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Introduction 
Solitons in contemporary understanding were first described by N.J. Zabusky 
and M.D. Kruskal in 1965 and they form now a paradigm in mathematical 
physics. Soliton is a solitary wave with finite energy and the necessary 
conditions of its existence include nonlinearity and dispersion. Soliton dynamics 
is one of the hot topics due to wide applications in hydrodynamics, electronics, 
solid mechanics, biophysics and other disciplines, and accompanying theoretical 
deepness (Ablowitz and Clarkson 1991, Fokas and Zakharov 1993). When the 
classical, so called Korteweg–de Vries (KdV) soliton is based on quadratic 
nonlinearity and cubic dispersion, then the contemporary wave dynamics 
(especially in solid mechanics) needs much more complicated mechanisms to be 
taken into account (Jeffrey and Engelbrecht 1994). In this case the celebrated 
inverse scattering method elaborated for classical cases cannot be used and 
numerical methods give the only way to analyse the complicated situations. The 
pseudospectral methods and the idea of spectral analysis are without any doubt 
useful due to additional information on the energetical background of wave 
structures beside their spatial-temporal profiles. This is deeply related to the 
concept of solitons as the particle-like waves with certain energy. Earlier studies 
in the Institute of Cybernetics and Tallinn University of Technology have given 
good results in the spectral analysis of the classical KdV equation and some of 
its modifications (Engelbrecht 1991, 1995; Salupere 1995, Salupere et al. 1996). 
This thesis deals with solitary wave and soliton formation mechanism for wave 
dynamics in solids with microstructure. These problems are essential in 
crystalline solids where the dislocations or shape–memory effects are of 
importance. Such materials are now widely used in contemporary high 
technology. The elastic potential for such materials can be described by a quartic 
function with two minima and the microstructure leads to the dispersion 
described by higher order derivatives. Therefore the studied model equation 
describing the evolution of the one dimensional wave propagation includes 
quartic nonlinearity and both, the third and the fifth order dispersive terms. This 
equation is not integrable, but earlier numerical simulations have proved the 
existence of soliton–type solutions with certain radiation in some particular 
cases.  
This thesis is organised as follows:  Section 1 starts with the description of first 
observations of solitons made by Scottish engineer S. Russell. It is followed by 
describing the concept of solitons. Various studies of KdV- and KdV-like 
equations are also described in Section 1. As proposed model equation is 
nonintegrable numerical method has been used. Section 2 gives short overview 
of pseudospectral method and discrete spectral analysis. Section 3 is dedicated to 
the wave propagation in microstructured solids. At first, the background of the 
model equation is presented. Secondly, the essence of the higher order dispersive 
and nonlinear effects is discussed. Thirdly, numerical studies of the model 
equation are summarised. In addition to three novel problems, which are the 
main topics of the present thesis, results of previous studies are revisited. Final 
comments and main results of this thesis have been elaborated in Section 4. 
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Results of the present thesis are published in six papers. Proposed model 
equation with harmonic initial condition and normal dispersion is studied in 
Publication I and Publication II. Results of this study have been presented by 
the author in the EUROMECH Colloquium 436 „Nonlinear Waves in 
Microstructured Solids“ (Tallinn, Estonia, 2001) and in the 15th Nordic Seminar 
on Computational Mechanics (Aalborg, Denmark, 2002).  
The second problem of the proposed model equation includes localized initial 
condition with normal dispersion. Results of this study have been published in 
Publication III, Publication IV and Publication V and presented in 21st 
International Congress of Theoretical and Applied Mechanics, ICTAM04 
(Warsaw, Poland, 2004).  
Localized initial condition with mixed dispersion has been studied as the third 
problem. Publication VI includes main results of this study. Results of the third 
study have been presented in the 4th IMACS International Conference 
"Nonlinear Evolution Equations and Wave Phenomena: Computation and 
Theory" (Athens, USA, 2005). 
 
The aims of the thesis are related to analysis of the influence of higher-order 
nonlinearity and dispersion to the wave propagation in microstructured 
materials. Main goals of this thesis have been: 

- to find and analyse numerical solutions for proposed model equation 
over wide range of dispersion parameters under different initial 
conditions; 

- to define solution types and detect how do solution types depend on 
dispersion parameters as well as on the amplitude of initial excitation; 

- to determine the dispersion parameters of the media and amplitude of 
the initial excitation permitting formation of stable solitonic structures or 
propagation of stable solitary waves; 

- to examine various properties (recurrence, super-recurrence, periodicity 
etc.) of the solutions. 
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1 Theoretical background 

1.1 Short history of KdV- and related equations. Introduction of 
solitons. 

Once Universe was created, solitons were created as well. Like with many other 
great phenomena of Nature, it took very long time until mankind was able to 
observe first time those waves, with unique properties. In 1834 Scottish civil 
engineer, Scott Russell, was observing a boat drawn by a pair of horses along the 
canal between Edinburgh and Glasgow. Once the boat was stopped, surrounding 
water was set in motion, Russell describes it as follows – “rolled forward with 
great velocity assuming the form of a large solitary elevation, a rounded smooth 
and well-defined heap of water, which continued its course without change of 
form or diminution of speed“. According to Russell the giant wave was about 
thirty feet long and one-and-a-half feet high. Russell, who was on horseback, 
rode down the towpath following the wave until it eventually petered out a mile 
or so further along the canal. The observations made by Scott Russell are 
considered as first discovery of solitons. However, he called this hump-shaped 
disturbance 'a great wave of translation', but it soon became known as a „solitary 
wave“. Term „soliton“ was brought into practice more than a century later. 
Russell was intrigued enough by his solitary wave to carry out some laboratory 
experiments. He found it is easy to generate a solitary wave by dropping a 
weight into water at one end of a long rectangular tank. From this he discovered 
an empirical equation describing the wave: the speed of each wave depends on 
the depth of the undisturbed water, the maximum height of the wave above the 
level of the undisturbed water (the amplitude of the wave) and the acceleration 
due to gravity. He noted that higher waves travel faster than smaller waves. 
Russell also made several other acute observations which were not well 
understood for more than a century. 
In the 1870’s two great physicists, the French mathematical physicist Joseph 
Boussinesq at the University of Paris and the English Lord Rayleigh, showed 
independently how Russell’s solitary wave arose and also explained it 
mathematically. They showed that it is a wave of smallish amplitude that can 
arise in a shallow layer of a frictionless and incompressible liquid - such as 
water. Boussinesq and Rayleigh deduced Russell's empirical formula for the 
speed of a solitary wave and related its height to the distance. They also showed 
that tall waves are narrow, or short, and small waves are wide, or long.  
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Year 1895 is the second very important mile-stone in solitons’ history. Namely, 
the Dutchmen Diederik Korteweg and G. de Vries found an equation governing 
waves of small amplitude in shallow water and showed that the wave of 
Boussinesq and Rayleigh is a solution of this equation, now called the 'KdV 
equation'. Russell's solitary wave should in theory have travelled unchanged for 
ever, but in practice the viscosity of the water slowly dissipated the energy of the 
wave while Russell rode along the towpath of the canal. This odd solution to the 
KdV equation was dutifully recorded in many books, but it was not well 
understood for many years. 
Another remarkable discovery, which at first sight had nothing to do with 
solitary waves was made by E. Fermi, J. Pasta and S. Ulam (1955) as they 
studied the heat transfer problem, that is, the flow of incoherent energy in solid 
modelled by nonlinear springs. In fact, the one-dimensional monoatomic lattice 
is possibly the simplest discrete structure with which to study lattice dynamics. It 
provides a model of quasi-one-dimensional crystals within which a clear 
understanding of the dynamics is more readily attainable. When the interactions 
between particles are harmonic, which is, when particle displacements are very 
small deviations from equilibrium positions, the equations of motion of the 
particles can be decoupled and the dynamics of the lattice can be described by 
superpositions of normal modes, represented by sinusoidal waves, which are 
mutually independent. 
In 1955 E. Fermi, J. Pasta and S. Ulam (FPU) intended to verify this assumption 
by computer simulations on a one-dimensional lattice. They examined the 
dynamical behaviour of a chain with nonlinear interactions between atoms (mass 
points), expecting that the initial energy would eventually be shared among all 
degrees of freedom of lattice. Much to their surprise, the system did not 
approach energy equipartion, that is, the energy did not spread throughout all the 
normal modes, but returned almost periodically to the originally excited mode. 
This remarkable near recurrence phenomena, known nowadays as the FPU 
problem was confirmed by some other scientists, that the nonlinear terms did not 
guarantee the approach of the system to thermal equilibrium. 
This work inspired Norman Zabusky at Bell Telephone Laboratories and Martin 
Kruskal at Princeton University in 1965 to study the continuum limit of the FPU 
problem solving the corresponding nonlinear KdV equation numerically. In 
doing so, Zabusky and Kruskal made a surprising discovery when they 
examined the solitary wave solution. When solitary waves meet each other, they 
move through each other so that they emerge with their original shapes, sizes 
and speeds. It was almost as if the waves were governed by the principle of 
superposition associated with linear waves. Zabusky and Kruskal coined the 
word 'soliton' for the solitary-wave solution of the KdV equation. Solitary waves 
keep their character after interacting with one another. In fact they seem to be 
behaving like interacting elementary particles such as electrons or protons, a 
significant point that we shall come back to later.  
The paper by Zabusky and Kruskal started an intense burst of research related to 
this phenomenon. Soon Kruskal and other colleagues proved the properties of 
solitons mathematically. With ingenuity and persistence they found a linear 
problem 'behind' the KdV equation. Gardner et al. (1967) showed that the 
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problem of solving the nonlinear KdV equation could be broken down into 
solving two linear problems analogous to those of the scattering of an electron in 
a one-dimensional electric field, and the inverse problem of finding an electric 
field from the energy levels and the scattering of electrons. This inverse problem 
is analogous to the problem of finding the shape and size of a drum when you 
hear it beaten in different ways, rather than working out the sounds of drumbeats 
from the shape and size of the drum. The inverse problem gives the name 
'inverse scattering transform' to this theory. 
One has to mention that it was the first time in history of science when new 
paradigm (the concept of solitons can be called as the paradigm) was introduced 
by discoveries of numerical experiments.  
Since then two directions have evolved in examining the nonlinear problems 
(Zabusky 1981): 

- Mathematical approach to the generic properties of classical discrete 
Hamiltonian systems.  

- Numerical experiments based on partial differential equations. 

1.2 Concept of solitons 
Solitons are found in different matters: 

i) the one-dimensional (1D) solitons: waves in shallow water, 
signals in optical fibres; 

ii) the two-dimensional (2D) solitons: magnetic flux domains in 
superconductors, vortex-antivortex in fluids; 

iii) the three-dimensional (3D) solitons: magnetic monopoles in 
gauge theories, skyrmions, i.e. soliton models for protons and 
neutrons. 

Different authors have given different definitions of solitons, most widely are 
used the following: 

- soliton definition given by Scott Russell – solitary wave is localized 
wave that propagates along one space direction only, with undeformed 
shape. 

- soliton definition given by Zabusky and Kruskal – soliton is a large 
amplitude coherent pulse or very stable solitary wave, the exact solution 
of a nonlinear wave equation, whose shape and speed are not altered by 
collision with other solitary waves. 

In the present study the soliton definition given by Drazin (1983) is used. By this 
definition soliton 

- is a solitary wave which conserves its speed and shape; 
- can interact with other solitons nonlinearly and after interaction restores 

its speed and shape, i.e., their interaction is elastic. 
These solitons are clearly visible physical entities. However, beside visible 
solitons, other similar entities exist – hidden solitons. The concept of hidden 
(virtual) solitons is described in detail in Salupere et al. (1996), Salupere (2000), 
Publication I and Publication II. The main characteristics of hidden solitons 
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are as follows: hidden solitons can emerge together with visible solitons (for 
example from harmonic excitation), hidden solitons have very small energy and 
amplitude, these interact with visible solitons and cause distinct changes in 
visible soliton amplitudes and trajectories during interaction, can be detected in 
wave profiles for a short time interval only when several soliton interactions 
have taken place, if ever. Physical essence of visible and hidden solitons is the 
same (Engelbrecht and Salupere 2005). 

1.3 Original KdV 
For future discussions the nature of the KdV equation must be explained. The 
KdV equation can be presented in following form  

 0=++ xxxxt duuuu ,  (1) 

where indices denote the differentiation and d stands for the dispersion 
parameter. By Ablowitz and Clarkson (1991) one can describe the following 
properties ⎯ first, the KdV equation describes the propagation of solitary 
waves; second, it describes the emergence of solitary waves from the initial 
excitation (for example harmonic excitation); third the KdV equation is the 
simplest nonclassical partial differential equation possessing 

- the minimum number of independent variables (2); 

- the lowest order of the derivative not considered classically (3); 

- the fewest terms of that order (1); 

- the simplest such a term (an unmixed derivative); 

- the smallest number of terms (1) containing the other derivative which is 
of the first order; 

- the simplest structure for this term (linear); 

- the simplest additional term to make the equation nonlinear (quadratic). 

As the celebrated KdV equation (1) is an integrable equation its stationary 
solution in a frame moving with velocity c can be found analytically. If to 
substitute 
 ),(),( ξutxu =  with ctx −=ξ  (2) 
into equation (1) then for u one gets a third-order nonlinear ordinary differential 
equation (ODE) 
 .0=++− ξξξξξ duuucu  (3) 
Here c is the phase velocity and d the dispersion parameter. The solution of ODE 
(3) can be found directly by integrating the differential equation (3) three times. 
In the case of asymptotic boundary conditions 
 ,0,,, →ξξξξξξ uuuu  if ±∞→ξ  (4) 
the solution can be expressed in the following form 

 ),(5.0hsec3 0
2 ξξ −=

d
ccu  (5) 
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where ξ0 is an arbitrary constant (cf. Zabusky and Kruskal 1965). Here the 
quantity A = 3c can be considered as the amplitude of the soliton, i.e. the higher 
the soliton, the higher its velocity.  
 

1.4 Higher order KdV-like evolution equations 
KdV equation is obtained at a certain degree of approximation (higher-order 
dispersive effects have been neglected), in many cases the physical reality needs 
better accuracy. Under certain circumstances it may happen that the fifth-order 
dispersion has a significant role in the wave propagation process. For this 
reason, beside the KdV equation, the so called reduced fifth-order KdV 
(RFKdV) with the same nonlinear term as the KdV equation is of importance. I 
shall call equations which consist of third- and fifth order dispersive terms and 
nonlinearity as in the KdV, fifth-order KdV equations (FKdV for short). If 
higher order nonlinear terms have been also included, these equations will be 
called as fifth-order KdV-like equations (FKdV-like equations). 
While studying papers of other authors corresponding to higher order KdV-like 
evolution equations I focused on following fields of researches: 

1. derivation of model equations based on experiments or theoretical 
approaches; 

2. derivation of (analytical) methods for finding any kind of solutions 
for proposed model equations; 

3. analysis of analytically or numerically found solutions; stability of 
solutions, interaction of solitary waves, etc. 

I have paid less attention on studies that are related to derivation of numerical 
methods for finding solutions for proposed model equations. In the following 
chapters, overviews of papers are given according to above mentioned 
categorization. 

Reduced fifth order KdV equation 
Under certain circumstances it may happen that the coefficient of the third order 
derivative in the KdV equation becomes very small or even zero and the higher 
order dispersive terms are accounted for which may balance the nonlinear effect. 
Keeping the accuracy of quadratic nonlinearity, the same nonlinear term appears 
like in the celebrated KdV equation.  
Kakutani and Ono (1969) showed that when the angle ϕ  between the 
propagation direction of the magneto-acoustic wave in a cold collision-free 
plasma and the external magnetic field becomes a critical angle given  by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= −

i

e

e

i
c m

m
m
m1tanϕ , im  and em being the masses of ion and of electron 

respectively, then the third order derivative term in the KdV equation vanishes 
and is replaced by the fifth order dispersive term. 
Nagashima (1979) observed solitary waves in the transmission line (see Fig. 1) 
which is described by the nonlinear equation 
 05 =−+ xxt uuuu . (6) 
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Fig. 1. The n-th section (solid lines) of the transmission line; 0V  and nV  denote 
the D.C. bias and A.C. (signal) voltage, respectively. L: inductance, M: mutual 
inductance, dC : differential capacitance of the nonlinear capacitor. 
In the case of this particular study solitary wave is expressed as 

 ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= txfu λλλ 4

1

 (7) 

for an arbitrary value of λ , where the function f describes the shape of the wave. 
Solitary wave, described by Eqs. (6) and (7) is stable irrespective of the small 
scattering of the capacitance and the inductance of the line. In paper Nagashima 
and Kuwahara (1981) computer simulations of equation  
 05

2 =−+ xxt uuuu γ , (8) 
where 2γ  is a constant of a small value, were carried out. It is found that the 
initial wave breaks into a train of solitary waves, which is similar to solutions of 
the KdV equation. One solitary wave with oscillatory tails is stable; this is 
expressed by Eq. (7). The interaction of two solitary waves is classified into two 
types, according to the relative amplitudes of waves. 
Exact solutions for Eq. (6) were found in 1981 by Kano and Nakyama (1981); 
Yamamoto and Takizawa (1981).  
 
 
 
According to Yamamoto and Takizawa, equation 

 0
16
105

5
2 =−⎟

⎠
⎞

⎜
⎝
⎛+ xxt uuuu α  (9) 

has solution 

 ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

2
1,

22
1cn 04

1
4 ξξαβ

α
βu , (10) 

where cn(z,k) is the Jacobi cn-function of modulus k, with ⎟
⎠
⎞

⎜
⎝
⎛−=

8
21 tx αβξ , 

positive constants γβα ,,  and any constant 0ξ . 
In the case of a small wave amplitude, the recurrence of initial waveform for Eq. 
(6) is observed in numerical studies by Yoshimura and Watanabe (1982). If the 
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amplitude is increased beyond a certain threshold, the solution depends on the 
initial condition. 
 

Fifth-order KdV equation  
KdV-like equation including both, the third and the fifth order dispersive terms 
was first proposed by Kakutani and Ono (1969) in their study related to the 
problem of magneto-acoustic wave in a cold collision-free plasma. The third- 
and the fifth order dispersive terms appear in the case of propagation near the 
critical angle.  
Steady solutions of the fifth-order KdV (FKdV) equation have been first found 
numerically by Kawahara (1972). Kawahara examined the FKdV equation 
 05.1 =−++ xxxxxxxxxt uuuuu βα . (11) 
This is a non-integrable differential equation and therefore one cannot find its 
solitary wave solutions analytically. Kawahara integrated the evolution equation 
(11) numerically with respect to the space variable x in the case of asymptotic 
boundary conditions. These “numerical solitons” or solitary waves have a bell-
like shape. If the coefficient of the third order derivative is dominant over that of 
the fifth order, then a monotone solitary wave solution was found. If the fifth 
order derivative is dominating over the third order one, oscillatory structure of 
the solitary waves forms. In this case these solitons are called “Kawahara 
solitons”. 
Yamamaoto and Takizawa (1981) have found solution for FKdV equation 

 0
4

13
16
105 2 =−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+ xxxxxxxxxt uuuuu δγ .  (12) 

According to them this equation has solution 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= )(

4
1sech 0

2
1

4
2

ηηδ
γ
δu , (13) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

4
9 2tx δη , γ  is positive constant and 0η  is arbitrary. 

 
Hunter and Schuerle (1988) have developed equation  
 053 =+++ xxxt uuuuu σ  (14) 
as a model equation for capillary-gravity waves when the Bond number σ  is 

just less than critical value of 
3
1 . They have constructed traveling wave 

solutions which do not decay at zero as +∞→x . Instead, when x is large, these 
solutions approach small amplitude oscillations. However, there exist branches 
of traveling wave solutions to the water wave equations, which are perturbations 
of supercritical elevation solitary waves, and which bifurcate from Froude 

number 1 and Bond number 
3
1 .  
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Watanabe and Jiang (1993) have used higher-order approximation of the 
reductive perturbation method in order to find higher order solutions for HKdV 
equation 
 053 =+++ xxxt uuuuu ε . (15) 
Grimshaw et. al. (1994) have constructed solitary wave solutions for FKdV 
equation,  
 06 53 =+++ xxxt uuuuu , (16) 
where the oscillations decay at infinity. These waves arise as a bifurcation from 
the linear dispersion curve to that wavenumber where linear phase speed and 
group velocity coincide. 
Jeffrey and Mohamad (1991) have presented a direct method for the construction 
of travelling wave solutions to FKdV equation 
 053 =+++ xxxt cubuauuu . (17) 
According to them the travelling wave solution can be presented in the following 
form 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛−±−= t

c
bx

c
b

ac
btxu

169
36

132
1sech

169
105),(

22
1

4
2

 (18) 

Behaviour of the equation 
 053 =−++ xxxt buauuuu  (19) 
has been studied by Nagashima (1984). It is found that in this system both 
regular and chaotic motions exist, the type of the motion is determined by the 
initial condition and parameters a,b. It is also determined that chaos originates 
because the solitary waves loose their identity in a collision. 
Examining the Eq. (19) Kawahara and Takaoka (1988) have found that if the 
initial configurations of solitons are appropriate, the solitons can form stationary 
bound states and propagate steadily keeping the inter-pulse distances unchanged. 
However, increasing the initial value from a fixed point with centre-like 
singularity, periodic motions show frequency down-shifts and lead to chaotic 
behaviour. 
The relation between the pole (movable singularities) distribution and the steady 
pulse solution is investigated for FKdV  
 053 =+++ xxxt cubuauuu  (20) 
by Takaoka (1988). Poles are generally found to distribute fractally and to form 
natural boundary, whereas the steady pulse has a prominent oscillatory tail 
structure. Periodic distribution of poles is found for some specific cases where 
the solutions are represented by hyperbolic functions. 
Solitary wave stability of FKdV equation 
 06 5

2
3 =+++ xxxt uuuuu ε  (21) 

has been studied by Pomeau et. al. (1988). They have shown that the solution 
ceases to be strictly localized but develops an infinite oscillating tail.  
Interactions of waves described by this equation have been studied by Grimshaw 
and Malomed (1993). 
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Karpman (1993) has shown that planar solitons, found in equation (11) proposed 
by Kawahara, are unstable with respect to bending if the coefficient at the fifth-
order dispersive term is positive and stable if it is negative. 
Hai and Xiao (1995) have constructed a general soliton solution of the FKdV 
Eq. (11) in the first order approximation for the travelling wave case. The 
perturbed soliton is lower and narrower than the unperturbed soliton.  
By making use of the techniques of exponential asymptotics Grimshaw and 
Joshi (1995) have studied the Eq. (14) proposed by Hunter and Scheurle. They 
have found that solutions on this equation form an one-parameter family 
characterized by the phase shift of the trailing oscillations. 
Stability of solitary wave solutions of the FKdV equation  
 06 53 =+++ xxxt uuuuu  (22) 
have been studied by Buryak and Champneys (1997), Calvo et al. (2000), Dias 
and Kuznetsov (1999). Based on asymptotic theory Buryak and Champneys 
found that half of the two-pulses solutions are stable. The other half develops a 
mode of instability that causes the wave to split into two simpler waves 
travelling at different speeds. According to Calvo et al. (2000) the branch of the 
so-called elevation waves in unstable, whereas the branch of depression wave is 
stable. Dias and Kuznetsov (1999) showed that the Hamiltonian is bounded from 
below for fixed momentum. If there exists a solitary wave solution that realizes 
this minimum, then it is stable with respect to not only small perturbations but 
also finite ones. 
 

Fifth-order KdV-like equations 
Next set of equations consist of both third and fifth-order dispersion and higher 
order nonlinear terms. In this case nonlinearity is expressed by term x

puu , 
where p>0 (if not stated differently in a particular paper). 
 
 053 =+++ xxx

p
t uuuuu γβα  (23) 

Karpman and Vanden-Broeck (1995) showed numerically that the fifth order 
derivative term in (23) is of critical importance for the soliton stability at 
sufficient high p. At 0=γ  and 4≥p the soliton solutions are unstable, in 
agreement with theory of collapse instability. On the other hand, no instability 
was detected in their calculations at 0<γ . Finally they suggested that the results 
obtained can be, in principle, checked experimentally by modelling Eq. (23) in 
electronic transmission line. 
Dey et al. (1996) have obtained exact stationary soliton solutions 
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for Eq. (23) in the case for any  0>p in case 0>αβ , 0>βD , 0<βγ  (where 
D is the soliton velocity). 
According to their study solutions are unstable with respect to small 
perturbations in case of 5≥p . In particular, it is shown that for any p these 
solitons are lower and narrower than the corresponding 0=γ solitons (KdV-
solitons). Finally, for 2=p  they have obtained an exact stationary soliton 
solution even when γβα ,,,D  are all > 0. 
The stability of the solitons of the Eq. (23) with arbitrary power nonlinearities is 
studied by Karpman (1996A). It is shown that a sufficient condition of the 
soliton stability with respect to small perturbations is a minimum of the 
Hamiltonian, constrained by the constancy of the momentum. Results obtained 
in this paper demonstrate that higher order dispersion, under certain conditions, 
stabilizes soliton instabilities, which is in agreement with numerical 
experiments. In other paper by Karpman (1996B) Eq. (23) is studied by means 
of Lyapunov approach. From the results obtained it follows that the solitons are 
stable at 8<p  where p is the power of nonlinearity. 
Tan et al. (2002) have studied the evolution of perturbed embedded solitons in a 
general Hamiltonian FKdV-like equation 
 [ ] ,0)(53 =+++ xxxt uNuuu  (25) 

where 3
3

2
221

2
0)( uuuuuuN xx αααα +++= . They have shown that when an 

embedded soliton is perturbed, it sheds continuous-wave radiation in front of the 
embedded soliton. The amplitude of this continuous-wave is not minimal in 
general. Behind the embedded soliton, no flat shelf is created. Conditions under 
which perturbed embedded soliton will decay or persist are also obtained. 
 

1.5 Summary of higher-order KdV-like equations 
Model equations, related to the KdV equation, are rich in their nature. To 
summarise, one can bring out following properties: 

- dependence on the parameters; 
- solutions can be stable and unstable; 
- solitons can be detected; 
- chaotic and periodic regimes may occur; 
- recurrence and super-recurrence phenomena can be examined. 

 
In most cases analysed above, the nonlinearity is of the quadratic type. The Eqs. 
(23) and (25), however demonstrate the growing complexity of the solution for 
more complicated nonlinearities. In the present thesis wave propagation 
mictrostructured media is modelled by higher-order KdV-like equation and the 
attention is paid to higher order nonlinearity that might be balanced by 
dispersive terms. This analysis serves for testing the methods and comparing the 
results of our studies. 
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2 Introduction of numerical method 
Proposed model equation is nonintegrable and therefore numerical integration 
algorithms have to be used in order to find solutions for the equation under 
investigation. Several numerical methods have been developed for solving 
nonlinear evolution equations. To name some of these: finite difference method, 
the Galerkin method, the Hopscotch method, the Fourier expansion method, the 
split-step Fourier method, the spectral methods, the pseudospectral method, etc. 
Salupere (1995, 1997) have examined the advantages of pseudospectral method 
compared with other numerical methods for solving the KdV equation. 
According to this study the pseudospectral method is adequately accurate and 
stable for solving the KdV related equations with harmonic initial condition. 
This is in agreement with works of other authors who have established that the 
modified pseudospectral method is sufficiently accurate, stable and fast 
(Fornberg and Sloan 1994, Fornberg 1998). 
 

2.1 The essence of the pseudospectral method 
The pseudospectral method was first proposed by Kreiss and Oliger (1972) in 
the following form. Let the initial condition u(x,0) be given on the interval 2π. 
The space grid is formed by n points with 

 
n

x π2
=∆ .  (26) 

The discrete Fourier transform (DFT) is defined by 
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and the inverse discrete Fourier transform (IDFT) by 
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where i is the imaginary unit and 
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In expressions (27) and (28) F denotes the Fourier transform and 1F−  the inverse 
Fourier transform. Fast Fourier Transform (FFT) algorithm is applied to find the 
Fourier transform (Bracewell 1972). Space derivatives are then given by 
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In time, the finite difference leap-frog (LF) scheme was proposed to use by 
Kreiss and Oliger (1972). For example, the KdV-like equation (45) with quartic 
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potential (46) leads to the following straightforward pseudospectral 
approximation 

...)F(F)(2),(),( 13 +−∆−∆−=∆+ − uiuutttxuttxu ω  
 )F(F2)F(F2... 5131 uitbuitd ωω −− ∆−∆+  (31) 
The LF scheme has a disadvantage. Namely, one has to use a very small time 
step to get stable results. Furthermore, there are not proper criterions for 
choosing a suitable (in the sense of stability of the numerical scheme) size for 
the time step. Runge-Kutta type methods are found to be more stable than the LF 
scheme (Salupere 1997). 
For analyses of numerical results discrete spectral analysis is used, i.e., in order 
to characterise the space-time behaviour of the solution Fourier transform related 
spectral quantities are used (Salupere et al. 1996). If Fourier transform is defined 
by Eq. (27) then spectral amplitudes are defined in the following form: 
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These spectral characteristics carry additional information about the internal 
structure of waves. For example one can detect how the energy is shared 
between different spectral characteristics. Based on this information one can 
detect several properties of the solutions – solutions periodicity, recurrence, 
super-recurrence. In same case the number of solitons in the train of solitons can 
also be estimated by making use of spectral characteristics (Salupere et al. 
1996). 
 

3 Wave propagation in microstructured 
solids 

3.1 Overview of properties of microstructured solids 
 
A special higher order KdV-like evolution equation has been proposed by G.A. 
Maugin. As this equation is considered to be the model equation in the 
framework of this thesis, more detailed description of the derivation of the 
equation is presented (Maugin 1995). 
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Fig. 2. The Maxwell-Rayleigh model of anomalous dispersion (foreign 
inclusions linearly or nonlinearly elastically connected to the elastic matrix). 
 
Material description of continuum mechanics is considered in order to 
accommodate easily nonlinear phenomena. The material point X has for image x 
such that ),( tXx χ= where t is time. This defines the deformation of the elastic 
matrix, of which the displacement is .),(),( XtXxtXu −=  But there is a 
continuous distribution of “atoms” at each X with relative displacement ),( tXζ  
with respect to the matrix. That is, the instantaneous physical position of these 
atoms is given by ),(),(),( tXtXuXtXxI ζ++= . This can be viewed as a 
microstructure giving rise to a continuum of inclusions. Let ρ and r be the mass 
densities of the matrix and the “inclusions”, respectively. Then the density of 
kinetic energy is given by 
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One-dimensional model is considered, which results in a composite lattice in the 
form of a one-dimensional chain, however it does not allude further to any 
discrete structure. Each inclusion is supposed to be maintained in its 
displacement in the matrix by an attractive force ζω 2

0r , where 0ω  is a 
characteristic frequency, with linear elastic matrix of elasticity coefficient E. 
Then the density of potential energy is given by 
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The associated Euler-Lagrange equations of motion are: 
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By applying the operator ⎟⎟
⎠

⎞
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+ 2
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11
tω

 to the first of these and substituting for 

the second, the internal degree of freedom ζ  is eliminated and the following 
wave equation for the matrix displacement u is deduced: 
 0)1( 2

0
2

0
2
0 =−+−+ −−

ttxxttttxxtt ukuucu ωυ , (37) 

wherein 
ρ

υ r
=  is the ratio of densities, 

ρ
Ec =0 is the characteristic elastic 

speed, 
0

0
0 c

k ω
=  is a characteristic wave number, and indices show partial 

derivates with respect to t and x. Equation (37) is the Maxwell-Rayleigh 
equation for anomalous dispersion. It contains two dispersion terms, but either of 
these would be sufficient to produce the required dispersion. For further 
comparison, after appropriate scaling it can be rewritten in fully nondimensional 
form as 
 ,0)( =−+− ttxxttttxxtt uuuu ε  (38) 
where ordering parameter ε  emphasizes the eventual smallness of dispersion 
effects. 
If one considers the elastic matrix to be weakly nonlinear, then the first 
contribution in (34) is replaced by 
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In this case, it can be immediately checked that equation (38) is replaced by an 
equation of the form: 
 0)())(1( 2 =−+∂++− ttxxttttxxxtxxtt uuuuuu εβα  (40) 
with .const=β  From this one will essentially retain the following nonlinear 
generalization of (38) which is sufficient for our purpose: 
 .0)()1( =−++− ttxxttttxxxtt uuuuu εα  (41) 
This equation still contains the potentiality of a resonance phenomenon, but is 
directly comparable to the nonlinear (“bad”) Boussinesq (B) equation of crystal 
physics 
 0)1( =++− xxxxxxxtt uuuu εε  (42) 
and to the “good” or “improved” Boussinesq equation proposed by Bogolubsky 
and others (see references in Maugin 1995): 
 0)1( =−+− ttxxxxxtt uuuu εε  (43) 
where the same factors of nonlinear and dispersive contributions indicates that 
these two effects intervene at the same order of magnitude. The Boussinesq 
equation of fluid mechanics indeed contains a dispersive term of the same type 
as equation (43). Contrary to (42), Eq. (43) presents good stability properties, 
hence its qualification of “good”. The same obviously holds good of (41) and its 
further generalization (40), that does not contain derivatives of order higher than 
four. Equation (43) is also referred to as the Regularized Long-Wave (RLW) 
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Boussinesq equation. But it was noticed by Christov and Maugin (1993, 1994), 
while studying lattice models in ferroelastic crystals and their continuum 
approximation, that another way to remedy the “bad” dispersion was in fact to 
continue the expansion and obtain dispersive terms with sixth-order and, 
perhaps, higher-order space derivatives. Such a model in martensitic alloys 
prone to phase transitions is given by 
 [ ] ,0)( =+−−− xxxxxxxxxxtt uuuFuu β  (44) 
where F(u) may be thought of as a polynomial in u starting with second degree 
and .0>β  While equations (42) and (43) are known to yield the KdV equation 
after reduction to a one-directional motion, and thus be exactly integrable in the 
sense of soliton theory, equations (44) and (41) which appear to be good 
physical models may not, in general, be exactly integrable. Their associated 
evolution equations are generalizations of the KdV systems, but rather than 
being interested in the infinite hierarchy of conservation laws exhibited by 
exactly integrable systems, the basic conservation laws which are still satisfied 
by some, only nearly integrable, systems, are considered. 
The evolution equation that corresponds to the two-solitary wave equation (44) 
is the following: 
 [ ] ,0)( =+++ xxxxxxxxxt buduuFu  (45) 
where d and b are the third- and fifth-order dispersion parameters respectively, 
F(u) represents the nonlinearity. Equation (45) together with following nonlinear 
term   

 )
42

()(
42 uuuF +−=  (46) 

has been considered as the model equation in the following studies and will be 
named as KdV435 equation.  

3.2 Nonlinearity and dispersion 

Nonlinearity 
Formation of solitons takes place because of a certain balance between 
nonlinearity and dispersion. The first description of the process was given by 
Zabusky and Kruskal (1965) ⎯ by their description initially first two terms of 
KdV equation (1) ⎯ xt uuu , , dominate. This is why u steepens in regions where 
it has a negative slope. Secondly, after u has steepened sufficiently, the third 
term ⎯ dispersion, becomes important and serves to prevent the formation of a 
discontinuity. Instead, oscillations of small wavelength develop on the left of the 
front. The amplitudes of the oscillations grow and finally each oscillation 
achieves almost steady amplitude. Finally, each such "solitary-wave pulse" or 
"soliton" begins to move uniformly at a rate which is linearly proportional to its 
amplitude. Thus, the solitons spread apart. Because of the periodicity (in terms 
of space periodicity), two or more solitons eventually overlap spatially and 
interact nonlinearly. 
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Fig. 3. The temporal development of the wave form u(x) (Zabusky and Kruskal 
1965). Curve A corresponds to the time moment t = 0, curve B corresponds to 
the time moment t = 1/π and curve C corresponds to the time moment t = 3.6/π. 
 
The quartic nonlinearity (46) in KdV435 equation (45) describes the fourth-
order elastic potential possessing two minima, whereas the ordinary KdV 
equation possesses the quadratic nonlinear terms only. Potentials for the KdV, 
mKdV (quartic term of equation (46)) and KdV435 equations are shown in Fig. 
4. 
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Fig. 4. Potentials F(u) versus u: (1) KdV equation; (2) KdV435 equation; (3) 
mKdV equation (Salupere et al. 2001). 
 
The derivative [ ]uuF )( is shown in Fig. 5 for case of KdV and KdV435. An 
essential difference between these two cases is clearly observed. At cruu =  the 
influence of the potential and the standard KdV one is the same. It can be easily 
calculated that 2±=cru . At 1±== quu , the character of the quartic potential 

(46) is changed. For crq uuu <<<0 , the nonlinear effects due to potential (8) 

are qualitatively different from KdV case. For crq uuu << , the nonlinear 

effects due to potential (46) are weaker than for the KdV case while for 
cruu > they are stronger. 
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Fig. 5. Derivative of the potential F(u) versus u: (1) KdV equation; (2) KdV435 
equation (Salupere et al. 2001). 
 
The influence of nonlinearities is crucial in the formation process of solitary 
waves. Zabusky and Kruskal (1965) showed that the train of solitons starts to 
form in a region where there is the tendency for shock wave formation in the 
purely nonlinear case (dispersion neglected). In Fig. 6 shock wave profiles are 
presented for three potentials. In the KdV-type of the quadratic nonlinearity 
(case (a) of Fig.6), the shock wave from an initial harmonic excitation has the 
well-known N-form. The case (b) of Fig. 6 shows two discontinuities formed at 
the same region of the wave profile (sign correspondence). Finally, the case (c) 
of the potential (46) has three discontinuities for a period, two corresponding to 
the quartic term and one to the quadratic term (note the influence of sign 
difference). For both the KdV-type and mKdV-type nonlinearities the wave 
profiles shown in Fig. 6 correspond to t = 1.1, while for the potential (46) the 
wave profile is shown at t = 2.0. Therefore, in the last case the formation of a 
discontinuous wave profile lasts about two times longer than the other cases. 
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Fig. 6. Shock wave profiles: (a) quadratic potential of the KdV-type; (b) 
potential involving only the quartic term (mKdV); (c) quartic potential 
(KdV435) (Salupere et al. 2001). 

Dispersion 
The properties (nature) of the dispersion depend on the values of the dispersion 
parameters. It has been shown (Salupere et al. 2001) that if both dispersion 
parameters have positive values then the dispersion can be normal as well as 
anomalous. 
The linearised version of KdV435 equation has the dispersion relation 
 )( 23 dbkk −=ω  (47) 
for frequency ω and wavenumber k. Evidently, the phase and group velocities 
are 

 )( 22 dbkk
k

c ph −==
ω , )35( 22 dbkk

dt
dcgr −==
ω  (48) 

respectively. For the comparison, the KdV equation yields 
 2dkc ph −= , 23dkcgr −=  (49) 
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Fig. 7. Phase and group velocities: (1) phc  for the KdV; (2) grc for the KdV; (3) 

phc  for the KdV435; (4) grc for the KdV435. Here dl = 1, bl = 3 (Salupere et al. 
2001). 
 
In Fig. 7 phase and group velocities together with corresponding KdV-case 
dependencies are plotted against k. For the KdV equation dispersion is normal, 
i.e. 
 0<< phgr cc , (50) 
for KdV435 equation, following its dispersion relation, dispersion is either 
normal or anomalous satisfying inequality 
 phgr cc > . (51) 
The zeros of phase and group velocities for KdV435 case are  
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respectively. The minimum values of phase and group velocities occur at  

 02
1 kkm = , 0
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respectively. For these wavenumbers, the respective values of phase and group 
velocities are 
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Dispersion relation describes normal dispersion in a certain interval ekk <<0 . 
The interval can be determined using the condition grph cc = that yields me kk = . 
Indeed, 

 
dk

dc
kc

dk
dc ph

phgr +==
ω  (55) 

and phgr cc = is satisfied only at 0=
dk

dc ph . In terms of harmonics, condition 

me kk =  means that the behaviour of harmonics with wavelength 12 −< mkπλ  
corresponds to the anomalous dispersion and with wavelength 12 −> mkπλ to the 
normal dispersion. 
 

3.3 Numerical studies of the KdV435 equation 
In my studies I have examined the KdV435 model equation with different kind 
of initial conditions. Following Section gives overview of the main results.  
Notations 
 ddl log−=  and )log( bbl ±−=  (56) 
are introduced for future analysis. 
In the case of all experiments wide range of dispersion parameters dl and bl: 
 4.28.0 ≤≤ ld  and 8.42.1 ≤≤ lb  (57) 
has been examined. 
 

The KdV435 equation with harmonic initial conditions 
The KdV435 equation with periodic boundary conditions  
 ,...2,1        ),,2(),( ±±=+= ntnxutxu π  (58) 
and initial excitation  
 π20,sin)0,( ≤≤= xxxu  (59) 
is studied in Salupere et al. (1997, 2001), Ilison (2001), Publication I and 
Publication II. Both cases, normal as well as mixed dispersion have been 
examined.  
Main results of the study with mixed dispersion are following (Salupere et al. 
1997, 2001): 
− Emerging solitonic structures from an initial harmonic excitation were 

studied and their dependence on dispersion parameters established (see Fig. 
8). 

− In region 1 (Fig. 8) the normal dispersion dominates, only for very short 
wavelengths the dispersion is anomalous. Third-order dispersion effects 
dominate over fifth-order effects. A train of negative solitons forms from the 
initial harmonic excitation. 

− In region 3 (Fig. 8) the anomalous dispersion dominates and the fifth-order 
dispersive effects take over the third-order effects.  A train of positive 
solitons forms from the initial harmonic excitation. 
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− Region 2 in Fig. 8 is more complicated and involves several subregions. The 
main feature is the rivalry between normal and anomalous dispersion that 
depends also on the wavelength. For long waves (smaller wave numbers) the 
dispersion is normal while for short waves (larger wave numbers) the 
dispersion is anomalous. In a train of solitons both situations can occur. The 
rivalry between normal and anomalous dispersion leads to a situation when 
both the train of negative and the train of positive solitons might start to 
form. In subregion 2a the dispersion (caused by both the third- and fifth-
order effects) is stronger that yields in multiple solitons. In subregion 2c 
dispersion is weaker and spatio-temporal chaos can take place. It means the 
fluctuations in amplitudes (and spectral densities) are irregular within a 
certain limit. In subregion 2b interaction of multiple solitons and the train of 
positive solitons takes place.  
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Fig. 8. Regions with different dispersive properties in the dl ⎯ bl  plane 
(Salupere et al. 2001). 
 
In the case the of normal dispersion two model equations have been studied – 
the KdV435 equation and the FKdV equation. In the FKdV equation 
nonlinearity is presented with the same term as in original KdV equation 

 
2

)(
2uuF = . (60) 
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Results of the study are presented in Publication I and Publication II. Based on 
large number of numerical experiments one can formulate following 
conclusions: 
− In the case of the KdV435 equation a typical solution type is a train of 

negative solitons (see Fig. 9), except the case of very weak dispersion which 
results in simultaneous formation of trains of negative as well as positive 
solitons. 

− In the case of FKdV equation, the solution is train of positive solitons (see 
Fig. 10). 

− By making use of spectral characteristics one can detect recurrence and 
super-recurrence in the case of both model equations. 

− There exists at least one hidden soliton in the case of both model equations. 

 
Fig. 9. Train of negative solitons, case dl = 2.4 and bl = 2.8, –u instead of u is 
plotted. 
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Fig. 10. Train of positive solitons, case dl = 1.2 and bl = 2.8. 

The KdV435 equation with asymptotic boundary conditions. 
The KdV435 equation (45) with asymptotic boundary conditions 
 ,0,...,, →ξξξξξξ uuu  if ±∞→ξ  (61) 
is studied in Salupere and Ilison (1998A, 1998B), Ilison (1999), Salupere et al. 
(1999). In these studies travelling wave solutions under boundary conditions 
(61) are found numerically and propagation as well as interactions of 
“numerical” solitary waves are simulated. 
Main results here are the following: 
− Negative solitary waves as well as positive solitary waves could be detected 

for the KdV435 equation. 
− The shape of the solitary wave depends on the values of dispersion 

parameters dl - bl and phase velocity c. 
− Interaction of two positive solitary waves is inelastic, i.e., they do not 

behave like solitons (Fig 11).  
− Interaction of two negative solitary waves is elastic, i.e., they behave like 

solitons (Fig 12). 
− The interaction of a positive and a negative soliton creates quickly the 

instability. 
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Fig. 11. Interaction of two positive solitary waves. 

 
Fig. 12. Interaction of two negative solitons. 
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The KdV435 equation with localized initial conditions 
 
The KdV435 equation with localized initial conditions has been studied in 
Publication III, Publication IV, Publication V and Publication VI. The initial 
excitation is given in the form of a localized initial excitation 

 ,hsec)0,( 2

∆
=

xAxu  (62) 

 
where A is the amplitude and  

 
A
d12

=∆  (63) 

corresponds to the width of the soliton corresponding to the analytical solution 
of the KdV equation. In our case model equation (45) and initial excitation (62) 
are tied through dispersion parameter d. The case of normal dispersion is studied 
in Publication III, Publication IV and Publication V, mixed dispersion in 
Publication VI, respectively. 
From the study of normal dispersion one can bring out following results: 

− One can find three solution types. First and third type of the solution can 
be found for all values of dispersion parameters dl and bl. 

− In the case of the first type of the solution the initial solitary wave is 
spread into a train of waves having chaotic behaviour. 

− The second type of the solution can be detected for few pairs of 
dispersion parameters only. In this case a wave-train having periodic 
behaviour in time emerges. 

− In the case of A>A* the initial solitary wave can travel with minimal 
disturbances (see Fig. 13). Its speed and amplitude changes by a small 
extent only during the propagation. 

− The critical amplitude A* depends on the quantity dl – 2bl. However, the 
critical amplitude A* has limit value. 

− Interaction of two solitary waves is nearly elastic. 
 



 35

 
Fig. 13. Propagation of initial excitation, amplitude A=2.09, dl=2.0 and bl=4.0. 
 
 
In Publication VI the KdV435 equation (45) with quartic nonlinearity (46), 
localized initial condition and mixed dispersion (dispersion parameters have 
same signs) is studied. One can bring out following main results: 

− Two solution types were detected — solutions with irregular and regular 
behaviour.  

− The first type, i.e., the irregular solution emerges in the case of small 
initial amplitude (small initial energy). This results in weak co-operation 
between dispersive and nonlinear effects and stable solitary wave(s) can 
not be formed. 

− The second type (the regular solution) can have three sub-types: 
a) “plaited” solitons (see Fig. 14),  
b) two solitary waves, and 
c) one solitary wave.  

− Generally, the sub-type (a) is not stable — after a certain time interval it 
is changed to sub-type (b). Only in very few cases the “plaited” solitons 
lives until the end of simulation. 

− In the case of sub-type (b) sequential nonelastic interactions take place 
and the whole process ends up in one solitary wave (sub-type (c)). 

− The latter one was found in our numerical experiments to be stable, i.e., 
a single solitary wave can propagate with (nearly) constant speed and 
amplitude over long time intervals. 
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Fig. 14. “Plaited” solitons, amplitude A=0.37, dl=1.2 and bl=2.0. 

 
 
 
4 Final comments 
World of solitons is rich and complex. During last decades numerous authors 
have found many new cases where there exists balance between dispersive and 
nonlinear effects, also for nonintegrable systems. The increase of any term in 
model equations will bring us to the next (and more complex) level of problems. 
We would be quite hopeless without continuously advancing information 
technology. Increasing computing power and more advanced numerical methods 
will enable us to solve problems that seamed to be unsolvable some time ago. 
Besides good mathematical, physical and IT skills one should have a little bit of 
prophecy for searching in the right direction.  
 
In this thesis I have studied the KdV435 model with three different sets of 
parameters. One should bring out main results: 

- for the harmonic initial conditions solution is train of negative solitons, 
i.e., there exists a certain balance between higher order dispersion and 
quartic nonlinearity that results in solitonic solution. 

- for the localized initial conditions with normal dispersion there exists a 
threshold for the initial amplitude above what solitary waves can travel 
with minimal disturbances. 

- for the localized initial conditions with mixed dispersion “plaited” 
solitons can be found if value of the initial amplitude is higher than a 
certain threshold. 
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Further studies will be carried out for simulating various interactions of solitary 
waves in order to detect their solitonic behaviour.  
 
The problems studied in this thesis may be considered as steps towards further 
understanding of the world we are living in.  
 

Kokkuvõte 
Töö eesmärk on analüüsida lainelevi protsesse mikrostruktuuriga materjalides, 
kus olulist rolli omavad dispersioon ja mittelineaarsus. See probleem on seotud 
kõrgemat järku Kortewegi–de Vriesi tüüpi evolutsioonivõrrandite käitumise 
uurimisega. Vastavas mudelvõrrandis on dispersiivsed efektid kirjaldatud läbi 
kolmandat- ja viiendat järku tuletiste, mittelineaarsus aga neljandat järku elastse 
potentsiaali abil. Antud võrrand kirjeldab lainelevi mikrostruktuuriga 
keskkondades. Mudelvõrrand ei ole integreeruv, seega pole võimalik leida 
analüütilisi lahendeid. Kasutatud on numbrilist arvutusmeetodit – 
pseudospektraalmeetodit. Põhitähelepanu on pööratud dispersiooni ja 
mittelineaarsuse mõju selgitamisele. Uuritud on mudelvõrrandi lahendeid kolmel 
erineval juhtumil – normaalne dispersioon ja harmooniline algtingimus; 
normaalne dispersioon ja lokaliseeritud algtingimus; muutuv dispersioon ja 
lokaliseeritud algtingimus. Lahendite omaduste uurimiseks on läbi viidud suur 
hulk numbrilisi eksperimente. On kirjeldatud lahendite evolutsioon ja 
spektraalkoostis, mille põhjal on määratud lahendite omadused. Olulise osa 
analüüsist moodustab solitoni-tüüpi lainete formeerumise mehhanismi uurimine 
harmoonilise algtingimuse korral. Modelleeritud on ühe üksiklaine levi ning 
kahe üksiklaine interaktsiooni, et tuvastada uuritavate lahendite solitonilist 
käitumist.  
Peamised tulemused tööst on ettekantud mitmel rahvusvahelisel konverentsil 
ning avaldatud artiklitena eelretsenseeritavates rahvusvahelistes 
teadusajakirjades. 

 

Abstract 
The aim of this thesis is to analyse the wave propagation in microstructured 
solids where dispersion and nonlinear effects are of importance. This problem is 
related to the analysis of higher order Korteweg –de Vries type equation. In this 
model equation dispersive effects are expressed by third- and fifth order 
derivatives and the fourth-order elastic potential depicts the quartic nonlinearity. 
This equation is nonintegrable and it is not possible to find analytical solutions. 
That is why numerical integration algorithms, based on pseudospectral method, 
have been applied over wide range of dispersion parameters. Numerical results 
have been obtained for three different sets of parameters – normal dispersion and 
harmonic initial conditions; normal dispersion and localized initial conditions; 
mixed dispersion and localized initial conditions. Large number of numerical 
experiments has been carried out in order to examine the behaviour and 
properties of the solutions. The main focus of thesis has been on examination of 
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these numerical solutions. Various properties of the solutions have been detected 
and discussed. The emergence of soliton-type solutions from the harmonic initial 
excitation is analyzed in detail. Propagation of a single solitary wave and 
interaction of two solitary waves have been modelled in order to detect their 
solitonic behaviour. In two cases solitonic structures have been found, in one 
case nearly solitonic structure was detected. Main results of the thesis have been 
presented at the international conferences and published in papers of the CC 
journals. 
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