cardiomyocyte by using the

carbon �ber technique and simultaneous measurement of energetics parameters.
For that, an algorithm for estimating the mean sarcomere length of a cardiomy-
ocyte in real time was developed.

3.1 single cell experiment

To estimate heart muscle mechanical and biochemical parameters under physio-
logical conditions, whole heart experiments have been used [17, 28]. These exper-
iments do not enable estimation of relevant parameters only on the subcellular
level. To tackle the subcellular level heart muscle �bers are used. For example,
experiments have been carried out on the cardiac trabecula [2] and the papillary
muscle [32]. To measure the mechanical properties of the muscle �ber, one end
of the sample is connected to a force transducer and the other end is connected
to a motor or a micromanipulator. To estimate biochemical properties of the mus-
cle �ber the �uorescence signal [4] or a micromechanocalorimeter [6] have been
used. Note that the muscle �ber contains a connective tissue that modi�es the
mechanical properties of the sample, and therefore representative data for a sin-
gle cell are harder to obtain since the corrections taking into account connective
tissue properties have to be applied to the measured data. In addition, estimation
of biochemical parameters of the muscle �ber from the �uorescence signal is af-
fected by the motion artifact. However, motion artifacts can be reduced by using
ratiometric correction [3].

For estimating subcellular properties, a single cell as a sample is preferred. Ex-
periments at the muscle �ber level have shown that nicotinamide adenine dinu-
cleotide (NADH) signal is in�uenced by the simulation frequency [3]. Similar ex-
periments on an unloaded single cell did not show any in�uence of the frequency
[5]. The di�erence between these experiments is that an unloaded single cell is
not at physiological conditions. As the measured data show, for unloaded cells the
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SSA is relatively small and the responsive oxygen consumption is low. Since the
ATP consumption is not highly stimulated, the mitochondrial respiration is low
and noticeable changes in the NADH signal are not expected. To be able to use a
single cell also at physiological conditions, similar approaches have been used as
for muscle �bers. For example the cell was connected to a force transducer and
a motor to estimate the mechanical properties [7]. As a new approach, the car-
bon �ber technique was proposed [29, 36]. This technique uses two carbon �bers
(depending of the purpose of the experiment, one thick (30–40 µm) and one thin
(10 µm ) or two thin �bers) attached to the cell. By connecting the carbon �ber
to micromanipulators, the contraction of the cell can be controlled by applying a
preload or an afterload to the cell. This technique has been used for estimating
various properties of a single cell [12, 14, 18, 19]. The same technique was also
used in this doctoral study.

3.2 setup of the system

Several research groups have built systems to control the stretch and shortening
of a single cardiomyocyte [11, 20]. Compared to the already existing systems, the
main improvement in the system built during this study was making the system
stable and fast enough to be able to replace the feed-forward control over the
force and sarcomere length with feed-backward control.

In our system, shown in Figure 5, images are recorded via an Andor iXon elec-
tron multiplying charge-coupled device (EMCCD) (�uorescence) and an ImperX
charge-coupled device (CCD) (transmission) mounted on a Nikon TiU microscope.
By using two �lter cubes mounted in the turrets on top of each other, we split �uo-
rescence excitation, emission, and near infrared (NIR) transmission light allowing
simultaneous recording of �uorescence and transmission images. The transmis-
sion image is processed in real time to estimate sarcomere length. An electrical
�eld stimulator and carbon �bers are used to control cell contraction. The carbon
�bers are connected to piezotranslators (PZT) mounted on top of micromanip-
ulators. The PZT are controlled in real time by software using the carbon �ber
position or sarcomere length as the input. The setup is controlled by software
developed at the Laboratory of Systems Biology at the Institute of Cybernetics at
Tallinn University of Technology.
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3.3 fluorescence measurements

Figure 5 – A setup for studies of single cell mechanics and energetics (left) and a recorded
transmission image (top right) of a cardiomyocyte with attached carbon �bers together with
estimated sarcomere length dynamics during several beats (bottom right).

3.3 fluorescence measurements

This experimental system allows simultaneous monitoring and analysis of the
transmission images to regulate the work loop of the cell and to collect data from
�uorescence camera for analyzing the energetics changes in the cell.

A wide�eld �uorescence microscope was used instead of a confocal microscope
to avoid motion artifacts. Although the confocal microscope eliminates out-of-
focus light because of point illumination, the use of one plane of the contracting
cell is not su�cient to describe the energy �uxes inside the cell, as during the
contraction di�erent parts of the cell are at the focal plane. When using a wide�eld
�uorescence microscope, all of the single cell is excited at the same time and the
�uorescence is collected from the whole cell. By summing up the collected signal
for every image separately, we can estimate the changes of the energy �uxes in
time.

The system was tested to show its ability to demonstrate the dynamics of �uo-
rescence during a beat, as shown in Figure 6. The response of the cell to an abrupt
change in stimulation frequency is shown in Figure 7.

For testing the system, the �uorescence signal was recorded in cells loaded with
either di-8-ANEPPS or Mitotracker Green dyes, to demonstrate that the method
allows distinguishing the signal that changes within a beat (sarcolemma poten-
tial sensitive di-8-ANEPPS) from the signal that is expected to be constant (Mito-
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Figure 6 – Dynamics of the �uorescence signal during one contraction from a cell. Cells are
simulated at 1 Hz and connected to carbon �bers. They are lifted from the cover glass and are
contracting with the preload of carbon �bers. On the top, images form a cell loaded with di-
8-ANEPPS, Mitotracker Green and auto�uorescence of NADH are shown. In the middle, the
corresponding average �uorescence signal is shown as a solid dark blue line, dashed lines
denote standard deviation. At the bottom, changes in the sarcomere length during the beat
are shown.

tracker Green). The �uorescence signal for NADH from the cells that are allowed
to contract against a small load (only the carbon �bers are attached to the cell,
no force control protocol is used), does not show any signi�cant beat-to-beat
changes. To use higher loads for cells, implementation of the isometric contrac-
tion protocol is required.

The response of the �uorescence signal for NADH to an abrupt change in the
stimulation frequency indicates a change in the intensity of the signal similar to
results in [3]. The change in the stimulation frequency (shown in Figure 7A) at
the 60th second from 0 Hz to 4 Hz and at the 120th second back to 0 Hz leads
to changes in the NADH signal with overshoots. When the simulation frequency
changed from 1 Hz to 4 Hz repetitively (shown at Figure 7B) the overshoots were
not so strong but still the changes in energy consumption were visible. Note that
the NADH �uorescence signal decayed during experiments. This is either due to
the quenching or photobleaching or indicates baseline stability problems with the
�uorescence camera.
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3.4 sarcomere length measurements
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Figure 7 – Dynamics of the NADH �uorescence signal during an abrupt change in the stimu-
lation frequency. A: The stimulation frequency changed from 0 Hz to 4 Hz and back to 0 Hz.
B: The stimulation frequency changed between 1 Hz and 4 Hz.

3.4 sarcomere length measurements

For comparing the �uorescence signal changes at di�erent workloads, it is very
important to be able to measure the sarcomere length accurately. To modify the
work loop, the sarcomere length has to be measured also in real time. To meet
the needs of the experiment, an accurate and e�cient computational method for
determining the mean sarcomere length from transmission images of a single
contracting cardiomyocyte was developed.

In a transmission image of the cardiomyocyte, the sarcomeres appear as re-
peating patterns of darker and lighter regions of Z-disks. The mean sarcomere
length is de�ned as a spatial period of this pattern. The reason for developing a
new method instead of applying the conventional autocorrelation function and
spectral analysis based methods that use Fast Fourier Transform is the systematic
errors of these methods caused by incorrectly handled boundary conditions.

To determine the mean sarcomere length from an image of a cardiac cell, the
new method uses the least square di�erence between the image and its shifted
copy. The minimal di�erence is obtained when the shift between the image and
the copy is close to the mean sarcomere length. To take into account the spatial
dependence of neighboring image pixels, the sarcomere striation pattern content
from the microscopy images is extracted by using a detrend algorithm. All �gures
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in this chapter use the described algorithm for calculating the sarcomere length.
Details of this algorithm are given in Publication III. This algorithm is essential
in using di�erent pre- and afterload protocols to estimate the energy �uxes in
isolated single cells at physiological conditions.
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4
C O N C L U S I O N S

This thesis focused on mechanoenergetical properties of a single heart cell.
The main results are given below.

conclusions from mathematical modeling

I The model of Vendelin et al. [34] was adjusted by incorporating the in�u-
ence of myosin head rotation into the free energy pro�le of actin and myosin
interaction.

II A theory was developed to study the cooperativity of the muscle contrac-
tion in the thermodynamically consistent manner by using a Huxley-type
model. This theory takes into account that each cross-bridge is in�uenced by
its neighbors attached to the same actin �lament and cooperativity is induced
by tropomyosin movement. Muscle contraction is described by an ensemble
of cross-bridge groups. Within a group, all cross-bridges are connected by
tropomyosin. By the binding of calcium or myosin to actin, elastic deforma-
tion of tropomyosin is induced and the free energy of the cross-bridge group
as well as reaction kinetics are in�uenced.

III A cross-bridge model was built as an example to illustrate the developed the-
ory and its ability to reproduce experimental data.

conclusions from experimental studies

I An experimental setup was established that allows modi�cations in the pre-
and afterload applied to a single cardiomyocyte by using the carbon �ber
technique as well as simultaneous measurement of energetics parameters.

II An accurate and e�cient computational method for determining the mean
sarcomere length from transmission images of a single contracting cardiomy-
ocyte was developed. This method uses an unbiased measure of similarities,

33



conclusions

which eliminates systematic errors from conventional autocorrelation func-
tion based methods when applied to the region of interest of an image. A
semianalytical seminumerical approach was used to evaluate the similarity
measure in order to take into account spatial dependence of neighboring im-
age pixels. A detrend algorithm was applied to extract the sarcomere striation
pattern content from the microscopy images.
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Abstract

The aim of this work is to incorporate cooperativity into Huxley-type cross-bridge model
in thermodynamically consistent way. While the Huxley-type models assume that cross-
bridges act independently from each other, we take into account that each cross-bridge is
influenced by its neighbors and cooperativity is induced by tropomyosin movement. For
that, we introduce ensembles of cross-bridge groups connected by elastic tropomyosin.
By taking into account that the mechanical displacement of tropomyosin induces free
energy change of the cross-bridge group ensemble, we develop the formalism for thermo-
dynamically consistent description of the cooperativity in muscle contraction. An example
model was composed to test the approach. The model parameters were found by opti-
mization from the linear relation between oxygen consumption and stress-strain area as
well as experimentally measured stress dynamics of rat trabecula. We have found a good
agreement between the optimized model solution and experimental data. Simulations also
showed that it is possible to study cooperativity with the approach developed in this work.

Introduction

In the heart, the mechanical work is tightly linked to energy conversion processes to ensure that the
main function of the heart - pumping blood - is always possible. As a manifestation of a tight link
between mechanics and energetics in the heart, it has been shown that oxygen consumption (VO2)
of the heart is linearly related to pressure-volume area (PVA) [1]. Pressure-volume area is a specific
area in pressure-volume diagram surrounded by end-systolic PV line, the end-diastolic line and the
systolic segment of the PV trajectory for heart contraction. As a analog of PVA-VO2 relationship
on tissue level, stress-strain area (SSA)-VO2 linear relationship has been demonstrated [2] and can
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be used for estimation of regional VO2 in the heart [3]. Earlier, we have shown that it is possible to
reproduce PVA-VO2 relationship by the finite element model of the left ventricle [4] if the active
properties of myocardium are described by the model that reproduces SSA-VO2 relationship [5].

As a part of regulatory mechanisms involved in the heart function, cooperative length-dependent
activation of actomyosin interaction by calcium has been shown to play a major role in mechanical
response of the heart [6]. While numerous mathematical models of heart contraction have been
developed, accurate description of the cooperativity turned out to be problematic [7]. Among the
developed approaches to model mechanical contraction, the models based on Huxley formalism or
molecular dynamics simulations stand out by ability to link development of mechanical force to
biochemistry in thermodynamically consistent manner [8, 9]. As a result, it is possible to simulate
changes in mechanical force induced by changes in ATP, ADP, and Pi concentrations [10]. When
compared with the molecular dynamics based approaches, deterministic nature of Huxley-type
models makes them attractive for incorporation into mathematical models of the whole heart.
However, while providing a strong theoretical base for linking mechanics and chemistry, Huxley-
type models have been lacking description of cooperativity that would be thermodynamically
consistent [5, 11]. For example, our earlier models while describing actin and myosin interaction in
thermodynamically consistent manner, had a phenomenological description of Ca2+ activation to
describe the sarcomere length dependency of the contraction [5, 12].

The aim of this work is to incorporate cooperativity of Ca2+ activation of actomyosin interaction
into Huxley-type cross-bridge models in thermodynamically consistent way. Here, we give a
description of theoretical framework of the developed approach that incorporates direct interactions
between neighboring cross-bridges. Next, we demonstrate simulations performed by Huxley-type
model using thermodynamically consistent description of the cooperative Ca2+ activation.

Theory

Huxley-type cross-bridge model

Before introduction of treatment of cooperativity, we give a description of the classical Huxley-type
cross-bridge model. For simplicity, let as assume that actomyosin interaction can be described
by three different discrete biochemical states, as in Fig. 1A. This simplification is used only in
the theoretical description. The considered states are as follows. In state T (unbound state), the
myosin binding site on actin is “blocked” by tropomyosin. In state W (unbound active state), Ca2+

is bound to troponin-C and the binding site is “open” for myosin head to bind to actin. Finally, in
state S (strong binding state), myosin head is strongly bound to the actin. The state S is only state
where myosin head is able to generate force. As in [8], a cross-bridge is defined as a myosin head
projection to binding sites on actin characterized by the above mentioned states.

In Huxley-type single-site model [8, 9], the force produced by attached cross-bridge is assumed to
be elastic and it depends on the axial position x of the nearest actin site, relative to model-defined
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Figure 1: Computational model of the cross-bridge interaction. (A) Kinetic scheme of actin and myosin
interaction used in three-state Huxley-type cross-bridge model. (B) Incorporating cooperativity into half-
sarcomere activation and force generation. We consider an ensemble of five consecutive cross-bridges
(binding states), out of which the first and the last ones are always in unbound state as boundary conditions.
Arrows indicate the influences the neighboring binding states due to elastic deformation on tropomyosin,
that connects all cross-bridges in a group, on binding of Ca2+ (transition from T to W) or force generation
(transition from W to S).

origin. For example, the origin could correspond to the position at which cross-bridge does not
produce force in one of the force-producing states. Since cross-bridge and the nearest actin site
have one-to-one correspondence, for brevity, the position of the nearest actin site will be referred
as cross-bridge position in the following text. If d is the length of one regulatory unit (RU — one
troponin-tropomyosin complex and the seven associated actins [13]) of thin filaments, then x is
defined in the range between −d/2 and d/2; d ≈ 36nm [9]. According to T. Hill [8], the force
F produced by the cross-bridge at position x is related to the free energy G of a particular state:
F = ∂G/∂x. Linear dependency of force on x leads to quadratic dependence for free energy,
an assumption that we use throughout of this paper. Regarding this model, as there is no force
associated with the states T and W (FT = FW = 0), the corresponding free energy functions are
constant with respect to x.

Such relationship between mechanical force and free energy provides a unifying link between
chemical reactions and mechanics. Namely, the ratio of the reaction rate constants is determined by
the difference in free energies. For first order transitions between states, say, A and B, described
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by forward and reverse rate constants kA,B and kB,A, respectively, the ratio is as follows:

kA,B(x)

kB,A(x)
= exp

(
−GB(x)−GA(x)

RT

)
, (1)

where R and T stand for universal gas constant and absolute temperature, respectively. For the
considered model in Fig. 1A, A is either T, W, or S. For values of x, where GS < GW (model in
Fig. 1A), the strongly bound state is thermodynamically favorable; otherwise the unattached state
is more favorable.

To describe the contraction of the muscle, we use kinetic formalism developed by T. Hill [8].
According to Hill’s formalism, cross-bridges can be divided into ensembles (called subensembles
in [8]) parameterized by the position x: cross-bridges are in the same ensemble if their positions
are within the range x and x+ dx. For the fixed dx, the number of cross-bridges in ensembles is
assumed to be the same and constant for any x due to the lack of register between myosin and actin.
In a given ensemble (labeled by x), we define nA(x, t) as a fraction of those cross-bridges that at
time t are in a state A. We have:

nT(x, t) + nW(x, t) + nS(x, t) = 1. (2)

Changes in cross-bridge states are induced either by chemical transition from one state to another
or by sliding of actin and myosin filaments relative to each other with the rate v = v(t) of half-
sarcomere lengthening. For example, for state T, this would result in the following governing
equation for nT(x; t):

∂nT
∂t

+
∂nT
∂x

v = kS,TnS + kW,TnW − (kT,S + kT,W)nT, (3)

where kA,B = kA,B(x) are the first order kinetic rate constants for transition from state A to state
B. Similar equations are found for nW(x, t) and nS(x, t).

The integral properties of the muscle, such as developed stress and ATPase rate are found from
integration over ensembles [8]. For instance, the Cauchy stress σa developed by cross-bridges in a
half-sarcomere is an integral force of all cross-bridge states in all ensembles [14]:

σa(t) =
ml

d

d
2∫

− d
2

(nT(x, t)FT(x) + nW(x, t)FW(x) + nS(x, t)FS(x)) dx, (4)

where the m is the number of cross-bridges in the unit volume and l is the length of the half-
sarcomere. Taking into account the force relations of the current model, FT = FW = 0 and
FS(x) = KS(x− xeqS ), we have

σa(t) =
mlKS

d

d
2∫

− d
2

nS(x, t)(x− xeqS ) dx, (5)
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where KS and xeqS are force constant and cross-bridge equilibrium position, respectively, corre-
sponding to force generating state S.

The average cross-bridge ATP consumption rate is

VATP(t) =
1

d

d
2∫

− d
2

(kS,W(x)nS(x, t) + kS,T(x)nS(x, t) (6)

−kW,S(x)nW(x, t)− kT,S(x)nT(x, t)) dx

leading to the total ATP consumption per cross-bridge during a beat

V beat
ATP =

tb∫

0

VATP(t) dt, (7)

where tb is the time period of one beat.

Note that while the thermodynamic considerations limit the ratio of rate constants (Eq. 1), the
choice of one of the rate constant is not limited by the given equilibrium relationship. Thus, kA,B
can depend on position x, half-sarcomere length l, time t, and some other parameters as long as
kA,B/kB,A ratio satisfies Eq. 1.

Cooperativity in Huxley-type model

General principles. For treatment of cooperativity in the model, we assume that the cooperativity
is induced by tropomyosin movement. When Ca2+ binds to troponin-C, tropomyosin will shift
to expose a binding site on actin [15]. Binding of myosin to the exposed binding site will shift
the tropomyosin even further [16]. Since tropomyosin is a spiral protein wrapped around actin
helix, movement of tropomyosin influences its movement in the neighboring RU binding sites as
well. Assuming that tropomyosin is an elastic string, the movement of tropomyosin induced by
binding of Ca2+ or myosin head requires mechanical work. The amount of required mechanical
work depends on the states of the neighboring RU binding sites on actin as these states carry also
the displacement information of tropomyosin at these binding sites. In essence, our treatment of
cooperativity involves formulation of free energy functions for a set of neighboring cross-bridges
that includes energy required to move tropomyosin from its initial state to a new state taking into
account the displacements of tropomyosin at neighboring RUs.

For simplicity, we assume that the cross-bridges are connected by an elastic string representing
tropomyosin (Fig. 1B). Attachment of Ca2+to troponin-C (transition from state T to W) or
attachment of myosin head to binding site on actin (transition from state W to S) deforms the
string altering its stress state. As a result of tropomyosin deformation, depending on the state of
neighbor cross-bridges, attachment (or any other transition of states) can be either less or more
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thermodynamically favorable due to the elastic forces induced by deformation of tropomyosin
before and after attachment.

For illustration, let us consider the transitions of a short sequence of cross-bridges connected with
tropomyosin as shown in Fig. 1B. During attachment of Ca2+ by a troponin-C (transition from
the top to the second row), tropomyosin is elongated between the first and the third cross-bridge
(from the left). Such elongation requires additional mechanical work to be performed on the system
leading to the increase of tropomyosin free energy after attachment. Same applies to the consecutive
attachment of Ca2+ and transition to the strong binding state by one of cross-bridges (the third and
forth rows from the top). However, attachment of Ca2+ to the central troponin-C is simplified due
to the forces induced by tropomyosin deformation (transition to the last row). Thus, as it is shown
in the example, changes in the cross-bridge states can be either hindered or facilitated due to the
elastic deformation of tropomyosin induced by the neighbor cross-bridges.

To introduce cooperativity into Huxley-type model in thermodynamically consistent way, we
assume that the muscle contraction can be described by ensembles of cross-bridge groups. In the
classical Huxley-type models, cross-bridges are grouped into ensembles according to the position
of the nearest actin binding site, as described in previous subsection. Cooperativity between
cross-bridges is taken into account by generalizing the definition of ensembles by including the
influence (state) of neighboring cross-bridges to a particular ensemble of cross-bridges. For that, let
us assume that the states of q subsequent cross-bridges are related, that is, the transition of the state
of one of these cross-bridges depends on the states of other cross-bridges. Ideally, q should be equal
to the number of cross-bridges that are influenced by the same tropomyosin. This would ensure
one-to-one correspondence between the mathematical model and the muscle mechanics. In practice,
however, such a model would be difficult to realize because of its enormous size. Let us define
a ensemble of cross-bridge groups consisting of q cross-bridges such that the positions of cross-
bridges, (x1, x2, . . . , xq), are in a range between (x1, . . . , xq) and (x1+ dx1, . . . , xq+ dxq) for all
members of the ensemble. We denote the states of cross-bridges in a group by A = (α1, . . . , αq),
where αi corresponds to the states of individual cross-bridges. We denote the set of individual
cross-bridge states by S. In our example S = {T,W, S} . To describe the state of cross-bridge
group ensembles, we introduce the ensemble state density function NA(x1, . . . , xq; t), such that

NA(x1, . . . , xq; t) dx1 · · · dxq (8)

gives the fraction of ensembles at time t in group state A and its cross-bridge positions in a range
between (x1, . . . , xq) and (x1 + dx1, . . . , xq + dxq) among all possible ensemble configurations
in terms of group states and cross-bridge position ranges:

∑

A

d
2∫

− d
2

· · ·

d
2∫

− d
2

NA(x1, . . . , xq; t) dx1 · · · dxq = 1, (9)

where summation is taken over all possible states of cross-bridges in a group, that is A ∈ Sq.
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Because the cooperativity between cross-bridges is determined by the movement of the tropomyosin
and q is going to be much smaller than the number of cross-bridges that are influenced by the same
tropomyosin, we need to define also the states of cross-bridges that are immediate left and right
neighbors of the specified q cross-bridges. In this work we assume that the corresponding boundary
cross-bridges are in unbound inactive state and tropomyosin is in the initial relaxed state, i.e. the
boundary cross-bridge is always in state T. In Fig. 1B, the example corresponds to ensembles
formed by q = 3 cross-bridges with the additional boundary cross-bridges highlighted by gray
areas. Although, the requirement of the boundary conditions ruins the one-to-one correspondence
property of the model and the view of muscle, we presume that the cooperativity effects can be
noticed within the possible artifacts introduced by these boundary conditions.

As for cross-bridges in the Huxley-type models, transitions between states of cross-bridge groups
are driven by chemical reactions and the corresponding free energy profiles. It is assumed that all
transformations in the cross-bridge group happen as separate reactions at different time moments
for different cross-bridges within a group. Thus, as elementary processes of the considered system,
chemical reactions involve only one cross-bridge or troponin-C. For example, only one Ca2+

attachment can take place at some time moment, not two calcium molecules binding simultaneously
to the group.

The kinetics and force generation of the cross-bridge group is driven by the free energy change.
Free energy GA of the group in state A is defined as a sum of free energies of all cross-bridges
(Gαi) in the group and free energy of tropomyosin influencing them (UA):

GA(x1, . . . , xq) = UA +

q∑

i=1

Gαi(xi). (10)

In our formulation, we assume that tropomyosin is connected to actin at the locations of troponin
complexes with the same spatial period d as RUs have. For example, when Ca2+ binds, the
tropomyosin moves only at the corresponding connection point with the resulting elastic deforma-
tion of tropomyosin accommodating to the new configuration. In general, the location of myosin
head is stochastic process, so is also subsequent tropomyosin deformation. For simplicity, we
assume that the change of tropomyosin free energy in transition from W to S does not depend on
the binding location of myosin head. With this assumption, we can compute the free energy of
tropomyosin (UA) as if the myosin head always binds at the location of tropomyosin connection
points. As a result, free energy of tropomyosin depends only on cross-bridge group state A and not
on position of each of the cross-bridges (x1, . . . , xq). This is a manifestation of UA not depending
on (x1, . . . , xq) in Eq. 10. The free energy of tropomyosin, with the group of cross-bridges in state
A, is a sum of free energies of all tropomyosin fragments in the group:

UA = UT;α1 + Uα1;α2 + . . .+ Uαq ;T, (11)

where Uα;β denotes the free energy of a tropomyosin string fragment between two neighboring
cross-bridges being in respective states α and β. Thus, we have to define the free energies of all
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possible fragments to determine the system. An example of the free energy formulation is given in
the Methods section as a part of the description of implemented model.

The shortening or lengthening of the half-sarcomere would lead to the same displacement of the
cross-bridges in the group from the closest actin binding sites. This important property of the
system has to be taken into account when considering permissive changes of cross-bridge groups
within the q-dimensional space. As a result, and taking into account Eq. 10, the mechanical force
produced by the group of cross-bridges is the sum of the forces produced by cross-bridges in the
group:

FA(x1, . . . , xq) =
∂GA(x1 + ξ, . . . , xq + ξ)

∂ξ

∣∣∣
ξ=0

=

q∑

i=1

∂Gαi(xi)

∂xi
=

q∑

i=1

Fαi(xi), (12)

where partial derivative of GA is taken with the respect of the permissive changes in the q-
dimensional space.

Taking into account that the cross-bridges groups can undergo transitions induced either by chemical
reaction or changes in half-sarcomere length, the kinetics of cross-bridge cycling is described
by the following system of partial differential equations for ensemble state density function
NA(x1, . . . , xq, t):

∂NA

∂t
+
∂NA(x1 + ξ, . . . , xq + ξ, t)

∂ξ

∣∣∣
ξ=0

v =
∑

B

(kB,ANB − kA,BNA) , (13)

where kA,B = kA,B(x1, . . . , xq, t) is the rate constant for transition of the group from state A to B,
and v = v(t) is the rate of the half-sarcomere lengthening.

Taking into account that only one cross-bridge can perform a transition at any given time, as
specified earlier in the definition of considered elementary processes, kA,B is non-zero only for
such pair of group states A and B where only one cross-bridge is changed (for example, transition
from state TTT to TWT): B = (α1, . . . , βj , . . . , αq) where A = (α1, . . . , αj , . . . , αq) and j is the
index of cross-bridge undergoing a state change. As before,

kA,B(x1, . . . , xq, t)

kB,A(x1, . . . , xq, t)
= exp

(
−GB(x1, . . . , xq)−GA(x1, . . . , xq)

RT

)
. (14)

Taking into account the considered elementary processes and partitioning of the free energy of the
group (Eqs. 10 and 11), it is easy to show that the free energy difference between states A and B
depends only on one cross-bridge position and not on positions of other cross-bridges in the group.
In particular,

GB −GA = Gβj (xj)−Gαj (xj) + Uαj−1,βj + Uβj ,αj+1
− Uαj−1,αj − Uαj ,αj+1 (15)

where xj is the position of the cross-bridge involved in the reaction.
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From NA, the mechanical stress produced by a half-sarcomere can be found similar to the classical
Huxley-type models (Eq. 4). For Cauchy stress σa, the following integral has to be found:

σa(t) = ml

d
2∫

− d
2

· · ·

d
2∫

− d
2

∑

A

NA(x1, . . . , xq, t)FA(x1, . . . , xq) dx1 · · · dxq. (16)

To solve the system Eq. 13 for NA, we introduce distribution function of cross-bridge groups γ and
the fraction of cross-bridge groups nA in state A among groups forming ensemble at (x1, . . . , xq):

γ(x1, . . . , xq, t) =
∑

A

NA(x1, . . . , xq, t), (17)

NA(x1, . . . , xq, t) = γ(x1, . . . , xq, t)nA(x1, . . . , xq, t), (18)∑

A

nA(x1, . . . , xq, t) = 1. (19)

As shown in Appendix (Aim 1), the distribution function γ has the following general form:

γ(x1, . . . , xq, t) = γ0(x1 − a(t), . . . , xq − a(t)), (20)

a(t) =

∫ t

t0

v(τ)dτ, (21)

where γ0 is an initial distribution of the groups at t = t0. Thus, cross-bridge group position in
q-dimensional space is altered only through the changes in half-sarcomere length.

In addition, as shown in Appendix (Aim 2), nA obeys

∂n′A
∂t

+
∂n′A
∂x′1

v =
∑

B

(k′B,An
′
B − k′A,Bn′A), (22)

after coordinate transformation

x′1 =
1

q

q∑

i=1

xi, (23)

x′i = xi − x1, i = 2, . . . , q, (24)

with n′A and k′A,B representing nA and kA,B in a new coordinate system (x′1, . . . , x
′
q). Notice that

n′A dynamics can be solved by integrating system of partial differential equations in t and x′1 while
x′2, . . . , x

′
q are parameters.

By selecting different γ0, different assumptions regarding cross-bridge groups can be tested. For
example, in a classical Huxley-type model, the lack of register between myosin and actin leads to
constant γ0.
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Example. To illustrate how cooperativity would influence free energy profile of the group, let
us consider the example in Fig. 2A. In this example, cross-bridge group with q = 3 performs
a series of transformations from unbound state TTT to producing mechanical force in state SSS
and returning to state TTT. During this process, three ATP molecules have been hydrolyzed to
ADP and Pi. To distinguish the state where the cross-bridge has hydrolyzed ATP, an ’ symbol
has been used next to the state (T’ and W’). Let us follow the hypothetical transition trajectory
as shown in black in Fig. 2A. In the beginning of the process (states TTT, WTT, and WTW),
Ca2+ binds to two troponin-C’s in the group, but do not produce any force. As a result, the free
energy of the group is independent of cross-bridge position. On the transition to state WTS, one
of the cross-bridges produce mechanical force leading to the parabolic relationship between the
free energy and cross-bridge position. Further binding of Ca2+ to the second troponin-C in the
group (state WWS), shifts the free energy downwards, but does not change the steepness of the
relationship. However, formation of the second and the third strong-binding cross-bridge state
(group in states WSS and SSS) leads to the change in the shape of free energy dependency on
cross-bridge position due to the larger force produced by the group. The process is reversed by
subsequent unbinding of the cross-bridges and Ca2+. When we follow the changes in free energy
of the group in time along this hypothetical trajectory, we can illustrate the role of tropomyosin
deformation in free energy of the group (Fig. 2B). Note how addition of tropomyosin deformation
component changes the free energy profile (solid line) if compared with the free energy profile of
the reaction without tropomyosin deformation (dashed). Several reactions are made either more
or less thermodynamically favorable, as it is evident from the changes in steps induced in the free

Figure 2: Scheme of free energy profiles and influ-
ence of cooperativity. (A) Scheme of one possible
set of free energy profiles and transition trajectory
(black solid line) from state where all five considered
cross-bridges are in the unbound state (TTTTT) to
state where three active cross-bridges are in unbound
state with three ATP molecules hydrolyzed in reaction
(TT’T’T’T). (B) Illustration of tropomyosin deformation
influence on free energy of the cross-bridge group en-
semble. The change of the free energy during reaction
is shown for the simulation that takes into account the
tropomyosin deformation (solid line) and for the simu-
lation that does not take it into account (dashed line).
Note that when tropomyosin deformation is considered,
the change in free energy of the ensemble induced by
one of the cross-bridges depend on the states of other
cross-bridges in group.
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energy during transitions from one state to another.

Simplifications used in the implemented model. There are several simplifications to the general
theory presented above that were introduced while implementing the model. To limit the size of the
model, as well as to test its influence we considered the cases where q was 1, 3, or 4.

The next set of simplifications reduces the dimensionality of the model. Namely, if each of the
cross-bridges can be in any of K states (K = 3 for example in Fig. 1 with the state being either
T, W, or S) then the system of partial differential equations describing cross-bridge kinetics (Eq.
13) consists of Kq equations. Those equations have to be solved in q-dimensional space to find
evolution ofNA(x1, . . . , xq, t) in time. While the solution can be obtained by partitioning equations
into a system of 1+1-dimensional partial differential equations with q − 1 parameters, as in Eq.
22, the solution of these equations requires extensive computational time. Additionally, as model
parameters, multi-dimensional rate constants kA,B(x1, . . . , xq, t) have to be specified. While kA,B
are restricted by the free energy difference between states A and B (Eq. 15), this still requires
specification of large number of multi-dimensional functions as a model parameters. In practice,
such formulation leads to very large computational requirements.

To study the effects of cooperativity induced by tropomyosin displacements, we made several simpli-
fications in the implemented model. First, it is assumed that the rate constants kA,B(x1, . . . , xq, t)
depend only on one xi that corresponds to i-th cross-bridge in the group ongoing the change during
the reaction. For example, the rate constant for transition from state TTT to TWT can be written as

kTTT,TWT(x1, x2, x3, t) = kTTT,TWT(x2, t). (25)

Second, we assumed that all cross-bridges positions in the group are equal xi = x0. Note that this
assumption reduces the dimensionality of the system (Eq. 13) and corresponds to the following
choice of γ0:

γ0(x1, . . . , xq) =
1

d
δ(x2 − x1) · · · δ(xq − x1), (26)

with δ denoting Dirac delta function. As shown in Appendix (Aim 2), the model equations are then

∂nA(x, t)

∂t
+
∂nA(x, t)

∂x
v(t) =

∑

B

(kB,A(x, t)nB(x, t)− kA,B(x, t)nA(x, t)) , (27)

σa(t) =
ml

d

d
2∫

− d
2

∑

A

nA(x, t)FA(x) dx. (28)

Results

The following simulations were performed using a five-state model, that detailed description is
given in Methods section. When compared with the three-state model (Fig. 1), the five-state
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model has three force-producing states instead of one. This allows to describe the movement of
myosin head by shifting free-energy minima between two force-producing states and detachment
of calcium from troponin-C while the cross-bridge is in force-producing state.

The aim of these simulations is to demonstrate that the model can be used in practice to reproduce
different dynamic aspects of heart muscle contraction. Here, we fitted the model solutions to
(i) reproduce stress developed during isometric contraction at different sarcomere lengths, (ii)
relationship between ATP consumption and stress-strain area during isometric and physiologic
contractions, and (iii) relationship between end-systolic sarcomere length and stress in isometric
and physiologic contractions.

We compared the optimal solutions obtained by the model with and without cooperativity. The
model with cooperativity had three cross-bridges in the group (q = 3), positioned between
unattached cross-bridges, as shown in Fig. 1B. For the model without cooperativity, same model
equations were used with q = 1 and tropomyosin free energy changes induced by cross-bridge
cycling and calcium attachments were set to zero. As a result, that model neglected influence of
cooperativity and was equivalent to the model without cooperativity, i.e. classical Huxley-type
model formulation.

The optimized simulation results for the model with and without cooperativity are shown in Fig. 3.

During the optimization, the model parameters were varied to fit model solution against measured
developed stress in isometric contraction (Fig. 3A), to obtain the same end-systolic relationship for
isometric and physiologic contractions (Fig. 3B), and to obtain the same and linear relationship
between ATP consumption and stress-strain area (Fig. 3C) for isometric and physiological con-
tractions. The forward rate constants found by fitting for the case with cooperativity are shown
in Fig. 4B. As described in Methods, tropomyosin free energy is given in the model through free
energies of two tropomyosin segment configurations. The values of the free energies found by
fitting of the model solution were UT;W = 0.1RT and UW;S = 0.05RT.

The both models — with and without cooperativity — were able to fit the data reasonably well.
The main difference between the models is in the better reproduction of maximal stress dependency
on sarcomere length during isometric contractions by the model with cooperativity (q = 3) than by
the model without cooperativity (q = 1) . We have also observed that the isometric relaxation phase
is faster when cooperative interaction between cross-bridges is considered (Fig. 3A). However, it
could be due to the differences in the model parameter values, such as rate constants, and cannot be
solely attributed to the effects of cooperativity.

When simulating the end-systolic relationship between developed stress and half-sarcomere length,
the both models had similar end-systolic relationships for isometric and physiologic contractions.
As it is clear from Fig. 3B, in these simulations, the model without cooperativity (q = 1) obtained
the end-systolic relationships that were marginally closer to each other in isometric and physiologic
cases, when compared to the model with cooperativity (q = 3).

We calculated the amount of ATP molecules hydrolyzed during a contraction by each myosin
head and related it to stress-strain area (SSA). For that, ATP consumption by a cross-bridge was
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found (Fig. 3C) and integrated over time. The simulations were performed at different afterloads
(physiological contractions) and different sarcomere lengths (isometric contractions) to obtain ATP
consumption corresponding to different SSA values. In accordance with the experimental data [2],
the calculated relationship between ATP consumed in a beat and SSA is linear and the same for
shortening and isometric contractions (Fig. 3D). The contraction efficiency, as determined by SSA
and ATP consumption calculated by the model, was 74.4% and 61.0% for model with and without
cooperativity, respectively. To estimate the efficiency, the model solution with the maximal SSA was
used and we took into account the myosin ATPase concentration [17] of 0.18 mM (0.18 mol m−3)
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Figure 3: Use of the model with cooperativity between cross-bridges to simulate dynamic properties of the
heart muscle contraction. Here, the solutions obtained with three interacting cross-bridges (q = 3, solid line) or
a single cross-bridge (q = 1, dashed line) are shown. In these simulations, the model parameters were found
by fitting model solution against the experimental data. A: Isometric contraction as a function of time at different
half-sarcomere lengths from 0.95 µm to 1.1 µm compared with experimental measurements [20]. Sarcomere
length is encoded in color, as indicated in the inset. B: End-systolic relationship between sarcomere length
and stress for the isometric contractions are shown. In addition, changes in sarcomere length and developed
stress are shown for physiologic contraction with the end-systolic value indicated by triangle (q = 3) or circle
(q = 1) at different afterloads from 20 kPa to 80 kPa. C: ATP consumption by a cross-bridge during isometric
and physiological contractions (20 kPa). Note how the difference in afterload changes ATP consumption by
a cross-bridge. Here, simulations are shown for half-sarcomere end-diastolic length of 1.05 µm. D: Total
amount of consumed ATP molecules per myosin head during a cardiac cycle as a function of SSA for isometric
and physiologic contractions. Note that the both models reproduce the linear relationship between SSA and
energy consumption.
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Figure 4: Free energy profiles (A) and cross-bridge forward rate constants (B). The model parameters were
found by optimization procedure for the model with cooperativity induced by tropomyosin deformation (q = 3).

and free energy change during ATP hydrolysis of 60 kJ mol−1 [1, 18]. The simulation results are in
good agreement with experimental data. Namely, it was found that chemomechanical efficiency of
cross-bridge cycling is in the range of 60-70% [1].

To find out whether the differences between model solutions in Fig. 3 are caused by the different
model parameters found by the optimization or cooperativity effect, we performed the simulations
with the same model parameters for the models with the different number of active cross-bridges
in a group: q = 1, q = 3, and q = 4. For comparison, we used the set of parameters found by
optimization for the model with cooperativity, q = 3 (Fig. 3). Note that in this case, the parameters
were found with the non-zero tropomyosin free energies UW;T and UW;S. Use of these free energies
lead to modifications in the free energy profile, as illustrated in Fig. 2. For comparison purposes,
we used the same tropomyosin free energies for the model with q = 1. Namely, in this case, a
single cross-bridge that is able to change its state was located between two fixed cross-bridges. As
a result, such case corresponds to non-cooperative model, but it takes into account some changes in
free energy profile induced by the deformation of tropomyosin. Note that when we used the same
model parameters but with zero tropomyosin free energies, the model solution was significantly
disturbed that we attribute to the incompatibility between the rate constants and changes in free
energy profile (results not shown).

As shown in Fig. 5, the results are different for different modes of cooperativity. The models with
cooperativity (q = 3 and q = 4) give the solutions that are very similar to each other. In contrast, the
model without cooperativity (q = 1), the peak isometric force is smaller (Fig. 5A) and sarcomere
length has different dynamics during physiologic contractions (Fig. 5B). The contraction efficiency
was also different for models with and without cooperativity (Fig. 5D). Thus, this example clearly
demonstrates strong effects of interaction between cross-bridges in the same group on model
solution indicating that this approach can be used to study cooperativity of muscle contraction.

To demonstrate that the model with multiple cross-bridges can be used to study cooperativity in Ca2+
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Figure 5: Influence of cross-bridge interaction on force generation and contraction. Here, the number of
interacting cross-bridges was varied from one cross-bridge between the fixed ones (q = 1), to three and
four (q = 3 or 4, respectively) active cross-bridges. The simulations were performed with the same model
parameters, found by fitting for the model with q = 3. The subplots are as in Fig. 3, with the addition of one
more solution (q = 4) marked by line with dots and the end-systolic value indicated by diamond. Due to lack of
influence from the neighboring binding state to free energy profiles, developed stress at the case where q = 1
is significantly lower than other two cases. Simulation results for q = 3 and q = 4 are similar and sometimes
overlapping in the figure.

binding, we calculated the force produced by the cross-bridges for different Ca2+ concentrations.
In these simulations, Ca2+ concentration in the cell was taken constant and the steady-state
solution was found (Fig. 6). According to our simulations, the cooperativity of calcium binding
is rather low in all models with the optimized parameters (Fig. 6A). To check the cooperativity
at different levels of calcium, we calculated the slope from the Hill’s plot (taking derivative from
log(Fnorm/(1−Fnorm)) — log[Ca2+] relationship, Fig. 6B). As clearly demonstrated in Fig. 6B,
the Hill’s coefficient was about 1 for models with optimized model parameters. Note that during
our optimization we did not use experimental force-calcium relationships. To see whether the
larger Hill coefficients can be observed, we analyzed solutions with the larger interactions between
cross-bridges (larger UW;T and UW;S values). Some of these solutions are shown for the model with
q = 3 (solid line) or q = 4 (solid line with bullets) in Fig. 6B. Note how the increase in changes
in free energy of tropomyosin induced by its stretching leads to increase in Hill’s coefficient.
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Intriguingly, when the same model parameters were used for the model with q = 1 (only one
cross-bridge between two fixed cross-bridges, dashed line), the Hill coefficient was always smaller
or equal to one (Fig. 6B). In addition, we observed that the Hill coefficient was consistently higher
at the lower range of Ca2+ concentration (smaller than the concentration required to develop half of
the maximal force) than on the higher Ca2+ concentrations. This is consistent with the experimental
results of Dobesh et al [19] where the similar asymmetry of cooperativity in Ca2+ binding was
reported. Thus, the simulation results in (Fig. 6) demonstrate that cooperativity can be studied by
this approach. However, as all our simulations with calcium binding in steady-state demonstrate, the
model has to be developed further by either incorporating more interacting cross-bridges (increasing
q) or variation of kinetic constants to reproduce high cooperativity of calcium binding observed in
experiments.
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Figure 6: Calcium binding cooperativity measures calculated by the models with the different number
of interacting cross-bridges. Here, the steady state solution of models is shown depending on calcium
concentration with concentration given in arbitrary units at half-sarcomere length of 1.05 µm. The model
solutions are designated by colors with green and blue depending on whether the parameters were found by
fitting the data using q = 3 or q = 1 model, respectively; and by dashed, solid and line with dots, depending
on whether the simulations were done using q = 1, q = 3 or q = 4 model, respectively. A: Normalized
force-calcium relationship found by the model. All solutions demonstrate the low cooperativity indicating that
this aspect of the model has to be refined. B: The Hill coefficient calculated from the slope of force-calcium
relationship in log-log scale. For non-cooperative binding, the slope is expected to be 1 (black dashed line). In
addition to the solutions found for optimized model parameters, we calculated the Hill coefficient for model
solutions with the larger free energy changes induced by tropomyosin deformation (the free energies of
the segments are given in the figure legend). Note how the increase in tropomyosin free energy changes
induced by cross-bridges and calcium binding leads to the increase of the Hill coefficient in the models with
cooperativity effects included (q = 3 and 4) in contrast to the model with only one cross-bridge that can
change its state (q = 1).

Discussion

The main result of this work is the development of thermodynamically consistent approach to
incorporate cooperativity between cross-bridges into Huxley-type models. By extending the
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notation of ensembles to consecutive cross-bridges influenced by the same tropomyosin and taking
into account that mechanical deformation of tropomyosin requires mechanical work, we were able
to derive equations describing the dynamics of cross-bridge interaction. The equations are based
on T.L. Hill formalism and take into account microscopic reversibility. In terms of Razumova et
al [13] nomenclature, the developed formalism describes RU-RU, XB-XB, and XB-RU classes of
cooperativity, where XB and RU refer to cross-bridge and troponin-tropomyosin regulatory unit,
respectively. To illustrate the use of derived formalism, an example model has been constructed
and we demonstrate that it is possible to apply such model to study force generation and ATP
consumption by heart muscle.

The experiments used in our model simulations were based on the same selection as our earlier
simulations [5]. Namely, the model was tested against the data on isometric twitch and ATPase
properties of the heart muscle. While multiple models are able to reproduce isometric force
generation and many other aspects of mechanical contraction of the heart muscle [21] [11] [22], the
link between ATP consumption by cross-bridges and force generation has been difficult to reproduce
[23, 24]. According to large body of experimental evidence, at the same inotropic state, oxygen
consumption of heart is linearly related to pressure-volume area [1]. On tissue level, the same
relationship holds when oxygen consumption is related to stress-strain area [2]. In our earlier models,
we were able to reproduce the relationships on tissue and left ventricular levels [4, 5]. However,
in these models, the activation of cross-bridges was driven by phenomenological description of
troponin-C which included cooperativity effects. While cross-bridge cycling was described in
thermodynamically consistent manner taking into account microscopic reversibility, the dynamics
of troponin-C activation was given as a function of sarcomere length without detailed kinetic
mechanisms involved in calcium activation of the muscle. Such phenomenological description
was sufficient for demonstrating that relationship between pressure-volume area and oxygen
consumption of the muscle can be reproduced using Huxley-type models and highlighted the
importance of twitch duration prolongation with the increase of sarcomere length to reproduce this
property [5]. In this work, we seek for a thermodynamically consistent formalism of cooperativity
effects that would allow to address the mechanistic aspects of cooperativity in future studies.

Many different approaches, with the varying levels of complexity, have been applied to study
cooperativity in the heart muscle contraction [7]. Many models approach cooperativity using
phenomenological descriptions [22]. While these models are advantageous to study contraction
phenomena, there are always concerns on applicability of the models in the corner cases that were
not considered during the model design and parameters estimation. To introduce mechanistic aspects
of cooperativity, several spatial models have been constructed which describe muscle contraction
using Monte Carlo or Ising approaches [7, 25, 26]. While in many models the description of
cooperativity includes variation of forward or reverse rate of one or several reactions depending on
the state of the neighboring cross-bridges breaking the microscopic reversibility, several models
stand out by tracking the changes in kinetic constants induced by neighbor interactions and ensuring
microscopic reversibility of reactions [25, 27]. However, these models have been used only on
steady-state conditions to study cooperative calcium binding. In this work, we describe the model
that ensures microscopic reversibility of the reactions similar to [25, 27] by taking into account that
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deformation of tropomyosin requires investment of chemical free energy. By extending the notation
of ensembles to group of neighboring cross-bridges, we were able to overcome the difficulties of
introducing cooperativity in thermodynamically consistent manner into Huxley-type models [11].

Our approach to introducing cooperativity into the Huxley-type model is similar to the approaches
used by Zou and Phillips [28] as well as Campbell et al [29]. In these models, the free energy
variations induced by the movement of tropomyosin were taken into account through their mod-
ification of the corresponding rate constants in cross-bridge kinetics. As in our study, the state
of the neighbor cross-bridges was taken into account when finding the changes in deformation
of the tropomyosin induced by the transition of the cross-bridge or troponin-C from one state to
another [28,29]. While there is a similarity in thermodynamically consistent description of coopera-
tivity, there are also clear differences between our approach and the earlier models [28,29]. Namely,
by using Huxley-type model and T.L.Hill approach linking the development of mechanical force
with the free energy of the cross-bridge [8], the model ensures that mechanical work performed
by the muscle is strictly consistent with the energy available to the cross-bridge through ATP
hydrolysis. This is in contrast to the models that assume a fixed mechanical force developed by
the cross-bridge in force-producing state that is not related to the deformation of the cross-bridge,
as in [28, 29]. Through theoretical framework developed in our study, it is possible to model the
mechanical contraction of the heart muscle, from cooperative binding of Ca2+ and cross-bridges to
the force development, in thermodynamically consistent manner.

There are several simplifications that were introduced in formulation of the model. As one of
the main simplifications in the model, we assumed that we can describe the position between
equilibrium position of myosin heads and closest binding sites using one variable. Here, we
assumed for simplicity, that the cross-bridge position is equal for all cross-bridges in the same
group. In sarcomere, the same tropomyosin connects actin binding sites that would interact with
different myofilaments. As a result, there is no trivial relationship between cross-bridges binding
to consecutive actin binding sites and the system of partial differential equations (Eq. 13) has to
be solved for q-dimensional fractions NA. Notice that the system of PDEs can be parameterized
using certain coordinate transformation (see Eqs. 22-24) leading to parameterized system of (1+1)-
dimensional PDEs that can be numerically integrated in parallel, and hence, solving the full system
Eq. 13 is feasible. However, for illustration of the Huxley-type model extension presented in this
work, we avoided the parameterization by fixing the cross-bridge positions within one cross-bridge
group relative to each other. As common in the field, we used the single binding site assumption.
Namely, cross-bridge is assumed to be able to attach only to one site on actin, as in [8]. Multi-site
attachment is possible by extending the kinetic schemes of actomyosin interaction as in [30].
However, as opposed to Huxley-type cross-bridge models, we include interaction between cross-
bridges leading to the notation of ensembles that involve a group of cross-bridges. The developed
formalism can be used for more complicated cases than shown in this work. For example, it is
possible to apply the same approach to the case where movement of tropomyosin next to one
cross-bridge induces modification along the tropomyosin influencing all cross-bridges in the group.

In our simulations, we fitted only limited dataset of experiments (Fig. 3). As clearly shown in
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Fig. 6, the model with the found parameter values does not reproduce cooperativity of Ca2+

binding. While higher level of cooperativity has been demonstrated for model solutions with some
other parameter sets, further optimization or model modification is needed to reproduce these data
by the model.

As an application for the developed formalism and the mathematical models based on it, we envision
the use of Huxley-type models for description of muscle active properties in simulations of the
heart mechanics. As we have demonstrated earlier [4], it is possible to incorporate Huxley-type
model into finite element model of the left ventricle. The numerical formulation of the finite
element models of the heart requires finding elastic deformation of the heart wall and, if the active
stress is described using the models that depend on rate of sarcomere shortening, finding the
rate of deformation. Finding elastic deformation and the rate of deformation of the heart wall
requires solution of a system of non-linear equations with deformation and the rate of the different
parts of the wall influencing each other. As a part of iterative process usually used to find heart
wall deformation, the developed active stress has to be calculated when given the deformation
and its rate as an input. While use of Huxley-type models would make this part of calculations
condiderably larger than a use of a small system of ordinary differential equations to describe
active stress generation by sarcomeres, it is possible to run this part of calculations in parallel by
calculating the active stress for each of the finite element nodes separately. With the increase of
computational capacities available for researcher, usually in form of larger computer clusters, we
think that the use of thermodynamically consistent Huxley-type models can help to study the cases
where chemical environment in the cell, such as concentrations of ATP, ADP, inorganic phosphate
and pH, is significantly different from control conditions.

In summary, we present extension of Huxley-type models that describes cooperativity of cross-
bridge dynamics in thermodynamically consistent manner. The developed formalism demonstrates
that it is possible to use deterministic models such as the model described in this work to study
cooperativity of the muscle contraction.

Methods

Model description

Cross-bridge states. In our simulations we consider five-state cross-bridge mathematical model
(S = {T,WCa,S1Ca, S2Ca,S2}) with the kinetic scheme for each of the cross-bridges shown in
Fig. 7. In this mathematical model we have two biochemical states where no force is generated (T
and WCa) and three force-generating states (S1Ca, S2Ca, and S2). Out of these states, WCa, S1Ca,
and S2Ca have Ca2+ bound to associated troponin-C.

Tropomyosin displacement and associated free energy changes. As described in theory, cooperativity
of cross-bridges is introduced by taking into account that the binding of calcium or cross-bridge
leads to a displacement of tropomyosin. Since tropomyosin connects all cross-bridges in a group,
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Figure 7: Scheme of five-state cross-bridge model. There are two biochemical states where no force is
generated: unbound state T, unbound active state WCa, where Ca2+ is bound to troponin-C. The strong
binding state S is splited into three biochemical states where force is generated: S1Ca, S2Ca, where Ca2+ is
bound to troponin-C and S2, where Ca2+ is unbound.

the elastic deformation of tropomyosin will influence the free energy of the group as well as
reaction kinetics. Assuming linear relationship between elastic force and deformation, the elastic
energy of tropomyosin fragment in between neighboring cross-bridge sites that are in state A and
B, respectively, is

EA;B = Utr +

∫ lA;B

d
(ξ − d)NAKtrdξ = Utr +

1

2
NAKtr (lA;B − d)2, (29)

where lA;B is the length of tropomyosin fragment, d is minimal possible length of the fragment that
is equal to the distance between neighboring actin binding sites (36 nm), Ktr is stiffness of single
tropomyosin (21.6 pN/nm, [31]), NA is Avogadro constant, and Utr is elastic energy of relaxed
tropomyosin:

Utr =
NAKtrd

2

2
. (30)

At 37C, Utr ∼ 3400RT. In the considered five-state cross-bridge model, there are three different
positions where tropomyosin can shift, we denote those positions as T, W, S. We have

ET;W = Utr + UT;W, (31)

ET;S = Utr + UT;S,

EW;S = Utr + UW;S.

We assume that the lengthening of tropomyosin is related to tropomyosin displacement by

d2+ < displacement >2=< length >2, (32)
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and that the displacement for transition T→ S is equal to the sum of displacements for transitions
T→W and W→ S, see Fig. 8 :

√
l2T;S − d2 =

√
l2T;W − d2 +

√
l2W;S − d2. (33)

Combining Eqs. 31 and 33, shows that the free energy component UT;S can be calculated from

UT;S = Utr




√√√√√1 +



√
UT;W

Utr
+ 2

√
UT;W

Utr
+

√
UW;S

Utr
+ 2

√
UW;S

Utr




2

− 1




2

. (34)

Since free energies UT;W and UW;S are significantly smaller than Utr, the following approximation
can be used to find UT;S:

UT;S =
(

4
√
UT;W + 4

√
UW;S

)4
. (35)

Cross-bridge kinetics. Cross-bridge formation in muscle fiber, that is the attachment and detachment
of myosin head to actin binding site, is covered by Eq. 27. The force generation was modulated by
calcium, leading to the mix of the first and second order reactions in the model. Thus, Eq. 27 was
rewritten in general form as follows:

∂nA(x, t)

∂t
+

∂nA(x, t)

∂x
v(t) = (36)

∑

B

(kB,A(x, t)nB(x, t)CB,A(t)− kA,B(x, t)nA(x, t)CA,B(t)) ,

where CA,B(t) will be defined below. As described in general theory, only transitions involving
a state change of only one cross-bridge in the group are allowed. Hence, the summation in

Figure 8: Scheme of possible conformations of tropomyosin between two cross-bridges. Here d is the length
of one regulatory unit (36 nm), lTW, lTS and lWS are the lengths of tropomyosin at different conformations.
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Eq. 36 involves only group indexes in the following form: B = (α1, . . . , βj , . . . , αq) where
A = (α1, . . . , αj , . . . , αq).

Factor CA,B(t) depends only on αj and βj and can be written as

Cαj ,βj (t) =





Ca(t) if (αj , βj) ∈ {(T,WCa) , (S2, S2Ca)},
1 if (αj , βj) ∈ {(WCa,S1Ca) ,

(S1Ca,S2Ca) , (WCa, S2Ca) , (T, S2)},
0 otherwise.

(37)

Here, Ca(t) describes Ca2+ transient as follows

Ca(t) =





(
t
Tp

)4
if t < Tp,

e
−
(
t−Tp
Td

)2

otherwise,
(38)

where Tp is the time to peak of Ca2+, Td is characteristic duration time as in [5]. In simulations
model with cooperativity and without cooperativity, we used the same parameters to describe Ca2+

transient (Fig. 9).

The rate constants were partitioned into components describing contribution of tropomyosin free
energy change in reaction hA,B(x), dependence on cross-bridge position fαj ,βj (x) and sarcomere
length pαj ,βj (l(t)), as follows:

kA,B(x, t) = e−
Gβj

−Gαj
2RT hA,B(x) fαj ,βj (x) pαj ,βj (l(t)). (39)

Note that the first term in the product corresponds to the contribution of the free energy change of
the cross-bridge undergoing the state change in the reaction.

The free energy difference of tropomyosin during transition from A to B and its contribution to
rate constants was taken into acount through hA,B(x). Tropomyosin influence was incorporated
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Figure 9: Normalized Ca2+ concentration transient used in simulations.
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into the rate constants by increasing the free energy of the product state of the forward reaction:

hA,B(x) = e−
Uαj−1,βj

+Uβj,αj+1
−Uαj−1,αj−Uαj,αj+1

RT (40)

if (αj , βj) ∈ {(WCa,T) , (S1Ca,WCa) , (S2Ca, S1Ca) , (WCa,S2Ca) , (S2Ca,S2) , (T,S2)}, other-
wise hA,B(x) = 1.

The dependence of the rate constant on cross-bridge position and sarcomere length are symmetric:

fαj ,βj (x) = fβj ,αj (x), (41)

pαj ,βj (l(t)) = pβj ,αj (l(t)). (42)

The dependence of the rate constant on cross-bridge position fαj ,βj (x) was either constant (for
reactions involving calcium binding) or continuous piecewise linear with given nodal points. The
values of the nodal points were found by fitting. The location of the nodal points were as follows.
For transitions between WCa and S1Ca, the nodal points were the boundary points d/2 and −d/2,
S1Ca free energy minimum, and the locations at which free energies of T and S1Ca intersect. For
transitions between S1Ca and S2Ca, the nodal points were the boundary points d/2 and −d/2, S2Ca

free energy minimum (x = 0), the location at which S1Ca and T free energies intersect after S1Ca

free energy minimum. For transitions between S2Ca and WCa, the same nodal points were used
as for transitions between S1Ca and S2Ca. For transitions between S2Ca and T, the nodal points
were the boundary points d/2 and −d/2, S2Ca free energy minimum, the locations at which free
energies of WCa and S2Ca intersect, and the location found as a sum of S1Ca free energy minimum
location and the positive location at which S2Ca and WCa free energies intersect.

Sarcomere length dependence pαj ,βj (l(t)) was introduced only for calcium binding reactions
(transitions between T and WCa, and between S2 and S2Ca) and myosin binding reaction to actin
(transition between WCa and S1Ca). For all other transitions, pαj ,βj (l(t)) was taken equal to one.
For transitions between T and WCa as well as between S2 and S2Ca, pαj ,βj (l(t)) was in the form

pαj ,βj (l) = 1 + pL1αj ,βj
lmax − l
l − lmin

, (43)

where pL1αj ,βj was optimized model parameter, lmax and lmin were 1.1 µm and 0.8 µm, respectively.
For transition between WCa and S1Ca, we defined

pWCa,S1Ca
(l) = exp

(
pL2WCa,S1Ca

(
l − lmin

lmax − lmin

)4
)

+ 1, (44)

where pL2WCa,S1Ca
was optimized model parameter.

Total force and ATP consumption. According to our assumption that only strong binding states
produce force, the Cauchy stress σa developed by the cross-bridges in half-sarcomere is calculated
according to the following equation:

σa =
ml

2d

∑

A

∫ d
2

− d
2

nAFAdx. (45)
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The ATP consumption is given by the cross-bridge cycling rate:

VATP =
1

d

∑

A

∫ d
2

− d
2

δATP (A,B) (kB,AnB − kA,BnA) dx, (46)

where

δATP (B,A) = δATP (A,B) =





1 if index j exists such that
(αj , βj) ∈ {(T,S2), (WCa,S2Ca)},

0 otherwise.

(47)

Then, the total ATP consumption during a cycle is:

V beat
ATP =

1

d

∑

A

∫ Tc

0

∫ d
2

− d
2

δATP (A,B) (kB,AnB − kA,BnA) dx, (48)

where Tc is the period of a beat.

Sarcomere dynamics. In the mechanical protocols where the sarcomere is allowed to shorten or
lengthen, the sarcomere lengthening rate v(t) is found by solving the equation

σa(t) =< predefined stress state > (49)

for v(t) at each integration time step of Eq. 27. For example, for physiological contraction, v(t)
is found such that the force produced by the sarcomere is the same as an afterload during the
shortening phase. In isotonic phase, σa(t) = const. In isometric phase, the rate v(t) is set to zero.

Fitting

Residuals. Model parameters were found by fitting the model solution to experimental data [20]
with the goodness of the fit estimated by the least squares residuals. The least squares residuals
were divided into three parts. The first part was obtained by comparing model solution to measured
isometric force transients during a beat at different sarcomere lengths :

RI =

Nisom∑

i=1

(
Pco(li, ti)− Pex(li, ti)

(Pmax − Pco(li, ti))
√
Nisom/10

)2

, (50)

where Pco and Pex are computed and measured stress, respectively; li is half-sarcomere length; ti
is the time moment for measurement point i; Nisom is the number of measurement points.

The second part of residuals was obtained by comparing the end-systolic points of physiological
contraction at different afterloads with the end-systolic points of isometric contraction. Here, the

Publication II 78



Cross-Bridge Group Ensembles Describing Cooperativity 25

physiological contractions were calculated by the model, and end-systolic points of isometric
contraction were taken from Janssen et al measurements [20]:

RII =

Nisot∑

i=1

(
lesisom(i)− lesphy(i)

(lphy − lmin)
√
Nisot/5

)2

, (51)

where lesisom and lesphy are end-systolic half-sarcomere lengths for isometric and physiological
contractions, respectively; lphy is an end-diastolic half-sarcomere length for the physiological
contraction (1.05 nm); lmin is the minimum length of half-sarcomere (0.8 nm); and Nisot is the
number of different afterloads used in optimization.

The third part of residuals was obtained by comparing the total amount of consumed ATP molecules
per myosin head during a cardiac cycle found by the model with the amount expected from
SSA assuming 65% efficiency [5]. This comparison was done for isometrical and physiological
contractions:

RIII =

NSSA∑

i=1

(
V beat(i)ATP /SSA(i)− η

η
√
NSSA

)2

, (52)

where V beat and SSA are the total ATP consumption and stress-strain area, respectively; η is
0.142 kJ−1 m3 [5]; and NSSA is the number of different afterloads and sarcomere lengths used in
optimization.

Optimization parameters. In the optimization procedure, the model parameters are split into two
sets. In the first set, the model parameter values were preset to certain values and all possible
combinations of these parameter values were considered. For each of the combination of the model
parameter values in the first set, the model parameter values in the second parameters set (see
below) were optimized by the optimization algorithm. The optimal solution was found as one that
had the smallest residual for all considered parameter sets.

The model parameters were divided into the two sets as follows. The first set consisted of five
parameters describing free energy profiles shown at Fig. 4A: GminS1

, x1 defines the value and
location (relative to the S2 minimum) of minimal free energy in state S1Ca; GminS2

is the minimal
free energy in state S2; UW;S and UT;W are components determining the tropomyosin free energy.
For simulations with q = 1, UW;S and UT;W were set to zero.

The second set consisted of parameters describing piecewise linear functions of rate constants of
the cross-bridge transformation reactions (fα,β , Eqs. 41). Without the influence of tropomyosin
and taking into account microscopic reversibility (Eqs. 14), we have six independent cross-bridge
cycling rates for every cross-bridge position. In addition, we assumed that Ca2+ association and
dissociation rate constants are the same regardless to whether cross-bridge is in strong or weak
binding state (transitions between WCa and T or S2Ca and S2). As an example, rate profiles found
after optimization are shown in Fig. 4B.

Optimized parameters for model with q = 1 were used as an initial solution for model with q = 3.
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Numerical methods

The partial differential equations were discretized in cross-bridge position by the first order finite-
difference method. The resulting system of ordinary differential equations was solved by using
the DVODE package [32]. To speed up simulations, the original DVODE routines were modified
to take into account the sparsity of the system and the parts of Jacobian matrix that were constant
during a simulation.

For physiological contractions, the sarcomere lengthening rate v(t) was found by assuming that
the rate is constant for each integration time interval. The rate was varied by hybrd solver from
MINPACK package [33] until the calculated stress at the end of the time interval was the same as
the given afterload. The procedure was repeated for the next time interval by taking the solution
found for the end of the previous time interval as an initial condition. The time interval was taken
initially to 1 ms and was reduced in the case of failure of nonlinear solver by 4 times.

The model parameters were found by minimizing the least squares residuals. The optimization was
performed using the Levenberg-Marquardt algorithm [34] interfaced with the main program using
F2PY [35]. Simulations were performed on the cluster of Linux/Intel Xeon E5-2630L computers.

Supporting Information

Appendix. This appendix derives several equations describing cross-bridge dynamics. The
appendix uses the same notations as the main text with only few new notations defined here.

Aim 1. Derivation of the equation describing dynamics of cross-bridge groups distribution function
γ.

Derivation. The cross-bridge group cycling is described by dynamics of cross-bridge group density
function NA(x1, . . . , xq, t) with

∑

A

∫
NA(x1, . . . , xq, t)dx1 · · · dxq = 1, (A.1)

∂NA(x1, . . . , xq, t)

∂t
+

∂NA(x1 + ξ, . . . , xq + ξ, t)

∂ξ

∣∣∣
ξ=0

v(t) (A.2)

=
∑

B

(kB,ANB(x1, . . . , xq, t)− kA,BNA(x1, . . . , xq, t)),

where kA,B = kA,B(x1, . . . , xq, t) are rate constants between biochemical states, v(t) is the rate of
the contractile element lengthening.
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Let us define

NA(x1, . . . , xq, t) = γ(x1, . . . , xq, t)nA(x1, . . . , xq, t), (A.3)∑

A

nA(x1, . . . , xq, t) = 1. (A.4)

Using this notation, we can rewrite Eq. A.2 as

∂ γ(x1, . . . , xq, t)nA(x1, . . . , xq, t)

∂ t
+ (A.5)

∂ γ(x1 + ξ, . . . , xq + ξ, t)nA(x1 + ξ, . . . , xq + ξ, t)

∂ ξ

∣∣∣
ξ=0

v(t) =

∑

B

(kB,Aγ(x1, . . . , xq, t)nB(x1, . . . , xq, t) −

kA,Bγ(x1, . . . , xq, t)nA(x1, . . . , xq, t)) .

To find γ, we sum up all the equations over all A ∈ Sq. Taking into account property of nA (Eq.
A.4) and that the sum of all reaction rates is zero (there are no sources or sinks for cross-bridges),
dynamics of γ(x1, . . . , xq) is described by

∂ γ(x1, . . . , xq, t)

∂ t
+
∂ γ(x1 + ξ, . . . , xq + ξ, t)

∂ ξ

∣∣∣
ξ=0

v(t) = 0. (A.6)

The solution for Eq. A.6 with initial condition

γ(x1, . . . , xq, t0) = γ0(x1, . . . , xq) (A.7)

is
γ(x1, . . . , xq, t) = γ0(x1 − a(t), . . . , xq − a(t)) (A.8)

with

a(t) =

∫ t

t0

v(τ)dτ. (A.9)

Aim 2. Here we derive equations used to simulate dynamics of cross-bridge groups in the imple-
mented model.

Derivation. In the implemented model, for the choice of γ0 (in main text Eq. 26), γ is time
independent and

∂γ(x1 + ξ, . . . , xq + ξ, t)

∂ξ

∣∣∣
ξ=0

= 0. (A.10)
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The Eq. A.5 simplifies to

∂nA(x1, . . . , xq, t)

∂t
+

∂nA(x1 + ξ, . . . , xq + ξ, t)

∂ξ

∣∣∣
ξ=0

v(t) (A.11)

=
∑

B

(kB,AnB(x1, . . . , xq, t)− kA,BnA(x1, . . . , xq, t)).

The following coordinate transformation

x′1 =
1

q

q∑

i=0

xi, (A.12)

x′2 = x2 − x1, (A.13)

· · ·
x′q = xq − x1, (A.14)

turns Eq. A.11 in to 1 + 1 dimensional PDE:

∂n′A
∂t

+
∂n′A
∂x′1

v(t) =
∑

B

(k′B,An
′
B − k′A,Bn′A), (A.15)

with n′A and k′A,B representing nA and kA,B in a new coordinate system (x′1, . . . , x
′
q).
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Peterson P, Kalda M, Vendelin M. Real-time determination of
sarcomere length of a single cardiomyocyte during contraction. Am J
Physiol Cell Physiol 304: C519–C531, 2013. First published Decem-
ber 19, 2012; doi:10.1152/ajpcell.00032.2012.—Sarcomere length of
a cardiomyocyte is an important control parameter for physiology
studies on a single cell level; for instance, its accurate determination
in real time is essential for performing single cardiomyocyte contrac-
tion experiments. The aim of this work is to develop an efficient and
accurate method for estimating a mean sarcomere length of a con-
tracting cardiomyocyte using microscopy images as an input. The
novelty in developed method lies in 1) using unbiased measure of
similarities to eliminate systematic errors from conventional autocor-
relation function (ACF)-based methods when applied to region of
interest of an image, 2) using a semianalytical, seminumerical ap-
proach for evaluating the similarity measure to take into account
spatial dependence of neighboring image pixels, and 3) using a
detrend algorithm to extract the sarcomere striation pattern content
from the microscopy images. The developed sarcomere length esti-
mation procedure has superior computational efficiency and estima-
tion accuracy compared with the conventional ACF and spectral
analysis-based methods using fast Fourier transform. As shown by
analyzing synthetic images with the known periodicity, the estimates
obtained by the developed method are more accurate at the subpixel
level than ones obtained using ACF analysis. When applied in practice
on rat cardiomyocytes, our method was found to be robust to the
choice of the region of interest that may 1) include projections of
carbon fibers and nucleus, 2) have uneven background, and 3) be
slightly disoriented with respect to average direction of sarcomere
striation pattern. The developed method is implemented in open-
source software.

heart muscle; sarcomere length; microscopy image analysis; autocor-
relation analysis; fundamental period

AS AN EXPERIMENTAL MODEL, isolated cardiomyocytes provide
unique opportunities to study electrophysiology, mechanics,
and bioenergetics. To bring this experimental model closer to
the in vivo environment, mechanical contraction of cardiomyo-
cytes can be induced through electrical stimulation and con-
trolled by attached carbon fibers (23, 22). To induce a mechan-
ical loading protocol on a single cardiomyocyte, carbon fibers
can be moved leading to isometric or shortening contractions.
However, similar to isometric contraction of the muscle fiber
(10), it has been demonstrated that there is a shortening of
sarcomeres in the middle of cardiomyocyte while the distance
between carbon fibers or cell length stays constant (16, 5). Due
to several technical difficulties in performing isosarcometric
contraction experiments using real-time feedback, adaptive
feed-forward control systems are commonly used to control the
distance between carbon fibers leading to an inability to per-

form isosarcometric contraction experiments (16, 5). One of
the technical problems in achieving real-time feedback control
for isosarcometric experiments is the determination of the
mean sarcomere length, the problem that is addressed in this
work. While several methods exist, many of them suffer from
inaccuracies. As demonstrated in this work and earlier by
others (see below), methods based on autocorrelation function
(ACF) and spectral analysis of microscopy images have several
drawbacks that preclude their use in the real-time estimation of
sarcomere length for feedback control of the contraction where
the accuracy of control input such as the sarcomere length is of
importance.

Whatever experimental technique is used for capturing data
with sarcomere length information, various signal analysis
methods have to be applied to estimate the mean sarcomere
length of a cardiomyocyte under a microscope. A common task
for all methods is to quantify some measure of repetition
contained in captured data and relate this measure to the
sarcomere length. For simplicity, we assume that the captured
data are in the form of microscopy images acquired with a
high-speed camera. This is also a practical simplification as
transmission images with sarcomere length information addi-
tionally contain carbon fiber positional information that is
needed for mechanical loading protocols. This information
would not be readily available when using, for instance, laser-
light diffraction-based techniques (7, 9, 11).

There are several requirements for the method of sarcomere
length determination to make it useful in real-time control of
cardiomyocyte contraction. First, it must be accurate at sub-
pixel resolution to allow the usage of faster cameras that have
smaller resolution parameters. Second, the method must be
robust to a selection of region of interest (ROI) size. Using
smaller ROI facilitates localized estimation of the mean sarco-
mere length as well as consumes less computational resources
that may be essential for real-time control protocols. Because
of the exact alignment of ROI to the sarcomere striation pattern
is practically impossible due to continuous variations of the
sarcomere orientations during contraction, the method must
also be robust to the selection of ROI orientation. Third, the
method must be robust in regions of ROI where the sarcomere
signal is weak or even absent due to nonfavorable optical
conditions and cell morphology or due to the presence of some
external objects such as carbon fibers holding a cardiomyocyte.
Finally, the method must have efficient implementation to
ensure that the mean sarcomere length is determined before the
next image frame from a high-speed camera arrives.

The sarcomeres appear in a transmission image of a cardio-
myocyte as repeating patterns of darker and lighter regions of
Z-disks and I-A-bands, respectively, forming a sarcomere stri-
ation pattern. The mean sarcomere length is defined as the
spatial period of this pattern.
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Several systems exist that can measure the mean sarcomere
length from microscopy images in real time. The software
SarcLen provided by IonOptix employs a fast Fourier trans-
form (FFT) to determine the mean frequency of sarcomere
spacing (Sarclen Algorithm, Technical Report, IonOptix,
2010). The software HVSL by Aurora Scientifica implements
similar FFT-based algorithm as well as two ACF-based algo-
rithms (Instruction Manual: Model 901A, Aurora Scientific,
2008). In the ACF-based algorithms, the sarcomere spatial
frequency is determined either by applying an FFT-based
algorithm to the ACF or by fitting it with a sine function with
the frequency corresponding to the mean sarcomere spatial
frequency. Both systems can measure sarcomere length at
subpixel resolution by using quadratic approximation at the
peak of the discrete frequency spectrum. However, in the
FFT-based methods, the accuracy of the mean sarcomere
length estimate strongly depends on a mismatch of pixel values
at ROI ends due to the extension of ROI into periodic function,
as FFT-based methods inherently do. In addition, the mismatch
of pixel values at ROI boundaries changes during the cardio-
myocyte contraction making it impossible to compensate such
boundary effects, for example, by varying the signal length.
These boundary effects can be observed, for example, in the
mean sarcomere length evolution during the contraction: the
sarcomere length rate may contain spurious peaks (Instruction
Manual: Model 901A, Aurora Scientific, 2008), especially
when measuring sarcomere length from a relatively small ROI.
To suppress the boundary effects of the FFT-based methods,
one can select a longer ROI that contains more sarcomeres and
use Hann window filtering (4) or use ACF-based methods, as
the above-mentioned commercial systems do.

The aim of this work is to develop an accurate and efficient
computational method for determining the mean sarcomere
length from transmission images of a single contracting cardio-
myocyte and provide its implementation in an open-source
software package. The developed method is first evaluated on
using artificial signals with know periodicity and then is
applied to a sequence of microscopy images of a cardiomyo-
cyte taken during the contraction. Various sensitivity proper-
ties of the mean sarcomere length are analyzed to estimate the
applicability of the developed method in practice. Finally, two
example experiments are provided where the mean sarcomere
length is estimated while varying preload and stimulation
conditions.

GENERAL DESCRIPTION OF THE MEAN SARCOMERE
LENGTH DETECTION ALGORITHM

There are different kinds of errors that determine the
accuracy of the mean sarcomere length estimated from a
microscopy image: 1) imperfect objective field caused by
uneven illumination and presence of objects other than
sarcomeres, 2) restrictions and uncertainties in acquisition
process leading to sampling errors and noisy data, and
3) systematic errors from used algorithms.

This work aims at establishing the best algorithm that is
robust to errors in input data and is exact for perfectly periodic
input data, that is, the best algorithm must have no systematic
errors.

Main Algorithm

In simplified notation, as a basic algorithm to determine the
mean sarcomere length of a cardiomyocyte, we propose to use
least squares difference between the image and its shifted copy.
Indeed, in the ideal case with the periodic signal on the image,
shifting the image by one period would lead no difference
between the original and shifted copy. In reality, we expect that
the minima of the least squares difference will be obtained
when the shift between image and its copy is close to the mean
sarcomere length value. In the following text, we will denote
the proposed algorithm as a “method of current work.”

For comparison of the results of current work we use two other
conventional methods for estimating the mean sarcomere length.

The first method, labeled as the “Fourier spectrum” method,
is based on calculating the power spectrum of a signal. The
maximum point of the power spectrum is related to the funda-
mental spatial frequency of the signal, which, in turn, is
inversely proportional to the fundamental period, i.e., the mean
sarcomere length when applied on the transmission image of a
cardiomyocyte. The second method, labeled as the “ACF”
method, is based on calculating the ACF. The first positive
maximum point of the ACF is related to the fundamental
period of the signal and can be used to estimate the mean
sarcomere length.

The main difference between the algorithm proposed in this
work, and “Fourier spectrum” and “ACF” methods, is in the
treatment of the boundaries of the image. Let us assume that
the sarcomeres are aligned along the image lines. As it will be
demonstrated in RESULTS, “Fourier spectrum” and “ACF” meth-
ods suffer from the difference of the signal on the opposing
boundaries of the image leading to the systematic error in the
mean sarcomere length estimation.

Subpixel Resolution

In addition to the performance of the underlying algorithm,
the accuracy of the mean sarcomere length is strongly influ-
enced 1) by the size of pixels of microscopy images and 2) by
the number of pixels containing sarcomere striation pattern
data. These parameters are especially important because mi-
croscopy imaging provides a rather sparse representation of the
sarcomere striation pattern. For example, in a typical micros-
copy image of a rat cardiomyocyte (see MATERIALS AND METH-
ODS), a single sarcomere unit is represented only by four or five
pixel values per image line as determined be the ratio of a
typical sarcomere length (1.8 �m) and pixel size (0.4 �m). On
the other hand, the area within a microscopy image of cardio-
myocyte where sarcomere striation pattern is more-or-less
uniform and well visible, is always restricted, first, by the
overall size of a cell; second, by variable morphology of the
cell; and finally, by the presence of external objects such as
carbon fibers used to fix the cell. Under these restriction of data
acquisition, we aim at resolving the mean sarcomere length of
a cardiomyocyte with subpixel resolution. For that we use
piecewise linear representation of the object field under mi-
croscopy; compare this to the actual piecewise constant repre-
sentation of the object field where the neighboring pixels are
considered unrelated. By using linear interpolation we could
derive analytical equations that allow us to estimate the mean
sarcomere length with subpixel resolution using all three meth-
ods considered in this work.
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Image Filtering by Detrending

Assuming that the cardiomyocyte is aligned along the image
lines, a typical line profile of a microscope transmission image
of a cardiomyocyte contains variations that have different
origins: sarcomere striation patterns, nuclei, external objects,
etc. For our analysis, it is important to separate variations in
1) image intensity induced by periodic intracellular structures
and 2) background. To decompose a sample sequence into the
corresponding oscillatory and slowly varying parts, we use
a simple but efficient method that takes advantage of know-
ing the spatial period of oscillations, that is, the initial
estimate of the mean sarcomere length. For that, images are
blurred with the kernel that has a half-width of �1/10 of sarco-
mere length, and through processing of local maxima, the oscil-
latory part is extracted. The performance of the algorithm is
described in RESULTS and details are given in APPENDIX.

MATERIALS AND METHODS

This study develops a method for estimating the mean sarcomere
length of a cardiomyocyte from a transmission image in real time.
Here, experimental and numerical methods are described. A mathe-
matically rigors description of the algorithms is given in APPENDIX.

Ethics Statement

Animal procedures were approved by the Estonian National Com-
mittee for Ethics in Animal Experimentation (Estonian Ministry of
Agriculture).

Cardiomyocyte Isolation

Adult outbred Wistar rats of both sexes weighing between 300 and 500
g were used in the experiments. Cardiomyocytes are isolated as described
by Sepp et al. (20) with modifications from Jepihhina et al. (8).

Solutions

Cells were imaged in a HEPES-Tyrode solution containing the
following (in mM): 137 NaCl (71379; Sigma-Aldrich), 5.4 KCl
(P5405; Sigma-Aldrich), 2.0 CaCl2 (21097; Sigma-Aldrich), 0.5
MgCl2 (63068; Sigma-Aldrich), 0.33 NaH2PO4 (Fluka Analytical;
71633), 5 HEPES (H3375; Sigma-Aldrich), and 5 glucose (158968;
Sigma-Aldrich), pH 7.4 adjusted by NaOH (30531; Fluka Analytical)
at 25°C.

Imaging

Microscope experiments were performed on an inverted Nikon
Eclipse Ti-U microscope (Nikon, Amstelveen, The Netherlands)
equipped with a high-speed CCD camera (IPXVGA210-LMCN;
ImperX), with a �40 long working distance objective (CFI S Plan
Fluor ELWD 40�/0.6; Nikon).

To ensure the immobility of cardiomyocytes during contraction we
used a carbon fiber technique (22) with bidirectional control setup (5).
Carbon fibers (Tsukuba Material Information Laboratory) that were
mounted in glass capillaries (TW150–3; WPI, Sarasota, FA) were
attached to an isolated cardiomyocyte using two micromanipulators
(PatchStar Micromanipulator; Scientifica, East Sussex, UK). For ma-
nipulating carbon fibers, nanopositioners (Nano-OP100; MCL) were
mounted to micromanipulators. For field stimulation, we used stimu-
lator (module 2100; A-M Systems). For example experiments, the
carbon fibers were coated with a biological adhesive, MyoTak (Ion-
Optix, Dublin, Ireland), to improve their attachment to cardiomyo-
cytes.

Solution with cells was placed on a cover glass of 0.15 mm in
thickness (CS-24/50; Warner Instruments, Harvard Apparatus). The

cover glass was coated with 2-hydroxyethyl methacrylate (Sigma-
Aldrich, P3932) to prevent the adhesion of cardiomyocytes.

Supporting Software

The algorithms for detrending image arrays and estimating the
fundamental period of images were implemented in C for efficiency
and exposed to Python using f2py (18) for efficient prototyping. The
source code is available in the IOCBio Google Code project (http://
iocbio.googlecode.com/). The source code of integrals of piecewise
polynomial functions was generated using Sympycore (http://sympycore.
googlecode.com/). To compute FFT of sequences, we used single
threaded double precision FFT routines from the FFTW software
library (2).

Hardware

The tests for measuring the timings of the algorithms considered
(the mean sarcomere length estimation and FFT) were performed on
a Ubuntu Linux computer with a dual-core AMD Phenom(tm) II X2
550 CPU and 4 GB RAM.

RESULTS

In this section we present the following findings of this
work: 1) conventional ACF-based sarcomere length determi-
nation methods introduce systematic errors when applied to
images; the current work is providing a method that does not
produce these systematic deviations. 2) The method of current
work is applied to microscopy images for determining the
mean sarcomere length of a contracting cardiomyocyte. We
describe the corresponding procedure, analyze sensitivity of
the method to different uncertainties that are inherent to the
corresponding experimental conditions, and compare the dy-
namics of the mean sarcomere length time evolutions obtained
from different methods: the method of current work and two
methods based on discrete ACF and Fourier spectrum analysis,
respectively. Finally, we demonstrate the method of current
work on estimating sarcomere lengths for two example exper-
iments of cardiomyocytes.

General Properties of Used Algorithms

ACF has a systematic error in sarcomere length estimation.
As a simple example, let us assume that sarcomeres induce
perfectly periodic image with transmission signal on each line
equal to simple sinusoidal function, f(x) � sin(2�x/P). Clearly,
the period P corresponds to the sarcomere length. To develop
methods for estimating the mean sarcomere length, Pest, from
an image with periodic content, we consider three approaches:
1) the method of current work that assumes that image has
strictly finite size, 2) the conventional ACF-based method that
inherently assumes that image length is made infinite by
zero-padding, and 3) the conventional periodic ACF-based
method that inherently assumes that image length is made
infinite by repeating the image periodically in space. (The
corresponding similarity measures that define these three meth-
ods, are FE, FA, and Fperiodic

A , respectively, all defined in
APPENDIX.) As a first example, we will estimate sarcomere
length assuming that the signal is known perfectly within every
pixel (a pixel carries the signal as a function rather than a single
value) and the integrals corresponding to each of the methods
can be found analytically. In other words, there are no artifacts
induced by pixelation of the image. The defects from pixela-
tion are demonstrated by the second example.
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The relative errors of the period estimates are shown in Fig. 1
for three different lengths (N) of image lines. While the length
N in the following example will be in pixels, here it is in
arbitrary units due to the perfect image resolution used in this
example. As seen on the plot Fig. 1A, the period estimated by
ACF-based methods is modulated. The length is underesti-
mated and overestimated, depending on the relative length of
the signal period and the image line. Using the method pro-
posed in the current work, however, always results in an exact
period (relative error is identical to zero), regardless of the

length of the image line or the choice of signal extension at
ROI ends.

Note that the increase of modulation amplitude of Pest with
the increase of P is directly related to the mismatch of signal at
the opposing ends of the image line that all ACF-based meth-
ods inherently fail to handle. Indeed, from one hand, the
number of repetitive patterns in a signal is proportional to N/P,
and on the other hand, the contribution of repetitive patterns to
the formation of ACF signal is proportional to the number of
repetitive patterns; therefore, the relative contribution of mis-
matching boundary conditions to the ACF signal is greater
when the number of repetitive patterns is smaller, or equiva-
lently, P is larger.

Finally, we note that the modulation frequency of Pest is
increasing when increasing the length of interval N. In linearly
varying period P, the modulation frequency will manifest itself
as plateaus in the plot of estimated period Pest (result not
shown).

Defects from image representation by pixels. In practice,
image intensity is given at discrete points and exact analytical
evaluation of similarity measures used to determine the sarco-
mere length (as used in Fig. 1A) is not possible. To be able to
evaluate sarcomere length at subpixel resolution, we use linear
interpolation of the signal between pixels. The inaccuracy of
piecewise linear approximation, however, introduces specific
errors in the estimated sarcomere length. To demonstrate this,
we consider again an image represented by sinusoidal function
(see above) and use its values determined on N pixels in an
image line. Similar to the above approach, we keep the number
of pixels fixed and vary P. Note that the corresponding inte-
grals are evaluated using semianalytic, seminumeric approach
(see APPENDIX). The relative errors of the corresponding esti-
mates are given in Fig. 1B for three different lengths of image
lines. We see that the usage of linear interpolation introduces
Pest oscillations around the expected sarcomere length for all
considered methods.

The estimation errors of sarcomere length, manifested by the
oscillations of Pest, have two components. One is from mis-
matching boundary conditions that are the cause of increasing
modulation amplitude when P is increased (see previous anal-
ysis on continuous signal functions). Note that this component
is present, and it dominates, in the case of both ACF-based
methods. The second component is due to piecewise linear
approximation that has greater influence when the number of
points per repetitive pattern is small, that is, when the repre-
sentation of a signal function via piecewise linear interpolation
is less adequate. With the increase of P, the errors from
piecewise linear approximation decrease because the quality of
piecewise linear representation increase. The outcome of this
analysis is exemplified in Fig. 1B by the curve corresponding
to the method of current work.

Applications to Images of Cardiomyocyte

In the following we analyze different methods for estimating
the mean sarcomere length of a cardiomyocyte. The methods
are applied to microscopy images of a contracting cardiomyo-
cyte that are held in microscope focus using two carbon fibers.
Below we analyze in detail the case where the cardiomyocyte
has no load applied other than the force generated by the
elasticity of deforming carbon fibers. Finally, two example
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Fig. 1. Sensitivity test of sarcomere length estimation algorithms to boundary
conditions of a continuous function (A) and its piecewise linear approximation
(B). Continuous function corresponds to “transmission image” (with length N)
intensity having a form f(x) � sin(2�x/P) where P is the exact period and 0 �
x � N � 1. The continuous function is then approximated with a linear spline
having pixel values fi � sin(2�i/P), i � 0; . . . . ; N � 1. A and B show the
relative error of the period estimate Pest, Pest/P � 1, using three different
methods, indicated with different line colors, and for different number of single
sine waveforms per domain length, defined as the ratio N/P, and on plot
indicated with different line styles. A: note that with N fixed and varying P the
estimates predicated by the autocorrelation function (ACF) and periodic ACF
analysis methods have modulated systematic errors due to imposed periodic
boundary conditions: when for given N and P, the boundary values and slopes
of f(x) at different ends are different, the error will be large, and when they are
close, the error will be small. With the method established in this work, the
estimated period is equal to the exact period for all N and P values. This
indicates that this method is insensitive to the possible mismatch of boundary
values at different ends of image lines. B: estimated periods from the all
considered methods are modulated. For the method established in this work,
this modulation diminishes for longer waveforms (larger P) because the linear
approximation error will be smaller regardless of the number of waveforms per
domain length (lines for different span, N, almost coincide). In contrast, period
estimates from ACF and periodic ACF analysis methods have larger modula-
tion amplitudes that will increase for longer waveforms. This is due to the
mismatched boundary conditions as shown in A.
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experiments with different preload and stimulation conditions
on cardiomyocytes are presented.

Estimating the mean sarcomere length from a microscopy
image of a cardiomyocyte. The procedure of estimating the
mean sarcomere length of a cardiomyocyte is exemplified in
Fig. 2 and explained as follows. The procedure starts with
acquiring a transmission image of a cardiomyocyte (Fig. 2A)
and selecting a ROI (Fig. 2B) for subsequent image prepro-
cessing step. The aim of the preprocessing step is to discard
any nonperiodic content from the ROI image. For that we use
the detrend algorithm (Fig. 2C, see APPENDIX for detailed
description) that decomposes each line of the ROI image into
oscillatory part (Fig. 2D) and slowly varying part (Fig. 2E).
The image analysis continues by applying the sarcomere length
estimation algorithm to the oscillatory part of the ROI image
(Fig. 2F; the slowly varying part is discarded but is shown in
Fig. 2G for illustration purposes). As explained in detail in
APPENDIX, the sarcomere length estimate is defined as the first
positive minimum point of a similarity measure; here we use
FE that is similarity measure proposed by the current work and
that turns out to be most appropriate for images. When esti-
mating sarcomere length from multiple image lines, such as
selected ROI, two approaches are possible: 1) compute the
similarity measure of ROI image as the sum of similarity
measures of each image line and then find the minimum point
of the similarity measure or 2) find the minimum points of
similarity measures computed for each line and then compute
the mean minimum point. Figure 2, H and I, illustrates that the
two approaches lead to slightly different results. In this partic-
ular case, the approach with the superposition of similarity
measures of ROI lines (blue line in Fig. 2H) leads to a
sarcomere length equal to 4.32 pixels, while the average of all
minimum points (red crosses in Fig. 2I) of similarity measures
is 4.33 pixels. For the rest of this study, we choose to use the
first approach as it appears to be more robust in practice. For
instance, it is possible that a few lines in a ROI image contain
no sarcomere striation pattern information, and therefore, the
estimation of fundamental period on those lines is impossible
and the second approach becomes less reliable. Finally, taking
into account the pixel size of the microscopy image, we
obtained the mean sarcomere length. In our microscope setup,
the pixel size is 0.411 �m, and therefore, the mean sarcomere
length is estimated to be 4.32 � 0.411 �m � 1.775 �m for the
given time moment of cardiomyocyte contraction.

Sensitivity analysis of the choice of ROI. In practice, the
results of the mean sarcomere length estimation procedure
(Fig. 2) may strongly depend on the choice of ROI either
because of heterogeneity of sarcomere striation patterns within
a single cardiomyocyte or because of various experimental
conditions that may influence the visibility of sarcomeres.
Therefore, understanding the sensitivity of the choice of ROI is
important when selecting the ROI for sarcomere length anal-
ysis. In general, the choice of ROI is characterized by its
location, size, and orientation with respect to the original
image. In the following we analyze how each parameter of ROI
influences the estimation of the mean sarcomere length when
applied to the same microscopy images of a cardiomyocyte.
Due to extensive computations, use of full sensitivity analysis
in real time is probably impossible, unless some specialized
computational techniques are utilized.

Figure 3 shows how the mean sarcomere length estimate
depends on the size of ROI and its location in an overall image.
Usage of smaller ROI sizes reveals a slight heterogeneity of the
mean sarcomere length within a cardiomyocyte microscopy
image. This heterogeneity can be explained by the heteroge-
neous morphology of cardiomyocyte that partly appears in the
form of dislocations of the repeating patterns in the microscopy
image. With larger ROI sizes, this heterogeneity is averaged
out and the mean sarcomere length is stable with respect to the
choice of ROI location, even in the proximity of attached
carbon fibers. On the other hand, a selection of larger ROI
increases the computational requirements of the mean sarco-
mere length estimation, although this increase has no practical
influence as the typical acquisition frame time is an order of
magnitude larger than the typical time of sarcomere length
estimation [for a typical 54 � 31 (length � height) ROI size it
takes �16 ns to estimate the mean sarcomere length on our
computer platform].

Figure 4 illustrates how different ROI orientations affect the
result of the mean sarcomere length estimation. Because the
original image data are given on a rectangular grid, we use bilinear
interpolation to compute the ROI image data on the rotated
rectangular grid. Notice that the mean sarcomere length esti-
mate is approximately inversely proportional to the cosine of
ROI orientation angle. This follows from a general consider-
ation of cutting a P-periodic lattice of lines at the orientation
angle 	 leading to the formula P/cos(	 � 	0) that defines the
period of the cut structure. Here 	0 corresponds to the optimal
orientation of the periodic lattice. In other words, by estimating
sarcomere length from ROI where the sarcomeres are not
aligned along the lines, the estimated sarcomere length is by
1/cos(	 � 	0) larger than the length corresponding to the
cardiomyocyte. Such analysis could be used to eliminate the
small deviation in the mean sarcomere length estimate due to
the imperfect choice of ROI orientation. In the given example,
the optimal orientation of ROI is found to be at the angle
�4.72° and the improved estimate to the mean sarcomere
length is obtained by multiplying the original estimate of the
mean sarcomere length with a correction factor cos 4.72° �
0.997. Below we also report how the contraction of a cardio-
myocyte affects the optimal orientation of a ROI and how the
estimate of the mean sarcomere length is influenced by that.

Time evolution of the mean sarcomere length in a contract-
ing cardiomyocyte. The time evolution of the mean sarcomere
length estimate during one cardiomyocyte contractions is
shown in Fig. 5. The plot is produced from CCD camera
images recorded at 200 Hz (time resolution is 5 ms). At top, the
mean sarcomere length estimates from three different methods
are shown. The ROI size in all cases is 54 � 31.

First, the method based on Fourier spectrum analysis pro-
vides worst estimates as during the evolution of the mean
sarcomere length smooth plateaus appear. When selecting a
longer ROI with more sarcomeres in the image line, the steps
between the plateau levels will the decrease (result not shown
for brevity). Note that this behavior is manifestation of sys-
tematic modulation frequency in sarcomere length estimation
methods that are based on Fourier spectrum analysis (see Fig.
1A). Therefore, to suppress these artificial plateaus, one should
increase the length of a ROI.

Second, when using the quadratic approximation of aver-
aged ACF of ROI image lines, the phenomenon of plateaus in
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sarcomere length evolution is somewhat reduced but still
notable. We suspect that these plateaus have the same origin as
in the method based of Fourier spectrum analysis.

Third, the method developed in the current work (see APPEN-
DIX) gives sarcomere length estimates with no apparent arti-
facts other than small noise. Notice that the mean sarcomere
length estimates differ from each other up to 2.5% in both
directions. For instance, at the resting state the Fourier spec-
trum estimate is �2.5% larger than the estimates from methods
using ACF or of current work; at the maximal contraction
moment it is �2.5% smaller than the estimate from the method
of current work. This difference is in agreement with the
analysis of estimating the period of a discrete sine function
where the relative error of the estimates can be up to 2% (in
Fig. 1B, consider the curve corresponding to the periodic
ACF-based method and N � 50, which is closest to considered
ROI image length 54; the relative error is estimated around the
point 4.3). Therefore, we conclude that the differences in the
mean sarcomere length estimates are due to 1) boundary
artifacts and 2) piecewise linear interpolation approximation of
the intensity field. The former dominates the latter in the case
of Fourier spectrum and ACF analysis-based methods, while
for the method of current work it is not present, and only the
latter can cause relative errors up to 1%. We note that estimat-
ing the relative errors of the mean sarcomere length based on
Fig. 1B is plausible if the amplitude of the signal is constant, as
in the artificial examples in Fig. 1. Otherwise, the amplitude
variations such as demonstrated in Fig. 2D, contribute to the
uncertainty of the mean sarcomere length estimates.

Figure 5, bottom, shows the rate estimates of the mean
sarcomere length (computed as 3-point finite difference of the
corresponding sarcomere length sequences) for each of the
three methods. Here, the plateau artifacts from spectral and
ACF-based methods appear as spurious peaks in the sarcomere
length rate evolution. In summary, Fig. 5, A and B, demon-
strates the inherit problems in using spectral and ACF ap-
proaches and the reliability of our method for estimating the
mean sarcomere length and its rate.

Finally, we note that the orientation of sarcomeres may
change during the contraction of a cardiomyocyte. This orien-
tation change can be determined using a sensitivity analysis of
sarcomere length to ROI orientation (see Fig. 4) applied to each

microscopy image of the cardiomyocyte, although not in real time
due to extensive computational requirements. Figure 6, top,
shows the evolution of an optimal ROI angle, or equivalently,
the average orientation angle of sarcomeres during the contrac-
tion. Figure 6, bottom, shows the evolution of the estimated
mean sarcomere length, accompanied with two sarcomere
length estimates from correcting the ROI orientation with two
methods: 1) using the time-dependent optimal ROI angle and
2) using fixed optimal ROI angle from the first microscopy
image. Clearly, the mismatch of ROI orientation to the variable
sarcomere orientation has only a small effect on the mean
sarcomere length estimates when comparing with the case
without orientation correction (ROI angle � 0°).

Invariance of the mean sarcomere length to the ROI selection in
the case of a homogeneous contraction of cardiomyocytes. We have
analyzed the sensitivity of the mean sarcomere length estimate
to ROI size and location at different stages of cardiomyocyte
contraction: at the resting stage t � 0 s (in Fig. 3 for largest
considered ROI size the mean sarcomere length over a region
between carbon fibers is SL � 1.789 
 0.012, using the
method of current work on all possible ROIs between carbon
fibers), at the beginning of contraction t � 0.32 s (SL � 1.784 

0.010), at the most rapid stage of contraction t � 0.34 s (SL �
1.709 
 0.007), at the shortest sarcomere length stage t �
0.42 s (SL � 1.640 
 0.008), and at the relaxation stage t �
0.48 s (SL � 1.715 
 0.009, all time points present in Fig. 5).
For small ROI sizes that resolve the small heterogeneity of
sarcomeres within the cardiomyocyte we have not observed
that certain regions would contract more rapidly than others
(results not shown). From these results we conclude that the
contraction is uniform over a particular cardiomyocyte (at the

3.8

4

4.2

4.4

Fu
nd

am
en

ta
l p

er
io

d 
(p

ix
el

s)

0 0.2 0.4 0.6 0.8

1.6

1.65

1.7

1.75

1.8

S
L

(μm
)

Fourier spectrum
ACF
current work

− 20

− 10

0

10

20

Fu
nd

am
en

ta
l p

er
io

d 
ra

te
 (p

ix
el

s/
s)

0 0.2 0.4 0.6 0.8
Time (s)

− 10

− 5

0

5

10

S
L

rate
(μm

/s)Fourier spectrum
ACF
current work

Fig. 5. Determination of sarcomere length in a contracting rat cardiomyocyte.
Top: time evolution of the mean sarcomere length estimated by three methods.
Microscopy images of a cardiomyocyte are recorded at rate 200 Hz and the
same ROI, as in Fig. 2, is used. The methods based on Fourier spectrum and
ACF analysis clearly demonstrate modulation defects: plateaus in the mean
sarcomere length curve and spurious peaks in the mean sarcomere length rate
curve (bottom). The mean sarcomere length estimate from the method of
current work does not have these artifacts.

1.6

1.8

2

2.2

2.4

S
L

(μ
m

)

− 30 − 20 − 10 0 10 20 30
ROI rotation, α ( ◦)

The mean SL estimate, current work
SLα ≈ 1.79/cos(α+4.72◦)

Fig. 4. Sensitivity analysis of the mean sarcomere length estimation to the
selection of ROI orientation. The mean sarcomere length estimate is inversely
proportional to the cosine of ROI orientation angle. The minimum point
corresponds to ROI orientation that coincides with the orientation of sarco-
meres and, hence, leads to a corrected estimate of the mean sarcomere length.

C526 DETERMINATION OF SARCOMERE LENGTH OF A CARDIOMYOCYTE

AJP-Cell Physiol • doi:10.1152/ajpcell.00032.2012 • www.ajpcell.org

Publication III 94



acquisition rate of 200 Hz) and the mean sarcomere length
estimate does not depend on the position of ROI even during
the contraction. This conclusion is in agreement with the
results from Gannier et al. (3). Note, however, our study is
performed on cardiomyocyte images where nuclei are far from
the focal plane, and therefore, no signs of significant sarcomere
length variations were detected. Although in the proximity of
nuclei, the variations of sarcomere length could be expected
(19). Also note that the cardiomyocyte under study is almost
unloaded; only the elasticity of fibers load the cardiomyocyte
during contraction.

Example experiments. In the following we provide two
examples of experiments on single cardiomyocytes that illus-
trate the response of sarcomere length estimates to changing
preload conditions and to switching stimulation frequencies,
both represented in Fig. 7. Increasing the preload level of a
cardiomyocyte by two attached carbon fibers leads to an
increase of contraction extent as seen on the time series of
the mean sarcomere length. This is a manifestation of the
Frank-Starling law at a single cardiomyocyte sarcomere
level. Switching stimulation frequency also leads to changes
in contraction extent but with a longer transition period
characterizing the adoption of cardiomyocyte to new load-
ing conditions.

DISCUSSION

In this work we developed a computationally efficient and
practical method for estimating the mean sarcomere lengths of
a single contracting cardiomyocyte. Input to the method is a
microscopy image of a cardiomyocyte (or ROI image) that is
assumed to contain sarcomere striation patterns. Uneven back-
ground due to possibly visible nuclei, external carbon fibers, or
otherwise unfavorable optical conditions is filtered out in
image preprocessing step by using the introduced detrend
algorithm. The preprocessed image is compared with its own
shifted copy to find the smallest nonzero shift at which the two
images have the closest match. We define a similarity measure
to quantify such a match. Since the optimal shift is a contin-
uous parameter as opposed to the grid of microscopy image,
we use piecewise linear approximation of the image to achieve
the estimate of the mean sarcomere length at subpixel resolu-
tion. While conventional methods based on Fourier spectrum
and ACF analysis could use a similar approach, our method
takes into account the fact that microscopy images have finite
extent, and as a result, the mean sarcomere length estimates are
not artificially modulated by boundary conditions that are the
main source of systematic errors in the mentioned conventional
methods. We have performed the sensitivity analysis of the
proposed method to uncertainties such as ROI size, location,
and orientation that are all common when executing experi-
mental protocols on contracting cardiomyocytes that are con-
trolled, for instance, by attached carbon fibers.

Measurement of the mean sarcomere length is essential for
many experimental protocols. For example, as a prerequisite of
carrying out experiments that use cardiomyocytes, the quality
of the cell must be assessed. The cell quality can be charac-
terized by the size of diastolic sarcomere length as well as by
the extent of cardiomyocyte contraction that is quantified via
sarcomere length. Sarcomere length of a cardiomyocyte can be
determined via microscope imaging and using specialized
image processing technique, such as one developed in this
study. Measurement of sarcomere length is crucial for exper-
imental protocols that measure the mechanical properties of
cardiomyocytes. For example, cardiomyocyte mechanical
properties are studied by determining the force and length
relationship of cardiomyocyte under a variety of mechanical
conditions such as isometric and physiological conditions (16,
5) or by determining differences in the contractile properties of
control and diseased animal models (15). In addition, cell
stretching is used to study the mechanoelectrical feedback of
cardiomyocyte where recording of sarcomere length is impor-
tant (14, 6). Real-time measurement of sarcomere length has
also been used for measuring muscle performance in vivo (13)
to investigate neuromuscular disorders.

In the present study we developed a method for estimating
the mean sarcomere length from microscopy images obtained
with a high-speed camera capturing transmission light. The
same method could be applied to fluorescence microscopy
images where sarcomere locations are revealed with quantum
dots (21) or using, for instance, two-photon excitation micros-
copy (1). Other approaches exists for estimating the mean
sarcomere length of cardiomyocytes. For instance, the analysis
of X-ray or laser-light diffraction patterns gives accurate sar-
comere length estimates on both the muscle fiber level (12, 7)
and cell level (9, 11). With the advances in CCD/CMOS
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technology and image processing techniques, the analysis of
microscopy images from high-speed cameras provides alterna-
tive techniques to diffraction-based methods with potentially
similar accuracy and performance properties, while at the same
time being simple and cost-effective.

The mean sarcomere length is defined as the spatial fundamen-
tal period of repeating patterns of sarcomeres in a microscopy
image of a cardiomyocyte. The technique developed in this study
for estimating the mean sarcomere length uses a number of novel
approaches. 1) From the inherit reality of measuring signals with
finite length, the underlying mathematical theory for the sarco-
mere length estimation technique considers functions on finite
interval and proposes an unbiased measure of similarities for a
pair of functions. We have shown that the ACF, which provides
a popular measure of similarities due to its efficient evaluation via

FFT, is biased: for otherwise uniformly changing sarcomere
length, the sarcomere length estimate from ACF analysis is
always modulated. In addition, because FFT-based methods im-
pose periodic boundary conditions to otherwise finite signal se-
quences, the modulations of sarcomere length estimates are then
amplified even more due to the mismatch between the period
imposed by FFT to the overall signal and the fundamental period,
such as sarcomere length, within the signal. Although practical
tricks exist to reduce this modulation defect, in our approach,
however, these artificial constraints are avoided. 2) Our technique
uses a semianalytical, seminumerical approach for evaluating the
measures of similarities efficiently. With the use of a piecewise
linear representation of otherwise discrete signals, the integrals in
similarity measures are resolved analytically. As a result, the
similarity measure is a piecewise cubic polynomial whose nodal
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values are a finite series of signal samples. From that, the mean
sarcomere length is estimated analytically as the minimum point
of one of the cubic polynomials in this piecewise polynomial
representation of the similarity measure. Such an approach en-
abled us to implement a numerical algorithm for the mean sarco-
mere length estimation that has superior computational perfor-
mance to FFT-based methods. 3) We have introduced an image
preprocessing detrend algorithm that extracts periodic variations
from a microscopy image with possibly nonuniform background.
This algorithm can be used in combination with ACF-based
methods where preprocessing of images to a zero-average condi-
tion is also needed. As discussed below, the detrend algorithm
improves the stability of sarcomere length estimates in experi-
ments.

Our sarcomere length estimation algorithm is closely related
to ACF-based algorithms for determining fundamental periods
in images. In fact, if the image of sarcomeres would be
perfectly periodic, then both methods would return exactly the
same estimates. ACF-based algorithms can take advantage of
both the detrend algorithm and the used approach to achieve
estimates at subpixel resolution. However, when the image has
limited size, as it is common in practice, the estimate from a
ACF-based algorithm is biased due to the mismatch of image
intensities at the boundaries: the maximum point of ACF, which
determines the estimated value, is slightly shifted from the exact
value. Depending on how the image of sarcomeres is cut off at
boundaries, the estimate can be either smaller or larger than the
exact value. The extent of this deviation will decrease when
longer sarcomere sequences are included to the image, say, by
increasing the length of ROI. In contrast, the method developed in
this work is unbiased to the image boundary conditions.

To summarize, the accuracy of the developed method is limited
only by the following practical restrictions: 1) the subpixel accu-
racy of the mean sarcomere length estimate is limited by the finite
image resolution, and 2) apparent inhomogeneous distribution of
sarcomeres, both in length and orientation, will increase the
uncertainty of sarcomere length estimates and makes introduction
of the notation of the mean sarcomere length unavoidable. In
theory, our method determines the fundamental period exactly
when the object field has a unique periodic component and finite
size. Thus our method circumvents one of the practical limitations
of conventional methods based on ACF or Fourier spectrum
analysis. With the use of the conventional methods, the mean
sarcomere length estimate will always be artificially modulated
during the contraction of cardiomyocyte because of the finite size
of microscopy images.

The technique developed in this study has been successfully
tested on microscopy images of rat cardiomyocytes. The sar-
comere length sensitivity analysis to ROI selection showed that
the method is robust to a variety of experimental constraints
such as uneven field of illumination (resolved by the detrend
algorithm), existence of external objects (such as carbon fibers) in
the field of view, and uncertainty of choosing the orientation of
ROI with respect to variable orientation of sarcomeres (also
during contraction). While the speed of sarcomere length estima-
tion was more than enough for our experimental protocols (max-
imal line rate of our CCD camera is �1 kHz while the rate of
sarcomere length estimation with full 120 � 60 ROI in between
carbon fibers was �15 kHz), with recent and future advances in
high-speed camera technologies and with larger ROI selections
one could optimize the sarcomere length estimation rate even

further, for example, by implementing the sarcomere length esti-
mation algorithm in a field-programmable gate array chip. Ac-
cording to our tests, a more than doubled rate of sarcomere length
determination is achieved when disabling the detrend algorithm.
This, however, requires that images have an uniform background
field and no external objects such as carbon fibers exist within the
ROI. Another approach would be to use a parallelized implemen-
tation of the proposed algorithm.

To obtain meaningful sarcomere length estimates, selection
of computational methods and ROI positions is of importance.
In this study, we showed that ACF and Fourier spectrum
analysis-based methods modulate the estimates of the sarco-
mere length considerably when the number of sarcomeres per
ROI length is relatively small. The method provided by the
current work eliminates this modulation defect. We have also
showed that the misalignment of ROI orientation to sarcomere
striation pattern will produce overestimates to the mean sarco-
mere length. The location of ROI within the cardiomyocyte
image is also important. Depending on the used attachment
techniques of cardiomyocyte ends and applied loading (17, 16,
5), ROI should be placed to location where sarcomere striation
pattern is uniform and as far as possible from attachment
points. When using the carbon fiber attachment technique, the
distribution of sarcomeres is found to be fairly homogeneous
between carbon fibers as well as between different sides of a
cardiomyocyte (5). The size of ROI should be as large as
possible to increase the amount of information on the periodic
variations of sarcomere striation patterns but not larger than the
local uniformity of the striation patterns would allow.

In summary, the developed algorithm for the mean sarco-
mere length estimation is proposed as a superior algorithm to
popular ACF and spectral analysis-based sarcomere length
estimation techniques. In fact, the developed algorithm can be
used for determining the fundamental periods of any signals,
and hence, the algorithm has much wider applications. The C
and Python source code of developed methods are available in
the IOCBio Google Code project (http://iocbio.googlecode.
com/) under the Open Source Initiative BSD-2 License.

APPENDIX

Here, a mathematically rigor description of the algorithms is given.

Similarity Measures

To find the mean sarcomere length of a cardiomyocyte, we use
image and its shifted copy. The mean sarcomere length is assumed to
correspond to the shift that leads to the smallest difference, i.e., largest
similarity, of the image and its shifted copy. In this section we define
three possible functionals that measure similarity of a given function
and its shifted counterpart. These functionals are used as objective
functions to a minimization problem that solution corresponds to the
fundamental period of the given function.

First, as a basic tool of the current work, we define a similarity
measure between the function f(x) and its shifted counterpart f(x � y)
as follows:

FE� f��y� � � � f�x � y� � f�x��2dx , (1)

where the integration interval depends on the type of functions: for
periodic functions the integration is carried out over an interval with
the length of a period and for functions on a finite interval over a
subinterval where f(x � y) and f(x) are defined simultaneously.
Clearly, the measure FE has a local minimum at the fundamental

C529DETERMINATION OF SARCOMERE LENGTH OF A CARDIOMYOCYTE

AJP-Cell Physiol • doi:10.1152/ajpcell.00032.2012 • www.ajpcell.org

97 Publication III



period and we can use it as objective function for finding the
fundamental period estimate of a quasiperiodic function f � f(x):
Pest

E [f] � argminy�0 FE[f](y), where P � argminy�0 F(y) means that P
is a positive minimum point of a function F(y).

Expansion of the integrand in Eq. 1 yields

FE� f��y� � � f�x � y�2dx � � f�x�2dx � 2ACF� f��y� , (2)

where

ACF� f��y� � � f�x� f�x � y�dx (3)

is the ACF of f(x). For periodic functions, the first two terms in Eq. 2 are
shift variable y independent, and hence, all local minima of FE coincide
with the corresponding local maxima of the ACF. For functions on finite
interval, however, the locations of these minima and maxima are different
because all three terms in Eq. 2 depend on the shift variable. Hence,
functional ACF cannot be used as an unbiased measure of similarities for
functions on finite interval, although it is unbiased measure for periodic
functions. The functional FE, however, is an unbiased measure for all
considered types of functions.

To demonstrate how biased measures, such as ACF, influence the
accuracy of estimated fundamental period when functions are defined
on finite interval, we define an ACF-based functional

FA� f��y� � ��0

L�y
f�x� f�x � y�dx , (4)

and the corresponding fundamental period estimate: Pest
A [f] � argminy�0

FA[f](y). To demonstrate the same with the class of periodic functions, we
define

Fperiodic
A � f��y� � ��0

L�y
f�x� f�x � y�dx

��L�y

L
f�x� f�x � y � L�dx .

(5)

Note that this functional is equivalent to the conventional ACF of
periodic functions that can be efficiently computed using the convo-
lution theorem and FFT algorithm.

Semianalytical, Seminumerical Evaluation of Similarity Measures

Given a signal as a sequence of signal values f � �fi�i�0
N�1, we define a

piecewise polynomial function, a so-called signal function, as follows:

f�x� � 	
i�0

N�2

�0 � x � i � 1�S�x � i; f, i� , (6)

where S denotes a low order polynomial defined for the interval [I,
i � 1] such that S(0; f, i) � fi with additional continuity conditions on the
derivatives of f(x) when possible; S can be a basic spline function, for
instance. The square brackets in Eq. 6 denote an indicator function: when
the condition within the brackets is satisfied then the value of the indicator
function is 1; otherwise 0. The signal function f(x) is defined on the
interval [0, L] where the length of the interval, L, is related to the number
of signal values N: L � N � 1. In this study, we use linear polynomials
for S because then the minimum points of considered functionals may
locate within integer intervals, which is a prerequisite for resolving
fundamental periods at subpixel resolution. In addition, the minimum
conditions are quadratic equations that are easy to solve.

To evaluate the integral in similarity measure Eq. 1, we use the
following general result: if G[f(x), f(x � y)] is a polynomial function
of signal functions f(x) and f(x � y), then

�0

L�y
G� f�x�, f�x � y��dx � 	

i�0

N�2�⎣y⎦

�0

1��y�

G�S�s; f, i�,

S�s � �y� ; f, i � ⎣y⎦��ds � 	
i�0

N�3�⎣y⎦

�1��y�

1
G�S�s; f, i�,

S�s � �y� � 1; f, i � ⎣y⎦ � 1��ds ,

(7)

where ⎣y⎦ and {y} denote integer floor and remainder of y, respec-

tively, such that y � ⎣y⎦ � {y}. When evaluating the integrals in Eq.
7 analytically, the result will be a polynomial in {y}with coefficients

expressed as series depending on ⎣y⎦. For example, for linear poly-
nomials, S(s; f, i) � (1 � s)fi � sfi�1, the integral in Eq. 1 can be
evaluated using

FE� f��y� � e0�⎣y⎦� ⁄ 3 � e1�⎣y⎦��y� � e2�⎣y⎦��y�2

� e3�⎣y⎦� ⁄ 3�y�3, (8)

where

e0� j� � fN�2
2 � fN�1� fN�1 � fN�2� � fN�j�1� fN�j�1 � fN�2

� 2fN�1� � fN�j�2� fN�j�1 � fN�j�2 � fN�1 � 2fN�2�
� 	

i�0

N�3�j

f i� f i � f i�j�1 � 2f i�j� � f i�1� f i�1 � f i � f i�j � 2f i�j�1�
� f i�j� f i�j�1 � f i�j� � f i�j�1

2 ,

e1� j� � � fN�2� fN�j�2 � fN�2� � fN�j�2fN�1 � fN�j�1� fN�2

� fN�1 � fN�j�1� � 	
i�0

N�3�j

f i�j� f i�1 � f i � f i�j� � f i�j�1� f i�j�1

� f i�1 � f i� ,

e2� j� � � fN�2� fN�2 � fN�1� � fN�j�2fN�1 � fN�j�1� fN�j�1

� fN�j�2 � fN�2� � 	
i�0

N�3�j

f i�j
2 � �� f i�j � f i�j�2� f i�1

� f i�j�1�2f i�1 � f i�j�2 � f i�j � f i�j�1� ,

e3� j� � � fN�1
2 � fN�2�2fN�1 � fN�2� � fN�j�2� fN�1 � fN�j�2

� fN�2� � fN�j�1�2fN�j�2 � fN�2 � fN�j�1 � fN�1�
� 	

i�0

N�3�j

f i�j�2� f i�1 � f i�j�2 � f i� � f i�j� f i�1 � f i � f i�j�
� 2f i�j�1� f i � f i�j � f i�1 � f i�j�2� .

Similar expressions can be derived for FA[f] and Fperiodic
A [f]. The

corresponding computational routines are provided in Supporting
Software.

Determination of the Fundamental Period

In this work, the fundamental period of a signal is estimated as the
first positive minimum point of a similarity measure (FE, FA, and
Fperiodic

A ). By introducing a piecewise linear signal function, the
similarity measure is a piecewise cubic polynomial and its minimum
point is found as the second positive zero point of its derivative (the
first one corresponds to local maxima). In general, the computational
complexity of finding the fundamental period of a signal is O��N �

⎣P⎦�⎣P⎦�, where N and P are the length and the fundamental period of
the signal, respectively. Compare this to the computational complex-
ity O(N log N) of the FFT algorithm.

In the case of a microscopy image that is represented as a two-
dimensional array of signal sequences, we define an average similarity
measure computed as the average of similarity measures of all lines in
the image ROI. The fundamental period estimate of the image array is
defined as the first positive minimum point of the average similarity
measure. Alternatively, one could compute the fundamental period
estimate for each line of the image ROI and then by averaging over all
lines find the mean fundamental period estimate. In general, the
estimates of both approaches will be slightly different. We prefer the
first one because it turns out to be more robust to images where
sarcomere related intensity variations are weak.

Detrending a Signal

The detrend algorithm consists of four steps. In the first step,
random noise in a signal sequence is suppressed using convolution
with a uniform kernel that has a half-width of �1/10 of the funda-

C530 DETERMINATION OF SARCOMERE LENGTH OF A CARDIOMYOCYTE

AJP-Cell Physiol • doi:10.1152/ajpcell.00032.2012 • www.ajpcell.org

Publication III 98



mental period. In the second step, all local extrema are found from the
obtained noise-suppressed sequence. The graph of these local extrema
are connected with line segments constituting a linear spline that we
denote as an extreme spline. In the third step, the middle points of the
line segments of the extreme spline are connected with lines. The
result constitutes another linear spline that we denote as a trend spline.
Finally, the oscillatory part of the signal sequence (including random
noise) is obtained by subtracting the trend spline from the original
signal sequence. This method of extracting the oscillatory part of a
sequence is implemented in a computer program using a single loop
and thus has computational complexity O(N). The corresponding
routine is available in Supporting Software. For microscopy images,
this procedure is applied for each line of image ROI (see Fig. 2, B–G,
for illustration).

Details of Other Conventional Methods

For comparison of the results of current work, we use two other
conventional methods for estimating the fundamental period of a signal.

The first method, labeled as the “Fourier spectrum” method, is
based on calculating the power spectrum, here defined as the square of
modulo of Fourier spectrum, of a signal. The maximum point of the
power spectrum is related to the fundamental spatial frequency of the
signal, which, in turn, is inversely proportional to the fundamental
period of the signal. For discrete signals, the power spectrum is
discrete as well meaning that the fundamental period can be estimated
at the pixel size resolution. To obtain fundamental period estimates at
subpixel resolution, we use piecewise quadratic interpolation of the
discrete power spectrum.

The second method, labeled as the “ACF” method, is based on
calculating the ACF, here defined as inverse Fourier transform of
the power spectrum, of a signal. The first positive maximum point
of the ACF is related to the fundamental period of the signal.
Similarly to the Fourier spectrum method, the fundamental period
estimates are obtained at subpixel resolution by using piecewise
quadratic interpolation of the discrete ACF.

In both methods, we use FFT for calculating the discrete Fourier
spectra of signals. In comparison analysis of different methods we
always use detrended signals as input signals to 1) minimize boundary
artifacts and 2) ensure equal conditions for all considered methods.
When applied to images, we use the mean power spectrum calculated
as the average of power spectra over all image lines. The correspond-
ing computational routines are available in Supporting Software.
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