
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

ITI40LT

Siim Kaspar Uustalu 134295IAPB

Implementing automation in the software
development lifecycle using Docker

Bachelor's thesis

Supervisor: Marko Kääramees

PhD

Assistant Professor

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutiteaduse instituut

ITI40LT

Siim Kaspar Uustalu 134295IAPB

AUTOMAATIKA RAKENDAMINE
TARKVARAARENDUSE ELUTSÜKLIS

DOCKERI ABIL

Bakalaureusetöö

Juhendaja: Marko Kääramees

PhD

Dotsent

Tallinn 2016

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Siim Kaspar Uustalu

23.05.2016

3

Abstract

The thesis provides an implementations of automation within the software development

lifecycle utilizing Docker, Vagrant and Travis CI. Automatic provisioning processes for

development environment setup are provided for three common types of web software

projects. In addition the process of creating release artifacts is automated utilizing the

Travis continuous integration platform with a Docker based build process. As part of the

build process, a method to automatically run functional tests on the release artifact

within a mock infrastructure is implemented.

Processes implemented and described within the thesis follow best practices outlined by

the principles of continuous delivery and have the aim of providing consistency between

different deployment environments.

This thesis is written in English and is 40 pages long, including 4 chapters, 25 figures

and 0 tables.

4

Abstract

Automaatika rakendamine tarkvaraarenduse elutsüklis Dockeri abil

Käesolev bakalaureusetöö keskendub automaatika rakendamisele tarkvaraarenduse

elutsüklis Dockeri, Vagranti ning Travis CI tööriistade abil. Töös on toodud lahendused

kolme laialt kasutatava veebirakenduse tüübi arenduskeskkonna ülesseadmise protsessi

automatiseerimiseks. Vaadeldavate rakenduste hulgas on Javascript ning HTML

rakendus, RESTful veebiteenus kirjutatud PHP keeles ning RESTful veebiteenus

kirjutatud Go keeles. Vagranti abil üles seatud protsess töötab Windows, Linux ning

OSX operatsioonisüsteemidel ning kasutajapoolne sekkumine ei ole vajalik.

Arenduskeskkonna infrastruktuur koosneb Dockeri konteinerites sisalduvatest

teenustest ning sel põhjusel analüüsitakse töös ka rakenduse konteineriseerimise

protsessi.

Lisaks on autor välja pakkunud lahenduse Dockeri abil continuous delivery protsessi

rakendamiseks. Travis CI platvormil toimiv automatiseeritud protsess on modulaarne

ning väheste muudatustega ka muudel continuous integration platvormidel rakendatav.

Töös on näitlikustatud, kuidas on võimalik luua automatiseeritud build-protsessi käigus

ajutine infrastruktuur, kuhu paigutatuna testitakse rakendust realistlikes olukordades.

Töö tulemusena leiti, et Dockeri baasil on võimalik rakendada keeruka infrastruktuuri

automaatset seadistamist. Käesolevas bakalaurusetöös autori poolt analüüsitud protsesse

saab kõigi kolme töös käsitletud rakenduse tüübi puhul ilma muudatusteta kasutusele

võtta ning need on laiendatavad ka teistele sarnastele projektidele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 4 peatükki, 25

joonist ja 0 tabelit.

5

List of abbreviations and terms

Bash
Bourne Again Shell — a sh-compatible shell developed by the
GNU project conforming to the IEEE POSIX P1003.2/ISO
9945.2 Shell and Tools standard.

Chakram
A REST API testing framework written in Node.js offering a
behavior-driven testing style and fully exploiting promises.

Container
An isolated Linux system running on a shared kernel. In the
context of this thesis the term container is used to note Docker
containers.

Containerization
The process of encapsulating an application in a container to
provide a lightweight alternative to virtualization.

Continuous integration
A development practice putting the focus on integrating
developer changes as soon as possible.

Docker

A software project that allows developers to package an
application with all of its dependencies into a standardized unit
for software development. Docker containers wrap up a piece of
software in a complete filesystem that contains everything it
needs to run: code, runtime, system tools, system libraries –
anything you can install on a server. This guarantees that it will
always run the same, regardless of the environment it is running
in.

Dockerfile
A text document containing all the commands a user could call
on the command line to assemble an image.

DSL
A domain specific language. Programming language, or a subset
of a programming language focused on a single problem
domain.

Go
Go is a open source statically typed programming language
originally developed at Google with a focus on building simple,
reliable and efficient software.

HHVM
The HipHop Virtual Machine is an open-source virtual machine,
using the JIT compilation approach, designed for executing
programs written in Hack and PHP

HTTP
Hypertext Transfer Protocol. An application protocol for
delivery of hypermedia resources.

Memcached Free & open source, high-performance, distributed memory
object caching system, generic in nature, but intended for use in
speeding up dynamic web applications by alleviating database

6

load.

MySQL An open-source relational database management system.

Node.js
A Javascript runtime built on the Chrome V8 Javascript engine
used to execute Javascript outside the browser.

Npm A package management solution for node.js applications.

React
A JavaScript library for creating user interfaces originally built
by Facebook and Instagram

Redux
A predictable state container for JavaScript apps, that helps
developers write applications which behave consistently in
multiple environments and are easy to test.

Vagrant
An open source command line utility for managing the lifecycle
of virtual machines supporting multiple provisioning methods

Vagrantfile
A ruby syntax file declaring the configuration of a virtual
machine for the Vagrant virtual machine management utility.

VM Virtual machine

YAML
YAML Ain't Markup Language — a human friendly data
serialization standard for all programming languages.

7

Table of Contents

1 Introduction ... 11

2 Provisioning the development environment ... 13

2.1 Containerizing the Javascript application .. 15

2.2 Containerizing the RESTful web service written in PHP 17

2.3 Containerizing the RESTful web service written in Go 21

3 Continuous delivery of release artifacts ... 24

3.1 Defining the build process ... 25

3.2 Producing the release artifact ... 25

3.2.1 The Javascript application .. 27

3.2.2 The RESTful web service written in PHP .. 30

3.2.3 The RESTful web service written in Go .. 31

3.3 Testing the release artifact in a mock infrastructure .. 32

4 Summary ... 34

 References .. 35

 Appendix 1 – Containerized nginx in reverse proxy configuration 36

 Appendix 2 – Github Flow based workflow .. 37

 Appendix 3 – Containerized nginx serving static assets .. 38

 Appendix 4 – Producing statically linked binaries with Go ... 39

 Appendix 5 – Containerized Mocha test runner ... 40

8

List of Figures

Figure 1. Contents of the generic Vagrantfile defining the development virtual machine

...14

Figure 2. HTTP request against the embedded Javascript application container............15

Figure 3. Contents of the Dockerfile for the Javascript application development image

...16

Figure 4. Contents of the Javascript application specific setup script (app-setup.sh).....16

Figure 5. Contents of the application start up script (app-start.sh)..................................17

Figure 6. Contents of the infrastructure definition file for the Javascript application.....17

Figure 7. Client communication with the PHP API development environment..............18

Figure 8. Contents of the application specific setup script (app-setup.sh) for the PHP

project..19

Figure 9. Contents of the infrastructure definition file for the web service written in PHP

...20

Figure 10. HTTP request against the Go web service development environment..........21

Figure 11. Contents of the application specific setup file for the web service written in

Go..22

Figure 12. Definition of the Go service's container...23

Figure 13. Contents of the Travis CI configuration file (travis-ci.yml)..........................26

Figure 14. Production ready Dockerfile for the Javascript application...........................27

Figure 15. Contents of the before_build.sh file for the Javascript application................28

Figure 16. Contents of build_artifact.sh script to create the release artifact of the

Javascript application..29

Figure 17. Diff of the changes made to the HHVM Dockerfile used in the dev.

environment...30

Figure 18. Contents of the before_deploy.sh BASH script for the PHP application.......31

Figure 19. Contents of the Dockerfile for the image containing a static Go binary........31

Figure 20. Invoking the Mocha framework test runner...33

Figure 21. nginx configured as a reverse proxy for PHP application..............................36

9

Figure 22. nginx configuration to serve a static Single Page Javascript application.......38

Figure 23. Contents of Dockerfile for Go language image...39

Figure 24. Running the container to produce a statically linked binary..........................39

Figure 25. Contents of Dockerfile for containerized Mocha test runner.........................40

10

1 Introduction

A rising number of organizations [4] are building their infrastructure on isolated Linux

user-space instances, called containers, running on a shared kernel. These deployments

are large scale enough to warrant attention, with Google reportedly running over 2

billion containers in 2014 [1] . The main advantage of a container based infrastructure is

the lowered overhead cost of isolation compared to traditional virtualization methods

[2] . Containerized applications have lower provisioning times, measured in seconds

instead of minutes [2] and as such ease the process of horizontal scaling to handle

higher than usual transaction volumes [2] .

The focus of this thesis is on the process of containerizing applications with Docker in

order to implement a process of continuous delivery and to create consistency between

development and deployment environments. Docker was chosen as the containerization

engine due to its open source status, widespread industry adoption [4] and relative

maturity as compared to similar open source offerings, such as CoreOS rkt.

Criterions of success must be separately established for both the containerization of

applications and provisioning of development environments. The implemented

development environment provisioning process must be fully automated, requiring no

human interaction to create a ready instance of the application. Another key criterion is

the requirement of architectural consistency between development and production

environments. Extendibility must be ensured by keeping the configuration modular and

with low complexity.

The criterions of automation and modularity are also applicable to the containerization

of applications. Results of the containerization process must follow best practices

established for continuous delivery of release artifacts. The process itself must be as

portable as possible to avoid possible vendor lock-in.

Containerization solutions will be provided for three common types of web

applications. Among these are a traditional static Javascript and HTML web application,

11

an RESTful API written in PHP and a RESTful API written in Go. Both of the web

services utilize MySQL as their main data store and Memcached as an in-memory

cache. The applications are varied enough to showcase different issues faced with

containerization.

In addition, a solution to run functional tests on release artifacts in a mock infrastructure

during continuous integration is provided. This will ensure the correct functioning of the

applications before being shipped to deployment environments. Contrasted with unit

testing the functional tests help ensure that components are able to operate as part of a

system.

The thesis consists of 3 chapters focusing on containerization within different stages of

the traditional software development lifecycle and the fourth providing a summary of

the results. The first chapter is focused on automating the provisioning process for a

containerized development environment using Docker and Vagrant. In the following

chapter a continuous integration process to create containerized release artifacts is

provided. Additionally a solution to test these release artifacts in a mock infrastructure

before distribution is provided.

12

2 Provisioning the development environment

Each tool introduced to the development process adds additional complexity and

lengthens the process of onboarding new developers. A way to mitigate the initial

confusion of a new developer introduced to a project is to make the set up process

unobtrusive. Automation of configuration and installation of the supporting components

behind a software project (such as a database engine or a message queue) achieves this.

Within the scope of this thesis the requirements of a development environment

provisioning process are defined as following:

1. The provisioning process must be fully automated and repeatable.

2. No non-application specific configuration is needed within the scope of a single

project.

3. A working instance of the application must be available after provisioning.

4. The development environment must be as close as possible to the deployment

environment.

Due to Docker depending on the Linux kernel, a virtual machine must be used to avoid

imposing a platform restriction on developers. To ensure consistency the virtual

machines must be kept identical between developers. Distributing these pre-configured

virtual images could be implemented by using the built in solutions provided by

virtualization applications. Doing this would mean that all projects must have a

manually created virtual machine image containing the tools and configuration. This

was found to be unsuitable due to the loss of change auditability in a version control

system and distribution issues introduced by the rather large size of the images.

A process of automatic provisioning and configuration on top of a common virtual

machine image was chosen. Vagrant was chosen as the provisioning tool due to it

enabling declarative definition of a virtual machine using a Ruby based DSL (Domain

13

specific language) within a single file called a Vagrantfile. Multiple provisioning

methods are supported by Vagrant such as Puppet, Chef and Ansible, but the shell script

based method was chosen to reduce complexity. Virtualbox is used as the virtualization

backend under Vagrant due to its cross platform availability.

Four files pertaining to the configuration of the development virtual machine will need

to be added to the application codebase. Firstly, a generic Vagrantfile, contents of which

are presented in Figure 1, responsible for declaring the configuration properties of the

virtual machine and invoking the provisioning shell scripts. The other three are shell

scripts listed in the Vagrantfile and invoked by Vagrant. Installation of the Docker

daemon and container orchestration tools is performed within docker-setup.sh and

requires no application specific modification. Contents of the final two, app-setup.sh

and app-start.sh, depend on the application type.

Editing the code takes place outside of the virtual machine, under the host operating

system. This is enabled by the multiple host-to-guest filesharing methods provided by

both Virtualbox and Vagrant. In this case the rsync method is utilized to preserve

14

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrant.configure(2) do |config|

 # Based on a install of Debian Jessie x64

 config.vm.box = "debian/jessie64"

 # Private network avail. from host

 config.vm.network "private_network", ip: "192.168.33.10"

 # Sync folder from host to guest, preserving notifications

 config.vm.synced_folder "./", "/synced/app", type: "rsync"

 # Virtualization provider specific configuration

 config.vm.provider "virtualbox" do |vb|

 vb.memory = "4096" # Define available memory (in MB)

 end

 # Set up the docker engine & orchestration tool

 config.vm.provision "shell", path: "docker-setup.sh"

 # App specific first-run provisioning

 config.vm.provision "shell", path: "app-setup.sh"

 # Start up script run each time

 config.vm.provision "shell", path: "app-start.sh", run: "always"

end

Figure 1. Contents of the generic Vagrantfile defining the development virtual machine

filesystem events. Requirement of rsync availability is thereby introduced and must be

taken care of on non-unix platforms.

Docker container and network provisioning will be handled with the Docker compose

container orchestration tool. The advantage of using a container orchestration tool over

manual provisioning via shell commands is the ability to declaratively define an

infrastructure consisting of linked containers in a YAML (YAML Ain't Markup

Language) syntax file. This enables developers to have a clear overview of the

infrastructure of their application.

2.1 Containerizing the Javascript application

Containerization of the client-side Javascript application written using the React library

is performed with Docker. In case of the development environment, the build process,

run with the Webpack build tool running on Node.js must be containerized. In this

environment Webpack's embedded server is used to serve the application due to its “hot

reload” capability. Figure 2 presents a HTTP request performed in the implemented

architecture.

15

Figure 2. HTTP request against the embedded Javascript application container

Application and its static assets will be served to clients on port 8080 of the virtual

machine, serviced by a Node.js container running Webpack's embedded webserver.

Figure 3 presents the Dockerfile, Docker's image definition file, defining the custom

image used for the Javascript application. The need for a custom image stems from the

requirement for the Webpack build tool.

During application specific setup process, presented in Figure 4, the image is built from

its definition. Once the image is registered in the local registry, the development

dependencies required by the application are installed using the npm dependency

management tool running within a temporary container created from the new image.

Application setup is run on the first vagrant up invocation or when provisioning is

requested. Only the application specific start-up script in Figure 5 is run on subsequent

invocations.

16

Basing it on the official open source image

FROM node:4.4.3

MAINTAINER Siim Kaspar Uustalu <siim@mooncascade.com>

RUN npm install -g webpack

WORKDIR /app

Figure 3. Contents of the Dockerfile for the Javascript application development image

#!/bin/bash

cd /synced/app

Build the development container image

docker-compose build

Install dependencies required by the application

docker-compose run js-container npm install

Figure 4. Contents of the Javascript application specific setup script (app-setup.sh)

Figure 6 presents the infrastructure definition for the Javascript application. The

infrastructure consists of a single container created from an image based on the

Dockerfile presented in Figure 3. A volume containing the synced application source

code is mounted inside the container. The container will also have its port 8080 bound

to the virtual machine's external interface to enable outside access.

With these files in place the automatic provisioning process for a Javascript application

has been established. Invoking vagrant up within the application directory on the host

machine will start the provisioning process. After provisioning and startup has

completed, the Javascript application will be reachable from port 8080 of the virtual

machine. Any changes made to the application source code on the host operating system

will trigger a hot-reload of the application.

2.2 Containerizing the RESTful web service written in PHP

The RESTful web service communicates with clients using HTTP. Request and

response bodies are JSON encoded. The service accesses MySQL and Memcached.

Long term data storage is handled by the RDBMS, while results of time expensive

queries are cached in the Memcached instance to provide cache expensive queries.

17

#!/bin/bash

docker-compose -f /synced/app/docker-compose.yml up -d

Figure 5. Contents of the application start up script (app-start.sh)

version: '2'

services:

 js-container:

 build:

 context: ./

 dockerfile: Dockerfile.development

 ports:

 - "8080:8080"

 volumes:

 - /synced/app:/app

 command: npm start

Figure 6. Contents of the infrastructure definition file for the Javascript application

HHVM (HipHop Virtual Machine) is used to execute PHP with nginx configured as a

reverse proxy (Appendix 1 – Containerized nginx in reverse proxy configuration) to

handle incoming HTTP requests.

In a traditional development environment all parts would be run on the host operating

system as services without any additional isolation. In case of a dockerized application

each container will only contain a single process. These containerized services are then

able to communicate over a network managed by Docker. The single process limitation

may be worked around by utilizing a process control system, such as supervisord, but

doing so is not recommended [6] .

Service discovery between these isolated services will be handled by the Docker

embedded DNS server. Implementing isolated communication between the services

requires creation of two networks: one for communication between nginx and HHVM

containers and a second one to enable communication between the HHVM container

and the data layer. Figure 7 illustrates the architecture of the service and the additional

isolation provided by separated networks.

18

Figure 7. Client communication with the PHP API development environment

The nginx container's port 8080 is bound to the development VM's external interface.

Only HTTP protocol is handled in all deployment environments as HTTPS (HTTP over

SSL) termination will be handled by an external load balancer.

Application specific changes only need to be introduced in app-setup.sh and in the

infrastructure definition. The full contents of the application setup script are displayed

in Figure 8. During the application setup process the Docker images required are either

built or pulled from the central registry. After that the infrastructure is started and the

database schema created using the database migration tool provided in the application

framework.

Figure 9 presents the implementation of the proposed architecture as an infrastructure

definition. Additional runtime configuration, possibly containing sensitive credentials, is

applied by using environment variables. In the infrastructure definition file these are

passed to the containers by using the env_file attribute. Contents of these files are in the

form of NAME_OF_VALUE=value on isolated lines. These are then set as environment

variables inside the container. Associating configuration with the environment in such a

way is considered a best practice [7] .

19

#!/bin/bash

cd /synced/app

Build or pull the required images

docker-compose build && docker-compose pull

Start the containers

docker-compose up -d

sleep 40

Build the database from incremental migrations

docker-compose run hhvm hhvm --php -d
hhvm.hack.lang.look_for_typechecker=0 artisan migrate

Figure 8. Contents of the application specific setup script (app-setup.sh) for the PHP project

20

version: '2'

services:

 nginx:

 build: ./infra/nginx

 ports:

 - "8080:8888"

 networks:

 web:

 aliases:

 - nginx

 hhvm:

 build: ./infra/hhvm-dev

 env_file:

 - ./env/application.env

 # Make project source code available as a volume

 volumes:

 - ./app:/var/www/app

 networks:

 web:

 aliases:

 - hhvm

 data:

 mysql:

 image: mysql:5.5.44

 volumes:

 - /volumes/mysql:/var/lib/mysql

 env_file:

 - ./env/mysql.env

 networks:

 data:

 aliases:

 - mysql

 memcached:

 image: memcached:latest

 networks:

 data:

 aliases:

- memcached

networks:

web:

 data:

Figure 9. Contents of the infrastructure definition file for the web service written in PHP

With the modifications in place the PHP web service is automatically set up and

providing information on port 8080 of the virtual machine without any developer

intervention. The created infrastructure consists of multiple containers each providing a

single service. Communication between them happens over Docker controlled

networks, providing isolation between the data and web layers.

2.3 Containerizing the RESTful web service written in Go

Go is a statically typed systems programming language from Google introduced in

2009. Applications written in this language can be compiled into a single, statically

linked binary ready for redistribution. Static compilation makes it possible to produce

comparatively small Docker images by removing the requirement for a more fully

featured Linux environment inside the container.

The web service communicates with clients over HTTP. Request and response bodies

are JSON encoded. In addition to service resources, an embedded web server will serve

HTML documentation covering the service. MySQL will be used as the primary data

store with resource expensive queries cached in Memcached. Figure 10 presents the

development environment architecture.

21

Figure 10. HTTP request against the Go web service development environment

The service setup process is presented in Figure 11. During setup, all of the images are

either built or pulled from the central registry. Project dependencies are then installed by

running the ephemeral container. Database schema is again managed with a migration

tool. Compared to the PHP web service, the migration tool is not related to the

application framework and as such containerized separately. In this case a shell script

wrapper has been created to create ephemeral containers to run the migrations process.

During development a Docker container containing a Go development environment is

used. Project source code is made available and program compilation performed during

container startup. Updating the binary then requires restarting the container.

The web service is capable of servicing HTTP requests by itself and as such the nginx

container has been removed along with the web network. Only supporting insecure

HTTP is accepted as production environments will have an external load balancer

responsible for SSL termination. A Docker network is created to facilitate

communication between the service and data layer. Figure 12 presents the Go service

container definition within the infrastructure definition file. Definitions for the

accompanying containers have been omitted for brevity.

22

#!/bin/bash

cd /synced/app

Pull & build the images

docker-compose build && docker-compose pull

Load the dependencies

docker-compose run go-container make dependencies

Bring things temporarily up

docker-compose up -d

sleep 40

Run incremental database migrations with an external tool after
building image for it

make migrator-image

./migrate.sh up

Figure 11. Contents of the application specific setup file for the web service written in Go

The infrastructure for the Go application created by the provisioning is rather similar to

the one required by the PHP web service. The process requires no manual user

interaction and is applicable to other projects of similar nature with no modification.

23

version: '2'

services:

 go-container:

 build:

 context: ./

 dockerfile: Dockerfile.development

 env_file:

 - ./application.env

 volumes:

 - ./:/go/src/github.com/organization/app

 - /gopath:/go

 - ./doc:/doc

 ports:

 - "8080:8080"

 working_dir: /go/src/github.com/organization/app

 command: /bin/bash -c "go build -v . && ./app server"

 networks:

 data:

Omitted for brevity

networks:

 data:

Figure 12. Definition of the Go service's container

3 Continuous delivery of release artifacts

Deployment may often be seen as something tedious and to be done rarely. This fear

stems from a lack of automation bringing a greater chance of human error and waste of

time [4] . Reliance on a manual process puts the burden of deployment on a single

person or a team [4] due to the need for systems access.

Before automation can be implemented, the distribution method and the release artifact

must be defined. In case of Docker the release artifact is an image containing the

packaged application, which is distributed using the mechanisms built into Docker

itself. The specifics of setting up a production environment based on Docker falls out of

the scope of this thesis, but an implementation of continuous delivery for release

artifacts along with configuration is provided.

In order to outline a process for continuous delivery of these release artifacts a few

guiding principles must be defined.

• Accountability – Developers and operators must be able to identify and audit

the exact version and configuration of software deployed to any instance.

• Automation – Creation of the release artifact should require no explicit actions

from a dedicated build engineer.

• Configurability – Environment specific configuration should either be included

within the release artifact or made available to the deployment target by other

means.

• Uniformity – Each environment must be consistent with its peers.

• Variant management – Multiple versions of the same software with variable

amounts of stability should be available.

24

3.1 Defining the build process

Defining a build process which is able to abide all the established guiding principles is

possible with Docker. Uniformity is achieved by utilizing Docker images. Automating

the production of these images in an accountable fashion requires the development of

organizational tooling and processes.

Accountability and variant management require the ability to individually identify every

release artifact deployed to any environment. A tagging system utilizing the image

tagging feature of the Docker registry is used. Each tag consists of two parts — a short

identifier of the deployment environment and a commit identifier within the VCS

(Version Control System) used. The tags will be applied to Docker images before

making them available from the remote registry. This enables project members to verify

issues with the exact version of the deployed artifact by examining it specifically.

In the scope of this thesis the tag format used is prod/dev-#######. The prod identifier

identifying releases meant to be deployed to the more stable production environment

and dev those deployed to staging. Specific implementations of source code

management flows focusing on variant management do not fall under the scope of this

thesis. Assumption has been made that the projects discussed within the thesis have

implemented a workflow based on the Github Flow (Appendix 2 – Github Flow based

workflow) to manage different variants of their codebase.

Avoiding the human element requires introduction of a build automation tool. A wide

variety of tools is available on the market, both proprietary and open source. In the

scope of this thesis the Travis CI (Continuous Integration) platform will be used to

perform builds. Travis was chosen over Jenkins due to its integration with Github, ease

of configuration and support for more deployment targets than CircleCI. Although due

to the nature of Docker the build process outlined may be implemented on any of the

alternative CI platforms supporting Docker with minimal modification.

3.2 Producing the release artifact

The basis for each of the release artifacts will be a Dockerfile defining the contents of

the resulting image. The Dockerfile for each of the application types is different, but re-

25

usable within similar types of projects. A key metric to minimize is the size of the

resulting Docker images.

The Travis build process is configured with a YAML syntax .travis.yml file available in

the project's source code repository. Commands listed will be run at defined points in

the build lifecycle [3] . Re-usability of the CI configuration file is achieved by

containing the build logic in external BASH scripts. Figure 13 presents the contents of

the configuration file utilized.

Any configuration settings must be specified in environment variables. The name of the

variable must be suffixed with an environment identifier to avoid confusion. Any

potentially confidential information stored in these variables (such as service

credentials) can be protected by using features offered by Travis.

The configuration consists of a generic .travis.yml file accompanied by 5 BASH scripts

and the deployment Dockerfile in a directory called build. The first, before_build.sh

script is responsible for installing any dependencies and preparing the build

environment. Second, build.sh is a wrapper script for the actual application specific

build and functional testing scripts, build_artifact.sh and test_artifact.sh. Functional

testing is discussed further in the chapter on Testing the release artifact in a mock

infrastructure. Final script, before_deploy.sh is rather generic and only includes steps

26

sudo: required

language: node_js

branches:

 only:

 - master

 - develop

services:

- docker

Steps to be run in order

install: . build/before_build.sh

script: . build/build.sh

before_deploy: . build/before_deploy.sh

deploy:

 # Deploy step instructions removed for brevity

Figure 13. Contents of the Travis CI configuration file (travis-ci.yml)

made before the artifact can be deployed. In the scope of application types discussed in

the thesis this would mean pushing the image to the appropriate remote Docker registry.

3.2.1 The Javascript application

In a production context the webpack internal development server is unsuitable. Instead a

distributable application bundle is produced from the source code. The bundle will

contain a minimized Javascript file and static assets required by the application. Any

HTTP capable web server can then be used to serve these assets. Nginx (Appendix 3 –

Containerized nginx serving static assets) was chosen in this case due to both its

performance characteristics and developer familiarity. To minimize the size of the

distributed release image the minimal Alpine Linux base image was chosen. Figure 14

presents the Dockerfile for the production image. Architecturally this does not

introduce a large change as only the underlying Javascript delivery mechanism was

changed.

The generic Travis configuration in Figure 13. Contents of the Travis CI configuration

file (travis-ci.yml) is used without any modification. During the before_build phase

application dependencies will be installed using npm and the rest of the environment

27

FROM alpine:3.2

MAINTAINER Siim Kaspar Uustalu <siim@mooncascade.com>

Install nginx stable

RUN apk add --update nginx && rm -rf /var/cache/apk/*

Bake in nginx configuration

ADD build/config/nginx.conf /etc/nginx/nginx.conf

& the single page app itself

ADD index.html /var/www/app/index.html

ADD favicon.ico /var/www/app/favicon.ico

ADD static /var/www/app/static

#Nginx will be exposed on 8080

EXPOSE 8080

WORKDIR /tmp # Working directory

CMD nginx # Command run on container start

Figure 14. Production ready Dockerfile for the Javascript application

will be prepared for build. The appropriate target environment is decided from the code

branch within the VCS. Figure 15 presents the environment determination and

dependency installation.

During the build process both the applications Javascript and asset bundle with the

containing release artifact will be created. The resulting Docker image will be tagged

with an identifying tag in the local Docker registry. The resulting tag will also be placed

in the deployment definition file Dockerrun.aws.json. Configuring the webpack build

tool to properly produce the Javascript application bundle falls outside of the scope of

this thesis and as such the configuration files used will be not be included. The release

artifact creation is presented in Figure 16.

28

Determine target environment from code branch

case $TRAVIS_BRANCH in

"master")

export ENV_LONG="production"

export ENV="prod" ;;

"develop")

export ENV_LONG="development"

export ENV="dev" ;;

*)

export ENV_LONG="development"

export ENV="dev" ;;

esac

export ENV_UPPER=$(echo "$ENV" | tr '[:lower:]' '[:upper:]')

APP TYPE SPECIFIC:

Install the build tool & and application dependencies

npm install -g webpack && npm install

Figure 15. Contents of the before_build.sh file for the Javascript application

As the resulting release artifact contains only static HTML and assets no further testing

will performed on it during the build. No changes will need to be introduced to the

before_deploy.sh script either and as such after the container has been pushed to the

remote registry the deployment process may be started.

29

APP SPECIFIC:

Building the bundle

Replace placeholder with real URL to handle forwarding within nginx

if [$ENV = "prod"]

then

sed -i -e "s/replace_url_in_build/${HOST_PROD}/g"
build/config/nginx.conf

else

sed -i -e "s/replace_url_in_build/${HOST_DEV}/g"
build/config/nginx.conf

fi

Build the correct bundle

CONFIG_FILE="webpack.${ENV_LONG}.config.js"

NODE_ENV="production" webpack -p --config "${CONFIG_FILE}"

##

Generic & re-usable

##

Create tag from VCS and environment information

COMMIT_SHA1=`git rev-parse --verify --short HEAD`

export IMAGE_TAG="${ENV}-${COMMIT_SHA1}"

export IMAGE_FULL_TAG="{$ORG}/${PROJECT}:${IMAGE_TAG}"

Build the docker image

docker build -t "${IMAGE_FULL_TAG}" .

Place correct tag in deployment declaration

sed -i -e "s/latest/${IMAGE_TAG}/g" Dockerrun.aws.json

Figure 16. Contents of build_artifact.sh script to create the release artifact of the Javascript
application

3.2.2 The RESTful web service written in PHP

The process for release artifact creation process aside from the Dockerfile remains

mostly the same. No major changes will be introduced to the deployment infrastructure

either compared to the one used within the local development environment.

The release image is based on the HHVM Dockerfile used in the development

environment with minimal changes. Differences between the Dockerfiles are listed in

Figure 17. Rather than mounting the source code from the container host, the image

now contains the application source code. Dependencies will only be installed within

the container during the artifact build and as such the dependecy installation step in the

pre-build step is removed. Doing everything in the image being built means that no

application specific changes need to be applied to build_artifact.sh.

Environment specific configuration will be applied by using environment variables.

Using Docker to manage these is rather trivial as demonstrated in the previous chapter.

During the pre-deployment step configuration values will be injected into the

deployment description file called Dockerrun.aws.json replacing placeholders. Figure

18 presents the contents of the variable replacement script. Adding additional

configuration parameters requires them to be listed in the presented script.

30

13a14

> COPY ./app /var/www/app

15d15

< VOLUME /var/www/app

16a17

> RUN composer install --prefer-source –optimize-autoloader

Figure 17. Diff of the changes made to the HHVM Dockerfile used in the dev. environment

Producing the release artifact for the PHP web service required more complex

modifications to be applied to the deployment description file due to configuration

requirements. Overall, the Dockerfile describing the release artifact required minimal

modification from the one used within local development environments.

3.2.3 The RESTful web service written in Go

Size of the resulting release artifact must be taken into consideration, when developing

the build process. The image containing the Go toolset is measured in the hundreds of

megabytes and as such it is necessary to produce the service binary beforehand. Image

size can be further lowered by removing the need for OS libraries by producing a

statically linked binary (Appendix 4 – Producing statically linked binaries with Go).

Figure 19 presents the minimal Dockerfile to be used with the statically linked binary.

31

#!/bin/bash

Environment specific variables

VARIABLES="APP_DEBUG APP_ENV APP_KEY DB_USER DB_PASS MEMCACHED_HOST"

VARIABLES="$VARIABLES DB_HOST"

Set environment specific variables under generic name

for variable in $VARIABLES

do

TEMP_VARIABLE="${variable}_${ENV_UPPER}"

sed -i -e "s/{$variable}/${!TEMP_VARIABLE}/g" Dockerrun.aws.json

done

docker login -e $DOCKER_EMAIL -u $DOCKER_USERNAME -p $DOCKER_PASSWORD

docker push $IMAGE_FULL_TAG

Figure 18. Contents of the before_deploy.sh BASH script for the PHP application

FROM scratch

MAINTAINER Siim Kaspar Uustalu <siim@mooncascade.com>

ADD app /

ADD doc /doc

ENTRYPOINT ["/app"]

Figure 19. Contents of the Dockerfile for the image containing a static Go binary

Overall, rest of the build process remains the same in regards to the injection of

configuration settings in environment variables and making the image available for

deployment.

3.3 Testing the release artifact in a mock infrastructure

One of the requirements of establishing a dependable continuous delivery process is the

existence of a comprehensive test suite [5] . While unit testing helps verify that

individual pieces of an application work as intended, issues introduced by a

combination of components may be missed. More realistic functional tests performed

against an actual running instance may catch errors missed by other methods of testing.

Performing these tests requires that a realistic mock of the production infrastructure to

be created. For each test run, all services are provisioned similarly to a production

deployment and in the observed case a test suite utilizing Chakram is run against the

release artifact. Encountering any errors during the testing process cancels the in-

progress build.

The mock infrastructure used within the tests is provisioned with the Docker compose

orchestration tool in the same way as in development environments. Any third party

services utilized during these tests should be emulated if possible to ensure repeatability

of the tests. Services can be emulated by containerizing already existing emulation

software such as s3rver for S3 or a generic one such as WireMock. Additionally,

emulation enables control over service responses to produce and verify handling of edge

case scenarios. Although a problem may arise when communication with these services

occurs over secured protocols. For example, to test the web service written in Go, an

additional service which emulates Amazon S3 is provisioned. Communicating with this

emulated service requires that the protocol be changed to insecure HTTP or certificate

validation errors be ignored.

Services may not be ready to answer requests after starting the container. In order to

determine whether or not different infrastructure services have started accepting

connections and are in a state where the test can be started, netcat running in port

32

scanning mode is used in an ephemeral docker container connected to the appropriate

network.

Once the infrastructure is in a state to begin testing the system, the database schema is

created. Some of the tests may depend on specific data existing within the database

which can not be inserted by utilizing the application under test. Overcoming this

limitation introduces a requirement to access the database. Database schema creation is

handled in an incremental way with migrations, this means that temporary additional

migrations may be created to perform data insertion or other database manipulation

required to achieve test conditions. A new migration script is created from the test

specific SQL scripts and then made available to migration software.

A container is created from a image containing the Mocha test framework and Chakram

(Appendix 5 – Containerized Mocha test runner) and connected to the network

containing the service under test. Code for the tests is mounted to a volume on the

container. Figure 20 presents the command used to invoke the test runner container

during the testing process. Running the test suite produces a testing report detailing test

status. In addition any test failures will be indicated with the proper exit code.

Put together the implementation allows automation of functional tests on Docker images

before the distribution step. The established implementation can also be run in the

development environment to check for regressions introduced by locally made changes.

The actual testing method used can be swapped out with analogous methods.

Performing these automated tests provides the development team with a degree of

confidence that the application works as intended.

33

docker run \

--rm \

-v `pwd`/testing/suite:/tmp/testsuite \

--net test

mocha-test-runner \

/tmp/testsuite \

--ui bdd \

--recursive \

&& RETURN_VALUE=0

Figure 20. Invoking the Mocha framework test runner

4 Summary

Aim of the thesis was to investigate using containerization to create an automated

process for continuous delivery of release artifacts and provisioning of local

environments. Functional testing of release artifacts was also investigated as part of the

continuous delivery process. Solutions were provided for three common types of web

applications.

Provisioning the development environment was implemented using a combination of

Vagrant, Docker compose and provisioning shell scripts. Resulting provisioning process

is generic enough to apply to projects using the same technology stack. Following the

examples implemented within this thesis the work can be extended to other types of

applications.

Further, the creation of release artifacts was automated using a container based build

process. Although the implementation was done using Travis CI, the non vendor

specific configuration is applicable to all environments where Docker is available. Build

steps were implemented using containers to ensure reproducibility. Environment

specific configuration for the containers was implemented using environment variables

set by Docker.

Additionally a way to automatically test the release artifacts resulting from the build

process was implemented. The testing portion was implemented by using the Mocha

testing framework with Chakram. Replacing external services for testing purposes using

Docker was investigated and demonstrated with the example of Amazon S3.

Docker and its orchestration tools were found to be suitable for the purpose of

managing service infrastructure in small scale (development) deployments. Building the

automation implementation on top of Docker ensured compatability with production

deployments in every stage of the software development lifecycle.

34

References

[1] Beda, J., Containers At Scale — 2014 [WWW]
https://speakerdeck.com/jbeda/containers-at-scale (01.03.2016)

[2] Coggin, M., Craven, K., Fernandes J., Herrmann, L., Juengst, D., Melia, I., Puri,
S., Owens, K., Thirumalai, K., Yellumahanti, S., Linux Containers: Why They’re
in Your Future and What Has to Happen First — 2014 [WWW]
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-
virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
(28.02.2016)

[3] Customizing the Build — Travis CI documentation [WWW] https://docs.travis-
ci.com/user/customizing-the-build/ (09.05.2016)

[4] Devops.com, ClusterHQ, The current state of container usage: identifying and
eliminating barriers to adoption — 2015 [WWW]
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2015.pdf
(28.02.2016)

[5] Farley, D., Humble, J., Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation : Pearson Education, 2010.

[6] Turnbull, J., The Docker Book: Containerization is the new virtualization : James
Turnbull, 2014.

[7] Wiggins, A. (2012), Config — The Twelve-Factor App [WWW]
http://12factor.net/config (15.05.2016)

35

http://12factor.net/config
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/openstack-at-cisco/linux-containers-white-paper-cisco-red-hat.pdf
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2015.pdf
https://speakerdeck.com/jbeda/containers-at-scale
https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/

Appendix 1 – Containerized nginx in reverse proxy

configuration

Presented in Figure 21 is the nginx configuration file used within the containerized

nginx instance in the development VM.

36

daemon off;

http {

 log_format bodylog '$remote_addr - $remote_user [$time_local] '

 '"$request" $status $body_bytes_sent '

 '"$http_referer" "$http_user_agent" $request_time '

 '<"$request_body" >"';

 sendfile on;

 server {

 listen 8080;

 access_log /dev/stdout;

 error_log /dev/stdout;

 root /var/www/app/public;

 location / {

 try_files $uri $uri/ /index.php?$query_string;

 }

 location ~ \.(hh|php)$ {

 access_log /dev/stdout bodylog;

 fastcgi_keep_conn on;

 fastcgi_pass hhvm:9000;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;

 include fastcgi_params;

 }

}

}

Figure 21. nginx configured as a reverse proxy for PHP application

Appendix 2 – Github Flow based workflow

The workflow used within the projects discussed in the thesis are using the git version

control system. Due to multiple developers working on the project the Github Flow was

chosen as a base for the workflow due to its lightweight nature and focus on peer

review.

Similarly to the Github Flow, the master branch is used to represent the state of the

production system. Additional branches are added which represent different deployment

targets. In the projects discussed in the thesis, the master and develop branch were used

to represent the code deployed to production and staging environments. This flow

makes heavy use of pull requests and peer reviews, ensuring that everyone working on

the project has a view of the larger picture.

After receiving a new issue to work on within the internal issue tracking system, each

developer creates a new feature branch which will contain the work. After completing

the issue, a pull request is opened against the develop branch and reviewed by a peer.

This code review focuses on both ensuring the correct implementation of the issue at

hand and any code standards agreed upon within the team.

Once the code has passed review and is merged, a new release artifact is produced by

the CI platform and deployed to the staging environment for verifaction by QA and

project management. Once it has been tested within the staging environment and no

problems found the changes are deployed to production by opening up a pull request

against the master branch.

37

Appendix 3 – Containerized nginx serving static assets

Although the container only provides its assets over HTTP, a redirect has been added to

forward any user requesting the application over insecure HTTP to HTTPS according to

the X-Forwarded-Proto header appended by the user facing load balancer. Figure 22

presents the nginx configuration used.

38

daemon off;

worker_processes auto;

events {

worker_connections 4096;

}

user nginx;

http {

sendfile on;

server {

listen 8080;

if ($http_x_forwarded_proto = 'http') {

 return 301 https://replace_url_in_build$request_uri;

 }

include mime.types;

access_log /dev/stdout;

error_log /dev/stdout;

root /var/www/app;

index index.html;

location / {

try_files $uri /index.html;

}

}

}

Figure 22. nginx configuration to serve a static Single Page Javascript application

Appendix 4 – Producing statically linked binaries with Go

Creating truly statically linked binaries with Go may be achieved by either disabling

cgo or performing static linking against glibc. The former is unsuitable in this case as

disabling cgo loses the ability to interface with C code. Performing a static link against

against glibc may introduce issues with licensing.

Due to these issues, the statically linked binaries are compiled under Alpine Linux using

an alternative implementation of the libc called musl. An Alpine Linux based Go

Docker image distribution exists but requires customization due to our requirement to

perform a static link against musl libc. A custom Docker image is created for the

purpose based on the Dockerfile presented in Figure 23.

Mounting the source code to the image and setting the proper working directory will

result in a static binary being built on running the container. Figure 24 presents the

compiler invocation.

39

FROM golang:1.5.3-alpine

MAINTAINER Siim Kaspar Uustalu <siim@mooncascade.com>

RUN apk add --update gcc git musl-dev

Fetch dependencies with Go get and build binary passing linkerflags

CMD go get && go build -v -ldflags '-extldflags "-static"'

Figure 23. Contents of Dockerfile for Go language image

docker run --rm \

-v gopath/on/host:/gopath/in/container \

-w /gopath/in/container/application \

golang-builder

Figure 24. Running the container to produce a statically linked binary

Appendix 5 – Containerized Mocha test runner

Chakram, written in Node.js, is used to perform automated test queries and analyse the

results in order to perform functional testing of RESTful web services. In order to make

the build process more portable containerization is required. A minimal Node.js image

will be created containing both the Mocha test framework and Chakram. The test suite

will be made available to the runner by mounting to a Docker volume on the created

container. Figure 25 presents the contents of the Dockerfile for the Mocha testrunner

image.

40

FROM mhart/alpine-node:4.2.6

MAINTAINER Siim Kaspar Uustalu <siim@mooncascade.com>

RUN npm set progress=false \

&& npm install -g mocha chakram \

&& npm cache clean

ENV NODE_PATH /usr/lib/node_modules

VOLUME /tmp/testsuite

WORKDIR /tmp/testsuite

ENTRYPOINT ["mocha"]

CMD ["/tmp/testsuite"]

Figure 25. Contents of Dockerfile for containerized Mocha test runner

	1 Introduction 11
	2 Provisioning the development environment 13
	2.1 Containerizing the Javascript application 15
	2.2 Containerizing the RESTful web service written in PHP 17
	2.3 Containerizing the RESTful web service written in Go 21

	3 Continuous delivery of release artifacts 24
	3.1 Defining the build process 25
	3.2 Producing the release artifact 25
	3.3 Testing the release artifact in a mock infrastructure 32

	4 Summary 34
	References 35
	Appendix 1 – Containerized nginx in reverse proxy configuration 36
	Appendix 2 – Github Flow based workflow 37
	Appendix 3 – Containerized nginx serving static assets 38
	Appendix 4 – Producing statically linked binaries with Go 39
	Appendix 5 – Containerized Mocha test runner 40
	1 Introduction
	2 Provisioning the development environment
	2.1 Containerizing the Javascript application
	2.2 Containerizing the RESTful web service written in PHP
	2.3 Containerizing the RESTful web service written in Go

	3 Continuous delivery of release artifacts
	3.1 Defining the build process
	3.2 Producing the release artifact
	3.2.1 The Javascript application
	3.2.2 The RESTful web service written in PHP
	3.2.3 The RESTful web service written in Go

	3.3 Testing the release artifact in a mock infrastructure

	4 Summary
	References
	Appendix 1 – Containerized nginx in reverse proxy configuration
	Appendix 2 – Github Flow based workflow
	Appendix 3 – Containerized nginx serving static assets
	Appendix 4 – Producing statically linked binaries with Go
	Appendix 5 – Containerized Mocha test runner

