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Abstract 

In computer vision, detection and classification of objects of interest in aerial imagery 

have numerous applications in areas such as land surveillance, traffic surveillance and 

tracking, disaster management, smart parking, urban planning, to name a few. However, 

due to the lower resolutions of the objects and the effect of noise in aerial imageries, there 

are extra challenges comparing to object detection from ground images since 

distinguishing features for the objects of interest in aerial imageries are more troublesome 

to discern. In the current thesis, we address the problem of object detection from aerial 

imagery using state-of-the-art Convolutional Neural Networks (CNN). To investigate this 

problem, we first conduct a literature review of the state-of-the-art object detection 

algorithms and summarize the related work. We then evaluate the execution of three state-

of-the-art CNN algorithms by applying transfer learning on a publicly available high-

resolution aerial imagery dataset. We analyze the results on three datasets with different 

resolutions and conduct a robust comparison of the selected algorithms. In the end, we 

discuss how transfer learning helps us to achieve impressive 33.2 average precision score 

with mask regional convolutional neural network (Mask R-CNN) that is trained merely 

on 236 training images and the impact of other key factors such as ground sample distance 

(GCD), pixel-wise area of the object of interest. 

 

Keywords 

Computer vision, aerial imagery, object detection, transfer learning, deep learning, 

convolutional neural networks.
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Annotatsioon 

HUVIOBJEKTIDE AUTOMAATNE TUVASTAMINE 

ORTOFOTODELT KASUTADES ÜLEKANDEÕPET 

Aerofotodelt huviobjektide tuvastamisel ja klassifitseerimisel on arvutinägemise 

valdkonnas arvukalt rakendusi valdkondades, nagu maaseire, liikluse jälgimine, 

katastroofide ohjamine, nutikas parkimine ja linnaplaneerimine. Objektide madalama 

eraldusvõime ja müra mõju tõttu aerofotodel, võrreldes objekti tuvastamisega lähedalt 

tehtud fotodega, on siiski täiendavaid väljakutseid. Aerofotode puhul on huvipakkuvad 

objektid võrreldes vaateväljaga tihti väikesed ja rakurss on ülevalt alla või nurga all, mida 

lähedalt pildistades tihti ei esine. Käesolevas magistritöös käsitleme objektide 

tuvastamise probleemi aerofotodelt, kasutades kaasaegsemaid konvolutsioonilisi 

närvivõrke (CNN). Selle probleemi uurimiseks viime kõigepealt läbi tipptasemel 

objektide tuvastamise algoritmide kirjanduse ülevaate. Seejärel hindame kolme moodsa 

erineva konfiguratsiooniga CNN-algoritmi käitumist, rakendades ülekandeõpet 

vastloodud ise annoteeritud väikeses andmekogumis. Järgnevalt analüüsime oma 

katseandmete erineva karakteristikuga tulemusi ja võrdleme nende kolme tipptasemel 

algoritmi jõulist võrdlust. Lõpuks arutame, kuidas ülekandeõpe aitab meil saavutada 

muljetavaldava 33,2 keskmise täpsuse skoori Mask R-CNN närvivõrguga, mille 

treenimiseks kasutati ainult 236 treeningpilti. Lisaks analüüsime ka muude oluliste 

tegurite, näiteks maapealse valimi kauguse mõju (GCD) ja huvipakkuva objekti pikslite 

arvu usaldusväärseks tuvastamiseks. 

Märksõnad 

arvutinägemine, aerofoto, objektide tuvastamine, ülekandeõpe, süvaõpe, 

konvolutsioonilised närvivõrgud. 



6 

Lõputöö on kirjutatud ingilise keeles ning sisaldab teksti 67 leheküljel, 5 peatükki, 25 

joonist, 3 tabelit. 
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1 Introduction 

1.1 General Overview 

Computer Vision has become ubiquitous in our day to day life, with applications 

including but not limited to earth observation, disaster management, autonomous 

vehicles, urban planning and city management, mobility and infrastructure, border and 

coastal security, virtual reality, mapping and so on. Many of these applications perform 

visual recognition tasks such as image classification, localization, and detection. Recent 

developments in deep learning approaches have significantly advanced the performance 

of these state-of-the-art visual recognition systems. 

 

Detection and classification of objects of interest in aerial imagery have numerous 

applications and use cases in the humanitarian, national security, and commercial realms.  

On the commercial front, businesses have already attempted to infer retail traffic from 

parking lot density levels, and tracking delivery trucks in near real-time is one of the far-

field goals of understanding aerial and satellite imageries [1]. For tax assessment 

purposes, usually, surveys are conducted manually on the ground, which is essential to 

calculate the real value of properties, and this can help to identify when having a 

swimming pool that could increase property prices [1]. Similarly, in a neighborhood or 

around a store, the count of cars can symbolize the levels of economic activity at that 

place. By achieving this through understanding aerial imagery by using Artificial 

Intelligence (AI), can significantly help in these processes by removing the inefficiencies, 

and the high cost and time required by humans [2]. From national security standpoint, 

detecting the build-up of war materiel in unstable regions would provide obvious value, 

as would locating convoys of vehicles vectored towards unmanned border crossings or 

identifying a large number of vehicles staging just outside the range of terrestrial border 

monitoring equipment [3].  On the humanitarian front, governments have attempted to 

infer the scope of natural disasters such as road cracks, damaged buildings, a hurricane 

from clusters (or absences) of vehicles, or determine optimal travel routes for disaster 

relief in unknown areas based on observations of local vehicle movements. 
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1.2 Motivation 

One particular application area of computer vision is in unmanned aircraft systems, which 

are used to do surveillance and control in places like Land and Coastal Borders, 

emergency cases, military. These systems consist of unmanned aerial vehicles (UAV) and 

station aircrafts. The UAVs are used for surveillance purposes in-band humans in station 

aircrafts monitor the taken images or videos to detect and classify target objects.  

Unlike well-trained machines, human brains are more error prone. In aircraft stations in 

one blink of an eye, the human can miss a vital threat or danger caused by objects of 

interest. If the UAVs are well trained by using computer vision, then these human-

introduced problems can be easily eliminated. By doing so, we could offload this kind of 

more tedious activity to machines and humans can concentrate on some other important 

stuff. 

There are already several companies in the industry that provide UAVs that can perform 

this task relatively good enough. However, they keep their research privately, and the 

other industry companies are left with no help from academic research.   

 

1.3 The Hypothesis  

Object detection and classification in aerial images is challenging for several reasons. The 

main reason is that the aerial imagery tends to have a high ratio, and that makes the target 

objects to look extremely small. When the image is zoomed in, the quality gets lower, 

thus becoming more challenging to detect and classify the target objects. Secondly, I can 

say that usually in aerial imagery, the objects of interest are sparsely and non-uniformly 

distributed in the image, thus making the detection very inefficient. 

 

Previously some researchers have attempted to apply transfer learning from one base task 

to another target task. For example, Pi et al. [4] evaluated YOLOv2 [5] deep learning 

model by applying transfer learning on the drone dataset containing merely eight 

videos (65,000 frames) for natural disaster response, Cisek et al. [6] tested 

effectiveness of AlexNet [7] on 12,000 car overhead imagery dataset to solve car 

parking lot problem.  
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Taking the previous successful transfer learning applied researches on aerial imagery 

problems into consideration and given that the Republic of Estonia Land Board makes 

high resolution aerial images available, we want to conduct a research in order to answer 

the following questions: 

 

 

• Can we get reasonably good results by applying transfer learning to detect and 

classify objects of interest in aerial imagery on a relatively small manually 

annotated custom dataset? 

• How do different pre-trained deep learning models perform on the same target 

dataset? 

 

In this empirical research, first, we will do a thorough literature review on what 

techniques are used to detect and classify target objects in aerial images. Following, we 

are going to apply transfer learning method by fine-tuning parameters in pre-trained deep 

learning algorithms that from detectron2 model zoo [8] to see if we can reasonably good 

results and try to solve the existing problem with detecting and classifying target objects 

in aerial imageries.  

 

1.4 Research Objectives 

 

The main objective of this research, as described throughout this thesis, is to evaluate the 

performance of state-of-the-art deep learning models by applying transfer learning on a 

small set of high-resolution aerial imagery. Other objectives include: 

 

• Research and review the state-of-the-art deep neural network architectures that are 

used for the detection and classification of objects of interest in aerial imageries. 

• Understand how transfer learning and small dataset can help us to detect and classify 

objects of interest in aerial imageries. 

• Discuss future opportunities. 
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1.5 Methodology 

 

In order to answer the research questions, I conducted a comprehensive literature review, 

moreover, I contacted three Estonian startups that are building the UAVs in order to 

identify the most important categories of objects of interest. Figure 1 illustrates the overall 

the empirical research methodology [9] which is explained at length in the following 

chapters and sections. 

 

Figure 1. Research Methodology 

 
Web mining was implemented to find publicly available high-resolution aerial imagery 

[10]. To yield best results while web mining the following key words were used: aerial, 

imagery, orthophotos, UAV.  In the gathered dataset objects of interest were manually 

labelled then were split into training (85%) and testing (15%) datasets. After a 

comprehensive literature review of the pretrained publicly available CNN architecture 

GOI Identification,
Data Source Identification,
CNN architecture selection.

Data mining, Data 
processing, Annotating 
objects of interest.

Experimentation.

Results and Analysis.
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models from detectron2 model zoo [8] three models namely, Faster R-CNN, Mask R-

CNN and RetinaNet were selected. These are pre-trained models on COCO dataset. For 

environment setup web mining was implemented and Google Collaboratory was chosen 

[11]. In order to evaluate the deep learning model performance, mean average precision 

[12] metrics was used. 

 

1.6 Structure of the Thesis Document 

 In the pages that follow, this thesis document is divided into four primary chapters. 

Chapter 2 includes a review of existing literature on the subjects of object detection and 

classification, transfer learning, objection detection approaches, and state-of-the-art deep 

learning models. Then, in Chapter 3, we will walk through how we processed and labelled 

the manually collected dataset and discuss about the experimental setup. Following, in 

Chapter 4, we evaluate the execution of the three state-of-the-art CNN algorithms with 

different configurations by applying transfer learning and analyze the results on our test 

dataset with different characteristics and conduct a robust comparison between these three 

cutting-edge algorithms. Finally, in Chapter 5, we conclude the whole research, discuss 

the challenges of object detection in aerial images and talk about the future opportunities 

for improvement. 
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2 Literature Review and Background theory 

2.1 Related work 

Aerial imageries contain vast amount of data. That is a prominent reason that 

understanding manually only by humans is immensely complicated. Therefore, since 

computing machines entered our lives there has always been continuously ongoing 

research to teach machines to understand those imageries. As these imageries have a large 

focal distance to objects of interest in them, Computer Vision face a lot of challenges. 

The distribution of objects of interest classes are very imbalanced, obviously in an 

arbitrary orthophoto of a living area we will notice so many cars than busses, trucks or 

even buildings. Another difficulty is some objects of interest such as passenger vehicles 

or say motorbikes are often take very tiny pixel wise area inside the image. State-of-the-

art Convolutional Neural Network based algorithms often down sample the images, thus 

resulting in immense information loss for these objects. Hence it becomes extremely 

difficult to identify those objects of interest. 

In the last decade alone, the seamless integration of data into everyday life has resulted 

in exponentially large, multimodal datasets (e.g., photos, videos, blogs, and tweets) in the 

public domain such as online content sharing platforms and social networking sites. 

Within the context of understanding aerial imageries a lot of researches have been 

conducted. 

 Several research projects have looked into discovering and detecting ground objects of 

interest from orthophotos. Since these aerial imageries contain so much data, researchers 

have challenged these imageries understanding with various ideas and proposals. For 

UAVs to discover post disaster damages Baker et al. [13] proposed a Monte-Carlo 

algorithm which was proven work faster than the conventional methods. 

Radovic et al. [14]  attempted to detect solve discovering airplanes from aerial imagery 

challenge by applying transfer learning method on YOLO algorithm [15]. 

Han et al. [16] proposed an embedded system framework called Deep Drone to power 

drones with vision, int other words letting the drones to do automatic human detection 

and tracking. For object detection they used Faster R-CNN [17], the accurate but slow 
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detection algorithm as well as YOLO [15], the less accurate but fast-tracking algorithm 

to make the system both fast and accurate and additionally, for tracking they used and 

kernelized correlation filters (KCF). 

Farrukh et al. [3] have studied detecting military vehicles and distinguishing them from 

non-military vehicles on low-altitude aerial imageries by deploying Faster R-CNN [17], 

SSD [18] and recurrent fully convolutional neural network (R-FCN) [19] algorithms. 

Narayanan et al. [20] demonstrated the possibility of utilizing a high-performance cloud 

computer for real-time aerial objects of interest detection from UAVs.  

Guirado et al [21]employed Faster R-CNN algorithm [15] to track and count the number 

of whales from satellite imagery. 

Mundhenk et al. [1] introduced new aerial overhead imagery dataset with a large 

diverse set of cars to classify, detect and count cars, they have experimented the results 

with several state-of-the-art CNN architectures.  

Pi et al. [4] reviewed YOLOv2 [5] deep learning model by applying transfer learning 

method on their newly introduced VOLAN dataset containing eight videos of the areas 

that had natural disasters.  

Yang et al. [22] proposed a Clustered Detection (ClusDet) network that unifies object 

clustering and detection in an end-to-end framework. 

Uus et al. [23] reviewed detecting different types of vehicles from aerial imagery by 

using YOLOv3 [24]. 

In previous works, researchers have not experimented and documented detecting ground 

of objects of interest by re training pretrained state-of-the-art models such as Faster R-

CNN [15], mask R-CNN [25], RetinaNet [26] on very small dataset that contains super 

high resolution aerial imager and compared the results. Those researches focused mainly 

on using one deep learning models and comparing results with previous baselines. 
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2.2 Object Detection and Classification 

Object detection is an essential problem task for computer vision techniques to solve. 

Here the idea is to determine whether the specific features in image data are present or 

not. By using computer vision, a detected target object then is classified to a set of pre-

defined classes. This operation in computer vision is called object classification. With 

that being said, object detection and classification are fundamental building blocks of 

artificial intelligence. We discuss Object Localization, classification and detection tasks 

in detail further.  Computer Vision helps computers to understand the visual world around 

us. The object detection and recognition in usual images due to recent studies have been 

performing with pretty high confidence scores. 

 

 

Computer Vision tries to solve various problems. When we humans see the image what 

we do is first classify the objects inside the image. For example, for the following image, 

we would categorize the objects as a car and a building. When we teach the same thing 

to computers, we teach them how to classify. In other words, the task becomes image 

classification. However, to make the computer more intelligible, we need to teach them 

where that particular object is inside the image. In deep learning, we refer to it as object 

localization. 

 

Image classification is the type of such computer vision task that tries to predict the class 

of an object in the image. Object Localization (Figure 2) is the type of Computer Vision 

task such that it tries to identify the location of one or more objects of interest in the given 

image. Mostly it draws a bounding box around the object it classifies.  
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Figure 2: Object classification and localization. 

On the other hand, Object detection (Figure 3) is the type of Computer vision task that 

does Object Localization for more than one different type of classes. So, it detects the 

class of the object and where it is located in the given image. 

 

 

 

Figure 3: Object detection. 

 

2.3 Evolution of Object detection  

In this section, we briefly discuss how modern object detection algorithms evolved 

throughout the artificial intelligence history and study the main object detection 

approaches. 
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In computer vision, as we mentioned in previous 2.2 the task of object detection problem 

is to determine where the objects of interest (e.g., cat, dog) are located in a given image 

(a.k.a. object localization) and to which category they belong to (a.k.a. object 

classification). The traditional object detection algorithms solved this task in three stages, 

namely informative region selection, feature extraction, and classification.  

In the informative region selection stage, we scan the whole image with a multi-scale 

sliding window, then to recognize different objects, we extract visual features and finally 

run a classifier that distinguishes an object of interest from all other classes. In this 

approach, however, especially region selection is computationally inefficient, not always 

very accurate, and produces too many redundant windows [27].  

Thanks to the emergency of deep neural networks, researchers recently (mostly last 

decade) proposed more sophisticated object detection algorithms. To learn the generic 

features in the input visual such as shapes, edges, colors, we apply convolutional 

filters(kernel). Hence, these deep neural networks are often referred to as convolutional 

neural networks (CNN). History of neural networks dates back to the 1950s when 

scientists had the intention of simulating the human brain on machines to solve general 

problems [28]. Later, in the late 1980s with the birth of backpropagation optimization 

technique [29], neural networks became even more popular in the computer science 

research community. However, until the mid-2000s due to huge overfitting, lack of large-

scale data, and limited computational power, neural networks remained actual only in the 

artificial intelligence research community.  Following the late 2000s, we began to see the 

recovery of deep learning, especially when the tech industry started implementing these 

ideas in their businesses. It was attributed to the emergency of large-scale training data, 

more powerful GPUS, and significant advancement of neural network architectures [27].  

Convolutional neural network (CNN) is the most representative of deep learning in 

computer vision. Typical CNN architectures consist of convolutional, pooling, and fully 

connected layers. The state-of-the-art CNN architectures solve the vision problem in two 

different ways. One follows the traditional object detection approach, namely generating 

region proposals first, then classifying more fine-grained classes such as cats, cars, etc. 

The other approach regards object detection problem as a classification task and infer the 

objects of interest directly. These algorithms are sometimes called as two-stage detectors 

and one-stage detectors, respectively. To give an example, more widely adapted two-
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stage object detectors are R-CNN [30], Fast R-CNN [31], Faster R-CNN [17], Mask R-

CNN [25], FPN [17] and one stage detectors are YOLO [15] , SSD [18], YOLOv2 [5]. 

Figure 4 illustrates the evolution of object detection algorithms based on these two main 

approaches. 

 

 

Figure 4. The evolution of the object detection algorithm based on the two main approaches/framework. 
We adopt this figure from [27]. 

 

In the region proposal-based framework side (a.k.a. two-stage detector) one of the first 

proposed algorithms was R-CNN [30] which adopted selective search to generate about 

2k region proposals for each image, then utilizing CNN module to extract 4096-

dimensional features and finally running a classifier to distinguish objects of interest form 

other classes. This algorithm obtained mean average precision (mAP) of 53.3% with more 

than 30% over the previous best result (HSC [32]) on the PASCAL VOC 2012 benchmark 

dataset [27]. Despite enormous improvements over traditional object detection methods, 

it still had several drawbacks. Mainly, these disadvantages were due to redundant region 

proposals and the training process being computationally costly. To overcome these 

problems, Fast R-CNN was proposed with the novelty of multi-tasks loss and region of 

interest (ROI), and later Faster R-CNN was introduced with an additional Region 

Proposal Network (RPN) [27].  

In the regression/classification-based framework side (a.k.a. one-stage detector), a novel 

object detection algorithm called YOLO [15] was proposed by Redmon et al. The main 

idea of YOLO [15] was dividing the input image into grids and inferring the objects 

centered in those grids. An improved version, YOLOv2 [5] that was later proposed, which 

adopts several impressive strategies, such as batch normalization (BN) [33], anchor 
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boxes, dimension clusters, and multi-scale training [27]. The difficulty that YOLO [15] 

faced with was having tiny objects, mainly because of multiple downsampling while 

dividing into grids. To prevail these challenges, Liu et al. proposed Single Shot MultiBox 

Detector (SSD) [18] which was inspired by the anchors adopted in MultiBox [34], RPN 

[17] and multi-scale representation. Unlike YOLO [15] using fixed grids, SSD instead 

introduces a set of default anchor boxes with different aspect ratios and scales to discretize 

the bounding boxes. To handle objects with various pixel size areas, the network fuses 

predictions from multiple feature maps with different resolutions [27]. 

2.4 Transfer Learning 

When deep neural networks are trained, the first layers learn the features which turn out 

not to be very specific to a particular dataset or task but are often generally useful for 

various tasks. These learned features eventually transition from being general to being 

specific to a dataset or task by the last layer of the deep neural network [35]. This behavior 

of the deep neural networks has given birth to a healthy idea of applying knowledge that 

is gained from one task(base) to another task(target). To give an example, we can train a 

neural network to recognize objects like cats, dogs, and then use fully or partially that 

knowledge to help us do a better job on some other computer vision tasks such as reading 

x-ray scans. 

 

In the real-world, an entire Convolutional Neural Network is rarely trained from scratch 

with random parameter initialization. That is because not everyone has a relatively 

sufficiently huge dataset to train the neural network. Instead, the conventional approach 

is to pre-train a neural network on a large dataset, for example on ImageNet or COCO 

that contains millions of images with thousands of different objects of interest, and then 

use the Convolutional Neural Network either as an initialization or a fixed feature 

extractor for a particular computer vision task. While applying transfer learning from base 

task to target task, we usually want to follow one of two existing approaches.  

 

The first approach is called feature extractor, which freezes the features pre-trained on 

base task.  Most of the time, these deep neural networks are pre-trained on large datasets 

such as ImageNet or COCO dataset [36]. Then the last fully connected layer is removed 

as the last layer’s output is different than what we usually want for our dataset. 
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Furthermore, we use the resulting neural network as a fixed feature extractor for our 

dataset. To give an example, in the case of AlexNet [7], the last hidden layer right before 

the output layer usually outputs a 4096-dimensional vector of an image that contains 

activations.  Once we extract these features for all images, we train a separate linear 

classifier (e.g., Softmax classifier [37]) for our dataset. 

 

Another transfer learning approach is to train a base network and then copy its first n 

layers to the first n layers of a target network. The remaining layers of the target network 

are then randomly initialized and trained toward the target task. One can choose to 

backpropagate the errors from the new task into the base (copied) features to fine-tune 

them to the new task, or the transferred feature layers can be left frozen, meaning that 

they do not change during training on the new task. This approach is motivated by the 

observation that the earlier features of a CNN contain more generic features such as edge 

detectors, colors, or blob detectors that is quite generic to many tasks. However, later 

layers of the CNN become progressively more specific to the details of the classes 

contained in the original dataset. For example, in the case of ImageNet, which contains 

many dog breeds, a significant portion of the representational power of the CNN may be 

devoted to features that are specific to differentiating between dog breeds.   

 

However, there are some caveats that we should consider before applying transfer 

learning from some base pre-trained models to our target model. If the target dataset is 

relatively small and the number of parameters is immense, fine-tuning may result in 

overfitting. That is why these parameters are often left frozen in the early layers of the 

network. On the other hand, if the target dataset is extensive or the number of parameters 

is small so that overfitting is not a problem, then the base features can be fine-tuned to 

the new task to improve the model performance. Of course, if the target dataset is 

enormous, then there would be little need to transfer because the lower-level filters could 

just be learned from scratch on the target dataset [35]. 
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3 Experiments 

In this Chapter we introduce the aerial imagery dataset that we have built as well as the 

network architectures of the models that we have used for experiments and transfer-

learning scheme we have used for pre-training. Next, three different pre-trained models 

and their performance and results are displayed. In the end we discuss the key factors that 

influence model performance, data challenges as well as future opportunities.  

3.1 Data 

Computer Vision’s enormous success in its application areas have been tremendous and 

almost everyone else know about it. However, it is still such area in Artificial Intelligence 

that suffers from publicly available labelled data for research. Especially when it comes 

to aerial imagery. 

 

In this empirical research in order to feed the deep neural networks first we did some web 

mining and found out some publicly available aerial imageries. One of the few publicly 

available aerial imageries was orthophoto overage of Estonia provided by Estonian Land 

Board [10]. Orthophotos are processed aerial photos from which distortions caused by 

terrain relief, camera tilt relative to the ground at the moment of exposure and camera 

central projection are removed. These orthophotos are quite diverse and in fact have the 

orthophotos in three different scales. These imageries are very high-resolution imageries 

with 1:2000, 1:10000 and 1:20000 scales. It is worth to mention that the spatial data is 

updated regularly every year, in our case we downloaded the latest imageries from 2019.  

The aerial imageries are at a nadir view angle such that it resembles satellite imagery. 

 

For our experiments we decided to use imageries from orthophoto collection of densely 

populated urban areas in Estonia which is 1:2000 scale, and this is because these 

imageries tend to have smaller Ground Sampling Distance (GSD) [38].  In fact, these 

orthophotos are produced with GSD of 10-16cm, and the used equipment is aerial camera 

Leica ADS100-SH100 where the focal length is 120mm and height above ground level is 

1250m [39]. Moreover, the ground sample distance (GSD) of these orthophotos are very 

close to GSD of aerial imageries generated by modern unmanned aerial vehicles (UAV). 
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For the conducting experiments for our research we downloaded twenty imageries and 

used sixteen of those as training imagery and the remaining four imagery for testing our 

model. One of the reasons why we are using a few imageries is because manually 

annotating them will be so cumbersome and is not in the scope of this thesis. Our training 

and testing dataset distribution is as follows. 

 

Table 1. Training and testing dataset description 

 
Category Training #instances Testing #instances 

Car 11038 2884 

Airplane 40 6 

Bus 287 50 

Watercraft 64 60 

Building 1659 532 

Truck 354 14 

Total 13442 3546 

 

 

Later, to evaluate final models and to conduct extensive comparison, we 

introduce two more test datasets by just down sampling the images in the 

original test dataset. We down sample test images by a factor of 2 and 4 in 

order to get different data characteristics. By down sampling the image by a 

factor of 2, we get the new lower resolution image as if it was taken from 

twice higher altitude. The main idea behind introducing these datasets is to 

assess the flexibility of the performance of the models on various resolution 

aerial imagery. The following Table 2 describes our test datasets in detail. 

We name the test datasets as Dataset followed by their GSD value 

(Dataset10). 
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Table 2. Description of test datasets 

Name #Instances GSD WidthxHeight 

Dataset10 43 10sm 2000x2000 

Dataset20 43 20sm 1000x1000 

Dataset40 43 40sm 500x500 

 

3.1.1 Data Processing and Annotation 

These orthophotos are quite large tiff formatted raster images and to open them for 

viewing requires special software applications. For this purpose, we have used open 

source Geographic Information System standalone desktop application (QGIS) 

[40].(Figure 5) 

 

 

Figure 5. QGIS raster image viewer [40]. 

 
 

As we mentioned in one of the previous sections 1.5 we will have six classes of objects 

of interest for our experiment. We are generalizing any size of planes as airplanes, all 

watercrafts such as ferry, ship as watercraft, all mini passenger vehicles as car, and public 

transportation vehicles of trolleybuses and buses as bus, alongside buildings and trucks. 
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Data annotation is very essential part while preprocessing data in machine learning for 

computer vision tasks. In order to annotate the dataset, we decided to use one of the most 

preferred data annotation tools in the computer vision industry and research community 

called Computer Vision Annotation Tool (CVAT) [41]. CVAT is a powerful and efficient 

web-based tool that helps us to annotate videos or images for training Computer Vision 

models. CVAT has various powerful features such as interpolation of bounding boxes 

between key frames, shortcuts for most of critical actions, dashboard with a list of 

annotation tasks, LDAP [42] and basic authorization and so on. It was created with an 

intention for the usage professional data annotation tasks, hence UX [43] and UI [44] are 

optimized especially for computer vision tasks. We will set up CVAT on our local 

machine for data annotation task. Installing CVAT on our local machine is quite simple, 

we just need to clone the GitHub repository [41] and run a few commands to start up the 

necessary bits there as it comes with runnable docker [45] images.  

We run the command docker-compose build in order to build the docker images, this 

operation usually takes up to three minutes to complete, because it downloads some 

public docker images such as ubuntu:16.04 and all necessary ubuntu packages to CVAT 

local server. Then we run the command of docker-compose up -d command to start up 

the container and it takes some time as it is downloading public docker images like 

postgres [46], Redis [47]. 

Once we start up CVAT we log in the system by default user credential. Once we login 

the system, we need to create CVAT annotation task by setting our classes and by adding 

our images. As we can see from below Figure 6 when we create a new task for annotation, 

we have several steps to follow, naming our annotation tasks, specify the labels and 

adding the images. Here labels refer to classes, in other words categories objects of 

interest.  
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Figure 6. Create new task in CVAT [41]. 

 
 

Since the large tiff raster images are around 100 megabytes of size at the time of our 

experiment CVAT [41] is not able to handle opening such large images as we can see 

from the following Figure 7. Therefore, we decided to cut each aerial imagery of 

10000x10000 pixel into smaller twenty-five slices each with 2000x2000 pixel 1. 

 

 
 
1 https://github.com/MajnunMan/python-image-slicer 
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Figure 7. CVAT [41] cannot handle processing large aerial imagery 

 

As a result, we converted our original twenty 10000x10000 pixel aerial 

imageries into smaller five hundred 2000x2000 images, thus having four 

hundred training dataset images and hundred testing dataset images. 
 

Once we create our tasks, they appear in the CVAT home page as follows. 
 

 

Figure 8. CVAT local server homepage 

 

Once we set up, we can start annotating our images manually. In the following figure 9 

we can see how the Task details page looks like. 
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Figure 9. CVAT task details page 

 

When we press the Job button it will take us to another page where we will 

actually annotate images Figure 10. We will annotate our images by drawing 

bounding boxes around each of object of interest and assign them their 

corresponding label. 
 

 

Figure 10. CVAT data annotation page 

 
• Cars: We draw bounding boxes around the edges of each car even if they are not 

very clearly seen due to shadow in the image individually. 
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• Airplanes: Bounding boxes are drawn around the edges of every airplane 

individually. See Figure 11 

• Buildings: This ground object of interest (GOI) is one of the challenging GOIs to 

draw a bounding box around. Because buildings are in various shapes in the 

imagery, for example top down (only roof, easy to draw bounding box around), 

from top and side, damaged. See Figure 12 

• Trucks: Bounding boxes are drawn around the edges of every truck individually. 

See Figure 13 

• Buses: As we mentioned previously in section 1.5 we consider public transport 

means of buses and trolleybuses as bus. Bounding boxes are drawn around the 

edges of every bus and trolleybus individually.  See Figure 12 

• Watercraft: We draw bounding boxes around the edges of each watercraft (ship, 

ferry etc.) individually. The imageries contain just a few such GOIs. See Figure 14 

 

 
Figure 11. Annotated airplane, cars and roof-only building 
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Figure 12. Annotated buildings (walls, roofs), cars and busses 

 

 
Figure 13. Annotated cars and trucks 
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Figure 14. Annotated watercrafts 

 
 
 
Once we annotate our image, we should save our work and dump the final 

annotation. There are various formats that we could dump our annotations 

such as COCO, PASCAL VOC and for our use case we will choose COCO. 

This is because we are feeding this data to training deep learning models 

from detectron2 model zoo Error! Reference source not found. and those 

models data input format is same as COCO data format. 

To conclude data section, we would like to mention that despite we have 

high quality aerial imageries, sometimes even for humans it is difficult to 

recognize precisely every object of interest in the imagery. To give an 

example, as we can see from the following Figure 15, separating those 

buildings from each other is extremely complex task even for humans. 

Additionally, we notice the generic data imbalance problem in these aerial 

imageries as well, such that we have way many more cars than trucks or 

buses. 
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Figure 15. Complexities in aerial images 

 

 

3.2 Network architectures 

In this section we discuss the benchmarks of the state-of-the-art deep learning object 

detection models and the network architectures of those models that we use for our 

experiments. 

Before proceeding with experiments a literature review was conducted and the state-of-

the-art benchmarks were found as shown in the following Table 3 and Figure 16. 

 

 

 

 

 

 

 

 backbone AP AP50 AP75 APS APM APL 
Two-stage methods        

Faster R-CNN+++ [17] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9 
Faster R-CNN w FPN [17] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2 
Faster R-CNN w G-RMI [61] Inception-ResNet-v2 

Error! Reference source 
not found. 

34.7 55.5 36.7 13.5 38.1 52.0 

Faster R-CNN w TDM [57] 
Mask R-CNN w FPN [17] 

Inception-ResNet-v2-TDM 
Inception-101 FPN 

36.8 
44.3 

57.7 
62.3 

39.2 
43.4 

16.2 
22.1 

39.8 
43.2 

52.1 
51.2 

One-stage methods        

YOLOv2 [5] DarkNet-19 Error! 
Reference source not 

found. 

21.6 44.0 19.2 5.0 22.4 35.5 

SSD513 [18] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8 
DSSD513 [59] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1 
RetinaNet [26] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2 

 

Table 3. Comparison the benchmarks of two-stage and one-stage detectors on COCO [36] 
dataset. 
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Figure 16. Comparison of the state-of-the-art object detection models. We adopt this figure from [26] and 

[24]. 

We adopt the above Table 3 and Figure 16 from [26] and [24] where the benchmarks of 

state-of-the-art one-stage and two-stage detectors are compared against each other. We 

can notice that two-stage detectors mostly outperform the one-stage detectors on 

accuracy, however one-stage detectors are faster. Since our research does not necessarily 

focus on real-time object detection in aerial imagery, we decided to use best performing 

two-stage detector algorithm Faster R-CNN [17] and best performing one-stage detector 

algorithm RetinaNet. Additionally, we also use Mask R-CNN [25] to experiment because 

of its high accuracy object instance segmentation results. There are two reasons why we 

are not using YOLO algorithm for our experiments is mainly due to very recently Pi et 

al. [48] reviewing YOLOv2 [5] deep learning model by applying transfer learning 

method as well as detetron2 [8] model zoo not having YOLO [15] models pre-trained. 

 

 

3.2.1 Faster R-CNN 

Recently Faster R-CNN is one of the most renowned deep neural network architectures. 

Faster R-CNN was proposed by Lin et al. [17]. Conceptionally, Faster R-CNN is 

composed of Feature Pyramid Network (FPN), Region Proposal Network (RPN) and 

Detection Networks.  
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Feature Pyramids are just basic components that detect objects at different scales. Prior 

to this work, Feature Pyramids were avoided to be used mostly due to their computational 

and memory cost. FPN is a top-down network architecture with lateral connections dev 

eloped for building high-level semantic feature maps at all scales [17]. 

The RPN is used to generate bounding boxes called Region of Interests (RoI) that have 

high probability of containing of any object of interest. Detection Network on the other 

hand, takes input from both FPN and RPN and performs the final object detection task, 

meaning that identifying the object of interest class and the bounding box of it. 

 

3.2.2 Masked R-CNN  

Mask R-CNN is one of the renowned deep learning models that performs multi tasks such 

as object detection, instance segmentation and person key point detection [25]. In 

principle, Mask R-CNN [25] extends Faster-RCNN [17] by adding a branch for predicting 

segmentation masks on each Region of Interest (RoI), in parallel with existing branch for 

classification and bounding box regression. The mask branch is a small FCN applied to 

each RoI, predicting a segmentation mask in a pixel-to-pixel manner. Mask R-CNN is 

slightly computational expensive just because mask branch only adds a small 

computational overhead, enabling a fast system and rapid experimentation. 

 

Figure 17. Mask R-CNN framework for Instance Segmentation [25]. 
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3.2.3 Retina Net 

As we can see from the Figure 16 single stage detectors have a major insufficiency when 

it comes to the model accuracy. RetinaNet was proposed by Ross et al. [26] in order to 

increase the accuracy by making two major improvements over other single stage 

detectors. In this network architecture there were two major improvements over other 

single stage objection detection models (e.g. YOLO [15], SSD [18]). Feature Pyramid 

Networks for Object Detection [49] and Focal Loss for Object Detection [26]. 

Feature Pyramid networks have been used typically to recognize objects of interest at 

distinctive scales. A Feature Pyramid Network (FPN) [49] augments CNNs with a top-

down pathway and lateral connections so the network efficiently constructs multi-scale 

pyramid from a single resolution input image (see Figure 18).  

 

 

 
Figure 18. RetinaNet uses a Feature Pyramid Network (FPN) as a backbone on top of a feedforward 

ResNet architecture [50]. 

 
 
 
The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) 

[17] as a backbone on top of a feedforward ResNet architecture [50] (a) to generate a rich, 

multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two 

subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor 

boxes to ground-truth object boxes (d). The network design is intentionally simple, which 

enables this work to focus on a novel focal loss function that eliminates the accuracy gap 

between our one-stage detector and state-of-the-art two-stage detectors like Faster R-

CNN with FPN while running at faster speeds. Each level of the pyramid can be used for 

detecting objects at a different scale. FPN improves multi-scale predictions from fully 

convolutional networks (FCN) [51], as shown by its gains for RPN and DeepMask-style 
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proposals [51], as well at two-stage detectors such as Fast R-CNN [31] or Mask R-CNN 

[25].  

Focal Loss (see Figure 19) is a more effective alternative to Cross Entropy Loss (CE) 

which is introduced by Ross et al.Error! Reference source not found. [26] to tackle the 

class imbalance challenge with single stage detection approach. Single stage object 

detection models usually suffer from foreground and background class imbalance 

problem mainly because of dense sampling of anchor boxes [26]. Initially, RetinaNet 

allows thousands of anchor boxes at each pyramid layer, and only a few of them is 

assigned to ground-truth object in the end, while the vast majority represents background 

class. Despite detections with high probabilities resulting in smaller loss values. Focal 

Loss is used to reduce loss contribution when there are easy examples (detections with 

high confidence scores) and to increase the significance of correcting misclassified 

examples. Moreover, Focus Loss (FL) is define as following equation (2). 

𝐹𝐿(𝑝!) = 	−𝛼!(1 − 𝑝!)"	log	(𝑝!)   (2) 

 

Focal Loss introduces an additional modulating factor (1 − 𝑝!)"	 to the cross-entropy 

loss [53], with tunable focusing parameter γ ≥ 0.  

 

 

3.3 Implementation details 

For the experimental setup we used Google Collaboratory Professional powered by a 

Nvidia Tesla P100 GPU with 30GB of random amount memory as our training 

environment (see Figure 19). We are inheriting the above described pre-trained models 

from detectron2 model zoo [8]. Detectron2 model zoo offers several pre-trained models 

that are trained on COCO [36] and LVIS [52] datasets. The training dataset contains 236 

images and three test datasets each contains 43 images (see 3.1). One test dataset is 

original images, while the other two are down sampled versions of it. We conducted a lot 

of experiments with the above described models mostly in order to fine-tune the 

hyperparameters. In the end we decided to evaluate the experimentation results of the top 
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best performing model per each algorithm, namely Faster R-CNN [17], Mask R-CNN 

[25] and RetinaNet [26].  

 

 

Figure 19. Detailed training environment description. 

 
The deep neural networks were trained with the hyperparameters of learning rate being 

5*10-4 and the batch size being 4. To tune hyperparameters we followed an approach 

taken by [53], where we conducted additional experiments with different values of 

learning rate. Initially we started with values such as 10-3, 25* 10-3, 2*10-2, however in 

the end we figure out that 5*10-4 was yielding relatively better results for all three 

models. Additionally, the mini-batch size was another important hyperparameter that we 

paid attention to. Since we had merely 236 training images, we split them into 59 

batches each containing 4 training samples, thus we trained al three models 10000 

iterations. In principle, we had limited computational power, therefore we did not 

manage to train longer than 170 epochs. Perhaps, if we trained longer than 170 epochs, 

we would get slightly better results (1-3%), although it was not in the scope of this 

thesis research. 

 

To start training our neural networks, we initialize the weights and biases parameters by 

loading these parameters from detectron2 model zoo [8] where the parameters of the 

pre-trained models are stored. We apply second approach of the transfer learning as 

described above in section 2.4 which is copying first n layer parameters from base pre-

trained network to target network. In our case n is the number of layers our neural 

network architectures have. For all three object detection algorithms we use 101 layered 

backbone configurations. Since aerial imageries are completely different than the data in 

COCO [36] and LVIS [53] datasets, we decided to initialize the parameters of our 

neural networks with the pre-learned parameters and to re-train the whole network. 
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4 Results  

4.1 Evaluation metrics 

In this section first we briefly discuss the evaluation metrics that are used to measure the 

performance of our models, then demonstrate our results, compare them against to state-

of-the-art baselines and finally analyze the key factors. Our metrics are average precision 

(AP), average recall (AR), alongside we consider inference time and training time metrics 

too.  

Object detection evaluation metrics measure to assess how well the model performs on 

an object detection task.  When it comes to evaluating the performance of model in object 

detection task there is not much of a difference with classification task. In simple 

classification task in order to calculate the evaluation metrics such as recall, precision or 

accuracy we need to know about true positive, false positive, true negative and false 

negative values. 

Likewise, in classification task, for object detection task we consider the true positive 

result when the model correctly draws the bounding box around the corresponding object 

of interest. A false positive result is when the model detects the wrong object as our own 

object of interest. 

In order to measure how accurate are the detections of our model, we use a metrics called 

Precision [54] and to measure how good our model detects the objects of interest we use 

a metrics called Recall [54]. 

In order to calculate precision and recall metrics we need to have the values for true 

positive, false positive and false negative values, and these values are based on the metrics 

called intersection over union (IoU) or sometimes referred as Jaccard Index [55] (see 

Figure 20). IoU metrics as its name implies computes intersection of the ground truth and 

predicted bounding boxes of the object of interest over union of the ground truth and 

predicted bounding boxes of the object of interest. See below equation (1). 
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Figure 20. Example of Intersection over Union in aerial object detection [4]. 

 
 
 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛	𝑜𝑣𝑒𝑟	𝑈𝑛𝑖𝑜𝑛	(𝐼𝑂𝑈) = #$!%&'%(!)*$	,&%-
.$)*$	,&%-

                             (1) 
 

 

In theory the best object detection result is when we have ground truth and predicted 

bounding boxes overlap in other words when IoU is 100%.  Given limitations of existing 

object detection algorithms currently it is nearly impossible to have IoU being 100%, thus 

both in the industry and research community IoU value of 50 to 95% is used. 

In this research, taking complexity aerial scenery into consideration, especially due to 

small objects of interest such as cars, the object detection is deemed true positive (TP) 

when IoU ≥ 25%. Therefore, we set the threshold for our Jaccard index or IoU as 0.25. 

Given the threshold of IoU we classify the object detection result as  

• True Positive (TP), when IoU > 0.25. 

• False Positive (FP) when IoU < 0.25. 

• False Negative (FN), when ground truth object is present in the image, but our 

model failed to detect it. 

Having the above metrics now we can calculate the precision and recall for our model 

performance. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = /&0%	1*')!)2%'
/&0%	1*')!)2%'	34-5'%	1*')!)2%'

                             (2) 
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = /&0%	1*')!)2%'
/&0%	1*')!)2%'34-5'%	6%7-!)2%'

                                   (3) 

 
 
We then calculate the cumulative precision (see Equation 2) and recall (see Equation 3) 

values for each class and find the are under the precision-recall curve as average precision 

(AP) for each class respectively. Our model performance evaluation results will be in the 

format of COCO [36] dataset evaluation format. This is due to us using pre-trained models 

from detectron2 model zoo (as it is by default supported evaluator type) as well as recently 

most researchers tend to give results on this data format.  

4.2 Analysis and Discussion 

Overall, we created three models altogether by feeding Dataset10 to Faster R-CNN [17], 
Mask R-CNN [25] and RetinaNet [26] algorithms. We chose the top performing 
backbone network architectures for each algorithm (see Small sized objects, when the 
pixel-wise area of the object of interest is smaller than 32x32 pixels. 

• Medium sized objects, when the pixel-wise area of the object of interest is in the 

range of 32x32 pixels and 96x96 pixels. 

• Large sized objects, when the pixel-wise area of the object of interest is in greater 

than 96x96 pixels. 

Table 4). In general, for all three models the results are good and quite close to the 

benchmark scores. Overall, we evaluated the performance of the models on our three 

test datasets that are described in section 3.1 . In this section we will analyze our results 

on main test dataset and conduct a comprehensive comparison with benchmark scores 

and previous works. 

The training process follows the steps described earlier in section 3.3 and the result 

metrics are collected in COCO [36] evaluation format. In COCO [36] evaluation format 

the objects are categorized into three scales in terms of their pixel-wise areas in the 

given image. The objects are considered as  
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• Small sized objects, when the pixel-wise area of the object of interest is smaller 

than 32x32 pixels. 

• Medium sized objects, when the pixel-wise area of the object of interest is in the 

range of 32x32 pixels and 96x96 pixels. 

• Large sized objects, when the pixel-wise area of the object of interest is in greater 

than 96x96 pixels. 

Table 4. Average precision results of re-trained deep learning models on the Dataset10. 

Method Backbone AP AP50 AP75 APS APM APL 

Faster R-CNN Inception-101 FPN 29 55.4 27.9 18.7 25 48.4 

Mask R-CNN Inception-101 FPN 33.2 56.4 32.3 21.2 27.1 52.4 

RetinaNet ResNet-101 FPN 26.3 51.9 23.8 5.5 24.9 44.9 

 

Table 5. Average precision results of re-trained deep learning models on the Dataset20. 

 
Method Backbone AP AP50 AP75 APS APM APL 

Faster R-CNN Inception-101 FPN 28.4 51.6 27.3 18.7 27.3 43.6 

Mask R-CNN Inception-101 FPN 33.2 58.5 33.5 21.2 27.2 61.9 

RetinaNet ResNet-101 FPN 26.1 51.4 22.8 5.7 28 48.3 

 

Table 6. Average precision results of re-trained deep learning models on the Dataset40. 

Method Backbone AP AP50 AP75 APS APM APL 

Faster R-CNN Inception-101 FPN 28.1 50.9 26.4 22.6 50 52.9 

Mask R-CNN Inception-101 FPN 25.2 46.3 35.1 20.5 46.3 55 

RetinaNet ResNet-101 FPN 24.5 47 22.8 18.4 44.1 59.6 
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When analyzing results from above tables 4, 5 and 6 it appears that generally over all 

three datasets Mask R-CNN outperforms the other two models. Additionally, it can be 

clearly seen that two stage detectors namely Mask R-CNN and Faster R-CNN outperform 

one stage detector namely RetinaNet in all the three datasets. Moreover, we can say that 

even the ground sampling distance is higher on the Dataset20 and Dataset40, we do not 

notice significant drops in average precision scores. Hence the models trained on 

Dataset10 is able to perform decently on Dataset20 and Dataset40. When comparing the 

average precision results of our re-trained models on our aerial imagery custom datasets 

versus the benchmarks of the same models on COCO dataset, we observe that Mask R-

CNN performs more closely to its corresponding benchmark. Average precision scores 

comparing the other two models (see Table 3). Nevertheless, Faster R-CNN and 

RetinaNet scores better average precision than YOLOv2 [5] does on COCO dataset.  
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Table 7. Granular AP results of re-trained deep learning models by each class on Dataset10. 

Method Backbone Car Airplane Bus Watercraft Building Truck 

Faster R-CNN Inception-101 FPN 39.2 28.5 53.2 11.8 47.4 18.1 

Mask R-CNN Inception-101 FPN 30.3 51.2 55.4 12 49.5 17.5 

RetinaNet ResNet-101-FPN 12.9 26.8 44.6 6.3 46.5 23.7 

 

Table 8. Granular AP results of re-trained deep learning models by each class on Dataset20. 

 
Method Backbone Car Airplane Bus Watercraft Building Truck 

Faster R-CNN Inception-101 FPN 38.8 25.4 50.2 11.8 47.4 19.7 

Mask R-CNN Inception-101 FPN 30.3 51.2 59.6 12.4 49.6 18.1 

RetinaNet ResNet-101-FPN 13.1 30 41.3 7.7 46.7 20.9 

 

Table 9. Granular AP results of re-trained deep learning models by each class on Dataset40. 

 
Method Backbone Car Airplane Bus Watercraft Building Truck 

Faster R-CNN Inception-101 FPN 28.1 25.3 48.3 11.8 47.4 22.1 

Mask R-CNN Inception-101 FPN 26 16.9 44.2 10.2 42.6 11.4 

RetinaNet ResNet-101-FPN 12.9 23.6 38.4 5.7 46.5 20.9 

 

The above tables 7, 8 and 9 illustrate that all three models struggle to detect trucks and 

watercrafts, and this can be explained by the fact that the training dataset had very few 

samples of each category. Although the training dataset had relatively high number of car 

instances, RetinaNet does not manage to distinguish the features of the cars well enough. 

Faster R-CNN outperforms other two models to distinguish the features of car. All three 

models show similar performances to detect building instances, whereas Mask R-CNN 
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performs better than the other two models to detect bus instances. Additionally, Mask R-

CNN manages to extract features of airplanes with higher precision on Dataset10 and 

Dataset20 but shows poor performance on Dataset40. 
 
 
 
 
 
Table 10. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset10. 

Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL 

Faster R-CNN Inception-101 FPN 10.7 22.8 35.5 19.8 30.9 51.8 

Mask R-CNN Inception-101 FPN 9.4 24.9 36.6 15 29.7 55.6 

RetinaNet ResNet-101 FPN 10.3 23.3 33.5 6.8 31.6 49.2 

 

Table 11. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset20. 

 
Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL 

Faster R-CNN Inception-101 FPN 10.6 22.5 34 19.8 31.7 53.5 

Mask R-CNN Inception-101 FPN 9.4 24.9 36.6 21 29.7 65 

RetinaNet ResNet-101 FPN 10.3 23.2 33.6 11 34.3 53.5 

 

 

Table 12. AR for a given maximum number of detections where IoU is in range of 0.5: 0.95. Dataset40. 

 
Method Backbone ARmax=1 ARmax=10 ARmax=100 ARS ARM ARL 

Faster R-CNN Inception-101 FPN 10 22.2 33.6 27.8 54.9 57.9 

Mask R-CNN Inception-101 FPN 9.2 21.2 32.2 27.7 50.1 61.9 

RetinaNet ResNet-101 FPN 10.3 21.5 31.8 24.4 51 67.4 
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Table 10, 11 and 12 show the average recall results for a given maximum number of 

detections respectively on the Dataset10, Dataset20, Dataset40. It can be seen that, 

RetinaNet and Faster R-CNN are in the race against each other, while Mask R-CNN 

seems to accept the defeat in this metric. RetinaNet outperforms two stage detectors in 

this metric with tiny difference.  I think it is wiser to take ARmax=10 and ARmax=100 metric 

more seriously, because majority of the images in the dataset (at least ~80%) contain more 

than 10 objects of interest. Since the images are aerial there is so much data as it can be 

seen from Figure 12. One significant observation that we can do is, on Dataset40 all three 

models displays roughly same performance, whereas on Dataset20 and Dataset10 they 

differ a lot. RetinaNet seems to miss many small objects of interest on Dataset10 and 

Dataset20. 

 

Additionally, besides evaluating the performance of the models by north star average 

precision and average recall metrics we also evaluate the results visually. This is not 

quantifiable way of evaluation, but more of an intuitive way of evaluation. Below, we 

display the visual performance of the three models on the very same image in three 

different versions. First three results (Figure 21, Figure 22, Figure 23) reflect the 

performances of three models respectively on the Dataset10. Following, the next three 

results (Figure 24, Figure 25, Figure 26) are retrieved by running all the three models on 

an arbitrary image from Dataset20. Finally the last three results (Figure 27, Figure 28, 

Figure 29) indicate the visual performances of the models  on the same image but from 

Dataset40.  
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Figure 21.Faster R-CNN prediction on an arbitrary image from Dataset10. 
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Figure 22. Mask R-CNN prediction on an arbitrary image from Dataset10. 
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Figure 23. RetinaNet prediction on an arbitrary image from Dataset10. 
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Figure 24. Faster R-CNN prediction on an arbitrary image from Dataset20. 
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Figure 25. Mask R-CNN prediction on an arbitrary image from Dataset20. 
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Figure 26. RetinaNet prediction on an arbitrary image from Dataset20. 
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Figure 27. Faster R-CNN prediction on an arbitrary image from Dataset40. 
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Figure 28. Mask R-CNN prediction on an arbitrary image from Dataset40. 
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Figure 29. RetinaNet prediction on an arbitrary image from Dataset40. 

 

To conclude this section, we can say that Faster R-CNN displays the most robust 

performance for detecting smaller objects while Mask R-CNN gives the best performance 

in high resolution aerial imagery where objects have medium or large size, in other words 

their pixel-wise areas are greater than at least 32x32 pixels. 

4.2.1 Key Factors  

It turns out that there are several factors that eventually affect the performance of the 

models. Obviously, tuning the hyperparameters finely is very essential to get significantly 

decent results. We started learning rate with 10-3, then ended up with 5*10-4 which seemed 

to perform better than other values. The number of batches was also essential 

hyperparameter to tune for us, initially we started with 2 images per batch (we had 236 

training images (see section 3.1) which was not converging the loss we enough. At the 

end it turned out when we include 4 images per batch, the model started to give better 

results. One other key factor was the dataset characteristics which is quite visible with 



60 

results displayed above tables ( see Small sized objects, when the pixel-wise area of the 

object of interest is smaller than 32x32 pixels. 

• Medium sized objects, when the pixel-wise area of the object of interest is in the 

range of 32x32 pixels and 96x96 pixels. 

• Large sized objects, when the pixel-wise area of the object of interest is in greater 

than 96x96 pixels. 

Table 4 and Table 7). The dataset was so imbalanced, this was something that we could 

not do much about, because the imageries naturally contain more cars and buildings than 

other objects of interest. 

 

4.2.2 Future Opportunities 

In this work we concentrated our research on evaluating two top performing state-of-the-

art two-stage detectors and one top state-of-the-art one-stage detector for object detection 

from aerial imageries. One of the lessons we learned was creating a balanced dataset. This 

is a known challenge in the field although, we can mitigate the class imbalanced 

distribution by increasing distribution of some of the classes such as trucks, busses by 

doing data augmentation. We think that the same evaluation can be done for real-time 

video analysis for future work. 
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5 Conclusion 

In this research we facilitated objects of interest detection in aerial imagery by applying 

transfer learning from pre-trained state-of-the-art CNN models. To achieve this, a list of 

objects of interest were generated by interviewing industrial companies. Following, in 

order to feed the CNN an in-house high-resolution aerial imagery dataset was introduced 

by collecting the data from Land Board of Estonian Republic. Totally, three CNN models 

were trained, validated and tested on several different versions of the original test datasets, 

whereby down sampling the images ground sampling distance as if the imagery has higher 

viewpoint altitude. The results for the objects of interest that have medium and large 

pixel-wise areas were quite satisfactory, in fact nearly beating corresponding benchmark 

values on COCO dataset. In general, if objects of interest in a given image has greater are 

than 32x32 pixels, our models lead to reasonably reliable results. The first conclusion that 

we can draw is that, by applying transfer learning and feeding the deep neural networks 

with high resolution aerial imagery can yield to decent results that are pretty close to state-

of-the-art benchmarks. Additionally, Mask R-CNN slightly outperforms the other two 

models (Faster R-CNN, RetinaNet) in object detection task from high resolution aerial 

imagery. To conclude, the all three models that were re-trained on high-resolution aerial 

imagery (Dataset10) seem to perform almost at the same level in 2- and 4-times lower 

resolution aerial imagery. 
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