
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Syed Muhammad Jawad Hassan IVEM 144956

ENERGY ESTIMATION OF FPGA

ARCHITECTURES FOR A COMPRESSED

SENSING ENGINE

Master’s Thesis

Supervisor: Yannick Le Moullec

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Syed Muhammad Jawad Hassan IVEM 144956

FPGA-ARHITEKTUURIDEL

TIHETAJUMISE MOOTORI

ENERGIATARBE HINDAMINE

Magistritöö

Supervisor: Yannick Le Moullec

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis to all the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented or submitted for examination anywhere else.

Author: Syed Muhammad Jawad Hassan

21.05.2018

4

Abstract

Technological advancements in wireless sensor networks (WSN) have enabled and

increased the research interest in healthcare applications such as self-fitness, health

monitoring and many more. Amongst many such applications, this thesis takes it outset

in wireless heart-rate monitoring (HRM) and is mainly focused on estimating the energy

consumed by five architectures mapped onto a field programmable gate array (FPGA)

platform. The five architectures are full parallel, full parallel without pipeline, generic

semi-parallel, semi-parallel, and semi-parallel with clock enable.

After briefly elucidating the extraction of QRS from HRM using an existing system, the

thesis moves on to the compressed sensing (CS) engine used for minimizing the size of

the transmitted data. Using Altera TimeQuest timing analyzer tool, the aforementioned

CS engine architectures are studied comprehensively. The tool starts with performing the

timing analysis on the five architectures. In addition, the missing power values of two

architectures (semi-parallel with and without clock-enable) are also estimated using

Altera Power Analysis tool. Next, the energy consumption has been calculated for the

architectures using the estimated values of power and execution time. Finally, the energy

consumption of the five architectures has been compared at maximum and operating

frequencies.

Conclusively, it has been observed that none of the architectures is a definite ‘winner’

since not all design metrics (execution time, resources, power, and energy) can be

optimized simultaneously. Thus, the results illustrate that the five architectures offer

different trade-offs that could possibly fit to HRM applications with different

requirements in terms of the above design metrics.

This thesis is written in English and is 57 pages long, including 5 chapters, 22 figures,

and 5 tables.

5

Annotatsioon

FPGA-arhitektuuridel tihetajumise mootori energiatarbe

hindamine

Traadita andmesidevõrkude (WSN) tehnoloogilised edusammud on võimaldanud ja

suurendanud teadusuuringute huvi tervishoiu rakenduste vastu, nagu näiteks

enesetreeningute ja tervisekontrolliga seoses. Paljude selliste rakenduste hulgast on see

töö traadita juhtmevaba südame löögisageduse seirest (SLS) ja keskendub peamiselt viie

FPGA-l realiseeritud arhitektuuri osas tarbitud energia hindamisele. Viis arhitektuuri on

täisparalleelne, ilma konveierita, üldine poolparalleelne, poolparalleelne ja paralleelne

taktkella aktiveerimisega lahendused. Pärast lühikest selgitamist QRSi eraldamise osas

südame löögisageduse seirest olemasoleva süsteemiga liigub magistritöö edasi

kompresseeritud võendamise (KV) mootori juurde, mida kasutatakse edastatud andmete

suuruse minimeerimiseks. Kasutades Altera TimeQuest Ajastusanalüsaatorit, uuritakse

ülalmainitud KV mootori arhitektuure igakülgselt. See algab viie arhitektuuri ajalise

analüüsi teostamisega. Seejärel hinnatakse Altera jõudluse analüüsimise tööriistaga kahe

arhitektuuri osas puuduvaid võimsuse väärtusi (poolparalleelsed kellaajaga ja ilma

lahendused). Järgnevalt on energiatarvet arvutatud arhitektuuride jaoks, kasutades

eeldatavaid energiakulu- ja täitmisaja väärtusi. Lõpuks on viie arhitektuuri

energiatarbimist võrreldud maksimaalsel ja töösagedusel.

Kokkuvõtvalt on täheldatud, et ükski arhitektuur ei ole kindel võitja, kuna kõiki arenduse

mõõdikuid (täitmisaeg, ressursid, võimsus ja energia) ei saa üheaegselt optimeerida.

Seega näitavad tulemused, et viis arhitektuuri pakuvad erinevaid kompromisse, mis

võiksid sobida SLS-i rakendustega ning mis vastavad ülaltoodud arenduse mõõdikutele.

Antud töö on ingliskeelne ja on 57 lehekülge pikk, sisaldades 5 peatükki, 22 joonist ja 5

tabelit.

6

List of abbreviations and terms

BPM Beat per minute

CS Compressed sensing

EDA Electronic device automation

FPGA Field programmable gate array

FSMD Finite state machine

HR Heart rate

HRM Heart rate monitoring

HRV Heart rate variability

LE Logic element

LUT Look up table

RTL Register transfer logic

TUT Tallinn University of Technology

UUT Unit under test

VHDL Verilog hardware language

WSN Wireless sensor networks

WBAN Wireless body area networks

7

Table of contents

1 Introduction .. 11

1.1 Energy Constraints of WSNs .. 12

1.2 Context of this work ... 13

1.3 Problem Statement .. 14

2 Background .. 16

2.1 Electrocardiogram (ECG) ... 16

2.2 Cyclone IV FPGA .. 17

2.3 Existing Architecture .. 20

3 Method for Energy Estimation .. 25

3.1 Flowchart .. 25

3.2 TimeQuest Timing Analyzer Tool ... 26

3.2.1 Setup the Timing Netlist and Path ... 26

3.2.2 Read SDC File ... 26

3.2.3 Update Timing Netlist ... 27

3.2.4 Generate Timing Report .. 28

3.3 Test Bench .. 30

3.4 ModelSim ... 31

3.5 Power Estimation Analysis ... 32

3.6 Calculate Energy ... 33

4 Results .. 34

4.1 Further comparisons of the architectures .. 41

4.1.1 Comparative analysis of Energy with respect to Resources 42

4.1.2 Comparative analysis of Energy with respect to Execution Time 43

4.1.3 Comparative analysis of Energy with respect to Power 44

4.2 Comments on Comparison ... 44

5 Conclusion ... 46

5.1 Future work... 47

References .. 48

8

Appendix 1 ... 51

Appendix 2 ... 57

9

List of figures

Figure 1. The normal ECG waveform [18]. ... 16

Figure 2. Representation of the different wave durations in a normal ECG signal [15]. 17

Figure 3. Block diagram of Cyclone IV Board [Opal Kelly][21] 18

Figure 4. Packaging Ordering Information for Cyclone IV Device [23] 19

Figure 5. Total execution time over the function of N [15] ... 21

Figure 6. The concept of Finite State Machine with Data Path FSMD [13] 22

Figure 7. RTL implementation of the modified semi-parallel architecture [13]. 23

Figure 8. RTL implementation of full-parallel [13] ... 24

Figure 9. Flow Chart of the method used for energy estimation. 25

Figure 10. Addition of SDC file in Quartus setting. .. 27

Figure 11. Updating timing netlist .. 28

Figure 12. Clock summary report in TimeQuest Timing Analyzer tool. 29

Figure 13. Summary report for Fmax for the generic semi-parallel architecture. 29

Figure 14. Presentation of stages in architecture design (In red box) for full parallel

architecture. .. 30

Figure 15. Test bench ... 31

Figure 16. Simulation of full parallel architecture VHDL code waveform in ModelSim.

 .. 32

Figure 17.RTL implementation of full-parallel architecture .. 35

Figure 18. RTL implementation of full-parallel without pipeline. 36

Figure 19. (a) RTL implementation of generic semi-parallel architecture. (b) Input side

of Generic semi-parallel architecture. (c) Output side of Generic semi-parallel

architecture. .. 39

Figure 20. Comparison between resources and energy at maximum and operating

frequencies. ... 42

Figure 21. Comparison between total execution time and energy at maximum and

operating frequencies. ... 43

Figure 22. Comparison between power and energy at maximum and operating

frequencies .. 44

10

List of tables

Table 1. Cyclone IV E device features description [18]... 18

Table 2: Different functional units synthesis results [15]... 20

Table 3. Synthesis results for architectures. ... 37

Table 4. Power estimation for design architectures .. 41

Table 5. Energy estimation for design architecture .. 41

11

1 Introduction

The technological advancements over the past several years have pushed forward the

research in the new direction of creating cutting-edge applications. The intense use of

wireless networks and continuous miniaturization of electronic devices have enhanced

the advancement in wireless body area networks (WBAN) [1]. Development in heart rate

monitoring (HRM) has received increased interest over the past few years. Heart rate

monitoring has initiated a wide range of applications in numerous areas, e.g., it is being

used in emergency condition monitoring in hospitals, biomedical, self-fitness, health

monitoring for elderly peoples at home and many more [2]. A wireless sensor network

(WSN) is a system that collects the measured data from sensor, processes it if needed and

sends reports wirelessly to network. A WSN sensor node mainly consists of six

fundamental components. These are the sensing unit, processing unit, analog-to-digital

converter, power unit, communication unit (radio transceiver), and memory unit. In a

WBAN, such WSN nodes are used to compute the functional data from either external or

internal parameters of the human body. Examples of sensing include measuring one or

more physical parameters like monitoring heartbeat, body temperature or

electrocardiogram (ECG).

It is noted that research has especially focused on heart rate variability (HRV) due to

increasing demands in sport and self-fitness. HRV is evaluated by examining beat-to-beat

variations in standard R-R intervals [2],[3]. Mainly, cardiovascular diseases can be

analyzed in view of HRV that can be extracted from heart rate (HR) measurements [4].

Higher HRV has been directly related to the lower mortality rate (which is also influenced

by both age and sex). Hospitals and old homes are both feasible venues to use these types

of healthcare monitoring systems. Using sensors devices enables continuous monitoring

of a patient’s heart rate and providing real-time feedback data to the medical personnel,

which in turn improves the quality of measured data and gives positive point of no

surveillance by medical personnel all the time; they are only alarmed in case of instability

sensed in HR [5].

12

In the sports domain, HRMs are mostly deployed as a training tool to determine the

exertion in training spells and sports to gain the maximum benefit to minimize

overtraining. During exercise, the output power generated might be an immediate factor,

but HR is a more convenient way to measure and monitor it [4]. HRV study is a vital tool

to observe the heart ability to react to the regulatory impulse that influences its rhythm.

Through studies, it has been proven that during training exercises the trained individuals

have higher HRV which decreases gradually until specific intensities, and after that, it

stabilizes [6]. Therefore, HR sensing technology is deployed on professional’s athletes to

control their strength during exercise and workout.

For convenience, such HRM devices are typically and preferably powered by relative

small batteries. In consequence, one of the most significant challenges in their design is

sparing energy since it is one of the primary factors that influence the lifetime of the

whole system

The energy usage in a sensor node can be characterized in three major areas: sensing, data

communication and data processing [7]. As of today, the wireless communication part

(i.e., radio transceiver) is still considered as the most energy consuming element in a

sensor node; it is typically higher as compared to the energy needed to the processing of

the data. It has also been shown that security and privacy protection systems increase the

energy consumption [8],[9]; however, this aspect is not within the scope of this thesis.

1.1 Energy Constraints of WSNs

With the development of the wireless communication, energy resources come out as the

primary constraint in WSN. The energy usage in a sensor node can be characterize in

three significant areas: sensing, data communication and data processing [8],[10]. The

energy available to the sensor nodes is often limited due to the size of the battery, which

is the most significant contributor to sensor nodes in term of its weight and dimensions.

Although, there is a remarkable improvement in design architectures and data processing

significant increase is required in battery technology.

Subsequently, reduction of power consumption and a standard approach to reducing data

transmission is the main point of focus for WSN nodes [11],[12]. Therefore, for this

13

purpose, an extra smart layer should be used to accommodate intelligent processing with

data compression techniques[13],[14].

1.2 Context of this work

This work is part of a research activity conducted at Thomas Johann Seebeck Department

of Electronics at Tallinn University of Technology (TTU) and partly in collaboration with

Aalborg University (AAU).

Two students from AAU have done the initial work; they proposed an algorithm and

architectural designs for an FPGA-friendly compressed sampling engine for WSN-based

HRM [15]. Firstly, QRS detection on ECG signals and CS that allows a reduction of data

transmitted wirelessly have been studied. Secondly, different hardware architectures have

been explored with various parallelism levels for compressed sensing (CS). In their study,

two main functional blocks in WBAN node, i.e., QRS detection and compressed sensing

(CS), have been designed and simulated for Altera Cyclone III FPGA platform using

Quartus design tool. These functional blocks have been tested for various HR signals in

the MATLAB-based simulation model. Additionally, hardware architecture solutions for

CS engines have been developed at the register transfer level (RTL) to analyze and

present how parallelism affects execution time.

Then, in another project conducted by a student from TTU [16], an analysis has been

performed for the functional blocks developed in [15]. In [16] the focus was on FPGA

resource usage as well as corresponding estimation of power consumption on a Cyclone

IV FPGA platform. Synthesis results and power estimates have been presented and

compared for three different architectures. The results revealed that pipelining helps to

lower the power consumption but requires more resources with higher frequencies.

As mentioned earlier, energy plays a critical role when it comes to the lifetime of battery-

powered nodes. Although the results presented in [15] and [16] have very well defined

the development of the architectures and power estimates, the most important aspect, i.e.,

energy consumption, has not yet been undertaken.

Thus, the focus of this MSc thesis is on energy consumption and is expected to provide a

valuable contribution to the research activity on WBAN/HRM conducted in the

department.

14

1.3 Problem Statement

Expanding the lifetime of the sensors in the system by reducing their energy usage has

turned out to be one of the primary challenges in practical applications. In response to

this, over the last couple of years, there have been multiple efforts to limit power and

energy consumption of FPGAs through new algorithms and architectures.

Contrary to the two previous works that mostly focused on one aspect at a time, this MSc

thesis seeks to explore the trade-off between multiple performance metrics, as indicated

in what follows.

Research Statement: The purpose of the work is to explore the trade-off between

execution time, resource usage, power consumption, and most importantly energy

consumption among the five architectures proposed in [15]-[16]. Doing so can help

designers to understand the relations between the various performance metrics better and

make informed design decisions.

To deal with the above research statement, several goals and tasks have been defined as

listed below.

 Define and implement the overall flow required to obtain the performance metrics,

including:

o Understand the tool specification of TimeQuest timing analyzer.

o Exploit it to calculate the execution time at operating frequency (100

MHz) and maximum frequency (Fmax) for each of the five architectures

separately.

o Create test-benches in order to calculate the power at 100 MHz and Fmax

for the five architectures.

o Calculate energy at 100 MHz and Fmax for the five architectures.

 Explore the trade-off by comparing the performance metrics for the five

architectures.

15

The primary aim of this thesis consists of literature review, problem statement, the method

used in this thesis, analysis and output results, and conclusion with a suggestions for

future research.

The remainder of this thesis is organized as follows. Chapter 2 presents a literature review

of Electrocardiogram, Field Programmable Gate Arrays (FPGA) and existing

architecture. Chapter 3 presents the method used to estimate energy. In the end Chapter

4 presents, the results, and analysis of five architectures. The conclusion is presented in

Chapter 5 which summaries the central output theme of this thesis work and recommends

some suggestion for the future research work.

16

2 Background

This thesis work investigates the implementation of heart rate (HR) electrocardiogram

(ECG) signal processing on FPGA technology; thus, Section 2.1 presents the essence of

ECG. Section 2.2 describes the background information about the Intel (Altera) Cyclone

IV FPGA. Moreover, section 2.3 discusses the existing architectures used in this work.

2.1 Electrocardiogram (ECG)

ECG signals are used as an important tool for the detection and analysis of cardiovascular

irregularity. ECG is the signal report of deviation of bioelectric activity of the heart

concerning time known as heartbeats, which is calculated in beats per minute (bpm). ECG

is used most commonly to record signals for the patient monitoring and examination

procedure. The bioelectric activity (contraction and relaxation) of the heart is used to

record through the surface electrodes placed on the limbs or chest [17]. The fundamental

purpose of ECG is to gather information about the function, structure, and condition of

the heart. The anomaly of the ECG shape is called arrhythmia which is a common term

used for any cardiac signals that differ from regular (normal) ECG signal [18]. A normal

ECG signal is illustrated in Figure 1 [18].

Figure 1. The normal ECG waveform [18].

The pulse of the heart electrocardiogram signal is presented in Figure 1. The typical ECG

is described in terms of intervals that are P wave, QRS complex, T wave and U wave. T

and U waves consist of signals which contain the vital information about a characteristic

17

of disease affecting heart [19]. P-wave shows the occurrence of impulse due to

depolarization of left and right atria. PQ segment initiates a time of spreading impulse

from atria to ventricles while depolarization of ventricles marks the origination of QRS

complex [11]. Figure 2 illustrates the different waves duration in ECG signal.

Figure 2. Representation of the different wave durations in a normal ECG signal [15].

P-wave is a slow duration and low amplitude wave of the 60-80ms period and 0.1-0.2mV

amplitude [20]. Where the PR-Interval starts from the beginning of P-wave and ends on

the beginning of QRS complex, it has a duration of 120-200 ms.

2.2 Cyclone IV FPGA

During several years FPGAs have emerged as a fascinating alternative to microcontrollers

of commercial sensor nodes because of high processing capability for execution of signal

processing applications [11]. The additional latest features, such as increased number of

multipliers and adders in modern FPGA’s, have increased their performance regarding

latency and throughput of data. Moreover, intensification of technology not only

increased the system speed but as well as made the FPGA-based system more energy

efficient.

18

Figure 3. Block diagram of Cyclone IV Board [Opal Kelly][21]

The FPGA, Altera Cyclone IV E P4CE22F17C8L is selected for this thesis has the

specification described in Table 1; these values are taken from datasheet [21]. Moreover,

the diagram of an example board that uses the Cyclone IV is shown in Figure 3.

Table 1. Cyclone IV E device features description [18].

Resources

Logic

Elements

(LEs)

Embedded

memory(K

bits)

Embedded

18 x18

multipliers

General-

purpose

PLLs

Global

Clock

Networks

User I/O

Banks

Maximum

user I/O

EP4CE22 22,320 594 66 4 20 8 153

Fabrication of FPGA is designed in a bi-dimensional array with interconnected logical

blocks. The logical blocks that stores Boolean functions are composed of look-up tables

(LUTs) assembled over simple memories [22]. Cyclone IV devices fabric consists of

logical elements, embedded memory blocks, embedded multipliers and 4 input LUTs.

The cyclone models are classified according to quality control related to assembling

procedures, and it is signified by the characters in model number as shown in Figure 4.

19

Figure 4. Packaging Ordering Information for Cyclone IV Device [23]

 The Cyclone models first five characters indicates the family signature and variant,

member code, package code and type, and speed grade. In this thesis FPGA IV E is

considered with member code 22; which means 22,320 logic elements. F 17 Package code

and type are FBGA 256 pins, and speed grade C8 is used in model FPGA device. Each

of the FPGA devices has its own speed grades rating; it is essential to specify the speed

grades because it specifies the maximum frequency at which the given model can operate.

The figures which are essential to this study is the number of embedded multipliers and

adders used in the FPGA which is selected because as discussed in [11], multipliers might

be a limiting factor if the algorithm level design techniques are executed in parallel or

semi-parallel. Same critical selection applies to logical elements (LEs), as logical

elements are applied to the logic behind the multipliers. This importance of selection is

discussed in Section 4, where the results showed how much LEs are used in multipliers,

and their impact on the Power consumption and energy estimation for parallel and semi-

parallel architecture.

20

2.3 Existing Architecture

Based on the architecture design, RTL implementation makes it possible to describe the

design used in this thesis. Different types of architectures are proposed in the previous

study [15], the modified semi-parallel, semi-parallel, and full parallel architecture. In

high-level synthesis, it is complex and time-consuming task to employ both RR wave and

compressed sensing (CS) algorithms onto an RTL architecture [24]. This is because of

the non-restricted dimensions of sampling kernels M × N in the CS part, imposing that

M and N can be any integer values where M < N [15]. The M × N is matrix-vector

multiplication represented as H and a vector x of size N, which is illustrated in equation

(1) and equation (2)

𝑦 = 𝐻𝑥 (1)

[

𝑦1

𝑦2

⋮
𝑦𝑀

] = [

𝐻11𝑥1 + 𝐻12𝑥2 + … + 𝐻1𝑁𝑥𝑁

𝐻21𝑥1 + 𝐻22𝑥2 + … + 𝐻2𝑁𝑥𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐻𝑀1𝑥1 + 𝐻𝑀2𝑥2 + … + 𝐻𝑀𝑁𝑥𝑁

] (2)

Equation (1) shows the execution of all operation can be sequential and, the execution

time for hardware is dependent on numerous multiplication and addition in the algorithm

(as shown in Equation 2). Here in this study, we assumed fixed vector dimension where

the N is considered fixed which can reuse similar sampling kernel H for any signal vector

x.

In this Master’s thesis, Altera Cyclone IV is used; thus the synthesis results obtained in

[15] for a Cyclone III have been regenerated for the Cyclone IV using Altera Quartus.

The outcome information collected is shown in Table 2.

Table 2: Different functional units synthesis results [15]

Component Type Number of LE’s Fmax [MHz] Tmin [ns]

Adder 16 312.79 3.197

Multiplier (combinatorial) 188 85.37 11.714

Multiplier (embedded) 9 225.33 4.438

21

In the study [15], a plot is used to describe the various degree of parallelism of architecture

concerning total execution time in Figure. 5. Where execution time was estimated as a

function of N for both multipliers (combinatorial and embedded) illustrated in Table 2. It

is noted from Figure. 5 that semi-parallel presents linear growth in clock cycle as a

function of N, whereas logarithmic behavior can see for full-parallel. Ultimately, full

sequential scheme shows a non-linear increase. Therefore, it is noted that full-parallel

perspective is worthwhile to execute large number data in small time vice versa is in case

of semi-parallel and full sequential but beneficial to reduce usage of the hardware

resource.

Figure 5. Total execution time over the function of N [15]

FSMD method is used in [15], to describe the RTL implementation of full and modified

semi-parallel. Finite State Machine with Data Path (FSMD) is a composed of control path

and data path for the design, where Finite State Machine and processing part handle by

control path and data path respectively. The concept of FSMD supports the matrix 𝐻 ∈

𝑅2×4 and a vector𝑥 ∈ 𝑅4. The basic block diagram for FSMD is presented in Figure. 6

22

Figure 6. The concept of Finite State Machine with Data Path FSMD [13]

 A finite state machine with data path aid to remove the temporary results stored in the

register and reset the counter for input integer N and revise the output continually. On

account of modified semi-parallel architecture, the multiplication is carried out in parallel,

whereas addition is performed in every stage in control path. Here it is crucial to control

the clock to achieve reliable energy estimation consumption results. In case of full parallel

architecture, the multiplier and adders are both used more parallel and assign for each

operation in matrix-vector multiplication. In Figure 7, the modified semi-parallel

architecture illustrates multiplication in parallel and addition at every control stage. In

contrast to semi-parallel, in full parallel, the multiplication and addition both are executed

in parallel at every step (as shown in Figure 8). It can easily be concluded from the figures

that with the increase of columns in the matrix will increase the number of functional

units within rows of matrix-vector multiplication, where the Xi and Hji are the input

registers respectively reserving values in Ri, and final output results are stored in Yi.

23

Figure 7. RTL implementation of the modified semi-parallel architecture [13].

24

Figure 8. RTL implementation of full-parallel [13]

25

3 Method for Energy Estimation

The previous chapter has introduced the background of the starting point of this thesis

work. As discussed in the problem statement (see Section 1), the next step, as well as the

main aim of this thesis, is to evaluate and analyze the energy consumption of the main

blocks designed and simulated on Altera in [15].

This chapter presents the method which has been used to estimate and analyze the energy

consumption by using Altera tools for the current designs. The overall flow of the method

using Altera Quartus and ModelSim tools is summarized in Figure 9.

3.1 Flowchart

Figure 9. Flow Chart of the method used for energy estimation.

Post Synthesis
Simultaion

•Firstly, execution of design file simulated at register transfer level (RTL) in Quartus to
generate VHDL and SDF files which have synthesis description and delay data of the circuit.
As well as an additional script is generated to collect and save all signal information in post
synthesis simulation

Total Execution
Time [Texe]

•TimeQuest Timing Analyzer Tool is used to find timing constraint information of design.
Frequency maximum [Fmax] which is maximum frequency for each clock in design, was
generated from Fmax summary result. To find the total execution time [Texe] for the
architecture design, time period is calculated and multiplied by stages in RTL of architecture

ModelSim
Simulation

•After, the successful compilation of post synthesis, ModelSim automatically simulates the
VHDL,SDF and script file to generate VCD file which has information of signal toggling during
simulation.

Powe Analysis
Tool

•Quartus generates estimation reports of power consumption for architecture after
compiling and binding the data with models on FPGA.

Energy
Calculation

•Finally, the Energy was calculate by multiplying Power and Total execution time for each of
five architectures.

26

3.2 TimeQuest Timing Analyzer Tool

This section provides a brief introduction to TimeQuest Time Analyzer which

demonstrates how to set up timing constraints and attain timing information for a logic

circuit. Altera handbook tutorial guide describes that timing analysis computes the

process of analyzing delay in the logic circuit to determine the reliable circuit operational

conditions [25]. Calculating the longest path delay in a circuit and comparing these delays

with the clock period is the primary concern of the timing analyzer.

3.2.1 Setup the Timing Netlist and Path

In Quartus Prime software, after successful compilation of the design file [.QPF], we need

to define the timing analysis for our design. For performing timing analysis on any design,

TimeQuest analyzer requires a timing netlist that shows how different elements are

divided into cells, pins, and ports [26]. After generating a timing netlist, data of timing

netlist is used by TimeQuest analyzer to drive different design elements and timing

A fundamental principle of timing path is to connect two design nodes, i.e., an output of

one register to an input of another register. TimeQuest analyzer uses the following

analyzer paths:

o Edge paths are the connections between ports-to-pins and pins-to ports.

o Clock paths are the connections between the clock pin of a register device port or

internally generated clock pins.

o Data paths are a connection from a port output pin to input of another port pin or

data output pin of a sequential element to data input pin of another sequential

element.

o Asynchronous path is the connection established from a port or synchronous pins

of another sequential element, i.e. an asynchronous reset or asynchronous clear.

3.2.2 Read SDC File

The Synopsys Design Constraint (SDC) file contains the functions used to specify

constraints to the TimeQuest timing analyzer. It can also be edited manually by which the

timing analyzer re-compile the new timing constraints. In Category list of Quartus tool,

27

TimeQuest Timing Analyzer adds SDC file and run timing analysis by default before

running the custom script and set synchronizer identification to auto.

Figure 10. Addition of SDC file in Quartus setting.

3.2.3 Update Timing Netlist

Update Timing Netlist command then uses the timing constraints and reports about the

fail paths. It applies SDC file constraints to currently used timing netlist. The warnings

generated during compiling timing netlist report about the undefined clocks, partially

defined I/O delays and combinational loops. Finally, reports are generated after updating

timing netlist. A successfully executed sequence is illustrated in Figure 11.

28

Figure 11. Updating timing netlist

3.2.4 Generate Timing Report

Finally, a timing report is generated to verify the timing requirements and locate

violations which provide fully constrained design or ignored timing constraints.

TimeQuest GUI consists of report, task, results and console pane. After creating timing

report, the waveform explains the Latch clock, data arrival time and in results give the

clock and data delay with slack value. Slack value represents the dissimilarity between

the clock constraint and the path delay [27]. An example is shown in Figure 12.

29

Figure 12. Clock summary report in TimeQuest Timing Analyzer tool.

Here, with the help of this tool, Fmax is extracted, as shown in Figure 13. Then the period

of a clock cycle is calculated with the formula𝑇 =
1

𝑓
. The total execution time Texe is

calculated by multiplying the period of a clock cycle (T) with the total number of stages.

This number of stages can be found with the help of the RTL Viewer, as illustrated in

Figure 14 for one of the five architectures, i.e., full parallel architecture.

Figure 13. Summary report for Fmax for the generic semi-parallel architecture.

30

Figure 14. Presentation of stages in architecture design (In red box) for full parallel architecture.

3.3 Test Bench

The Altera test bench allows to develop and test design files in a very efficient and rapid

way. Test bench files are applied to the design files to test a set of input test signals. These

input test signals are generated and applied to the unit under test (UUT) within the test

bench [28]. This method allows test benches to create a process to perform self-checking

of the results. Finally, the test bench writes outputs to the ModelSim console window (see

Figure 15).

31

Figure 15. Test bench

3.4 ModelSim

ModelSim is a powerful simulator that can be used to simulate the behavior and

performance of logic circuits. The simulator allows the user to apply inputs to design

circuit, usually referred to as test vectors, and to observe the output generated in response.

ModelSim performs simulation in the context of the projects, i.e., it simulates one project

at a time. The project includes the design files that specify the circuit to be generated

simulation files for supporting the EDA simulator during compilation of design [29]. Here

the Testbench (.VHD) file has to be linked through EDA Tool settings in Quartus Prime

software. After successful compilation of the design project, the simulation process

generates and launches in ModelSim from within Quartus Prime software. Subsequently,

the script file of ModelSim (.do) file is generated, and Quartus Prime software launches

ModelSim; then the Testbench (.VHD) file is simulated according to defined

specifications in Simulation settings.

The wave window shown in Figure 16 illustrates the results of the simulation.

32

Figure 16. Simulation of full parallel architecture VHDL code waveform in ModelSim.

3.5 Power Estimation Analysis

In this thesis, the five different architectures RTL versions have been synthesized in

Altera Quartus software and tested through simulation in ModelSim. The power values

have been calculated at 100 MHz (for ‘normalized’ comparison purpose) as well as at

Fmax (for maximum performance evaluation)

The following actions were taken to perform the power estimation.

 Each design has been simulated at RTL level with the test bench in order to verify

that the functionality of the design was the same as expected.

 In Quartus software, each design has been synthesized which generates annotated

VHDL and SDF files that have circuit delays information and generates a script

which saves all signals in post-synthesis simulation.

 Then, ModelSim has been configured and used to automatically simulate each

design and generate Value Change Dump (VCD) file that stores data of all signal

toggled during simulation [30].

33

 Quartus has then be used to process the VCD file. Finally, Quartus has generated

estimation reports of power consumption for each architecture after compiling the

data and binding it with the FPGA models.

3.6 Calculate Energy

Energy consumption [joules] can be calculated as the product of power and total

execution time, i.e., E = P x Texe. The importance of energy consumption reduction in

HR monitoring architecture is due to the battery (i.e., energy-limited) driven transmission

at each sensor node. Energy has been calculated at 100 MHz and Fmax for each of the five

architectures on the basis of the results obtained in the previous steps. The results are

presented in Chapter 4.

Decreasing the energy consumption increases the lifetime of the nodes. However, it is

noted that there is a trade-off between energy, power, and execution time. Reducing

power benefits in reduction of heat dissipation. This can be achieved by lowering the

clock frequency or reducing the level of parallelism, but these approaches result in

increased execution time, which in turn may increase energy. The trade-off between these

metrics, as well as with the resource usage metrics are discussed in Conclusion.

34

4 Results

This chapter presents the high-level synthesis, power estimates, and energy estimates

results of five architectures analyzed using Altera Quartus Prime 15.1 Lite Edition. The

energy is estimated over the following five parallelism strategies of architectures:

 Full parallel

 Full parallel without pipeline

 Generic semi-parallel

 Semi-parallel

 Semi-parallel with clock enable.

RTL implementations of these architectures are investigated using Altera Quartus IV for

VHDL code synthesis and tested by simulating on ModelSim 10.4b. Table 2 shows the

results obtained by synthesizing the VHDL code for the specifications and requirements

of different architectures. The objective of this thesis is to evaluate the performance

regarding timing analysis, power estimation, and most importantly energy consumption

of above architectures. The results are summarized in Table 3 and Table 4. For illustration

purpose, the RTL implementations of full parallel with and without pipeline are shown in

Figure 15 and Figure 16, respectively.

35

Figure 17.RTL implementation of full-parallel architecture

36

Figure 18. RTL implementation of full-parallel without pipeline.

37

Table 3. Synthesis results for architectures.

Architecture
Full

Parallel

Full Parallel

without

Pipeline

Generic Semi

Parallel

Semi_Paralle

l

Semi

Parallel_cl

k

Top-level

Entity Name
para_4_2

Para_4_2_wo_p

ipe

Mult_Add_example_

1
seq_8

Seq_8_clke

n

Family
Cyclone

IV E
Cyclone IV E Cyclone IV E Cyclone IV E

Cyclone IV

E

Total Logic

elements
100 96 384 101 103

Total

combinationa

l functions

98 96 384 98 98

Dedicated

logic

registers

100 32 384 101 101

Total

registers
100 32 384 101 101

Total I/O

pins
130 129 92 129 180

Embedded

multipliers 9-

bit elements

8 8 25 8 8

CS Stage

Level
4 1 25 4 5

Fmax clk

frequency

[MHz]

298.15 116.9 234.8 230.68 326.69

Time(Exe)

(ns) @Fmax

13.2

(4 Stages)

8.55

(1 Stage)

106.47

(25 Stages)

17.34

(4 Stages)

15.305

(5 Stages)

Operating

Frequency

[MHz]

100 100 100 100 100

Operating

Time(Exe)

(nS)

40 10 250 40 50

The number of total logic elements in all architectures is relatively similar except the

generic semi-parallel architecture that consists of 384 logic elements [16]. This is because

the generic semi-parallel architecture requires more functional block to process data, as

shown in Figure 19.

38

(a)

39

(b)

(c)

Figure 19. (a) RTL implementation of generic semi-parallel architecture. (b) Input side of Generic semi-

parallel architecture. (c) Output side of Generic semi-parallel architecture.

It is observed that the numbers of total logic elements and combinational functions are

relatively similar for full parallel with and without pipeline, and semi-parallel with and

without clock architecture due to least variation in their design structure. Given the

internal sequential design of generic semi-parallel architecture, the number of embedded

multipliers is higher for the generic semi-parallel architecture (i.e., 25) compared to the

other remaining architectures (i.e., 8). Given that the full parallel architecture with

pipeline decomposes the large combinational blocks into small blocks, it can reach a

higher maximum frequency (Fmax) of 298.15 MHz in comparison to the 116.9 MHz of

full parallel without pipeline, as shown in Table 3.

40

Based on the total execution time Texe calculated at Fmax, and operating frequency for each

architecture, the full parallel without pipeline comparatively achieves the best execution

times of 8.55 ns and 10 ns at Fmax (116.9 MHz) and operating frequency (100 MHz),

respectively. Since the generic semi-parallel architecture consists of 25 stages of

combinational function blocks, it results in the highest execution time of 106.47 ns and

250 ns at Fmax (234.8 MHz) and operating frequency (100 MHz), respectively.

Looking closer to the frequency and total execution time for each architecture, it can be

seen that the total execution time and the throughput do not always increase or descrease

with each other. Indeed, the execution time corresponds to how long it takes for a given

input data to traverse the design (i.e., its processing time), whereas the throughput

corresponds to how many many input and output samples enter and exit the design per

time unit. For pipelined architectures, the number of required clock cycles to process one

data increases with the number of stages; however, this not only allows increasing the

frequency (since each stage is shorter), but also allows starting processing the next

incoming data before the previous one has exited the pipeline, thereby enabling a form of

parallelism that increases throughput.

Typically, the frequency is limited by the slowest block in the pipeline. When the number

of the pipeline stages increases, the frequency can also be increased (since each stage

becomes shorter) as can be seen from Table 3. For instance, the frequency of the full

parallel architecture with pipeline (consisting of 4 stages) is 298.15 MHz, which is

comparatively higher in comparison to 116.9 MHz for the architecture without pipeline

consisting of 1 stage only.

However, the total execution time for input one data is higher with 13.2 ns instead of 8.55

ns. This fact makes it clear understanding that pipeling increases the throughput, i.e., the

number of samples processed per unit time, but as shown in this case it can be that the

latency, i.e., the delay is increased. Choosing between the pipelined and non- pipelined

version is a trade-off. If the application requires higher throughput, then the pipelined

version is the best option and vice versa if the application requires low latency.

Table 4 shows that the power result is best (i.e., lowest) for the generic semi-parallel

architecture using the balanced optimization mode at operating and maximum frequency.

41

Despite using higher resources, the architecture design and execution of data concludes

in lower power consumption among the architectures.

Table 4. Power estimation for design architectures

 Architectures

Full

parallel

Full-Parallel

w/o Pipeline

Generic

Semi Parallel

Semi

parallel

Semi-Parallel

clken

Optimization Mode Balanced Balanced Balanced Balanced Balanced

Total Thermal Power

Dissipation

@100 MHz

85.97 mW 83.31 mW 69.98 mW 85.43mW 92.24mW

Total Thermal Power

Dissipation @ Fmax

74.74mW 101.66 mW 70.9mW 95.27mW 84.79mW

The results for energy estimation is showed in Table 5. The energy at operating frequency

100MHz is used to compare the efficiency of the architectures. The estimated energy at

the maximum frequency is referred to as the maximum performance of the architecture.

Table 5. Energy estimation for design architecture

Architectures

Full parallel
Full-Parallel

w/o Pipeline

Generic Semi

Parallel
Semi parallel

Semi-Parallel

clken

Optimization

Mode
Balanced Balanced Balanced Balanced Balanced

Energy@100 MHz 3.438nJ 0.833 nJ 17.495 nJ 3.417 nJ 0.461 nJ

Energy @Fmax 0.986nJ 0.869nJ 0.751nJ 1.654nJ 1.297nJ

4.1 Further comparisons of the architectures

The primary focus of this thesis is to estimate the energy. However, there are also other

critical design metrics such as a number of resource usage, total execution time and

power, which have been examined in this thesis. These factors complicate the comparison

for energy estimation. Although comparison of energy itself is relatively straightforward,

it is harder when considering the whole system parameters because maybe the most

energy economical architecture might have the highest resource usage or even higher

power consumption (an issue for heat dissipation) with higher execution time

42

Thus, in what follows, we compare the five architectures taking into account more than

one metric, not only energy. The comparison gets more complicated because now we

examine the design in multiple dimensions (Energy, Power, Time and Resources).

4.1.1 Comparative analysis of Energy with respect to Resources

Figure 19 illustrates the comparative analysis of architectures regarding resources and

energy at operating and maximum frequencies. The comparison reveals that the full

parallel without pipeline shows the lowest resources with energy efficiency, and the

generic semi-parallel depicted more energy-hungry architecture with higher resource

usage. In full parallel without pipeline, the total number of registers is lower than with

the pipeline. It means that the pipeline uses more resources to execute data in parallel (a

new data can start being processed before the previous one has exited the pipeline),

instead of data to execute without pipeline. If for instance, the requirement of the system

is focused on resource usage [LUTs], the designer can choose among the best

architectures regarding resource usage.

Figure 20. Comparison between resources and energy at maximum and operating frequencies.

43

4.1.2 Comparative analysis of Energy with respect to Execution Time

The comparison regarding energy and execution time for operating and maximum

frequencies is shown in Figure 20. Note that the total execution time is divided by 100 to

fit in the values in graph illustration. The graph indicates that if we choose energy

estimation concerning total execution time at operating and maximum frequency, then

full parallel is faster among five architectures. The results for generic semi-parallel shows

the slower performance with more energy consumption. This fact can be explained by the

organization of the architecture design on which generic semi-parallel is modeled. It is

perhaps an unfortunate trade-off since it uses more functional blocks to execute the data

while execution is rather slow and with reasonably high energy consumption. In the semi-

parallel and semi-parallel with clock enable architectures, the numbers for execution

times are nearly alike, but energy values shows different results. Semi-parallel

architectures show higher energy consumption on both operating and maximum

frequencies.

Figure 21. Comparison between total execution time and energy at maximum and operating frequencies.

44

4.1.3 Comparative analysis of Energy with respect to Power

The plot shown in Figure 22 is a comparative analysis in terms of the energy and power

for operating and maximum frequencies. The graph indicates that if we choose energy

estimation against power consumption values, then the generic semi-parallel architecture

shows the best results at Fmax. At the same time, power numbers remain similar at

operating frequency, but energy value changes dramatically. This is due to the total

execution time that the generic semi-parallel design takes to process the data. Full parallel

and semi-parallel architectures show similar values for power consumption (at 100 MHz

and Fmax), but energy consumption decreases significantly. Full parallel without pipeline

shows equal number for energy (at 100 MHz and Fmax), but power consumption increases

at Fmax because of the higher frequency.

Figure 22. Comparison between power and energy at maximum and operating frequencies

4.2 Comments on Comparison

Finally, in light of the comparisons mentioned above, the system designer has to make a

trade-off between resources, execution time, power and energy consumption since none

of the architecture is a definite ‘winner’ when all design metrics are considered

simultaneously

The full parallel without pipeline architecture demands less resource usage, with twice

less total execution time than full parallel architecture. Energy estimated for both systems

are nearly equal.

45

Based on the results, the generic semi-parallel architecture gives the lowest energy

consumption values at a maximum frequency; but accompanying this are higher resources

and execution time.

46

5 Conclusion

The title of the thesis is “Energy Estimation of FPGA Architectures for a Compressed

Sensing Engine” with the research statement as below:

To explore the trade-off between execution time, resource usage, power consumption, and

most importantly energy consumption among the five architectures proposed in the

previous studies [15]-[16].

In this thesis, several tasks have been performed to address the aforementioned research

statement. To support this statement firstly, the existing system for WSN has been

analyzed. A brief explanation about the extraction of QRS from HRM and how CS can

be executed to minimize transmitting data was given. Then the existing architectures for

the CS engine were studied in detail to investigate the timing analysis for parallelism

within designed architectures via Altera TimeQuest timing analyzer tool. Besides power

estimation methods illustrated in [16], this thesis has provided the missing power values

calculated for other architectures in Altera power analysis tool. With the values gathered

from power and execution time, energy has been calculated for the five architectures.

Finally, the energy estimation results have been presented and discussed for maximum

and operating frequencies.

Based on the results presented in this thesis, the following findings can be drawn:

 The full parallel architecture with pipeline results in higher maximum frequency

without affecting the power and energy consumption at an increased number of

registers (LUTs).

 Lowest energy consumption has been observed for the generic semi-parallel

architecture at Fmax. However, the architecture has high resource usage and is

slowest among other architectures.

 Full parallel without pipeline architectures shows the best results regarding

resource usage, execution time and energy.

It is somewhat difficult to state a clear winner for the CS engine when all parameters are

considered. However, one striking conclusion that can be drawn is that the best solution

47

for energy estimation is in correlation with architectural frequencies. It implies that the

generic semi-parallel architecture is found as the best solution at Fmax, whereas the full

parallel architecture without pipeline shows the best results at operating frequency of 100

MHz. Therefore, designers can select a similar architecture based on the requirement of

the system.

Given that the energy results have been obtained, and that they have been compared for

the five architectures, including in relation to the other design metrics, it can be said that

the research statement has been successfully considered in this thesis.

5.1 Future work

This subsection briefly presents some ideas for future work that could extend this thesis.

Firstly, other target architectural platforms could be considered for estimating the

performance regarding execution time, power, and energy consumption. For example, the

CS algorithm used in this thesis could be implemented onto other low power FPGAs,

DSP processors, or possibly modern embedded GPP featuring some parallelism (e.g.,

multicore and multithreading).

Secondly, one other possible natural continuation of this work could be to include and

evaluate the feasibility to use energy harvesting. This would open new questions such as

how to evaluate whether the harvested energy can provide sufficient power for such

sensor nodes depending on whether energy harvesting is used to complement or even

replace the battery. In the latter case, approaches such as transient computing

(implemented on a non-volatile device such as a FRAM-based microcontroller or flash-

based FPGA) could provide a suitable mechanism to minimize the impact of power losses

when not enough energy is harvested.

48

References

[1] P. Demeester, ‘A Survey on Wireless Body Area Networks’, pp. 1–18.

[2] J. Achten and A. E. Jeukendrup, ‘Heart Rate Monitoring Applications and

Limitations’, vol. 33, no. 7, pp. 517–538, 2003.

[3] C. Otto and a Milenkovic, ‘System architecture of a wireless body area sensor

network for ubiquitous health monitoring’, J. Mob. …, vol. 1, no. 4, pp. 307–326,

2006.

[4] I. P. Panidis and J. Morganroth, ‘Sudden Death in Hospitalized Patients : Cardiac

Rhythm Disturbances Detected by Ambulatory Electrocardiographic

Monitoring’, J. Am. Coll. Cardiol., vol. 2, no. 5, pp. 798–805, 1983.

[5] R. Kaur, ‘Wireless Body Area Network & ITS APPLICATION’, Res. Cell An

Int. J. Eng. Sci., vol. 1, pp. 2229–6913, 2011.

[6] K. C. Chua, V. Chandran, U. R. Acharya, and C. M. Lim, ‘Cardiac state

diagnosis using higher order spectra of heart rate variability’, vol. 32, no. 2, pp.

145–155, 2008.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘A survey on

sensor networks’, IEEE Commun. Mag., vol. 40, no. 8, pp. 102–105, 2002.

[8] N. Yenuganti, ‘Authentication in Wireless Body Area Networks (WBAN)’, no.

June, 2016.

[9] I. S. T. He and W. M. Esh, ‘a Ccepted From O Pen C All’, Ieee Wirel. Commun.,

no. February, pp. 104–111, 2010.

[10] E. Farella, A. Pieracci, L. Benini, L. Rocchi, and A. Acquaviva, ‘Interfacing

human and computer with wireless body area sensor networks: The WiMoCA

solution’, Multimed. Tools Appl., vol. 38, no. 3, pp. 337–363, 2008.

[11] S. Choi, R. Scrofano, V. K. Prasanna, and J.-W. Jang, ‘Energy-efficient signal

processing using FPGAs’, Proc. 2003 ACM/SIGDA Elev. Int. Symp. F. Program.

gate arrays - FPGA ’03, pp. 225–234, 2003.

49

[12] R. Joaquinito and H. Sarmento, ‘A wireless biosignal measurement system using

a SoC FPGA and Bluetooth Low Energy’, IEEE Int. Conf. Consum. Electron. -

Berlin, ICCE-Berlin, vol. 2016–Octob, pp. 36–40, 2016.

[13] E. Systems and P. D. Atienza, ‘A Real-Time Compressed Sensing-Based

Personal Electrocardiogram Monitoring System’, p. 2.

[14] E. J. Candes and M. B. Wakin, ‘An Introduction To Compressive Sampling’,

IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[15] M.El-Sayed and Soeren, ‘An FPGA-friendly Compressed Sampling Engine for

WSN-based Heart Rate Monitoring', Report, Aalborg University, 2015.

[16] E. Iee, L. T. Arbind, K. Rimal, and T. Supervisor, ‘POWER ESTIMATION OF

FPGA HEART-RATE MONITORING SYSTEM’, 2016.

[17] C. K. S. Kumar, ‘FPGA Implementation for Energy Efficiency in Secure

Wireless Sensor Node – A Critical Review Abstract : Research Article February’,

no. February, pp. 46–51, 2013.

[18] M. K. Das, ‘Electrocardiogram signal analysis for heartbeat pattern

classification’, 2015.

[19] U. Rajendra Acharya, J. S. Suri, J. A. E. Spaan, and S. M. Krishnan, Advances in

cardiac signal processing. 2007.

[20] R. M. Rangayyan, Biomedical Signal Analysis. 2001.

[21] Opalkelly, ‘ZEM4310’, https://www.opalkelly.com/products/zem4310/, 2018.

[22] I. Kuon, R. Tessier, and J. Rose, ‘FPGA Architecture: Survey and Challenges’,

Found. Trends® Electron. Des. Autom., vol. 2, no. 2, pp. 135–253, 2007.

[23] Altera, ‘Cyclone IV Device Handbook’, vol. 1, p. 382, 2010.

[24] O. Faust, U. R. Acharya, J. Ma, L. C. Min, and T. Tamura, ‘Compressed

sampling for heart rate monitoring’, Comput. Methods Programs Biomed., vol.

108, no. 3, pp. 1191–1198, 2012.

50

[25] T. T. Analyzer, A. Quartus, I. I. Cad, Q. Ii, U. Timequest, S. Up, and T.

Constraints, ‘Using TimeQuest Timing Analyzer’, Program, no. May, pp. 1–12,

2011.

[26] A. Corporation, ‘Timing Analysis Overview’, 2014.

[27] S. Feedback and S. Jose, ‘Quartus Prime Standard Edition Handbook Volume 3:

Verification’, vol. 3, 2016.

[28] I. Quartus and P. Standard, ‘Simulation Quick-Start for ModelSim * - Intel ®

FPGA Edition’, 2017.

[29] Y. S. Kung, J. M. Lin, Y. J. Chen, and H. H. Chou, ‘ModelSim/Simulink

Cosimulation and FPGA Realization of a Multiaxis Motion Controller’, Math.

Probl. Eng., vol. 2015, 2015.

[30] A. Corporation, ‘PowerPlay Early Power Estimator User Guide Subscribe Send

Feedback’, 2015.

51

Appendix 1

This appendix contains the VHDL code of test bench used to simulate the full parallel

architecture which is presented in Chapter 4.

------------------- Test-Bench VHDL code for full_para_N2_M4 at Fmax---------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use std.textio.all; --to read from and write to files

entity TB_para_N4_M2 is

--Testbench, thus no ports

end entity TB_para_N4_M2;

architecture MyTB of TB_para_N4_M2 is

component para_4_2 is

generic (

M: integer := 2; -- 2^M Number of And's

b_m: integer := 8

);

port (

clk: in STD_LOGIC;

reset: in std_logic := '0';

X: in STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) :=

"00000010000000100000001000000010";

H: in STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) :=

"0000001000000010000000100000001000000100000001000000010000000100";

Y1: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

Y2: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0)

);

end component para_4_2;

52

constant M: integer := 2; -- 2^M Number of And's

constant b_m: integer := 8;

signal TB_clk : std_logic := '0';

signal TB_reset : std_logic := '0';

signal TB_X : STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) :=

"00000010000000100000001000000010";

signal TB_H: STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) :=

"0000001000000010000000100000001000000100000001000000010000000100";

signal TB_Y1: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_Y2: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_reset_done : std_logic := '0';

-- Change this to control the clock frequency !!!

constant clk_period : time := 3.35 ns; -- 298.15 MHZ, as in .sdc file

begin

uut: para_4_2 PORT MAP (

--M => TB_M,

--b_m => TB_b_m,

clk => TB_clk,

reset => TB_reset,

X => TB_X,

H => TB_H,

Y1 => TB_Y1,

Y2 => TB_Y2

);

-- Reset process

TB_para_N4_M2_GEN_RESET: process (TB_clk) is

begin

-- Change this to control reset duration

if (TB_reset_done = '0') then

TB_reset <= '1', '0' after 10 ns;

end if;

TB_reset_done <= '1'; --not clean style

end process TB_para_N4_M2_GEN_RESET;

-- Clock process definitions(clock with 50% duty cycle)

53

TB_para_N4_M2_CLK: process

begin

TB_clk <= '0';

wait for clk_period/2;

TB_clk <= '1';

wait for clk_period/2;

end process TB_para_N4_M2_CLK;

-- Stimuli process

TB_para_N4_M2_GEN_STIMULI: process (TB_clk)

file infile : text is in "C:\Users\syedjawad\Documents\thesis

work\3.VHDLcode\full_para_N4_M2\ECG.txt"; --declare input file --path needed?

variable inline : line; --line number declaration

variable dataread : integer;

begin

if (TB_clk = '1' and TB_clk'event and TB_reset_done = '1') then

if (not endfile(infile)) then --checking the "END OF FILE" is not reached.

readline(infile, inline); --reading a line from the file.

read(inline, dataread); --reading the data from the line and putting it in an integer type

variable.

TB_X <= std_logic_vector(to_unsigned(dataread, 32));

end if;

end if;

end process TB_para_N4_M2_GEN_STIMULI;

end architecture MyTB;

54

--------------Test-Bench VHDL code for semi_para_N4_M2_w_clken at Fmax -------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use std.textio.all; --to read from and write to files

entity TB_semi_para_N4_M2_w_clken is

--Testbench, thus no ports

end entity TB_semi_para_N4_M2_w_clken;

architecture MyTB of TB_semi_para_N4_M2_w_clken is

component seq_8_clken is

 generic (

 N: integer := 4; -- 2^M Number of And's

 b_m: integer := 8

);

 port (

 clk: in STD_LOGIC;

 reset: in std_logic := '0';

 X: in STD_LOGIC_VECTOR(b_m*N-1 downto 0) :=

"00000010000000100000001000000010"; -- Vector Input

 H: in STD_LOGIC_VECTOR(b_m*N*2-1 downto 0) :=

"0000000100000010000000110000010000000010000000100000001000000010";

 -- Matrix Input

 Y1: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

 Y2: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0)

);

end component seq_8_clken;

constant N: integer := 4; -- 2^M Number of And's

constant b_m: integer := 8;

signal TB_clk : std_logic := '0';

signal TB_reset : std_logic := '0';

55

signal TB_X : STD_LOGIC_VECTOR(b_m*N-1 downto 0) :=

"00000010000000100000001000000010"; -- Vector Input

signal TB_H: STD_LOGIC_VECTOR(b_m*N*2-1 downto 0) :=

"0000000100000010000000110000010000000010000000100000001000000010";

 -- Matrix Input

signal TB_Y1: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_Y2: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_reset_done : std_logic := '0';

-- Change this to control the clock frequency !!!

constant clk_period : time := 3.061 ns; --326.69 MHZ, as in .sdc file

begin

 uut: seq_8_clken PORT MAP (

 --M => TB_M,

 --b_m => TB_b_m,

 clk => TB_clk,

 reset => TB_reset,

 X => TB_X,

 H => TB_H,

 Y1 => TB_Y1,

 Y2 => TB_Y2

);

-- Reset process

 TB_semi_para_N4_M2_w_clken_GEN_RESET: process (TB_clk) is

 begin

 -- Change this to control reset duration

 if (TB_reset_done = '0') then

 TB_reset <= '1', '0' after 3.061 ns;

 end if;

 TB_reset_done <= '1'; --not clean style

 end process TB_semi_para_N4_M2_w_clken_GEN_RESET;

-- Clock process definitions(clock with 50% duty cycle)

 TB_semi_para_N4_M2_w_clken_CLK: process

 begin

 TB_clk <= '0';

56

 wait for clk_period/2;

 TB_clk <= '1';

 wait for clk_period/2;

 end process TB_semi_para_N4_M2_w_clken_CLK;

-- Stimuli process

 TB_semi_para_N4_M2_w_clken_GEN_STIMULI: process (TB_clk)

 file infile : text is in "C:\Users\syedjawad\Documents\thesis

work\3.VHDLcode\semi_para_N4_M2_w_clken\ECG.txt"; --declare input file --path

needed?

 variable inline : line; --line number declaration

 variable dataread : integer;

 begin

 if (TB_clk = '1' and TB_clk'event and TB_reset_done = '1') then

if (not endfile(infile))

then --checking the "END OF FILE" is not reached.

readline(infile, inline); --reading a line from the file.

read(inline, dataread); --reading the data from the line and putting it in an integer type

variable.

TB_X <= std_logic_vector(to_unsigned(dataread, 32));

end if;

end if;

end process TB_semi_para_N4_M2_w_clken_GEN_STIMULI;

end architecture MyTB;

%%%%%%%%%%%%%% End of Test bench file %%%%%%%%%%%%%%%

57

Appendix 2

The following screenshot shows the output waveform for the generic semi parallel

architecture.

