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1 Introduction
The Standard Model (SM) of particle physics is a theory that describes the fundamentalbuilding blocks of matter and three of the interactions that govern their motions: theelectromagnetic [5, 6, 7, 8, 9, 10, 11], weak [12, 13, 14] and strong [15, 16, 17, 18, 19, 20]interactions. It is a widely accepted and successful theory that has been extensively testedthrough a variety of experiments and confirmed by numerous observations including thediscovery of the Higgs boson a decade ago [21, 22, 23].The guiding philosophy for particle physics is the idea that all matter is made up of el-ementary point-like particles, the smallest units of matter that cannot be further divided,which are classified into two categories: fermions thatmake upmatter such as quarks andleptons, and bosons that mediate forces such as photons and gluons. As Wigner showedin 1939 [24], particles are defined to be physical fields that are uniquely classified by themass m and spin J where m is a non-negative real number and spin is a non-negative half-integer, and should be embedded into the irreducible representations of the Poincarégroup. The physical multi-particle states are then constructed by defining the creationand annihilation operators as functions of fields that satisfy certain commutation or anti-commutation relations. This method is now formalized within a robust framework knownas the quantum field theory (QFT) [25, 26, 27, 28, 29], which has been extensively testedthrough experiments with remarkable precision.A QFT is usually built from the action S[Φ] which is a classical functional of the localfields Φ(x), so that any physical operator O(Φ) can be calculated from the path inte-grals [30, 31, 32]

⟨O(Φ)⟩ ∼
∫

DΦeiS[Φ]O(Φ) , (1)
where the symmetry principle [33] is usually applied to determine the action of a QFT aswell as the properties of the fields.Along the path of building the SM as a QFT to describe the fundamental interactions,symmetry always plays a central role. Indeed, one of the key questions that are central toparticle physics in themiddle of the 20th century is to identify all the fundamental symme-tries existing in nature and to understand how they are realized in the unified framework.Such an approach has achieved great success in the development of SM, for example,the first discovery of gauge symmetry led to the development of quantum electrodynam-ics (QED) [5, 6, 7, 8, 9, 10, 11], while in the 1950s the approximate internal symmetriesamong mesons or baryons known as the eightfold way [34, 35] has driven the discoveryof quarkmodel and the underlying quantum chromodynamics (QCD) [15, 16, 17, 18, 19, 20].It was not until the late 1960s did people finally confirmed the existence of all threegauge symmetries corresponding to the three fundamental interactions in nature, namelythe electromagnetic and weak interactions described by the Glashow-Weinberg-Salammodel [36, 37, 38], and the strong interaction described by QCD, which then became thefoundation of the Standard Model.However, the golden epoch of discovery in theoretical particle physics has not lastedfor a long time, as people soon realized that the SM is not complete. For example, itfails to describe the gravity or predict the existence of the masses of neutrinos, and evenworse, it is not “natural” even at the energy scale of a few TeV [39] in the sense that aphysical parameter of the SM, the Higgsmass, receives a large quantum correction scalingas m2

H ∼ E2 rather than a logarithmic correction. Therefore, it seems that the SM canprecisely describe the phenomena at energies close to the Electroweak scale, but is notsufficient at energies far from that. This simply implies that it is an effective descriptionof physics that is only valid up to an energy scale denoted as a cut-off scale Λ.
10



Indeed, such effective descriptions, known as the Effective Field Theories (EFTs), haveproven to be very useful in different aspects of physics, e.g. in particle physics (the Fermitheory [12, 13, 14]), mathematical physics (the Seiberg-Witten theory [40, 41]), condensedmatter physics (the BCS theory [42]), nuclear physics (the chiral perturbation theory [43]),and cosmology (general relativity [44]), etc. One common feature that EFTs share is thatthey always have an intrinsic cut-off scaleΛ, abovewhich the EFTs break down and need tobemodified. At energy scales much below the cut-off, it is always possible to integrate outsomedegrees of freedomand thereby obtain an EFT valid at even lower energy. In general,based on the technique of renormalization group (RG) [45, 46, 47, 48, 49, 50, 51, 52, 53],we can divide the effective Lagrangian of a d-dimensional EFT into a renormalizable partand a tower of non-renormalizable operators suppressed by the cut-off scale Λ as
Leff = Lren +

∞

∑
n=d

cnOn

Λn−d . (2)
where Lren is the renormalizable part of a QFT in d-dimensional spacetime, On are thegauge-invariant non-renormalizable operatorswith scaling dimension n suppressed by thecut-off scale Λ, and cn are their Wilson coefficients.Hence, a natural question arises asking what is the cut-off scale of the SM, as theSM itself only contributes the renormalizable part of an underlying EFT, and those non-renormalizable operatorsmust exist at an ultraviolet (UV) scale, for example, when gravityis switched on at the energy of the Planck scale (about 1019 GeV) the non-renormalizableinteractions between gravitational field (the metric gµν ) and matter fields are induced.This question remains controversial since the birth of SM yet a consensus has hardly beenachieved: on one hand, an unnatural fine-tuning between the bare Higgs mass and theradiative corrections of the Higgs mass existing in the infrared (IR) scale seems to suggestthat the SM should have a cut-off scale close to the TeV scale [39], while on the other hand,the SM seems still valid above the TeV scale because all dedicated and non-conclusivesearches in the experiment of LHC at CERN have found no significant signal deviating thepredictions of SM [21], indicating that the cut-off scale should be much higher. If the SMcut-off scale is indeed only slightly above the TeV scale, phenomena of new physics canbe expected to appear within our reach, which thus motivated a lot of efforts to constructnew theories beyond the Standard Model (BSM) predicting the new physics scale Λ andstudying their interesting phenomenology.The methodology applied in many BSM research, which is similar to developing theSM from the Fermi theory in the past, is to complete the SM by proposing physical as-sumptions or by trial and error with a new EFT valid at a new physics scale (usually notnecessary to be the UV scale), and then to check whether such a new theory can still beconsistent with the experiments by realizing the SM as a low energy EFT. This idea alsomotivates the study of the SMEFT [54], in which all beyond the Standard Model (BSM)effects are described by the non-renormalizable operators in the effective Lagrangian atthe electroweak scale obtained from integrating out heavy degrees of freedom, with sup-pression by the cutoff scale Λ which is usually related to the mass of heavy fields.From a top-down perspective, in order to consistently realize the SM as an EFT, it istypically assumed that a UV-complete theory exists at the UV scale (e.g., the Planck scale
MP ∼ 1019 GeV) that is renormalizable. As we descend to lower energy scales, certaininformation about the UV theory may be lost, leaving us with an effective description.This effective description of the fundamental theory can be represented as an EFT, whichcan be divided into two components, as illustrated in eq. (2). As observers residing in theIR regime, we are primarily concerned with the relevant or marginal operators, which are
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encoded in the renormalizable part (e.g., operators with dimension d ≤ 4). Consequently,when the cutoff scale Λ greatly exceeds the IR scale of interest, as a nice approximationwe can neglect non-renormalizable operators, such as the tower of states induced by grav-ity, to significantly simplify the considered EFT. Thus, the renormalizable part of the EFTdiscussed in this context is a subset of a general EFT, which could be UV-completed into afundamental theory incorporating gravity. The exploration of these renormalizable partswithin well-motivated EFTs constitutes a key motivation for this thesis.
Following this rationale, a natural question arises: How can one construct an EFT thatremains valid at high energy scales while reducing to the SM at lower energy scales?A straightforward bottom-up approach involves starting from the SM and subsequentlyintroducing additional elements to account for phenomena beyond its original scope,such as massive neutrinos, dark matter, dark energy, etc. From the EFT perspective, thismethod is equivalent to adding new degrees of freedom above the scale where SMbreaksdown in the process called “integrating in” in contrast to the concept of “integrating out”,resulting in the definition of a new EFT that is valid from SM cut-off to some new cut-off.Usually, this process is guided by the symmetry principle [55], in which the new degrees offreedom will be embedded into the representations of some symmetries, such as globalsymmetry, extra gauge symmetry, supersymmetry, conformal symmetry, etc. The onlyproblem is, this process cannot be repeated indefinitely [56]: any EFT must have a cut-off (dubbed the QG cut-off) above which it cannot be amended to give a consistent QFTweakly coupled to Einstein gravity. In other words, it is not possible to “integrate in” newlight degrees of freedomwhile preserving the QFT description. This occurs, for example, ifan infinite tower of new light states appears, they cannot simply be “integrated in”: quan-tum gravitational effects become important and the EFT completely breaks down [33].However, since this story pertains to the far UV scale, it is better for us to set it aside andfocus instead on the EFT that functions on much lower energy scales.
A more important issue is, there seem to be enormous possibilities for constructingphenomenologically acceptable models just by integrating in new degrees of freedom be-cause the inverse of the RG transformation is not unique. There might be many differentconsistent EFTs at the UV giving rise to the same dynamics at the IR. In practice, evencounting the total number of consistent BSM models is challenging. What is possible isthat this number is actuallymuch larger than all of the knownmodelswe have constructedso far for BSM. If this is true, we would need a systematic way to analyze a category ofsimilar EFTs classified by similar dynamics or phenomena, instead of analyzing only onemodel each time. On the contrary, if this number is very small, it would indicate that aconsistent completion of SM is highly non-trivial, and thus very strong constraints shouldbe imposed in BSM research. In either case, the conditions that determine the constraintsof BSMmodels may lead to some universal observable effects that can be tested in futureexperiments.
This thesis makes progress in understanding the Standard Model as a low-energy ef-fective theory, while also exploring the implications of certain theoretical constraints ondifferent models. For instance, it investigates the phenomenological predictions of a classof classical scale invariant models [1], the requirement for an absolutely stable vacuum atall scales [2], as well as the constraints of gauge and Yukawa coupling unification [3, 4].The goal of all of these research is to find out the possible constraints of BSMmodels andstudy the possible observable effects of these constraints. In the end, we hope that it ad-vances the realization of the SM as a low-energy effective theory, and also provides someuseful insights on the principles of physics behind all of these BSM models.
In particular, the authors of publication I [1] explored a universal interpretation of a
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specific class of conformal extensions of SM. Within this study, models are categorizedinto a universality class at the IR scale predicting similar phenomenology in relation toHiggs physics. The author showed how the two primary scale generation mechanisms inthe classical scale-invariant model, the perturbative and the non-perturbative type, bothgenerate the Higgs portal coupling with the negative sign. These models contain at leasttwo fundamental scalar fields (H1,H2) and a dilaton χ , forming an extended Higgs sectorbeyond the Standard Model. The Electroweak scale is then generated via the conformalanomaly if themixing between twoHiggses is small and themass of the second scalar field
H2 greatly exceeds the masses of the dilaton χ as well as the first scalar field H1, whichmakes it possible to integrate out the heavy scalar field H2. From the EFT perspective,integrating out H2 yields a vertex operator as O ∼ λH χ2|H1|2, where the Higgs portalcoupling λH is negative, given by λH ∼ −c2

1/c2 < 0 where c1,2 are originally the positivequartic coupling constants. After the dilaton acquires a vacuumexpectation value ⟨χ⟩=ηwhich breaks the conformal symmetry, this negative Higgs portal coupling becomes theSMHiggsmass termwith a negative sign. Phenomenologically, the presence of such a lightdilaton χ coupling to the Higgs boson via a negative portal coupling defines a low-energytestable discriminator for a specific universality class of models. This universality classoffers a unified interpretation for various models arising from distinct UV completionswith conformal symmetry breaking by the light dilaton. Thus, this universality class couldpossibly lead to model-independent predictions, and hence, improve the understandingof the longstanding gauge hierarchy problem if it could be found.
In his publication II [2], the author studied a possible extension of the SM where theYukawa couplings are generated radiatively from a hidden sector at one-loop level. Pos-sible tree-level Yukawa couplings are forbidden because of a new underlying symmetry(such as the Z2) assumed to be spontaneously broken by the vacuum expectation valueof a new scalar field above the electroweak scale. In this case, the SM Yukawa couplingsare realized as effective operators by integrating out the messenger scalar fields and darkfermions at higher energies. The theoretical setup of the model was provided and thecalculation for deriving effective Yukawa couplings was presented in detail. In particular,the stability of the electroweak vacuum was examined for two different scenarios. In thefirst scenario, all interactions are taken to be common and well-perturbative benchmarkvalues, but then to match with the observed effective top Yukawa coupling the unitaritybound can be violated at energies close to or below the matching scale so a Lee-Wick ex-tension of the model is needed. After scanning parameters within the allowed regions,it was shown that the stability of the Electroweak vacuum can be achieved regardless ofthe current experimental uncertainties affecting the Higgs boson or the top quark mass,as was illustrated in Figure. 2. In the second scenario, instead of fixing those couplingswith benchmark values, the unitarity bound was used to determine the maximal valuesof the trilinear couplingΛS. The Higgs quartic coupling is then evolved up to the UV cutoffof this scenario which is set by the first Landau pole of its’ perturbative RGEs. The elec-troweak vacuum is again stable in this scenariowithin the considered perturbative regionsas was illustrated in Figure. 3 of the paper. Therefore, in both cases, the stability of theElectroweak vacuum will be guaranteed because the main contribution to the running ofHiggs quartic couplings is absent as long as the tree-level top-Higgs Yukawa coupling isforbidden.
In publication III [3], the author undertook an analysis of the constraint of gauge andYukawa coupling unification within non-supersymmetric (non-SUSY) SO(10) models. Thisstudy marked the first successful realization of Yukawa coupling unification in non-SUSYSO(10) models by introducing an intermediate symmetry breaking scale and an additional
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Higgs doublet at the Electroweak scale. Through the evolution of the renormalizationgroup from UV to IR scales, the author showed how the constraint from Yukawa unifica-tion impacts the viable parameter space of two Higgs doublet models (2HDMs) at the IRscale. In particular, the realization of unification of Yukawa couplings involved three de-tailed steps. Firstly, gauge coupling unificationwith an intermediate scale was enforced bymatching the renormalization group equations of gauge couplings at the two-loop levelat the symmetry breaking scales, where the 1-loop threshold corrections are included byrandomly sampling the masses of the heavy particles that emerge at the correspondingscales. Secondly, with both the intermediate scale and unification scale determined, therunning of the Yukawa couplings for the top quark, bottom quark, and tau lepton wasstudied at the two-loops level in two possible breaking chains, where appropriate match-ing conditions for the Yukawa couplings are imposed. Thirdly, a parameter scan was con-ducted within the Yukawa sector of the SO(10) model, leading to the identification of spe-cific parameter sets that enabled the unification of Yukawa couplings for the third gener-ation while maintaining a viable fermion spectrum at the electroweak scale. The resultsshowed that the Yukawa coupling unification can be fulfilled for certain parameters, assummarized in Table 1 of the paper. Notably, the ratio of the vacuum expectation valuesof the two Higgs doublet fields was found to be large, with tanβ ≈ 60. This implies thatthe requirement of achieving Yukawa coupling unification for the third generation, whichrepresents a constraint of the model at the UV scale, has implications for the possibleparameters of the EFT at the IR scale. Consequently, our model predicts the existence ofadditional Higgs particles with weak scale masses and tanβ ≈ 60, which could be the sub-ject of search and potential observation at the Large Hadron Collider or future high-energycolliders.
In publication IV [4], the author conducted a comprehensive investigation of non-supersymmetric SO(10) GrandUnification Theories (GUTs)with an intermediate symmetrybreaking scale. The focus of this study was not only on achieving gauge coupling unifica-tion but also enforcing Yukawa coupling unification through appropriate threshold correc-tions andmatching conditions, and at the same time incorporating several important phe-nomenological constraints such as the proton decays and the absence of Flavor-ChangingNeutral Currents (FCNCs) at tree-level. The model presented in this publication differsfrom the previous one in several aspects. Firstly, the scalar representation 10H is com-plexified, and an additional global U(1)PQ symmetry is introduced to address the strongCP problem and axions. Furthermore, the gauge coupling unification is achieved for fourdistinct intermediate-scale breaking chains of SO(10). These chains correspond to inter-mediate gauge groups such as SU(4)C × SU(2)L × SU(2)R (Pati-Salam) and SU(3)C ×

SU(2)L × SU(2)R × U(1)B−L (minimal left-right symmetry), both with or without a D-parity.
A significant contribution of the publication IV is the derivation of approximately an-alytical solutions for achieving gauge coupling unification at the two-loop level in thenon-supersymmetric SO(10) model with a single intermediate symmetry breaking scale.These analytical results extend the previous findings derived for supersymmetric SO(10)models to the non-supersymmetric case with an intermediate symmetry breaking scale.Subsequently, the phenomenological constraint arising from proton decay was applied toexamine the viability of various intermediate symmetry breaking patterns. By samplingthe threshold corrections from the masses of heavy particles, the range of the interme-diate scale and unification scale was determined for each symmetry breaking pattern,which was summarized in the Figure 1 of the paper. The analysis concluded that onlythe Pati-Salam and minimal left-right symmetry breaking chains survive the proton decay
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constraints when large threshold corrections are included. Specifically focusing on thePati-Salam intermediate breaking pattern, the author further imposed the unification ofYukawa couplings for third-generation fermions at the gauge unification scale, once againat the two-loop level. In the considered context, Yukawa coupling unification implies arelationship between the fermion couplings to the 10- and 126-dimensional scalar repre-sentations of the SO(10) group. One such possible relation, which is attainable in an E6model where the previous two scalar fields are part of a singlemultiplet, was investigated.Taking into account phenomenological constraints such as the absence of flavor-changingneutral currents at tree-level, constraints on the parameters of the low-energy EFT, specif-ically the Two-Higgs-DoubletModel (2HDM),were derived, in particular on the ratio of thetwo Higgs doublets vacuum expectation values tanβ .This thesis is structured as follows: in Chapter 2 the current theoretical descriptionof the SM is briefly reviewed. In Chapter 3 some of the most important problems thatexist within the SM are examined, in particular the hierarchy problems. In Chapter 4 anoverview of some of the most promising approaches that attempt to complete the SMwhile offering potential solutions to specific hierarchy problems is provided. The summaryis given in Chapter 5. Finally, in Appendix, the author’s publications are appended onwhich this thesis is based.
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2 Standard Model of Particle Physics
The Standard Model of Particle Physics describes with amazing parsimony how the basicbuilding blocks of matter interact via the fundamental forces of nature over vastly differ-ent scales: from the Hubble radius of 1030 cm all the way down to the scales of the orderof 10−16 cm [57]. It is the relativistic quantum field theory that describes strong interac-tions [15, 16, 17, 18, 19, 20], and the weak and electromagnetic interactions of Glashow,Weinberg, and Salam [36, 37, 38]. The latter two are unified in the theory of electroweakinteraction. Gravity, the fourth fundamental interaction, is negligible at the energy scaleswhere the Standard Model is considered to be valid.A possible definition [58] of the Standard Model (SM) is that it is the most generalrenormalizable quantum field theory [59, 60, 61] with the gauge group

SU(3)C ×SU(2)L ×U(1)Y , (3)
and three generations of fermions plus a scalar which transforms under the representa-tions of the gauge group as

(3,2)1/6 +(3̄,1)−2/3 +(3̄,1)1/3 +(1,2)−1/2 +(1,1)1 and (1,2)1/2 , (4)
respectively, where the boldface numbers are the dimensions of representations ofSU(3)Cand SU(2)L, and the subscripts denote the U(1)Y hypercharge.In this chapter, we will provide a detailed introduction to the ingredients necessary forunderstanding the SM, review its construction, and highlight its key features.
2.1 Quantum Field Theory
Quantum field theory (QFT) is a theory describing the motions and interactions of (quan-tum) fields [26], which are considered to be the most fundamental degrees of freedomgeneralized from quantizing the classical fields such as the electromagnetic and gravita-tional fields observed in everyday life. It provides a more unified view of the fundamentaldegrees of freedom in the relativistic and short-distance limit, rather than the old dualisticinterpretation in terms of both particles and waves in quantum mechanics: in QFT, par-ticles are understood as bundles of energy and momentum of the fields, while the wavefunction is a functional of these fields rather than a function of particle coordinates [55].The quantum field theory is described by the Lagrangian formalism (or more generallythe action formalism), where the symmetry of nature can be manifest when the actionis invariant under transfomrations of fields or spacetime, implying the existence of Liealgebras of suitable quantum operators [55]. The (quantum) fields, under such formalism,should satisfy certain commutation (or anti-commutation) relations, and be defined as arepresentation of the symmetry groups. Therefore, from a top-down perspective, oneof the essential steps for studying the fundamental degrees of freedom is to identify thesymmetry groups (or their Algebras).Fortunately, it is not difficult to classify the possible algebras and formulating the cor-responding quantum field theory in mathematics. A most straightforward example is thespacetime symmetry: if we are living in a universewith 3+1macroscopic spacetime dimen-sions, a Poincaré symmetry is present and the physical fields are classified by theWigner’sdefinition [24, 26] which says physical multi-particle states transform under unitary irre-ducible representations of the Poincaré group uniquely classfied by themassm and spin J.In addition to the spacetime symmetry, another example is the gauge symmetries, wherefields transform under the representations given in eq. (4).
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With thewell-defined physical fields, the quantumfield theory can be formulated [26],to the latest knowledge, by the use of path integrals [30, 31, 32]. Path integrals canbe thought of as a generalization of classical trajectories to quantum scattering ampli-tudes. More precisely, path integrals involve integration over all possible classical fieldconfigurations of the phase given by the classical action evaluated in those field configu-rations, as shown in eq. (1). This can be calculated most conveniently by the generatingfunctional Z[J] which defines all the correlation functions and, therefore, the entire the-ory. In this formulation, we can also directly prove the existence of a localized symmetry,namely gauge invariance, which results from the freedom of redefining the field configu-rations [29].One of the key elements in the triumph of quantum field theory was the developmentof renormalizable theory, in which the infinities encountered in the calculation of physicalobservables can be absorbed into the “redefinition” of fields, masses, or charges via theprocess called renormalization.However, given a set of fields (or operators) that are assumed to be valued over somealgebra, their classical action can generally contain as many symmetric operators as possi-ble up to any scaling dimensionswithout assuming the renormalization. Besides, there arenon-perturbative operators taking the form of total derivatives of the Lagrangian. Theseambiguities make it difficult to fully determine a unique form of the Lagrangian from atop-down perspective based on the first principles. This brings in the usage of effectivefield theories [62] , where the low energy dynamics are well-approximated by the EFTsbelow their intrinsic cutoff scale ΛEFT .The essential point in using an EFT is that we are not allowed to make any assumptionof simplicity about the Lagrangian, in particular, the renormalizability [55]. Therefore, anEFT can be in general non-renormalizable by definition, and we adapt ourselves to thedefinition that we have used in eq. (2):
Leff = Lren +

∞

∑
n=d

cnOn

Λn−d , (5)
where the Lren is the renormalizable part of a QFT in d spacetime dimension, On arethe gauge-invariant non-renormalizable operators with scaling dimension n suppressedby the cut-off scale Λ, and cn are their Wilson coefficients that run as functions cn(µ) ofthe renormalization group scale µ .The biggest advantage of EFTs is that they are powerful tools in theoretical physicsthat allow us to describe the low-energy behavior of complex systems without knowingthe underlying microscopic theory. When using an EFT, we are not allowed to assumethat the Lagrangian is simple or that it is renormalizable, because the renormalizability isnot a fundamental requirement of a QFT, according to the folk theorem [55]. Therefore,as long as we write down the most general Lagrangian consistent with the symmetries ofthe theory [62], we are actually writing down the most general theory we could possiblywrite down. This approach allows us to make predictions about observable phenomenaat low energies without being concerned about the properties of high-energy physics.Therefore, we naturally introduce a UV cut-off ΛUV associated with our QFT in order toregularize the QFT to ignore everything happening above the cut-off scale.In the following chapter, we will develop a particular type of QFT, namely the Yang-Mills gauge field theory, to understand the SM. It’s important to note that although the SMturned out to be renormalizable, the non-renormalizable part of a fundamental theory isstill unknown. Treating the SM as an EFT (the so-called SMEFT) and seeking to understandits non-renormalizable part is an interesting problem in phenomenological studies beyondthe SM, which will be discussed at the end of the chapter.
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2.2 Yang-Mills Theory
The Standard Model successfully describes three of the fundamental interactions, theElectromagnetic interaction, the weak interaction, and the strong interaction, in termsof the Yang-Mills Theory [63] based on the Lie groups of SU(3)C ×SU(2)L ×U(1)Y . TheYang-Mills theory is a generalization of the quantum field theory of the massless spin-1particle, which is the quantum electrodynamics (QED) based on the U(1) gauge symmetry.In QED, the massless spin-1 particle, the photon, is embedded into a vector field Aµ(x),which has four degrees of freedom but two of them are removed by the gauge invarianceunder the local transformation for an arbitrary α(x)

Aµ(x)→ Aµ(x)+
1
e

∂µ α(x) . (6)
One can prove that the Lagrangian with interacting spin-1 and spin-1/2 fields which is in-variant under this symmetry is

LQED =−1
4

F2
µν + ψ̄(iDµ γ

µ −m)ψ , (7)
where Fµν = ∂µ Aν − ∂ν Aµ is the vector field tensor, γµ is the γ-matrices satisfying thespinor algebra, m is the mass of fermion ψ , and Dµ = ∂µ − iQeAµ is the covariant deriva-tive with the coupling constant e and the charge of fermion Q. In fact, the covariantderivative contains the unique renormalizable interaction which is gauge invariant. TheYang-Mills theory is a unique generalization of the QED to the case of local non-Abeliansymmetry based on SU(N) Lie group. So the renormalizable gauge-invariant interactionsamong the massless spin-1 particles can also be characterized by elevating the ordinaryderivatives to the covariant derivatives defined by

Dµ = ∂µ − igAa
µ T a , (8)

where g is a real number defined as the coupling constant, T a are the generators of theLie group SU(N) in the fundamental representation, and Aa
µ is a set of vector fields of thegauge bosons which transform infinitesimally as

Aa
µ(x)→ Aa

µ(x)+
1
g

∂µ α
a(x)− f abc

α
b(x)Ac

µ(x) , (9)
where f abc are the structure constants of SU(N). The natural field tensor in the non-Abelian case is thus defined as

Fµν ≡ i
g

[
Dµ , Dν

]
= (∂µ Aν −∂ν Aµ)− ig

[
Aµ , Aν

]
. (10)

Or, in terms of components Fµν = Fa
µν T a, we can write

Fa
µν = ∂µ Aν −∂ν Aµ +g f abcAb

µ Ac
ν . (11)

With these concepts, the locallySU(N) invariant Lagrangian of interacting gaugebosonsand N f massive fermions can be written as

LYM =−1
4
(Fa

µν)
2 +

N f

∑
i, j=1

ψ̄i(δi ji/∂ +g/AaT a
i j −mδi j)ψ j . (12)
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This is the Lagrangian of the Yang-Mills theory, where the contraction has been used for
/k = kµ γµ , and the coupling constant g now represent the strength of the interaction be-tween the gauge bosons and the fermions.It should be noted that the Yang-Mills theory requires the gauge bosons associatedwith the gauge symmetry to be massless, as any inclusion of the mass term of the spin-1vector field will explicitly break the gauge invariance. However, as we know that the weakinteraction is constrained within a finite subatomic length scale which implies that thegauge bosons associated with the weak interaction must be massive. On the other hand,if the fermions are massive, the Yang-Mills theory must be a vector-like theory wherethe gauge bosons equally couple to the left-handed and right-handed massive fermions,just like the quantum chromodynamics (QCD). Therefore, without furthermechanism, theYang-Mills theory itself fails to describe the weak interactions among the massive quarksand leptons. However, as we will see in the next subsection, the introduction of the Higgsmechanism cures this problem and thus generalize the Yang-Mills theory to be applicableto a wider range of topics.
2.3 Spontaneous Symmetry Breaking
Spontaneous symmetry breaking (SSB) is a vital concept in quantum field theory, playing acrucial role in understanding various phenomena in particle physics and condensedmatterphysics. In general, SSB occurs when the Lagrangian or Hamiltonian of a physical systemis invariant under a symmetry transformation, but the lowest-energy state (the groundstate |Ω⟩) of the theory is not.

[S,H] = 0 , S |Ω⟩ ̸= 0 . (13)
SSB provides explanations for various phenomena, including simple phase transitions likeconventional superconductivity, super-fluid 4He, and spontaneousmagnetization in ferro-magnetic materials. In particle physics, the electroweak symmetry breaking explains themasses of particles in the Standard Model. Cosmological phase transitions, such as theelectroweak phase transition and QCD phase transition, are driven by the spontaneousbreaking of the electroweak and chiral symmetries as well as color confinement.The concept of SSB has been around for a long time without being recognized dat-ing back to 1907 when Pierre Curie studied crystal symmetries. However, it was not until1957 that the original concept of SSB was proposed in condensed matter physics by JohnBardeen, Leon Cooper, and Robert Schrieffer (BCS) in 1957 [42]. This theory explains su-perconductivity as the spontaneous breaking of an approximate two-dimensional rotationsymmetry, which was later recognized as the U(1)EM electromagnetic gauge invariance.As a consequence, products of any even number of electron fields acquire non-vanishingexpectation values in a superconductor, resulting in the unique properties of supercon-ductors such as zero electrical resistance and the Meissner effect.The discovery of spontaneous symmetry breaking in a medium quickly led to a revo-lution in elementary particle physics. Soon after BCS, Yoichiro Nambu applied the SSB toan approximate global symmetry in relativistic quantum field theory where the vacuum isthe ground state. In his subsequent paper with Giovanni Jona-Lasinio [64], he predictedthe existence of pions, a particle with a very small mass, associated with the spontaneousbroken approximate chiral symmetry. This paper became the first illustrative quantumfield theory with SSB.Nambu believed that spontaneous symmetry breaking is highly relevant to the prob-lem of fermionmasses [65]. Whenever amassless fermion exhibits chiral symmetry, it can
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be spontaneously broken to give the fermion mass. As a result, mass becomes a dynamicquantity that can be explained theoretically.An immediate consequence of the SSB is the Goldstone’s theorem [66, 67], whichstates that the spontaneous breaking of a continuous global symmetry implies the ex-istence of a massless particle known as the Nambu-Goldstone boson [68, 67]. If the con-tinuous global symmetry is not exact, i.e. if it is explicitly broken, then the SSB does notresult in the existence of massless Goldstone bosons, but rather massive pseudo-Nambu-Goldstone bosons. The pions are typical pseudo-Nambu-Goldstone bosons resulting fromthe spontaneous breaking of QCD chiral symmetry SU(2)L×SU(2)R by the condensationof fermion bilinear ⟨q̄q⟩ in the vacuum, aswell as explicitly breaking by the tiny quarkmassterms.After a decade following the discovery of SSB, an exception to Goldstone’s theoremwas eventually found, which applies to gauge symmetry, particularly to Yang-Mills the-ory based on non-Abelian gauge symmetries. Brout, Englert, Guralnik, Hagen, Higgs,and Kibble demonstrated [69, 70, 71, 72, 73] that when local gauge symmetry is spon-taneously broken, neither the vector bosons associated with the gauge symmetry northe Nambu–Goldstone bosons produced by the symmetry breaking have zero mass. Thismechanism was later named the Higgs mechanism for various reasons, and will be re-viewed in detail in the next subsection.To sum up, we conclude that the SSB in general has the following characteristics as perNambu [65]:
1. Degeneracy of the ground state.
2. Existence of the NG modes when the symmetry is continuous and the system isinfinite (the thermodynamic limit).
3. Possibility of hierarchical SSB - This means that an SSB can trigger another in a hier-archical way.
Lastly, it is worth mentioning that in many cases, symmetry can be spontaneously bro-ken in a non-trivial way without introducing a fundamental scalar that acquires a vacuumexpectation value. A renormalizable Yang-Mills theory based on the SU(N) local symmetrywith N massless fermions, whose Lagrangian can be obtained by setting m = 0 in eq. (12),has two tensor products capable of developing vacuum expectation values at the leadingorder. The first one is the fermion bilinear ⟨q̄q⟩, known as the quark condensate, whichbreaks the global chiral symmetry of the vacuum. This is the scenario discussed in theNambu-Jona-Lasinio model[64], where SSB of chiral symmetry by the quark condensatesleads to the existence of light pions as pseudo-Nambu-Goldstone bosons. The formationof quark condensates in QCD is not yet fully understood 1, but it is believed to be relatedto one of the deepest problems of QCD which is the confinement problem. The second
1Although the mechanism responsible for the formation of quark condensates in QCD remainspoorly understood theoretically, their existence is well-established through lattice calculations andis widely accepted as a basic fact. This is because, in the massless limit of QCD, the global symmetry

SU(3)L ×SU(3)R ×U(1)V has a ’t Hooft anomaly, which means that this global symmetry is exactand cannot be gauged [39]. The exactness of this symmetry is enforced by the anomaly matchingcondition, which requires that any effective description of the strongly-interacting fermions belowthe phase transition scalemust incorporate the sameanomalies as the underlyingQCD theory abovethe phase transition scale. In the language of the renormalization group, this implies that a certainRG invariant, namely the ’t Hooft anomaly, must be preserved when transforming a theory from theUV scale to an effective description at the IR scale.
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one is the field tensor bilinear, such as 〈F̃µν Fµν
〉, that breaks theU(1)A global symmetry.The formation of such condensation can be ascribed to the instanton effect, provided thatfermionic zero modes exist within non-trivial gauge field configurations.

2.4 Quantum Anomalies
In general, if a symmetry of the system holds only at the classical level but gets violatedby quantum corrections, we refer to it as an anomalous symmetry [74, 75, 76], indicatingthat it is not an exact symmetry. In four dimensions, local anomalies are linked to triangleFeynman diagrams featuring three external boson lines.

Anomalies can in principle happen for any symmetries, including the spacetime, gauge,global, or conformal, etc. But if the gauge invariance is not preserved at the quantum level,then the theory is inconsistent.
The most well-known anomalies are the global anomalies associated with the U(1)global symmetries, such as the baryonnumber and the leptonnumber. Indeed, the anoma-lies are often related to the instantons, which are self-dual solutions to the classical equa-tion of motion in the non-Abelian gauge theory. The chiral anomaly is developed wheninstantons interact with the quantum theory.
As symmetries play a crucial role in the behavior of quantum systems, as suggested byWeinberg, for an EFT to be valid in describing the same dynamics as an underlying theory,it must have the same amount of symmetries, as well as carry all the information abouthow broken symmetries are non-linearly realized.
Therefore, it is important to calculate all the anomalies in each EFT so that we knowwhether a gauge or mixed anomalies exist in certain EFT. When running from one EFT toanother EFT, we also need to rely on the t’ Hooft anomaly matching in order to determinewhether the two EFT indeed have similar symmetric structures.

2.5 The Higgs Mechanism and the Electroweak Theory
As was discussed in the earlier subsection, the Higgs mechanism is the unique exceptionto Goldstone’s theorem, in which both the vector bosons associated with the gauge sym-metry and the Nambu-Goldstone bosons produced by the symmetry breaking becomemassive when the gauge symmetry is spontaneously broken. To spontaneously break thegauge symmetry from the initial symmetry group G to the residual symmetry group H ,we need to introduce an order parameter of SSB, which can be identified as a new scalarfield φ carrying the specific charges of G and being a singlet of the residual symmetryH .This particular scalar field φ only plays the role of SSB by acquiring a vev through the shapeof its potential, and interacts with the other fields in a gauge-invariant way.

Taking the SM as an example, the Higgs mechanism is the spontaneous breaking of
SU(3)C × SU(2)L × U(1)Y gauge symmetry to the SU(3)C × U(1)EM gauge symmetrythat the vacuum possesses to preserve the fact that both the photons and gluons remainmassless. This can be achieved by introducing a complex scalar field φ , which was calledthe Higgs field and transforms as a doublet under the SU(2)L gauge symmetry and canbe parameterized as

φ =

(
φ+

φ 0

)
=

1√
2

(
φ1 + iφ2
φ3 + iφ4

)
. (14)

The Lagrangian involving the gauge-invariant kinetic terms should be written as
Lφ = (Dµ φ)†(Dµ

φ)−V (φ), (15)
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where the covariant derivative is
Dµ φ = ∂µ φ − ig2Wµ

σa

2
φ − igYYHBµ φ , (16)

in which the hypercharge of the Higgs multiplet is defined to be 1
2 to be consistent withits neutral electrical charge.The gauge-invariant potential including the self-interaction for the Higgs boson is

V (φ) =−µ
2
φ

†
φ +λ (φ †

φ)2. (17)
As a requirement for triggering the SSB of the SM gauge symmetry, the potential is writtenin a seemingly artificial way to guarantee the existence of a non-zero vacuum expectationvalue. The vacuum state that corresponds to the non-trivial minimum of the above po-
tential, should satisfy the relation ∂V (φ)

∂φ
= 0, which yields the solution

φ
†
φ =

µ2

2λ
≡ v2

2
, (18)

with v =
√

µ2

λ
. Therefore, the negative sign in the Higgs quadratic term in eq. (17) actuallyindicates the ground state has an expectation value chosen to be the neutral componentof the Higgs field φ3

⟨φ⟩0 ≡ ⟨0|φ |0⟩= 1√
2

(
0
v

)
. (19)

It is simplest to study this theory in unitary gauge, in which the Higgs field can beexpressed as the excitation above its’ vev
φ(x) =

1√
2

(
0

v+h(x)

)
. (20)

Therefore, we can expand the kinetic terms in terms of the new field h(x) and get
|Dµ φ |2 ⊇ g2v2

8

[(
W 1

µ

)2
+
(
W 2

µ

)2
+

(
gY

g2
Bµ −W 3

µ

)2
]
+

1
2
(∂µ h)2 + . . . . (21)

The above equation clearly shows that, when the gauge symmetry is spontaneouslybroken, the interaction between the Higgs field and the gauge field will develop massterms of the gauge bosonswhich is driven by the existence of nonzero vacuumexpectationvalue v ̸= 0 of the Higgs field.However, there is a mixing mass term between the Bµ field and the W 3
µ field. To findout the mass eigenstates, we can diagonalize the mass matrices by performing a rotationbetween Bµ and theW 3

µ field, thus we have
Zµ ≡ cosθwW 3

µ − sinθwBµ ,

Aµ ≡ sinθwW 3
µ + cosθwBµ , (22)

with the weak mixing angle defined as
tanθw =

gY

g2
. (23)
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To express the charged degrees of freedom for the W gauge boson, we define thecharged W boson field as
W±

µ ≡ 1√
2

(
W 1

µ ∓ iW 2
µ

)
, (24)

associated with the new SU(2)L generators τ± = 1√
2

(
τ1 ± iτ2

).
After rotating to themass eigenstates, we found the kinetic terms for the gauge bosonsin terms of new field variables to be

LK =−1
4

F2
µν −

1
4

Z2
µν −

1
4

W+
µνW−µν

+
1
2

m2
Z(Zµ)

2 +m2
WW+

µ W−µ
, (25)

where Fµν = ∂µ Aν − ∂ν Aµ is the photon field tensor, Zµν = ∂µ Zν − ∂ν Zµ is the Z bo-son field tensor, andW±
µν = ∂µW±

ν −∂νW±
µ is the physical charged W boson field tensor.The masses for each field are all proportional to the vev of the Higgs field v, which arecorrespondingly

mA = 0 , mZ =
g2v

2cosθw
, mW± =

g2v
2

. (26)
This is consistent with the fact that there is only onemassless fermion in nature, whichis the photon field in QED. The associated gauge coupling of the photon field after rota-tions, which is the the electromagnetic coupling, is

e = g2 sinθw = gY cosθw . (27)
As we have clearly seen above, the spontaneous breaking of the gauge symmetry gavemasses to the gauge bosons by acquiring a nonzero vev of the Higgs field.

2.6 The Standard Model Lagrangian
We have seen how to describe the strong interaction and the electroweak interactionin nature by applying the spontaneous symmetry breaking in the Yang-Mills theory, it istherefore the proper time for us to combine the electroweak interaction and the strong in-teraction together to form a unified description for three of the fundamental interactions,which is known as the Standard Model of particle physics.The Standard Model Lagrangian can be divided into four parts

LSM = LG +LF +LY +LH , (28)
for which we will explain in detail separately.
Gauge sector
The Standard Model contains three gauge interactions, the strong interaction, the weakinteraction, and the electromagnetic interaction by thedirect product of the (non-)Abeliangauge symmetry groups SU(3)C × SU(2)L ×U(1)Y . The gauge sector of the StandardModel thus comprises a Yang-Mills theory with three gauge fields, one for each of thethree gauge groups, which is an outcome of the Yang-Mills theory being the unique renor-malizable theory possessing non-Abelian gauge symmetry.

LG =−1
4

8

∑
A=1

(GA
µν)

2 − 1
4

3

∑
a=1

(W a
µν)

2 − 1
4
(Bµν)

2 , (29)
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where GA
µν , W a

µν , and Bµν are the field tensors for the eight gluons of SU(3)C, three W-bosons of SU(2)L, and a B-boson of U(1)Y , correspondingly. The gauge fields are all ini-tially massless in the symmetric phase to preserve the gauge invariance. After the sponta-neous breaking of the SMelectroweak gauge symmetry SU(2)L×U(1)Y down toU(1)EM,the gauge fieldsW a
µ andZµ becomemassive because of the Higgsmechanism. Though the

gauge field Bµ and the third component of the SU(2)L gauge fieldW 3
µ are mixed togetherin the flavor eigenstates, as we have seen in the last subsection it can be diagonalized inthemass eigenstates to form the neutral Z boson and the photon field observed in nature.

Fermion sector
The interactions between the Fermions and the gauge bosons in the SM can also be writ-ten in a similar way as the second term in Eq. (12). The Standard Model contains threegenerations of fermions with the same quantum numbers except for their masses, and ineach generation, we have two quarks with different hypercharges known as the up-typeor down-type quarks, one lepton and one neutrino.One of the important observations of particle physics is that the weak interactions ofleft-handed and right-handed fermions are different. This phenomenon indicates that thefundamental weak interaction separates fermion with different chirality, and thus the SMmust have a chiral structure. This was later been established by Glashow, Weinberg, andSalam [66, 36, 37] in the electroweak theory that only the left-handed fermions transformas doublets under the weak SU(2) isospin, while the right-handed fermions transform assinglets. Therefore, the chiral fermions of the SM for each generation should be embed-ded into the following representations under the SU(2)L gauge symmetry

QL =

(
uL
dL

)
, LL =

(
νL
eL

)
, QR,u = uR , QR,d = dR LR = eR . (30)

The Lagrangian of the fermion sector including the kinetic terms and their interactionwith the gauge bosons is thus
LF =

3

∑
i=1

L̄i
Li /DLi

L + Q̄i
Li /DQi

L + ēi
Ri /Dei

R + ūi
Ri /Dui

R + d̄i
Ri /Ddi

R , (31)
where the index i = 1,2,3 runs through all three generations of quarks and leptons, andthe covariant derivative is

Dµ = ∂µ − ig3θSGA
µ T A − ig2θWW a

µ τ
a − igYY Bµ , (32)

where θS = 0,1 for singlets or triplets of SU(3)C and θW = 0,1 for singlets or doubletsof SU(2)L, τa = σa/2 is the canonically normalized SU(2) generators, T a = λ a/2 is thecanonically normalized SU(3)C generators with λ to be the Gell-Mann matrices, and g3,
g2, gY are the corresponding gauge coupling constants of the strongSU(3)C, weakSU(2)L,and U(1)Y hypercharge interactions. The hyperchargeY , along with the third componentof the SU(2)L weak isospin T3, gives the electrical charge after the SSB of the SM gaugesymmetry

Q = T3 +Y . (33)
Specifically, we can denote the color, weak isospin, and hypercharge assignments of allSM fermion representations in the form (SU(2)L,SU(3)c)U(1)Y as,

Li
L ∼ (2,1)y1 , ei

R ∼ (1,1)y2 , Qi
L ∼ (2,3)y3 , ui

R ∼ (1,3)y4 , di
R ∼ (1,3)y5 . (34)
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Classically, the partial Lagrangian LG +LF displays large global symmetries. For ex-ample, one can perform a global transformation on the lepton doublet Li → L′
i = Ui jL jbetween three different families, where Ui j is a 3× 3 unitary matrix and leaves the par-tial Lagrangian invariant. It turns out that such invariance holds for all five types of chiralrepresentations of fermions defined in eq. (30), so we have the global family symmetry

U(3)×U(3)×U(3)×U(3)×U(3) in eq. (31). Much of this enormous global symmetry isexplicitly broken by the Yukawa sectors LY defined in the following.
Yukawa sector
The Yukawa sector contains the interactions between fermion pairs and spinless particles,whose existence is actually indicated by the renormalizability of the SM. Even thoughmostof them are very small, they explicitly break the global symmetries of the massless Yang-Mills sector. As a consequence, this generates masses of fermions after the spontaneousbreaking of the electroweak symmetry.

LY =−Y ℓ
i jL̄

i
LΦe j

R −Y d
i j Q̄

i
LΦd j

R −Y u
i jQ̄

i
LΦ̃u j

R +h.c. (35)
We will see shortly that such a scalar field Φ triggers the Higgs mechanism to be responsi-ble for the spontaneous breaking of the electroweak SU(2)L ×U(1)Y symmetry down tothe electromagnetic U(1)EM symmetry. Note that the U(1)Y invariance indicates that thescalar field must take the form of Φ̃ = iτ2Φ∗ when being coupled to the up quark pairs
Q̄i

Lu j
R.At the classical level, the hypercharge assignments in the SM are arbitrary, as notedin equation (34). However, at the quantum level, they are constrained by the Adler-Bell-Jackiw anomaly. In order to ensure the vanishing of U(1)Y gauge anomalies, the hyper-charge assignments of the SM chiral fermions must satisfy the following equation [57]:

2y3 + y4 + y5 = 0 , y1 + y3 = 0 , 2y3
1 + y3

2 +3(2y3
3 + y3

4 + y3
5) = 0 . (36)

Additionally, the SM may have another type of anomaly, namely the mixed gravita-tional anomaly generated by the triangle diagramwith one hypercharge gauge boson andtwo gravitons. Combining this with the above equation, we obtain the following conditionfor anomaly cancellation [57]:
18y3(2y3 − y5)(4y3 + y5) = 0 , (37)

which only supports two solutions: y5 = 2y3 and y3 = 0. However, the existence of Yukawacouplings in the form of equation (35) forbids the second possibility, since U(1)Y invari-ance implies that
yh = y1 + y2 =−(y3 + y4) = (y3 + y5) . (38)

Thus, the Yukawa couplings determine all the hypercharge assignments to be (in units of
Yh),

y1 =−1 , y2 =+2 , y3 =+
1
3
, y4 =−4

3
, y5 =+

2
3
. (39)

Therefore, the absence of all kinds of anomalies from the SM requires hypercharge to bequantized. It is noteworthy that if additional right-handed neutrinos are included, theirhypercharge must be zero, yνR = 0, in order not to spoil the hypercharge assignmentsof the SM fermions. This implies that either the right-handed neutrino is absent, or it is
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Majorana (in which case it is its own antiparticle and cannot have any quantum numbers,including hypercharge), or it does not have hypercharge for some other reason.It is important to point out that the global symmetries that remained in the Yukawasector can be used to simplify the Yukawa couplings. Without loss of generality, we canwrite any matrix as the product of unitary matrix times a real diagonal matrix times an-other unitary matrix, yielding the lepton Yukawa matrix
Y ℓ =UℓMℓV †

ℓ , (40)
whereUℓ andVℓ are unitary matrices in the family space, and Mℓ is a real diagonal matrix.Nowwithout affecting the rest parts of the Lagrangian, we can absorb the unitarymatricesinto the redefinition of the lepton fields as

L̄L → L̄L U†
ℓ , eR →Vℓ eR . (41)

And then the leptonic part of the Yukawa couplings will become flavor-diagonal
LY,ℓ =−mℓ

i L̄
i
LΦei

R +h.c. , (42)
where mℓ

i is the diagonal element of the lepton mass matrix Mℓ. Therefore, the leptonicYukawa couplings explicitly break the global family symmetry U(3)×U(3) down to thethreeU(1) phase transformations
L̄i

L → e−iαi L̄i
L , eR → eiαi eR . (43)

The associated global charges of these three transformations are called the lepton num-bers Li (i = e,µ,τ) for each family.Nowwe can repeat the same simplification to the quark Yukawa sector by introducing
Y u =UuMuV †

u , Y d =UdMdV †
d , (44)

whereUu,d andVu,d are unitary family matrices, and Mu,d are both real diagonal matrices.What we will find out immediately from eq. (35) is thatVu,d can be both absorbed by theredefinition of right-handed quark fields as
uR →Vu uR , dR →Vd dR , (45)

while Uu,d cannot be both absorbed into the redefinition of left-handed quark fields aswe only have one left-handed chiral representation for the quark fields, which is Q̄L. Thebest way to redefine the left-handed quark fields is to first define the following matrix
V =U†

u Ud , (46)
and then decompose it by Iwasawa decomposition [57] as

V = PU P ′T , (47)
where P and P ′ are diagonal phase matrices generated by elements of the Cartan sub-algebra, and U contains the remaining parameters.Now expand the quark Yukawa couplings sector in eq. (35) in terms of eqs. (44)-(47),we obtain

LY,q =−Q̄LUdMd
ΦV †

d dR − Q̄LUd(P
′U †PT )Mu

Φ̃V †
u uR +h.c. , (48)
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which can be rewritten by field redefinitions as
Q̄L → Q̄LU†

d P ′T , dR → P ′VddR , uR → PVuuR . (49)
As a result, the quark Yukawa sector in eq. (35) becomes [57]:

LY,q =−md
i Q̄i

LΦdi
R −mu

jQ̄
i
LU †

i j Φ̃u j
R +h.c. , (50)

where md
i and mu

j are the diagonal elements of the quark mass matrices Md and Mu,respectively. The matrix U is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [77,78]. In the quark sector, the only remnant of the previous global symmetries U(3)3 is acommon U(1) phase transformation for all the quarks,
Q̄i

L → e−iα Q̄i
L , di

R → eiα di
R , ui

R → eiα ui
R , (51)

which is nothing but the quark number, or 1/3 of the baryon number B. It is also straight-forward to check that both the baryon number and the lepton number are both anoma-lous, while the difference between the baryon number and the lepton number (B−L) isconserved at the quantum level.Lastly, it is worth mentioning that if there had been only two families, such decom-position (the Euler decomposition) would have left us with only one rotation angle andno phase. Therefore, we conclude that, with three families, in total the Yukawa sector ofthe SM depends on thirteen (real) parameters: nine masses, three mixing angles and onephase.
Higgs sector
Wenow turn to thefinal part of the SMLagrangian, which is theHiggs sector that describesthe Higgs doublet and its interactions with the gauge fields and with itself. The Lagrangianof the Higgs sector is simply composed of the covariant term of the Higgs field and thescalar potential in the Higgs mechanism we introduced in the last subsection

LH = (Dµ Φ)†(Dµ
Φ)+m2

Φ
†
Φ−λ (Φ†

Φ)2, (52)
where the Higgs field Φ is a doublet under the SU(2)L gauge symmetry and a singletunder SU(3)C ×U(1)Y with 1

2 hypercharge. The potential of the Higgs field is arranged
in a special way to generate a vev for the Higgs field at v = m/

√
λ ≈ 246 GeV, whichspontaneously breaks the electroweak symmetry and generate the mass terms for theelectroweak gauge bosons as the Higgs mechanism shows.The expansion of the Higgs kinetic terms (Dµ Φ)†(Dµ Φ) actually contains more inter-actions besides the masses of gauge bosons, such as the mass and self-interaction of theHiggs boson. By parameterizing the Higgs field in unitary gauge as

Φ(x) =
1√
2

(
0

v+h(x)

)
, (53)

the Higgs boson is thus identified as the field h(x) as an excitation from the vacuum, whichis a neutral scalar boson under the U(1)EM gauge symmetry.Now we can expand the Lagrangian of the Higgs sector eq. (52) by eq. (53)
LH =

∣∣∣∣Dµ

(
v+h√

2

)∣∣∣∣2 + 1
2

m2(v+h)2 − 1
4

λ (v+h)4

=

(
1
2

m2v2 − 1
4

λv4
)
+

∣∣∣∣Dµ

(
v+h√

2

)∣∣∣∣2+(
1
2

m2 − 3
2

λv2
)

h2 −λvh3 − 1
4

λh4.(54)
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This is the Lagrangian of the Higgs sector in the unitary gauge after the SSB of the elec-troweak symmetry. We can simplify this expression further by applying the minimizationcondition of the potential that is v = m/
√

λ and replace the bare parameters m and λ inthe potential with the physical observables assigned with specific physical meanings.The first term in eq. (54), which is a constant term in the Lagrangian, is the vacuumenergy corresponding to the potential energy when h = 0 that read
V (h = 0) =−1

2
m2v2 +

1
4

λv4 =−m4

4λ
. (55)

The result that the vacuum has a negative nonzero vacuum energy, indicates that thevacuum is not normalized properly in the asymmetric phase. In fact, this is just an artifactof the SSB because our starting potential in eq. (52) assumes a zero vacuum energy when
Φ = 0, which is, however, not the global minimum of the potential. Therefore, strictlyspeaking we should reformulate the original Higgs potential by adding this tiny constantto normalize the vacuum, but we usually neglect this term as there are no global effectsto any observables except for the vacuum energy of the SM.The second term in eq. (54) includes the kinetic term and the interactions with thegauge bosonsW±

µ and Zµ . After rotating the gauge bosonsW 3
µ and Zµ by the weakmixingangle θw defined in eq. (23), the covariant derivative of the Higgs boson in terms of masseigenstates is

Dµ = ∂µ − ig2W+
µ τ

+− ig2W−
µ τ

−− i
g2

cosθw
Zµ τ

3 , (56)
and thus, the Lagrangian is expanded to

LH ⊃
∣∣∣∣Dµ

(
v+h√

2

)∣∣∣∣2 = g2
2v2

4
W+

µ W−µ
+

g2
2v2

8cosθ 2
w

Zµ Zµ +
1
2
(∂µ h)2

+

(
g2

2v
2

W+
µ W−µ

+
g2

2v
4cos2 θw

Zµ Zµ

)
h+

(
g2

2
2

W+
µ W−µ

+
g2

2
4cos2 θw

Zµ Zµ

)
h2. (57)

The above expression clearly shows that the interactions between the gauge bosons andthe Higgs field induce the mass terms of the gauge fields when the Higgs field acquiresthe vev. We can thus define the mass terms of the gauge boson as
mZ =

g2v
2cosθw

, mW± =
g2v
2

, (58)
and the expansion of the covariant derivative of the Higgs field is thus expressed by thephysical observables as
LH ⊃

∣∣∣∣Dµ

(
v+h√

2

)∣∣∣∣2 = 1
2
(∂µ h)2 +

(
m2

W W+
µ W−µ

+
m2

Z
2

Zµ Zµ

)(
1+2

h
v
+

h2

v2

)
, (59)

where the last term depicts the interaction between the gauge bosons and the Higgs bo-son.The third term of eq. (54) is actually the mass term of the Higgs boson mh

LH ⊃−
(
−1

2
m2 +

3
2

λv2
)

h2 =−1
2

m2
hh2 , with m2

h = 2λv2 = 2m2 . (60)
Unlike the original negative quadratic coupling −m2Φ2 in the Higgs potential, the mh ispositive definite implying that the physical Higgs boson field h has the correct sign which
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can be interpreted as the physical mass term. We now know that this corresponds toabout 125 GeV by the discovery of the Higgs boson to be introduced in the next section.Finally, the last two terms in eq. (54) are the self-interactions of the Higgs boson. Theycan be rewritten in terms of physical observables as
LH ⊃−λvh3 − 1

4
λh4 =−g2m2

h
mW

h3 − g2
2m2

h

32m2
W

h4 . (61)
In summary, after the SSB of the electroweak symmetry, the expansion of the La-grangian of the Higgs sector in the unitary gauge (eq. (54)) is

LH =
1
2
(∂µ h)2 − 1

2
m2

hh2 − g2m2
h

mW
h3 − g2

2m2
h

32m2
W

h4

+

(
m2

W W+
µ W−µ

+
m2

Z
2

Zµ Zµ

)(
1+2

h
v
+

h2

v2

)
. (62)

2.7 Parameters of the Standard Model
Now we have gained a comprehensive understanding of the Standard Model, and it hasbecome clear that every operators in the SM Lagrangian in eq. (28) has a coefficent fullydetermined by a set of independent fundamental parameters [79], such as the couplingconstants. But without determining the specific values of these coefficients from experi-ments, it is just a mathematical model that cannot give any quantitative description. Theway of fixing all these coefficients is tomap them into the experimental obersevables fromtheoretical calculation, such as scattering amplitude, anomalous magnetic moments, etc,up to any order of accuracy in perturbation theory, and then compare the calulation re-sults with the measured values of the observables. In this way, we can check how accu-rately the StandardModel, as a robustmathematical model, can describe the phenomenaobserved in the experiments. The StandardModel’s predictive power, which enables accu-rate predictions of particle physics experiments with remarkable precision, has cementedits status as one of the most successful mathematical models in the history of science.It is important to note that there are no explicit coupling constants in the partial La-grangianLG +LF , or more explicitly, in the kinetic terms of fields [79]. Instead, we havechosen to absorb them into the definition of the gauge field Aµ and the spinor fields ψ ,so the coupling constants are implicitly present in the covariant derivatives, defined ineq. (32), which describe the interactions between the gauge bosons and fermions. Aswe have seen, there are three gauge couplings associated with the three different groups:
gY , g2, and g3 respectively. What’s more, the Yukawa sectorLY contains 13 parameters ofthe Yukawa couplings (12 real and 1 phase), while the Higgs sector LH includes one Higgsself-coupling λ and one dimensionful parameter m associated with the Higgs mass. Thus,the classical SM depends on 18 parameters, not including the masses and mixing of neu-trinos. In addition to being invariant under the gauge group SU(3)C ×SU(2)L ×U(1)Y ,the Standard Model is also invariant (at the classical level) under four global phase trans-formations, the three lepton numbers U(1)Le

×U(1)Lµ
×U(1)Lτ

and the baryon number
U(1)B.The above counting is actually altered by quantum effects [57]: quantum anomaliesbreak a linear combination of baryon and lepton numbers. The chiral anomaly also intro-duces another parameter that describes the QCD vacuum. These anomalies, however, donot alter the renormalizability of the theory since they affect only ungauged symmetries.On the other hand, the quantum effects shift the exact values of these parametersfrom their bare values because of the runnings of these parameters with respect to the
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energy scales. The reason behind the running of the couplings can be summarized in thefollowing way: starting from a UV theory at a cut-off ΛUV, we expect that all the higher-energy excitations should contribute to a general interaction, so wemust sum over all theone-particle irreducible diagrams containing the exchange of imaginary particles in orderto get an effective coupling constant (vertex). But the exchanging of heavy modes areenergy-dependent, so in a low energy theory the observed values of couplings must besuppressed because less quantum-exchange were counted. Such a physical picture canbe summarized in a simplified formulation known as the renormalization groups [45, 46,47, 48, 49, 50, 51, 52, 53], which transforms the EFT description of a theory from the UVscale to the IR scale. The importance of RG must be emphasized here because it is one ofthe most important concepts in modern quantum field theory, and is one of the deepestunderlying principles of physics that we know today.Nevertheless, all the couplings must be renormalized at a fixed energy scale, where itbecomes meaningful to give the exact values of these 18 SM parameters, otherwise, theyare merely functions of the energy scale. For instance, at the Electroweak scale which iscommonly chosen as theZ bosonmassMZ = 91.2GeV,we can calculate the precise valuesfor all observables, including the particle masses, decay widths, scattering cross sections,etc. And then these parameters can be fixed by comparing the theoretical predictionswiththe experimental data through a standard procedure known as the mapping [54]. In thisway, we are able to obtain all of the 18 parameters at the same Electroweak scale, whichhave now become standard inputs for the StandardModel and are listed in the handbookof Particle Data Group (PDG) [21].Suppose we have now determined all the Standard Model parameters (as we have)and obtain a perfect mathematical model that describes the physics of our world. It isthen logical to ask the following two questions:
1. What is the origin of these parameters in the Standard Model?
2. What are the conditions under which the Standard Model can be applied?
These two questions are very fundamental regardless of the specific values of the SMparameters. They lie at the core of our pursuit to comprehend the deepest origins ofthe Standard Model as a physical theory and to explore the fundamental laws of physics.Countless research efforts in particle physics have been dedicated to addressing thesequestions.Regarding the first question, we can imagine a fundamental theory where all SM pa-rameters can be in principle calculated from only one or a few “fundamental parameters”defined in the moduli space. In such a scenario, all SM parameters, such as the gauge andYukawa coupling constants, can be derived as functions of these moduli. If this idea wereto be realized, it would offer hope for resolving one of the biggest challenges in physicsand shed light on many other profound questions across various fields of study. Such anachievement could potentially propel the progress of human civilization and benefit all ofhumankind.On the other hand, the second question is comparatively more manageable and mayindeed have practical solutions. We will delve into further details regarding this questionin the subsequent chapters of this thesis.
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2.8 Vacuum of the Standard Model
In our previous discussion about the Standard Model, the parameter counting remainsincomplete due to the omission of a general type of terms in gauge theories called thetopological or θ -terms [58]:

L ⊃ θ trF ∧F ∼ θε
µνρσ Fa

µν Fa
ρσ ∼ θ trFF̃ . (63)

At first glance, this would seem to introduce three new parameters, one for each gaugegroup. However, it’s important to note that these terms act as total derivatives whenexpressed in terms of Aµ through Chern-Simons current. Consequently, they remain in-visible in perturbation theory. In the Abelian case, the θ -term in U(1) gauge theoriesremains unobservable, as there are no instantons present to contribute to its effects, ei-ther through perturbative or non-perturbative means. However, in the non-Abelian case,the existence of instantons leads to a nonzero Chern-Simons invariant of the form:∫
F ∧F , (64)

which goes to zero in the presence of charged massless fermions [58]. Therefore, theonly non-zero possibility must arise from the QCD instanton configurations, giving riseto a physical QCD θ -term. A non-zero value of θQCD breaks the CP symmetry of QCD,resulting in a non-zero electric dipole moment of the neutron. However, experimentalsearches have thus far produced only an extremely small upper bound, approximately
θQCD < 10−10.In any case, we have now arrived at our final result of 19 parameters. However, itis essential to recognize that the status of these parameters varies significantly. In thefollowing sub-chapter, we will delve into a detailed examination of these operators usingthe EFT language.
2.9 The Standard Model as an Effective Field Theory
At the beginning of the chapter, we demonstrated the advantages of adapting to an EFTdescription. Additionally, we have recognized the intricate nature of the Standard Modelas a delicate mathematical model containing a set of parameters: 17+1 dimensionless pa-rameters (including the QCD θ -term) and 1 dimensionful parameter m. Consequently, thekey question that arises is how we can rewrite the Standard Model using the language ofEFT, enabling a clear depiction of the explicit dependence on the dimensionless parame-ters and the SM cutoff scale Λ.When treating the Standard Model as an EFT, our key assumption is that a finite cut-off Λ ≫ MZ is present and that the SM is the effective theory valid below this cutoff.The rationale behind this assumption will be elaborated upon in the subsequent chapter.Presently, we entertain two possibilities for this cutoff: it can either correspond to thescale at which the EFT framework becomes insufficient, or it can be the scale at which theSM is replaced by a different, more fundamental, ultraviolet QFT.Let us recall that any EFT, as defined in eq. (5), inherently incorporates a character-istic cutoff scale Λ along with a set of dimensionless Wilson coefficients. Whenever a
n-dimensionful parameter is required, it must be supplied by a power of the cutoff scaleas Λ4−n. It turns out that this is very useful in the classification of operators within theEFT. Specifically, at low energies (E < Λ), terms inversely proportional toΛ become small,rendering them irrelevant operators in the IR that are non-renormalizable. This situationcorresponds to the condition where the scaling dimension n of the irrelevant operator
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is greater than the spacetime dimension d, expressed as n− d > 0. Conversely, termsproportional to positive powers of Λ require n < d and are deemed relevant in the IR, in-dicating their super-renormalizability. Themarginal operators are those with n = d, whichcan be either relevant or irrelevant depending on their anomalous dimensions.We can now apply this classification to the SMand derive the StandardModel EffectiveField Theory (SMEFT, for review see e.g. [54]) in order to clarify the dependence on theSM cutoff scale Λ. It is not necessary to consider the full SM Lagrangian for this purposesince, apart from the Higgs mass term associated with the dimensionful parameter m,all other operators in the SM are dimension-4 operators characterized by dimensionlessparameters. So obviously, the Higgs mass term is clearly a relevant operator, while theremaining terms in the SM are considered marginal. With this understanding, we arenow ready to write down the Lagrangian of SMEFT. We first generalize the SM Lagrangianwith an SM cutoff scale Λ by incorporating all possible irrelevant operators into the SMLagrangian in eq. (28) as
LSMEFT = LSM +

∞

∑
n=5

cnOn

Λn−4 . (65)
We further rearrange all terms in SMEFT Lagrangian according to their scaling dimensions:

LSMEFT = L2 +L4 +L5 +L6 + . . .

= c2Λ
2|Φ|2 + |Dµ Φ|2 −λ |Φ|4 +L ′

4 +L5 +L6 + . . . , (66)
where we have expanded LSM and LH by eq. (28) and eq. (52), and the L ′

4 term is therenormalizable SM Lagrangian without the Higgs part: L ′
4 = LG +LF +LY . We alsoexpress the dimensionful Higgs mass parameter as m2 = c2Λ2, with the expectation that

|c2| ≪ 1 is necessary for the Higgs to be a dynamical field below the cutoff. The reasonfor this is because if c2 = O(1), the mass of the scalar field Φ will be of the order of thecutoff scale Λ, and then at energies much below it we can always integrate out this heavydegree of freedom resulting in the absence of a dynamical Higgs field.Hence, without loss of generality, the SMEFT transmutes the SM dimensionful param-eter m into a dimensionless Wilson coefficient which is extremely small: |c2| ≪ 1, withthe price of introducing the SM cutoff scale Λ. The implication is straightforward: a veryparticular UV completion must exist that enables the tuning of this coefficient to a verysmall value in a natural manner. However, at the moment it is insufficient to argue for theexistence of such tuning without considering the inclusion of quantum corrections. Wewill revisit this point in greater detail in the subsequent chapter.Before closing this chapter, it is crucial to address a fundamental question regardlessof the origin of parameters in the SM. The question at hand is: whether it is reasonableto have extremely small parameters (dimensionless or dimensionful) in an EFT? Supposewe have a fundamental theory above the EFT cutoff scale that allows for the precise cal-culation of the exact Wilson coefficients in the low-energy EFT, can we obtain an accurateresult where the theoretical uncertainties are less than O(10−10) or O(10−38)? To ac-complish this, we would need to compute all quantum corrections in order to define themeasure for the fine-tuning [58].Roughly speaking, if the quantum corrections are small (or logarithmic-divergent), nofine-tuning is required, and a small number remains small from the UV to the IR scale.In this sense, the small number is considered natural (also known as technical natural-ness [39]) and predictable from a UV theory, as is typically the case for gauge and Yukawacouplings. However, if the corrections are large (or power-divergent), a fine-tuning is
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present, indicating the need for a large bare parameter to cancel out the large correc-tions. In such cases, an extremely small computational outcome will not trivially emergein an EFT due to the loss of accuracy after an RG transformation. We have repeatedly ob-served examples of this in nature in various physics theories, and even our most precisemeasurements have not reached an accuracy of O(10−38). Hence, in an EFT, the pres-ence of a small number that receives large quantum corrections seems to contradict ourfundamental physics intuitions.As we are already aware of the existence of a few such small numbers, such as the cos-mological constant, Higgs mass term, and QCD θ -term, a more significant question arises:Do these unnatural small numbers indicate the existence of an underlying theory at thefundamental level, where all these small numbers can be precisely calculated? Alterna-tively, can we formulate a more fundamental theory at the scale Λ where ci ≪ 1 can becomprehended?
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3 Problems of the Standard Model
Despite being a successful mathematical model that has withstood the test of time, theStandard Model is incomplete. Although it has undergone extensive testing, there arestill theoretical problems that remain unsolved, and unknown phenomena that are leftunexplained in the SM.Most importantly, it absents the explanation for at least fourmajorphenomena observed in our everyday lives:

1. The gravitational field and interaction.
2. The accelerating expansion of the universe.
3. The masses and mixing of neutrinos.
4. Hierarchical assignments for three generations ofmatter fields and three gauge cou-plings, in addition to the existence of non-trivial topological vacuum structure.
Thepresence of these problemsprevents the SM fromserving as a fundamental theoryof physics that provides a quantummechanical description of all particles and interactionsin nature. Regardless of any biases one may hold when selecting scenarios that provideaesthetically natural or logically reasonable explanations for well-known unsolved prob-lems in physics, a fundamental theory of physics must describe these phenomena in aunified framework based on a set of principles. Therefore, the pursuit of a unified theorythat explains these four phenomena is important, and the inability of the StandardModelto do so represents one of its biggest challenge. The physics Beyond the Standard Model(BSM), is a subject that study these problems and how StandardModel can be completedinto a more fundamental theory at high energy scales in a consistent manner.The SM faces other numerous challenges as well, although some of these issues ad-mit well-established natural solutions. For example, the inflation scenario addresses thehorizon and flatness problems of the universe, while the dark matter scenario explainsthe rotation curve problem of galaxies, and the axion scenario addresses the strong CPproblem. However, most of the theoretically or phenomenologically intriguing problemsof the SM, such as the hierarchy problems, proton decays, baryogenesis, and the B physicsanomaly, are still the subject of debate. To address some of these problems, wemay haveto rely on certain criteria and biases to consider certain EFTmodels, even if these EFTs can-not solve all the issues simultaneously. Furthermore, as we attempt to generalize thesewell-motivated models to incorporate other problems, it is common for new questions toarise one after another.There are so many new possibilities and so many challenges existing now, it is justdifficult to perform an analytical study of all different BSM models. But there is some-thing in common in the solution of these questions, and can be understood in a model-independent way. In this chapter, we will, therefore, discuss a few critical questions in SMmentioned above without specifying a model.

3.1 Gravity
Gravity cannot be described in a quantum mechanical way, as is widely recognized overthe past. This is not a problem specific to the Standard Model, but a general limitationof quantum field theory in curved spacetime. The reason is simple, near the quantumgravity scale gravitons and higher excitations such as higher spin states and KK modes,start to contribute [80], leading to a tower of states that strongly interact with each other.The exchange of these UV degrees of freedom significantly changes the whole picture: for
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example, the effective coupling for graviton scattering goes like [33]
ge f f (E)2 ∼ E2

M2
P
, (67)

which is different than the logarithmic scaling behavior of gauge couplings in traditionalgauge field theory where the gauge coupling g(E)−2 ∼ ln(E/Λ) becomes strong for E ∼
Λ ≫ MP. As a result, near the Planck scale the effective operators with higher scalingdimensions start contributing to the graviton scattering process, and it turns out that weencounter infinitely many vertex operators with UV-divergent amplitudes that are typi-cally non-renormalizable. This loss of control over couplings and UV degrees of freedomseems to suggest a breakdown of a quantum field theory description of gravity.However, as long as we are dealing with energies much lower than the Planck scale(i.e., E ≪MP), the changes in the couplings are small. In this sense, the low energy theorycan be considered as a nice classical effective field theory in which gravity can be decou-pled below the cut-off scale ΛQG, where the spacetime is flat and the conventional QFTprovides a good approximation. The SM is such an EFTwhere the effects of gravity are neg-ligible at the scale much below the Planck scale, where we are safe to consider the gravityas a perturbation around the flat spacetime, known as the QFT in curved spacetime. Thecrucial problem is that we must be very careful on the EFT breakdown scale, where thenon-trivial gravitational interaction comes into play and ruins the whole conventional EFTapproach.But if the EFT does not work, what should a theory of gravity look like? Given theimportance of unitarity as a fundamental principle of physics [79], it is natural to expectthat a quantummechanical description of gravity should exist and be formulated in a waythat preserves unitarity (for example, in S-matrix [81]). However, only a handful of gravitytheories have been able to achieve this requirement in a self-consistent way. Therefore,gravity must set a non-trivial constraint on gravitationally-interacting EFTs by conservingthe unitarity in a non-trivial way, even if gravity ruins the renormalizability of the EFT inthe presence of UV degrees of freedom. The detailed construction of models involvinggravity [82] is beyond the scope of this thesis, we will not go any further in this topic.
3.2 The Accelerating Expansion of the Universe
The latest observations of the universe have shown that it is expanding at an acceleratingrate. To account for this phenomenon, a constant term called the cosmological constantmust be added to Einstein’s equation that describes the energy density of the vacuum.Wemay shortly summarize the effect of this constant term from the EFT perspective [58].For now, let’s set aside most of the deep conceptual problems in quantum gravity andtreat the metric as a gauge field expanded around the flat space as gµν = ηµν +hµν . Thisallows us to derive the leading order coupling between hµν and SM matter fields, whichis analogous to the coupling of gauge fields to matter via gAa

µ jµ
a [58]:

Leff ⊃ κhµν T µν , (68)
where κ ≡ 1/MP is the dimensionful coupling of gravitational field, and Tµν is the energy-momentum tensor. Note that we have applied the rescaling h → κh for convenience.Since a nonzero cosmological constant implies a nonzero energy-momentum tensorin the vacuum proportional to the vacuum expectation value of the energy density as
⟨ρ⟩ ≡ λ , we can express this tensor asT µν =−ηµν λ , to be substituted into equation (68)to obtain a non-zero tadpole term for the flutation field hµν :

Leff ⊃−κhµν η
µν

λ . (69)
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This is the effective operator corresponding to the contribution of a nonzero vacuum en-ergy density (cosmological constant) in the EFT language.It is argued that the observed cosmological constant is a fine-tuned quantity in theEFT context [58]. In order to do so, we need to calculate the loop corrections to the bareparameterλ . Theway of doing it is to introduce boson and fermionfieldswhich contributeto the effective vertex λ of the metric field hµν , and then integrate out all particles asheavy degrees of freedom. Let’s rename the original cosmological constant term in thetree-level action as the bare coupling λ0, the renormalized vacuum energy density canthus be expressed as:
λ = λ0 +

cλ

16π2 Λ
4
EFT , (70)

where ΛEFT is the cut-off of the EFT. The coefficient cλ is proportional to the sum ofbosonic and fermionic degrees of freedomand does not include a small coupling constant.For a single real scalar field with mass m in the Euclidean signature, this means theloop corrections are explicitly:
δλ =

1
2

∫ d4k
(2π)4 ln(k2 +m2) = c0Λ

4
EFT + c1m2

Λ
2
EFT + . . . , (71)

where the cutoff of the integration is chosen to be the EFT scale ΛEFT .By comparing the observed value of the vacuum energy, which is estimated to be ap-proximately λ ≃ (2.2 meV)4 [58], with the right-hand side of eq. (70) where the cutoff isexpected to be of the order of the Planck scale ΛEFT = MP ≃ 1018 GeV, one finds a hugediscrepancy of roughly 10120 orders ofmagnitude: λ ∼ 10−120M4
P. This discrepancy repre-sents the worst case of fine-tuning within the EFT framework, known as the cosmologicalconstant problem (CC problem).Moreover, the second term in eq. (71) are significant sub-leading order corrections tothe vacuum energy proportional tom2Λ2

EFT , which is again huge even when only the lightSM particles are included. In addition, the complex vacuum structure of the SM leads tofurther effects on the vacuum energy density due to the presence of the vacuum expecta-tion value of the Higgs field. All these subtle issues suggest that a non-trivial completionof the SM is needed to explain the observed vacuum energy density in a natural way.
3.3 The Neutrinos
The existence of neutrino oscillation clearly proves that neutrinos must have tiny massesand mixings. So a realistic EFT in the UV must include the mechanism of masses andmixings in a certain way. Once we write down a UV model, by the standard matching andrunning in the EFT framework introduced in chapter 2.9, we canobtain certain operators inSMEFT incorporating all the UV effects corresponding to the neutrino masses. Therefore,without writing down any specific model, it is clear that such neutrino masses must comefrom the dimension-5 Weinberg operator [83], which is also the unique (up to the flavorstructure) dimension-5 gauge-invariant operator allowed in SMEFT:

L5 =
c5

Λ

(
L̄iH̃

)(
H̃L j)†

. (72)
After the electroweak symmetry breaking, the Higgs acquires a vev at vEW so the low-energy effect of the above operator is to give mass to the neutrino as:

L5 ∼
c5v2

EW
Λ

(
ν̄

i
L
)C

ν
j

L . (73)
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Instead of the Dirac mass term, this term corresponds to the Majorana mass term forthe left-handed neutrinos. Note that because the SMEFT only contains exactly the samedegrees of freedom as the SM, a right-handed neutrino cannot be introduced, and hence,a Dirac mass term for the neutrinos is strictly forbidden. This term explicitly breaks thelepton number symmetry, but it is fine to have it here, because an EFT in principle doesnot need to respect any global symmetry.Given that the current experimental bound on the left-handed neutrino masses are atthe order of 0.1 eV, froman EFT perspective if the coefficient is c5 =O(1), this immediatelyimplies that a cutoff scale Λ for this operator is2
mνL ∼

v2
EW
Λ

⇒ Λ ∼ 3×1014 GeV . (74)
This defines a new scale as the cutoff scale of SMEFT, referred to as the neutrino scale. Asany EFT is invalid beyond its cutoff scale, we know that this is where the SMEFT must bebroken, and instead, a new UV EFT must be used. Fortunately, it is not difficult to writedown such a UV-EFT where the Weinberg operator is generated by the renormalizableoperators via the so-called seesaw mechanism [84, 85, 86].There are many different ways of realizing the seesaw mechanisms, which can beroughly classified into three different categories according to the new degrees of freedomintroduced in the high-scale EFT:

1. Type-I: the chiral partner of νL (the right-handed neutrino νR) is introduced at UV.
2. Type-II: a SU(2)L triplet scalar is introduced at UV.
3. Type-III: a SU(2)L triplet fermion is introduced at UV.

In addition, similar to the type-I seesaw, we may have an inverse seesaw model [87], or alinear seesaw model [88], where the tree-level Majorana mass term for νR can be absentwith the price of introducing extra fermions.The type I seesawmodel seems to be themost economical choice, as the right-handedneutrino exists in many different UVmodels and naturally leads to the Left-Right symmet-ric models. But we could not exclude the other possibilities, as well as the most compli-cated scenario where we need a combination of all the three scenarios.Let us focus on the simplest and probably the most natural seesaw model at the mo-ment, the type-I seesaw model. It is remarkable that with the addition of just a singlemassive fermion, the right-handed neutrino νR, we can generate the Weinberg operatoras the low-energy EFT where the observed mass of neutrinos becomes naturally small.Recall that the SM is anomaly-free, to retain the anomaly-free structure in a UV-EFT, theright-handedneutrinomust be a singlet under the SMgauge group, andmust not carry anyhypercharge as was demonstrated in eq. (39). And in the case of neutral fermion, thereis no gauge symmetry to forbid the existence of Majorana mass terms for the fermion.Therefore, rewrite the neutrino as theWeyl spinors, themost general mass term for right-handed neutrinos (of one generation) is simply [58]:
LmνR

⊃−β L̄H̃νR −
1
2

MRν̄RνR . (75)
The first term is a Dirac mass mimicking a mixing between the left-handed and right-handed neutrinos, and the second term is a Majorana mass term for the right-handed

2If instead an unnatural small coefficient c5 ≪ O(1) is introduced, the neutrino scale can belower, but then we will leave the smallness of neutrino masses unexplained.
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neutrino. TheMajoranamass term for the left-handed neutrino, as we learned in eq. (74),is extremely small and should stay small even after running and matching to another UVEFT. Now integrating out the heavy right-handed neutrino, we obtain precisely the Wein-berg operator with
c5 ∼ β

2 and Λ ∼ MR , (76)
which gives the observed neutrino mass mνL = β 2v2

EW/MR.Hence, any high-energy EFT with the type-I seesawmechanismmust have an effectiveneutrino mass term taking the form of eq. (75). But similar to the case of other fermions,it seems that we can have a more fundamental mechanism to generate such an effectivemass term in a natural manner and explain the origin of the neutrino scale MR. For ex-ample, we can consider that the effective Majorana mass indeed originates from a morefundamental UV theory via the spontaneous symmetry breaking and the Yukawa coupling.This idea naturally leads to the Left-Right symmetric model, where the Majorana mass ofright-handed neutrinos may be generated by couplings with an additional scalar tripletfield ∆R charged under a SU(2)R gauge symmetry.For simplicity, we have only discussed the neutrinos for one generation. For the threegenerations case, there aremixings in different flavor eigenstates, in analogy to themixingin the quark sector. The existence of mixings has been confirmed in the neutrino oscilla-tion experiments, and all the mixing angles have been measured. It is again non-trivial toexplain the origin of these mixing angles and phases unless we have a more fundamentaltheory for neutrinos.Lastly, the effective neutrino mass term in eq. (75), if present in a UV theory, con-tributes to the self-energy of the Higgs field and results in a large quantum correctionproportional to M2
R. If M2

R ≫ m2
H , then a large fine-tuning is required in order to makethe physical Higgs mass term small. We shall discuss more details about it in the nextsub-chapter.

3.4 The Hierarchy Problems
One of the most important problems to be solved for physics at the electroweak scale,is the gauge hierarchy problem, which is the question of why the electroweak scale is somuch smaller than the Planck scale. From the EFT perspective, if the Standard Model canbe renormalized to the Planck scale, we can set the SM cutoff at the Planck scale Λ = MP,and then the difference between the electroweak scale and the Planck scale becomes
m2

H/M2
P. We have also seen in the previous chapter that we can naturally write the Higgsmass term as m2

H = c2Λ2 = c2M2
P, so the gauge hierarchy problem is equivalent to thequestion of why the coefficient c2 is so small.To seriously discuss why it is unacceptable to have an extremely small coefficient c2,wemust compute the quantumcorrections to the coefficient, just aswedid for the cosmo-logical constant. However, different than the rest of the dimensionless parameters whichrun logarithmically as energy increases, the Higgs mass term runs quadratically [58]:

δm2
H(µ) = m2

H(Λ)+
cH

16π2 Λ
2 +O(Λ0) , (77)

where roughly speaking cH = λH + y2
t + g2

2 + . . . when suppressing all O(1) coefficientsand disregarding all logarithmic coefficients. Therefore, cH ∼ O(1) if the cutoff scale is
Λ = 1TeV. If we set the cutoff scale to be the Planck scale, things are getting worse aswe need a very large m2

H(Λ) to cancel the large quantum corrections. Similarly to thecase of the cosmological constant, there exists a fine-tuning between the bare mass term
38



m2
H(MP) and the loop corrections cHM2

P ∼ (1019 GeV)2 canceling each other to obtain asmall physical Higgs mass term at the electroweak scale m2
H(vEW )≃ (125GeV)2.Itwas argued that a small renormalized value cannot be small, unless there is a symmetry-based explanation for this [39]. This is the well-known Naturalness principle, which statesthat if a bare parameter is set to zero, the radiative corrections should not lead to a renor-malized non-zero value. The Higgs mass term clearly violated this with a quadratic diver-gent term as the cutoff scale increases. For example, one proposal is to explain via softlybroken supersymmetry (SUSY) since SUSY implies non-renormalization theorems [89] thatprevent the superpotential to be renormalized and hence no perturbative correctionsarise. However, none of the explanations so far have been quite successful in provid-ing a natural explanation for this puzzle while keep being compatible with experimentalresults.On the other hand, there are other hierarchies within the Standard model. We haveseen two of them in our previous discussion: the first one is the strong CP problem, andthe second one is the hierarchies in the Yukawa couplings which basically ask why are themasses of some particles orders of magnitudes different from each other. The latter onerelates to the origin of Yukawa couplings.
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4 Beyond the Standard Model (BSM) Models
Asmentioned in the previous chapter, not all of the problems within the SM can be simul-taneously solvedwithin a unified framework. Therefore, wemust first consider toymodelsto better understand the essential issues related to the specific problem. The hope is thatsomeday we will be able to combine all the crucial ideas proposed in these toy modelsinto a complete theory within a unified framework that can solve all the problems of theSM simultaneously. This approach is known as the bottom-up approach, or EFT approach,where the models are usually based on extending the Standard Model, referred to as Be-yond the StandardModel (BSM)models. While it may be challenging, theorists have beenworking on this method for decades.In order for any BSM model to be compatible with all experimental observations, itmust be constructed in a consistent manner, ensuring that the Standard Model EffectiveField Theory (SMEFT) is realized as a low-energy EFT. This standard process is commonlyreferred to as the matching in the EFT framework. The objective is to match a specificUV-EFT to the SMEFT precisely at a high-energy scale ΛUV . And it entails integrating outall the heavy degrees of freedom, thereby yielding all the Wilson coefficients which canbe constrained by the experimental observations through the running of mappings thatoccur within the SMEFT [54]. Since all the renormalization group (RG) flows in the SMEFTare well-defined, our primary focus lies in the full effective action at a specific high-energyscale ΛUV . This high-energy effective action encompasses the model-dependent aspectsof BSM model building.Before delving into the details of the EFT approach, we first raise a few fundamen-tal questions that EFT theorists concern about. Suppose we have constructed a specificBSM model with its effective action remaining valid at a high-energy scale ΛUV , to accu-rately describe the observed low-energy physics. In such a scenario, wewould expect thatstarting from this EFT, we can derive every parameter of the Standard Model through thestandard matching procedure, thereby establishing a fully determined renormalized EFTat the IR scale. However, this raises a more significant question: How can we preciselycalculate all these small parameters (e.g. θQCD ≲ 10−10) from a UV-EFT? Consequently,we are faced with three key challenges:

1. How can we explain the precise (small) values of the 17 dimensionless parametersof the SM, including gauge couplings, Yukawa couplings, and Higgs self-coupling?
2. How can we explain the fine-tuning parameters in the SM, including the Higgs massterm and the QCD θ -term?
3. How can we explain the cosmological constant with the observed value in EFT?

Additionally, if the theory predicts additional parameters for degrees of freedomnot presentin the SM, such as right-handed neutrinos, another challenge arises
4. If additional degrees of freedom are generated at a high-energy scale, how can wegenerate their parameters, such as masses and interactions, without exacerbatingthe hierarchy problem?

These challenges are all important and relate to the origins of parameters in the model,which should be addressed to develop amore complete understanding of the unified the-ory and its underlying principles.But what will these underlying principles look like? Over the past few decades, the-orists have gained considerable experience constructing BSM models and have come torecognize that two fundamental principles have been highly effective inmaking successful
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predictions and in addressing the above questions [33]. The first principle, knownasUV/IR
decoupling, asserts that low-energy physics can be effectively described independently ofhigh-energy physics within the EFT framework. The second principle, Naturalness [90],assumes that coupling constants in a theory are of order one in the appropriate massscale. Therefore, if any parameter is unusually small or large3, a good explanation, suchas an underlying symmetry, is require [33].In this chapter, we will focus on examining toy models capable of understanding theorigin of other parameters in the SM except for the CC. This approach is motivated by thefact that, given a well-defined UV model, we can separate it into two parts: one that gen-erates the observed patterns for SM parameters and another that generates the CC andremaining UV degrees of freedom. With this strategy in mind, we will discuss several BSMmodels based on the principles of UV/IR decoupling and naturalness, including the Two-Higgs-Doublet Models (2HDMs) [91], Classical Scale Invariant Models (CSIMs) [92, 93, 94,95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 1], Left-Right Symmetric Models (LRSMs) [105],and Grand Unified Theories (GUTs) [105], all of which provide explanations for the ori-gins of various SM parameters. We will also emphasize that most BSM models require anon-trivial flavor structure to avoid experimental bounds on flavor violation. Therefore,constructing a mechanism to explain the origin of this flavor structure or constraining pa-rameters in the Yukawa sector, and understanding their phenomenological consequences,are critical in BSM model building [90].
4.1 Two Higgs Doublet Models
In a non-supersymmetric SU(Nc) YM theory described by equation (12), the IR dynamicsare determined by the two numbers Nc and N f . When a scalar sector is introduced tothe YM theory, spontaneous symmetry breaking occurs via the Higgs mechanism. Thissymmetry-breaking pattern can be achieved in many ways with a general scalar sector,meaning that from an EFT perspective, there is no a-priori reason for the number of thescalar field Ns not to be a free parameter. This means that, from the naturalness point ofview, the choice Ns = 1 made by the SM seems to be very special.An experimental observation that highlights this issue is the precise measurement ofthe ρ-parameter ρ = m2

W/(m2
Z cos2 θW ), which is found to be very close to 1 [21]. In ageneral SU(2)L×U(1)Y gauge theory with Ns scalar multiplets Φi, having weak isospin

Ii, weak hyperchargeYi, and vacuum expectation value of the neutral components vi, the
ρ-parameter can be given at tree level by the expression [91]

ρ =
∑

Ns
i=1

[
Ii(Ii +1)−Y 2

i
]

v2
i

∑
Ns
i=1 2Y 2

i v2
i

(78)
In the simplest case with non-zero weak isospin, the above equation gives ρ = 1 whenthere are Ns SU(2) doublets with Yi =± 1

2 , as they all give Ii(Ii +1) = 3Y 2
i . The SM Higgs

doublet corresponds to the SU(2) doublet with Yh =+ 1
2 .As the simplest extension of the Standard Model, we may consider extending the SMwith a second Higgs doublet field that also acquires a vacuum expectation value and par-ticipates in breaking the electroweak symmetry at the electroweak scale. This gives riseto the Two Higgs Doublet Models (2HDMs), which enlarges the scalar potential (the Higgssector) of the SM to include two Higgs doublet (Φ1 and Φ2), each of which is a doublet

3In a broader sense, the question of the smallness of parameters, even including the dimensionsof spacetime, the rank of SM gauge groups, and the representations and numbers of fermions inthe SM, can all be seen as naturalness problems, which may or may not have solutions yet [33].
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of the SU(2)L gauge group with hypercharges Yi = ± 1
2 , resulting in five physical scalarstates: two CP even neutral scalar states, one CP odd pseudoscalar, and two charged Higgsstates [91]. As a result, the scalar potential in general contains many more terms than theSM, including parameters, which thus allows for a richer phenomenology such as the pos-sibility of having CP violation and flavor-changing neutral currents (FCNCs) mediated byscalar fields, as well as stabilizing the EW vacuum.To study their scalar potential in detail, we note that the scalar sector of 2HDMs isweakly coupled, making it possible to classify the vacuum phase structure of 2HDMs intraditional perturbation theory. The most general scalar potential contains CP-violatingor charge-violating minima, but several simplifying assumptions can be made to reducethe free parameters in the scalar potential in order to coincide with phenomenology. Forexample, one such assumption is the conservation of CP symmetry in the Higgs sector,which allows for the distinguishability of scalar and pseudoscalar states. Under these as-sumptions, the renormalizable scalar potential for two Higgs doublets, Φ1 and Φ2, bothwith hypercharge+ 1

2 , is given by [91]
VH = m2
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This simplified scalar potential contains 3 dimensionful couplings and 5 dimensionlessscalar self-couplings, for a total of 8 real parameters, which is much richer than the SMHiggs sector. For a region of parameter space, the minimization of this potential gives [91]
⟨Φ1⟩=

1√
2

(
0
v1

)
, ⟨Φ2⟩=

1√
2

(
0
v2

)
, (80)

which generate masses to the W and Z bosons, thus implying the relation √
v2

1 + v2
2 =

vSM ≃ 246 GeV. We further define the ratio of these two vevs to be tanβ = v2/v1.Nextweproceed to generalize the SMYukawa sector to include twoHiggs doublets [90].The introduction of a general Yukawa sector consisting of all interactions between fermionand scalar representations (the type III 2HDM) can lead to tree-level flavor changing neu-tral currents (FCNC), which are tightly constrained by experimental data. To avoid this,the 2HDMs are typically constrained by imposing global symmetries in different ways.The Paschos-Glashow-Weinberg theorem [106, 107] formalized this by stating that to pre-vent tree-level FCNC, all fermions of a given charge and helicity must transform under thesame SU(2) irreducible representation. In the SM, this requires all fermions to couple toa single Higgs multiplet. However, in the 2HDM, discrete or continuous symmetries mustbe introduced to achieve this, leading to two possibilities: the type I 2HDM, where allfermions couple to just one of the Higgs doublets (typically Φ2), and the type II 2HDM,where fermions with different weak isospins couple to different Higgs doublets. As an ex-ample, the Lagrangian of the Yukawa sector in type-II 2HDM for two scalar doublets (Huand Hd) with different hypercharges YHd =−YHu =+ 1
2 is given by

−L 2HDM
Y = Y ℓ

i jL̄
i
LHd e j

R +Y d
i j Q̄

i
LHd d j

R +Y u
i jQ̄

i
LHu u j

R +h.c. , (81)
with Qi

L/Li
L the quark/lepton left-handed doublets and f i

R ( f = u,d,e) the right-handedsinglets.Finally, we emphasize that the 2HDM should also be regarded as a low-energy modelfrom an EFT perspective. It serves as the low-energy EFT ofmanywell-motivated UVmod-els, such as the original axion model (Weinberg-Wilczek model [108, 109]), the Minimal
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Supersymmetric Standard Model (MSSM) [110], CSIMs, LRSMs, GUTs, etc, which are po-tential candidates to solving the naturalness problems. These UV models usually imposecontinuous symmetries to produce the same Yukawa couplings as a type II 2HDM in thelow-energy limit. For example, the Weinberg-Wilczek model requires an additional Higgsdoublet to enforce the additional U(1)PQ global symmetry under which SM quarks arecharged. Similarly, the MSSM requires two Higgses to ensure gauge invariance, becauseonly with two scalars we can have two different chiral multiplets with different chiralities.
4.2 Classically Scale Invariant Models and the Higgs-portal Scenarios
In the EFT approach introduced in chapter 2.1, we start from a symmetry and write downthemost general action consistent with that symmetry [62]. Themore symmetrywe have,the more constrained the action will be. Similarly, when generalizing the scalar sector ofthe SMwithNs scalar multiplets, wemust constrain the general scalar and Yukawa sectorswith symmetries based on our understanding of the fundamental principles of physics,otherwise the scalar interactions will be too complicated which could lead to dangerousphenomena. The question is, besides the conventional spacetime and gauge symmetry,what other symmetries can we use? One possibility is the global symmetry as in the pre-vious 2HDM case, which appears as an approximate symmetry in the low-energy limit andis known as accidental symmetry.Observing the SM, we notice that there is one special classical symmetry, which isan approximate global symmetry preserved by the part of SM with the 18 dimensionlessparameters, but is explicitly broken by the Higgs mass term which is dimensionful. Thissymmetry is the classical scale invariance (CSI) [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,103, 104, 1], which redefines the coordinates as a scale factor as x → eε x, and can be seenas a generalization of the spacetime Poincare symmetry to the conformal symmetry.The classical scale invariance is anomalous, which is describedby the conformal anomalythat is proportional to the beta function of the full theory. As the tree level Higgs massterm explicitly breaks the CSI, a theory admitting CSI should not contain a tree-level Higgsmass term, hence, it would not develop any quadratic divergence and only logarithmiccorrections would contribute to the running of Higgs mass. Therefore, this approach hasthe potential to solve the fine-tuning problem of Higgs mass [111]. Without a tree-levelHiggs mass term, the Electroweak Symmetry Breaking (EWSB), including the observedHiggs mass, is then entirely generated by the conformal anomaly effect.To see how Higgs mass is generated by the conformal anomaly, we start with a smallbare coupling4 λ of a scalar field φ in a gauge theory with CSI at the UV scale ΛUV . Byrenormalization, the coupling receives contributions from both itself (λ 2) and the gaugecoupling (α2), leading to a one-loop effective potential that takes the form [112]

V =
φ 4

4!
+(Aλ

2 +Bα
2)φ 4

(
ln

φ 2

v2 − c′
)
, (82)

whereA,B, and c′ are dimensionless parameters fixedby the renormalization. It is straight-forward to note here that only logarithmic corrections are inducedby the conformal anomaly,as mentioned above.Minimization of the above potential gives λ ∼ α2, which reduces one dimensionlessparameter in the potential. As a result, the one-loop effective potential contains only twofree parameters: the gauge coupling α and a dimensionful vev v, which is dynamically
4Note that the smallness of λ is motivated by the smallness of SM Higgs quartic coupling λ =

m2
h/2v2 ≃ 1/8 ≪ 1 at the tree-level.
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generated by quantum correction [112]:
V ∼ α

2
φ

4
(

ln
φ 2

v2 − 1
2

)
. (83)

This potential is very similar to the SMHiggs potential, with one dimensionless coupling λand one dimensionful couplingm. By renormalizing this potential from the UV cutoff scale
ΛUV to the symmetry breaking scale v to one-loop order, we can determine that [113]

v = ΛUV exp

[(
β0

2π

)−1( 1
α(v)

− 1
α(ΛUV )

)]
, (84)

with β0 the one-loop beta coefficient. This result is the famousmechanism of dimensionaltransmutation.Depending on the dynamics of the gauge theory, the above equation implies two pos-sible ways of dynamically generating scale to be discussed in detail in Appendix I [1]:
1. β0 > 0, the gauge coupling is asymptotic free: α(ΛUV ) = 0, implying that the sym-

metry breaking scale v ∼ ΛUV exp
[
− 2π

β0α(ΛUV )

]
≪ ΛUV is generated nonperturba-

tively, similar to the case of QCD, known as the nonperturbative type.
2. β0 < 0, the gauge coupling develops a Landau pole at UV: α(ΛUV ) = ∞, implying

that the symmetry breaking scale v∼ΛUV exp
[
− 2π

|β0|α(v)

], as discussed in Coleman-
Weinberg mechanism [112], known as the perturbative type.

In both cases, the conformal anomaly of gauge couplings generates a symmetry-breakingscale v, which is exponentially suppressed from the UV cutoff.It is widely known that the above picture can be generalized by the Gildener-Weinbergmechanism [114] in a general case with Ns weakly interacting scalars Si (i = 1,2, . . . ,Ns).This can be applied to the SM, where in addition to Higgs, extra scalar fields are neededand the EWSB is realized by the Gildener-Weinberg mechanism. The realization of theGildener-Weinberg mechanism in a class of CSIMs and their phenomenology are still ac-tively being researched in the current BSM research. Moreover, these CSIMs can be gen-eralized beyond the classical level to cancel all the conformal anomalies at the UV cutoffscale, ensuring a quantum scale invariance in a non-trivial UV-completed theory. This con-cept is known as asymptotic safety, and we will discuss it in more detail in Appendix I [1].Finally, we would like to emphasize that triggering the dynamical breaking of Elec-troweak symmetry by radiative corrections requires the presence of one or more SM-singlet scalar fields Si that interact with the visible sector through a biquadratic couplingto the Higgs doublet H, given by λp|H|2S2
i , to preserve the CSI. This means that if thereis a hidden sector of other heavy scalar degrees of freedom, the Higgs field naturally actsas a mediator between the SM and the hidden sector. This scenario is known as the Higgs

portal scenario, with the coupling between the hidden sector and the Higgs called theportal coupling λp. In general, the hidden sector can be anything, and the SM-singletscalar Si can be charged under some hidden symmetries (gauge or global), as long as theportal coupling is tuned to be small enough to avoid low-energy observable effects fromthe hidden sector. In some cases, the Higgs portal scenarios do not necessarily admit clas-sical scale invariance, but may instead be constrained by discrete global symmetries. Thisis yet another viable extension of the SM with respect to the Higgs sector.
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4.3 Left-Right Symmetric Models
In the previous chapter, we explored the simplest and most elegant explanation for thesmallness of left-handed neutrino masses, which is achieved through the type-I seesawmechanism. From the perspective of EFT, it is natural to regard the effective mass termof the right-handed neutrinos as the cutoff scale as ΛEFT = MR, so that eq. (75) can beinterpreted as an effective description valid only at energies below the cutoff scale MR. Inorder to comprehend the origin of this seesaw term, we can study the possible forms ofthe potential above the scaleMR which should reduce to eq. (75) as a low-energy depictionafter integrating out the higher-energy degrees of freedom.There exist numerous possibilities to achieve this, and conventionally, it is accom-plished throughmodels where themajoranamasses of right-handed neutrinos are gener-ated by Yukawa couplings. In such cases, the introduction of a heavy SM-singlet scalar fieldbecomes necessary, with amass of approximatelyMR, tomediate these Yukawa couplings.To generate the mass term for this heavy scalar field, it is therefore natural to assume thepresence of an additional gauge group that undergoes spontaneous symmetry breakingat the scale of MR, where the heavy scalar acquires a mass of the order of MR due to theHiggs mechanism.A simple and natural choice for an additional gauge symmetry is SU(2)R ×U(1)B−L,commonly referred to as Left-Right SymmetricModels (LRSMs or LRmodels) [115, 116, 117].In these models, a typical Yukawa potential is given by:

−LY ⊃ YQQ̄LΦQR +YLL̄LΦLR +YRLT
R iσ2∆RLR +h.c. , (85)

It is clear that to match with the effective mass term in the seesaw mechanism, theright-handed triplet field ∆R has to get a vev at the scale MR and break the SU(2)R sym-metry spontaneously. The bidoublet field Φ is then responsible for generating the EWSBat the scale vEW .For simplicity, we neglect terms coupling to Φ̃ ≡ σ2Φ∗σ2. Here, Q and L representquark and lepton fields with chiral subscripts, respectively, and σ2 denotes the secondPauli matrix. The minimum couplings introduce two scalar representations: a Higgs bi-doublet Φ transforming as (2,2) and a right-handed triplet field ∆R transforming as (1,3)under the gauge symmetry group SU(2)L ×SU(2)R. Notably, in order to match with theeffective mass term in the seesaw mechanism, the right-handed triplet field ∆R must ac-quire a vev at the scale MR, thereby spontaneously breaking the SU(2)R symmetry. Onthe other hand, the bidoublet field Φ is responsible for generating the EWSB at the scale
vEW .The introduction of additional scalar fields also poses a significant challenge in studyingthe vacuum structure. At the renormalizable level, numerous gauge invariant operatorsemerge within the scalar sector, which makes the analysis extremely difficult.However, for the simplest scenario where only two scalar fields, Φ and ∆R, are in-troduced, it has been demonstrated that their vevs must satisfy a constraint that stemsfrom a non-trivial alignment. This alignment is crucial in achieving the desired symmetrybreaking pattern, and is expressed as follows:

⟨Φ⟩= 1√
2

(
κueiθu 0

0 κdeiθd

)
, ⟨∆R⟩=

1√
2

(
0 0

κReiθR 0

)
. (86)

By aligning the vevs in this manner, it ensures that the symmetry of SU(2)L ×SU(2)R ×
U(1)B−L can be broken down to the electromagnetic U(1)EM symmetry.
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The Left-Right symmetric models serve as one of the simplest approaches to imple-ment the type-I seesaw mechanism. However, a pertinent question arises: with numer-ous models available to apply the seesaw mechanism and explain the origins of neutrinomasses, how can we justify which one is better suited to describe nature without directexperimental evidence? In addressing this question, Naturalness once again offers a re-liable criterion: a theory is considered more natural when it explains more phenomenausing the same set of parameters. While we have primarily focused on the matter of neu-trino masses within LRSMs thus far, it is important to recognize that LRSMs, in general,provide extensive explanatory power for both theoretical and phenomenological issues.Below, we provide a concise summary of the advantages of LRSMs, highlighting their in-herent capacity to account for the smallness of neutrino masses:
1. The presence of spontaneously broken SU(2)R symmetry at a right-handed scaleoffers a dynamic explanation for the observed parity violation in weak interactions.
2. LRSMs provide a clear and meaningful interpretation of hypercharges [118, 119].
3. LRSMs incorporate baryon number violating interactions that can account for thegeneration of baryonic matter (baryogenesis) in the universe.
4. LRSMs open up the possibility of unifying gauge couplings within the context ofSO(10) Grand Unified Theories with intermediate scales.
However, similar to many BSM models, the LRSMs are unable to address the gaugehierarchy problem. One apparent approach to tackle this issue within LRSMs is throughsupersymmetrizing the model [120, 121, 122]. Nevertheless, introducing supersymmetryresults in strong constraints on Supersymmetric Left-Right models, particularly when at-tempting to obtain a vacuum for broken gauge symmetries [123, 124, 125]. Furthermore,realizing the natural unification of gauge couplings becomes notably challenging in suchscenarios [126, 127, 128, 129]. Thus, on one hand, if one strongly insists on the unifica-tion of gauge couplings alongside the implementation of the seesaw mechanism, it ap-pears that non-supersymmetric Left-Right models are simpler than their supersymmetriccounterparts. On the other hand, finding an alternative solution to the gauge hierarchyproblem becomes a challenging endeavor if we do not impose supersymmetry. Thereremains a possibility [130] of resolving this potential conflict, but it extends beyond thescope and focus of the current thesis. Therefore, in the upcoming subchapter, we tem-porarily set the hierarchy problem aside and shift our attention toward exploring simplephenomenological models that exhibit the unification of gauge couplings while simulta-neously accommodating the seesaw mechanism.

4.4 The SO(10) Grand Unified Theories
In the previous chapters, we have explored various extensions of the Standard Model,focusing on the Higgs, fermion, and gauge sectors separately. Now, we are ready to takea further step by unifying these sectors into a single, elegant, realistic framework. Thisdesire for unification led to the development of Grand Unified Theories (GUTs), whichaim to bring together all the fundamental interactions, except for gravity, into a coherenttheory. Surprisingly, this idea has proven to be even more successful than anticipated,providing profound insights into the fundamental aspects of physics.In fact, the existence of Grand Unified Theories is implicitly suggested in the StandardModel. By considering the gauge couplings of the StandardModel at the electroweak scaleand running them to a higher energy scale by the renormalization group equations (RGEs)
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of the SMEFT, we can track their behavior at higher energy scales. Remarkably, these RGEsreveal that the three SM gauge couplings converge to approximately the same value at aspecific energy scale called the GUT scale, denoted as MU ∼ 1016 GeV. At this scale, thegauge couplings become identical, enabling different gauge couplings to be interchange-able while preserving the system’s invariance. This implies that, to a certain level of pre-cision, we can formulate a theory at the GUT scale with a single gauge field that equallycouples to the other species involved. In short, the concept behind Grand Unified Theo-ries is essentially centered around such a gauge theory based on a single, comprehensivegauge group denoted as G . Notably, the three gauge symmetries of the Standard Model,
SU(3)C ×SU(2)L ×U(1)Y , must be a subgroup of this larger gauge group, G .

The first choice of such bigger gauge group is the SU(5) group [131, 132], proposedas the first kind of known grand unified theories. However, there are two problems inthis simple model. The first problem is that it must have a EW-scale supersymmetry forachieving the unification of gauge couplings, which was not seen in the LHC experiment.The other problem is that it only contains all the 15 SM chiral fermions as the fundamen-tal spinor representation of SU(5) is 5̄+10, which makes it difficult to include the see-saw mechanism to explain the smallness of neutrino masses without invoking the right-handed neutrinos.
One such example that encompasses all three SM gauge couplings is the SO(10) group[115, 120]. Alternatives include the SU(5), E6, E7, and E8 groups, but we are not going todiscuss any of them here. So what we would like to do now is to write down an explicitrenormalizable action that contains all the SO(10)-invariant operators. To do that, it isnecessary to assign specific representations to the various fields involved. The funda-mental representation for fermionic fields in SO(10) is the 16-dimensional spinor repre-sentation, denoted as 16F. On the other hand, it is worth noting that in the StandardModel, a single generation of fermions consists of exactly 15 chiral fermions. This in-cludes six colored chiral quarks multiplied by two chiralities, one charged lepton, and aleft-handed neutrino. So remarkably, these 15 SM fermions can all be embedded into the16-dimensional spinor representation 16F, together with an additional SM-singlet intro-duced as the right-handed neutrino.
Indeed, it is relatively straightforward to construct an EFT that incorporates all inter-actions between the spinor representation 16F and the gauge bosons associated with the

SO(10) gauge symmetry, where the only work needed to be done is to list all the SO(10)-invariant operators, so we will not do it again here. The same analogy can also be appliedto the scalar and Yukawa sector of SO(10) GUTs. All the details about specific SO(10)model building can be found in the author’s publication III and IV [3, 4].
Once we have a well-established GUT model, where the details of interactions andsymmetry breaking patterns are explicitly given, it opens up avenues to address variousfundamental puzzles and phenomena. The first remarkable feature is that it can achievethe unification of fundamental couplings, which is a crucial constraint for a UV EFT. Thisunification provides insights into the underlying symmetry structure and greatly simpli-fies the work at high energy. Moreover, it naturally incorporates the seesaw mechanism,which naturally explains the smallness of neutrino masses, when the SO(10) symmetryis broken to a Left-Right Symmetric Model via an intermediate step. Such kinds of GUTscan also be supersymmetrized, addressing the gauge hierarchy problem. But because alow-scale SUSY has not been seen in the LHC, a complete answer to the gauge hierarchyproblem is still missing, and motivates us to study the non-SUSY GUTs where low-scaleSUSY is not needed. In addition to these theoretical aspects, GUT models have diversephenomenological implications like, solving the baryogenesis of the universe, and provid-
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ing the dark matter candidates such as the axions.Given that theGUT serves as a framework that ismore elegant and simpler in the senseof unification, it greatly simplifies our work and enables the incorporation of numerousinnovative techniques. For instance, as mentioned earlier, the supersymmetric Left-Rightmodels do not naturally compatible with the unification of gauge couplings. To addressthis issue in a natural manner, one potential solution is the introduction of a new typeof parameter, an extra spatial dimension [133, 134]. Furthermore, studies have demon-strated that the seesaw mechanism naturally emerges in scenarios involving large extradimensions, providing an explanation for the suppressed neutrino masses [135].In conclusion, the GUT is highly regarded due to its remarkable ability to provide a uni-fied and elegant framework that addresses crucial questions simultaneously. Its existencein nature is indeed indirectly indicated by the StandardModel. However, as the GUT scalesurpasses the Electroweak scale by numerous orders of magnitude, experimental testingbecomes challenging. We eagerly await further investigations, particularly in the fields ofcosmology and astroparticle physics, to propose more testable predictions and shed lighton this promising theory.
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5 Summary
The StandardModel of particle physics has proven to be a highly successful mathematicalframework for describing the interactions and properties of fundamental particles at theElectroweak scale. However, countless of evidence indicate that it is an incomplete theory,leaving numerous fundamental questions unanswered and phenomena unexplained. Forinstance, it fails to account for the origins of neutrino masses, the hierarchy between theelectroweak scale and the Planck scale, the observed vacuum energy density, and it lacksa description of gravitational interactions which is one of the most fundamental forces innature. Thus, the Standard Model is widely regarded as an Effective Field Theory (EFT)that effectively captures low-energy phenomena while representing an approximation ofa more fundamental theory.In Chapter 2, we introduce the concept of EFTs and present the Standard Model asan EFT. By employing the language and framework of EFTs, our aim is to organize thethesis in a coherent and self-consistent manner. The EFT approach enables the systematicunification of various Beyond StandardModel (BSM)models and facilitates discussions ontheir universal properties in a model-independent way.In Chapter 3, we delve into several of the most fundamental questions in particlephysics and provide a comprehensive review of the current understanding regarding theiranswers. Consequently, it becomes apparent that a BSM framework is necessary to tacklethese outstanding questions and offer potential solutions.In Chapter 4, we focus on several specific BSM models as potential frameworks toaddress the fundamental questions raised earlier. These models are discussed to illus-trate how answers to these questions can be realized in specific ways while maintaining alevel of generality. Specifically, we explore the Two Higgs Doublet Models (2HDM) as thesimplest extension of the Higgs sector, the Classical Scale Invariant Models (CSIMs) as adynamical explanation for the origin of scales, the Left-Right Symmetric Models (LRSMs)as a natural realization of the type-I seesaw mechanism, and the SO(10) Grand UnifiedTheories (GUTs) as a potential framework for unifying all interactions excluding gravityand incorporating all these mechanisms.Although there have been significant developments, it is still uncertain whether a con-sistent Effective Field Theory can be found at high energy scales that can simultaneouslyaddress the issues related to neutrinos, unification, and the gauge hierarchy problem, andthat can be UV-completed consistently including the gravity. However, we maintain anoptimistic outlook, as recent developments in new techniques and approaches hold thepromise of constructing realistic models that are phenomenologically viable and capableof providing coherent explanations for all these fundamental problems.Further details on these specific models and their corresponding phenomenologicalimplications can be found in the author’s publications I-IV [1, 2, 3, 4].
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Abstract
Aspects of Higgs boson physics: vacuum stability, Yukawa 
couplings and SO(10) unification
Despite the remarkable success of the Standard Model throughout the past decades, it is acknowledged to be incomplete due to the absence of crucial fundamental elements such as gravity and massive neutrinos. Consequently, there is a pressing need for endeavors that beyond the Standard Model (BSM) to achieve its completion at high energy scales. The quest for a more fundamental theory capable of elucidating theoretical puzzles and perplexing phenomena necessitates the exploration of works in BSM model buildings.One of the essential stages in constructing BSM models involves identifying the de-grees of freedom that exist at high energy scales and “integrating in” them within the Quantum Field Theory framework. This step can be most naturally accomplished through the utilization of Effective Field Theories (EFTs). Consequently, this thesis formulates both the Standard Model and the BSM models within the EFT framework to systematically in-vestigate a comprehensive range of questions. By adopting this coherent approach, we can study the Standard Model and its extensions in a unified manner.We have introduced the seesaw mechanism to offer a natural explanation for the tiny masses of neutrinos, which is present in various types of UV completions. We also dis-cussed other existing hierarchy problems within the Standard Model, some of which may find resolution in certain toy models. We provided comprehensive insights into a selection of extensively studied BSM models, including the Two Higgs Doublet Models (2HDMs), the Classical Scale Invariant Models (CSIMs), the Left-Right Symmetric Models (LRSMs), and the SO(10) Grand Unified Theories (GUTs). In particular, the Grand Unified Theories offer a unified framework to address significant questions and implement many mechanisms.In the appendix, the author conducted a detailed analysis of the phenomenological aspects of various BSM models. In particular, the author introduced a classification of the conformal extension of SM in his publication I [1], which is categorized into a universality class at the IR scale, and the low energy testable discriminator is an existence of dilaton coupling to the Higgs boson via a negative portal coupling that is necessary for a dynam-ically generated electroweak scale. In his publication II [2], the author studied a possible model that realizes the SM Yukawa couplings being radiatively generated as effective op-erators from a hidden sector at one-loop level. It was also shown that the fermiophobic nature of the Higgs boson, imposed by the symmetries, can ensure the stability of the EW vacuum, regardless of the precise value of the top quark mass. In his publication III and IV [3, 4], the author analyzed the constraint of gauge and Yukawa coupling unification in the context of non-supersymmetric SO(10) models. By the evolution of RG from UV to IR scales, we showed how such UV constraints affect the possible parameter spaces of an EFT at the IR scale. The goal of all of these researches is to find out the possible constraints of BSM models, and to find out the possible observable effects of these constraints. In the end, we hope it advances the realization of the SM as a low-energy effective theory, and also provides some useful insights on the principles of physics behind all of these BSM models.
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Kokkuvõte
Higgsi bosoni füüsika aspektid: vaakumi stabiilsus, Yukawa 
interaktsioonid ja SO(10) ühendteooriad
Kuigi standardmudel on osutunud äärmiselt edukaks osakestefüüsika teooriaks on üldi-selt aksepteeritud, et ta on poolik, kuna ta ei suuda seletada nähtusi nagu gravitatsioon või massivsete neutriinode füüsika. Järelikut peab olemas olema füüsika kõrgematel ener-giatel kui standardmudel seletab. Standardmudeli-ülese füüsika leidmine on kaasaegse osakestefüüsika üks eesmärke.Üks standardmudeli järgse füüsika eesmärke on leida uue füüsika vabadusastmed, mis integreeritakse välja kui kirjeldatakse madala energia standardmudelit. Seda on võimalik teha kasutades efektiivse väljateooria metoodikat. Selles dissertatsioonis kasutame seda meetodit nii standardmudeli kui ka uue füüsika kirjeldamiseks. Kasutades sama meetodi-kat on võimalik nii standardmudelit kui ka uut füüsikat kirjeldada samadest printsiipidest lähtuvalt.Käesolevas dissertatsioonis kasutame kiigemehhanismi kergete neutriinode masside seletamiseks. Samuti tõime sisse hierarhia probleemi lahendused, mis esinevad selles töös uuritavates mudelites. Töö eesmärgiks on seletada erinevaid lähenemisi uue füüsi-ka mudelita valikuks, kaasaarvatud kahe Higgsi dubleti mudelid, klassikaliselt skaalainva-riantsete mudelid, parem-vasak sümmeetrilised mudelid ja SO(10) sümmeetrial põhine-vad ühendteooriad. Erilist tähelepanu pöörame ühendteooriate mudelitele, mis võimal-davad adresserida kõiki nimetatud probleeme ühes füüsikateoorias.Käesoleva dissertatsiooni lisades on autor esitanud detailse analüüsi uue füüsika mu-delite kohta. Artiklis I on autor esitanud klassifikatsiooni konformsete standardmudeli aren-duste kohta, mille eripärad on dilatoni negatiivsed interaktsioonid standardmudeli Higgsi bosoniga selleks, et indutseerida standardmudeli energiaskaala. Artiklis II on autor uuri-nud võimalust, et kõik standardmudeli Yukawa interaktsioonid on indutseeritud kvantpa-randuste tasemel tumeda sektori interaktsioonidest. Selle töö tulemusel näidati, et sel-liste omadustega Higgsi boson on vaba vaakumi stabiilsuse probleemidest sõltumatult top-kvargi massist. Artiklites III ja IV uuris autor kalibratsiooniinteraktsioonide ja Yukwa interaktsioonide ühinemist mittesupersümmeetriliste SO(10) mudelite kontekstis. Uuri-ti nimetatud interaktsioonide jooksmist madalalt skaalalt kõrgete skaaladeni efektiivsete mudelite kontekstis. Selle töö tulemusena leidsime uusi piiranguid nii madala energia mu-delite parameetritele kui ka uusi juhiseid kõrge energa mudelite kirjeldamiseks. Kokkuvõt-valt, käesolev uurimstöö viis meid lähemale standardmudeli mõistmisele suurte ühend-teooriate kontekstis.
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Abstract: We present a universal interpretation of a class of conformal extended standard models that include Higgs
portal interactions as realized in low-energy effective theories. The scale generation mechanism in this class (scale-
genesis) arises along the (nearly) conformal/flat direction for breaking scale symmetry, where the electroweak sym-
metry-breaking structure arises similarly as in the standard model. A dynamical origin for the Higgs portal coupling
can provide the discriminator  for  the low-energy “universality  class,”  to  be probed in forthcoming collider  experi-
ments.
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1    Introduction

The standard model (SM) of particle physics has been
completed  by the  Higgs  discovery  [1, 2].  It  is,  however,
still unsatisfactory that the dynamics of electroweak sym-
metry breaking (EWSB) are not yet understood in detail:
in the  SM,  the  sign  of  the  Higgs  mass  is  necessarily  as-
sumed to be negative to realize EWSB; so in that  sense,
the SM only provides an incomplete answer to the origin
of EWSB as well as the origin of mass. This issue would
be related to  the gauge hierarchy problem or  fine tuning
problem  involving  the  physics  bridging  the  EW  and
Planck scales through the unique dimensional parameter.
Motivated  by  this  longstanding  problem,  people  have  to
date  extensively  worked  on  a  possible  new  dynamics
and/or  mechanism  that  could  be  dormant  behind  the
Higgs sector.

Scale symmetry  could  be  one  of  the  clues  to  penet-
rate  this  issue  and  is  currently  significant  in  the  Higgs
physics domain, as a possible solution to the gauge hier-
archy problem, à la Bardeen [3]: Quadratic divergent cor-
rections to the Higgs mass term, a critical part of the hier-

archy  problem,  are  assumed  not  to  provide  a  physical
scaling;  hence,  they  should  be  removed,  such  that  the
Higgs mass term only undergoes logarithmic corrections
that  are  proportional  to  the  bare  Higgs  mass  or  SM
particle  masses  coupled  to  the  Higgs.  In  that  case,  no
massive cancellation or instability of the radiative power
corrections  associated  with  the  Planck  scale  is  required
for the  Higgs  mass  term since  no  gauge  hierarchy  prob-
lem is present. If the Higgs mass parameter can be turned
off at  some  scale  in  the  renormalization  evolution,  pos-
sibly at the Planck scale, the Higgs mass will not develop
up to the logarithmic corrections. This can be done by as-
suming  the  realization  of  scale  symmetry  at  the  Planck
scale, and the physical Higgs mass then may arise by en-
tering  only  the  logarithmic  corrections  as  the  quantum
scale anomaly effect.

v ≃ 246

Nature  might  have  in  fact  supported  the  presence  of
an  approximate  scale  (  or  conformal)  invariance  and  an
orientation nearly along  a  conformal  theory:  the  ob-
served  SM-like  Higgs  is  thought  to  be  lying  in  a  nearly
conformal direction in the EW broken phase at the vacu-
um expectation  value  (VEV)  of  GeV, and  it  ac-
quires  mass  due  to  the  small  quartic  coupling  breaking
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λH = (m2
h/2v2) ≃

1/8≪ 1
λH → 0

the  scale  symmetry  (at  the  tree-level). 
. Thus, a flat (conformal) direction can be seen in

the SM by taking the limit , where the Higgs po-
tential in the EW broken phase becomes completely flat.

vi = niv

λH → 0

ni
λH = 0

Generically,  flat  (conformal)  directions  are  observed
as  stationary  hyper-surfaces  spanned  by  aligned  scalar
VEVs: , where i runs the number of scalars and v
is  the  average  magnitude  of  the  VEVs  spontaneously
breaking the scale symmetry [4]. Along the flat (conform-
al)  direction,  one  finds  the  flat  curvature,  hence  expects
the presence of a massless scalar associated with the scale
(conformal)  symmetry  broken  by  the  VEVs,  i.e.,  a
“dilaton.” The conformal limit in the SM ( ) can be
understood as  the  simplest  case  for  a  generic  flat  direc-
tion  argument  [5],  where  the  zero  determinant  of  the
quartic coupling matrix, reflected as the constraint on the

vector, is given as a necessary condition for a flat dir-
ection, which is trivially realized by  in the SM. In
that sense, the SM can indeed be termed a nearly (classic-
ally)  conformal  theory  (the  nearly  conformal  SM),  and
the  125 GeV Higgs  can  be  regarded  as  a  light  “pseudo-
dilaton”  associated  with  the  approximate  conformal  dir-
ection (with a small curvature).

λH

This observation, which is still  perturbatively operat-
ive  even  when  including  quantum  corrections  that  will,
however,  directly  be  linked  to  the  instability  of  the  EW
vacuum in the SM when is reduced, even approaches,
or goes  negative  because  of  the  sizable  top  loop  correc-
tion  [6-35].  Thus,  the  nearly  conformal  SM  has  to  be
remedied  by  new  dynamics  that  remains  in  a  conformal
direction that includes the SM for low-energy description,
maintaining  the  approximate  scale  invariance  (without
power corrections to the Higgs mass term) at the quantum
level up to the Planck scale.

(Λpl)
mH(Λpl) = 0

mH

Λpl

The  realization  of  scale  invariance  at  the  quantum
level  (quantum  scale-invariance)  has  been  developed
from Bardeen's  initial  proposal,  as  described  above,  that
is  currently  not  simply  an  ad  hoc  assumption,  but  rather
involves two  nontrivial  dynamical  issues:  One  is  to  dy-
namically achieve the initial renormalization condition at
the  Planck  scale as  the  Higgs  mass  parameter

, while the other is to eliminate the threshold
corrections  to from the  running of  other  couplings  to
realize  the  nontrivial  ultraviolet  (UV)  fixed  points.  The
former can be realized by a dynamical cancellation at 
over  the  Planckian  contribution,  as  has  been  argued  in
[36-40]. The latter is subject to some UV completion for
the  conformal  SM  embedded  in  a  nontrivial-UV  safety
theory  (called  asymptotic  safety),  which  has  recently
been explored extensively [41-58]. With these dynamical
conditions at hand, no corrections to the Higgs mass term
can  be  generated  at  any  loop  order,  which  indeed  gives
rise to the quantum-scale invariant SM at the infrared EW
scale; thus, no fine-tuning or unnatural Higgs mass para-

meter will arise.

U(1)
CP

|H|2S 2

λH

λH

The key  point  here  is  to  note  that  this  kind  of  con-
formally  extended  SM  (embedded  in  the  asymptotic
safety)  necessarily  includes  one  SM-singlet  scalar, S,
which couples to the Higgs doublet via biquadratic forms
with a real scalar [59], an extra -charged scalar [60],
or a generic complex scalar with or without  violation
[61-63],  such as ,  known as the Higgs portal  scen-
ario. Then, the renormalization group evolution of  ne-
cessarily receives positive contributions from such portal
couplings and allows the bounded from zero to attain
a  stable  EW  vacuum.  In  this  case,  the  EW  scale  can  be
generated dynamically  from  the  scale-symmetry  break-
ing at the quantum level in the following two ways:

● perturbative-type –  Coleman-Weinberg  (CW)
mechanism  [4, 64]  for  weakly  coupled  massless  scalars
([59-63]  and  also  see,  e.g.,  related  references  that  have
cited those papers);

● nonperturbative-type –  dimensional  transmutation
of a nonperturbatively created scale by a strongly coupled
hidden sector [65-73].

Any  scenario  of  this  class  can  therefore  be  called  a
Higgs-portal scalegenesis.

A  common  feature  that  all  perturbative-type  Higgs-
portal scalegenesis mechanisms share is the presence of a
flat direction in the tree-level scalar potential. It is neces-
sarily  present  if  the  determinant  of  the  scalar  quartic-
coupling  matrix  vanishes  [5].  It  ensures  that  all  scalars
acquire their  VEVs  simultaneously  by  quantum  correc-
tions,  i.e.  the  CW  mechanism,  and  thus,  an  inevitably
light  dilaton-like  scalar  state  emerges  as  a  pseudo-
Nambu-Goldstone (NG) boson associated with the anom-
alous  scale  symmetry  [64]  (also  called  the  scalon  in  the
original Gildener-Weinberg approach [4]).

Even in  the  nonperturbative-type  Higgs-portal  scen-
arios,  similar  flat  directions  can  be  observed  in  terms  of
low-energy  effective  scalar  potential,  where  the  Higgs
portal  interactions  are  established  between  the  SM-like
Higgs and composite scalars generated by the underlying
strong  dynamics.  Nevertheless,  the  scale-symmetry
breaking  that  is  nonperturbatively  generated  appears
built-in  at  the  tree-level  in  low-energy  effective  scalar
theory.

|H|2|S |2 = vS vhs+ · · ·
vS

θ

Note that  Higgs  portal  scalegenesis  posseses  univer-
sal experimental evidences: the predicted dilaton, arising
as a singlet  scalar  fluctuation mode from the portal  field
S, will couple to SM particles due to mixing with the SM-
like  Higgs  boson h through  the  Higgs  portal  interaction

with the vacuum expectation values
of S and H, and v. The size of the dilaton coupling to
the SM particles as well as the 125 GeV Higgs couplings
to  them  are  then  universally  controlled  by  the  mixing
angle , respectively,  in  which  the  latter  has  been  con-
strained severely by the Higgs coupling measurement ex-
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|sinθ| ≲ 0.3

WW ZZ
∝ sin2 θ×

periments  as  [74].  When  the  dilaton  mass  is
of the order of the EW scale, or higher, it is mainly pro-
duced by  a  gluon fusion  process  and  decays  to  the  EW-
dibosons  and  at  hadron  collider,  like  the  LHC.
The  possible  excess  events,  which  are  SM-like
Higgs  events  at  the  invariant  mass  around  the  EW scale
in those  diboson  channels  will  thus  be  a  generic  predic-
tion of the Higgs portal scenario.

h3

θ

vs/v

h(∗)→ s(∗)→ hh

sinθ

In addition to the diboson signatures, the Higgs poten-
tial  structure,  including  the  higher  order  terms  in  the h
field,  such as the cubic  term, will  be modified by the
SM prediction that is parametrized by functions of , with
the  ratio  of ,  and  will  be  subject  to  the  light  dilaton
resonance  coupled  to  the  diHiggs  in  the  trilinear  Higgs
amplitude  through  the h-s conversion  process,  such  as

.  Note  also  that  the  dilaton  resonance  is
generically  narrow due  to  the  small  coupling  strength  to
SM  particles  set  by  the  phenomenologically  small .
Thus, the diHiggs signatures will  also be a characteristic
indicator of this scenario, as has been discussed by means
of a specific Higgs portal scalegenesis [73].

Those signals can be predicted no matter what kind of
method  is  applied  to  realize  the  EWSB via  Higgs  portal
interactions with a sufficiently light and narrow scalar (at
some  decoupling  limit  for  heavier  particles,  if  any);
hence, they  are  universal  predictions  expected  in  an  en-
ergy range  that  is  within  the  reach  of  collider  experi-
ments  [73].  Without  having  been  analyzed,  it  is  obvious
that other  models  regarded as the Higgs portal  scalegen-
esis  [4, 5, 59-72]  can generically  predict  similar  collider
signatures.

Thus,  this  kind  of  conformal  extension  of  the  SM,
namely, the Higgs-portal scalegenesis, is thought to form
a universality class, in the universal low-energy effective
theory and related phenomenological sense.

Even in such a Higgs-portal scalegenesis, actually, the
main focus on the realization of the EWSB is simply go-
ing to be moved from the origin of the Higgs mass itself
to the origin of the portal coupling because the latter has
to  be  “negative. ”  Even  working  in  the  CW  mechanism
[64], one requires the portal coupling to be “negative” by
hand;  otherwise,  none  of  the  models  can  realize  the
EWSB (see, e.g., [75], [76, 77]1) and references therein):

The CW mechanism cannot  simply  be  applied  to  gener-
ate the EW scale since the required parameters will not be
compatible with the observed values.

This  implies  the  requirement  for  a  dynamical  origin
for  the  generation  of  both  the  scale  and  Higgs  portal
couplings, including the negative sign to propose the ori-
gin  of  mass  for  scenario  completion.  Furthermore,  it
should  offer  a  definite  phenomenological  consequence
distinguishable in the sense of a unified category for the
Higgs-portal scalegenesis.

In this  paper,  we  demonstrate  a  universal  interpreta-
tion of  models  that  lead to  the  Higgs-portal  scalegenesis
as  a  low-energy  effective  theory,  which  arises  along  a
conformal/flat direction, with an EWSB structure similar
to that encoded by the SM. This constructs the universal-
ity class in the (nearly) conformal/flat direction including
the SM, without loss of generality as will be seen below.
We then present a discriminator for the universality class,
which  must  be  closely  related  to  the  very  origin  of  the
negative  Higgs  mass  term/origin  of  mass: A  dynamical
origin of the Higgs portal.

2    A dynamical  origin  of  Higgs  portal:  a  gen-
eric low-energy description

Z2 U(1)A

First, we demonstrate that a conventional scale-invari-
ant  Higgs  portal  scenario  emerges  in  a  decoupling  limit
for  the  scale-invariant  realization  of  two-Higgs-doublet
models  with  a  light  dilaton  introduced.  In  addition,  we
observe  that  in  this  class  of  models,  a  softly  broken

/  for the Higgs sector plays a crucial role to real-
ize  the  negative  Higgs-portal  coupling  between  the  SM-
like Higgs and the light dilaton.

(χ)
Having in mind a scale-invariant realization of a two-

Higgs-doublet  model  with  a  light  dilaton ,  one  finds
potential terms such as

V ∋ χ2
[
c0|H1|2+ c1(H†1 H2+H.c.)+ c2|H2|2

]
, (1)

c0,1,2
H1,2

Σ = (H1,Hc
2) Hc

2
H2

where  are  arbitrary  dimensionless  coefficients  and
 are  the  Higgs  doublets.  Manifestly,  to  perceive  a

symmetry structure of interest, one may introduce a two-
by-two  Higgs  matrix  form,  (with  being
the charge conjugated field of ), to rewrite the terms as

V ∋ χ2
[ (c0+ c2

2

)
tr
[
Σ†Σ

]
+ c1(detΣ+H.c.)+

(c0− c2

2

)
tr
[
Σ†Σσ3

] ]
, (2)
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(B−L)
B−L
∼ O(10−3) B−L

1) It has been discussed in that without a bare Higgs portal coupling, a mixing effect between the hypercharge gauge and a newly introduced gauge  bosons
can radiatively generate the portal coupling between the  Higgs (regarded as a dilaton in that case) and the SM-like Higgs at the two-loop level. However, because
of the higher loop-induced coupling, its size is quite small ( ), which is required to realize the  breaking at TeV scale, hence the mixing strength with the
SM-like Higgs gets small enough as well, so that the predicted light dilaton couplings to diEW and diHiggs bosons will be negligibly smaller than other models having
the sizable (negative) Higgs portal coupling (by hand) at tree-level.  To this respect,  we may exclude this kind of radiative generation scenarios from the universality
class that we presently work on.
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σ3

U(2)L ×U(2)R
S U(2)R

S U(2)
U(1)A

Z2
c1

where  is the third Pauli matrix. It is facile to see that
the potential is structured on a global chiral 
symmetry  for  the  two  Higgs  flavors,  where  the 
component is in part explicitly broken down (to the sub-
group corresponding to the third component of ) by
the  third  term  and  the  component  (that  is  usually
called  a  soft-  breaking  term  in  the  context  of  two-
Higgs-doublet  models)  is  broken by  the  second  term.
The  same  chiral  two-Higgs  sector  structure  (without  the
scale invariance) has been discussed in [78, 79].

c0,1,2

c1

At  this  point,  the  dimensionless  couplings  are
simply assumed to be real and positive for them to have a
conformal/flat  direction.  In  that  case  the  conformal/flat
direction  for  both  the  scale  and EW breaking VEVs can
be  achieved,  where  the  direction  for  the  EW  scale  is
somewhat deformed due to the mass mixing by  as

ṽ2 ≡ v2+ (c1/c2)v1 = 0 . (3)

v1,2→ ṽ1(= v1), ṽ2
v1

Note that  this  deformation  is  nothing  but  a  base  trans-
formation:  and  can  generally  and
smoothly be connected to the SM limit with  only.

c0/c2→ 0
U(1)A Z2 c1/c2≪ 1

H2
H2 ≈−(c1/c2)H1

Now,  assume  the  maximal  isospin  breaking  for  the
two-Higgs  doublets,  where ,  and  the  soft-
enough /  is  broken,  by  taking .  Then,
one may integrate the heavy Higgs doublet  to get the
solution  for  the  equation  of  motion, 1).
Plugging this solution back into the potential, one finds

V ≈ −
c2

1

c2

χ2|H1|2 , (4)

λHχ = −c2
1/c2

Z2 U(1)A

which is nothing but a desired Higgs portal model, where
the  portal  coupling  has  been  dynamically
induced including  the  minus  sign without any  assump-
tions  and  is  reflected  by  the  attractive  interaction  of  the
scalar-exchange induced potential  in  the  quantum mech-
anical sense. One should also realize that the small portal
coupling  can  actually  be  rephrased  by  the  small  size  of
the soft- /  breaking for the underlying two-Higgs
doublet model.  Note  also  that  the  conformal/flat  direc-
tion  oriented  in  the  original  two-Higgs  doublet  model  is
smoothly reduced back to that in the Higgs portal model,
as it should be.

ṽ2 ≡ v2+ (c1/c2)v1 = 0

c1/c2≪ 1
H̃2 ≃ H2+ (c1/c2)H1

This  generation  mechanism  is  nothing  less  than  the
bosonic  seesaw  [80-90],  which  one  can  readily  check  if
the scalar mass matrix assumes the seesaw form, namely,
its determinant  is  negative  under  the  aforesaid  assump-
tion.  Note  also  that  the  original  conformal/flat  direction

 can  also  be  rephrased  in  terms  of
the bosonic seesaw relation: when the mixing is reduced
(i.e. ), the heavy Higgs partner arises via the bo-
sonic seesaw as approximately , so the

H2

conformal/flat direction has been realized due to the pres-
ence  of  an  approximate  inert .  Thus,  the  bosonic
seesaw provides the essential source for the Higgs-portal
scalegenesis  to  predict  the  universal  low-energy  new-
physics  signatures  such  as  significant  deviations  for
Higgs  cubic-coupling  measurements  compared  with  the
SM prediction,  and for  the light  dilaton signatures in di-
Higgs, diEW bosons, as aforementioned.

3    The  very  origin  of  the  Higgs  portal:  a  UV
completion

Z2 U(1)A

One  can  further  observe  that  a  hidden  strong  gauge
dynamics –  often called hidden QCD (hQCD) or  hyper-
color [85-87, 90] – provides the dynamical origin for the
softly-broken  or  symmetry and alignment to the
flat  direction  that  are  supplied  as  ad  hoc  assumptions  in
the  framework  of  the  scale-invariant  realization  of  the
two-Higgs  doublet  model,  as  executed  immediately
above. Indeed, a class of the hQCD as explored in [85-87,
90] can dynamically generate a composite dilaton (arising
generically  as  an admixture  of  fluctuating modes for  the
hQCD fermion bilinear,  like  conventional  sigma mesons
in QCD and gluon condensates such as glueballs. Even in
a  naive  scale-up version of  QCD with  the  small  number
of  flavors  as  applied  in  the  literature  [86, 87, 90],  it  has
recently  been  argued  [91] that  there  might  exist  an  in-
frared  conformality,  supporting  the  QCD  dilaton  to  be
light  enough,  compared  to  the  dynamical  intrinsic  scale.
Even if  it  is  not  the case,  the hQCD flavor structure can
straightforwardly  be  extended  from  the  three  flavor  to
many flavors,  say,  eight's  [92, 93], with  keeping the  bo-
sonic seesaw  mechanism,  so  that  a  manifest  light  com-
posite  dilaton  can  be  generated  by  the  nearly  conformal
dynamics, as has recently been discussed [94]).

S U(3) FL,R = (Ψi,ψ)T
L,R

Ψi(i=1,2) ∼ (N,1,2,1/2) ψ ∼ (N,1,1,0)
S U(N = 3) S U(3)c×S U(2)W ×U(1)Y

U(3)FL
×U(3)FR

LyH
=−yH F̄L ·

(
02×2 H
H† 0

)
·

FR+H.c. yH

Consider an  hQCD  with  three  colors  and  three  fla-
vors, as a minimal model to realize the bosonic seesaw as
discussed in [85-87], where the hQCD fermions form the

-flavor  triplets, ,  having  vectorlike
charges  with  respect  to  the  SM  gauges  like

 and for  the  hQCD
color  group  and .
Thus,  this  hQCD  possesses  the  (approximate)  “chiral ”

 symmetry as  well  as  classical-scale  in-
variance, of which the former is explicitly broken by the
vectorlike  SM  gauges.  Besides,  we  shall  introduce  the
following terms, which are SM gauge-invariant but expli-

citly break the chiral symmetry: 
.  Note that  in  addition to  this -Yukawa term,

Chinese Physics C    Vol. 44, No. 11 (2020) 111002

H2 χ m2
H2

(χ) = c2χ
2 c2 > 0 O(1) mH2(χ) H2

χ ⟨χ⟩
H2

1) The  mass term takes a  field-dependent form like , with  and  as assumed in the text. This  becomes the  mass after
the  develops the VEV , which is by construction lager than the EW scale, or the lightest Higgs mass identified as the 125 GeV Higgs's. Thereby, one can safely in-
tegrate out the heavy  by taking into account its a priori heaviness.
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U(1)FA

yH U(1)FA

U(1)FA

the symmetry is explicitly broken also by the an-
omaly  coupled  to  hQCD  gluons  that  can,  however,  be
transferred  to  this -Yukawa  term  by  the  rota-
tion,  so that  it  fully controls  the size of  the  sym-
metry breaking.

S U(3)FL
×

S U(3)FR
(×U(1)FV

)
The  remaining  (approximate)  chiral 

 symmetry is broken down by the chir-
al  condensate  invariant  under  the  SM  gauge  symmetry,

⟨F̄F⟩ = ⟨Ψ̄iΨi⟩ = ⟨ψ̄ψ⟩ , 0
S U(3)FV

(×U(1)FV
) ΛhQCD

, down  to  the  diagonal sub-
group  at the scale , similar to the
ordinary  QCD.  This  spontaneous  chiral  breaking  thus
leads to  the  low-energy spectrum with  the  eight  NG bo-
sons.

LyH

ΛhQCD

The  low-energy  description  for ,  below  the  scale
, can be as follows:

χ2
[
c1(H†1Θ+H.c.)+ c2|Θ|2

]
= χ2

{
c1(detΣ+H.c.)+ c2tr

[
Σ†Σ

(
1−σ3

2

)]}
, (5)

Σ = (H,Θc) Θ ∼ ψ̄RΨL

Θ

c1 ≃ yH
ΛhQCD c2
⟨F̄F⟩
χ

where with is  a  composite  Higgs
doublet (Note that when one works on hQCD theory with
hQCD  fermions  in  higher  dimensional  representations,
like  a  real  or  a  pseudo-real  representation,  the  seesaw
partner would  be  a  composite  Nambu-Goldstone
Higgs-doublet, as employed in [89]1));  up to some
renormalization  effect  scales  down  to ;  and  has
been  generated  by  the  chiral  condensate  scaled  by
the VEV of the composite hQCD dilaton . This is noth-
ing  but  the  form  of  a  scale-invariant  two-Higgs  doublet
model as discussed above, so the bosonic seesaw should
work, to bring the theory back to the Higgs portal model
as the low-energy description. It is important to note also
that  the  approximate  inertness  of  the  second  Higgs
doublet  that  is  necessary  for  the  conformal/flat  direction
is now manifest because of the robust Vafa-Witten theor-
em [95].

Θ ∼ ψ̄RΨL
c2

Θ

This  ensures  the  zero  VEV  for  the  non-vectorlike
condensates  such  as ,  in  this  vectorlike  hQCD
and  the  positiveness  of  the (i.e.  the  positive  mass
square of  the ), as  long as the chiral  manifold describ-
ing the low-energy hQCD is stable.

4    Discriminating the universality class

U(1)FA
U(1)A

Z2 U(1)A
c1/c2≪ 1

c0 = 0

c1
yH

One may identify in the hQCD as for the
previous two-Higgs sector.  Then one can say that the ad
hoc  assumption  (the  soft- / broken  by  taking

 and  maximal  isospin  breaking  for  the  Higgs
sector: ) is naturally realized by the hQCD in which
the  bosonic  seesaw  mechanism  is  built  and  where  the
smallness of can be understood by the presence of light
hQCD pions. Although the gives a tachyonic mass to
the lightest neutral hQCD pion, one can resolve it by in-
troducing  extra  singlet  pseudoscalar  as  discussed  in  [86,

U(1)A

87, 90] without conflicting any discussions in the present
paper.  Thus,  the  origin  of  the  EWSB  derived  from  the
negative  portal  coupling  is  tied  to  the  explicit-hidden
chiral symmetry-breaking (and/or breaking) in the
hQCD sector.

yH

ΛhQCD = 1(2)
≳ 450(700)

sin2 θ = 0.1 ≳ 400(600)
sin2 θ = 0.05 Z2/U(1)A

yH ≲ 0.1
λHχ ≲ 0.1

∼ 10−1

∼ 102

The  small coupling can  lead  to  custodial sym-
metry  breaking,  and  oblique  corrections,  such  as  the T-
parameter constraint, must be discussed due to the correc-
tions  from  the  EW-charged  hQCD  pions.  Such  EW
charged  pions  also  significantly  contribute  to  the  125
GeV  Higgs  decaying  to  diphotons  in  addition  to  overall
suppression by the mixing angle and the light dilaton that
is  universally  present  in  Higgs-portal  scalegenesis.  We
have confirmed that parameter spaces are sufficiently al-
lowed under those constraints and this will be reported in
detail in another publication. For instance, when we take

 TeV,  the  EW-charged  hQCD  pion  mass  is
bound  to  be  GeV for  the  Higgs-dilaton  mix-
ing  strength ,  and GeV  for

, along with the soft-  breaking coup-
ling ,  which  yields  the  Higgs  portal  coupling

, and the hQCD dilaton having the mass around
300 GeV as in [73]. Such light pions can be produced at
the  LHC  by  EW  interactions  (vector  boson  fusions)  via
the chiral anomaly in the hQCD for the predicted produc-
tion  cross  sections  to  be  quite  small  (roughly  at  most

fb  at  13  TeV)  due  to  the  loop  factor  suppression
that is compared with the currently stringent upper bound

fb at the corresponding mass range [96], and it may
be  hard  to  detect  directly,  even  in  the  high-luminosity
epoch  (for  similar  EW-charged  pion  signals,  e.g.,  see
[97]).  Note even in that  case that  the presently proposed
hQCD can be probed by correlated deviations for the 125
GeV  Higgs  to  decay  to  diphotons  by  hQCD  pion  loops
and  the  diboson  channels  including  diHiggs  and  di-EW

Chinese Physics C    Vol. 44, No. 11 (2020) 111002

c2 = 0 ΛhQCD Θ

O(gW/(4π)ΛhQCD) ΛhQCD = O(1) Θ O(100)
(χ) Θ χ

H1 χ yH

1) In that case, one would have  at the scale. Going down to lower scales, however, EW radiative corrections would generate the mass on the order
of , where  TeV, as will be seen from the phenomenological bounds later. Hence, this  mass scale should be of  GeV, less
than the EW scale and smaller than a composite dilaton mass. Therefore, one cannot integrate out the , instead, the dilaton will be integrated out such that the
theory will be away from the conformal direction. In other words, this hQCD model does not blelong to the universality class in which the Higgs portal between the SM-
like Higgs and a SM-singlet dilaton is necessarily present at the low-energy theory. This is the case for a minimal setup only with the HC theory and the -like
Yukawa term as well as the SM gauge interactions. Going beyond the minimal setup could make the theory come back on the track of the conformal direction.
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bosons, as discussed in [73], that are definitely character-
istic of  the  universality  class  of  the  Higgs-portal  scale-
genesis.

yH

Thus, the light hQCD pions will be definite discrimin-
ators for  the universality  class  of  the Higgs portal  scale-
genesis.  If  both  a  light  dilaton  and  hQCD  pions  (the
masses  of  which  are  expected  to  be  around/below  TeV
scale) are detected at forthcoming collider experiments it
would be the hQCD that  indicates  the very origin of  the
Higgs  portal  coupling,  and  hence  the  very  origin  of  the
Higgs  mass  term.  In  addition,  the  term which breaks
chiral symmetry explicitly  potentially  induces a  signific-
ant  deviation of  the T parameter  [98, 99].  Thus,  the  EW
precision  data  also  provide  some  hints  to  explore  the
models of this universality class.

5    Conclusion

In  conclusion,  the  universality  class  that  is  presently
proposed  can  be  depicted  as  in Fig.  1.  The  universality
class and its disentangled dynamical origin would provide
a  novel  guideline  along  the  conformal  extension  of  the
SM and  possibly  lead  to  resolving  the  longstanding  in-
quiry into the gauge hierarchy (fine tuning) problem. This
would  also  provide  a  clear  understanding  of  the  hidden
new physics in the search for the dynamical origin of the
Higgs  sector  and  hence  the  origin  of  mass  that  can  be
tested in upcoming collider experiments.

More detailed  studies  regarding  distinct  collider  sig-
natures for the two-Higgs-doublet model type and hQCD

type are worth performing and will be pursued elsewhere.
In addition, the thermal histories as well as possible grav-
itational wave signals for this universality class could be
discriminated, which  is  a  worthy  future  research  direc-
tion.
 

We  are  grateful  to  Kristjan  Kannike  and  Jiang-Hao
Yu for the fruitful discussions.
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1 Introduction

The discovery of the Higgs boson by the ATLAS and CMS collaborations in proton-proton
collisions data with centre-of-mass energies of 7TeV and 8TeV [1, 2] has marked a milestone
in our understanding of the electroweak symmetry breaking (EWSB). To-date, the tested
properties of this particle are all in good agreement with the Standard Model (SM) pre-
dictions [3, 4]. In particular, the recent observations of the Higgs boson decay modes into
bottom quark [5–7] and tau-lepton pairs [8, 9] are consistent with the SM Yukawa coupling
strength and, therefore, support the existence of the corresponding interactions in Nature.
Likewise, the detection of the Higgs boson production in association with top anti-top quark
pairs [10, 11] matches the SM expectations and thus provides a direct confirmation of the
existence of top quark Yukawa coupling. Given the Higgs boson vacuum expectation value
(VEV) inferred from weak interactions, v = 246GeV, these results inevitably strengthen
our confidence in the SM and in the Yukawa coupling origin of elementary fermion masses.

The precise measurement of the Higgs boson mass, mH = 125.25± 0.17 [12], has also
disclosed the expected value of the quartic Higgs boson coupling at the electroweak (EW)
scale, which is about λH(mt) ∼ 0.126. This inference allows us to speculate on the stability
of the EW vacuum by computing the relevant quantum corrections to the Higgs scalar
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potential [13–18]. For large field values, H � v, the renormalization group (RG) improved
effective potential is well approximated by the tree-level form with a running coupling

V tree
eff (H) ' λH(µH)

4 H4 , (1.1)

where the scale µH ∼ H is of the order of the Higgs field value. Therefore, the problem of
vacuum stability can be studied by simply analyzing the RG evolution of λH and, at least
in principle, solved by requiring that λH(µ) > 0 up to energies close to the Planck scale.

Impressive efforts have been dedicated to the computation of the higher-order correc-
tions to the RG flow controlling the evolution of the Higgs quartic coupling [19–25]. The
resulting relation that at low energy connects λH(µ) to the Fermi constant GF is

λH(µ) = GFm
2
H√

2
+ ∆λH(µ) , (1.2)

where ∆λH(µ) contains finite threshold corrections that arise beyond the tree-level. These
corrections are quite large and are the main source of uncertainty in the determination of the
value of λH on the considered energy span. Recently, the determination of the next-to-next-
to-leading-order (NNLO) corrections to ∆λH(µ), including the complete two-loop Yukawa-
QCD contributions [24, 25], has allowed a reduction of the error in the determination of
the Higgs mass of about ±0.7GeV [24].

Given the current experimental values of the SM parameters that enter the RG evo-
lution of the Higgs quartic coupling, these analyses reveal that λH becomes negative well
below the Planck scale and that the EW vacuum is thus metastable. In particular, taking
into account the theoretical and experimental uncertainties, ensuring the absolute stability
of the EW vacuum up to the Planck scale requires mH > (129.4± 1.8)GeV. Equivalently,
the SM vacuum stability is excluded at 2σ for mH < 126GeV [24]. The result still critically
depends on the value of the top quark mass, which is the dominant source of uncertainty
in the determination of the Higgs mass, and affects the RG equations (RGE) of the Higgs
quartic coupling through the negative contribution induced by the related Yukawa coupling.

A possible way to ensure the stability of SM vacuum is to assume that all Yukawa
couplings, including that of the top quark, are effective low energy parameters. Importantly,
these are to be radiatively generated in absence of direct couplings of the Higgs boson to any
fermion field, that is, by requiring a fundamentally fermiophobic Higgs boson. In fact, if the
SM Yukawa couplings were to be generated through new fundamental interactions of the
Higgs boson with fermion fields, the vacuum instability problem could still occur due to the
corresponding — and potentially sizeable — new fermion-loop contributions. An explicit
example is provided by models based on the universal seesaw mechanism [26–31], which
generate the SM Yukawa couplings through fundamental interaction of the Higgs boson
with new vector-like fermions that might still drive the scalar potential to negative values.

Provided that new physics (NP) is below the SM instability scale, the fermiophobic
Higgs condition can instead guarantee the stability of the EW vacuum. The underlying
idea is straightforward: radiatively generated Yukawa operators cease to be local operators
above the NP scale where they are generated. Then, due to the fermiophobic nature of
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the Higgs boson, the RGE of λH at higher energies receives only the positive contributions
of the bosonic degrees of freedom which thus enforce the vacuum stability. Clearly, in
order to ensure that the Higgs quartic coupling remain positive throughout its complete
RG evolution, the NP scale where the SM Yukawa operators are effectively generated must
be below the SM instability scale. The latter therefore provides a theoretical upper bound
on the NP scale required for the validity of the proposed solution.

The fermiophobic Higgs condition can be naturally implemented by extending the
theory to any local or global symmetry that forbids all SM Yukawa operators. For instance,
the mechanism is straightforwardly embedded in the scenarios of refs. [32–34] which were
originally designed to solve the flavor hierarchy problem. In more detail, the tree-level
Yukawa operators are forbidden by a new symmetry S: a discrete symmetry in ref. [32]
and a local SU(2)R extension of the SM gauge group in refs. [33, 34]. In either case, the
new symmetry is spontaneously broken by the vacuum expectation value vS of a dedicated
scalar field which, thereby, allows for the emergence of the SM Yukawa operators.

The framework predicts the existence of massive vector-like dark fermion fields —
heavy SM gauge-singlet replicas of the SM fermions — and a set of scalar messenger fields
that mediate the interactions between the SM and the dark sector. The messenger fields
carry the same quantum numbers of squarks and sleptons of known supersymmetric mod-
els, in addition to a new U(1)D gauge charge under which the dark sector fields are also
charged. The chiral symmetry breaking necessary for the Yukawa coupling generation is
provided by the dark-fermion masses and communicated, at the 1-loop level, to the SM
fields by the messengers. After the spontaneous breaking of the symmetry S, the emerg-
ing Yukawa couplings are then necessarily proportional to the involved dark-fermion mass.
A non-perturbative dynamics in the dark-sector, related to the U(1)D gauge symmetry, is
responsible for the exponential spread of the dark fermion masses and, therefore, for the ob-
served hierarchy of the SM Yukawa couplings [35]. The same framework also allows for the
radiative origin of flavor mixing, modelled in the Cabibbo-Kobayashi-Maskawa matrix [34].

Adopting the simplest model delineated by the framework [32], in the present paper
we explore the EW vacuum stability in light of the fermiophobic Higgs mechanism. In
particular, we compute the 1-loop contributions to the β-function of the Higgs quartic
coupling induced by the new degrees of freedom and analyse the conditions required for
the positivity of this parameter on the whole of its RG evolution.

The paper is organized as follows. In the next section we discuss the theoretical frame-
work at the basis of the construction, detailing the relevant interactions of the new fields.
In section 3 we review how the SM Yukawa coupling are generated from the interactions
of messengers and dark fermions, whereas in section 4 we compute the 1-loop β-functions
of the model. In section 5 we study the vacuum stability of the theory by analyzing the
RG evolution of the λH coupling from the EW scale up to the ultraviolet (UV) cutoff of
the theory. We conclude with section 6, where we summarize our findings.
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Field Spin Z2 charge U(1)D charge U(1)Y charge SU(2)L repr. SU(3)c repr.
Extended SM sector:

qiL 1/2 1 0 1/6 2 3
U iR 1/2 1 0 2/3 1 3
Di
R 1/2 1 0 -1/3 1 3

LiL 1/2 1 0 -1/2 2 1
EiR 1/2 1 0 -1 1 1
νiR 1/2 1 0 0 1 1
Ĥ 0 -1 0 1/2 2 1
HS 0 -1 0 0 1 1

Mediator sector:
Ŝ
Ui
L 0 1 −eUiD 1/6 2 3

Ŝ
Di
L 0 1 −eDiD 1/6 2 3
S
Ui
R 0 1 −eUiD 2/3 1 3

S
Di
R 0 1 −eDiD -1/3 1 3
Ŝ
Ni
L 0 1 −eNiD -1/2 2 1
Ŝ
Ei
L 0 1 −eEiD -1/2 2 1
S
Ni
R 0 1 −eNiD 0 1 1
S
Ei
R 0 1 −eEiD -1 1 1

Dark sector:
QUi 1/2 1 e

Ui
D 0 1 1

QDi 1/2 1 e
Di
D 0 1 1

QEi 1/2 1 e
Ei
D 0 1 1

QNi 1/2 1 e
Ni
D 0 1 1

Table 1. Particle content of the model and gauge assignments. The index i = 1, 2, 3 runs over the
SM generations. The electric charge of each field is given by Q = I3+Y , where Y is the hypercharge
and I3 is the eigenvalue of the third weak isospin generator.

2 Theoretical framework

We summarize here the main features of the model at the basis of the present work, using
the original formulation of ref. [32] for the sake of simplicity. Because the discussion of the
vacuum stability issue does not significantly depend on the nature of the symmetry used to
forbid the existence of tree-level Higgs Yukawa couplings, our results can be applied also
to the framework based on the Left-Right (LR) gauge symmetry presented in ref. [33].
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Concretely, we enlarge the SM gauge group by a Z2 discrete symmetry under which
the fields transform as specified in table 1. The full Lagrangian is then given by

L = LSM(Yf = 0) + LMS(q) + LMS(L) + LDark − VHS − VMS , (2.1)

where LSM(Yf = 0) represent the SM Lagrangian without the usual Yukawa interactions,
which necessarily vanish for the considered Z2 assignments. The remaining terms host
portal interactions and the dark sector fields, in particular LMS(q) and LMS(L) contain
the Lagrangian for the messenger sector, including the portal interactions with quarks and
leptons, respectively. The term LDark, instead, contains a set of massive Dirac fermions, the
dark fermions, singlet under the SM gauge group but charged under a vectorial U(1)D dark
gauge theory. Next, V (HS) collects the terms of the scalar potential that involve the scalar
field HS , responsible for the spontaneous breaking of the new Z2 symmetry. Explicitly

VHS = λHS
H4
S

4 − µ
2
S

H2
S

2 + 1
2λHHSH

2
SĤ
†Ĥ , (2.2)

where Ĥ stands for the SM Higgs doublet. As both Ĥ and HS develop non-vanishing
VEVs, the last term in eq. (2.2) results in a tree-level mass mixing between the two scalars.
In fact, focusing for the moment on the two Higgs fields only, the minimization conditions
for the corresponding scalar potential set

µ2
S = v2λHHS + v2

SλHS (2.3)
µ2
H = v2λH + v2

SλHHS (2.4)

and the matrix of squared masses of the CP -even bosons thus is:

M2 =


 2 v2 λH 2v vS λHHS

2v vS λHHS 2 v2
S λHS


 . (2.5)

The mass eigenstates are determined upon a rotation of the original scalar fields by an
angle of

tan 2θ = 2 v vS λHHS
v2 λH − v2

S λHS
. (2.6)

Because in the rest of the paper we consider scenarios where vS � v, we expand the above
relation in powers of v/vS , obtaining at the first order that

tan 2θ ≈ −2λHHS
λHS

v

vS
. (2.7)

As we can see, the effects of mass mixing in the considered limit are suppressed by the
large hierarchy between the EW and NP scales and thus can be safely neglected. Still, be-
cause the λHHS coupling receives important radiative contributions form the interactions
contained in the LMS(q) and LMS(L) terms of eq. (2.1), we retain the full RG evolution of
this coupling in our analyses.

Finally, the last contribution in eq. (2.1), VMS, contains the full scalar potential for the
messenger fields and is separately discussed in the following.
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The portal interactions in LMS(q), responsible for the radiative generation of Yukawa
couplings, are shaped by the SM quantum numbers and transmit the chiral symmetry
breaking sourced by the dark fermion masses to quarks and leptons [32].

In more detail, for the quark sector we have

LMS(q) = L0
MS(q) + LIMS(q) , (2.8)

where L0
MS(q) contains the kinetic terms, mass parameters and gauge interactions of the

messenger fields and LIMS(q) specifies the portal interactions with the SM quarks:

LIMS(q) = gUL

3∑

i=1

[
q̄iLQ

Ui
R

]
Ŝ
Ui
L + gDL

3∑

i=1

[
q̄iLQ

Di
R

]
Ŝ
Di
L

+gUR
3∑

i=1

[
Ū iRQ

Ui
L

]
S
Ui
R + gDR

3∑

i=1

[
D̄i
RQ

Di
L

]
S
Di
R

+λUS
3∑

i=1
H̃†ŜUiL S

Ui†
R HS + λDS

3∑

i=1
Ĥ†ŜDiL S

Di†
R HS + H.c. . (2.9)

In the equation above, we have left all the color and SU(2)L contractions understood and
we have indicated the chiral projections of the dark fermion fields QDi and QUi with a
subscript L,R. All sums run over i = 1, 2, 3, corresponding to the SM fermion generations.
The SU(2)L doublets qiL =

(
U iLD

i
L

)T represent the SM up (U) and down (D) quark
fields, ŜUi,DiL =

(
S
Ui,Di
L1

S
Ui,Di
L2

)T
, and Ĥ =

(
H+H0)T is the SM Higgs doublet. As usual,

H0 = (v + H)/
√

2 and the conjugate doublet is H̃ = iσ2Ĥ?. The fields carrying an R

subscript are SU(2)L singlets, including the complex scalar fields SUi,DiR . The constants
gU,DL and gU,DR in eq. (2.9) are flavor-universal parameters that we require to lie in the
perturbative regime throughout the following analysis.

The Lagrangian LMS(L) that connects leptons to the corresponding dark fermions
possesses a similar structure:

LIMS(L) = gNL

3∑

i=1

[
L̄iLQ

Ni
R

]
Ŝ
Ni
L + gEL

3∑

i=1

[
L̄iLQ

Li
R

]
Ŝ
Ei
L

+gNR
3∑

i=1

[
ν̄iRQ

Ni
L

]
S
Ni
R + gER

3∑

i=1

[
ĒiRQ

Li
L

]
S
Ei
R

+λNS
3∑

i=1
H̃†ŜNiL S

Ni†
R HS + λES

3∑

i=1
Ĥ†ŜLiL S

Ei†
R HS + H.c. . (2.10)

Here LiL =
(
νiLE

i
L

)T represent the SM lepton doublets, with Ei and νi being the charged
lepton and neutrino fields, respectively. Similar to the case of quarks, we have ŜNi,EiL =(
S
Ni,Ei
L1

S
Ni,Ei
L2

)T
. The particle content of the SM has also been extended with right-handed

neutrinos so that these particles can acquire mass in the same way as the remaining SM
fermions, that is via effective Yukawa couplings. The framework is therefore compatible
with the presence of three light Dirac neutrinos.
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The Lagrangian terms in eqs. (2.9) and (2.10) contain the minimal set of interactions
needed to produce the SM Yukawa couplings radiatively. Due to the fact that the dark
fermions QUi,Di,Ni,Ei are SM gauge singlets, the quantum numbers of the messenger scalar
fields necessarily coincide with those of squarks and slepton of supersymmetric models.

According to the proposals in refs. [32, 33], the assumption of flavor (generation)
universality for the gU,D,E,NL,R , λU,D,E,NS couplings appearing in eqs. (2.9) and (2.10) attributes
a potential flavor dependence of the Yukawa couplings in the quark or lepton sector solely
to the involved dark-fermion masses. In fact, flavour universality is also preserved by the
one-loop corrections to the mentioned couplings since only the dark-fermion masses break
the universality. As a result, the spread of SM Yukawa couplings is directly related to
the dark fermion mass spectrum, regardless of its origin. For instance, the use of non-
perturbative dynamics in the dark sector easily allows exponentially spread dark fermions
masses. The mechanism can therefore generate hierarchical SM Yukawa couplings that
naturally fit the observed values, thereby solving the SM flavor puzzle [32–34]. Since in
the present paper we are mainly concerned with the stability of the EW vacuum, which is
not sensitive to the details of the flavour structure, we restrict ourselves to the generation
of flavor-diagonal Yukawa couplings.

After the spontaneous symmetry breaking operated by the SM Higgs doublet and by
the HS field, the last term in eqs. (2.9) and (2.10) result in the following trilinear couplings

L3 ⊃ λUS v
3∑

i=1
Ŝ
Ui
L S

Ui†
R HS+λDS v

3∑

i=1
Ŝ
Di
L S

Di†
R HS +λUS vS

3∑

i=1
H̃†ŜUiL S

Ui†
R +λDS vS

3∑

i=1
Ĥ†ŜDiL S

Di†
R

+λNS v
3∑

i=1
Ŝ
Ni
L S

Ni†
R HS+λES v

3∑

i=1
Ŝ
Ei
L S

Ei†
R HS +λNS vS

3∑

i=1
H̃†ŜNiL S

Ni†
R +λES vS

3∑

i=1
Ĥ†ŜEiL S

Ei†
R

+H.c., (2.11)

where vS is the VEV of the HS field. As we show in the next section, these trilinear
couplings are crucial for the radiative generation of the SM Yukawa couplings.

To conclude the section, we report below the most general expression for the minimal
form of quartic potential VMS of messenger scalar fields allowed by the symmetries of the
theory. The expression takes into account the following aspects:

i) the hypothesis of flavor universality of the giL,R, λiS couplings, i =U,D,E,N, in eqs. (2.9)
and (2.10).

ii) the fact that the messengers and dark-fermions are both charged under U(1)D gauge
interactions, with different U(1)D charges.
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The above conditions result in a radiatively generated potential given by

VMS = λULL

3∑

i=1

[(
Ŝ
Ui
L

)†
Ŝ
Ui
L

]2
+ λDLL

3∑

i=1

[(
Ŝ
Di
L

)†
Ŝ
Di
L

]2

+λURR
3∑

i=1

[(
S
Ui
R

)†
S
Ui
R

]2
+ λDRR

3∑

i=1

[(
S
Di
R

)†
S
Di
R

]2

+λULR
3∑

i=1

(
Ŝ
Ui
L

)†
Ŝ
Ui
L

(
S
Ui
R

)†
S
Ui
R + λDLR

3∑

i=1

(
Ŝ
Di
L

)†
Ŝ
Di
L

(
S
Di
R

)†
S
Di
R

+λNLL
3∑

i=1

[(
Ŝ
Ni
L

)†
Ŝ
Ni
L

]2
+ λELL

3∑

i=1

[(
Ŝ
Ei
L

)†
Ŝ
Ei
L

]2

+λNRR
3∑

i=1

[(
S
Ni
R

)†
S
Ni
R

]2
+ λERR

3∑

i=1

[(
S
Ei
R

)†
S
Ei
R

]2

+λNLR
3∑

i=1

(
Ŝ
Ni
L

)†
Ŝ
Ni
L

(
S
Ni
R

)†
S
Ni
R + λELR

3∑

i=1

(
Ŝ
Ei
L

)†
Ŝ
Ei
L

(
S
Ei
R

)†
S
Ei
R . (2.12)

The number of independent parameters included in the expression above is the minimal
compatible with the symmetries of the theory and flavor universality. The number of
couplings could be further reduced only by assuming extra symmetries. For instance, the
LR gauge symmetry considered in ref. [33] forces λU,D,E,NLL = λU,D,E,NRR and gU,D,E,NL = gU,D,E,NR

at the high energy scale where the LR symmetry is first broken. In our case, these relations
are not preserved by radiative corrections because the L− and R-type messenger fields have
different SU(2)L ×U(1)Y quantum numbers.

In the following analysis we also disregard all quartic couplings of the form Ĥ†ĤŜI†L Ŝ
I
L

or Ĥ†ĤSI†R SIR, involving two messenger fields of the same type (I runs over the SM fields)
and the SM Higgs doublet Ĥ or the singlet HS . Even if vanishing at a scale, these cou-
plings are inevitably re-generated by radiative corrections already at the one-loop level.
However, with the interactions of the Higgs boson and HS field included in eq. (2.10), the
β-functions of the couplings that multiply the Ĥ†ĤSI†X SIX operators, X = L,R, receive a
first contribution proportional to the square of the EW gauge couplings at the one-loop
level. Operators involving HS , instead, begin to run only at higher orders. By setting these
parameters to small and positive values at a given scale, the slow running then ensures that
their effect on the RGEs of the model — and in particular on the evolution of the Higgs
quartic coupling — is always negligible. Consequently, we expect that a more careful as-
sessment of the RGE evolution in the present model would only marginally change the
results of our vacuum stability analysis.

3 Radiative generation of Yukawa couplings

We begin our investigation by identifying the couplings and mass scales relevant to the
problem of vacuum stability, using the simplified framework introduced in the previous
section as a benchmark.
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(a) (b)

H

SUi
L1

SUi
R1

QUi
R QUi

L
U i
L U i

R

SDi
L1

SDi
R1

QDi
R QDi

L
Di

L Di
R

HvS vS

Figure 1. The diagrams responsible for the radiative generation of the Yukawa couplings of up-
type quarks (a) and down-type quarks (b). The black circle on the external scalar line implies that
the field HS is set to its vacuum expectation value vS . The blue dot on the dark fermion line (in
red), instead, represents a mass insertion.

The SM Yukawa couplings arise at the one-loop level through diagrams analogous to
that of figure 1, which explicitly show the case of quarks.

The expressions for the resulting SM Yukawa couplings can be obtained by matching
the fundamental 5-dimensional amplitudes to the local SM Yukawa operators. In particu-
lar, for the quark sector we have [32]

Y q
i = gqLg

q
R

16π2

(
MQiΛS
m2

)
f1(xi, ξ) (3.1)

where the index i stands for the quark flavor (for both up and down types) and f1(x, ξ) is
a loop function given by

f1(x, ξ) = 1
2

[
C0

(
x

1− ξ

) 1
1− ξ + C0

(
x

1 + ξ

) 1
1 + ξ

]
, (3.2)

with
C0(x) = 1− x (1− log x)

(1− x)2 . (3.3)

In the above equations we have used xi = M2
Qi
/m2, where m2 is the average mass of the

colored scalar messengers and MQi is the mass of the dark fermion associated to the quark
qi. We have also defined

ΛS = λSvS ,

ξ = ΛSv
m2 , (3.4)

which indicate the scale of new physics and the strength of the mixing in the colored
messenger mass sector, respectively.

The request that messenger fields be unstable, or analogously that the dark fermions
be stable particles, forces the latter to be lighter than the former. The condition translates
into the following bound

M2
Qi < m2(1− ξ) , (3.5)
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where we have neglected the contributions of quark masses, subdominant with respect to
those of dark-fermions.

In analogy to the above results, the SM Yukawa couplings of leptons are

Y E,N

i = gE,NL gE,NR

16π2

(
MQiΛS
m̄2

)
f1(x, ξ̄) (3.6)

where nowMQi is the mass of the dark fermion associated to the lepton of generation i and
m̄ and ξ̄ are the common mass and the mixing angle in the leptonic sector of messengers,
respectively.

Without loss of generality, henceforth we set the masses of all the messenger fields to a
common scale, imposing m = m̄, and likewise require that ξ = ξ̄. In fact, these simplifica-
tions do not preclude the framework from reproducing arbitrary Yukawa hierarchies, which
can be matched by considering suitable dark fermion mass spectra and rescaling of the gqL,R,
gEL,R and gNL,R couplings. Notice that since avoiding tachyons and color- or charge-breaking
minima in the messengers sector requires ξ < 1, we can bound the scale of new physics
through

ΛS <
m2

v
. (3.7)

In order to further reduce the parameter space, we require that gqL = gqR ≡ gqLR,
gN,EL = gN,ER ≡ gLLR at the energy scale µmes ∼ m of the order of the common messenger mass.
Since the messengers are the heaviest fields running inside the relevant loop contributions,
we match the fundamental amplitude of figure 1 to the SM Yukawa operator at the same
scale µmes.

A closer inspection of eq. (3.1) reveals that the radiative suppression factor is to be
compensated by large couplings gqL,R ' O(1) to reproduce the observed value of Yt ∼ 1.
Alternatively, it is possible to take ΛS/m � 1 (but ΛS/m < m/v to avoid tachyons)
and match the value of top Yukawa coupling for perturbative values of gqL,R. Indeed,
large values of the trilinear coupling ΛS are allowed at high energy because the associated
operator has dimension three. However, they can break the perturbative unitarity of the S
matrix at low energies [36]. In particular, ΛS appears in the interaction vertex ΛSHS†i Si
between generic messenger fields denoted by the index i. Large values of the parameter can
therefore cause the elastic scatterings cross section for the SiSi → SiSi, mediated by the
SM Higgs boson, to grow beyond the unitarity limit. This might signal the formation of
bound states of messenger fields, which would allow to recover the unitarity of the theory
in a non-perturbative way.

The issue of perturbative unitarity in the radiative generation of Yt becomes evident
once the value of the dark fermion mass associated to the top quark is chosen so as to
maximize the radiative contributions to Yt. Setting the parameter to the same order of the
lightest messenger mass, MQt ∼ m, implies xt = 1− ξ and gives

Yt = (gqLR)2

16π2

(
m

v

)
FY (ξ) . (3.8)
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The function FY (ξ) is

FY (ξ) =
2ξ + (1− ξ)2 log

(
1−ξ
1+ξ

)

8ξ
√

1− ξ , (3.9)

and admits the limit FY (ξ) ' ξ
2 + O(ξ2) in the small mixing case, ξ � 1. We can then

express the Yukawa coupling as a function of the ΛS scale

Yt ∼
(gqLR)2

32π2
ΛS
m

+O(ξ2) , (3.10)

and the value of Yt can be matched by adjusting the product (gqLR)2ΛS . For the purpose of
assessing the vacuum stability, we can then use the relation in eq. (3.8) to infer the initial
condition for gqLR, given at the messengers scale as a function of m and ξ. Equivalently,
in the small mixing regime, we can use eq. (3.10) to determine the value of ΛS/m as a
function of gqLR.

The same strategy also allows to determine the gLLR couplings, although perturbative
unitarity can be easily respected in the leptonic sector because Yτ � 1. Requiring that the
mass of the dark-fermion associated to the tau lepton be of the same order of the lightest
messenger mass, we then have

Yτ = (gLLR)2

32π2

(
m

v

)
FY (ξ) , (3.11)

where, as anticipated, we have used the same average messenger mass and mixing as in
the quark sector. For the measured values of SM Yukawa couplings, we do not expect the
simplification to induce qualitative changes in the RG evolution of the SM Higgs boson
quartic coupling because the hierarchy between quark and lepton messengers spans at most
two orders of magnitude.

In the following, after detailing the relevant β-functions, we analyze the EW vacuum
stability in two complementary scenarios delineated by the above considerations:

I) We consider perturbative values of the couplings gL,qLR . 1 and a set of values for the
common messenger mass m. The scale ΛS is then adjusted so as to reproduce the
observed value of Yt through eq. (3.8) and we extend the vacuum stability analysis
up to the Planck scale µ ∼ MPl. Due to the large ratio ΛS/m � 4π, we assume
that the non-perturbative phenomena needed to recover unitarity at low energy in
messenger sector do not affect the running of λH at the large scales relevant for
the vacuum stability. This is justified by the fact that operators of dimension 3,
potentially responsible for breaking unitarity at low energy, are super-renormalizable
in the UV. We also speculate on a possible UV completion which allows to have a
large ratio ΛS/m� 1 compatible with perturbative couplings gqLR � 1 at low energy.

II) We use ΛS/m . 4π, within the limit of perturbative unitarity. The initial values of
the couplings gqLR and gLLR are then extracted from Yt and Yτ in eq. (3.8). Because
gqLR is necessarily borderline with the perturbative limit, we analyze the running of
λH only up to the scale where the first Landau pole is reached.
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In both scenarios, we regard the common messenger mass, m, and the trilinear Higgs-
messengers coupling, ΛS , as input parameters. For the sake of simplicity, we set the quartic
coupling λHS in a way that the mass of the HS field matches the common messenger mass
scale. Beside the quantities that directly determine the Higgs boson quartic coupling, we
track the RG evolution of the remaining couplings to ensure the absence of color breaking1

and assess their perturbativity.

3.1 Further phenomenological implications

We conclude the section with a brief review of the phenomenological implications of the
framework, based on the works of refs. [34, 37–44].

In this scenario, the generation of the SM Yukawa interactions requires the existence
of heavy scalar messenger fields and light dark-fermions, both charged under an unbroken
U(1)D gauge interaction in the dark sector. Importantly, the model then clearly allows for
the direct production of a pair of colored scalar messenger fields at collider experiments,
via gluon-gluon fusion or quark-antiquark annihilation (the latter proceeding through the
exchange of dark fermions in the t- or u-channel). Each messenger field eventually decays
into the corresponding quark and dark-fermion, resulting thereby in a jet accompanied by
missing energy. This signature is quite similar to the squark production of supersymmetric
models with a stable neutralino, which plays here the role of a dark fermion. Although a
dedicated collider analysis is still missing, we expect that the sensitivity of the experiment
to the cross sections will be reduced by the mass of the messenger fields with respect to
the corresponding supersymmetric case. In particular, the LHC can only probe the direct
production of messenger fields with masses up to a few TeV.

The framework also foresees the existence of a light sector containing the massless
dark photon, γ̄, associated to the dark U(1)D gauge symmetry. This U(1)D guarantees the
stability of dark fermions, required by DM phenomenology, and protects the theory from
inducing large tree-level flavour-changing neutral current (FCNC) transitions. Although
the dark photon does not couple to ordinary matter at the tree-level, effective couplings are
generated by higher dimensional operators involving quarks and leptons in the loop. Then,
another distinguishing feature of this scenario is the predicted decay of the Higgs boson into
photon and dark photon H → γγ̄ [38, 40], which gives rise to a monochromatic photon plus
(neutrino-like) missing energy signature at the LHC [38, 40] or future e+e− colliders [39].
This process is induced at the one-loop level by the exchange of messenger fields in the
loop. For the non decoupling properties of the Higgs boson, we expect that sizeable ratios
of the percent level could be achieved even for very large masses of the messenger fields.
In regard of this, the ATLAS [45, 46] and CMS [47–49] collaborations have recently begun
their investigation of this signature producing quite stringent upper bounds on the process.

Another signature of the model are the FCNC processes induced by the decay of a SM
fermion (f) into a lighter one (f ′) of same charge plus a dark-photon, f → f ′ + γ̄ [42],

1The emergence of color breaking minima is prevented by requiring that quartic couplings involving
messenger fields remain positive at all scales. This also prevents the appearance of mass mixing terms
involving messenger fields and the SM Higgs boson, which would be otherwise generated through the
Ĥ†ĤSI†X S

I
X operators, X = L,R, neglected in this analysis.
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active in both the quark and lepton sectors. In particular, implications for the dark photon
production via the rare charged Kaon decay K+ → π+π0 + γ̄ (induced by s → dγ̄ transi-
tions) have been analyzed in ref. [44]. The large branching ratios expected for this decay
could be of interest for experiments dedicated to rare K+ decays like the NA62 at CERN.

Finally, the production of light dark-fermions in invisible decays of neutral hadrons
has been investigated in ref. [43], finding that the expected branching ratios of the KL and
B0 mesons are comparable to the current experimental limits.

4 RGEs for the full model

We present here the β-functions of the parameters that we track in our analysis of vacuum
stability. Due to the approximations adopted and the precision used in the computation
of the effective Yukawa couplings, it is sufficient to compute the corresponding RGEs at
the 1-loop order.

In studying our benchmark model, we have assumed a common U(1)D charge for all
the dark fermions and mediator fields expecting that the generalization to non-universal
charges will not change the conclusion of the analysis. This assumption also guarantees
the flavor (family) universality of the 1-loop RGEs.

The convention we use for the β-function is:

β (X) ≡ µdX
dµ
≡ 1

(4π)2β
(1)(X) .

In our analysis, we run the SM RGEs from the top quark mass scale to the matching
scale µ = µmes ' m, where the parameters of our benchmark model are initialized.2
We then continue the RG evolution of the quantities under investigation by using the β-
functions obtained for the benchmark model, up to a scale µ = ΛUV corresponding to
the UV cutoff of the theory. As for this, in absence of a UV completion for gravitational
interactions, it is customary [50] to assume as a UV cutoff the lowest between the Planck
mass, MPl, and the scale MLP at which the first Landau pole appears in the evolution of
a coupling:

ΛUV = min [MPl,MLP] . (4.1)

In particular, in the second scenario we consider, Landau poles might appear in the RG
flow of gqL,R(µ) well below the Planck scale, MLP < MPl, due to the large initial values of
these couplings imposed by the matching with the SM top Yukawa coupling. The above
criterion was introduced in ref. [50] to investigate the stability of the SM vacuum under the
assumption that quantum gravity does not introduce additional particle threshold above
the Planck scale, as expected for instance in asymptotic safety scenarios [51].

For the sake of convenience, we also report the SM 1-loop β-function for the Higgs boson
quartic coupling used for the RG evolution of the parameter in the range mt < µ < µmes,

2Dark Matter phenomenology forces the dark fermions to be lighter than the messengers. Therefore,
the scale m corresponds to the largest scale associated to the degrees of freedom that circulate in the loop
diagrams responsible for the Yukawa couplings generation.
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with µmes ∼ O(m):

β(1)(λH) = 24λ2
H − 6Y 4

t + 12λHY 2
t −

9
5g
′2λH − 9g2λH + 27

200g
′4 + 9

20g
2g′2 + 9

8g
4 . (4.2)

4.1 Quartic couplings

We provide below the 1-loop β-functions for the quartic couplings of the model as defined
in section 3, valid for µmes < µ < ΛUV, with the scale ΛUV as defined in eq. (4.1):

β(1)(λH) = 24λ2
H + 1

2λ
2
HHS
− 9

5g
′2λH−9g2λH + 27

200g
′4 + 9

20g
2g′2 + 9

8g
4 , (4.3)

β(1)(λHS ) = 18λ2
HS

+2λ2
HHS

, (4.4)

β(1)(λHHS ) = 4NF

(
3(λUS )2 +3(λDS )2 +(λES )2 +(λNS )2

)

+λHHS
(

12λH +6λHS +4λHHS−
9
10g

′2− 9
2g

2
)
, (4.5)

β(1)(λqS) = λqS

(
2λHHs +2λqLR−CqSg′2−

9
2g

2−8g2
3−6g2

D + |gqL|2 + |gqR|2
)
, (4.6)

β(1)(λLS) = λLS

(
2λHHs +2λLLR−CL

S g
′2− 9

2g
2−6g2

D + |gLL|2 + |gLR|2
)
, (4.7)

β(1)(λqLL) = λqLL

(
40λqLL−

1
5g
′2−9g2−16g2

3−12g2
D

)
+3(λqLR)2 (4.8)

+ 1
600g

′4 + 1
20g

2g′2 + 9
8g

4 +g2g2
3 +3g2g2

D + 1
15g

2
3g
′2 + 13

6 g
4
3

+4g2
3g

2
D + 1

5g
2
Dg
′2 +6g4

D +4λqLL |gqL|2−2 |gqL|4 ,

β(1)(λLLL) = λLLL

(
24λLLL−

9
5g
′2−9g2−12g2

D

)
+(λLLR)2 + 27

200g
′4 + 9

20g
2g′2 + 9

8g
4 (4.9)

+3g2g2
D + 9

5g
2
Dg
′2 +6g4

D +4λLLL |gLL|2−2 |gLL|4 ,

β(1)(λqRR) = λqRR

(
28λqRR−(CqY )2 4

5g
′2−16g2

3−12g2
D

)
+6(λqLR)2 + 2

75(CqY )4g′4 (4.10)

+ 4
15(CqY )2g2

3g
′2 + 13

6 g
4
3 +4g2

3g
2
D + 4

5(CqY )2g2
Dg
′2 +6g4

D +4λqRR |gqR|2−2 |gqR|4 ,

β(1)(λLRR) = λLRR

(
20λLRR−

36
5 (CL

Y )2g′2−12g2
D

)
+ 54

25(CL
Y )4g′4 +2(λLLR)2 (4.11)

+36
5 (CL

Y )2g2
Dg
′2 +6g4

D +4λLRR |gLR|2−2 |gLR|4 ,

β(1)(λqLR) = 2(λqS)2 +λqLR

(
28λqLL+16λqRR+4λqLR−CqLRg′2−

9
2g

2−16g2
3−12g2

D

)
(4.12)

+(CqY )2 1
75g

′4 +CqY
4
15g

2
3g
′2 + 13

3 g
4
3 +8g2

3g
2
D +CqY

4
5g

2
Dg
′2 +12g4

D

+2λqLR |gqL|2 +2λqLR |gqR|2 ,

β(1)(λLLR) = 2(λLS)2 +λLLR

(
12λLLL+8λLRR+4λLLR−CL

LRg
′2− 9

2g
2−12g2

D

)
(4.13)

+(CL
Y )2 27

25g
′4 +CL

Y

36
5 g

2
Dg
′2 +12g4

D +2λLLR |gLL|2 +2λLLR |gLR|2 ,
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where the superscript q = U,D, L=E,N, the couplings g′, g, g3, and gD correspond to the
gauge groups U(1)Y , SU(2)L, SU(3)c and U(1)D respectively, and NF = 3 is the number
of SM generations or families. The constants coefficients that differentiate between the
β-functions are CU

S = 13/10, CD
S = 7/10, CE

S = 27/10, CN
S = 9/10, CU

Y = 2, CD
Y = −1,

CE
Y = 1, CN

Y = 0, CU
LR = 17/10, CD

LR = 1/2, CE
LR = 9/2, CN

LR = 9/10.
Notice that the large negative contribution of the top quark Yukawa coupling to

β(1)(λH) (corresponding to −6Y 2
t in eq. (4.2)), which is the main cause of vacuum in-

stability in the SM, vanishes above the messenger scale. The new contribution to the RGE
of λH is given by the positive term proportional to λ2

HHS
.

4.2 Dark Yukawa couplings

The β-function for the flavor universal couplings gXL,R of the model, X=U,D,E,N, defined in
section 3 and valid for µmes < µ < ΛUV, are:

β(1)(gUL ) = gUL

(9
2 |g

U
L |2 + 1

2 |g
D
L |2 −

1
20g

′2 − 9
4g

2 − 4g2
3 − 3g2

D

)
(4.14)

β(1)(gUR) = gUR

(
3 |gUR |2 −

4
5g
′2 − 4g2

3 − 3g2
D

)
(4.15)

β(1)(gDL ) = gDL

(9
2 |g

D
L |2 + 1

2 |g
U
L |2 −

1
20g

′2 − 9
4g

2 − 4g2
3 − 3g2

D

)
(4.16)

β(1)(gDR ) = gDR

(
3 |gDR |2 −

1
5g
′2 − 4g2

3 − 3g2
D

)
(4.17)

β(1)(gNL ) = gNL

(5
2 |g

N
L |2 + 1

2 |g
E
L |2 −

9
20g

′2 − 9
4g

2 − 3g2
D

)
(4.18)

β(1)(gNR ) = gNR

(
2 |gNR |2 − 3g2

D

)
(4.19)

β(1)(gEL ) = gEL

(1
2 |g

N
L |2 + 5

2 |g
E
L |2 −

9
20g

′2 − 9
4g

2 − 3g2
D

)
(4.20)

β(1)(gER) = gER

(
2 |gER |2 −

9
5g
′2 − 3g2

D

)
. (4.21)

4.3 Scalar mass parameters

Finally, we report the β-functions for the mass parameters of the considered scalar fields.

β(1)(µ2
S) = 6λHSµ2

S + 4λHHSµ2
H (4.22)

β(1)(µ2
H) = µ2

H

(
− 9

10g
′2 − 9

2g
2 + λHHSµ

2
S

µ2
H

+ 12λH
)

(4.23)

β(1)(m2
SqL

) = 6λqLRm2
SqR

+m2
SqL

(
− 1

10g
′2 − 9

2g
2 − 8g2

3 − 6g2
D + 28λqLL + 2 |gqL|2

)
(4.24)

β(1)(m2
SLL

) = 2λLLRm2
SLR

+m2
SLL

(
− 9

10g
′2 − 9

2g
2 − 6g2

D + 12λLLL + 2 |gLL|2
)

(4.25)

β(1)(m2
SqR

) = 12λqLRm2
SqL

+m2
SqR

(
−2

5(CqY )2g′2 − 8g2
3 − 6g2

D + 16λqRR + 2 |gqR|2
)

(4.26)

β(1)(m2
SLR

) = 4λLLRm2
SLR

+m2
SLR

(
−18

5 (CL
Y )2g′2 − 6g2

D + 8λLRR + 2 |gLR|2
)
, (4.27)
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where again q = U,D and L=E,N, and m2
Sq,LL,R

denote the mass parameters of the messenger
fields. Although quantum correction inevitably generate a splitting in the messenger mass
spectrum, the effect can be safely disregarded in the assessment of vacuum stability.

5 Vacuum stability analysis

We can proceed with the analysis of the SM vacuum stability, dividing the study into the
two aforementioned scenarios that cover complementary cases. In more detail, we consider:

• Scenario S1. After setting all the dark Yukawa couplings to a common perturbative
value gLR ≡ gqL = gLL = gqR = gLR at the matching scale µmes ∼ O(m), we compute
the trilinear coupling ΛS = λSvS needed to match the top Yukawa coupling through
eq. (3.8). Since the required value is in tension with the unitarity bound for the
ratio ΛS/m, we separately discuss a possible UV complete theory where the bound is
avoided. In this scenario, the vacuum stability analysis is extended up to the Planck
scale ΛUV = MPl due to the absence of Landau poles at lower scales.

• Scenario S2. We assume a trilinear coupling ΛS = 4πm, corresponding to the
maximum value allowed by perturbative unitarity at low energy, and a large value
of the mixing parameter ξ = 0.95. We then initialize the couplings gqLR ≡ gqL = gqR
and gLLR ≡ gLL = gLR by matching the Yukawa couplings of top quark and tau lepton.
In this case, the resulting value of gqLR is necessarily borderline with perturbation
theory and inevitably causes the emergence of a Landau pole at a scale MLP �MPl.
Therefore, in the present scenario we aim to ensure that vacuum stability is at least
achieved for energies as large as ΛUV = MLP, remarking that a complete assessment
valid at arbitrarily large energies requires a dedicated study of the non-perturbative
regime of the theory.

In both the cases, to assess the stability of the EW vacuum we analyze the running
of the Higgs boson quartic coupling, using eq. (1.1) which approximates well the full RG-
improved potential. The vacuum stability is then ensured if λH(µH) > 0 for all values of
the scale µ from the EW scale up to the UV cutoff ΛUV. Concerning the quartic couplings
in the messenger sector, since they do not play a direct role in the vacuum stability analysis,
we set them to a common perturbative value at the matching scale µmes. The coupling
λHHS in eq. (2.2) is set instead to vanish at the matching scale to minimize its contribution
to the running of λH . Concretely, we choose:

λXS (µmes) = λXLL(µmes) = λXRR(µmes) = λXLR(µmes) = 0.1 , (5.1)
λHHS (µmes) = 0 , λHS (µmes) = 0.1 ,

where the superscript X=U,D,E,N.
In order to avoid color and charge breaking minima, throughout the following analyses

we require that all the mass parameters and quartic couplings of mediators be positive up
to the scale ΛUV. In regard of this, the corresponding β-functions force the initial values
of these parameters to be sizeable, although still well perturbative, in order to overcome
the large negative contribution due to the SU(3)c gauge group.

– 16 –



J
H
E
P
0
1
(
2
0
2
2
)
1
4
2

104 106 108 1010 1012 1014 1016 1018

RGE scale  [GeV]

0.00

0.02

0.04

0.06

0.08

0.1

Hi
gg

s q
ua

rti
c 

H

SM

NP

= 0.8, gLR = 0.8
= 0.1, gLR = 0.8
= 0.8, gLR = 0.1
= 0.1, gLR = 0.1

104 106 108 1010 1012 1014 1016 1018

RGE scale  [GeV]

0.0

0.02

0.04

0.06

0.08

0.1

 H
ig

gs
 q

ua
rti

c 
H

3  bands in
mt = 172.76 ± 0.90 (red)
mH = 125.25 ± 0.51 (blue)

SM
NP

= 0.1gLR = 0.1

Figure 2. Evolution of the effective Higgs boson quartic coupling λH with the renormalization
scale µ ∼ H, eqs. (4.2) and (4.3). In the first panel, the colored lines represent the RG evolutions
obtained for the indicated benchmark setups. In each case, the Higgs boson quartic coupling evolves
according to the SM trajectory, shown in black, until it reaches the considered colored curve, then
proceeds along the latter. The value of the renormalization scale at the point where the two
curves meet corresponds to the matching scale. The second panel shows the effect of the current
experimental uncertainties on one of the setups analyzed in the previous panel. In both the panels,
the yellow band indicates the region excluded by vacuum stability.

5.1 Scenario S1

Following the standard approach, we approximate the effective SM Higgs potential with
its tree-level form improved by the running coupling, Veff(H) = λH(µ)H4/4, and identify
µ ∼ H.

In figure 2 we present the results obtained by running the SM β-functions from the
EW scale to the scale µmes, performing the matching and then running the parameters
with the β-functions in section 4.

The first panel shows the evolution of the Higgs boson quartic coupling with the RGE
scale, from µ = 103 GeV up to the UV cutoff identified in this scenario with the Planck
scale. The yellow band signals the region of the parameter space (λH(µ) < 0) where the
EW vacuum is not stable.

The different curves are obtained by considering the indicated combinations of the
benchmark values used for the mixing parameter, ξ = 0.1, 0.8, and the initial values of
all dark Yukawa couplings, gLR = 0.1, 0.8. Once gLR and ξ are selected, the value of the
common messenger mass scale m is set by the top Yukawa coupling in eq. (3.8) through
the matching conditions. As m is also used as the matching scale, the full system of RGEs
is solved iteratively until sufficient precision is obtained.

In each of the analyzed cases, the matching scale corresponds to the value of the
RG scale at which the running departs from the SM evolution, indicated by the black
line. Correspondingly, at this point the top Yukawa coupling ceases to contribute to the
λH beta-function. The kinks in the curves are an artefact of the approximation used for
the threshold conditions. For every curve, the ratio ΛS/m can be computed by inverting
eq. (3.4): ΛS/m = ξm/v. For the values reported in the figure, in order of increasing
matching scale µmes ∼ m, we obtain ΛS/m = 2.6× 102, 3.3× 102, 1.5× 105, 1.9× 105.
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Figure 3. Left panel: evolution of the Higgs boson quartic coupling with the RG scale. The
trilinear coupling ΛS , entering the expressions obtained for the SM Yukawa operators, is set at
the maximum value allowed by unitarity. The red dashed line indicates the matching scale, which
separates the SM evolution of the parameter from its continuation determined by new physics. Right
panel: evolution of the dark Yukawa coupling with the RG scale. Because of the large initial value
selected by the considered value of ΛS , the evolution of parameters is stopped by the emergence of
a first Landau pole at µ ' 105 GeV, which defines the UV cutoff for the scenario.

In the second panel of figure 2, we show, instead, the effect of the current experimental
uncertainties affecting the top quark and Higgs boson mass for the previously analyzed
case that reaches closer to the instability zone. As we can see from these results, given the
present measurements of these quantities, the stability of vacuum is always guaranteed in
the present scenario.

5.2 Scenario S2

The results obtained under the assumptions that specify the scenario S2 are shown in
figure 3.

In more detail, the first panel shows again the RG evolution of the Higgs boson quartic
coupling with the RG scale. In the plot, the trilinear coupling ΛS is set at the maximum
value allowed by unitarity, which results in the initial conditions gqLR ' 2.3, gLLR ' 0.3 of the
dark Yukawa couplings at the matching scale. The latter is denoted by the red dashed line
and separates the SM evolution of λH (black solid line) from its new physics continuation,
rendered by the dotted segment in blue. Once again, the yellow band indicates the region
of the parameter space where the vacuum is unstable. The RG evolution of the Higgs boson
quartic coupling has been computed only up to µ ∼ 105 GeV, where the first Landau pole
appears in the RG flow of dark Yukawa couplings related to quarks. This is illustrated in
the second panel of figure 3, which shows that the gqL coupling is led to non-perturbative
values (red band) already at a scale two order of magnitudes larger than the considered
matching scale. The difference in the behaviors of gqL and gqR is solely due to the extra
SU(2) contributions in the β-function of the former.
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In Scenario S2, the EW vacuum stability is thus achieved at least in the energy range
where the theory maintains perturbativity. The assessment of the vacuum structure of the
theory for larger energies, however, requires non-perturbative methods that go beyond the
scope of the present paper.

5.3 Large trilinear couplings and unitarity bounds

In this section we discuss the unitarity bound violated by the large trilinear coupling
Λs/m� 4π of scenario S1 and speculate on a UV scenario where the constraint is relaxed.

As is well known, trilinear scalar interactions are UV-safe because the corresponding
dimension 3 operator guarantees that processes mediated by these interactions do not
violate unitarity in the limit of high energy, regardless of the value of the trilinear scalar
coupling. On the other hand, at a set energy scale, the same interactions spoil unitarity
when the trilinear coupling is much larger than any of the masses associated to the fields
entering the trilinear vertex, as shown for instance in [36].

For the case of scenario S1, the problematic trilinear coupling is due to the interaction
vertex between the messenger fields and the Higgs boson H, arising after the HS field
acquires a VEV: L ⊃ ΛS

∑
i SiS

†
iH — see eq. (2.11). We can then consider the scattering

process
SiSi → SjSj (5.2)

with i 6= j allowed by the interaction in eq. (2.11). The only diagram contributing to the
amplitude has a SM Higgs boson propagator in the s-channel. The amplitudeM is given by

M(s) = i
Λ2
S

s−m2
H

, (5.3)

where s = (p1 + p2)2 is the square of the center of mass energy and p1 and p2 the four-
momenta of the initial state messengers Si.

For center of mass energies comparable with the messengers mass threshold, s ' 4m2,
the amplitude tends to

M(s→ 4m2)→ i
Λ2
S

4m2 , (5.4)

where we assumed m � mH and neglected the contribution of the Higgs mass in the
denominator. As we can see, the amplitude of the process grows arbitrarily for ΛS/m� 1,
breaking the S-matrix unitarity at any fixed value of the scattering energy s. In particular,
one can also show that for ΛS > 4πm perturbative unitarity is broken [36]. In fact,
ΛS/m effectively works as a dimensionless coupling and consequently the ratio cannot be
arbitrarily large if perturbation theory is to work. Still, for any fixed value of the trilinear
coupling, the cross section at large energies s � m2 scales as 1/s and thus the unitarity
problem appears only at a set energy scale. Similar conclusions apply to the case of elastic
scattering, where additional t- and u-channels diagrams contribute to the amplitude.

In order to recover perturbative unitarity, we explore an extension of the framework
that adds a Lee-Wick (LW) higher derivative term [52, 53] for the SM Higgs boson in the
Lagrangian. The resulting kinetic term, which contains a fourth derivative of the field, can
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be rewritten as a sum of the usual scalar propagator plus the propagator of an unstable
massive particle with negative norm: the LW ghost. The instability of the LW ghost
formally allows to recover the unitarity of the S matrix upon restricting the asymptotic
(stable) states of Hilbert space to positive norm states [52–54]. The LW extension of the
SM has been previously proposed in the context of the hierarchy problem related to the
Higgs boson mass [55–57].

Extending our model to include a LW higher derivative term for the Higgs field, the
amplitude in eq. (5.3) is modified by the propagation of the associated LW ghost, of mass
MH , as follows:3

MLW(s) = iΛ2
S

(
1

s−m2
H

− 1
s−M2

H

)
. (5.5)

Assuming now that the messenger mass is larger than the LW ghost scale, m � MH , the
amplitude at the threshold in eq. (5.4) becomes

MLW(s→ 4m2)→ −iΛ
2
SM

2
H

16m4 +O(M2
H/m

2) . (5.6)

Then, in the LW modified theory, perturbative unitarity of the process at hand is always
guaranteed if Λ2

SM
2
H

m4 . 1, implying

mH �MH <
m2

ΛS
. (5.7)

Interestingly, for the typical values used during the analysis of scenario S1, the characteristic
scale of LW ghost is of order O(1 − 10)TeV, consistently with the lower bounds on the
scenario from the LHC [58]. In the present context, this indicates the expected cutoff that
softens the SM Higgs hierarchy problem in the proposed LW extension.

As for the problem of EW vacuum stability, the presence of a higher derivative kinetic
term for the Higgs boson modifies the RGEs of section 4. In particular, the increased
dependence of the propagator on inverse powers of the momentum makes all the one-loop
diagrams presenting at least one Higgs boson circulating in the loop finite. Therefore, the
corresponding contributions to the β-functions vanish above the mass scale associated to
the LW ghost and the expressions in section 4 are modified as follows:

β(1)(λH) = 1
2λ

2
HHS

− 9
5g
′2λH − 9g2λH + 27

200g
′4 + 9

20g
2g′2 + 9

8g
4 , (5.8)

β(1)(λHS ) = 18λ2
HS

, (5.9)

β(1)(λHHS ) = 4NF

(
3(λUS )2 + 3(λDS )2 + (λES )2 + (λNS )2

)

+λHHS
(

6λHS −
9
10g

′2 − 9
2g

2
)
, (5.10)

β(1)(λqS) = λqS

(
2λqLR − CqSg′2 −

9
2g

2 − 8g2
3 − 6g2

D + |gqL|2 + |gqR|2
)
, (5.11)

β(1)(λLS) = λLS

(
2λLLR − CL

S g
′2 − 9

2g
2 − 6g2

D + |gLL|2 + |gLR|2
)
, (5.12)

3The imaginary contribution in the propagator is neglected since the latter is computed off-shell.
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Figure 4. Evolution of the effective Higgs boson quartic coupling λH with the renormalization
scale µ ∼ H in the framework of Scenario S1 (solid lines) and in its LW extension (dotted lines) for
the choice of parameters indicated in the legend.

with the superscript q = U,D, L=E,N, CU
S = 13/10, CD

S = 7/10, CE
S = 27/10 and CN

S = 9/10.
As before, the couplings g′, g, g3, and gD correspond to the gauge groups U(1)Y , SU(2)L,
SU(3)c and U(1)D respectively, and NF = 3 is the number of SM generations or families.

In order to assess the EW vacuum stability in the proposed LW extension, we have re-
peated the analysis of Scenario S1 using the above β-functions in place of the corresponding
expressions presented in section 4. In figure 4 we compare the RG evolution of the Higgs
boson quartic coupling obtained in the LW extension (dotted lines) to the results previously
obtained (solid lines), shown also in the first panel of figure 2. In this example we have
set the LW ghost mass scale to MH = 1TeV, saturating the lower bound due to eq. (5.7)
to maximize the difference in the RG evolutions. As we can see, the Higgs boson quartic
coupling remains positive on the whole range of values considered for the renormalization
scale and its RG evolution qualitatively remains the same. Therefore, we conclude that the
stability of EW vacuum can be guaranteed also in the proposed LW extension of the model.

6 Conclusions

We have analysed the stability of the EW vacuum in the context of a previously proposed
framework [32–34] for the radiative generation of the SM Yukawa interactions.

In the simpler version [32] adopted in this paper, the framework uses a new dis-
crete symmetry to first forbid the usual SM dimension 4 Yukawa operators. Then, non-
perturbative effects related to a new U(1)D gauge interaction yield a strongly hierarchical
mass spectrum for a set of fermions charged under the symmetry. These dark fermions
are in a one-to-one correspondence with the SM (Dirac) fermions and are responsible for
sourcing the chiral symmetry breaking necessary to produce the SM Yukawa operators.
The dark fermions and the SM particles are connected by a mediator sector, which hosts a
set of scalar fields in a one-to-one correspondence with the SM Weyl fermions. Because the
dark fermions are only charged under the U(1)D gauge group, the messengers necessarily
carry the same quantum numbers as squarks and sleptons of supersymmetric theories. The
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SM Yukawa couplings are thus generated at the one-loop level through processes allowed
by the interactions of mediators, such as the one shown in figure 1, after the spontaneous
breaking of the discrete symmetry.

It is a peculiarity of the framework that the SM Higgs boson is naturally prevented from
interacting directly with both the SM or the dark fermions, i.e. that it is fermiophobic. As
a consequence, at energies higher than the mediator and dark fermion mass scales, fermions
cannot contribute to the running of the Higgs boson Lagrangian parameters, in particular
to its quartic coupling.

Because the top quark Yukawa coupling provides the main contribution towards the
metastability of the EW vacuum in the SM, in the present paper we set out to analyze the
same problem of stability in light of the possible fermiophobic nature of the Higgs boson.

After detailing the model in section 2 and reviewing the radiative generation of Yukawa
couplings in section 3, we show the RGEs for the full model in section 4. In order to study
the stability of the EW vacuum, we delineate two complementary scenarios that exemplify
well the reach of the considered framework. The common strategy is to solve the SM RGEs
up to a matching scale, identified with the messenger scale, and then evolve the parameters
according to the RGEs of the full model.

In the first scenario, we study different cases were all the interactions between the
SM fermions, the dark fermions and messenger fields are set to common and well per-
turbative benchmark values. Matching the top quark Yukawa coupling then requires the
trilinear coupling appearing in the relevant amplitude, eq. (3.10), to violate the unitarity
bound of the S-matrix at energies close or below the matching scale. Postponing this issue
momentarily, the results in figure 2 show that stability of EW vacuum can be achieved
in the considered framework regardless of the current experimental uncertainties affecting
the Higgs boson or the top quark mass. We argue that the unitarity of the S-matrix can
be recovered in a LW extension of the framework that adds a LW ghost partner for the
Higgs boson along the lines of the SM extension proposed in refs. [52, 53]. In this case, the
model predicts a LW mass scale below 10TeV, as required to solve the naturalness problem
affecting the Higgs boson mass scale.

In the second scenario, instead, we take the maximal value of the trilinear coupling
allowed by unitarity and initialize the relevant new physics interaction by matching the
SM Yukawa couplings. As is evident from eq. (3.10), the top quark case requires coupling
with values that are borderline with perturbation theory. The stability analysis is then
performed up to the scale of the first Landau pole emerging in the RGEs of the full model,
identified here as an effective UV cutoff. The results shown in figure 3 show that the EW
vacuum stability is ensured also in this case.

Because the issue of vacuum stability does not significantly depend on the symmetry
used to forbid the SM Yukawa couplings, the results obtained can be straightforwardly
extended to the LR model presented in ref. [33].

In conclusion, our analyses shows that the fermiophobic nature of the Higgs boson,
imposed by the symmetries, can ensure the stability of the EW vacuum, regardless of the
precise value of the top quark mass. The framework remarkably predicts the existence of
weakly coupled dark sector fields, as well as of new messenger scalar interactions, that can
be explored in the next generation of experiments at the LHC and future colliders.
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We discuss the possibility of unifying in a simple and economical manner the Yukawa couplings of third
generation fermions in a non-supersymmetric SO(10) model with an intermediate symmetry breaking,
focusing on two possible patterns with intermediate Pati-Salam and minimal left-right groups. For this
purpose, we assume a minimal Yukawa sector at high energy, starting with two Higgs bi-doublets at
the intermediate scale which then simply reduce to a two Higgs doublet model at the electroweak
scale. We first enforce gauge coupling unification at the two-loop level by including the threshold
corrections in the renormalization group running which are generated by the heavy fields that appear at
the intermediate symmetry breaking scale. We then study the running of the Yukawa couplings of the top
quark, bottom quark and tau lepton at two-loops in these two breaking schemes, when the appropriate
matching conditions are imposed. We find that the unification of the third family Yukawa couplings can
be achieved while retaining a viable spectrum, provided that the ratio of the vacuum expectation values
of the two Higgs doublet fields is large, tanβ ≈ 60.
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1. Introduction

The paradigm of grand unification [1,2] is at the heart of par-
ticle physics as it exploits the power of symmetries to unify in a 
most elegant way the electromagnetic, weak and strong interac-
tions of the Standard Model (SM) into a single force [3]. Grand 
unified theories (GUTs) provide natural solutions to theoretical 
questions such as charge quantization and anomaly cancellation, in 
addition to the explanation of the existence of three separate gauge 
symmetry groups. GUTs can also successfully address most, if not 
all, of the important issues that call for beyond the SM physics. 
This is particularly the case for the problems of neutrino masses 
and mixing, the baryon asymmetry in the universe and the na-
ture of the dark matter. Hence, leaving aside the issue of natural-
ness and the large hierarchy between the weak and Planck scales 
that induces quadratic “divergences” to the observed Higgs boson 
mass (for which one can, for instance, adopt an anthropic point 
of view just as in the case of the cosmological constant), non-
supersymmetric GUTs can be viewed as the royal path to physics 
beyond the SM.

E-mail addresses: adjouadi@ugr.es (A. Djouadi), ruiwen.ouyang@gmail.com
(R. Ouyang), martti.raidal@cern.ch (M. Raidal).

Unification in the context of SO(10) [4] is particularly interest-
ing as this symmetry group possesses a representation of dimen-
sion 16 in which, for each generation, one can accommodate the 
15 chiral fermions of the SM and an additional Majorana neutrino. 
If the mass of this new state is very large, somewhere at a scale of 
1010 GeV, the see-saw mechanism [5] could explain the present 
pattern in the neutrino sector, the baryon asymmetry could be 
achieved through leptogenesis [6] and a suitable axion [7] could 
account for dark matter; see Refs. [8–10] for reviews. This inter-
mediate scale can naturally be present in SO(10) as the group is of 
rank five, i.e., larger than the rank of the SM group by one unit, so 
that the symmetry breaking may occur in three steps, one at the 
GUT scale MU , one at this intermediate scale MI and a last one 
at the electroweak scale. This solves one of the main drawbacks of 
non-supersymmetric GUTs, namely, the failure of the gauge cou-
plings to unify at the high energy scale. Indeed, threshold effects 
[11] are generated by the contributions of the scalar multiplets
that break the intermediate symmetry down to the SM group at
the energy MI , and these modify the renormalization group evolu-
tion of the three coupling constants such that they finally intersect
at the scale MU [12,13]. Hence, gauge coupling unification can also
be realized without the need of supersymmetry, which was one of
its main attractive points [14].

https://doi.org/10.1016/j.physletb.2021.136788
0370-2693/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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Another argument in favor of supersymmetry was the possi-
bility of also unifying the Yukawa couplings of third generation 
fermions [15]. Indeed, in the minimal supersymmetric extension 
of the SM, the MSSM, two-Higgs doublets fields are required in 
order to generate separately masses for the isospin up- and down-
type fermions and, in constrained scenarios with universal “soft” 
SUSY–breaking parameters, these Yukawa couplings can be unified 
at the GUT scale. This occurs at large values of the ratio of the 
vacuum expectation values of the two Higgs fields, tan β = vu/vd , 
which induces the proper hierarchy for the starting top and bot-
tom quark masses, tan β ≈ mt/mb ≈ 60.

In this letter, we show that the unification of the Yukawa cou-
plings of third generation fermions can also be achieved in a 
rather simple and most economical way in a non-supersymmetric 
SO(10) scenario taking as examples two of the most interesting 
and widely discussed intermediate breaking patterns: the Pati-
Salam [2] and the minimal left-right symmetric [16] groups. As 
a matter of fact, and in contrast to most earlier studies, only two 
Higgs bi-doublet fields will be necessary to describe the Yukawa 
interactions of standard fermions above the scale at which the in-
termediate breaking occurs, and this spectrum then reduces to two 
Higgs doublets only below this intermediate scale and down to the 
electroweak scale. Hence, one would have an effective two Higgs 
doublet model (2HDM) of type II [17] at low energies, just as in 
the MSSM, with vacuum expectation values such that the param-
eter tanβ is large as to obtain the correct hierarchy for the top 
and bottom quark masses. Using this minimal scalar sector, it is 
possible to make that the renormalization group running of third 
generation Yukawa couplings in these two breaking schemes, with 
suitable matching conditions at the intermediate scale for which 
gauge coupling unification occurs, leads to Yukawa coupling uni-
fication at the GUT scale. This can be achieved while reproducing 
the third family fermion and electroweak gauge boson masses and 
preserving some important features such as ensuring the stability 
of the electroweak vacuum up to the intermediate scale and keep-
ing the Yukawa couplings perturbative at all scales.

The paper is organized as follows. In the next section, we intro-
duce our theoretical framework and discuss the breaking of SO(10) 
with intermediate steps. In section 3, we discuss the known issue 
of gauge couplings unification in SO(10) when threshold correc-
tions are added at an intermediate scale but with a new ingredient, 
namely, the presence of an additional Higgs doublet field at low 
energies. In section 4, we study the running of the third genera-
tion Yukawa couplings and show that they can reach a common 
value at the same scale that allows for gauge coupling unification, 
while keeping a viable low energy spectrum. Our conclusions are 
given in section 5.

2. Theoretical framework

The SO(10) group has many attractive features [8–10] and most 
of them follow from the fact that it possesses a fundamental rep-
resentation of dimension-16 in which, for each generation, the 15 
SM chiral fermions as well as one right-handed neutrino can be 
embedded. In this case, the Yukawa couplings of the scalar bosons 
to pairs of these fermions belong to the direct product of 16 ⊗ 16, 
which can be decomposed into

16F ⊗ 16F = 10 + 120 + 126 . (1)

Thus, the most general Yukawa interaction which is SO(10) invari-
ant is given by

−LY = 16F(Y1010H + Y126126H + Y120120H)16F . (2)

The special case with only the first two Yukawa terms with the 
10H and 126H representations, leading to the so-called minimal 

SO(10) model, has been thoroughly discussed, see e.g. Refs. [9,18]. 
The extended SO(10) model including the 120H representation has 
been also explored [19,20]. The first model usually requires an ex-
tra U(1) symmetry to complexify the 10H representation to achieve 
the required splitting in the fermionic spectrum, otherwise the ra-
tio mt/mb would be fixed to unity at the GUT scale [9]. In turn, 
in the latter scenario, it has been shown that a realistic fermion 
spectrum can be achieved with or without introducing such an ex-
tra U(1) symmetry [20].

In this work, we will restrict to the minimal and most studied 
SO(10) scenario in which only the 10H and 126H representations 
are kept, but without an extra U(1) symmetry to complexify the 
10H representation. This will constrain the parameter space, mak-
ing the model more predictive, while allowing the possibility of 
neutrino mass generation via a seesaw mechanism and being con-
sistent with present data [9,18].

The breaking of SO(10) to the SM gauge group GSM ≡ G321 =
SU(3)C × SU(2)L × U(1)Y can be triggered in several ways, but we 
will be only interested in two patterns that involve one intermedi-
ate gauge group at a high scale MI : the Pati-Salam (PS) group [2]
G422 = SU(4)C × SU(2)L × SU(2)R and the minimal left-right (LR) 
symmetry group [16] G3221 = SU(3)C × SU(2)L × SU(2)R × U(1)B−L. 
To achieve the desired symmetry-breaking in these two scenarios, 
one would necessarily need to introduce scalar multiplets that ac-
quire vacuum expectation values (vevs) at the corresponding high 
scales.

For the Pati-Salam scenario, the breaking chain from SO(10) to 
the SM gauge group is e.g. achieved by the (15,1,1) component 
of the scalar representation 210H which acquires a vev at the GUT 
scale MU , and by the 126H that acquires a vev at the intermediate 
scale MI . In turn, in the minimal left-right scenario, the symmetry 
should be broken first by the 45H which acquires a vev at the GUT 
scale and then by the 126H that acquires it at the intermediate 
scale [20]. One thus has

PS : SO(10)|MU

〈210H〉−−−−→ G422|MI

〈126H〉−−−−→ G321|M Z

〈10H〉−−−→ G31 ; (3)

LR : SO(10)|MU

〈45H〉−−−→ G3221|MI

〈126H〉−−−−→ G321|M Z

〈10H〉−−−→ G31 . (4)

According to the extended survival hypothesis [21], all the 
scalar fields that do not participate in the symmetry breaking pat-
terns above by acquiring vevs will have masses of the order of 
the high scales MU and MI . In these two breaking chains, the 
scalar content that acquires vevs at the intermediate scale MI or 
at the electroweak scale M Z consists of, respectively, the 126H
and 10H representations. More specifically, of the SO(10) scalar 
representations that can be decomposed under the intermediate 
gauge groups, only certain scalar fields from 10H and 126H have 
masses below the GUT scale and will contribute to the renormal-
ization group equations (RGEs) between the two scales MI and 
MU . These are, in the PS scenario, (1,2,2) (�10) from 10H and 
(15,2,2) ⊕ (10,1,3) (�126 ⊕ �R ) from 126H and, in the minimal 
LR scenario, (1,2,2,0) from 10H and the (1,2,2,0) ⊕ (1,1,3,2)

from 126H . We will thus only consider this restricted set of scalar 
fields between the GUT and intermediate scales.1

At low energies, among the two Higgs bi-doublets that we had 
at a high energy scale, only two Higgs doublets survive and de-
velop vevs at the electroweak scale. Thus, in our study, we will 
have in fact a model with two Higgs doublet fields Hu and Hd

1 This in contrast to most studies which are done in this context as, generally, 
a very complicated scalar sector of the SO(10) group is needed to fit the low en-
ergy spectrum, in particular the fermion (including the light and sometimes even 
the heavy neutrino sector) masses and mixings, by adjusting the numerous input 
parameters that are available.
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that couple separately to isospin + 1
2 and − 1

2 fermions and acquire 
vevs vu and vd

〈Hu〉 = 1√
2

(
0

vu

)
, 〈Hd〉 = 1√

2

(
0

vd

)
, (5)

to give masses to the W , Z bosons implying the relation 
√

v2
u + v2

d

= vSM 
 246 GeV; we then define the ratio of these two vevs to be 
tan β = vu/vd . The most general renormalizable scalar potential of 
this two Higgs doublet model can be found in Ref. [17] to which 
we refer for all details. The Yukawa interactions of the fermions 
are those of a type-II 2HDM with a Lagrangian given by

−L2HDM
Y = Yu Q̄ L Hu uR + Yd Q̄ L Hd dR + Ye L̄L Hd eR + h.c. , (6)

with Q L/LL the quark/lepton left-handed doublets and f R the 
right-handed singlets. In our study, only the third generation of 
fermions will be considered and the small Yukawa couplings of 
the first two generations will be neglected.

At the intermediate scale MI , the minimal Yukawa interaction 
Lagrangian is obtained when only two Higgs bi-doublets couple to 
fermions. One of them should be from the 126H which also has a 
triplet field that breaks the left-right symmetry. The other can be 
chosen to be the 10H . Starting from eq. (2), the Yukawa Lagrangian 
for fermions at the intermediate scale MI can be written in the 
considered two schemes as

−LP S
Y = F̄ L(Y P S

10 �10 + Y P S
126�126)F R + F T

R Y P S
R C�R F R + h.c. , (7)

−LLR
Y = Q̄ L(Y LR

10,q�10 + Y LR
126,q�126)Q R

+ L̄L(Y LR
10,l�10 + Y LR

126,l�126)LR

+ 1

2
LT

R Y LR
R iσ2�R LR + h.c. , (8)

where F L,R are generic left or right-handed quark/lepton fields and 
σ2 a Pauli matrix. In both cases, we have assumed that terms like 
F̄ T

L φ̃F R with φ = � or � and φ̃ = σ T
2 φ∗σ2 are forbidden by suit-

ably chosen U(1)Y charges [22]. Below the intermediate scale, the 
PS and LR models include, besides the triplet field �R that gives 
masses to the heavy neutrino species, four Higgs doublets: two 
doublets φ1 and φ3 with opposite hypercharge from the (1, 2, 2)

representation and the doublets φ2 and φ4 again with opposite hy-
percharge from (15, 2, 2). The fields φ1 and φ2 couple to up-type 
quarks and heavy neutrinos, while φ3 and φ4 couple to down-type 
quarks and the light leptons.

While the triplet fields acquire a very large vev, 〈�R〉 = v R ∼
O(MI ), the bi-doublet fields acquire vevs of the order of the elec-
troweak scale which implies that 

∑4
i=1 v2

i = v2
SM. This ensures 

that the right-handed gauge bosons are very heavy, MW R , M Z R ≈
gv R , while the SU(2)L W and Z bosons have weak scale masses, 
MW , M Z ≈ gvSM. In fact, only two linear combinations of the four 
scalar doublet fields φ1 · · ·φ4 will have weak scale masses, while 
the two other field combinations will have masses close to the 
very high scale. One has thus to tune the scalar potentials of the 
two scenarios to achieve this situation and discussions about the 
constraints to which it leads can be found in Refs. [23,24] for in-
stance. The two fields with weak scale masses will be ultimately 
identified with the doublets Hu and Hd of our low energy 2HDM. 
At the intermediate scale MI , these fields should match the �10
and �126 fields, the interactions of which have been given in 
eqs. (7), (8) as will be discussed shortly.

3. Gauge coupling unification

Assuming the 2HDM structure at low energies and the two 
breaking patterns of SO(10) down to the SM group with the in-
termediate scale MI discussed previously, namely PS and LR, we 

study the renormalization group running of the three SM gauge 
couplings αi = g2

i /(4π). We closely follow Ref. [13] in which the 
standard case with only one electroweak Higgs doublet was stud-
ied. The analytical expressions for the gauge coupling RGEs at the 
two loop level, including the relevant β functions can be found, 
e.g., in Ref. [26] where the dependence of the number of Higgs 
doublets is explicitly given. Naively, the more intermediate scale 
scalar particles are included in the running of the couplings, the 
lower would be the resulting unification scale.

At the intermediate scale, threshold effects [11] due to all the 
particles that have masses in the vicinity of MI , and in particular 
all the scalar fields that develop vevs at this scale, will be active. 
These higher order corrections will modify the matching condi-
tions of the gauge couplings at the scale of symmetry breaking, 
depending on the particle content. For a symmetry breaking from 
a group G to a subgroup H at the scale μ, the matching conditions 
with the threshold corrections take the form

α−1
i,H(μ) = α−1

i,G(μ) − λG
i,H/(12π) , (9)

where i = 1, 2, 3, ... refers to the particular gauge coupling αi and 
λG

i,H are usually weighted by the parameters ηi = ln(Mi/μ) with 
Mi being the masses of the heavy particles integrated out at the 
low energy. The complete expressions for the one-loop threshold 
corrections λG

i,H are given in Ref. [13] (see Tables IV and VI of their 
Appendices B and C, respectively). As a result, the intermediate and 
the unification scales MI and MU could be shifted by an order of 
magnitude or more even when only small threshold corrections are 
included. In the following, we show an explicit example of gauge 
coupling unification in the PS and LR breaking chains when these 
thresholds are included.

We start with the following initial conditions for the SM gauge 
couplings calculated in the MS renormalization scheme with two-
loop accuracy and first evaluated at the electroweak scale that we 
take to be the Z boson, mass M Z = 91.2 GeV [27],

[gY (M Z ), g2(M Z ), g3(M Z )] = [0.3574,0.6517,1.2182] , (10)

where gY should be normalized with the usual GUT condition 
leading to α1/αY = 5/3. Using the two-loop RGEs in the case in 
which two Higgs doublets are present at low energies and in-
cluding the relevant threshold corrections following Ref. [13], we 
determine the point at which the couplings intersect when appro-
priately adjusting the intermediate scale MI . In the two symmetry 
breaking chains that we consider, the tree-level matching condi-
tions that determine the gauge couplings of the intermediate scale 
models from the low energy ones read

PS : α−1
4 (MI ) = α−1

3 (MI ) , α−1
2L (MI ) = α−1

2 (MI ) ,

α−1
2R (MI ) = 5

3
α−1

Y (MI ) − 2

3
α−1

3 (MI ) ,

LR : α−1
3 (MI ) = α−1

3 (MI ) , α−1
2L (MI ) = α−1

2 (MI ) ,

α−1
B−L(MI ) = κα−1

2R (MI ) = κ

(
2κ + 3

5

)−1

α−1
Y (MI ) , (11)

where in LR we assume α−1
B−L(MI ) = κα−1

2R (MI ) as we are match-
ing three couplings to four; this normalization factor κ of O(1) is 
to be solved with the scales MI and MU .

Note that in eq. (10), we have ignored, for simplicity, the exper-
imental errors on the couplings constants (as well as the theoret-
ical uncertainties) and kept only the central values. These errors, 
the largest of which being the one that affects the strong coupling 
constant α3 which is at the percent level, will generate an uncer-
tainty on the derived GUT an intermediate scales of the order of 
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Fig. 1. The evolution of the inverse of the gauge coupling constants αi = g2
i /(4π) as a function of the energy scale μ in the 2HDM+G422 Pati-Salam model (left) and 

2HDM+G3221 minimal LR model (right) at the one-loop (dashed lines) and two-loop (solid lines) orders. The GUT and intermediate scales MU and MI are indicated and the 
threshold effects are included. The red bands reveal the effects of the experimental uncertainties in the measurement of the couplings.

a few percent only and, hence, do not affect our discussion in a 
significant way as will be shown shortly.

In our analysis, the RGEs of the gauge couplings are solved 
up to two loop order with the help of the program SARAH [29], 
and the inclusion of the thresholds corrections is performed by 
randomly sampling parameters ηi = ln(Mi/μ) within the range of 
ηi ∈ [−1, 1]. We then impose the tree-level matching conditions of 
the gauge couplings at the intermediate scale as in eq. (11) when 
the one-loop threshold corrections are included as in eq. (9), and 
determine the values of the two scales MI and MU for each sam-
pling parameter set. More precisely, we take at least 10,000 points 
for the parameters ηi within the range of ηi ∈ [−1, 1] and deter-
mine the sets of all scales that allow for gauge coupling unification.

In the two intermediate SO(10) scenarios that we consider, 
gauge coupling unification with the inclusion of threshold correc-
tions can, for instance, be achieved for the following values of the 
unification and intermediate scales

PS : MU = 7.5 × 1015 GeV and MI = 6.6 × 1010 GeV ,

LR : MU = 3.9 × 1015 GeV and MI = 6.0 × 109 GeV . (12)

The evolution of the inverse of the coupling constants α−1
i

from the scale MU down to MI and then down to M Z is shown 
in Fig. 1 as a function of the energy scale in the two breaking 
patterns PS (left panel) and LR (right panel) when the two-loop 
(solid lines) and one-loop (dashed lines) RGEs are used and the 
threshold effects are included at the intermediate scale. While the 
three couplings are clearly different at the scale MI of the order 
of a few times 1010 GeV (as required to reproduce neutrino phe-
nomenology), the slope is significantly modified at this energy by 
the additional contributions so that the couplings meet at a scale 
MU of the order of a few times 1015 GeV (which is high enough 
to prevent fast proton decay). Both the two-loop corrections and 
the threshold corrections have a noticeable impact and make the 
intermediate scale lower. The small impact of the experimental er-
rors on the couplings is illustrated by the narrow red bands at the 
scales MI and MU .

4. Yukawa coupling unification

We now turn to the Yukawa sector of the theory. As already 
mentioned, we will ignore the very small Yukawa couplings of the 
first and second generation fermions2 and consider only those of 

2 As in the supersymmetric case, fermions with masses below a few GeV cannot
be realistically described in our approach as it will be plagued by strong interaction
uncertainties when running the RGEs down to the fermion mass scale.

the top quark, the bottom quark and the tau lepton, neglecting 
all possible mixings. Below the intermediate scale MI , the Yukawa 
interactions of these fermions are those of a type-II 2HDM with 
a Lagrangian given by eq. (6). It leads to the following relations 
between the fermion masses and the Yukawa couplings

mt = 1√
2

Yt vu , mb = 1√
2

Yb vd , mτ = 1√
2

Yτ vd . (13)

In the region between the intermediate scale and the GUT scale, 
we assume the Yukawa structure of eqs. (7) and (8) for the PS 
and minimal LR breaking patterns, respectively. With a real 10H

representation with its vevs denoted by vu
10 = vd ∗

10 = v10 and by
adopting a phase convention in which v10 is real (this can be done 
via, e.g., an SU(2) rotation) [20], and denoting by vu,d

126 the vevs of
the �126 field, the fermion masses for the two considered breaking 
chains will be given by

mt = v10Y P S
10 + vu

126Y P S
126√

2
, mb = v10Y P S

10 + vd
126Y P S

126√
2

,

mτ = v10Y P S
10 − 3vd

126Y P S
126√

2
,

mt = v10Y LR
10,q + vu

126Y LR
126,q√

2
, mb = v10Y LR

10,q + vd
126Y LR

126,q√
2

,

mτ = v10Y LR
10,l + vd

126Y LR
126,l√

2
. (14)

Finally, above the GUT scale MU , the third generation Yukawa 
couplings are unified as in eq. (2) and are given by

mt = v10Y10 + vu
126Y126 , mb = v10Y10 + vd

126Y126 ,

mτ = v10Y10 − 3vd
126Y126, (15)

(with the additional masses for neutrinos MνD = v10Y10 −
3vu

126Y126 and MνR = v R Y126). The normalization factors can be 
absorbed into the redefinition of the Yukawa couplings at the GUT 
scale. The factors of 3 and the relative signs between the various 
terms are due to the Clebsh-Gordan coefficients coming from the 
vev of the traceless adjoint 15 of SU(4) in (2,2,15).

As the evolution of the couplings near the scale MI should be 
affected by threshold corrections, one should expect a significant 
discontinuity of the Yukawa couplings when the contributions of 
the numerous scalar and vector fields are included in the RGEs. 
Nevertheless, as these Yukawa couplings are directly related to the 
masses of the fermions, one can simply assume that the physical 
fermion masses are continuous at the scale MI [25] when these 
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threshold corrections are included. This means that the masses 
calculated in the low-energy 2HDM should coincide with those 
obtained from the intermediate left-right or Pati–Salam models 
or the unified SO(10) model, up to their running. One can then 
consider this relation as the matching conditions for the Yukawa 
couplings at the intermediate and the GUT scales. For example, at 
the scale MI , equating eqs. (13)–(14) for the PS and LR breaking 
chains leads to3

Yt(MI ) = Y P S
10 (MI )

v10

vu
+ Y P S

126(MI )
vu

126

vu

or Y LR
10,q(MI )

v10

vu
+ Y LR

126,q(MI )
vu

126

vu
,

Yb(MI ) = Y P S
10 (MI )

v10

vd
+ Y P S

126(MI )
vd

126

vd

or Y LR
10,q(MI )

v10

vd
+ Y P S

126,q(MI )
vd

126

vd
,

Yτ (MI ) = Y P S
10 (MI )

v10

vd
− 3Y P S

126(MI )
vd

126

vd

or Y LR
10,l(MI )

v10

vd
+ Y LR

126,l(MI )
vd

126

vd
. (16)

As for the matching conditions at the GUT scale, one has 
to carefully take the Clebsh-Gordan factors into account for the 
Yukawa interactions when the field representations are embedded 
into the SO(10) group [22,30]. One can then enforce Yukawa cou-
pling unification by requiring the matching conditions at the GUT 
scale to be

Y f (MU ) ≡ Y P S
10 (MU ) = 1

4
Y P S

126(MU ) , (17)

Y f (MU ) ≡ Y LR
10,q(MU ) = 1

4
Y LR

126,q(MU ) = Y LR
10,l(MU )

= − 1

12
Y LR

126,l(MU ) , (18)

where the unified Yukawa coupling Y f (MU ) is taken to be a free 
parameter of SO(10).

One has then to fit these parameters with the actual observ-
ables, namely the top, bottom and tau masses using the relations 
in eq. (13) at the low energy scale, chosen again to be M Z = 91.2
GeV. We use the following input MS running fermion masses in 
the SM [27,28] (we again ignore the related experimental uncer-
tainties for now),

[mt(M Z ),mb(M Z ),mτ (M Z )] = [168.3,2.87,1.73] GeV , (19)

and we then turn them into the corresponding input masses in 
the 2HDM by using the appropriate RGEs in the evolution from 
the scale of the fermion masses to M Z .

In the PS model, the colored-quarks and leptons are charged 
under the same local SU(4) symmetry so that all fermions can be 
unified into the same representation F L,R . When these fermions 
couple to the Higgs fields 10H , one cannot distinguish the bottom 
quark from the tau lepton and one should have mb = mτ if the vev 
vd

126 is small, vd
126/vd � 1, as can be seen from eq. (14). If this 

mass equality is still valid slightly below the intermediate scale, we 
should then have Yb(MI ) = Yτ (MI ) in our low energy 2HDM by 
virtue of eqs. (16) and (13). The scale at which the bottom and tau 

3 For this exploratory work, we simply follow Ref. [25] and ignore the small run-
ning of the vevs. This issue, together with other refinements, will be postponed to 
a forthcoming publication.

Yukawa couplings are equal, that we denote by Mbτ , is simply de-
termined (within some accuracy) by the point at which the curves 
for their RG running from the weak scale M Z upwards intersect, 
which critically depends on the value of the parameter tan β . In or-
der to use the matching conditions given by the equations above, 
the scale for b-τ unification should be identical to the interme-
diate PS breaking scale, Mbτ = MI , and this can be achieved by 
selecting the appropriate value of tan β .

The RGEs for the Yukawa couplings from MU to the interme-
diate scale MI and from MI to the electroweak scale M Z up to 
the two-loop level have been given in Ref. [31] in the standard 
case with one electroweak Higgs doublet only. In our case, we also 
include the additional contributions of the extra Higgs doublet at 
the low scale. We solve the system using again the program SARAH 
[29].

In the PS model, the running of the third generation Yukawa 
couplings from the low to the high energy scales are shown in 
the left panel of Fig. 2, for the specific case where the input value 
tan β = 58 is chosen. One can see that, indeed, the curves for Yb
and Yτ intersect at an energy scale Mbτ 
 7 × 1010 GeV, which is 
very close to the intermediate scale for which the gauge couplings 
unify in the PS scheme.

The right panel of the figure shows the dependence of the 
bottom-tau unification scale Mbτ on the ratio of vevs tan β and, 
as can be seen, intermediate scale values between MI = 109 GeV 
and MI = 1011 GeV would imply high values of tan β , in the range 
tan β ≈ 50 − 60. Note that the value of tan β cannot be arbitrarily 
high, tan β <∼ 70 in the specific cases we are discussing here, in 
order to avoid that the Yukawa couplings run to non-perturbative 
values at these scales.

In the minimal LR model, the discussion above does not hold 
and the bottom and tau Yukawa couplings do not unify at the in-
termediate scale. Nevertheless, one should have close if not equal 
values for the Yukawa terms Y LR

10,q and Y LR
10,l such that they can run 

to a common value at the scale MU where, according to eq. (18), 
one has Y LR

10,q = Y LR
10,l .

We come now to the unification of all Yukawa couplings. With 
the four Yukawa couplings, the randomly chosen one Y f (MU ) and 
the three weak scale ones Yt , Yb, Yτ , the scales MU and MI to be 
determined from gauge coupling unification, five parameters are 
needed to entirely describe our Yukawa sector: the 2HDM vevs 
vu, vd at M Z and the vevs vu

126, v
d
126 and v10 of the bi-doublets at 

the scale MI . Nevertheless, we have many constraints at hand as, 
besides the matching relations given in eqs. (16-18), one needs to 
reproduce the experimental values of the standard particle masses.

Indeed, at both the scales M Z and MI , the correct W , Z masses 
should be reproduced, giving 

√
v2

u + v2
d = vSM = 246 GeV = v2

10 +
v2

126 + v2
126d [24]. One needs also to reproduce the heavy fermion 

masses at the weak scale M Z , eq. (19), using the relations of 
eq. (13). We will assume that there is an uncertainty of the or-
der of 2% in reproducing all these particle masses. This uncer-
tainty, which is sufficiently small for our purpose (and allows us 
to have some solutions for the coupled RGE’s), is introduced not 
only because of the experimental errors (e.g. on α3 and the top 
and bottom masses) but also the theoretical ones from various 
sources such as the higher order effects in the RGEs, the higher 
order threshold corrections, the possible running of the vev’s, etc.

For completeness, we make sure in addition that the elec-
troweak vacuum remains stable up to the intermediate scale MI ≈
1010 GeV for the chosen top quark and SM-like Higgs boson 
masses. To do so, we use the necessary and sufficient conditions 
of Refs. [17,32] on the 2HDM quartic scalar couplings to ensure 
the scalar potential to be bounded from below, with the input 
values for the relevant weak scale parameters given in Ref. [33]. 
As an additional and final constraint, we force the three Yukawa 
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Fig. 2. An example of the running of third generation fermion Yukawa couplings from the weak to the high scales for the value tanβ = 58 for which the bottom and tau 
couplings unify at a scale Mbτ = 6.6 × 1010 (left) and the dependence of this unification scale Mbτ on the value of tanβ (right).

Fig. 3. The renormalization group running of the Yukawa couplings at two-loop in 
the 2HDM+G422 model (top) and 2HDM+G3221 model (bottom) including match-
ing conditions and threshold effects at an intermediate scale MI for a parameter 
set that is compatible with the observed top, bottom, tau as well as gauge boson 
masses.

couplings to remain perturbative at all scales by imposing the con-
ditions Y 2

i (μ)/(4π) ≤ 1.
We then scan this constrained parameter space in order to find 

a viable solution to the system of equations. Our main results are 
displayed in Fig. 3 and in Table 1.

Fig. 3 shows the evolution of the three Yukawa couplings as a 
function of the energy scale in the PS (upper panel) and LR (lower 
panel) scenarios and it can be seen that all of them reach a com-
mon value, Y f (MU ) ≈ 0.1, at the same GUT scale MU that leads to 
gauge coupling unification eq. (12). At the intermediate scale MI

that is also required by gauge coupling unification, eq. (12), one 
notices the discontinuity for the Yukawa couplings which is due to 
the matching conditions.

Finally, in Table 1, we show examples of points in the 2HDM+PS 
and 2HDM+LR model parameter spaces that satisfy all the criteria 
discussed above and list the sets of values for the three fermion 

couplings and all the relevant vevs which lead to Yukawa coupling 
unification, with the GUT and intermediate scales that allow for 
gauge coupling unification, eqs. (12), and with all constraints im-
plemented.

One can see that in both the PS and LR breaking schemes, 
one obtains approximately the same unified Yukawa coupling 
Y f (MU ) = O(0.1). One can also see that the relations 

∑
i v2

i = v2
SM

are fulfilled at the relevant scales and that all Yukawa couplings 
are such that their squares are smaller than 4π even at MI .

In both cases, the obtained values of the input 2HDM parameter 
tan β = vu/vd at the electroweak scale are large but still reason-
able, approximately tanβ = 58 and tan β = 70 for the PS and LR 
models respectively, as they ensure that the bottom quark Yukawa 
coupling remains perturbative at all energy scales before MU , and 
gives the correct hierarchy of quark masses at the electroweak 
scale, tan β ≈ mt/mb .

Hence, Yukawa coupling unification can also be achieved in a 
simple manner in a non-supersymmetric SO(10) scenario. One can 
arrange to achieve it for lower values of tanβ than above, at a min-
imal cost and without affecting the simplicity of the approach, by 
complexifying the 10H representation. One still makes use of two 
Higgs bi-doublets above the scale MI but there are four non-zero 
vevs instead of three as vu

10 �= vd
10. This additional input can be ad-

justed to have more adequate solutions to the system of Yukawa 
coupling RGEs. This possibility, as well as other interesting exten-
sions of the simple scheme proposed here, will be addressed in a 
forthcoming publication.

5. Conclusions

We have analyzed the possibility of unifying the Yukawa cou-
plings of third generation fermions in the context of a non-
supersymmetric SO(10) scenario with intermediate breaking, fo-
cusing on the Pati-Salam and minimal left-right breaking chains. 
The framework that we adopt is rather simple as the relevant 
scalar sector of the theory consists of only two Higgs bi-doublets 
at the intermediate breaking scale, MI = O(1010) GeV, reducing to 
a two Higgs doublet model of type II at the electroweak scale.

We first discussed gauge coupling unification which can indeed 
be achieved at a GUT scale close to MU ≈ 1016 GeV, by including 
the threshold effects of the scalar multiplets that appear at the 
intermediate scale. This is somehow expected as the contribution 
of the additional electroweak Higgs doublet (and all scalar fields 
in general) does not significantly modify the running of the gauge 
coupling constants.

We have then studied the renormalization group running of the 
Yukawa couplings of the top and bottom quarks and the tau lep-
ton in the Pati-Salam and minimal left-right SO(10) scenarios, with 
the proper matching conditions at the unification, intermediate 
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Table 1
A set of the third generation fermion Yukawa couplings at the scales M Z , MI and MU , and the relevant vevs at the weak and intermediate scales, which fit all observables 
within 2% accuracy at the two-loop level and lead to both gauge coupling and Yukawa coupling unification in SO(10) with PS and LR intermediate breaking.

Scale M Z MI MU M Z MI

Yt Yb Yτ Yt Yb Yτ Y f vd vu v10 vu
126 vd

126

PS 0.97 1.09 0.58 0.55 0.76 0.75 0.10 4.21 246.2 23.4 244.7 0.004
LR 0.97 1.44 0.68 0.62 2.76 2.01 0.14 3.50 246.2 53.2 241.0 0.079

and electroweak scales. We have performed a scan of the parame-
ter space of the two models, imposing that the phenomenology at 
low energy and, in particular the third generation fermion and the 
electroweak gauge boson masses, is correctly reproduced within 2% 
accuracy. We find that the unification of the Yukawa couplings of 
third generation can be indeed realized in regions of the parame-
ter space in which the ratio of the two electroweak Higgs doublet 
vevs is large, tan β ≈ 60.

Hence, similarly to the well known and widely studied super-
symmetric case, not only gauge but also Yukawa coupling unifica-
tion can be achieved in SO(10) while using a rather simple Higgs 
sector and retaining a viable particle spectrum at the weak scale.

An interesting feature of this possibility is that while most of 
the ingredients of the conventional SO(10) model are expected to 
be at a too high scale, O(1010) GeV, to be probed effectively in 
collider experiments, our scenario requires a second Higgs doublet 
at low energies. The model thus predicts additional Higgs particles 
with weak scale masses which could be searched for and even-
tually be observed at the Large Hadron Collider or at the next 
generation of high-energy colliders.
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Abstract We study a non-supersymmetric SO(10) Grand
Unification Theory with a very high energy intermediate
symmetry breaking scale in which not only gauge but also
Yukawa coupling unification are enforced via suitable thresh-
old corrections and matching conditions. For gauge unifica-
tion, we focus on a few symmetry breaking patterns with the
intermediate gauge groups SU(4)C×SU(2)L×SU(2)R (Pati–
Salam) and SU(3)C × SU(2)L × SU(2)R × U(1)B−L (mini-
mal left-right symmetry) assuming an additional global U(1)
Peccei–Quinn symmetry, and having the Standard Model
supplemented by a second Higgs doublet field at the elec-
troweak scale. We derive the conditions as well as the approx-
imate analytical solutions for the unification of the gauge
coupling constants at the two-loop level and discuss the con-
straints from proton decay on the resulting high scale. Spe-
cializing to the case of the Pati–Salam intermediate breaking
pattern, we then impose also the unification of the Yukawa
couplings of third generation fermions at the high scale, again
at the two-loop level. In the considered context, Yukawa uni-
fication implies a relation between the fermion couplings to
the 10- and 126-dimensional scalar representations of the
SO(10) group. We consider one such possible relation which
is obtainable in an E6 model where the previous two scalar
fields are part of a single multiplet. Taking into account some
phenomenological features such as the absence of flavor
changing neutral currents at tree-level, we derive constraints
on the parameters of the low energy model, in particular on
the ratio of the two Higgs doublets vacuum expectation val-
ues tan β.

a e-mail: ruiwen.ouyang@gmail.com (corresponding author)

1 Introduction

A Grand Unified Theory (GUT) which describes the four
fundamental forces that are present in Nature has always
been the Holy Grail of particle physics. Leaving aside the
gravitational force which has a rather special status, it has
been shown already in the 1970s [1,2] that the concept of
gauge symmetries makes it possible to combine in a very
elegant manner the electromagnetic, weak and strong inter-
actions of the Standard Model (SM) into a single force at a
very high energy scale [3]. This would have been the case of
SU(5), the simplest and most economical gauge symmetry
group that contains the SU(3)C × SU(2)L × U(1)Y group
of the SM as a subgroup. Alas, when the three SM gauge
couplings are evolved with the energy scale, starting from
their experimentally measured values and including the SM
particle content, they shortly fail to meet at a single point,
the presumed GUT scale MU [4–7].

One solution to this problem was to invoke Supersymme-
try (SUSY) [8–13], a theory that predicts the existence of a
partner to each SM particle and has an extended Higgs sec-
tor consisting of two complex scalar fields to break the elec-
troweak symmetry down to the electromagnetic U(1) group
[14–16]. The new particle content modifies the slopes of the
renormalisation group evolution (RGE) of the gauge cou-
plings such that they meet at a GUT scale that is high enough,
MU ≈ 2 × 1016 GeV, to prevent a too fast decay of the pro-
ton [4–7]. Another virtue of SUSY, which made it extremely
popular in the past four decades, is that it solves the problem
of the large hierarchy between the weak and Planck scales
that induces quadratic “divergences” to the observed Higgs
boson mass. However, in order to resolve both the unifica-
tion and hierarchy problems, SUSY needs to be broken at
an energy not too far from the electroweak scale and, hence,
should involve superpartners with masses of a few hundred
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GeV to order a TeV at most. Unfortunately, such a low SUSY-
breaking scale has been excluded for most superparticles (in
particular the strongly interacting ones that are copiously
produced) by dedicated and non-conclusive searches at the
CERN LHC [17]. Thus, the theory lost some of its appeal as
it appears now to be less “natural”.

In principle, the existence of extra particles with the appro-
priate masses and quantum numbers to give the necessary
contributions to the RGEs is all what is needed to achieve
unification of the three gauge couplings. However, postulat-
ing the existence of extra fields for this reason alone might
be considered a somewhat contrived solution to the prob-
lem. A more appealing possibility is to consider symmetry
groups larger than SU(5) which break down to the SM gauge
group via a chain that involves intermediate symmetries. In
this case, the new scalar multiplets that break these inter-
mediate symmetries (and some of the associated new gauge
bosons) will generate additional contributions at the interme-
diate scale MI , which will modify the RG evolution of the
gauge couplings. Taking into account these threshold correc-
tions, it is then possible to unify the three couplings at a scale
MU [18,19].

Such a unification with an intermediate step can be real-
ized in the context of SO(10) [20,21]; see Refs. [22–25].
This group is particularly interesting as it has a representa-
tion of dimension 16 which can accommodate the 15 SM
chiral fermions of each generation, as well as an additional
Majorana neutrino. If the mass of this neutrino is very large,
of the order of 1012−14 GeV, other very pressing problems in
particle physics can also be addressed. This is, for instance,
the case of the complicated pattern of the SM neutrino masses
and mixings which can be explained by the see-saw mech-
anism. This is also the case of the baryon asymmetry in
the Universe which could be achieved through a leptoge-
nesis triggered by the additional Majorana neutrino. Hence,
SO(10) with an intermediate scale of O(1012−14) GeV, could
explain the most acute problems of the SM that call for new
physics beyond it, leaving aside the hierarchy problem and
introducing a suitable axion that could account for the particle
that forms the dark matter in the Universe; see Refs. [26–28]
for reviews.

Another issue for which low-energy SUSY theories gained
popularity, is the unification of the Yukawa couplings of third
generation fermions [29–32]. This additional step in the uni-
fication paradigm is accomplished in the minimal supersym-
metric extension of the SM (MSSM), thanks to the pres-
ence of the two-Higgs doublets fields that are required by
the extended symmetry. In constrained scenarios, such as
the minimal supergravity model with universal “soft” SUSY-
breaking parameters [33–35], the top, bottom and tau Yukawa
couplings can be unified at the same scale MU that allows
for gauge coupling unification. Indeed, for large values of
the ratio of the vacuum expectation values of the two Higgs

fields, tan β, one can generate the required hierarchy for the
top and bottom quark masses, tan β ≈ mt/mb ≈ 60, and the
RG evolution that allows the couplings to also meet at MU .

In a recent letter, we have contemplated the possibility
of Yukawa coupling unification in the context of a non-
supersymmetric SO(10) model as well [36]. Focusing on the
most widely studied scenarios with intermediate symmetry
breaking, namely the Pati–Salam scenario with the interme-
diate group SU(4)C × SU(2)L × SU(2)R [2] and the mini-
mal left-right symmetry group SU(3)C × SU(2)L × SU(2)R

×U(1)B−L [37–39], we have shown that in a two-doublet
Higgs model (2HDM) extension present at the electroweak
scale, exactly like in the MSSM, one can first obtain the cor-
rect hierarchy for the masses mt and mb by again taking a
ratio tan β that is sufficiently high. In both schemes, it is then
possible to arrange such that the RG running of third gener-
ation Yukawa couplings, with suitable matching conditions
at the same intermediate scale MI for which gauge coupling
unification occurs, leads to Yukawa coupling unification at
the same GUT scale MU . This can be achieved while pre-
serving important phenomenological features such as repro-
ducing third family fermion and weak gauge boson masses,
ensuring the stability of the electroweak vacuum up to the
high scales and keeping the Yukawa couplings perturbative.

In this paper, we perform a more exhaustive analysis of the
possibility of simultaneous gauge and Yukawa coupling uni-
fication, extending the earlier analysis [36] in several direc-
tions. Firstly, the present discussion is more thorough and
general, as our results are valid for any breaking chain of
non-SUSY SO(10) models with only one intermediate scale
and we consider the interplay between gauge coupling uni-
fication, proton decay, the perturbativity of the Yukawa cou-
plings and, more importantly, the absence of flavor changing
neutral currents at tree-level. Secondly, for gauge coupling
unification, we present some approximations which highly
simplify the analytical discussions of the RGEs and we dis-
cuss unification in models in which one adds a global U(1)
Peccei–Quinn symmetry [40] that would allow the result-
ing axion to address the dark matter problem; this will have
important repercussions on the breaking pattern, the RGE
running of the couplings as well as on the fermionic mass
pattern. A third difference when compared to Ref. [36] is that
in the present work, we study the case in which the condition
for Yukawa couplings unification at the high scale is inspired
by the existence of an even larger E6 gauge symmetry.

The rest of the paper is organized as follows. In the next
section, we introduce the non-SUSY SO(10) model, discuss
its various intermediate breaking schemes and the weak scale
2HDM structure. In Sect. 3, we enforce gauge coupling uni-
fication using threshold effects and discuss some approxi-
mations. In Sect. 4, we analyze the issue of simultaneously
unifying the gauge and third generation fermion Yukawa cou-
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plings. A short conclusion is made in Sect. 5 and some ana-
lytical complementary material is given in an Appendix.

2 Non-SUSY SO(10) with an intermediate scale

In this section, we will summarize how unification of the
three gauge interactions of the SM can be achieved in a non-
supersymmetric SO(10) GUT with a spontaneous symmetry
breaking pattern that involves an intermediate gauge group
at a very high scale which breaks down to the SM gauge
group. A very interesting aspect of the SO(10) model is that
all fermions can be embedded into a single representation of
the symmetry group.

Indeed, the SO(10) group possesses a fundamental 16-
dimensional representation 16F in which, for each genera-
tion, the 15 SM chiral fermions1 as well as one right-handed
neutrino can be embedded. In this case, the allowed Yukawa
couplings of the scalar bosons to pairs of these fermions
belong to the direct product representation 16F×16F, which
can be decomposed into

16F × 16F = 10 + 126 + 120. (1)

Thus, the most general Yukawa interactions are given by the
expression

− LYukawa = 16F(Y1010H + Y126126H + Y120120H)16F,

(2)

where 10H, 126H, and 120H denote the scalar representations
of SO(10) group. However, among the large number of scalar
field components in these representations, we will assume all
those that do not participate in the symmetry breaking mech-
anism by acquiring vacuum expectations values (vevs) will
have masses of the order of the SO(10) symmetry-breaking
scale. This is known as the extended survival hypothesis [41–
44], by which one can safely decouple most of the redundant
ingredients in the SO(10) scalar representations at the GUT
scale and be left only with the light Higgs boson spectrum of
the low-energy effective theory which is present at the elec-
troweak scale. The hypothesis helps to drastically reduce the
number of scalar fields that couple to fermions and, hence,
to simplify the structure of the Yukawa sector of the model.

As was discussed in many instances, see for instance
Ref. [27], the Yukawa sector of the SO(10) model must con-
sist of a 126H representation, to trigger the see-saw mech-
anism via the breaking of the left-right symmetry at an
intermediate scale MI . One additional scalar representation,
either the 10H or the 120H, is needed to break the SM gauge
symmetry. Because the main difference between these two

1 For a single generation of the SM fermions, one has two chiralities
time six colored quarks and one charged lepton, plus a left-handed
neutrino; this makes 15 degrees of freedom in total.

representations is that the 120H decomposes into four scalar
doublets under the SM group, while the 10H representation
decomposes only in two scalar doublets, based on minimal-
ity one should consider the Yukawa sector of SO(10) with
only the 10H and the 126H representations, leading to the
so-called minimal SO(10) models. Note that more scalar rep-
resentations, which do not affect fermion masses, are needed
to achieve the correct symmetry breaking pattern down to the
Standard Model group, as will be discussed in the breaking
patterns below.

Given that the 10-dimensional representation of SO(10)
is real, the field 10H could in principle be real. However, it
was shown [27] that a scalar sector composed of a real 10H
and a complex 126H leads to an unrealistic mass spectrum
for the second and third generation fermions.2

The simplest possible extension is to complexify the orig-
inal real 10H, which leads to the following minimal SO(10)
model with complex scalar fields

− LY = 16F(Y1010H + Y10∗10∗
H + Y126126H)16F. (3)

The price to pay is that we need to introduce a new Yukawa
coupling Y10∗ which makes the theory less predictive. To
avoid the extra independent Yukawa coupling associated with
the 10∗

H, we will assume in this paper an additional global
U(1) Peccei–Quinn symmetry [40] with the following charge
assignment for some real parameter α

16F→eiα16F, 10H→e−2iα10H, 126H→e−2iα126H.

(4)

It reduces Eq. (3) to

− LY = 16F(Y1010H + Y126126H)16F. (5)

There are two additional motivations for adding such a global
symmetry to our model. A first one is that, when the U(1)PQ

symmetry is broken by assigning a vev to a SO(10) scalar,
it influences the symmetry breaking pattern and the renor-
malization group running of the gauge couplings, as we will
see shortly. Another and more phenomenological motivation
is that it implies the existence of an axion which can solve
the strong CP problem [40] and, at the same time, provide a
good candidate for the dark matter in the Universe.

The breaking of SO(10) to the SM gauge group, which we
will denote for shortness by

GSM ≡ G321 = SU(3)C × SU(2)L × U(1)Y, (6)

can be triggered in several ways. As mentioned in the intro-
duction, in the case of non-SUSY SO(10) models, the exis-

2 If the 10H field is real and there is more than one generation of
fermions, the mass ratio of isospin up and down-type quarks is pre-
dicted to be of order 1 [27], in contradiction with the observed quark
masses: mt/mb � 1. This indicates that a more complicated scenario
should be considered.
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tence of intermediate scales MI play an important role in the
unification of the gauge couplings at some scale MU . More
precisely, as the evolution of the U(1) coupling needs to be
strongly modified to meet with the other two couplings at
a unique scale that should be high enough, large contribu-
tions from additional gauge bosons are required. These con-
tributions can be provided by the particles that are present
at the intermediate breaking step, i.e. at the scale MI . We
will stick to the breaking chains with only one intermediate-
step involving a left-right (LR) symmetry – with a SU(2)R

group – to invoke the see-saw mechanism for neutrinos. The
embedding of the SU(2)R symmetry above the intermediate
scale MI strongly affects the gauge coupling evolution.

In our analysis, we will interested in the following break-
ing patterns:

422 : SO(10)|MU

〈210H〉−−−−→ G422|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (7)

422D : SO(10)|MU

〈54H〉−−−→ G422 × D|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (8)

3221 : SO(10)|MU

〈45H〉−−−→ G3221|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (9)

3221D : SO(10)|MU

〈210H〉−−−−→ G3221 × D|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31, (10)

where D refers to a left-right discrete symmetry, called D
parity, transforming spinors of opposite chirality [45–48]. We
have used the following abbreviations for the gauge groups

G422 ≡ SU(4)C × SU(2)L × SU(2)R,

G3221 ≡ SU(3)C × SU(2)L × SU(2)R × U(1)B−L, (11)

with the former being the Pati–Salam (PS) group and the
latter being the minimal left-right (LR) gauge group.

To achieve the desired symmetry breaking in these sce-
narios, one would necessarily need to introduce scalar multi-
plets that acquire vevs at the corresponding high scales. In the
breaking chains above, the scalar content that acquires vevs
at the intermediate scale MI or at the electroweak scale MZ

consists of, respectively, the 126H and 10H representations;
while at the GUT scale MU , the relevant representations that
break the SO(10) symmetry are 210H, 54H and 45H; the lat-
ter will not enter our discussion here.

Despite the large number of scalars, under the extended
survival hypothesis, most of them have a mass of the order
of MU , and only certain scalar components from the 10H
and 126H representations acquire masses below the GUT
scale; they are the only ones to contribute to the running of
the various couplings between the two scales MI and MU .

Table 1 List of scalar multiplets containing light fields, for each inter-
mediate symmetry. They are the only ones which are not integrated out
below the SO(10) symmetry breaking scale mass MU

Intermediate symmetry Scalar multiplets

422 �10 ⊕ �126 ⊕ �R ⊕ �45R

422D �10 ⊕ �126 ⊕ �L ⊕ �R ⊕ �45L ⊕ �45R

3221 �10 ⊕ �126 ⊕ �R

3221D �10 ⊕ �126 ⊕ �L ⊕ �R ⊕ �45L ⊕ �45R

In the different scenarios, these are: (1, 2, 2) or (1, 2, 2, 0)
(�10) from 10H and (15, 2, 2) ⊕ (10, 1, 3) or (1, 2, 2, 0) ⊕
(1, 1, 3, 2) (�126 ⊕�R) from 126H for the gauge group G422

or G3221, correspondingly.
On the other hand, the global U(1)PQ symmetry in these

chains can be simultaneously broken at a distinct scale by
assigning a PQ charge to an SO(10) scalar [49–55]. For the
Pati–Salam model, one of the options could be that the 45H
scalar representation from SO(10) acquires a vev, in addition
to the vev of 126H that allows to break the linear combination
of PQ, B − L and T3R at the intermediate scale [27,56,57].
This allows for the breaking of the Peccei–Quinn symmetry
and the Pati–Salam symmetry with the minimal ingredients
from SO(10) and, at the same time, avoids the unnecessary
fine-tuning of introducing an SO(10) singlet [25]. For the lat-
ter, the only price we need to pay is to have an extra scalar field
(1, 1, 3) or (1, 1, 3, 0) (�45R) from the 45H that contributes
to the running of gauge couplings between the intermediate
and the GUT scales.

For the breaking chain involving an intermediate D parity,
namely 422D or 3221D in our case, similar arguments can be
invoked, except that we have to also add the representation
(10, 3, 1) or (1, 3, 1,−2) (�L) from 126H representation as
well as the (1, 3, 1) or (1, 3, 1, 0) (�45 L) from 45H repre-
sentation in order to preserve the D parity. Lastly, for the
special case of the 3221 chain in Eq. (9) and because the 45H
is assigned a vev directly at the GUT scale to break down
both the SO(10) and the Pati–Salam symmetry to their G3221

subgroup, the PQ symmetry is expected to be also broken at
the GUT scale together with the SO(10) symmetry, and thus
no scalars from the 45H scalar representation survive at the
intermediate scale. Table 1 gives, for each breaking chain,
the surviving scalars at the intermediate scale.

As a result, in the different breaking patterns, the number
of Higgs multiplets that contribute to the renormalization
group running of the gauge couplings above the intermediate
scale is different. Broadly speaking, the larger the number of
Electroweak scalars that contribute to the RGEs is, the faster
the couplings will evolve, and the lower the intermediate
or the GUT scale will be. As we will shortly see, this will
have very important consequences in the scenarios that we
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are adopting in our analysis, which has an extended Higgs
sector at the electroweak scale.

Above the intermediate scale MI , only the two Higgs bi-
doublet fields, decomposing from the 10H and 126H repre-
sentations, will couple to the fermions. Starting from Eq. (5),
the Yukawa Lagrangian for fermions at the intermediate scale
MI can be written in each of considered schemes as

− L422
Y = F̄L(Y10�10 + Y126�126)FR

+YRF
T
R C�RFR + h.c.,

−L422D
Y = F̄L(Y10�10 + Y126�126)FR + YL F

T
L C�L FL

+YRF
T
R C�RFR + h.c.,

−L3221
Y = Q̄L(Y10,q�10+Y126,q�126)QR+L̄ L(Y10,l�10

+Y126,l�126)LR

+YRL
T
Riσ2�RLR + h.c.,

−L3221D
Y = Q̄L(Y10,q�10 + Y126,q�126)QR

+L̄ L(Y10,l�10

+Y126,l�126)LR

+YL L
T
L iσ2�L LL + YRL

T
Riσ2�RLR + h.c.,

(12)

where FL ,R are generic left or right-handed SU(4) fermion
fields, Q, L are quark/lepton fields, and σ2 one of the Pauli
matrices. In both cases, we have assumed that terms like
F̄T
L φ̃FR with φ = � or � and φ̃ = σ T

2 φ∗σ2 are forbidden
by suitably chosen U(1)Y charges [58].

At the intermediate scale, the corresponding left-right
symmetry is broken by the right-handed triplet. As we assume
that both the 10H and the 126H representations are complex,
their vevs should be aligned in the following way to break the
intermediate SU(2)L × SU(2)R × U(1)B−L symmetry down
to the electromagnetic U(1)EM symmetry

〈�10〉 = 1√
2

(
κu

10e
iθu10 0

0 κd
10e

iθd10

)
,

〈�126〉 = 1√
2

(
κu

126e
iθu126 0

0 κd
126e

iθd126

)
,

〈�L〉 = 1√
2

(
0 0

κLeiθL 0

)
,

〈�R〉 = 1√
2

(
0 0

κReiθR 0

)
, (13)

where for later convenience we use the following notation to
denote the 10H and 126H vevs

vba = κae
iθba (a = 10, 126; b = u, d). (14)

In our vevs assignment, the left-handed triplet should also
acquire a tiny but nonzero vev,3 vL ∼ 0, while the right-
handed triplet should have an intermediate-scale vev, vR ∼
MI .

Below the intermediate scale, the low-energy models
include, besides the triplet field �R that gives masses to
the heavy right-handed neutrino species, four Higgs doublet
fields φ1,...4: the two doublets φ1 and φ3 from the bi-doublet
�10 and which have opposite hypercharge Yφ = ±1 and the
doublets φ2 and φ4 again with opposite hypercharge from
the bi-doublet �126. The fields φ1 and φ2 will couple to up-
type quarks and the heavy right-handed neutrinos, while the
fields φ3 and φ4 will couple to down-type quarks and the
light leptons. While the triplet fields acquire a very large
vev, 〈�R〉 = vR ∼ O(MI ), the bi-doublet fields acquire
vevs of the order of the electroweak scale. This should imply
the relation

∑4
i=1 v2

i = v2
SM � (246 GeV)2 between vevs,

when their running is neglected. This ensures that the right-
handed gauge bosons are very heavy, MWR , MZR ≈ gvR ,
while the SU(2)L W and Z bosons have weak scale masses,
MW , MZ ≈ gvSM.

In fact, one should arrange such that only two linear com-
binations of the four scalar doublet fields φ1, . . . φ4 acquire
masses of the order of the electroweak scale, while the masses
of the two other field combinations should be close to the very
high scale MI . The two fields with weak scale masses will
be ultimately identified with the doublets Hu and Hd of the
low energy 2HDM that we adopt here. At the intermediate
scale MI , these fields should match the �10 and �126 fields,
the interactions of which have been given in Eq. (12), and
will be discussed in details in Sect. 4.

To achieve this peculiar configuration, one has to tune
the parameters of the scalar potential of the model and a
discussion of this issue, together with the constraints to which
these parameters should obey, has been made in e.g. Refs. [59,
60] and we refer to them for the relevant details.

Hence, for each decomposing bi-doublet, only one Higgs
doublet remains light and the rest of the scalar multiplets
acquire intermediate scale masses. In this respect, at low ener-
gies, we will have in fact a model with two Higgs doublet
fields Hu and Hd that couple separately to isospin + 1

2 and
− 1

2 fermions and acquire vevs vu and vd

〈Hu〉 = 1√
2

(
0

vu

)
, 〈Hd〉 = 1√

2

(
0

vd

)
, (15)

to generate masses to the W and Z bosons, thus implying the

relation
√

v2
u + v2

d = vSM � 246 GeV. We further define the
ratio of these two vevs to be tan β = vu/vd . The most gen-
eral renormalizable scalar potential of this two Higgs doublet

3 The vev of the left-handed triplet must be tiny but non-zero in order
to comply with the phenomenology of the light neutrinos which have
masses of the order of 1 eV or less.
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model may be written [61]

VH = m2
11H

†
d Hd + m2

22H
†
u Hu −

(
m2

12HdHu + h.c.
)

+λ1

(
H†
d Hd

)2 + λ2

(
H†
u Hu

)2

+λ3

(
H†
d Hd

) (
H†
u Hu

)
+λ4 (HdHu)

(
H†
u H

†
d

)
+
[
λ5 (HdHu)

2 + λ6

(
H†
d Hd

)
(HdHu)

+λ7

(
H†
u Hu

)
(HdHu) + h.c.

]
. (16)

We will later discuss in details the above scalar sector, in
particular when it comes to the perturbativity of the various
couplings and the stability of the corresponding vacua. These
impose severe constraints on the model as we will see.

The Yukawa interactions of the fermions are those of a
Type-II 2HDM [61] with a Lagrangian given by

− L2HDM
Y = Yu Q̄L Hu uR + Yd Q̄L Hd dR

+Ye L̄ L Hd eR + h.c., (17)

with QL/LL the quark/lepton left-handed doublets and fR
the right-handed singlets. In our discussion, only the third
generation fermions will be considered and the small Yukawa
couplings of the first two generations will be neglected. The
relations between the masses and Yukawa couplings are then
simply given by

mt = 1√
2
Ytvu, mb = 1√

2
Ybvd , mτ = 1√

2
Yτ vd . (18)

Having introduced these essential elements, we can now
discuss the unification of the gauge and Yukawa couplings.

3 Gauge couplings unification with thresholds

3.1 Approximate solutions of the RGEs

In this section, we present some analytical expressions for
the renormalization group evolution of the three SM gauge
couplings, which can be used to derive the unification scale
MU and the universal coupling constant αU at this scale for
any breaking pattern of the non-SUSY SO(10) GUTs with
an intermediate scale MI . The RGEs with an energy scale μ

of the couplings αi = g2
i /4π , where gi are the coupling con-

stants of the SU(3), SU(2) and U(1) groups for respectively
i = 3, 2, 1, are given by the following differential equations

dα−1
i (μ)

d ln μ
= − ai

2π
−
∑
j

bi j

8π2α−1
j (μ)

. (19)

Including the Yukawa interactions, the solutions take the fol-
lowing approximate form in terms of a reference scale μ0

α−1
i (μ) = α−1

i (μ0) − ai
2π

ln
μ

μ0

− 1

4π

∑
j

bi j
a j

ln
α j (μ)

α j (μ0)
+ �i

Y . (20)

The one- and two-loop β coefficients (as they are usually
called; not to be confused with the ratio of vevs tan β), ai
and bi j , are given explicitly in Appendix A1 for the symme-
try groups and representations that we are considering. �i

Y
stands for the Yukawa couplings contributions that enter at
two-loops but, as they only have a very small impact on the
running of the gauge couplings compared to the other two-
loop contributions, we will neglect them in our computation.
The detailed calculation including the two-loop Yukawa con-
tributions to the gauge couplings can be found in Ref. [62]
for instance.

In addition, at the intermediate symmetry breaking scales,
threshold effects [18,19] due to all the particles that have
masses in the vicinity of these scales and, in particular, all
the scalar fields that develop vevs at these scales, will be
active. These higher order corrections will modify the match-
ing conditions of the gauge couplings at the symmetry break-
ing scale, depending on the particle content. For a general
symmetry breaking from a group G to a subgroup H at the
scale μ, the matching conditions with the threshold correc-
tions included take the form

α−1
i,G(μ) = α−1

i,H(μ) + λG
i,H

12π
, (21)

where λG
i,H are weighted by the parameters ηi = ln(Mi/μ)

with Mi being the masses of the heavy particles integrated
out at the low energy scale. The complete expressions for
the one-loop threshold corrections λG

i,H at the relevant scale
are given in Ref. [25] for the models that we are considering
here.

At this stage, combining Eqs. (20) and (21), the gauge
couplings at a low scale α−1

i,H(μ0) can be evolved to an arbi-
trary high scale μ where the gauge couplings are embedded
into a higher symmetric group G as

α−1
i,G(μ) = α−1

i,H(μ0) − aH
i

2π
ln

μ

μ0

− 1

4π

∑
j

bH
i j

aH
j

ln
α j,H(μ)

α j,H(μ0)
+ λG

i,H
12π

, (22)

where the two-loop corrections can be approximated with the
following relation

− 1

4π

∑
j

bG
i j

aG
j

ln
α j,G(μ)

α j,G(μ0)
≈ − αU

8π2 θG
i ln

μ

μ0
, (23)
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where αU is the universal gauge coupling at the GUT scale
and the coefficient

θG
i ≡

∑
j

bG
i j

ln(1 + aG
j αU t)

aG
j αU t

and t = 1

2π
ln

μ

μ0
(24)

are defined with the same way as in Ref. [62]. The exact
forms of the coefficients θG

i are given in Appendix A2 for all
the considered symmetry groups.

The unification of the gauge couplings at the scale MU sets
the boundary conditions for the RGEs, which are valid for
any breaking pattern of SO(10) with an intermediate gauge
group GI

α−1
U = α−1

i,GI
(MU ) + λ

SO(10)

i,GI

12π
. (25)

At the intermediate scale MI , depending on the symmetry
breaking chain, the gauge couplings are related with the ones
at low-energy by proper normalization of the generators. As
an example, in the particular symmetry breaking chains that
we consider, one has

422/422D : α−1
4,G422

(MI ) = α−1
3,G321

(MI ),

α−1
2L ,G422

(MI ) = α−1
2,G321

(MI ),

α−1
2R ,G422

(MI )=5

3
α−1

1,G321
(MI )−2

3
α−1

3,G321
(MI ),

(26)

in the 422/422D cases and, in the case of the 3221 and 3221D
breaking chains,

3221 : α−1
3,G3221

(MI ) = α−1
3,G321

(MI ),

α−1
2L ,G3221

(MI ) = α−1
2,G321

(MI ),

α−1
B−L ,G3221

(MI ) = κα−1
2R ,G3221

(MI )

=
(

2κ + 3

5κ

)−1

α−1
1,G321

(MI ),

3221D : α−1
3,G3221

(MI ) = α−1
3 (MI ), α−1

2L ,G3221
(MI )

= α−1
2R ,G3221

(MI ) = α−1
2,G321

(MI ),

α−1
B−L ,G3221

(MI ) = 5

2
α−1

1,G321
(MI ) − 3

2
α−1

2,G321
(MI ).

(27)

In the 422D chain we also requireα−1
2L ,G422

(MI ) = α−1
2R ,G422

(MI )

to preserve the D parity, and in the 3221 chain, we assume
α−1
B−L ,G3221

(MI ) = κα−1
2R ,G3221

(MI ) as we are matching three
couplings to four. This normalization factor κ of O(1) is to
be solved for together with the scales MI and MU .

For the purposes of achieving unification, it is enough
to consider the differences between the various gauge cou-
plings, α−1

i,G − α−1
j,G , whose running depends only on the

parameters

�
G
i j = aG

i − aG
j

2π
+ θG

i − θG
j

8π2 αU . (28)

In fact, it turns out that for each intermediate symmetry GI ,
it is enough to consider only one combination of the various
�G

i j , which we will call CGI . For the cases GI = G422 and
GI = G3221 they read

CG422 = 3

5

�
G422
42R

�
G422
42L

and CG3221 = 3�
G3221
32R

+ 2�
G3221
3B−L

5�
G3221
32L

. (29)

With the boundary conditions defined in Eq. (25) and the
matching conditions at MI for different breaking chains (e.g.
Eqs. (26)–(27)), the RGEs of SO(10) in Eq. (22) can be trans-
formed into the following general equations, where the inter-
mediate scale MI , the unification scale MU , and the universal
SO(10) coupling αU , are related to the initial conditions of
the gauge couplings in the SM

ln

(
MI

MZ

)
= (α−1

1EW
−α−1

3EW
)−CGI (α

−1
2EW

−α−1
3EW

)+DGI

CGI �
G321
32 −�

G321
31

,

(30)

ln

(
MU

MI

)
=−α−1

2EW
−α−1

3EW

�
GI
3I 2L I

− �
G321
32

�
GI
3I 2L I

ln

(
MI

MZ

)
− D′

GI

�
GI
3I 2L I

,

(31)

α−1
U � α−1

3EW
− 1

CGI �
G321
32 − �

G321
31

×
[(

aG321
3

2π
− �

G321
32

�
GI
3I 2L I

aGI
3I

2π
+ O

(
αU θG

i

8π2

))

×(α−1
1EW

− α−1
3EW

)

−
(
CGI

aG321
3

2π
− �

G321
31

�
GI
3I 2L I

aGI
3I

2π
+ O

(
αU θG

i

8π2

))

×(α−1
2EW

− α−1
3EW

)

]
. (32)

The four constant terms CGI , �
G321
31 , �

G321
32 and �

GI
3I 2L I

(in
this last term, 3I and 2L I refer to the corresponding gauge
couplings in the intermediate gauge group GI , containing
the SM SU(3)C and SU(2)L components; for instance, if
GI = G422, the factor refers to �

G422
42L

) are all determined
by the β coefficients of the low-energy models G321 and the
intermediate-scale model GI from Eqs. (28) and (29).

We have calculated these factors using the work of
Refs. [63,64] for each breaking chains we consider and we
list them in the Appendix A3; they can easily be calcu-
lated from the quantum number of the light fields in the
different breaking chains of SO(10). The shorthand notation
(α−1

1EW
, α−1

2EW
, α−1

3EW
) was used to denote the gauge couplings
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at the electroweak scale (α−1
1,G321

(MZ ), α−1
2,G321

(MZ ), α−1
3,G321

(MZ )). The factors DGI and D′
GI

include all threshold cor-
rections for each breaking chain and are given by

DG422 = DG422
13,G321

+ 3

5
DSO(10)

2R4,G422
− CG422 D

′
G422

,

D′
G422

= DG422
23,G321

+ DSO(10)

2L4,G422
,

DG3221 = DG3221
13,G321

+ 3

5
DSO(10)

2R3,G3221

+2

5
DSO(10)

B−L3,G3221
− CG3221 D

′
G3221

,

D′
G3221

= DG3221
23,G321

+ DSO(10)

2L3,G3221
, (33)

where the parameter DG
i j,H depicts the difference between

the threshold corrections of the gauge couplings αH
i and αH

j
defined as

DG
i j,H = 1

12π

(
λG
i,H − λG

j,H
)

. (34)

3.2 Uncertainties of the calculation at the two-loop order

The initial conditions on the SM gauge couplings (α−1
1 , α−1

2 ,

α−1
3 ), evaluated in the MS renormalization scheme with two-

loop accuracy, are the coupling values at the electroweak
scale that we take to be the Z boson mass MZ = 91.2 GeV,
namely [65],(
α−1

1EW
, α−1

2EW
, α−1

3EW

)
=
(

59.0272, 29.5879, 8.4678
)
,

(35)

where the hypercharge coupling αY has been normalized
with the usual GUT condition leading to α1/αY = 5/3. In
the equation above, we have neglected for convenience the
experimental errors on the inverse couplings constants (as
well as the estimated theoretical uncertainties) and kept only
the central values. These errors, in particular the one that
affects the strong coupling α3 will lead to an uncertainty on
the obtained scales MU and MI of the order of a few per-
cent at most and will therefore not affect our discussion in a
significant way.

With the above initial conditions, the solutions to Eqs. (30)
and (31) can be derived order by order. At one-loop order, the
two-loop coefficients can be ignored, which is equivalent to
setting αU to zero in Eqs. (28) and (29). Neglecting also the
one-loop threshold corrections DGI and D′

GI
, the solutions

of Eqs. (30) and (31) in this case, denoted as ln (MI /MZ )1
and ln (MU/MI )1, are determined by the one-loop values
of the four constants (CGI , �

G321
31 , �

G321
32 and �

GI
3I 2L I

) (see
Appendix A3 for details). The universal coupling at one-
loop order α

1-loop
U can also be obtained in a similar way by

substituting back the one-loop values of these four constants
in the right-handed side of Eq. (32).

We summarize the results for the three one-loop quantities
ln (MI /MZ )1, ln (MU/MI )1 and α

1-loop
U in the first panel

of Table 2 for some considered breaking chains when the
threshold corrections (as well as the Yukawa couplings) are
neglected.

At two-loop order, Eqs. (30) and (31) can be seen
as implicit functions of the independent variables αU ,
ln (MI /MZ ) and ln (MU/MI ). Denoting the right-handed
sides of these equations as F (αU , ln (MI /MZ ) , ln (MU/MI ))

and G (αU , ln (MI /MZ ) , ln (MU/MI )) correspondingly,
Eqs. (30) and (31) can be rewritten as

F

(
αU , ln

(
MI

MZ

)
, ln

(
MU

MI

))
− ln

(
MI

MZ

)
= 0, (36)

G

(
αU , ln

(
MI

MZ

)
, ln

(
MU

MI

))
− ln

(
MU

MI

)
= 0. (37)

Because the one-loop solutions ln (MI /MZ )1 and ln (MU/MI )1
when αU = 0 are exact solutions to the above Eqs. (36) and
(37), the small required corrections can be found by perform-
ing the following variations to the one-loop solutions

∂F

∂αU

∣∣∣∣
αU=0

δαU +
⎡
⎢⎣ ∂F

∂ ln
(

MI
MZ

)
∣∣∣∣∣∣
αU=0

− 1

⎤
⎥⎦ δ ln

(
MI

MZ

)

+ ∂F

∂ ln
(
MU
MI

)
∣∣∣∣∣∣
αU=0

δ ln

(
MU

MI

)
= 0, (38)

∂G

∂αU

∣∣∣∣
αU=0

δαU + ∂G

∂ ln
(

MI
MZ

)
∣∣∣∣∣∣
αU=0

δ ln

(
MI

MZ

)

+
⎡
⎢⎣ ∂G

∂ ln
(
MU
MI

)
∣∣∣∣∣∣
αU=0

− 1

⎤
⎥⎦ δ ln

(
MU

MI

)
= 0. (39)

A careful investigation of the above differential forms
reveal that indeed all the other derivatives vanish when
αU = 0 except for ∂F/∂αU and ∂G/∂αU due to the fact
that the derivatives of the two-loop factor �G

i j satisfies the

relation ∂�G
i j/∂t |αU=0 = 0. Therefore, the two-loop solu-

tions ln (MI /MZ )2 and ln (MU/MI )2 can be approximated
by

ln

(
MI

MZ

)
2

= ln

(
MI

MZ

)
1
+ δ ln

(
MI

MZ

)
≈ ln

(
MI

MZ

)
1

+ ∂F

∂αU

∣∣∣∣
αU=0

δαU , (40)

ln

(
MU

MI

)
2

= ln

(
MU

MI

)
1
+ δ ln

(
MU

MI

)
≈ ln

(
MU

MI

)
1

+ ∂G

∂αU

∣∣∣∣
αU=0

δαU , (41)
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Table 2 A summary table of our approximate analytical estimates of
the intermediate scales MI , the unification scales MU , and the values
of the universal SO(10) coupling constant αU for different intermediate

breaking groups GI and low-energy models GSM, where the Yukawa
contributions and the threshold corrections are neglected

G321 GI log
(

MI1
GeV

)
log
(
MU1
GeV

)
α

1-loop
U log

(
MI2
GeV

)
log
(
MU2
GeV

)
α

2-loop
U

SM G422 11.102 16.314 0.0275 9.627 16.718 0.0313

SM G3221 9.807 16.165 0.0223 9.942 15.929 0.0262

2HDM G422 11.429 15.988 0.0273 10.133 16.346 0.0304

2HDM G3221 10.234 15.896 0.0226 10.398 15.652 0.0230

where δαU = α
1-loop
U should be substituted in the above equa-

tion. The universal grand unified coupling at the two-loop
level α

2-loop
U can also be solved numerically from Eq. (32)

by substituting the one-loop value of ln (MI /MZ )1 and
ln (MU/MI )1 into the parameters CGI , �

G321
31 , �

G321
32 , and

�
GI
3I 2L I

.4

In summary, neglecting all the threshold corrections, as the
coupling constant αU is rather small, it is a good approxima-
tion to expand the coefficients �

GI
i j in terms of this coupling

to find, first the one-loop solutions. The two-loop solutions
are then obtained by inserting the one-loop solutions into
Eqs. (40) and (41).

We summarize our results for the one-loop and two-loop
predictions for ln (MI /MZ ), ln (MU/MI ), and αU separately
in Table 2. This approximation is in a good agreement with
the numerical results to be discussed in Sect. 3.4. One can
observe from Table 2 that the one-loop solutions agree with
the numerical results given in Ref. [25] at the 4σ confidence
level, while the two-loop solutions agree with the numerical
results in Table 3 from Sect. 3.4 at the 2σ confidence level.

In practice, one can solve these equations iteratively, as
is done for instance in Ref. [62], to obtain more accurate
predictions of the scales MI and MU . However, as we are
assuming the approximation in Eq. (23) for a unification
of gauge couplings, without integrating out higher deriva-
tives, the approximation by the first derivatives in Eqs. (40)
and (41) already includes uncertainties of the order of one-
percent, which is also comparable with the contributions
from the Yukawa couplings that we neglect in our computa-
tion. Besides the uncertainties from our approximations and
leaving aside the Yukawa contributions, the largest uncer-
tainty actually comes from the threshold corrections DGI

and D′
GI

, which are shown in several analyses to be able to
modify the predictions of the unification scales by more than
an order of magnitude; see for instance Refs. [25,36,66].

4 At the two-loop level, the most important contributions to αU are due
to (CGI , �G321

31 , �G321
32 , and �

GI
3I 2L I

) corrected by the two-loop β coeffi-
cients (see explicitly Appendix A3), so that one can safely neglect the
terms proportional to (αU θG

i /8π2) in Eq. (32), which can be considered
as higher-order corrections [62].

Finally, we should note that in principle, analytical expres-
sions cannot be derived when a multi-step symmetry break-
ing with more than one intermediate scale is present, unless
additional constraints on the intermediate scale are imposed.
Our analytical results generalize the formulae derived in
Ref. [62] for SUSY-SO(10) GUTs to the non-SUSY case
and to the case with one intermediate symmetry breaking.5

3.3 Impact of proton decay

Before moving to the numerical results, let us first have a
brief discussion6 on the constraints that come from proton
decay on our SO(10) GUTs with intermediate breaking, and
more precisely on the values of the unification scale MU

and unification coupling αU . The most-constraining decay
channel on the proton lifetime is the one in which one has a
pion and a positron in the final state [69,70]. In this particular
mode, the proton lifetime in years can be roughly estimated
to be [25]:

τ(p → e+π0) � (7.47×1035 year)(
MU

1016 GeV

)4 (0.03

αU

)2

.

(42)

The strongest current experimental constraint, including
other decay channels, for proton decay come from the Super-
Kamiokande experiment [71–75] which sets the bounds on
the proton lifetime

τ(p → e+π0) > 1.67 × 1034 year (43)

at the 90% confidence level, which yields the following
bound

5 This formalism can be generalized to the supersymmetric case dis-
cussed for example in Ref. [67] where a general analytical method is
applied for a SUSY SU(5) GUT. For SUSY SO(10) GUTs like the ones
discussed in Ref. [68], one can identify the intermediate scale to be the
SUSY-breaking scale and use the formalism presented here to derive
the unification scale MU .
6 For a detailed account, see the recent and more general discussion
given in Ref. [66].
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Table 3 A summary table of the numerical results of the intermedi-
ate scale, the unification scale, and the universal gauge coupling at the
two-loop level, neglecting all the threshold corrections as well as the
estimated proton lifetimes obtained for each considered breaking chain

with two Higgs doublets at the electroweak scale. The ratio of vevs is
fixed to tan β = 65 as the results do not change significantly for lower
values of tan β

Breaking chain log
(

MIc
GeV

)2-loop
log
(
MUc
GeV

)2-loop
α

2-loop
U τ(p → e+π0)/year

422 10.03 16.19 0.032 3.82 × 1036

3221 10.66 15.45 0.023 7.84 × 1033

422D 13.65 14.66 0.026 4.22 × 1030

3221D 11.82 14.63 0.024 3.89 × 1030

ln

(
MU

MZ

)
+ 1

2
ln
(
α−1
U

)
> 33.1, (44)

where the unification scale ln
(
MU
MZ

)
and coupling α−1

U can

be obtained from Eqs. (30)–(32) with values that are sum-
marized in Table 2 given in the previous subsection.

In the general case, the analytical expressions for the β

coefficients can be found in Refs. [63,64], where the depen-
dence on the number of fermion families and Higgs doublets
is explicitly given. We can thus express all β coefficients as
a function of the number of scalars running from the elec-
troweak scale to the intermediate scale. One can generally
state that the more colorless scalars contribute to the gauge
couplings, the lower the unification scale would be and, thus,
the shorter the proton lifetime would be.

For the low-energy model G321 studied in our paper,
namely the 2HDM, and without including the threshold cor-
rections as is shown for example in Table 2, the only two
breaking chains that survive the constraint from proton decay
are the 422 and the 3221 breaking chains, with the latter one
sitting right on the edge of the proton decay bounds that
could be spoiled easily by slightly going beyond our approx-
imation. Including the threshold corrections could raise the
unification scale by an order of magnitude to avoid a too fast
proton decay. The shift of scales MI and MU when including
the threshold corrections numerically is discussed in the next
subsection.

3.4 Numerical results

In this subsection, we will give more precise results that we
obtain numerically by deriving and solving the RGEs for
each considered breaking chain up to two-loop order, using
the Mathematica package SARAH [76]. In our present case,
from the electroweak scale MZ to the intermediate scale MI ,
the low-energy model G321 is not the SM but is assumed
to be the 2HDM whose two-loop RGEs are also given in
Appendix B. Note also that in our numerical treatment, the
contributions of the Yukawa couplings, determined from the
fermion masses at the electroweak scale and the parameter
tan β of the 2HDM, have been also included.

We also include the one-loop threshold corrections numer-
ically at the scales MI and MU , by randomly sampling the
parameters ηi = ln(Mi/μ) of Eq. (21) within the range of
values ηi ∈ [−1, 1]. The systems of two-loop RGEs would
then be solved together with the given one-loop threshold cor-
rections to determine the values of the two scales MI and MU

for each sampling parameter set, by requiring all the gauge
couplings to match at the grand unified scale MU including
the threshold corrections when appropriately adjusting the
intermediate scale MI . We took at least 10,000 points for
the parameters ηi within the selected range of ηi values and
determined the sets of all scales (MI , MU ) that allow for
gauge coupling unification for each breaking chain.

The results are given by the four panels of Fig. 1 which
shows for the four considered breaking patterns, the scat-
ter plots for the set of scales (MI , MU ) with the randomly
sampled threshold corrections, when the ratio of the 2HDM
vevs is chosen to be tan β = 65. The intermediate and the
GUT scales when all the threshold corrections are taken to be
zero (ηi = 0) are defined as the central values (MIc, MUc)

that are specified in each plot. As we have already noticed
in Ref. [36], both the two-loop corrections and the threshold
corrections have a significant impact.

In particular, our results in Fig. 1 show the effect of the
additional Higgs doublet contributions to the gauge coupling
running for our considered breaking chains (again the β coef-
ficients are given in Appendix A1), when comparing for
instance to the work of Ref. [25] (especially to their Fig-
ure 3), where only the SM particle content is used in the
running at low energy. The extra contributions in the 2HDM
to the running of the gauge couplings, even though not very
large, results in a unification scale MU that is significantly
smaller. In fact, for some of the breaking scenarios that we
consider, in particular the 422D and 3221D chains, the result-
ing MU values could easily fall into the values excluded by
proton-decay bounds even when large threshold corrections
are included.

As an example, the evolution of the inverse of the gauge
coupling constants squared α−1

i for the selected 2HDM ratio
of vevs tan β = 65 when all threshold corrections ηi are
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Fig. 1 The scatter plots for the set of (logarithms of the) scales
(MI , MU ) of the four breaking patterns considered, with randomly sam-
pled threshold corrections for ηi ∈ [−1, 1] when the ratio of vevs of
the two Higgs fields is chosen to be tan β = 65. Note that these results

are not sensitive to tan β. The central values (MIc, MUc) that we indi-
cate represent the intermediate and the GUT scales with all threshold
corrections taken to be zero, ηi = 0

taken to be zero from the scale MU down to the scale MI

and then down to the weak scale MZ is shown in Fig. 2
as a function of the (logarithm of the) energy scale μ. We
have used the program SARAH in which we have imple-
mented the full two-loop RGEs for the considered breaking
patterns 422 (upper left), 422D (bottom left), 3221 (upper
right) and 3221D (bottom right). While the three couplings
are clearly different at the scale MI , of the order of a few
times 1010−13 GeV, the slope are significantly modified at
this energy by the additional contributions so that the cou-
plings meet at a scale MU of the order 1014−16 GeV. The

small impact of the experimental errors on the couplings is
illustrated by the narrow vertical red bands that are drawn at
the scales MI and MU .

Finally, we also summarize in Table 3 our numerical
results for our four considered breaking patterns, when the
threshold corrections are not included. The relevant interme-
diate and unification scales at the two-loop level MIc and
MUc as well as the unification coupling αU , are to be com-
pared with those given in Table 2; in addition, we display the
estimated proton lifetime in each scenario.
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Fig. 2 The evolution of the inverse of the gauge coupling constants
squared α−1

i as a function of the (logarithm of the) energy scale μ for
the value tan β = 65, when all threshold corrections ηi are taken to be
zero from the electroweak scale to the GUT scale in the 2HDM+422

(upper left), 2HDM+3221 (upper right), 2HDM+422D (bottom left) and
2HDM+3221D (bottom right) models. The red vertical bands reveal the
uncertainty on the measurement of gauge couplings at the electroweak
scale

From this table, one can see that when the threshold correc-
tions are switched off, only the breaking chain 422 with the
Pati–Salam symmetry as an intermediate step and a 2HDM at
the low energy scale, survives the proton decay bound from
Kamiokande, namely τ(p → e+π0) > 1.67 × 1034 year. In
addition, even though the 3221 chain seems to lie at the edge
of the dangerous region excluded by proton decay, any small
amount of threshold corrections at a given symmetry break-
ing scale could easily rescue it, by raising the unification
scale by an order of magnitude, as can be seen from Fig. 1.
The same situation occurs in the 422D breaking chain, but

large threshold corrections (ηi � 1) would be needed to pre-
vent fast decay of proton in this case. Finally, for the 3221D
breaking chain resulting to a 2HDM at the low energy scale,
we find that the bound from proton decay is violated unless
extremely large (an potentially unrealistic) threshold correc-
tions (ηi � 1) are taken into account.

Before we close this section, let us make a brief com-
ment on the fact that gauge coupling unification in non-
SUSY SO(10) models with only one intermediate scale suf-
fers from the severe constraints from proton decay, if no large
threshold corrections are imposed, except for the 422 break-
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ing chain. As we have seen above, the two-loop RGEs of
these SO(10) models have approximate analytical solutions
which are completely determined by the β coefficients for
any breaking chain. In other words, there are no free param-
eters in determining the symmetry breaking scales except
for the threshold corrections (e.g. in the D factors given in
Eq. (33)) and the value of the parameter tan β of the low
energy 2HDM. The latter parameter generally affects only
marginally gauge coupling unification, but it will be strongly
constrained when the Yukawa interactions of the fermions
are included as we will see in the next section. This will be
particularly the case when one invokes the requirement of
the perturbativity of the Yukawa couplings (the absence of
Landau poles) and by the consistency of the values for the
fermion masses that can be obtained at the intermediate scale.

Thus, the surviving parameter space for non-SUSY mini-
mal SO(10) models with an intermediate scale is rather small,
thus rendering the model quite predictive. We move now to
the unification of third generation Yukawa couplings. In this
case, we will ignore the models 422D and 3221D with a PQ
symmetry as they lead to a low unification scale and, hence,
are in conflict with the limits from proton decay.

4 Yukawa coupling unification

4.1 Yukawa unification in non-SUSY SO(10)

Following the paradigm of the unification of the gauge cou-
pling constants, one is tempted to push the idea further and
to consider also the possibility of unifying the fermionic
Yukawa couplings in the framework of the same GUT sym-
metry group. In this context, one is forced to ignore the rather
small Yukawa couplings of the first- and second-generation
fermions as the masses of these particles are below the few
GeV scale which allows them to be realistically described
without being affected by the strong interaction uncertain-
ties that are encountered at the corresponding mass scale.
In our work, we will thus consider only the Yukawa cou-
plings of third-generation fermions, the top quark, the bottom
quark and the tau lepton, with the additional simplification
of neglecting all possible mixings. The three fermions will
be assumed to have a common Yukawa coupling at the GUT
scale MU within the natural context of SO(10) unification
where the fermions are embedded into a single irreducible
representation 16F of the symmetry group.

Below the intermediate scale MI and down to the elec-
troweak scale, the Yukawa interactions of these fermions
are those of a Type-II 2HDM with a Lagrangian given by
Eq. (17), which leads to the masses given in Eq. (18) in terms
of the two vevs vu and vd defined at the electroweak scale.
The choice of the 2HDM as the low-energy scale directly fol-
lows from the requirement that the top and bottom Yukawa

couplings should be comparable and this cannot be achieved
in the context of the SM with its single Higgs doublet field.
In turn, in extended Higgs sectors, the large ratio between
the top and bottom quark masses could be due to a large
ratio of the vevs of the Higgs multiplets that give rise to the
masses of the up- and down-type fermions. The simplest of
such an extension7 is a 2HDM of Type II. More specifically,
one would have for the parameter tan β which is defined as
the ratio of the two vevs vu and vd of the fields Hu and Hd

that break the electroweak symmetry

tan β = vu/vd ∼ mt/mb ≈ O(60). (45)

Note that in the equation above, mt and mb are the mass
parameters of the top and bottom quarks evaluated at the
weak scale MZ , and not the physical masses.

In the context of the SO(10) unification group that we are
considering here, with either a 10H or a 126H scalar repre-
sentation coupling to fermions, the third generation masses
must depend on a single parameter for consistency reasons.
However, instead of just one SO(10) scalar representation, we
consider the possibility that both a complex 10H and a 126H
scalar interact with fermions; see Eq. (5). Fermion masses
can therefore receive non-negligible contributions from two
Yukawa couplings. Thus, a discussion on Yukawa unifica-
tion implies that Y10 and Y126 are somehow related, which
in turn implies some connection between the two scalars in
our model. One tantalizing possibility is that both the 10H
and the 126H are part of a single irreducible representation
of an even larger gauge group. A natural candidate is the
exceptional group E6 for the following reasons:

• The smallest non-trivial representation of E6, the one of
dimension 27, decomposes as 16+10+1 and, therefore,
contains the SM fermions plus vector-like ones.

• A scalar representation 351′
H can couple to the bilinear

product of fermions in the representation 27 × 27 and,
furthermore, it decomposes as10H+126H+· · · under the
SO(10) group. Note that 351′ is a complex representation
and, therefore, 10H must be associated to a complex field.

• The E6-symmetric Yukawa interaction Y × 27F · 27F ·
351′

H can be written as a sum of terms which, individ-
ually, are symmetric only under SO(10): c10Y × 16F ·
16F · 10H + c126Y × 16F · 16F · 126H + · · · for specific
Clebsch–Gordon factors c10, c126, . . .. These last num-
bers are therefore a prediction of an E6-symmetric the-
ory, hence the enlarged symmetry enforces a particular

7 The idea of Yukawa coupling unification emerged and was developed
in the late 1980s in the context of supersymmetric theories, to predict the
mass of the not yet discovered top quark and to understand the origin of
the top-bottom mass hierarchy; see e.g. Ref. [77]. For consistency rea-
sons, the minimal supersymmetric standard model or MSSM required
two Higgs doublets fields of Type-II.

123



529 Page 14 of 25 Eur. Phys. J. C (2023) 83 :529

ratio Y10/Y126 since

Y10

Y126
= c10Y

c126Y
= c10

c126
. (46)

• An exactly E6-symmetric theory does not involve the
coupling 16F · 16F · 10∗

H and, hence, there is not such
an interaction at leading order. Its absence can be under-
stood by the fact that E6 contains an extra U(1) subgroup
which commutes with SO(10), under which the fields are
changed precisely in the manner described in Eq. (4).

The crucial ratio of Yukawa couplings discussed above
turns out to be(

Y10

Y126

)
E6

=
√

3

5
, (47)

with the understanding that at the GUT scale, the SO(10)
contractions 16F ·16F ·10H and 16F ·16F ·126H normalized
in such a way that the two SM doublets (one in 10H and
the other in 126H) contribute to the top quark mass with
the same Clebsch–Gordon factor. If we were to write the
G321-invariant Yukawa interactions involving the four Higgs
doublets Hu/d,10/126 contained in 10H and 126H, they would
have the form

Q̄L

(
Y 10
u H∗

u,10 + Y 126
u H∗

u,126

)
uR

+Q̄L

(
Y 10
d Hd,10 + Y 126

d Hd,126

)
dR

+L̄ L

(
Y 10
e Hd,10 + Y 126

e Hd,126

)
eR + h.c. (48)

At the unification scale, the matching relations are as follows:

Y 10
u = Y 10

d = Y 10
e = Y10; Y 126

u = Y 126
d = −1

3
Y 126
e = Y126.

(49)

Combining these two expressions, we obtain the fermion
mass formulas

mt = vu10Y10 + vu126Y126, mb = vd10Y10 + vd126Y126,

mτ = vd10Y10 − 3vd126Y126. (50)

In addition, we have the Dirac neutrino mass which is given
by

mνD = vu10Y10 − 3vu126Y126. (51)

Note however that we do not consider a direct breaking of
the SO(10) symmetry to the SM group G321; the purpose of
the previous equations is simply to clarify the normalization
of the SO(10)-invariant Yukawa couplings that we are con-
sidering in Eq. (5). (Furthermore, we consider only two light
Higgs doublets, which are necessarily a combination of the
four doublets in Eq. (48).)

The number indicated in Eq. (47) is quite peculiar since
the ratio of Clebsch–Gordon factors is often a rational num-
ber (Ref. [78] contains a large list of examples, none of which
involves an irrational number). We also cannot avoid com-
menting on the fact that

√
3/5 is also used to canonically

normalize the SM hypercharge; nevertheless, as far as we
can tell, this equality is just a coincidence.

The ratio of Eq. (47) was derived with the Subgroup
Coefficients function of GroupMath [79] but it can
also readily be derived from the available literature. Note in
particular that eqs. (77) and (78) and Table 6 of Ref. [80]
directly imply that Y × 27F · 27F · 〈351′

H

〉
contains the terms[

1/
(

2
√

10
)
Yvu10 − 1/

(
2
√

6
)
Yvu126

]
t tc.8

In the following, we will consider the consequences of
the above relation. However, it is beyond the scope of the
present work to present a fully realistic E6 model for Yukawa
unification as this would entail several challenges.9

Let us also mention that in our earlier work [36], we have
considered some of the implications of requiring the sim-
ple relation Y10 = Y126 at the scale where the gauge cou-
plings unify. While we do not have a mechanism that would
prescribe this relation, we will nevertheless consider here
in more detail some of its consequences. It is worth keep-
ing in mind that

√
3/5 ≈ 0.77 is not far off from 1, hence

the two Yukawa unification conditions, Y10 = CY126 with
C = √

3/5 or 1, should not lead to dramatically different
results.

4.2 Matching conditions in the 422 breaking chain

Having introduced the Yukawa unification conditions in our
SO(10) model from a top-down perspective, we then seek
the relations of the low-energy Yukawa couplings in different
breaking chains of SO(10). We first note that the field content
needed to enforce the D parity symmetry yields a unification
scale that is unacceptably low, making the proton lifetime too
short in the 422D and the 3221D breaking chains, as can be
seen from Table 3 and the relevant discussion in the Sect. 3.4.
We thus ignore these two possibilities in our next discussion.
In fact, we will also not discuss the 3221 breaking chain
of this particular SO(10) model; some of the elements have
been presented in Ref. [36] and others will be postponed to a

8 The individual values of the two Clebsch–Gordon factors, including
their relative sign, are convention-depend and therefore unphysical; the
absolute value of their ratio is not.
9 For example, a realistic scalar sector would necessarily have a large
number of scalars transforming as (2,±1/2) or (1, 0) under the elec-
troweak group, whose vevs affect fermion masses. Providing masses
to all the scalars is another challenge. Also, on top of the 16F (three
generations of it), one would have vector-like fermions transforming as
10F and 1F which can mix with the spinor representation, complicating
the identification of what are the SM fermions. We thank Vasja Susič
for his helpful comments on this and other E6-related topics.
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forthcoming paper. Thus, for illustration, we will discuss in
the following only the evolution of the Yukawa couplings in
the 422 breaking chain.

One should first recall that enforcing Yukawa unification
can be seen as finding a solution for the system of RGEs
of Yukawa couplings satisfying the boundary conditions and
the initial conditions obtained from the experimental observ-
ables. However, even in a model as simple as a 2HDM, the
general RGEs of the Yukawa couplings, which can be read
from Appendix B, do not admit an approximate solution like
the ones for the gauge couplings discussed in Sect. 3. There-
fore, we will leave the discussion of the numerical evaluation
of all the Yukawa couplings between different energy scales
to the end of the present section, and we first concentrate here
on the boundary conditions.

The boundary conditions for Yukawa couplings at the
GUT scale MU , where the full SO(10) is restored, relate
the couplings in a very specific way which is dictated by
appropriate Clebsch–Gordon coefficients originated from the
decomposition of the tensor product for the fermion bilinear
and the scalar field representation. Below the SO(10) scale,
given that the gauge symmetry group is smaller and less con-
straining, there can be more than two Yukawa couplings, as
shown in Eq. (12). For the 422 breaking chain, in which the
Yukawa couplings can be identified as Y 422

10 , Y 422
126 and Y 422

R ,
the matching conditions can be read from Ref. [48] which
gives:

Y10(MU ) = 1√
2
Y 422

10 (MU ), Y126(MU ) = 1

4
√

2
Y 422

126 (MU )

= 1

4
Y 422
R (MU ). (52)

Note that the numerical factors shown here are not intrinsi-
cally physical since they depend on how one contracts the
SU(4)C × SU(2)L × SU(2)R group indices which, inciden-
tally, are not shown in Eq. (12). Obviously, whatever con-
vention is adopted, it must be followed consistently. In the
present case, this means that the factors of

√
2 and 4 shown

above must drop out when matching the 321 and 422 Yukawa
couplings at MI .

As was mentioned in Sect. 4.1, the Yukawa unification
in non-SUSY SO(10) can be defined as Y10 = CY126, with
C the ratio of CG coefficients decomposing the scalar rep-
resentation of higher symmetry into SO(10) multiplets 10H
and 126H.10 Motivated by E6 in Eq. (47), we take this factor
to be

√
3/5, which, after combining the GUT-scale matching

condition in Eq. (52), implies that the 422-Yukawa couplings
at MU must fell on the line �(MU ) in the two-dimensional

10 The special case where C = 1 has been studied in [36] for a sim-
plified SO(10) model with a real 10H representation without implying
any further unification of the scalar representation.

parameter space (Y 422
10 (MU ), Y 422

126 (MU )) defined by

Y 422
10 (MU )

Y 422
126 (MU )

= 1

4

√
3

5
. (53)

Comparing Eqs. (49) and (52), we obtain from Eq. (50)
the following fermion masses in the 422-symmetric phases

mt = vu10√
2
Y 422

10 + vu126

4
√

2
Y 422

126 , mb = vd10√
2
Y 422

10 + vd126

4
√

2
Y 422

126 ,

mτ = vd10√
2
Y 422

10 − 3vd126

4
√

2
Y 422

126 , (54)

in addition to the Dirac/Majorana neutrino masses written as

mνD = vu10√
2
Y 422

10 − 3vu126

4
√

2
Y 422

126 ,mνR = 1

4
vRY

422
R . (55)

We can now match the intermediate-scale fermion mass
matrices in Eq. (54) to the low-energy ones in Eq. (18), as
the consistency between both theories implies that the masses
predicted from the low-energy effective theory and the high-
energy theory should be the same at the symmetry breaking
scale. It follows that for the breaking chains 422, the matching
conditions of the Yukawa couplings at the intermediate scale
read

Ytvu = vu10Y
422
10 + 1

4
vu126Y

422
126 ,

Ybvd = vd10Y
422
10 + 1

4
vd126Y

422
126 ,

Yτ vd = vd10Y
422
10 − 3

4
vd126Y

422
126 . (56)

The above matching conditions contain six free parameters:
the four vevs of the Higgs bi-doublets and two intermediate-
scale Yukawa couplings. With the three electroweak-scale
Yukawa couplings Yt,b,τ (MZ ) in the 2HDM obtained from
the experimental inputs, we actually have enough degrees
of freedom to be able to fix these free parameters by the
Yukawa couplings RGEs, as has been done in the litera-
ture, see Refs. [36,53–55]. We will discuss such a numer-
ical fitting procedure in detail in the next subsection. How-
ever, by imposing the constraints from the scalar potential,
such as forbidding dangerous flavor changing neutral cur-
rents (FCNCs), we find that the allowed parameter spaces
can be largely reduced as will be discussed shortly.

Finally, we emphasize that YR is not a free parame-
ter which contributes to the running of other Yukawa cou-
plings. This is because, for every possible set of (Y 422

10 (MI ),
Y 422

126 (MI )), there is a uniquely determinedY 422
R (MI ) defined

by the GUT-scale matching condition in Eq. (52) as their val-
ues at MI and at MU are related by their RGEs

Y 422
126 (MU ) = √

2Y 422
R (MU ). (57)

Therefore, in practice, we scan for all the possible values of
YR(MI ) to satisfy the above relation (within a certain accu-
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racy), together with (Y 422
10 (MI ), Y 422

126 (MI )) to determine the
initial conditions at MI for solving the RGEs from the inter-
mediate scale to the GUT scale.

4.3 The evolution of Yukawa couplings

In this subsection, we give the details of the numerical fit-
ting procedure for the parameter space allowing to address
the possibility of Yukawa coupling unification, following
Ref. [36], where two breaking patterns of a non-SUSY
SO(10) model with a real 10H representation were discussed.
The analysis is restricted to the 422 case, and is based on
numerically solving the RGEs and the matching conditions
in Eq. (56) simultaneously.

In our numerical evaluation of the RGEs, the Yukawa cou-
plings at the electroweak scale chosen to be the Z boson
mass MZ = 91.2 GeV, have to be fitted with the physical
observables which are the top, bottom and tau masses using
the relations in Eq. (18). The following input values of the
MS running fermion masses in the SM [65,81,82] (we again
ignore here the related experimental uncertainties) will be
used

[mt (MZ ),mb(MZ ),mτ (MZ )] = [168.3, 2.87, 1.73] GeV.

(58)

We convert these inputs into the corresponding masses in
the 2HDM by using the appropriate RGEs in the evolution
from the scale of the fermion masses to the scale MZ . With
the value of tan β and the fermion masses at the electroweak
scale MZ , one can obtain the Yukawa couplings Yt,b,τ (MZ )

in the 2HDM, which are then evaluated from MZ to MI by
the Mathematica program SARAH [76] similar to what we
did in the case of the evolution of the gauge couplings in
Sect. 3.4.

As was discussed in Sect. 2, after complexifying the 10H
field by introducing an extra U(1)PQ symmetry, we can sep-
arate the up- and down-type Higgs component of the bi-
doublet field �10 in our intermediate-scale left-right sym-
metric model. As a result, we will have a few more free
parameters, which are the vevs vu10 and vd10 instead of a sin-
gle vev v10 in Ref. [36], and also the relative phases between
them, for fitting all the experimental inputs. Counting on the
freedom of modifying the scales MI and MU by appropriate
threshold corrections when enforcing gauge coupling uni-
fication, it turns out that within some corners of the huge
possible parameter space, we will always be capable of find-
ing solutions for Yukawa coupling unification, unless there
are additional constraints from the scalar potential. One such
example is the constraints from FCNCs when matching the
intermediate-scale left-right model to the low-energy 2HDM,
which will be discussed shortly after this subsection.

In the 2HDM, when electroweak symmetry breaking is
achieved, the SU(2)L gauge bosons WL will acquire masses
from the vevs of both Higgs doublets. This implies a relation
between tan β and the SM vev given by v2

u + v2
d = v2

SM ≈
(246 GeV)2 at the scale MZ . Similarly, in the intermediate
left-right model, the electroweak symmetry was broken by
the vevs of bi-doublets which then gives the following rela-
tion

(
vu10

)2 +
(
vd10

)2 + (vu126

)2 +
(
vd126

)2 = v2
u + v2

d = v2
SM.

(59)

In the absence of knowledge of technical details about the
intermediate-scale scalar potential, this is the only constraint
that we would have for constraining the parameter space.

With the above equation, we can eliminate one free vev.
Furthermore, with the matching conditions and the Yukawa
coupling conditions defined in Eqs. (46) and (52), we can
eliminate one free 422-Yukawa coupling. Note that all the
other Yukawa couplings and vevs in the 2HDM can be com-
puted from the sole parameter tan β by the masses of the
top and bottom quarks and the tau lepton that are experi-
mentally given. As a result, we have tan β, one 422-Yukawa
coupling and three vevs, in total five free parameters, when
solving the three Eq. (56).11 We can thus numerically scan
for some definite values of the two free parameters, tan β and
YU which is the free Yukawa coupling at the GUT scale, to
get the numerical solutions of these matching conditions for
obtaining Yukawa unification.

Therefore, differently from the case discussed in Ref. [36]
where in addition to the different matching condition at MU ,
the parameter space is very constrained because of the fact
that the field 10H is real. We conclude that the model with a
complexified 10H field is more general and has a much larger
parameter space, thus allowing for Yukawa unification that
is not restricted to high values of tan β anymore as found in
Ref. [36].

Because of the largely allowed parameter spaces, we show
in Fig. 3 only two particular examples of the sets of parame-
ters needed to achieve Yukawa coupling unification: one for
tan β = 30 (in the top panels) and the other for tan β = 65 (in
the bottom panels) when Y 422

126 (MU ) = 1, where the GUT-
scale matching conditions motivated from E6 in Eqs. (52)
and (53) have been applied to numerically solve the RGEs of
Yukawa couplings from MZ to MU . In Table 4, we explicitly
list the important free parameters for Yukawa unification.

11 Rigorously speaking, we should take into account the effects from
the runnings of vevs for vu and vd when solving the matching conditions
in Eq. (56) at the intermediate scale, which makes about 10% deviation
from their electroweak-scale values after running to MI by their RGEs.

123



Eur. Phys. J. C (2023) 83 :529 Page 17 of 25 529

Fig. 3 The runnings of Yukawa couplings in the 422 breaking chains
of our non-SUSY SO(10) model including the threshold corrections
of gauge couplings, where the E6 factor in Eq. (47) has been used to

define the Yukawa unification at the GUT scale. Because of the large
parameter spaces allowed, we only show here two particular examples
when tan β = 30 (in the top) and tan β = 65 (in the bottom)

Table 4 The set of third generation fermion Yukawa couplings at the
scales MZ , MI and MU , and the relevant vevs at the electroweak and
intermediate mass scales at the two-loop level that lead to both gauge

coupling and Yukawa coupling unification in our non-SUSY SO(10)
model with intermediate 422 breaking

Scale MZ MI MU MI

tan β Yt Yb Yτ Y 422
10 Y 422

126 Y 422
R Y 422

10 Y 422
126 vu10 vd10 vu126 vd126

30 0.97 0.35 0.20 0.17 0.82 0.52 0.19 1.0 204.9 12.7 105.1 −0.33

65 0.97 1.19 0.64 0.17 0.82 0.52 0.19 1.0 194.3 16.0 118.2 0.09

4.4 Matching conditions with constraints from FCNCs

At the intermediate scale, the two bi-doublets (�10 and
�126) first split into four intermediate-scale Higgs doublets
(denoted as Hu/d,10 and Hu/d,126 in Eq. (48)), and then
two linear combinations of them become light forming the
two Higgs doublets (Hu and Hd ) of the low-energy 2HDM,
while the other two linear combinations acquire masses at
the intermediate-scale [59]. Without presenting the technical
details about the splitting of bi-doublets in the scalar sector
and to simplify our model, we adopt a simple parameteri-
zation to forbid the FCNCs for the four intermediate-scale

Higgs doublets in Eq. (48) in the mass eigenstates assuming
no complex phases involved as

(
Hu

Hheavy
u

)
=
(

cos θU sin θU
− sin θU cos θU

)(
Hu,10

Hu,126

)
(

Hd

Hheavy
d

)
=
(

cos θD sin θD
− sin θD cos θD

)(
Hd,10

Hd,126

)
, (60)

where the Hu and Hd are the admixtures of two scalar dou-
blets coupling only to the isospin up/down fermionic sec-
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tor,12 which will be identified as the two Higgs fields in
low-energy 2HDM, and Hheavy

u and Hheavy
d are the doublets

acquiring intermediate-scale masses via the interactions like
tr(�2�2

R). Indeed, this assumption implies that the up/down-
type Higgs doublet consists of the up/down components of
the two Higgs bidoublets (�10 and �126) at MI , which can
be seen as the definition of the mixing angle θU/D

cos θU=vu10

vu
, sin θU=vu126

vu
, cos θD=vd10

vd
, sin θD=vd126

vd
.

(61)

The above parameterization includes the constraints from
FCNCs when matching the intermediate-scale left-right
model to the low-energy 2HDM, so equivalently, we can
express the matching conditions for Yukawa couplings at
MI derived in Eq. (56) by the mixing angles θU/D as

Yt (MI ) = cos θUY
422
10 (MI ) + 1

4
sin θUY

422
126 (MI ), (62)

Yb(MI ) = cos θDY
422
10 (MI ) + 1

4
sin θDY

422
126 (MI ), (63)

Yτ (MI ) = cos θDY
422
10 (MI ) − 3

4
sin θDY

422
126 (MI ). (64)

Because above the intermediate scale the bottom quark
will couple exactly the same way to the Higgs bi-doublets
as the tau lepton does, we can eliminate one free parameter
θD from the last two matching conditions for Yb(MI ) and
Yτ (MI ), and get a relation for the Yukawa couplings at MI :

(
Y 422

10 (MI )
)2 =

(
Y 422

126 (MI )
)2

(3Yb(MI ) + Yτ (MI ))
2

16
[(
Y 422

126 (MI )
)2 − (Yb(MI ) − Yτ (MI ))

2
] .

(65)

This equation defines a curve γ (MI ) in the parameter space
(Y 422

10 (MI ), Y 422
126 (MI )) as a function of tan β. Note that

Eq. (65) also implies the lower bound for Y 422
10 (MI ) by

Y 422
10 (MI ) >

3Yb(MI ) + Yτ (MI )

4
, (66)

while requiring Y 422
10 (MI ) <

√
4π implies the lower bound

of Y 422
126 (MI ) by

Y 422
126 (MI ) >

Yb(MI ) − Yτ (MI )√
1 − (3Yb(MI )+Yτ (MI ))

2

64π

. (67)

For a straightforward comparison, we show in Fig. 4 sev-
eral curves γ (MI ) depicted by Eq. (65) for certain values
of tan β and the intermediate scale MI taken from 108 to

12 More general combinations of the 4 scalars of the type

Hu = αu
1 Hu,10 + αu

2 Hu,126 + βu
1 H

∗
d,10 + βu

2 H
∗
d,126,

Hd = αd
1 Hd,10 + αd

2 Hd,126 + βd
1 H

∗
u,10 + βd

2 H
∗
u,126,

are highly constrained by FCNC [58,59].

Fig. 4 The curves γ (MI ) defined in Eq. (65) when tan β is taken to
be 60 (red), 50 (orange), 40 (green), 30 (cyan), 20 (blue), where the
parameter MI is chosen to be 1011 GeV (solid), 1010 GeV (dashed),
109 GeV (dotted), 108 GeV (dot-dashed)

1011 GeV, where the minimum of Y 422
10 (MI ) and Y 422

126 (MI )

are given by Eqs. (66) and (67) correspondingly.
If we assume all the vevs are positive, i.e. 0 < θD < π/2,

from Eqs. (60)–(61) we can separate the intermediate-scale
Yukawa couplings Y 422

10 (MI ) and Y 422
10 (MI ) as

Y 422
10 (MI ) cos θD = 1

4
(3Yb(MI ) + Yτ (MI )) ,

Y 422
126 (MI ) sin θD = Yb(MI ) − Yτ (MI ). (68)

It suggests that if the coupling Y 422
126 (MI ) had the same posi-

tive sign as Y 422
10 (MI ) in order to be able to be unified at MU ,

then at MI we must have Yb(MI ) − Yτ (MI ) > 0. Indeed, it
is only an artifact by assuming the positivity of vevs, as the
latter relation is nothing but
√

2(mb − mτ ) = (Yb − Yτ )vd = 4Y126v
d
126, (69)

from subtracting the SO(10) mass matrices in Eq. (50) if we
are matching the SO(10) directly to the 2HDM.

As was discussed in Sect. 3, the intermediate scale MI

and the unification scale MU are totally fixed by the input
parameters tan β and the threshold corrections, irrelevant
of the Yukawa couplings. However, once the intermediate-
scale Yukawa couplings are switched on, what we deduce
from Eq. (68) is that an upper bound on MI exists such that
Yb(MI ) > Yτ (MI ). As both Yb and Yτ are functions of tan β

only, we can thus derive a scale Mbτ as a function of tan β,
determined (within some accuracy) by the point at which the
curves for their RG running from the weak scale MZ upwards
intersect so that Yb(Mbτ ) = Yτ (Mbτ ). Then the assumption
of Eq. (68) translate to

MI ≤ Mbτ (assuming the positivity of vevs). (70)

This is exemplified in Fig. 5 where the scale Mbτ leading to
the unification of the bottom quark and tau lepton couplings
in 2HDM are shown as a function of the input value of tan β
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Fig. 5 The unification scale for the bottom quark and tau lepton (Mbτ )

in the 2HDM which is determined by the point at which the curves for
their RG running from the weak scale MZ upwards intersect

at the low scale. This scale increases with increasing values
of tan β and, in order to have reasonably high values of MI >

1010 GeV, needs rather large tan β values,13 tan β > 55.
The parameter θU for determining the top Yukawa cou-

pling in the 2HDM, on the other hand, cannot be eliminated
without further assumptions. Thus, in practice, we treat it as a
free parameter that should fit the mass of the top quark. Again
by assuming the positivity of vevs, from Eq. (62) we can esti-
mate that the top Yukawa coupling in the 2HDM should lie
in the region of

Min

[
Y 422

10 (MI ),
Y 422

126 (MI )

4

]
≤ Yt (MI )

≤
√√√√(Y 422

10 (MI )
)2 +

(
Y 422

126 (MI )

4

)2

, (71)

which, when combined with Eqs. (66) and (67), gives

Yt (MI ) > Min

[
3Yb(MI ) + Yτ (MI )

4

Yb(MI ) − Yτ (MI )

4
√

1 − (3Yb(MI )+Yτ (MI ))
2

64π

⎤
⎦

= Yb(MI ) − Yτ (MI )

4
√

1 − (3Yb(MI )+Yτ (MI ))
2

64π

. (72)

This criterion thus helps us check easily whether a parameter
θU exists for fitting the mass of the top quark.

13 Note that we cannot have much higher values of tan β, i.e. tan β < 65
in general, to avoid the bottom quark Yukawa couplings running into a
non-perturbative regime at high energy scales.

Fig. 6 The curves γ (MU ) obtained from numerically evaluating the
curves γ (MI ) from MI to MU by the RGEs of 422 breaking chain,
where the scales MI and MU are determined by enforcing the gauge
unification with randomly taking threshold corrections for ηi =
ln(Mi/μ) ∈ [−1, 1]. The uncertainties of random threshold correction
thus generate the uncertainties of these curves γ (MU ), which are plot-
ted for the parameter tan β corresponding to 60 (dark red), 50 (orange),
40 (green), 30 (cyan), and 20 (blue). The red line �(MU ) corresponds to
the condition of Yukawa unification motivated by E6 unification given
in Eq. (53). The intersections of �(MU ) and γ (MU ) thus define the
solutions for Yukawa unification motivated from E6

4.5 Numerical results for Yukawa unification

In principle, with the RGEs obtained for the 422 breaking
chain of our SO(10) model, we can run all the 422-Yukawa
couplings on the curves γ (MI ) from MI to MU to get a new
curve γ (MU ). The intersections of the curve γ (MU ) with
the line �(MU ) defined in Eq. (53) at the GUT scale MU thus
define the solutions admitting the Yukawa unification in the
422 breaking chain.

When evaluating the curve γ (MI ) to the GUT scale, the
exact values of MI and MU will be determined by numerical
solving the RGEs to ensure the unification of gauge cou-
plings as done in Sect. 3.4. The randomly-taken threshold
corrections would thus bring some uncertainties in deter-
mining the exact values of the two scales MI and MU which
eventually affect the curves γ (MI ) and γ (MU ). However, as
can be seen from the analytical results in Fig. 4, the curves
γ (MI ) almost remain intact when varying the scales MI ,
suggesting that the threshold corrections of gauge couplings
only make a tiny difference in determining the curves γ (MI )

and similarly to γ (MU ), contrary to what happens in gauge
coupling unification, i.e. Fig. 1. We can thus safely choose
some random-sampling threshold corrections when visual-
izing the curves γ (MU ) as shown in Fig. 6 below, where
for each tan β we explicitly show the uncertainty regions
allowed by varying the parameters of threshold corrections
from ηi = ln(Mi/μ) ∈ [−1, 1].

When considering a different scenario of Yukawa unifi-
cation for the 422 breaking chains of the non-SUSY SO(10)
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Fig. 7 Values of the intermediate scale MI and tan β consistent with
gauge and Yukawa unification (the green region), using the E6 factor in
our non-SUSY SO(10) model

models, one can merely change the slope of the line �(MU )

by defining the ratios of Y10 and Y126 in Eq. (46), while the
curves γ (MU ) remain the same. To be compared with the
E6 case, we also show the condition of Yukawa unification
for the ratio C = c10/c126 = 1, which is presented by the
dashed red line in Fig. 6.

As a consistency check, we must combine all the condi-
tions that we derive to constrain the parameter space, includ-
ing the proton decay bound of Eq. (44), the GUT-scale match-
ing condition in Eqs. (52) and (53), the lower bounds of the
Yukawa couplings in Eqs. (66) and (67), and the perturba-
tive bound when requiring that all Yukawa couplings must
be smaller than

√
4π at all energy scales.

One then immediately finds that these constraints also
influence the intermediate scale MI , especially through
Eq. (70). Thus, the unification of third generation Yukawa
couplings also has a repercussion on gauge coupling unifica-
tion. This refines the naive statement that we initially made
in Sect. 3, namely that the contributions of the Yukawa cou-
plings hardly affect the RGEs of the gauge couplings and,
hence, their unification.

Including all the constraints, and enforcing the unification
of the Yukawa couplings with the E6 ratio, one can visualize
the numerical solutions in the 422 breaking chain of our non-
SUSY SO(10) model in Fig. 7. It shows, in green, the param-
eter region in which both gauge and Yukawa coupling unifi-
cation can be achieved in the plane [tan β, log(MI /GeV)] as
tan β is the most important parameter in determining uni-
fication in the two cases. As can be seen, for each tan β

value, there can be multiple solutions depending on the exact
threshold corrections resulting in the different intermediate
scale MI and at a later stage, the unification scale MU . Thus,
after considering the constraints of FCNCs, in addition to all
the other constraints, the parameter tan β is again very con-
strained in this 422 intermediate breaking model and only

relatively lower values (compared to those discussed in the
earlier analysis of Ref. [36]), tan β � 30 for MI � 1012 GeV,
are favored14

As a preliminary conclusion, the constraints from FCNCs
largely reduce the allowed parameter spaces for Yukawa cou-
pling unification motivated by E6 symmetry. This only favors
lower values of tan β in the 422 breaking chain for instance.
Thus, the 422 breaking chain of our non-SUSY minimal
SO(10) model is very constrained, with the only parame-
ter which can be varied being the value of the input tan β of
the low-energy 2HDM. This renders the model quite predic-
tive. The other nice feature is that Yukawa unification, with a
common coupling at the high scale being naturally of order
unity, implies that a condition at the high scale has an impact
on the low energy parameters such as tan β.

5 Conclusions

The unification of fundamental forces plays an extremely
important role in particle physics. A wide range of studies
have dealt with the unification of the three gauge couplings
of the SM either by sticking to the minimal SU(5) gauge
group and extending the SM particle spectrum, as is the case
in Supersymmetric theories, or keeping the SM particle con-
tent and extending the unifying gauge symmetry group. In
this last option, the SO(10) group has been the most widely
studied as it is the simplest one beyond the minimal SU(5)
group. It possibly leads to a left-right symmetry group and
it has a fundamental representation of dimension 16 which
could contain all SM fermions plus an additional Majorana
neutrino. If the mass of the latter particle is high enough,
O(1012 −1014) GeV, one could explain the pattern of masses
and mixing of the SM light neutrino species and address the
problem of the baryon asymmetry in the universe by invok-
ing a leptogenesis triggered by this additional heavy neutrino.
Unification is achieved by considering that this large mass
of the Majorana neutrinos is in fact due to the intermediate
scale of the breaking of SO(10) into the SM group via an
intermediate step, corresponding, for instance, to the Pati–
Salam or the minimal left-right symmetry groups. This is
achieved by including the threshold effects of the additional
Higgs and gauge bosons at this intermediate scale MI , which
then modify the renormalization group evolution of the cou-
pling constants and make them intersect at a single point, the
unification scale MU .

14 We should note that in this green region in which both gauge and
Yukawa unification occur, the vevs of the Higgs bi-doublets, for exam-
ple, vd126, are complex and are negative according to Eq. 70 and Fig. 5.
If we require the vevs to be positive, unification occurs only for lower
values of MI and higher values of tan β. The corresponding region will
not intersect with the green region.
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It is very tempting to extend the unification paradigm to
the case of the Yukawa couplings of fermions, in particular
those of the third generation which are heavy enough to allow
for a perturbative treatment at the low energy scale. This has
been attempted in an earlier analysis in Ref. [36] in both the
Pati–Salam and the minimal left-right intermediate schemes,
which showed that, ignoring constraints from flavor chang-
ing neutral currents, one can achieve the Yukawa unification
in the context of a low energy two-Higgs doublet model in
which the ratio of the two vevs is very high, tan β ≈ 60, and
reproduce the hierarchy of the fermion masses of the third
generation from the running of Yukawa couplings.

In this paper, we generalized our previous analysis made
in Ref. [36] to the case with a complex 10H field, where
a U(1)PQ global symmetry was introduced to forbid the
Yukawa couplings with the field 10∗

H, in order to relax
the parameter space in the previous over-constrained model
which also changes the RGEs of the gauge couplings. We then
derived the analytical approximate solutions of the RGEs
of gauge couplings enforced by unification at the two-loop
level. The procedure in our chosen non-SUSY SO(10) model
with an intermediate scale can also be applied for any break-
ing patterns of SO(10). The uncertainties of our approxi-
mation were also discussed, including the constraints from
proton decay experiments. All our approximate analytical
results have been compared with the numerical results given
in Tables 2 and 3, and a good agreement was found.

We have then discussed the possibility of unifying the
Yukawa couplings of third generation heavy fermions at the
high scale which, in the present context, implies a rela-
tion between the fermion couplings to the scalar represen-
tations 10 and 126. Specializing to the Pati–Salam interme-
diate SO(10) breaking chain, we have considered the partic-
ular case where the coupling is obtainable in an E6 model
where the previous two scalars are part of a single multiplet
and which leads to the relation Y10 = √

3/5 Y126. We con-
cluded that Yukawa unification is a very strong constraint
which, when imposing the absence of flavor changing neu-
tral currents at tree–level induced by the two light Higgs
doublet fields, is achieved only for tan β values that are not
too large. Our non-SUSY SO(10) model is thus very predic-
tive and can be testified by future electroweak-scale experi-
ments.

Our present exploratory analysis raises rather interesting
questions which require further attention and studies of the
subject. In particular, there are still some phenomenological
issues to be discussed within this model, such as the prob-
lem of the stability of the electroweak vacuum and the origin
of neutrino masses. Because our low-energy effective the-
ory is based on a 2HDM scenario, we must constrain our
scalar potential to enforce a stable vacuum that is bounded
from below as, for instance, discussed in Refs. [83–88]. We
expect the discussions held in these references to also apply

in our case as we are dealing with the same Type-II 2HDM
scenarios. On the other hand, if the neutrinos are to acquire
masses from a Type-I/II see-saw mechanism, the scale of
the right-handed neutrino mass, which is assumed to be of
the order of the intermediate scale MI , cannot be too small
as to avoid unnatural fine-tuning in the determination of the
light neutrino masses. These neutrino masses thus contribute
to setting another constraint on the intermediate scale. All
these aspects and others need further attention and we plan
to address them in future work.
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Appendix A: Lists of useful coefficients

A.1 β coefficients for different gauge groups and
representations

The one-loop and two-loop β coefficients ai and bi j , can be
calculated from Refs. [63,64] in the general case. We list the
values of the β coefficients for some particular gauge groups
GI with the considered scalar representations that are relevant
for our discussions and which are given in Table 5.
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Table 5 The coefficients ai and bi of the β functions of the RGEs of
the gauge couplings αi for the different breaking schemes that we are
considering

GI ai bi j

G321(SM)

⎛
⎜⎝

−7

− 19
6

41
10

⎞
⎟⎠

⎛
⎜⎝

−26 9
2

11
10

12 35
6

9
10

44
5

27
10

199
50

⎞
⎟⎠

G321(2HDM)

⎛
⎜⎝

−7

−3
21
5

⎞
⎟⎠

⎛
⎜⎝

−26 9
2

11
10

12 8 6
5

44
5

18
5

104
25

⎞
⎟⎠

G422

⎛
⎜⎝

− 7
3

2
28
3

⎞
⎟⎠

⎛
⎜⎝

2435
6

105
2

249
2

525
3 73 48

1245
2 48 835

3

⎞
⎟⎠

G422 × D

⎛
⎜⎝

2
3

28
3

28
3

⎞
⎟⎠

⎛
⎜⎝

3551
6

249
2

249
2

1245
2

835
3 48

1245
2 48 835

3

⎞
⎟⎠

G3221

⎛
⎜⎜⎜⎝

−7

− 8
3

−2
11
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−26 9
2

9
2

1
2

12 37
3 6 3

2

12 6 31 27
2

4 9
2

81
2

61
2

⎞
⎟⎟⎟⎟⎠

G3221 × D

⎛
⎜⎜⎜⎝

−7

− 4
3

− 4
3

7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−26 9
2

9
2

1
2

12 149
3 6 27

2

12 6 149
3

27
2

4 81
2

81
2

115
2

⎞
⎟⎟⎟⎟⎠

A.2 The two-loop θG
i coefficients in our approximations

At two loop level, the solutions of the two-loop RGEs of
gauge couplings takes the general implicit form of Eq. (20):

α−1
i,G(μ) = α−1

i,G(μ0) − aG
i

2π
ln

μ

μ0
+ γ G

i + �G
i,Y , (A.1)

where the two-loop contributions are functions of gauge cou-
plings α−1

j,G(μ) read

γ G
i = − 1

4π

∑
j

bG
i j

aG
j

ln
α j,G(μ)

α j,G(μ0)
. (A.2)

This two-loop factor can be approximated by expanding
the variables α−1

j,G(μ) using the one-loop RGEs [62]:

γ G
i ≈ − 1

4π

∑
j

bG
i j

aG
j

ln
α−1
j,G(μ0)

α−1
j,G(μ0) − aG

j t

= − 1

4π

∑
j

bG
i j

aG
j

ln
(

1 + aG
j t α j,G(μ)

)
, (A.3)

where we define t = 1
2π

ln μ
μ0

.
In Grand Unified Theories, all the gauge couplings inter-

sect at the unification scale MU for the value of αU , so we
can approximate the gauge couplings at an arbitrary high

scale μ to be the universal gauge couplings αU at the GUT
scale. Now the two-loop factors γ G

i become independent of
the gauge couplings at the high scale so we can express them
by the θi coefficients as in Refs. [62,67]:

γ G
i ≈ − αU

8π2 θG
i ln

μ

μ0
and θG

i ≡
∑
j

bG
i j

ln(1 + aG
j αU t)

aG
j αU t

.

(A.4)

In summary, the above equation shows the leading-order
corrections of the two-loop β coefficients bi j to the full two-
loop RGEs, which provides the possibility to obtain analyt-
ical solutions for the original implicit differential equations.
The coefficients θi are a combination of two-loop β coef-
ficients bG

i j scaling by the one-loop β coefficients aG
j times

universal coupling αU and the logarithmic scales t . We there-
fore define the following combination to simplify the com-
mon factor appearing in the coefficient θG

i between the scales
Ma and Mb as:

�ab ≡ 1

2π
αU ln

(
Ma

Mb

)
, (A.5)

where Ma is the high scale to be identified as either the GUT
scale MU or the intermediate scale MI later, while Mb is
the reference low scale to be identified as either the interme-
diate scale MI or the Electroweak scale MZ . These scaling
factors will finally appear in the four constant terms CGI ,

�
G321
31 , �

G321
32 and �

GI
3I 2L I

from definition Eq. (28), and they
will be determined from solving Eqs. (30)–(32) in Sect. 3.2.
We summarize the explicit form of the corresponding coef-
ficients θG

i for the symmetry groups and representations we
considered in Table 6.

A.3 Some constant coefficients for the SO(10) breaking
chains

We have shown in Sect. 3.1 that the two-loop RGEs with the
boundary conditions defined as the gauge coupling unifica-
tion in Eq. (25) and the matching conditions with an inter-
mediate scale, e.g. Eqs. (26) and (27), will have the solutions
in Eqs. (30)–(32). These solutions are only dependent on
the four constant coefficients CGI , �

G321
31 , �G321

32 and �
GI
3I 2L I

,

where �G
i j gives the difference between the β coefficients of

the gauge coupling α−1
i,G and those of α−1

j,G :

�G
i j = aG

i − aG
j

2π
+ θG

i − θG
j

8π2 αU . (A.6)

As explained in the main text, for each intermediate sym-
metry group GI it is enough to consider a particular combi-
nation of the �G

i j , which we call CGI . They can be proven
to have the following forms for the typical breaking chains
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Table 6 The coefficients θi for
the symmetry groups and
different breaking schemes that
we are considering in our study

GI θG
i

G321(SM)

⎛
⎜⎜⎝

− 44 ln(1−7�I Z )
35�I Z

− 81 ln((6−19�I Z )/6)
95�I Z

+ 199 ln((10+41�I Z )/10)
205�I Z

− 12 ln(1−7�I Z )
7�I Z

− 35 ln((6−19�I Z )/6)
19�I Z

+ 9 ln((10+41�I Z )/10)
41�I Z

26 ln(1−7�I Z )
7�I Z

− 27 ln((6−19�I Z )/6)
19�I Z

+ 11 ln((10+41�I Z )/10)
41�I Z

⎞
⎟⎟⎠

G321(2HDM)

⎛
⎜⎜⎝

− 44 ln(1−7�I Z )
35�I Z

− 6 ln(1−3�I Z )
5�I Z

+ 104 ln((5+21�I Z )/5)
105�I Z

− 12 ln(1−7�I Z )
7�I Z

− 8 ln(1−3�I Z )
3�I Z

+ 2 ln((5+21�I Z )/5)
7�I Z

26 ln(1−7�I Z )
7�I Z

− 3 ln(1−3�I Z )
2�I Z

+ 11 ln(5+21�I Z )/5)
42�I Z

⎞
⎟⎟⎠

G422

⎛
⎜⎜⎝

− 2435 ln(1−7�U I /3)
14�U I

+ 105 ln(1+2�U I )
4�U I

+ 747 ln(1+28�U I /3)
56�U I

− 75 ln(1−7�U I /3)
�U I

+ 73 ln(1+2�U I )
2�U I

+ 36 ln(1+28�U I /3)
7�U I

− 3735 ln(1−7�U I /3)
14�U I

+ 24 ln(1+2�U I )
�U I

+ 835 ln(1+28�U I /3)
28�U I

⎞
⎟⎟⎠

G422 × D

⎛
⎜⎜⎝

3551 ln(1+2�U I /3)
4�U I

+ 747 ln(1+28�U I /3)
28�U I

3735 ln(1+2�U I /3)
4�U I

+ 979 ln(1+28�U I /3)
28�U I

3735 ln(1+2�U I /3)
4�U I

+ 979 ln(1+28�U I /3)
28�U I

⎞
⎟⎟⎠

G3221

⎛
⎜⎜⎜⎜⎜⎝

− 27 ln(1−8�U I /3)
16�U I

− 9 ln(1−2�U I )
4�U I

+ 26 ln(1−7�U I )
7�U I

+ ln(1+11�U I /2)
11�U I

− 37 ln(1−8�U I /3)
8�U I

− 3 ln(1−2�U I )
�U I

− 12 ln(1−7�U I )
7�U I

+ 3 ln(1+11�U I /2)
11�U I

− 9 ln(1−8�U I /3)
4�U I

− 31 ln(1−2�U I )
2�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+11�U I /2)
11�U I

− 27 ln(1−8�U I /3)
16�U I

− 81 ln(1−2�U I )
4�U I

− 4 ln(1−7�U I )
7�U I

+ 61 ln(1+11�U I /2)
11�U I

⎞
⎟⎟⎟⎟⎟⎠

G3221 × D

⎛
⎜⎜⎜⎜⎜⎝

− 27 ln(1−4�U I /3)
4�U I

+ 26 ln(1−7�U I )
7�U I

+ ln(1+7�U I )
14�U I

− 167 ln(1−4�U I /3)
4�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+7�U I )
14�U I

− 167 ln(1−4�U I /3)
4�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+7�U I )
14�U I

− 243 ln(1−4�U I /3)
4�U I

− 4 ln(1−7�U I )
7�U I

+ 115 ln(1+7�U I )
14�U I

⎞
⎟⎟⎟⎟⎟⎠

Table 7 The four constant coefficients CGI , �G321
31 , �G321

32 and �
GI
3I 2L I

,
and their corresponding derivatives appearing in the solutions of the
RGEs of SO(10) in Eqs. (30)–(32) for our considered breaking chains.

The numerical results presented here are those whenαU is taking to zero,
which is relevant for calculating the two-loop solutions in Eqs. (40) and
(41)

Breaking chains CGI �
G321
31 �

G321
32 �

GI
3I 2L I

∂CGI
∂αU

∂�
G321
31

∂αU

∂�
G321
32

∂αU

∂�
GI
3I 2L I

∂αU

G422 → G321(SM) 21
13 − 111

20π
− 23

12π
− 13

6π
266349
6760π

− 897
200π2 − 587

120π2
1721
48π2

G422 → G321(2HDM) 21
13 − 28

5π
− 2

π
− 13

6π
266349
6760π

− 231
50π2 − 26

5π2
1721
48π2

G3221 → G321(SM) 24
13 − 111

20π
− 23

12π
− 13

6π
− 669

3380π
− 897

200π2 − 587
120π2 − 145

24π2

G3221 → G321(2HDM) 24
13 − 28

5π
− 2

π
− 13

6π
− 669

3380π
− 231

50π2 − 26
5π2 − 145

24π2

GI = G422 and GI = G3221:

CG422 = 3�
G422
42R

/(5�
G422
42L

), CG3221

= (3�
G3221
32R

+ 2�
G3221
3B−L)/(5�

G3221
32L

), (A.7)

which are basically a combination of the difference between
theβ coefficients of the gauge couplings of intermediate sym-
metry group GI . At one-loop level, we can neglect all the
two loop coefficients θG

i by setting αU = 0 in Eq. (A.6), so

the coefficients �G
i j are merely constants. At two-loop order,

because the coefficients �G
i j are a functions of the set of

variables (ln (MI /MZ ) , ln (MU/MI ) , αU ), Eqs. (30)–(32)

are implicit functions and were solved approximately using
Eqs. (40) and (41). For this approximation, we need to calcu-

late the derivatives ∂F
∂αU

∣∣∣
αU=0

and ∂G
∂αU

∣∣∣
αU=0

, which is equiv-

alent to finding
∂�G

i j
∂αU

∣∣∣∣
αU=0

. These derivatives are independent

of the scale factor t = 1
2π

ln μ
μ0

, so they are also constants
when αU = 0. We summarize the numerical values of these
coefficients for our considered breaking chains in the follow-
ing Table 7.
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Appendix B: Two-loop RGEs of the low-energy 2HDM

The RGEs for the three gauge couplings g1, g2, g3 are:

16π2 dg1

dt
= 21

5
g3

1 + g3
1

800π2

(
208g2

1 + 180g2
2 + 440g2

3

−85Y 2
t − 25Y 2

b − 75Y 2
τ

)
, (A.8)

16π2 dg2

dt
= −3g3

2 + g3
2

160π2

(
12g2

1 + 80g2
2 + 120g2

3

−15Y 2
t − 15Y 2

b − 5Y 2
τ

)
, (A.9)

16π2 dg3

dt
= −7g3

3 − g3
3

160π2

(
−11g2

1 − 45g2
2 + 260g2

3

+20Y 2
t + 20Y 2

b

)
, (A.10)

while those for the third generation Yukawa couplings
Yt ,Yb,Yτ , are:

16π2 dYt
dt

= Yt

(
3Y 2

t − 17g2
1

20
− 9g2

2

4
− 8g2

3

)

+1

2
Yt
(
Y 2
b + 3Y 2

t

)

+ 1

16π2

[
Y 2
b Yt

(
−9Y 2

b

4
− 3Y 2

τ

4
− 41g2

1

240
+ 33g2

2

16

+16g2
3

3
− 2λ3 + 2λ4

)

+Y 3
t

(
−27

4
Y 2
t + 223

80
g2

1 + 135

16
g2

2 + 16g2
3 − 12λ2

)

−1

4

(
Y 2
b Y

3
t + Y 4

b Yt − 6Y 5
t

)

+Yt

(
−27Y 4

t

4
−9

4
Y 2
b Y

2
t +1

8

(
17g2

1+45g2
2+160g2

3

)
Y 2
t

+1267g4
1

600
− 9

20
g2

2g
2
1 + 19

15
g2

3g
2
1

−21g4
2

4
− 108g4

3 + 9g2
2g

2
3 + 6λ2

2 + λ2
3 + λ2

4

+6λ2
5 + λ3λ4

)]
, (A.11)

16π2 dYb
dt

= Yb

(
3Y 2

b + Y 2
τ − 1

4
g2

1 − 9

4
g2

2 − 8g2
3

)

+1

2
Yb
(
Y 2
t +3Y 2

b

)

+ 1

16π2

[
YbY

2
t

(
−9Y 2

t

4
− 53g2

1

240
+ 33g2

2

16

+16g2
3

3
− 2λ3 + 2λ4

)

+Y 3
b

(
−27Y 2

b

4
−9Y 2

τ

4
+187g2

1

80
+135g2

2

16
+16g2

3−12λ1

)

−1

4

(
Y 3
b Y

2
t + YbY

4
t − 6Y 5

b

)

+Yb

(
−27Y 4

b

4
− 9Y 4

τ

4
− 9

4
Y 2
b Y

2
t + 5

8

(
g2

1 + 9g2
2

+32g2
3

)
Y 2
b + 15

8

(
g2

1 + g2
2

)
Y 2

τ − 113g4
1

600

−27

20
g2

2g
2
1 + 31

15
g2

3g
2
1 − 21g4

2

4
− 108g4

3 + 9g2
2g

2
3

+6λ2
1 + λ2

3 + λ2
4 + 6λ2

5 + λ3λ4

) ]
, (A.12)

16π2 dYτ

dt
= Yτ

(
3Y 2

b + Y 2
τ − 9

4
g2

1 − 9

4
g2

2

)
+ 3

2
Y 3

τ

+ 1

16π2

[
Y 3

τ

(
−27

4
Y 2
b −9

4
Y 2

τ +387

80
g2

1+135

16
g2

2−12λ1

)

+3Y 5
τ

2

+Yτ

(
−9Y 4

τ

4
− 27Y 4

b

4
− 9

4
Y 2
b Y

2
t + 5

8

(
g2

1 + 9g2
2

+32g2
3

)
Y 2
b + 15

8

(
g2

1 + g2
2

)
Y 2

τ

+1449g4
1

200
+ 27

20
g2

2g
2
1 − 21g4

2

4
+ 6λ2

1 + λ2
3 + λ2

4

+6λ2
5 + λ3λ4

) ]
. (A.13)
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