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Abstract 

This thesis is about detecting and counting penguins in images taken with fixed cameras 

at different locations in Antarctica. There exist different approaches for counting objects 

in images. This thesis proposes a detection-based approach to count the penguins in the 

penguin dataset. This thesis describes how to use the penguin dataset with the YOLO 

algorithm to train different machine learning models. The results of the different models 

are evaluated and presented. 

This thesis is written in English and is 51 pages long, including 6 chapters, 9 figures and 

5 tables. 

 



5 

Annotatsioon 
Pingviinide tuvastamine ja loendamine piltidel kasutades YOLO 

lähenemist 

Antud magistritöö käsitleb pingviinide tuvastamist ja loendamist piltidel, mis on tehtud 

kinnitatud kaameratega erinevates asukohtades Antarktikas. Objektide loendamiseks 

piltidel eksisteerib erinevaid lähenemisi. Antud magistritöö kasutab pingviinide 

loendamiseks tuvastus-põhist meetodit. Antud magistritöös kirjeldatakse, kuidas 

kasutada pingviinide andmestikku ja YOLO algoritmi erinevate masinõppe mudelite 

treenimiseks. Esitatakse erinevate mudelite tulemused koos hinnangutega. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 6 peatükki, 9 

joonist, 5 tabelit. 
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List of abbreviations and terms 

CNN Convolutional neural network 

RELU Rectified linear unit 
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1 Introduction 

In many applications there is a need to count objects in images. Some of the examples 

include monitoring crowds, counting cells in microscopic images, and performing 

wildlife census. Since counting is labour-intensive and humans tend to make mistakes 

there is a need to automate this process. 

One way to automate this process is to use machine learning. Models are trained on 

images where object counts or locations have been provided. Given a new image, the 

model will hopefully output accurate object counts or locations for that. Training good 

models to count objects presents many difficulties. Training computer vision models 

requires a lot of annotated training data. Nowadays gathering a lot of data may be easy, 

but a human still needs to annotate each of the training images, which is labour-

intensive. 

There is the question of what should the model output. Are we interested in plain object 

counts or is the location of the objects also important, meaning that the model should 

detect each instance? Obtaining plain object counts may be an easier task, but locations 

of individual instances may provide additional information – for example about the 

relationships between objects. 

Depending on what is expected as model output, different approaches have been used. 

Density-based methods predict object density based on an input image and have been 

shown to provide relatively accurate object counts. But they do not provide information 

about object locations. In detection-based methods an object detector is used on 

different parts of an image. Detection-based methods have the benefit of providing 

object locations, but there is a limitation – usually, these do not work well when objects 

are overlapping or crowded together. 

One area where the need to count objects in images arises is research of Antarctic 

penguins. Zoologists are interested in sizes of different penguin colonies and how they 

change over time. In order to monitor different penguin colonies, they are periodically 
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taking pictures with fixed cameras. This results in a huge number of pictures. There is a 

need to count and possibly locate individual penguins on these images. 

The annotating of these images has been conducted on a public website [1] and is still 

ongoing. There, any interested person can join and help with locating individual 

penguins on the images. This annotation process has resulted in a dataset of annotated 

images that can be used for training and testing machine learning models. Part of the 

dataset has been made publicly available at [2]. 

The goal of this thesis is to train a machine learning model in order to automate the 

process of counting penguins in images. Since convolutional neural networks have 

performed well for many computer vision applications, the approach used in this thesis 

is based on them. The aforementioned dataset is used for training the model and 

evaluating its performance. In “Counting in the wild” [3] the same dataset was used for 

the same purpose. In this paper, the researchers have used a density-based method. The 

approach of this thesis is detection-based –the YOLO [4] algorithm is used to detect 

penguins on images. 

There are several difficulties. The dataset is quite challenging – the scale and 

perspective of the images varies a lot. On images, the birds are often crowded and there 

are challenging weather conditions. Since the images have not been annotated by 

experts, but by ordinary people, the annotations contain a lot of mistakes. Especially 

when there is crowding, the annotators have missed a lot of the penguin instances. 

In the dataset penguin instances have been marked by dot annotations. YOLO algorithm 

requires bounding boxes as input. In order to use the penguin dataset with the YOLO 

algorithm, bounding boxes are generated from dot annotations. This causes additional 

difficulty when evaluating the results. Since the model outputs bounding boxes, but the 

ground truth is provided as dot annotations, there is a question of which detections 

should be considered successful. 

Chapter 2 presents an overview of existing approaches that deal with counting objects in 

images. Density-based and detection-based methods are described. Also, additional 

ways to improve counting models are described – fine-tuning models to new scenes and 

counting objects interactively. An overview of the paper that deals with training a model 

with the penguin dataset and an overview of the YOLO algorithm are presented. 
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Chapter 3 includes a description of the dataset and how it was processed before training 

the models. It presents the algorithm that was used for generating the bounding boxes, 

the different parameters that were used when training the models, and the algorithm that 

was used when evaluating the performance of a model. 

Chapter 4 presents the results of the experiments. The results of different models are 

presented. The penguin dataset contains images from different locations which have 

different properties. Therefore, the results for different locations are also presented. This 

is followed by a chapter with a discussion of the results. 
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2 Related Work 

This thesis deals with counting objects in images. It is useful for many applications – 

cell counting in microscopic images, monitoring crowds, performing wildlife census, 

counting the number of trees in an area [5]. Therefore, a lot of work has been done in 

this research area. Supervised methods that deal with counting objects in images can be 

divided into two categories: counting by detection and counting by density estimation  

[5]. Counting by detection means that an object detector is used on different parts of the 

image, where it tries to detect the object. Counting by density estimation means that a 

density function between image characteristics and object density is learned. Integrating 

this density function over some image region gives object count for that region. 

Counting by density estimation avoids detecting individual object instances. 

Which approach is more appropriate depends on the degree of overlap between object 

instances [6]. Detection-based methods may perform well on images where objects have 

low density and do not overlap frequently. On such images, density-based methods can 

hallucinate small object counts on image regions that do not contain any objects. 

Detection-based methods have the additional benefit of locating individual instances. 

On the other hand, detection-based methods may fail with high-density images where 

there is a lot of overlap and inter-occlusion between objects. In such cases density-based 

methods may perform better. That is because such methods use texture matching 

between the test image and the training set, which can be accomplished even if 

individual instances are not distinguishable. Many real-life applications may need to 

handle both scenarios and both scenarios can co-exist on the same image. 

2.1 Detection-based methods for counting objects in images 

One detection-based approach is described in [7]. The authors explain that detection 

methods learn object classifiers from labelled training set and then the classifier is 

applied to different sub-windows and locations of the test image. When there are 

occlusions between objects, part based representations can be learned. On test image, 

part detection responses are combined. 
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The authors note that for detecting objects with partial occlusions, it is possible to use 

part based detectors. Part detectors are applied to overlapping windows. Since the 

windows are classified separately, one local feature can contribute to multiple 

detections. This means that there is a need to merge part detection responses to get 

object hypothesis. Using part detectors involves some difficulties. Since local features 

may not be discriminative enough, false detections may occur. Because of occlusion, 

some object parts may not be detected. At test time, part detectors are applied to an 

input image and their responses are merged by using some clustering method. 

In their approach, a part hierarchy is defined for an object class. Each part is a sub-

region of its parent. For each part a detector is learned. A child node inherits image 

features from its parent node. If target performance cannot be achieved, more features 

are added to the child node. Also, a pixel-level segmentor is learned for the whole 

object. At test time part detectors are applied to a new image and image pixels that 

contribute to detection responses are extracted. 

Based on part detection responses, object hypothesis are proposed. Whole-object 

segmentor is applied to each hypothesis and the silhouette is extracted. Joint analysis is 

used to enforce the exclusiveness of low-level features, this way one image feature can 

contribute to at most one hypothesis. 

2.2 Density-based methods for counting objects in images 

Density-based methods learn a mapping between image features and object counts. 

One density-based approach is described in [8]. In this paper, the authors deal with 

estimating the number of people in an image. They have chosen not to use a detection 

based method, because, as they state, these do not work well when there are viewpoint 

or illumination changes. They develop a system to count pedestrians in crowds. The 

authors point out that existing methods that estimate crowd size use models that do not 

have spatial information. Since people who are farther from the camera appear smaller, 

they contribute less in these models. Therefore, they develop a method that uses feature 

normalization to deal with perspective projection and camera orientation. 

As features for their model they use foreground regions given by a background 

subtraction algorithm and an edge orientation map, which is generated by an edge 
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detector. For each frame a foreground mask is generated and an edge detector is applied. 

Total edges length can be used to represent crowd density. 

The authors make two assumptions – that all the pedestrians have similar size and that 

they all lie on a horizontal ground plane. Pedestrians are modelled by a simple cylinder 

model. The projected 2D height varies when people move on the ground plane and it is 

possible to measure the ratio of the projected height. The ratio reflects the relative 

crowd density on the ground plane. Homography between ground plane and image 

plane is used to estimate the density. After estimating the homography, relative density 

is computed for each pixel.  

The authors train the model on a feed-forward neural network to find the relationship 

between image features and the number of pedestrians in an image. Estimating the 

pedestrian count is more difficult when there is significant occlusion. Then the 

relationship between the features and the number of pedestrians is not linear. To capture 

this nonlinearity the authors use a neural network with a single hidden layer. The single 

output unit of the neural network is the estimated crowd count. The authors show with 

their experiments that a neural network has better estimation results than a linear model. 

Another approach that is based on learning a mapping between image features and 

object counts is described in [5]. Their training images are annotated by dot annotations 

– object positions are specified by single dots on each object instance. The authors point 

out that dotting is a natural way to count objects and therefore, for humans, providing 

dot-annotations is not harder than providing raw counts. In addition, spatial arrangement 

of the dots can provide additional information. 

The authors develop a framework for counting objects in images. In their approach, a 

density function is generated for an input image. This density function is a real function 

of pixels. Integrating the density function over an image region gives an estimate of the 

count of objects in that region. 

The authors point out that there is a conceptual difficulty when considering the density 

function – it is easy to reason about average densities over image regions, but “the 

notion of density is not well defined at pixel level” [5]. Therefore, given a set of dot-

annotations, it is ambiguous what should be the ground truth density. 
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Another density-based approach is described in [9]. This paper is concerned with 

counting cells in microscopic images, but the developed methodology could be used in 

other counting applications as well. Their approach is based on density estimation and 

they cast the cell counting problem as learning a mapping between an image and a 

density map. Integrating the density map over an image region gives the estimate of the 

number of cells in that region. The authors have chosen to use a convolutional neural 

network. 

In their dataset, the ground truth is provided as dot annotations. In training, each dot is 

represented by a Gaussian and a density surface is formed by the superposition of these 

Gaussians. The task is to regress the density surface from an image. To achieve this, a 

CNN is trained. Mean squared error between the output heat map and the target density 

surface is used as the loss function. Then, for an unseen image, the CNN predicts the 

density heat map. 

In their network, they use convolution-RELU-pooling layers. Then, to undo the spatial 

reduction, they use up-sampling-RELU-convolution. In their implementation they use 

back-propagation and stochastic gradient descent for optimization. To increase the 

amount of data for training, they cut large images into patches and each patch is also 

normalized. The authors note that the Gaussian-annotated ground truth must be scaled, 

for example by multiplying it by 100. This is because most of the pixels in the ground 

truth are in the background and are labelled zero, which causes the network to focus 

more on the background zero. After pre-training with patches, they fine-tune the 

parameters with whole images. 

2.3 Methods that combine detection and density estimation 

There also exist approaches that combine detection and density estimation. One of these 

is described in  [6]. Their method is able to detect groups of objects of different integer 

sizes. The method avoids discerning individual objects when they are clumped together 

and at the same time is able to enforce the fact that each group has an integer number of 

objects. 

Another approach that is a mixture of detection and density estimation is described in  

[10]. In this paper, the authors note that object detection and counting are two related 
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but also different research topics. Detection approaches tend to be less accurate when 

objects are overlapping. In such scenarios counting methods tend to do better, but their 

output is only the number of objects. 

For many applications, accurate total counts and locations of objects are equally 

important. The authors state that in the case of migrating birds, total count shows a 

global trend for the whole scene and locations of each instance indicate the grouping 

structure and relationship among them. “Solving the counting and detection tasks 

together in a unified framework can provide more accurate output in terms of both 

counting and detection.” [10] 

In the authors opinion, previous detection approaches are not suitable for counting-

detection task, especially for partially occluded small instances. Small instances 

grouped together present several difficulties. Many discriminative features and details 

are blurred or hidden. Perspective makes that problem worse. For detection-based 

methods, the low resolution of training examples presents a difficulty. There can be 

heavy overlapping between objects moving in a group and different poses and view-

points make the objects appearance look very different. 

Density-based approaches avoid individual-level detection and achieve good results in 

terms of counting. The authors use [5] as inspiration and propose a novel detection 

framework using object density maps. This framework can output both counting and 

detection results. The authors make four contributions. They develop a 2D 

programming method that recovers 2D object locations from object density map. They 

add global count constraint to the integer programming objective function. They 

propose a method to estimate the bounding box of the object given a detected object 

location. The proposed detection method achieves state-of-the-art results on different 

datasets.  

2.4 Other approaches for counting objects in images 

When a model is learned on one dataset, it may not perform well on an unseen scene. 

This problem is addressed in [11]. The authors propose a deep convolutional neural 

network which is trained with two learning objectives – crowd density and crowd count. 
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To handle unseen scenes, they present a method to fine-tune the trained CNN to the 

target scene. 

The authors point out that crowd counting is challenging because of occlusions, scene 

perspective distortions and diverse crowd distributions. Most existing methods are scene 

specific. For a new scene, the models need to be retrained with new annotations. There 

aren’t many works focusing on cross-scene crowd counting.  

The authors propose a framework for cross-scene crowd counting where no new 

annotations are needed for a new target scene. They propose a CNN based framework 

that learns a mapping from images to crowd counts. The CNN is trained with a fixed 

dataset. Then a data-driven method is used to fine-tune the learned CNN to an unseen 

target scene. Their model is trained with two learning objectives – crowd density maps 

and crowd counts. Two objectives can assist each other to obtain a better local optimum. 

In their framework, there is no need for extra labels for a new target scene. The pre-

trained CNN is fine-tuned to a new target scene. 

The authors use data-driven approach for scene labelling. Labels are transferred from 

training images to test images by retrieving the most similar training images and 

matching them with the test image. For an unseen target scene, the authors retrieve 

similar scenes and crowd patches from the training scenes.  

Their CNN model learns a mapping between X and D, where X is a set of low-level 

features extracted from training images and D is the crowd density map for the image. 

Density map is created from pedestrians’ location, body shape and perspective 

distortion. These density maps are treated as ground truth for the CNN model. The total 

crowd number is calculated by integrating over the density map. 

Input for their CNN model is image patches cropped from training images. Their model 

contains three convolutional layers and three fully connected layers. After first and 

second convolutional layer, max pooling layers are used. Rectified linear unit is used as 

the activation function. 

Their model optimizes alternatively the density map estimation task and the count 

estimation task. Because of pooling layers the output density map is down-sampled and 

therefore, the ground truth density map must be down-sampled as well. The count is 
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calculated by integrating the density map. Two tasks assist each other and enable a 

better result. Density map is optimized first, because it can introduce more spatial 

information to the model. After first objective converges, the model optimizes the 

second task. Two objective losses should be normalized to similar scales. Switch 

learning approach obtains better results than multi-task learning approach.  

The CNN is pre-trained on all training scene data. Each query scene has unique scene 

properties which affect the performance of the model. Therefore, fine-tuning scheme is 

adopted to adapt the CNN model to unseen target scenes. Given new target scenes, 

samples with similar properties are retrieved from the training scenes and added to 

training data to fine-tune the CNN model. 

Another way to deal with unseen target scenes is an interactive system. This approach is 

described in [12], where the authors present an interactive counting system. The authors 

point out that differences in training and test images result in counting bias. This means 

that every time conditions change in a biological experiment, there is a need for 

reannotating and retraining. 

The authors have developed a system where user annotates a part of an image and the 

system propagates the annotations to the rest of the image and presents the results to the 

user. Then the user can annotate another part of the image where the system has made 

mistakes. When the user is satisfied with the results, the system provides the count of 

the objects for the image. 

The authors note that counting by object density estimation has so far been more 

accurate and faster than counting by object detection. Therefore, they use object density 

estimation in their system. Counting by density estimation involves learning a mapping 

between local image features and object density. Integrating over regions of the density 

map provides an object count for that region. An aspect of density-based counting is 

that density is not informative for a human user and cannot be used to verify the 

accuracy of the counting. 

The authors make three contributions. They provide a simplified approach for 

supervised density learning based on ridge regression, because it is faster to train which 

is necessary for an interactive system. They propose two ways to visualize the estimated 

density so that users could identify where the system has made mistakes. This allows 
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the system to incorporate users’ feedback. They propose an online code-book learning 

that re-estimates feature encoding as the user continues annotating.  

Counting is conducted in a feedback loop. At each iteration, the user selects part of an 

image and then dots the objects in that region. Given a set of dotted pixels, the system 

builds a code-book of low-level features, learns a mapping from entries in the codebook 

to object density, uses the mapping to estimate object density in the entire image and 

presents that estimation in an intuitive visualization. By using the visualisation, the user 

can spot errors and provide further annotations for those regions. 

2.5 Counting in the Wild  

This thesis attempts to solve the same problem as “Counting in the wild” [3]. This 

article also describes the background of this problem. During the course of ecological 

surveys of Antarctic penguins, images are collected automatically with fixed cameras. 

Images are collected every hour on 40 different sites. Zoologists are interested in the 

size of the penguin population on each site and how much it changes. This can be 

studied for correlation with climate change. Therefore, it is necessary to count the 

penguins in each image. So far this has been done by humans, but this process could be 

automated. 

As the authors of the article point out, the images present us with many difficulties – 

variability of vantage points of the cameras, variation of penguin scales, weather 

conditions, similarity between penguins and some of the surrounding objects (for 

example rocks), and crowding. Different sites of the penguin dataset have different 

properties. Some cameras capture wide shots with masses of penguins. Other cameras 

capture constantly occluded images. 

The annotation process is conducted on a public website [1]. There, volunteers annotate 

images by placing dots inside penguins on an image. There have been 35 thousand 

different annotators. An image is removed from the site after it has been annotated by 

20 people. This has resulted in a dataset with a large number of dot-annotated images. 

The authors point out that crowd-sourced annotations present us with extra difficulty, 

because they contain many errors and contradictions. Especially on difficult images, the 
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annotators often under-count. When an image is cluttered, it is easy for a human to miss 

an instance. Therefore, it is necessary to build a model that can handle noisy labels.  

Dot annotations are an easy way to label images and they are most commonly used in 

counting tasks. But the problem with dot annotations is that they do not capture object 

size which varies a lot in the dataset. Also, simple annotations require more complex 

models. 

The authors propose a new approach for learning to count. They extend other density-

based methods by incorporating foreground-background segmentation into the learning 

process and by taking advantage of multiple annotations. There are spatial variations 

between annotations that can offer cues about object scale. Counting variability between 

annotations can be used to predict the annotation difficulty. The authors use a deep 

multi-task network that joins the three components – object-density prediction, 

foreground-background segmentation, and local uncertainty estimation.  

The authors have trained a convolutional neural network to estimate a density function 

l(p) on a novel image. Integrating over any region of the function l(p) will return the 

count of the objects in that region. A prediction of the agreement map u(p) can be used 

to estimate how much multiple annotators would agree on the object count of a region 

of an image. This also indicates image difficulty.  

The authors point out that regressing the object density function from dot annotations 

requires knowledge of the size of each object. It is necessary to have a depth map with 

information about the area covered by each object or bounding box annotations. The 

authors propose a new method for defining the object density map by using object 

segmentation. 

The authors present a multi-task convolutional neural network which produces 

foreground/background segmentation s(p), an object density function l(p) and a 

prediction of agreement between the annotators u(p). A fundamental aspect of their 

framework is the way the labels are defined for different learning tasks. Given a set of 

dots, they define a trimap of positive, negative, and ignore regions. They correspond to 

regions contained inside the object, regions of the background, and uncertainty regions 

in between. 
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It is necessary to define a regression target for each task. For the segmentation map 

target, the positive and negative regions define the foreground and background, whereas 

the ignore regions do not contribute in the computation of the loss. The density map 

target is obtained from the predicted segmentation and user annotations. Connected 

components are obtained from predicted segmentation and for each an integer score is 

assigned as the maximum of different annotators.  Density target for each pixel of the 

connected component is the integer score divided by the component area. The 

uncertainty map target consists the variance of the annotations within each of the 

connected components. 

The authors train for the three tasks in parallel and end-to-end. They use higher weight 

for the segmentation loss. 

The authors use dot annotations provided by multiple annotators to generate trimap t(p) 

for that image. Penguins that are further from the camera are smaller and this means that 

for this dataset penguins get smaller from bottom to the top of the image. In one case the 

authors assume that there is a depth map for the scene together with an estimated object 

size. The authors use the following computation. Distance transform is computed from 

all dot annotations for each pixel. The trimap positive, negative, and ignore regions are 

obtained by thresholding the distance transform on the predicted object size. 

The authors point out that it is difficult to evaluate the results of the experiments 

because there is no ground truth for the penguin dataset. Also, the counts provided by 

the annotators are usually a lot smaller than the true count. The authors propose an 

evaluation metric that reflects the similarity of automatic estimations to the ones 

provided by the annotators and also their uncertainty. The authors take into account that 

the annotators typically undercount and propose to compare with the region-wise max 

of the annotators.  

The authors used lower-crowded and medium/lower-crowded sites of the penguin 

dataset, which add up to about 82 thousand images. They split the images into training 

and test sets in two different ways – they use both mixed-sites split and separated-sites 

split. In the first case images from the same camera can appear both in training and test 

sets, in the second case not. Their training set size is 70% of all the used images.  



23 

This is the first work that addresses the problem of counting from crowd-sourced dot-

annotations, so the authors have no baseline to compare their work with. They compare 

their work with density-only baseline. 

The authors observe that the error of their methods is bigger with pictures with higher 

density. But high density also affects annotation error.  

The authors examine the effect of the number of annotators on the proposed counting 

methods. The counting accuracy improves as the number of annotators per image 

increases. 

2.6 YOLO algorithm 

The approach of this thesis is based on the YOLO algorithm which is described in [4]. 

YOLO is an object detection algorithm. It uses single neural network. Full images are 

the input and the output is bounding boxes and class probabilities of detected objects.  

In their paper, the authors also describe existing approaches for object detection. They 

point out that other detection systems use classifiers for detecting an object. Classifier is 

used on various scales and locations on the image to see if it contains an object. Some 

systems use sliding windows approach, others use region proposal methods. The latter 

approach first generates potential bounding boxes and then runs classifiers on them. 

The authors have reframed object detection as single regression problem. Image pixels 

are translated to bounding boxes and class probabilities. The name of the approach, 

YOLO, comes from the fact that you only look once at an image to predict its contents. 

As the authors point out, YOLO is a simple approach, it uses a single convolutional 

network. 

The authors point out the benefits of the YOLO approach. YOLO is fast and more 

precise than other real-time systems. When making predictions, YOLO reasons globally 

about the whole image. Unlike other approaches, like sliding windows and region 

proposal based methods, YOLO looks at the whole image. This means that it encodes 

contextual information. Another benefit is that YOLO learns generalizable 

representations. 
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The authors have unified the separate components of object detection into a single 

network. For predicting, the network uses features from the entire image and reasons 

globally about the full image. 

The input images are divided into an S by S grid. A grid cell is responsible for detecting 

an object if the centre of that object is inside that grid cell. Each grid cell predicts B 

bounding boxes and confidence scores for them. The confidence score represents the 

probability that the bounding box contains an object and how accurate is the box. 

Each bounding box consists of 5 predictions: the x and y coordinates of the centre of the 

box relative to the grid cell, the width and height of the object and the confidence 

prediction which represents how accurate is the box. 

Each grid cell also predicts C conditional class probabilities. At test time the conditional 

class probabilities and box confidence predictions are multiplied to get class-specific 

confidence scores for each box. These scores encode the probability of the class 

appearing in the box and how accurate is the box. 

The model is implemented as a convolutional neural network. In the network the 

convolutional layers extract features and the fully connected layers predict output 

probabilities and coordinates. The network architecture is inspired by GoogLeNet 

model and has 24 convolutional layers followed by 2 fully connected layers. 

The model is optimized for sum-squared error, which was chosen because it is easy to 

optimize, but it has some limitations. There is a problem with grid cells that do not 

contain any objects. They can overpower the gradient form cells that do contain objects 

and cause model instability. To remedy this, the loss for boxes that do not contain 

objects is decreased. 
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3 Methodology 

This chapter describes the dataset that was used for training the models. In the dataset, 

the annotations were provided as dot annotations. Since YOLO algorithm requires 

bounding boxes as input, bounding boxes were generated from dot annotations. 

Different parameters that were used for training the models are described. Since YOLO 

algorithm outputs bounding boxes, but the ground truth is provided as dot annotations, 

there is a need for a special evaluation algorithm. 

3.1 Dataset 

The original dataset is available at [2]. It contains images from different locations. All 

the images have approximately the same resolution, but the scale of the penguins varies 

quite a lot. On the images, penguin diameter is between 15 and 700 pixels. In the 

experiments of this thesis, images where the penguin scale is similar were used. About 

half of the locations from the original dataset where chosen and images from these 

where used for the experiments. The reduced dataset contains about 50 000 images. 

The original images had a resolution of either 2048 by 1536 pixels or 1920 by 1080 

pixels. Training a model with such high-resolution images would have been 

computationally expensive and would have taken a lot of time. It is questionable if the 

model would have benefitted from having such high-resolution images as input, because 

the penguins on these images are large enough so that for the human eye, they are 

recognizable even if the resolution of the images is reduced. 

The images were resized to have a resolution of 448 by 448 pixels. This reduced the 

resolution of the images, but the penguins are recognizable also on the resulting images. 

This resizing also resulted in all the images having the same dimensions. Since the 

original images had different dimensions and they were resized to have the same 

dimensions, some of the resulting images are a bit distorted. But the distortion is small 

and should not have a negative effect on the resulting model. 
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The images were divided into a training set of about 40 000 images and a test set of 

about 10 000 images. Both the training and test sets contain images from all the 

locations. For dividing the images into training and test sets a program looped over all 

the images and put every fifth image into the test set and the rest constituted the training 

set. 

The dataset also contained information about the average size of the penguin on 

different image locations. This is useful because penguins that are further from the 

camera appear smaller. This information was presented by a special grey-scale image 

where each pixel value represented the average penguin size at that pixel location. The 

information about penguin sizes was used to generate bounding boxes from dot 

annotations. 

The images have been annotated by dot annotations – humans have annotated the 

images by placing a dot inside a penguin instance. These dot annotations are available 

as a list of picture coordinates. For each penguin, there should be corresponding 

coordinates in the list. Each image has been annotated by several annotators, but in the 

experiments of this thesis, for each image the annotations of only one annotator were 

used. 

Since the dataset was not annotated by experts, but by ordinary people, it contains 

mistakes. Especially when there is crowding on the image, people have often missed 

penguin instances. This causes difficulties both when training the model and when 

evaluating the results. When training the model, the model should handle the fact that 

some of the instances are not marked. When evaluating the model, we do not have 

absolute ground truth. 

The reduced dataset contains images from different locations, each location is marked 

with a code name (for example DAMOa). Since the images from different locations 

have different properties, statistics about different locations is presented: 
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Table 1 Statistics about the different locations of the penguin dataset 

 Maximum Minimum Average 

DAMOa 22 0 10.66 

GEORa 94 0 11.09 

HALFb 73 0 24.59 

HALFc 21 8 14.14 

LOCKb 33 0 4.90 

NEKOc 74 0 14.17 

PETEc 96 0 9.82 

PETEd 63 0 8.89 

PETEf 83 0 12.11 

SPIGa 60 0 8.61 

 

Table contains information about the maximum, minimum, and average number of 

penguins for images from different locations. 

3.2 Generating bounding boxes 

In the original dataset, penguins were annotated by dot annotations. For each image, 

several annotators have provided penguin locations by marking each penguin with a dot. 

For the experiments of this thesis, for each image, the annotations of one annotator were 

used. In the dataset, for each image there is a list of picture coordinates that represent 

the locations of the penguins. 

The dataset also contains information about the average penguin size at each image 

location. For each picture, there is a corresponding grey-scale picture where each pixel 

value represents the average penguin size at that pixel location. 
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YOLO algorithm requires bounding-box annotations. Using the original dot-annotations 

and information about average penguin sizes bounding boxes were generated. For the 

experiments, two sets of bounding boxes were generated, one containing smaller 

bounding boxes and the other larger.  

The following algorithm was used. The program looks at each dot annotation and 

penguin size at the location of the dot annotation. To generate the smaller bounding 

boxes one fourth of the average penguin size is used for calculations. To get the y 

coordinate of the upper left corner of the bounding box, one fourth of the penguin height 

is subtracted from the y coordinate of the dot annotation. To get the x coordinate of the 

upper left corner of the bounding box, one fourth of the penguin width is subtracted 

from the x coordinate of the dot annotation. To get the upper right corner of the 

bounding box one fourth of the penguin height is subtracted and one fourth of the 

penguin width is added to the dot annotation coordinates. To get the lower left corner of 

the bounding box, one fourth of the penguin height is added and one fourth of the 

penguin width is subtracted from the dot annotation coordinates. To get the lower right 

corner of the bounding box, one fourth of the penguin height and one fourth of the 

penguin width is added to the dot annotation coordinates. 

For many reasons the generated bounding boxes are not that precise. The original dot 

annotations are usually not located at the centre of the object. Penguins are not the same 

size. Some of the penguins are standing up and some are lying down. For some images 

this algorithm worked better than for others. 



29 

 

Figure 1 Example of an image where smaller generated bounding boxes work well 

Figure 1 represents an example where this algorithm worked quite well. On the image 

the original dot annotations are marked with red dots and the generated bounding boxes 

are displayed as blue rectangles. Almost all the penguins are inside the generated 

bounding box and the bounding boxes are not too big compared to the penguins. 
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Figure 2 Example of an image where smaller generated bounding boxes do not work well 

Figure 2 represents an example where this algorithm was less successful. For the 

penguins on this image the generated bounding boxes are generally too small – they 

contain only a part of the penguin. 

These smaller bounding boxes often do not contain the whole penguin. Because of that 

larger bounding boxes were also generated. The same algorithm was used with the 

difference that one third of the penguin size was used for calculations. With the larger 

bounding boxes it is more likely that the whole penguin is contained inside the 

bounding box, but it is also more likely that the bounding box contains background. 
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Figure 3 Example of larger generated bounding boxes 

Figure 3 represents an example of the larger generated bounding boxes. Most of the 

penguins are contained inside the generated bounding box. At the same time the 

bounding boxes also contain some of the background. 

3.3 Training the model 

The models were trained with an implementation of the YOLO algorithm found at [13]. 

This is a TensorFlow [14] implementation of the YOLO algorithm. The existing 

implementation was modified so that it could be used with the penguin dataset. The 

main modification was in loading the input data while training. Google Cloud [15] was 

used for training the models.  

Different models were trained using the penguin pictures and generated bounding boxes 

as input. Six different models were trained using different parameters. The models were 

trained using either smaller or larger generated bounding boxes. The models were 

trained for different numbers of iterations. One hyper parameter of the YOLO algorithm 

is the number of boxes per grid cell. Image is divided into grid cells and each grid cell is 

responsible for detecting a number of bounding boxes specified by this parameter. Since 

some of the images are quite crowded, different values were used for this parameter. 
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Other parameters of the algorithm were kept constant. Learning rate of 0.0001 and batch 

size of 10 were used. Using a batch size on 10 and training for 5000 iterations means 

that some of the images were used multiple times for training, since training set size was 

about 40 000. 

3.4 Evaluating the results 

Since the original dataset was annotated by dot annotations and the YOLO algorithm 

outputs bounding boxes, it is not trivial to evaluate the performance of a model. It 

would not be reasonable to evaluate the 10 000 test images by hand. To automate the 

process of evaluating the results the following algorithm was used. 

In the beginning, counters for true positives, false positives and false negatives are all 

initialized to zero. The program loops over the output bounding boxes. If the bounding 

box contains a dot annotation, the counter for true positives is incremented by one. 

Also, the corresponding dot annotation is removed from dot annotations list so that the 

same dot annotation could not be used twice. If the bounding box does not contain any 

dot annotations, the counter for false positives is incremented by one. After the program 

has looped over all the bounding boxes, the count of false negatives is calculated by 

subtracting true positives count from the number of dot annotations. 

This algorithm approximates the performance of a model, but it is not precise as is 

illustrated by the following example image. 
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Figure 4 Example of an image where the evaluation algorithm does not work correctly 

Figure 4 demonstrates an example where the evaluation algorithm would not work 

absolutely correctly. One of the bounding boxes contains at least a part of a penguin and 

should be counted as a true positive, but since the dot annotation is on another part of 

the penguin, the bounding box is counted as false negative. Still, this algorithm is a way 

to approximate the performance of a model. 
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4 Results 

After training the models with different parameters, each of them was used with test set 

images. The evaluation algorithm was used on the outputs to evaluate the performance 

of each model. This chapter presents the results for each model. Since the results vary 

depending on image locations, the results for different locations are also presented. 

4.1 Results of different models 

To evaluate the results, for each image, I used the annotations of one annotator. Based 

on the annotations I used there are all together 101 226 penguins on test set images. The 

following table presents the results for different models. For each model are presented: 

• Whether smaller or larger generated bounding boxes were used while training 

the model. 

• For how many iterations the model was trained. 

• Boxes per grid cell – this is a hyper parameter of the YOLO algorithm. 

• Threshold – YOLO algorithm outputs a confidence score for each bounding box. 

This can be used as a threshold when filtering the results. 

• Intersection over union threshold – another threshold that can be used when 

filtering the results. 

• True positives – how many penguins did the model identify correctly on all the 

images together. 

• False positives – how many false detections the model generated for all the 

images together. 

• False negatives – how many penguins did the model miss for all the images 

together. 
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• Precision – calculated based on global true positives and false positives. 

• Recall – calculated based on global true positives and false negatives. 

• F1 score – calculated based on the previous precision and recall. 

• Average precision of images – the average of the precisions calculated for each 

image. 

• Average recall of images – the average of the recalls calculated for each image. 

• Average F1 score of images – the average of the F1 scores calculated for each 

image. 
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Table 2 Results of different models 
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For all the models, the main problem seems to be the large number of false negatives – 

meaning that all the models miss a lot of the penguin instances. The YOLO algorithm 

outputs a confidence score for each bounding box and the bounding boxes can be 

filtered based on that. Model 7 is the same as model 6, but with a lower threshold for 
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filtering the results. Model 7 outputs more bounding boxes and is able to detect more 

penguins, but the number of false positives also increases – background is identified as 

penguin more often. 

Model 7 is performing the best. Models 5, 6 and 7 use the same parameters as models 1 

and 2, but they were trained for more iterations – some of the training images were used 

multiple times while training. Although they are performing better than the other 

models, it would not be reasonable to train for even more iterations, because using the 

same images for training will eventually lead to overfitting. 

 

Figure 5 Example of model 6 performance 

Figure 5 exemplifies model 6 performance. On the images in this chapter, the red dots 

represent ground truth dot annotations and the blue rectangles represent the bounding 

boxes that the model output. On this image, the model is able to recognise some of the 

penguins. The model is not identifying background as penguins, but it is missing a lot of 

penguin instances. 
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Figure 6 Example of model 7 performance 

Figure 6 exemplifies model 7 performance. Model 7 is the same as model 6, but the 

threshold for filtering the results is lowered to 0.1. The model is able to recognize more 

penguins. There are more false positives. There seems to be a problem with overlapping 

bounding boxes – in some cases there are multiple bounding boxes for the same bird. 

Model 3 is performing worst. Using the initial threshold of 0.2 this model detected 

almost no objects. When the threshold was lowered, the model was able to detect some 

objects, but it is also generating a lot of false positives. 
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Figure 7 Example of model 3 performance 

Figure 7 exemplifies model 3 performance. The bounding boxes that the model outputs 

are a lot smaller. The model is detecting almost none of the penguins. The model is 

identifying background as penguins quite a lot. 

The results of the three best performing models are presented in more detail. 

4.2 Results of model 2 

The original pictures were taken at different locations which are represented by code 

names (for example DAMOa). Different locations have different properties – average 

penguin size, perspective, crowding of the birds. Since all these properties influence the 

performance of the model, it is useful to look at the results of all the locations 

separately. The following table represents the results of model 2 for different locations: 
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Table 3 Results of model 2 

 True 

positives 

False 

positives 

False 

negatives 

Precision Recall F1 score 

DAMOa 195 58 688 0.77 0.22 0.34 

GEORa 1133 698 8815 0.62 0.11 0.19 

HALFb 261 61 1267 0.81 0.17 0.28 

HALFc 232 49 573 0.83 0.29 0.43 

LOCKb 1251 396 3833 0.76 0.25 0.38 

NEKOc 1587 615 12154 0.72 0.12 0.21 

PETEc 2754 1513 20519 0.65 0.12 0.20 

PETEd 2112 1133 15791 0.65 0.12 0.20 

PETEf 1033 646 17081 0.62 0.06 0.11 

SPIGa 1679 514 8268 0.77 0.17 0.29 

 

The F1 score for the location with the best performance is 0.43 and for the location with 

the worst performance 0.11, which is a significant difference. To understand why the 

results vary so much, it is useful to look at example images from these locations. 
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Figure 8 Example image from location HALFc 

Figure 8 represents an example from location codenamed HALFc, which is the location 

where model 2 had the best performance. At this location, the penguins are quite large 

compared to the picture size. There is not much crowding between the birds. The 

contrast between the birds and the background is quite high. 
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Figure 9 Example image from location PETEf 

Figure 9 represents an example from location codenamed PETEf, which is the location 

where model 2 had the worst performance. On this image penguins are smaller 

compared to the picture size. There is more crowding between the birds. 

4.3 Results of model 6 

The following table presents the results for different locations for model 6. 

Table 4 Results of model 6 

 True 

positives 

False 

positives 

False 

negatives 

Precision Recall F1 score 

DAMOa 246 94 637 0.72 0.28 0.40 

GEORa 1391 868 8557 0.62 0.14 0.23 

HALFb 303 81 1225 0.79 0.20 0.32 

HALFc 270 62 535 0.81 0.34 0.47 
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LOCKb 1455 492 3629 0.75 0.29 0.41 

NEKOc 2215 947 11 526 0.70 0.16 0.26 

PETEc 3652 1796 19 621 0.67 0.16 0.25 

PETEd 2865 1347 15 038 0.68 0.16 0.26 

PETEf 1451 767 16 663 0.65 0.08 0.14 

SPIGa 2103 739 7844 0.74 0.21 0.33 

 

Compared with model 2, recall has improved more, whilst precision has gotten worse 

for some locations. The F1 scores have improved. The location where the model has the 

best performance and the location where the model has the worst performance are the 

same as for model 2. 

4.4 Results of model 7 

Model 7 is the same as model 6, but with a lower threshold for filtering the results. The 

following table presents the results of model 7 for different locations: 

Table 5 Results of model 7 

 True 

positives 

False 

positives 

False 

negatives 

Precision Recall F1 score 

DAMOa 450 562 433 0.44 0.51 0.47 

GEORa 2908 4072 7040 0.42 0.29 0.34 

HALFb 479 786 1049 0.38 0.31 0.34 

HALFc 444 517 361 0.46 0.55 0.50 

LOCKb 2477 3375 2607 0.42 0.49 0.45 

NEKOc 4842 6342 8899 0.43 0.35 0.39 
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PETEc 9235 9484 14 038 0.49 0.40 0.44 

PETEd 7305 7012 10 598 0.51 0.41 0.45 

PETEf 4050 4742 14 064 0.46 0.22 0.30 

SPIGa 3937 5223 6010 0.43 0.40 0.41 

 

With lower threshold recall improves – the model is able to correctly detect more 

penguins. The precision has gotten worse – the model is generating more false positives. 

The F1 scores have gotten better. 
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5 Discussion 

The goal of this thesis was to count objects in images, specifically to count penguins in 

images taken in the course of a survey of Antarctic penguins. The images were taken 

periodically with fixed cameras at different locations. Based on these images, scientists 

want to monitor penguin populations and how they change over time. Therefore, it is 

necessary to count the penguins on these images. 

So far, this has been done by ordinary people on a public website. There, anybody can 

join the project and process the images by placing dots on penguin instances. This has 

resulted in a large dataset of dot-annotated images, which can be used to train machine 

learning models that would automate the process of counting penguins in images. 

This thesis is not the first attempt to count penguins in these images. “Counting in the 

wild” [3] deals with the same dataset for the same purpose. The approach used in this 

thesis is different from the approach used in “Counting in the wild”. In general, there 

are two different ways to count objects in images – one based on object detection and 

the other based on object density estimation. “Counting in the wild” is based on density 

estimation – their model learns a mapping between image features and density. 

Integrating this function over an image region, gives object count for that region. The 

approach used in this thesis is based on object detection. 

In this thesis, the YOLO algorithm is used to detect penguins in images. This algorithm 

is different from previous detection methods, in that it does not use sliding windows or 

region-proposal methods to detect objects. Instead it looks at the whole image and tries 

to detect all the objects in the image in a single go. Image is divided into grid cells and 

each grid cell is responsible for detecting the object if the centre of that object is inside 

that grid cell. A model trained with the YOLO algorithm outputs bounding boxes and 

confidence scores of detected objects. 

The penguin dataset was annotated with dot-annotations. The YOLO algorithm requires 

input as bounding boxes. This was solved by generating bounding boxes from dot 
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annotations. The dataset also contained information about average penguin size for each 

picture location. A fraction of the average penguin size was subtracted or added to the 

coordinates of the dot annotations to get the coordinates of the four corners of the 

bounding box. Bounding boxes of two different sizes were generated to compare their 

performance. 

Since the YOLO algorithm outputs bounding boxes, but the ground truth was provided 

as dot annotations, there was also a need for a special evaluation algorithm to evaluate 

the performance of the trained models. In general, the evaluation algorithm counts the 

bounding boxes that contain a dot annotation as true positives and the bounding boxes 

that do not contain a dot annotation as false positives. 

Using an existing implementation of the YOLO algorithm, the penguin dataset, and the 

generated bounding boxes, seven different models were trained with different 

parameters. 

The models that were trained with the larger generated bounding boxes performed better 

on the test set. The difference with the smaller and larger generated bounding boxes is 

that the smaller bounding boxes often contained only a part of the penguin. At the same 

time the smaller generated bounding boxes had the benefit that they did not contain 

much background information. With the larger generated bounding boxes, it is more 

likely that the whole penguin is contained inside the bounding box. At the same time, 

the larger bounding boxes contained more background information. 

The smaller generated bounding boxes could be thought of as part detectors – the model 

learns to detect different parts of the penguin. This presents a problem at test time – 

given a new image the model would identify different parts of the penguin on that. The 

same bird would be detected multiple times. Ideally, different detections of the same 

bird should be merged into one – but this is a difficult problem to solve. 

The reason why smaller generated bounding boxes performed worse is probably that the 

training set did not contain enough data. Since the smaller generated bounding boxes 

often contained only part of a penguin, the model was learning to detect different parts 

of the penguin. When learning to detect different parts of the penguin and when for each 

penguin only one part of it is annotated, more data is needed than when learning to 
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detect whole penguins. This is probably the reason why the models that were trained 

with larger generated bounding boxes performed better. 

The images in the dataset were taken at different locations. Images from different 

locations have different properties – average penguin size on the image, average 

penguin count on the image, crowding and inter-occlusion between birds. The models 

performed better on images where penguins appeared quite large compared to the 

picture size. The models performed better on images where there was not much 

crowding between the birds. One indicator of how much crowding there is for a specific 

location, is the maximum number of penguins at that location. When the maximum 

number of penguins is high for a location, that means that it is more likely that there is 

crowding on images taken at that location. Models performed worse for locations where 

there is more crowding. This is in accordance with other research on counting objects in 

images. In general, detection-based methods do not perform well, when objects are 

overlapping and there is inter-occlusion between them. 

It is not possible to directly compare the results achieved in this thesis and the results of 

“Counting in the wild”. Density-based methods output plain object counts, which can be 

compared with ground truth counts. “Counting in the wild” uses mean counting error as 

the evaluation metric. The models of this thesis output object locations and when 

evaluating the results, it would not be correct to count the output bounding boxes and 

compare that with ground truth counts. Since whether the bounding box contains an 

object must also be taken into account. 

It seems that density estimation based method is more suitable for the penguin dataset. 

Detection-based methods perform better when there is not much overlapping or 

crowding between instances. The approach used in this thesis worked better for images 

from locations where there is not much crowding. But most of the images of the 

penguin dataset are crowded. On the images birds are usually grouped together. In such 

cases, density estimation based methods work better, because they do not aim to detect 

individual instances, instead they look at image structure. 

The approach used in this thesis worked better for images where penguins were quite 

large compared to the image size. When the object is small on the image, it probably 

does not have enough features for an object detector to recognize it. Image resolution 
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was reduced for the experiments, because using the original images would have been 

computationally expensive. It is possible that when the YOLO algorithm were trained 

with the images with the original resolution, it would have performed better. 
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6 Summary 

As part of a survey of Antarctic penguins, images are taken periodically with fixed 

cameras. Zoologists are interested in the sizes of penguin colonies. Therefore, there is a 

need to count the penguins in these images. So far this has been done by ordinary 

people on a public website. This has resulted in a large dataset of dot-annotated images 

that can be used to train and test machine learning models. 

In general, there are two approaches to count objects in images. One is based on density 

estimation and the other is based on object detection. “Counting in the wild” attempts to 

count the penguins using a method that is based on density estimation. This thesis 

presents a way to count the penguins using a method that is based on object detection. 

Based on dot annotations of the dataset, bounding boxes were generated. The YOLO 

algorithm was used to train different models using the penguin dataset with the 

generated bounding boxes. An algorithm for evaluating the results was presented. 

Results of different models were presented. 
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Appendix 1 – Source code of the models 

Git repository: 

https://github.com/liisharjo/yolo_tensorflow 

 


