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1 Introduction
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder after Alzheimer’s disease [9]. It affects approximately 0.5% to 1% of people aged 65 to 69 years worldwide, with a prevalence rising to 1% to 3% among those aged 80 years and older [9]. The number of patients with PD is expected to double by 2040, exceeding 12 million [10]. PD is characterised by motor symptoms such as tremor, rigidity, and bradykinesia, as well as non-motor symptoms such as cognitive changes and sleep disorders [11]. Traditional diagnostic approaches, such as clinical evaluations and neuroimaging, often encounter challenges related to subjectivity, high costs, and limited accessibility [12][13]. PD diagno-sis has traditionally been based on the observation of motor symptoms, which - although crucial - are typically evaluated using rating scales that lack robust validation and stan-dardisation. Meanwhile, non-motor manifestations such as cognitive and sensory abnor-malities can emerge early, sometimes preceding the classic motor signs, yet they remain too nonspecific to serve as definitive diagnostic indicators [11]. This illustrates a broader need for refined clinical tools and biomarkers that capture both motor and non-motor dimensions of PD.Handwriting analysis, supported by artificial intelligence (AI), or more specifically, ma-chine learning (ML), is proving to be a powerful tool in the diagnosis of PD [14][15][16][17]. This approach involves using digital devices, such as tablets and smart pens, to capture key dynamic features during writing tasks, such as pressure, speed, and pen orientation. These features are indicative of motor impairments associated with PD. The captured data are then processed and fed into ML models, which are trained to distinguish between healthy controls (HC) and patients with PD. This method improves the accuracy and reliability of the diagnosis of PD by leveraging advanced algorithms to interpret subtle variations in motor function. The general workflow is depicted in Figure 1.

Figure 1: The workflow for AI-supported diagnosis of Parkinson’s disease.

This research explores how AI-based analysis of fine motor skills can improve early detection and classification of PD. In addition to addressing clinical challenges such as subjectivity and lack of standardization, the research emphasizes usability in real-world settings. To demonstrate the broader feasibility of this methodology, a secondary applica-tion involving fatigue assessment using smartphone-based motor testing is also included. Although not the primary focus, this use case helps to illustrate the flexibility of the pro-posed tools in different diagnostic contexts.To situate this research within the broader scientific landscape, the following section provides a detailed overview of existing machine learning approaches for fine motor skill analysis in the diagnosis of Parkinson’s disease.
10



1.1 Literature review of machine learning approaches in fine motor skill
analysis for diagnosing Parkinson’s disease

In recent years, advances in ML and deep learning (DL) have revolu-tionised diagnostic methodologies, offering new tools for analysing motorimpairments, such as those evident in handwriting and motion dynamics.
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PubMed 155
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Citation search* 56

TOTAL 559

472 unique titles and abstracts
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after screening titles and abstracts:

• Wrong study design: 
• No machine learning: 30
• No fine- motor symptoms: 41 
• Disease differentiation (Alzheimer’s, ET, 

etc.): 24
• No diagnostic classification: 24 
• Other: 115

• Reviews / surveys: 25 
• Books: 3 
• Non-peer reviewed articles: 4 
• Out of scope: 104
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y 102 unique full text studies

40 studies were excluded 
after scanning full texts:

• Wrong study design:
• No fine- motor symptoms: 2 
• No machine learning: 2
• Symptom classification: 13
• Treatment response studies: 2
• Disease severity assessment:: 9
• Other: 10

• Background article: 2

62 unique studies are 
included for the review

*records identified through citation searching

Figure 2: PRISMA flowchart

Despite significant progress inthe field, challenges remain inconsolidating existing research,identifying gaps, and evaluat-ing the performance of emerg-ing technologies across diversedatasets and diagnostic modal-ities. To address these chal-lenges, this review of the liter-ature aims to map the currentlandscape of ML applications infine motor skill analysis for thediagnosis of PD. Specifically, weexplore the diverse data acqui-sition technologies, feature ex-traction methodologies, and MLmodels used in the field, high-lighting their strengths, limita-tions, and potential for clinicalapplication. By synthesising andcritically analysing the existingbody of work, we seek to provideresearchers and clinicians with acomprehensive understanding ofthe field while identifying key op-portunities for future advance-ment. The reviewwas carried outsystematically using the PRISMAguidelines (Preferred ReportingItems for Systematic Reviews andMeta-Analyses). A structured approach was employed to identify, screen, and select rel-evant studies frommultiple academic databases, including PubMed, Google Scholar, Sco-pus, and Web of Science. A comprehensive overview of the Boolean search queries, aswell as the inclusion and exclusion criteria, can be found in the supplementary materi-als (Tables 19 and 20). These criteria were designed to ensure methodological rigour andrelevance by capturing studies focused on ML-based approaches to motor function datafor diagnostic purposes, while excluding non-diagnostic applications, non-motor data, oranimal models. The search yielded 559 studies, of which 472 unique records were identi-fied after removing duplicates. Following a rigorous screening process, 62 studies met theinclusion criteria and were analysed in detail (see Figure 2). The selected studies were cat-egorised according to data acquisition technologies, extracted features, and applied MLmodels, providing a comprehensive overview of the field. An overview of the includedstudies is provided in the supplementary materials (Table 21), offering insight into therange of digital tools, data sources, and ML approaches employed for PD diagnosis. The
11



key trends and insights are visualised in Figure 3, showcasing the evolution of research fo-cus, the prevalence of different types of devices, and the comparative performance of theML and DL models in the diagnosis of PD. The radar chart demonstrates the performanceof traditional ML and DL models in four key metrics: accuracy, sensitivity, specificity, andF1 score. DL models consistently outperform traditional ML methods, showcasing theirsuperior diagnostic capabilities. This advantage stems from DL’s ability to automaticallyextract complex, high-dimensional features from handwriting tasks, motion signals, andimage-based data. However, despite their impressive accuracy, DL models have notablelimitations. They are highly data-hungry and require large, high-quality datasets to gen-eralise effectively. However, this poses a challenge in Parkinson’s research, where dataare often scarce and collected from small participant cohorts. This reliance on limiteddata increases the risk of overfitting, where models perform well on specific datasetsbut struggle to generalise to broader, real-world populations. Additionally, DL modelsare resource-intensive, requiring significant computational power and hardware such asgraphical processing units (GPUs), which limits their practical application in clinical set-tings or resource-constrained environments. Another important drawback is their lackof interpretability. Unlike traditional ML models that offer clear decision boundaries andfeature explanations, DL models often function as “black boxes,” making it difficult forclinicians to understand or trust the underlying decision-making process. While DL mod-els undoubtedly improve accuracy, addressing these challenges through strategies likedata augmentation, explainable AI (XAI), and rigorous validation across diverse datasetsis essential to ensure their reliability, robustness, and clinical utility. The horizontal barchart in Figure 3 highlights the yearly distribution of research publications, with a peakin 2019 and 2021, reflecting the increased research activity during those years. Althoughpublication counts have decreased slightly in recent years, the field maintains consistentoutput through 2024. While DL has grown substantially over the years, it has not com-pletely displaced traditional ML methods. Instead, the two approaches have often com-plemented each other, with DL applied to handle complex datasets andML used in scenar-ios where interpretability or computational simplicity is prioritised. In 2024, the balanceseems to shift slightly towards traditional methods, possibly due to the need for trustableand interpretable outcomes in clinical settings. The pie chart in Figure 3 illustrates theproportion of device usage in all studies, with digital tablets (37%) emerging as the mostcommonly utilised tool, likely due to their reliability in capturing handwriting or motiondata. Motion tracking technologies (26%) are also widely used, followed by smartphones(18%) and wearables (8%), reflecting a growing focus on mobile and real-time diagnos-tic tools. Custom hardware configurations, labeled as "Other systems" (11%), encompasspen-and-paper digitisation, surface electromyography (sEMG) based systems, and vision-based techniques, all of which significantly enhance innovation in data collectionmethod-ologies.
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Figure 3: Overview of AI-based PD research trends.

The conducted literature review highlights the growing use of digital tools to assessfine motor skills, particularly handwriting dynamics, as a significant indicator of PD. Non-wearable sensors, such as digital tablets, remain themost prominent technology, enablingprecisemeasurements of handwriting kinematics and geometric properties. Devices suchas the Wacom Intuos tablet have been extensively used, allowing studies such as [18][19]to achieve accuracies ranging from 86% to over 91%. Smartphones have also emergedas portable and cost-effective alternatives, with applications capable of capturing spiraldrawings and other fine motor assessments, achieving diagnostic accuracies around 90%[20]. Similarly, wearable sensors, particularly smartwatches, leverage built-in accelerom-eters and gyroscopes to monitor movement patterns, as demonstrated by [21], wheresmartwatch data yielded an accuracy of 89.3%. Beyond the technology used for data col-lection, the choice of ML techniques significantly influences diagnostic performance. Tra-ditional ML methods, such as support vector machines (SVMs), decision trees (DTs), andRandom Forest (RF), remain widely used due to their interpretability and computationalefficiency. Studies like [18] have demonstrated the effectiveness of SVM classifiers, achiev-ing accuracies as high as 91.6%. However, traditional methods rely heavily on manual fea-ture extraction, whichmay limit their ability to capture the subtle, non-linear complexitiesinherent in handwriting andmotion data. In contrast, DLmethods, including convolutionalneural networks (CNNs), bidirectional gated recurrent units (BiGRUs), and hybrid frame-works, have shown superior performance by automatically extracting high-dimensionalfeatures from raw data. For example, [22] achieved accuracies that exceeded 99% usingfine-tuned CNN models, while [23] demonstrated the effectiveness of BiGRU for sequen-tial handwriting analysis with accuracies surpassing 90%. Feature extraction methodolo-gies also play a critical role in PD diagnostics, with kinematic features, such as velocity,angular velocity, and acceleration, being the most studied. Studies [24][25][26][27] em-phasised the importance of kinematic measures, by analysing the tangential velocity andthe duration of the stroke. Geometric features, including deviations in spiral precision andcenterline accuracy, complement kinematic metrics, as seen in studies such as [28][29].
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Recent research has also incorporated advanced metrics, such as entropy measures, spec-tral features, and non-linear dynamics, to enhance diagnostic capabilities. Advanced met-rics like polar features (e.g., angular deviation and mean power frequency) have been introduced to capture fine-grained handwriting irregularities [30]. Studies [31][32] applied Shannon entropy and frequency-domain analysis to capture handwriting irregularities, achieving notable improvements in accuracy. However, reliance on DL models and high-dimensional features introduces challenges related to computational demands, data requirements, and model interpretability, limiting their immediate adoption in clinical set-tings. Lastly, other systems, such as pen-and-paper digitisation and vision-based methods, remain significant. In the study [33], the authors combined traditional handwriting anal-ysis with sEMG signals to achieve an accuracy of 97.8% with ANN classifiers.Feature selection remains a critical step in the development of reliable PD diagnostic systems, as improper or suboptimal selection can result in overfitting, poor generalisation, and reduced model robustness. Studies have applied statistical techniques such as Prin-cipal Component Analysis (PCA) and others to identify the most discriminative features [18]. However, over-reliance on these traditional methods risks overlooking higher-order, non-linear features that could enhance model performance. This shortcoming highlights the importance of systematic and rigorous feature engineering, a process often underex-plored or insufficiently documented in current research. Many studies neglect to address common pitfalls, such as non-nested feature selection or suboptimal feature extraction, leading to overly optimistic results that fail to translate into real-world applications. Ad-dressing these gaps requires a shift toward more systematic documentation of feature selection methods, along with the adoption of advanced feature engineering practices that integrate kinematic, geometric, and higher-order features to fully capture PD-related motor impairments. Despite notable progress in the application of ML and DL methods, several limitations and research gaps persist. A major challenge is data scarcity: most studies rely on small, homogeneous datasets, often collected in controlled environments, which restrict the generalisability of diagnostic models to diverse populations or real-world scenarios. This limitation increases the risk of overfitting and reduces the robust-ness of the model when deployed outside the research setting [34]. Although DL models have demonstrated superior performance over traditional ML techniques, they remain computationally intensive and rely on large data sets. Their “black-box” nature further limits interpretability, a critical factor for clinical validation and adoption. Traditional ML models are valued for their transparency and clear decision boundaries, but they often lack the capacity to capture complex, non-linear relationships in the data. In contrast, DL models, while accurate, are less interpretable and do not provide actionable information for clinicians, complicating their integration into healthcare workflows.The limited adoption of cost-effective data acquisition tools remains a barrier to scal-ability. Although non-wearable sensors, such as digital tablets, are the most commonly used tools for handwriting analysis, their reliance on structured laboratory conditions lim-its accessibility. Methods requiring specialised hardware, such as graphic tablets, depth cameras, or sEMG devices, are resource-heavy and impractical for deployment in low-resource settings. In contrast, smart devices and wearable technologies present promis-ing alternatives for real-world monitoring due to their portability and cost-effectiveness, but their full potential remains underutilised.Overall, while handwriting analysis and machine learning techniques hold immense potential for PD diagnostics, addressing the limitations of data scarcity, interpretability, and scalability is crucial to advancing the field. Future research should focus on devel-oping standardised protocols, enhancing model transparency through XAI, and leverag-
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ing cost-effective, non-invasive tools for widespread clinical adoption. Rigorous featureengineering and robust validation on diverse datasets will be key to ensuring the relia-bility and applicability of diagnostic tools in real-world healthcare settings. Building onthis foundation, it is essential to critically examine the persistent challenges that hinderthe development of scalable, accurate, and clinically viable AI-driven diagnostic systems.Although significant progress has been made, notable gaps remain in areas such as dataavailability, model transparency, and the adoption of practical tools. These limitations notonly constrain the generalisability of current approaches but also impede their translationinto clinical practice.
1.1.1 Identified research gaps
In the existing literature on AI-driven diagnostics for PD, several research gaps remain un-addressed, which hinder the development of accessible, accurate, and scalable diagnosticsystems. These gaps not only limit the effectiveness of early diagnosis but also pose chal-lenges in applying AI tools to real-world scenarios. This section highlights the key researchgaps that this work directly addresses.

A. Data scarcity and lack of diverse datasets: Many studies rely on small and homo-geneous datasets, which limit the generalisability and robustness of AI models. Thischallenge is particularly critical in early-stage PD detection, where subtlemotor andnon-motor symptoms are difficult to capture in limited or non-diverse data. Further-more, data sets often lack variability in demographics, handwriting styles, and taskdesigns, reducing their applicability to real-world scenarios.
✓ Our work, particularly in Publication II, addresses this gap by employing gen-erative adversarial networks (GANs) to augment datasets. This approach in-creases the size of the training data, improving the performance and reliabilityof DL models in detecting early neurological impairments, thus improving di-agnostic accuracy.
✓ Additionally, Publication V contributes by presenting a smartphone applica-tion for evaluating accessible fine motor skills, validated for fatigue detectionthrough integration of qualitative and kinematic data. This application pro-vides a scalable solution for continuous data collection in real-world environ-ments, addressing data scarcity, and further strengthening AI model perfor-mance in motor function analysis. We also present novel smartphone-basedmotor skill test sensor data alongside subject metadata for the scientific com-munity.

B. Overlooked importance of robust feature engineering and selection practices: Asignificant gap in the field is the lack of attention to systematic and rigorous featureengineering and selection processes. Many studies fail to adequately documenttheir methods or address common pitfalls such as non-nested feature selection orsuboptimal feature engineering practices. This often results in poor model perfor-mance, overfitting, or overly optimistic diagnostic outcomes, reducing the reliabilityof findings in real-world applications.
✓ Publication I emphasises the critical role of robust feature selection, show-casing the pitfalls of non-nested approaches and advocating for best practicesto avoid inflated model performance metrics. It also introduced novel fea-ture engineering techniques, including angular metrics and high-order differ-
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ential features, enriching the diagnostic capability of handwriting-basedmod-els. We demonstrated that the combination of advanced feature engineeringand proper feature selection practices leads tomodels with improved general-isability and diagnostic precision, setting a higher standard for future researchin the field.
C. Challenges in comprehensibility and clinical adoption: Although deep learningmodels achieve high accuracy, their black-box nature limits their interpretability,creating a barrier for clinical adoption. Clinicians often prefer interpretable modelsthat align with existing medical knowledge.

✓ Publications I and IV combined high-performing ML models with compre-hensible feature sets, balancing accuracy with usability for clinical decisionsupport. By developing a segmentation framework for handwriting tests, weprovided clear visual representations for both kinematic- and drawing-baseddiagnostics.
D. Limited adoption of non-invasive and cost-effective data acquisition tools: Despitethe promise ofmodern devices such as smartphones, tablets andwearable sensors,many studies still rely on expensive and resource-intensive systems such as high-end graphics tablets or dedicated hardware. These setups restrict scalability andaccessibility, particularly in remote or low-resource settings.

✓ Publications V, VII, VIII address this issue by paving the way for smartphone-based motor data analysis. In Publications V and VIII, smartphones wereused for fine motor skill assessment in 41 unique users, later expanding to131 users, demonstrating the scalability of the approach. Publication VII opti-mised marker-based systems with video-based analysis and pose estimation,extracting 3D models and essential gait parameters using only two camerasand computer vision techniques. This methodology can be adapted to smart-phones, offering a more accessible and scalable solution. Gait parameterssuch as cadence, step length, single and double support, and walking speedwere calculated in collaboration with clinicians, providing comprehensive in-formation on gait mechanics crucial for diagnosing and treating movementdisorders.
     These identified research gaps highlight the need for innovation in areas such as early detection, real-world usability, scalable data acquisition, and data enhancement. By ad-dressing these challenges, my research advances the field of AI-based diagnostics for PD, offering practical, scalable solutions that can significantly impact clinical practice.
1.2 Problem statement and research questions
Despite significant progress, existing AI-based diagnostic methods often lack transparency in feature selection, making results less interpretable for the medical community. Addi-tionally, there is a need for tools that can seamlessly integrate into clinical practice, offer-ing both high accuracy and ease of use. Addressing these challenges, the main objective of this thesis can be summarised as follows.
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Objective
This research aims to develop and validate an AI-driven framework for analysinghuman motor function to detect Parkinson’s disease. Focusing on advancedfeature engineering techniques for handwriting analysis, the study evaluatestheir diagnostic accuracy and explores integration with mobile smart devices likesmartphones and tablets. The ultimate objective is to deliver accessible, scal-able solutions that advance early diagnosis and support rehabilitation for motorimpairments and other neurological disorders.

In order to achieve this objective, several key research questions have been formu-lated. These questions are designed to guide the investigation into the potential of AI andfine motor skill kinematics to revolutionise the diagnosis and monitoring of neurologicaland cognitive impairments. By addressing these questions, the research will uncover newinsights into the effectiveness of AI-based diagnostics and the integration of these toolsinto clinical practice. The following research questions will be addressed in this thesis:

RQ1: How can advanced feature engineering techniques and data augmentationmethodsimprove the diagnostic accuracy and robustness of AI models to detect Parkinson’sdisease?

RQ2: How can scalable and cost-effective tools, such as smartphone-based applica-tions, transform data collection practices for motor function diagnostics, allowingwidespread accessibility and real-world applicability?

RQ3: How canmachine learning frameworks be developed to enhance comprehensibilityfor clinicians, integrate advanced features, and maintain high accuracy, ensuringalignment with clinical workflows and fostering real-world adoption?

The answers to these research questions will contribute to the field by providing the-oretical and practical advances. These contributions are crucial in developing robust AI-based diagnostic models and tools that can be used effectively in clinical settings. Theresearch will focus not only on the development of these tools but also on their valida-tion through experimental studies, ensuring their applicability and reliability in real-worldscenarios. Figure 4 provides a research outline, highlighting themain problems, methods,and outcomes addressed in this thesis.
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Figure 4: Research outline

1.3 Structure of the thesis
The main content of this dissertation is organised into chapters that address key researchobjectives. Sections 1 and 1.1 introduce the research, including a detailed review of thestate-of-the-art in AI-driven PD diagnostics and motor skill analysis, identifying the re-search gaps that motivate this work. The section also concludes the problem statement,research questions, and the overall structure of the thesis, setting the stage for the inves-tigations that follow. Section 2 presents the methodological framework for data-drivendiagnostics. Section 2.1 covers the development of digital tools for data acquisition, includ-ing the smartphone application for fatigue detection, and relevant databases like Smart-PhoneFatigue and DraWritePD to address RQ2. It discusses how these digital systemsfacilitate the collection of fine motor skill data for use in AI-based models. Subsection 2.3focusses on answering RQ1. This chapter explores advanced data transformation and fea-ture engineering techniques, such as the derivation of high-order kinematic features andthe use of GANs for data augmentation. Additionally, it coversmulti-dimensional data rep-resentation and automated segmentation for handwriting and drawing analysis, present-ing the most diagnostically useful features for detecting cognitive impairments. Section 3addresses RQ1, and RQ3. This chapter discusses ML approaches and classification mod-els for the detection of PD. The integration of AI-based methods with traditional clinicaldiagnostics is critically evaluated, with a focus on improving early detection and ongoingmonitoring. Section 5 summarises and concludes the contributions of the thesis. This
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section revisits all research questions and reflects on how the findings addressed theseinquiries. Highlights advances in AI-based diagnostics, particularly in improving accuracyand accessibility through digital tools, and discusses potential future work to enhance themodels’ application in clinical settings.
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2 Methodological framework for data-driven diagnostics
This section outlines the methodological framework behind the ML-based approach todata-driven diagnostics. Each step contributes to transforming raw input into inter-pretable outcomes and is supported by one or more related publications.
2.1 Digitalisation and data acquisition tools and materials
This section highlights the development of digitalisation and data acquisition systems forthe evaluation of motor skills, specifically through a smartphone-based application de-signed to detect fatigue, addressing RQ2. Bridges the technical aspects of system devel-opment with the practical workflow of the application, demonstrating how smartphone-based tools can improve data collection processes in neurological diagnostics. Bymeetingthe clinical demand for practical and accurate assessments, this application contributesmeaningfully to the advancement of digital health tools.
2.1.1 Development of the smartphone application for fine motor skill assessment
To bridge accessibility gaps and improve the practicality of assessing neu-rological conditions, we developed a smartphone-based suite of motorskill tests aimed at evaluating fine motor skills and cognitive impairments.
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New user?

Register User User Login

Agree to Terms

Pre-test Questionnaire

End

Conduct Fine Motor Skill Tests
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Feature Extraction

Input to ML Model

Data Storage

Yes No
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Reaction Test
Simple

Spiral Test Reaction Test 
Advanced

TremorTest

Declined

Figure 5: Sequential flowchart of user ac-
tivities and testing in the fatigue detection
app.

The application offers a user-friendly and scalablesolution for real-time remote monitoring and as-sessment of motor performance. Using widelyavailable mobile technology, it enables frequentassessments in real-world settings, reducing bar-riers to early detection and continuous monitor-ing of neurological disorders. The methodolo-gies described in this section are based on thework detailed in Publication V and VIII. Theworkflow of the smartphone application is visu-alised in Figure 5, which illustrates the step-by-step process, from user registration to comple-tion of tests, data collection and feature extrac-tion. The flowchart outlines how users interactwith the app and participate in a series of mo-tor skills tests. The pre-test questionnaire is de-signed to gather essential background data fromusers prior to their first motor skill assessment.It includes demographic and contextual variablessuch as gender, age, height, weight, dominanthand, education level, and lifestyle indicators likedaily activity type and fatigue perception. In sub-sequent sessions, the questionnaire adapts to in-clude more task-specific factors: users are askedto rate their mental and physical effort, interest,anxiety, and sleep hours on a scale from 0 to 10.This structured input supports a more person-alised and context-aware interpretation of finemotor test results. The four distinct fine motorskill tests are designed to assess various aspects of motor control, including precision,
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coordination, and reaction time.
The Reaction Test Simple (RTS) is the first test within the application and is designedto evaluate the user’s response times, accuracy, and mistakes. In this test, the user is ex-pected to tap on black dots that appear at various locations on the screen in a randomisedmanner, each differing in size. The total count of these black dots that the user must hitis fifteen. The user is provided with an animated tutorial that demonstrates the appropri-ate method for performing the test. The user workflow in this test is shown in Figure 6.The application records several parameters during the test: each screen tap, the coordi-nates of these taps, the accuracy of tapping directly on the black dots, the elapsed time inmilliseconds between taps, and the dimensions of the screen of the user’s smartphone.Moreover, the application also tracks the duration from themoment the user initiates thetest to the point where the fifteenth black dot is tapped.

Figure 6: Screen views of the first reaction test (RTS) in the application. From the left: tutorial, start
button, final view.

The Archimedean Spiral Drawing Test (ASD) is the second test within the applicationand is designed to have the user draw a spiral while maintaining the line within specifiedboundaries. Instructional guidance for this test is provided to the user through an ani-

Figure 7: Screen views of the Archimedean spiral test in the application.

mated tutorial, which demonstrates the correct technique to perform the spiral drawingtask. The user workflow in this test is shown in Figure 7. Several key metrics are recordedduring this test. These include the height and width of the drawable area on the screen(depending on screen size), the coordinates of each point of the line drawn by the user,and an assessment of whether each point coincides with the pre-defined background line.In addition, the total duration taken by the user to complete the spiral drawing is mea-
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sured. Another feature of the test is the real-time calculation of the percentage of thedrawing that aligns with the background line, which is incorporated into the resulting dataobject after the completion of the test.
The Reaction Test Advanced (RTA) is the third test within the application and is de-signed to challenge users to tap on dots that correspond to a colour indicated at the bot-tom right of the screen.

Figure 8: Screen views of the advanced reaction test (RTA) in the application.

The dots appear at various locations on the screen in a randomised manner, each dif-fering in size and colour. This test features four pre-selected colours - purple, blue, yellow,and black. The user’s task is to accurately tap on a dot when its colour matches the indi-cated colour. An animated tutorial is provided to instruct users on the proper executionof this test. The user workflow in this test is shown in Figure 8. This test records a varietyof metrics: the height of the screen, the coordinates of each tap, the accuracy of tappingon the correct dot, the elapsed time since the last tap, and the time elapsed since the firstappearance of a correctly coloured dot. In addition, the total duration taken by the userto complete the test is also captured. The test starts when the user taps the green ’START’button (shown in the second section of Figure 8) and finishes when the last correct dot istapped.
The Tremor Test is the last test within the application and is designed to measure thehand tremors of the user.

Figure 9: Screen views of the Tremor test in the application.

Users are expected to extend one hand outward while initiating the test by pressingthe start button on the screenwith their other hand. This test is repeatedwith both hands.The instruction for this test is conveyed through an image that demonstrates the correct
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method to perform the tremor test. The user workflow in this test is shown in Figure9. During this test, the smartphone’s accelerometer sensors actively measure the move-ments of the hand in all directions for 10 seconds. The test is to be conducted identicallywith both hands to ensure consistent data collection starting with the left hand. The firsthalf of the test starts with left-hand measurements when the user taps the green ’STARTLEFT HAND’ button and finishes when 10 seconds have passed. The second part of thetest for the right hand is identical to that of the left hand. Once users complete the motorskills tests, the application processes the data through a feature extraction pipeline. Thispipeline transforms the raw data into key performance metrics such as reaction time dis-tributions, tremor amplitude, and drawing smoothness. These extracted features are thenfed into machine learning models that assess the level of fatigue of the participant. Theintegration of qualitative data from the pre-test questionnaire with the kinematic featurescollected during the tests allows theMLmodels tomakemore accurate and informed pre-dictions. These predictions are stored for further analysis or clinical review, contributingto the ongoing improvement of diagnostic models. The back-end system of the applica-tion plays a critical role in ensuring data integrity and user engagement. It enforces timeintervals between test attempts, preventing users from attempting multiple tests in quicksuccession, and ensuring consistency in data collection. The backend also provides userswith feedback, allowing them to compare their current performancewith previous results,providing information on potential improvements or deterioration in motor skills. In ad-dition, the back-end supports the retrieval of test data over customisable date ranges,enabling longitudinal monitoring of user performance. This allows for a more nuancedanalysis of motor function trends, which can be crucial in detecting early signs of fatigueor neurological impairment. The integration of these tests into a smartphone-based plat-form reduces the barriers to frequent and remote assessment of motor skills, making itaccessible to a larger population. This innovative approach improves data availability andleverages the widespread use of smartphones to facilitate real-time monitoring and earlydetection of motor function anomalies associated with different neurological and cog-nitive impairments and other conditions. Figure 10 illustrates the general workflow forthis smartphone-based fatigue assessment tool, which transitions from tablet-based tosmartphone-based digitised motor skills tests, integrates metadata questionnaires, andapplies feature engineering techniques. In addition, Figure 11 demonstrates an enhancedworkflow for smartphone-based fatigue detection. Data collection is conducted on bothiOS and Android devices and integrates finemotor skill tests (reaction, spiral draw, tremortests)with qualitativemetadata from self-assessed questionnaires. The extracted featuresare then fed into machine learning models for fatigue classification. This expanded ap-proach facilitates an accurate fatigue analysis, as shown through performance evaluationmetrics.
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Figure 10: General workflow for a smartphone-based fatigue assessment tool. The workflow in-
cludes transitioning from tablet-based to smartphone-based digitised motor skill tests, integrating
metadata questionnaires, and applying feature engineering techniques. Extracted feature sets in-
clude kinematic, angular, aim-reaction-based, tremor-related (via accelerometer), and asymmetry
features.
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Figure 11: Enhanced smartphone application workflow for fatigue detection: Data collection on both
iOS and Android devices integrates fine motor skill tracking and qualitative questionnaires, expand-
ing the dataset for improved machine learning-based fatigue analysis.

With a well-established system in place, in the next section we turn our attention toexamining the data collected through this platform to better understand its impact andpotential.
2.1.2 A dataset for assessing fine motor skills using smartphone-based digital tasks
We developed a comprehensive dataset consisting of two versions of fine motor skillassessment tests, administered via mobile applications named SmartPhoneFatigue and
SmartPhoneFatigueV2. Data collection involved 41 participants who completed 157 mo-tor skills tests and self-reported their fatigue levels. The study was carried out under thesupervision of the Tallinn University Ethics Board (decision number 12, dated 12.05.2021).
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Following data cleaning procedures, including the removal of faulty tests and the detec-tion of outliers, 131 trials were deemed suitable for analysis. These trials were carriedout on 166 unique devices, with 94 participants completing the tests twice and 35 com-pleting them once. Detailed non-PII participant information is provided in Publication V.The Publication VIII describes the second iteration of the database expanded to include347 completed tests, capturing the dynamics of user interactions through computed fea-tures such as Euclidean distance, jerk, angular velocity, and cumulative slope angles. Thiswork highlights the importance of a cross-platform application to ensure inclusive andrepresentative data collection. The purification process also included the removal of allinstances with missing values and a rigorous visual inspection of the smallest distancesin spiral-drawing tasks. This refined the data set to 343 records, which was further seg-mented according to test completion time, resulting in 218 records.
2.1.3 Drawing and handwriting tests for Parkinson’s disease diagnostics (DraWritePD)
This dataset, comprising contributions from24patientswith PD (mean age 74.1 ±6.7 years)and 34 healthy control subjects of the same age and sex (mean age 74.1 ± 9.1 years), wascollected before my doctoral studies by our research group. The participants completeda battery of 12 different drawing and writing tests. Sample images of Archimedean spiraldrawings from healthy individuals and Parkinson’s patients, as well as Luria alternatingseries (LAS) patterns illustrating task performance and drawing trajectories, are shown inFigures 12 and 13, respectively.

(a) HC (b) PD (c) PD

Figure 12: Sample drawings of an Archimedean spiral performed by a healthy control subject (a) and
the PD patients (b, c) from DraWritePD dataset.

Data acquisition for this research was performed using an Apple iPad Pro (2016) tabletand anApple Pencil. The tablet, with a 26.77 cm (10.5 inches) diagonal screen, captures theApple Pencil signal at a frequency of 240 points per second. From a software perspective,the data were collected using a custom iOS application developed by our research team.The dynamic features recorded by the tablet included x-coordinate (mm), y-coordinate(mm), timestamp (sec), pressure (force applied to the surface: [0,..., 6.0]), altitude (rad)and azimuth (rad). This dataset has since been utilised for classification and feature engi-neering tasks within my research. The data acquisition process adhered strictly to privacylaws, with the study approved by the Research Ethics Committee of the University of Tartu(No. 1275T-9).
2.1.4 Parkinson’s disease handwriting (PaHaW) dataset
Data acquisition of the PaHaW dataset is described in detail in [35] and [36]. For the sakeof self-sufficiency, the main properties of this data set important for the present studiesare described in this section. The age and gender distribution of the PaHaW dataset issimilar to that of DraWritePD. The data set consists of 37 patients with PD and 38 healthycontrols (HC) with the same age and sex. HC subjects have amean age of 62.4 years (stan-
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Figure 13: LAS patterns - The subject was assigned three distinct tasks. The initial pattern is depicted
in yellow, while the blue line represents the trajectory of the subject’s drawings.

dard deviation 11.3), while patients with PD have a mean age of 69.3 years (standard devi-ation 10.9) [35]. During the acquisition of PaHaW dataset, each subject was asked to com-plete a handwriting task according to the prepared pre-filled template at a comfortablespeed. Subjects were allowed to repeat the task in the event of an error or a mistake inhandwriting [35]. The handwriting signals were recorded using a Wacom Intuos digitisingtablet overlaid with a blank sheet of paper, the sampling rate was set to 100 samples persecond. The tablet captured the following dynamic features: x-coordinate; y-coordinate;timestamp; button status; pressure; altitude, and azimuth. All features were convertedto the same units as in DraWritePD. The battery of the tasks presented in PaHaW datasetdiffers much from the one employed in DraWritePD. However, the Archimedean spiraldrawing test is present in both datasets and was thus used in this research.
2.2 Deriving key attributes from data
In this research, we developed a system for digitising traditional paper-and-pencil tests toassess motor skills using smartphones and tablets, enabling enhanced data accessibilityand supporting home monitoring. The system captures detailed motion data through thedevice’s sensors, including touch coordinates, timing of interactions, and motion dynam-ics. Additionally, it records nuanced information such as azimuth and altitude angles ofthe stylus, providing a richer dataset for analysis. The collected data are processed to ex-tract a wide range of features, such as positional coordinates, timing, and pressure, whichare critical for evaluating motor control, tremors, and other fine motor functions. Thesefeatures are crucial in diagnosing conditions such as Parkinson’s disease, providing deeperinsight into motor impairments through detailed kinematic and spatial data.

The sample of raw signals extracted from tablet-based drawing tests, which are used
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in the assessment of motor function in PD, is presented in Table 1.
Table 1: Dynamic sequential stylus input features over three adjacent time points

t x y p a l
533033966.322112 446.2969 -431.0742 0.723517 0.518733 1.059078
533033966.352263 449.875 -439.7695 0.739844 0.490138 1.059078
533033966.374942 454.7188 -448.125 0.800081 0.444148 1.059078

Note: The abbreviations x, y denote the x- and y-coordinate features; and a, l and p are the azimuth, altitude,
and pressure features, respectively; timestamp is represented by t.

These features include the x- and y-coordinates of the pen’s position, azimuth (a), al-titude (l), and pressure (p) values, along with a timestamp (t) that records the exact timeeach point was captured. This data provides critical information on the drawing dynamics,reflecting the user’s motor precision and control. Figure 14 illustrates a schematic of sam-ple input, depicting the six independent features recorded for each data point as the usertraced a spiral on the tablet. The diagram also indicates the drawing direction, offeringa visual representation of how these features are collected in real-time during the test.The arrows highlight the progression of the pen’s motion, while the values x and y repre-sent the pen’s position on the screen, and a, l, and p represent the pen’s orientation andpressure applied at each moment. These raw signals provide a comprehensive dataset toassess motor control in patients with PD, contributing to a detailed analysis of their per-formance. By capturing these parameters, the system can detect subtle changes in motorbehaviour, such as tremor frequency or variations in pressure and altitude, which are keyindicators of motor dysfunction in PD. The combination of coordinate, orientation, andpressure data offers a rich foundation for further analysis and feature extraction, helpingto diagnose and monitor motor symptoms related to PD.
['t', 533033966.322112, 'x', 446.2969, 'y', -431.0742, 'p', 0.723517, 'a', 0.518733, 'l', 1.059078]

['t', 533033966.352263, 'x', 449.875, 'y', -439.7695, 'p', 0.739844, 'a', 0.490138, 'l', 1.059078]

['t', 533033966.374942, 'x', 454.7188, 'y', -448.125, 'p', 0.800081, 'a', 0.444148, 'l', 1.059078]

Figure 14: Schematic diagram of the sample input, illustrating the collection of six independent fea-
tures for each data point. The arrows indicate the drawing direction. The abbreviations x and y
represent the x− and y− coordinate features, while a, l, and p correspond to azimuth, altitude, and
pressure, respectively. The timestamp is denoted by t.

The freezing of the hand during writing is referred to as freezing episode. According to[37] the freezing episode is defined as a sudden, variable, and often unpredictable tran-
sient break in movement. This definition needs to be formalised to allow for automatic
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detection. The authors of [38] have adapted the definition for the case of handmovementduring writing in the following way: handwriting freezing was defined as an involuntary
stop or clear absence of effective writing movements during at least 1 second. The latestallows for being implemented in the form of programming code. Of course, one has toconsider that, while the hand may freeze, small jigging in the coordinates may occur. Theproper setting of threshold valuesmay easily solve such problems. Once freezing episodesare detected, timestamps of the points where they begin and end provide the informa-tion about the ending and beginning points of the intervals to extract. In this research,the length of this interval was experimentally found to be 1 of a second. Figure 15 depictsfreezing episodes, numbered and marked by yellow lines with green arrows.
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Figure 15: Freezing episodes in the sentence writing test from the DraWritePD data set.

It is important to note that the number of freezing episodes may vary between PD pa-tients and HC subjects. To avoid problems caused by unbalanced data sets, proper sam-pling was applied to guarantee an equal number of freezing episodes and appropriate proportions of episodes from the different parts of the sentence. Then the feature engi-neering procedure described in the next section 2.3 was applied to these intervals. After each test, all the freezing episodes were described by the tuple of kinematic, pressure, and motion mass parameters. Each tuple inherited the label of the test it had been computed from, consequently forming the dataset to be used for ML analysis.When evaluating the feasibility of smartphones for fine motor skill assessment, a par-allel approach was taken to capture essential features. The Table 2 outlines the key at-tributes extracted during smartphone-based motor skill assessments, as detailed in Pub-
lications V and VIII. The features include touch coordinates, timestamps, and accelerom-eter measurements, which are critical for evaluating real-time motor performance under cognitively impaired conditions. For example, touch events are recorded with precise co-ordinates (xi,yi), and a Boolean value identifies whether the touch overlapped with the target area. The target area is a predefined region on the screen, typically a geometric shape such as a circle or rectangle, defined by specific dimensions and a centre position 
(xt ,yt ). The touch point is the exact location where the user makes contact, recorded as 
(xi,yi) with a timestamp ti. Accuracy is evaluated by determining whether the touch point falls within the target area. For example, in a circular target, this involves checking if the distance between the touch point and the target centre is less than or equal to the target’s radius. If the touch point overlaps with the target area, it is classified as a "hit." This eval-uation is complemented by metrics such as reaction time, calculated as the time elapsed between the appearance of the target and the recorded touch, as well as temporal con-sistency metrics, such as the time elapsed between consecutive touches (∆ti = ti − ti−1)
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and the time from the first correct colour rendering to the touch.Additionally, accelerometer data (ax,k,ay,k,az,k) capture motion during the test, pro-viding insights into movement dynamics. The tremor features are derived by calculatingthe asymmetry between the absolute accelerations of the left and right hand:
ftremor = abs(aleft−aright)

where the absolute acceleration is defined as:
abs=√

x2 + y2 + z2.

      By combining data from touch events, timestamps, accelerometer readings, and derived tremor features, smartphone-based assessments provide a comprehensive understanding of motor function, reaction speed, and consistency. These tools are practical for continuous monitoring in real-world settings and serve as a valuable complement to traditional motor skill evaluation methods.
Table 2: Subset of defined features and their descriptions for the analysis of user interactions with a 
smartphone screen.

Feature Notation Description

Touch coordinates Ti = (xi,yi) For each touch event i, the coordinates are recorded as (xi,yi).Timestamps tk Time series data tk representing the time at each step k.Total duration of thetest Ttotal = tend− tstart Total time Ttotal from the start time tstart to the end time tend.
Accuracy of touches Ai =

{
1 if Ti is on target
0 otherwise

Binary indicator Ai representing the accuracy of each touch i. Ai can bedefined as a wasHitOnTarget feature, which is True if the area of thetouch overlaps with at least one pixel of the rendered target.
Elapsed timebetween touches ∆ti = ti − ti−1 The time difference ∆ti between consecutive touches i and i−1.

Elapsed time sincestimulus appearance ∆ti,stimulus = ti − tstimulus

The time difference ∆ti,stimulus between the touch i andthe appearance of a stimulus tstimulus. This includes
timeFromFirstCorrectColorRender feature, which measuresthe difference between the first correct color render and the touchtime.

Screen dimensions S = (H,W )
Height H and width W of the user’s smartphone screen or drawablearea.Real-time linealignmentpercentage Palign = ∑

N
j=1 L j

N ×100%
Percentage Palign of the drawing that aligns with the predefined line,where N is the total number of points.

Accelerometer data Ak = (ax,k,ay,k,az,k)
For each time step k, the accelerometer data is recorded as
(ax,k,ay,k,az,k), representing the acceleration in x-, y-, and z-directions.

Derived tremorfeatures ftremor = abs(aleft−aright)
Tremor data includes features such as absolute acceleration abs =√

x2 + y2 + z2. The asymmetry between the left-hand and right-handabsolute accelerations, defined as the absolute value of the differencebetween left (aleft) and right (aright) accelerations.
Building on this foundation of clean and accurate data, the next step involves trans-forming raw signals into more meaningful and discriminative features.

2.3 Advanced data transformation and feature engineering
Feature engineering involves the derivation of informative and discriminative attributesfrom raw data, which improves the effectiveness of ML models. This section exploresmethods applied in the diagnostics of PD through handwriting analysis, focussing ontremor-related kinetic analysis and using high-dimensional data representations.
2.3.1 High-order kinematic features for enhanced motor function analysis
Building on the raw signals described in the previous section, such as pen position (x-and y-coordinates), timestamps, pen pressure, and orientation (altitude and azimuth), we
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derive a range of kinematic features that offer deeper insights into motor impairments, particularly for the analysis of PD. These features go beyond basic motion descriptors, capturing both the dynamic aspects of hand motion and higher-order changes over time, which are crucial for identifying subtle motor dysfunctions that may be missed by tradi-tional observational methods. To enhance the granularity of motor function assessment, we extended the feature set by incorporating higher-order kinematic features, specifically, jerk (the rate of change of acceleration), snap (rate of change of jerk), crackle, and pop. These features are computed from the pen tip’s position vector, pi = (xi,yi), sampled at discrete time steps ti during handwriting tasks. Introduced in advanced dynamics contexts [39], these successively derived quantities offer a more detailed representation of motion, capturing subtle variations often missed by lower-order measures. When applied to handwriting tasks like spiral drawing, these microkinematic descriptors help capture subtle motion irregularities indicative of early Parkinsonian symptoms. Beyond positional data, we also examined the force exerted on the drawing surface. Higher-order derivatives of pressure, namely yank (the rate of change of pressure), tug (rate of change of yank), snatch, and shake, were calculated. These pressure-based microkinematics offer insight into variations in tremor amplitude and irregular force control, key markers of im-paired motor function in PD. By introducing higher-order derivatives for both position and pressure signals, this work extends conventional kinematic analysis into the domain of microkinematics. This enriched feature set enables machine learning models to detect nuanced motor symptoms with improved sensitivity, contributing to more precise diag-nostics and progression monitoring in PD.Another critical aspect of our analysis involves pen orientation and inclination, which are often underutilised in related studies. These angular features, azimuth (pen orienta-tion) and altitude (pen inclination), were incorporated alongside kinematic data to cap-ture more nuanced aspects of motor control during drawing tasks. To further enhance the feature set, we consider three additional angles derived from the pen trajectory: the slope angle α, the rotational angle φ, and the yaw angle γ, which are defined in 3. Given the slope k of the position vector, the angle α was calculated based on the change in coordinates between two consecutive points in the drawing.
Table 3: Angular features derived from pen trajectory

Angle Formula

Slope (ki) k = yi−yi−1
xi−xi−1Slope angle (αi) α = arctankiRotational angle (φi) φi = π +αi−1 −αiYaw angle (γi) γi = αi −αi−1

These expressions capture directional changes and rotational movements of the pen, enhancing the feature set for motor assessment. The yaw angle represents the directional change of the point vector, and these angular parameters were extended with their re-spective higher-order derivatives, enriching the analysis with up to the third derivative. These micro-changes in pen movement, though difficult to observe visually, are crucial for analysing tremor-like symptoms often seen in PD. Tremors typically manifest as irregular, less smooth movements, reflected by greater accelerations and frequent directional changes. By capturing such tremor-induced deviations in the trajectory, we can directly link these angular and kinematic features to motor impairments associated with PD.Furthermore, we adopted the concept of "motion mass parameters" introduced in prior research [40], which have demonstrated strong discriminative power in distinguish-
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ing PD patients from healthy controls. These parameters aggregate the absolute valuesof the kinematic and pressure-based features at each observation point throughout thetest. The velocity massVN , for instance, is defined as:
VN =

N

∑
k=1

|vk|

In the sameway, themass parameters for acceleration, jerk, and their higher-order deriva-tives, such as snap, crackle, and pop, were defined. These mass parameters were alsoapplied to pressure data and angular changes, capturing the total "motion mass" duringthe drawing tasks.A comprehensive overview of the engineered features is presented in Tables 4 and5, which summarise both vector- and scalar-valued descriptors extracted from raw hand-writing data collected duringmotor assessments. The differential and angular types of fea-tures discussed in this section are also visually illustrated in Figure 16. This figure depictsthe extraction process for both kinematic features (velocity, acceleration, jerk, and higher-order derivatives) and angular features (yaw, rotational angle, and slope). Subfigure 16ashows the Archimedean Spiral Drawing test (ASD) [41], while subfigure 16b presents theLuria Alternating Series test (LAS) [42].
Table 4: Subset of vector-based features derived from stylus trajectory and pressure signals.

Feature set Feature Description Mathematical definition

Spatial-temporal displacement Euclidean distance between twopoints di = ∥pi −pi−1∥

Kinematic
velocity v First derivative of position vi =

dp
dt ≈ pi−pi−1

ti−ti−1acceleration a Second derivative of position ai =
dv
dt ≈

vi−vi−1
ti−ti−1jerk j Third derivative of position ji =

da
dt ≈

ai−ai−1
ti−ti−1snap σ Fourth derivative of position σ i =

ji−ji−1
ti−ti−1crackle χ Fifth derivative of position χ i =
σ i−σ i−1
ti−ti−1pop ξ Sixth derivative of position ξ i =

χ i−χ i−1
ti−ti−1

Pressure-derived
pressured i f f Change in pressure between steps ∆ fi = fi − fi−1yank ψ First derivative of pressure ψi =

d f
dt ≈ fi− fi−1

ti−ti−1

tug τ
Second derivative of pressure (rateof yank) τi =

dψ

dt ≈ ψi−ψi−1
ti−ti−1snatch ζ Third derivative of pressure ζi =

dτ

dt ≈ τi−τi−1
ti−ti−1shake η Fourth derivative of pressure ηi =

dζ

dt ≈ ζi−ζi−1
ti−ti−1

Geometric
altitude_diff Change in pen elevation ∆ℓi = ℓi − ℓi−1azimuth_diff Change in pen azimuth angle ∆ai = ai −ai−1
α_diff Change in slope angle ∆αi = αi −αi−1
φ_diff Change in rotational angle ∆φi = φi −φi−1
γ_diff Change in yaw angle ∆γi = γi − γi−1

The higher-order kinematic and pressure-based features introduced in this work di-rectly address RQ1. By extending traditional velocity- and acceleration-based approachesto include derivatives such as snap, crackle, pop, this research enriches the feature spaceand improves the model’s ability to detect subtle motor impairments characteristic ofPD. Moreover, the incorporation of angular features, along with their respective higher-order derivatives, ensures a multi-dimensional assessment of handwriting movementsthat captures tremor-like symptoms more precisely. This advanced feature engineeringframework not only bolsters diagnostic precision but also enhances the robustness of MLmodels against handwriting style variations, addressing the objectives of RQ1 and pavingthe way for scalable, clinically viable AI solutions. Notably, the introduction of these high-order derivatives and angular features in Publication I marks a step forward in featureengineering techniques for evaluating motor impairments in patients with PD.
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Figure 16: Visual representation of angular and differential-type kinematic features extracted from
stylus trajectories. Angular features (shown in red) include the slope angleα , rotational angle φ , and
yaw angle γ , which capture abrupt directional changes, oscillatory motion, and rotational instability
in pen movement. Kinematic features (shown in blue) are derived from the differential representa-
tions of the position vector p, including velocity v, acceleration a, and jerk j, reflecting the speed,
smoothness, and control ofmotion. These features are computed using consecutive positional points
sampled during the drawing of structured tasks such as (a) the Archimedean Spiral Drawing (ASD)
test and (b) the Luria Alternating Series (LAS) test. Such quantitative representations are instrumen-
tal for capturing subtle motor abnormalities, especially in early-stage Parkinson’s disease. When
processed through machine learning models, these features support fine-grained classification and
aid in distinguishing pathological handwriting from that of healthy individuals

Table 5: The sample subset of scalar features.

Feature Set Feature Description Mathematical definition

Spatial-temporal fea-tures duration Time interval between first and lasttimestamp T = tN − t1

Kinematic features
velocity_mass Mass of velocity vector VN = ∑

N
i=2 |vi|

acceleration_x_mass Accumulated x-directional acceler-ation Ax = ∑
N
i=2 |ax,i|

jerk_median Median jerk magnitude median(j)snap_mass Accumulated snap magnitude SN = ∑
N
i=2 |σi|

Pressure features shake_median Median of shake median(ηi)pressure_diff_min Minimum pressure difference min(∆ fi j)tug_mass Accumulated tug magnitude ∑
N
i=2 |τi|

Geometric features φ_mass Accumulated rotational angle ∑
N
i=2 |φi|

α_accel_min Minimum angular acceleration min(α̈i)
γ_std Yaw variability std(γ)

32



2.3.2 Leveraging generative adversarial networks for data augmentation

 

Parkinsons patients’ synthesized samples

Healthy controls’ synthesized samples

Figure 17: GAN-based data augmentation workflow

Traditional augmentation techniques such as rotation, scaling, and flipping are initiallyapplied to the training set to artificially expand the diversity of input images. GAN trainingis then introduced, using real spiral test images from the training set to train a genera-tor, which creates synthetic images, and a discriminator, which evaluates the authenticityof these images. The adversarial interaction between the generator and the discrimina-tor continues until the generator produces spiral images that are nearly indistinguishablefrom the real ones. Once trained, the GAN generates synthetic spiral images that reflectthe variability and complexity seen in real patient data, including characteristics repre-sentative of both PD patients and healthy controls, enabling the creation of enhancedtraining sets. Synthetic images are combined with those produced by traditional augmen-tation methods to form a more diverse and robust training dataset. The augmented dataset is rigorously evaluated to ensure that the synthetic images enhance, rather than de-grade, the quality of the training set. Finally, this enriched data set is used to train a CNNmodel designed to classify images as PD or non-PD. CNN is then validated and tested toensure its accuracy, robustness, and ability to generalise effectively in real-world diagnos-tic scenarios. By generating synthetic yet realistic images and combining them with tra-ditional augmentation methods, this workflow improves diagnostic model performance
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To address the challenge of limited data in PD diagnostics, this section outlines the use of 
generative adversary networks (GANs) [43] for data augmentation, a technique used to 
artificially increase the size and diversity of the data set, thus improving the robustness 
and generalisability of diagnostic models. This contribution, published in Publication II, is 
illustrated in Figure 17. The process begins with the collection of raw spiral test data, a 
clinical tool to assess motor dysfunction in patients with PD. The data then undergoes 
filtering and preprocessing steps, including normalisation, noise reduction, and feature 
extraction, to ensure quality and consistency. After preprocessing, the data are divided 
into three subsets: training, validation, and testing data sets. The training set is used to 
build the models, while the validation and testing sets are reserved for performance 
evaluation, ensuring the models avoid overfitting.



while minimising the reliance on costly and time-consuming data collection. The result isa cost-effective and efficient approach to address the critical issue of limited data in PDresearch, ultimately enhancing diagnostic accuracy and reliability.GANs consists of two parts: a generator G and a discriminator D. G uses a noise vari-able z as input from the distribution pz (latent space) and produces an output in the formof an image that is in the generated distribution pg. D takes in an image x and outputsthe probability that x came from the real data distribution preal rather than pg. The adver-sarial training process involves both networks competing with each other. D is trained tomaximise the probability that the correct label is assigned to an image. Simultaneously,
G is trained to minimise the probability that the discriminator correctly labels the fakeimages. They play the following two-player minimax game with value functionV (D,G):

min
G

max
D

V (D,G) = Ex∼preal [logD(x)]+Ez∼pz [log(1−D(G(z)))]

In theory, during training, the GANmodel converges when both D and G reach a Nashequilibrium, i.e., a saddle point, which is the optimal point for Equation 1. The Nash equi-librium is achieved when players in a non-cooperative game lack any incentive to changetheir strategy. With GANs, this means that pg = preal and D cannot tell the differencebetween real and generated samples. Finding this saddle point is a difficult task.For image generation, we used four different GAN architectures: StyleGAN2-ADA [44],StyleGAN2-ADA + LeCam [45], StyleGAN3 [46], and Projected GAN [47]. These modelswere selected because they were specifically created with limited training data in mindand have been shown to generate good-quality images under these conditions. Each ofthe GAN models was trained using transfer learning from a model trained on the Flickr-Faces-HQ dataset (FFHQ) [48]. We used only the train split, which was amplified withhorizontal, vertical flips, and horizontal + vertical flips during GAN training. The generatedimages are of size 256x256 pixels. Each model was trained on a single NVIDIA A100 GPUfor three days. For model evaluation, we used the kernel inception distance (KID) [49],which measures the dissimilarity between probability distributions and is unbiased whenused with small datasets, unlike the Fréchet inception distance (FID), which is used morefrequently as a quality metric of GAN [50]. The best KID score for each of the trained GANarchitectures can be seen in Table 6. ProjectedGAN achieves a KID score that is an order of
Table 6: Best KID scores of each trained GAN model

GAN KID (↓)HC PDStyleGAN2-ADA 0.01416 0.01054StyleGAN2-ADA + LeCam 0.01826 0.02517StyleGAN3 0.02148 0.02113Projected GAN 0.001264 0.0009285
magnitude lower than the other models. To illustrate its training dynamics, the evolution of KID across training steps is shown in Figure 18, demonstrating both rapid convergence and stable performance over time.The comparison between the original spirals (left) and the GAN-generated synthetic spirals (right) is illustrated in Figure 19. The figure demonstrates the ability of GANs to produce realistic spiral patterns, which closely mimic the visual characteristics of the original data while introducing slight variations in line smoothness and structure. These synthetic examples enhance dataset diversity and improve model robustness when incorporated into training.
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Figure 18: KID scores during Projected GAN training for HC and PD classes. The model converges
rapidly within the first 500 steps and maintains low, stable values throughout.

Figure 19: Comparison of the original
(left) and the GAN-generated synthe-
sised (right) digital spirals.

  In conclusion, GANs play a pivotal role in augmenting the dataset, creating synthetic examples that help overcome the limitations posed by small sample sizes. We assess the utility of these synthetically generated images by incorporating them into our training sets and comparing performance against sets augmented with traditional image manipulation techniques. This approach directly addresses RQ1, which focuses on improving the diagnostic accuracy and robustness of AI models through advanced data augmentation methods. By using GAN-generated synthetic spiral images, the dataset becomes more diverse and representative, thereby enhancing the ability of machine learning algorithms to detect PD-related patterns despite limited real-world data.The described augmentation strategy not only strengthens model performance but also un-derscores the critical role of innovative data-enhancement techniques in developing scalable,clinically impactful solutions for PD diagnostics.
2.3.3 Multi-dimensional data representation
and transformation
In this section, we extend the concept of embedding dynamic handwriting features instatic images, enhancing the representation of handwriting tasks used in the diagno-sis of PD. By encoding additional kinematic and pressure-related features into higher-dimensional data representations, we improve the depth of analysis. Subsequently, theseenriched datasets are processed using CNNs in one dimension (1D), two dimensions (2D),and three dimensions (3D) to facilitate automated classification and diagnosis. Figure 20represents a 3D visualisation of data generated from digital drawing tests, specifically fo-cussing on a spiral drawing task that is often used in motor function analysis for PD. In the
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given image, the voxelised representation, where individual data points are visualised ascubes, encodes two distinct kinematic parameters to enrich the analysis. The color gra-dient, ranging from purple to yellow, indicates changes in velocity, which is the rate ofdisplacement over time. Higher velocities are represented by brighter, yellow hues, whilelower velocities are shown in darker, purple hues. Such color coding allows for a detailedassessment of velocity variations across different points of the drawing task, providingvisual insight into motor control performance, such as smoothness or irregularities thatmay be symptomatic of PD.Beyond the color representation, the height (or z-coordinate) of each voxel is deter-mined by the pressure applied at each point during the task. This additional dimensioncaptures the force with which the pen was pressed against the drawing surface. Highervoxels represent greater pressure, while lower ones correspond to lighter touches. By in-corporating a third dimension, the model provides a more comprehensive view of howboth velocity and pressure fluctuate over the course of the drawing, which is particularlyuseful in detecting tremor, rigidity, or bradykinesia - commonmotor symptoms in PD. Thevoxelised 3D representation not only offers an intuitiveway to visualise complex kinematicdata but also facilitates the application of advanced machine learning techniques. Specif-ically, 1D, 2D, and 3D CNNs are employed to classify motor function based on these richmulti-dimensional feature sets. CNNs can detect subtle patterns in velocity, pressure, andtemporal evolution, helping to distinguish PD patients from healthy controls. The integra-tion of color and voxel height enhances the representational power of the data, ensuringthat maximum information is passed to classification models, thereby improving diagnos-tic accuracy. This methodology exemplifies the synergy between high-order kinematicfeature extraction and advanced computational modeling.
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Figure 20: 3D spiral drawing after voxelisation process

This integration allows for a more robust and detailed analysis, capturing both thestatic and dynamic aspects of motor symptoms in PD. For example, merging 2D imagedata with kinematic data from 3Dmodels provides a richer, more nuanced understandingof motor impairments, enhancing the predictive accuracy of diagnostic models.While Figure 20 provides an illustrative example of how kinematic features like veloc-ity and pressuremight be visualised in 3D, the actual feature encoding used in Publication
VI follows a different methodology, as outlined below. Initially, the raw dataset undergoespreprocessing to standardise feature units throughmin-max normalisation, ensuring con-
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sistency across different dimensional representations. Specifically:
• In the 1D case, rawdynamic features such as x- and y-coordinates are treated as timeseries. The timestamp feature is not used directly; instead, it is used to computevelocity, which is then included in the feature set.
• In the 2D case, the x- and y-coordinates determine pixel positions in RGB images.Azimuth, altitude, and pressure values are encoded as the red, green, and bluechannels, respectively, while velocity is represented through line width.
• In the 3D case, spatial representation includes x- and y-coordinates alongwith com-puted velocity, which together define each data point’s 3D position. The azimuth,altitude, and pressure features are again encoded as RGB color information in thevoxelized space.

Following this, the raw point cloud data is voxelised into a matrix format suitable for CNNanalysis, maintaining a fixed grid resolution. It is noteworthy that CNNs exhibit significantfeature extraction capabilities; thus, aside from the velocity, no additional hand-craftedfeatures are designed. Figure 21 illustrates the results of data enhancement in variousdimensions.

(a) 1D - Time Series (b) 2D - RGB Image (c) 3D - Point Cloud

Figure 21: Multi-dimensional representation: temporal (a), spatial (b) and volumetric (c) data.

By embedding multi-dimensional data, temporal, spatial, and volumetric, in the pro-cess, we capture both static and dynamic aspects of motor function, creating a more en-riched dataset for PD diagnosis. Such an integrative approach not only enhances featurerepresentation but also improves the robustness and accuracy of CNN-based predictivemodels.
2.3.4 Automated segmentation and element analysis in digitised drawing tests
The digitisation of drawing tests enables the capture of precise pen movement param-eters, offering insights beyond what is perceptible to the naked eye. To bridge the gapbetween traditional visual assessment and modern kinematic analysis, this section de-scribes an automated segmentation process introduced in Publication IV. By leveragingDL for object detection and classical machine learning techniques for parameter analysis,segmentation identifies individual test elements and evaluates their informativeness atdifferent stages of the task (beginning, middle, and end). This approach enhances the un-derstanding of fine motor performance and contributes to more robust decision supportsystems for PD diagnosis as part of the data enhancement steps in the ML pipeline.To further enhance the precision of the analysis, we incorporate automated cornerdetection within the LAS test. By leveraging the "You Only Look Once" (YOLO) algorithm,
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a fast and efficient deep learning-based object detectionmodel developed by Joseph Red-mon et al [51], we can identify and classify distinct corner types in the drawing task. Thesegmentation step allows for a more detailed examination of kinematic features associ-ated with specific geometric elements, bridging the gap between visual assessment anddata-driven analysis. The detected corners are categorised as follows:
• Upper acute angle corners
• Right angle corners
• Lower acute angle corners
When labelling the corners, a surrounding area is selected rather than just the centrepoint of the corner. This ensures that sufficient data points are captured, allowing thecorners to be analysed separately from the straight and diagonal lines. The process isillustrated in Figure 22, which outlines the overall segmentation workflow. First, the YOLOmodel is trained on synthetic corner data and subsequently applied to predict corners inreal patient data.
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Figure 22: The role of YOLO in the overall workflow. The Step 4 image visualizes the different segment
types derived after corner detection. 1: lower acute angle corners (orange), 2: vertical lines (green),
3: right angle corners (red), 4: horizontal lines (purple), 5: diagonal lines (blue), 6: upper acute angle
corners (brown).

To enhance the training dataset, three augmentation techniques: horizontal flip, rota-tion, and shear, were applied, expanding the initial dataset of 90 images to a total of 288training images. The dataset was split with an 80/20 ratio, resulting in 72 images for train-ing and 18 for validation. YOLO was trained for 300 epochs, with the best performanceobserved in epoch 237. The model achieved the following metrics:
• mAP 0.5: 0.833
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• Precision: 0.84
• Recall: 0.82
The mean average precision (mAP) improved steadily during the first 50 epochs andplateaued after approximately 150 epochs. Precision and recall followed a similar trend,stabilising after around 100 epochs. Although box loss gradually decreased throughouttraining without overfitting, class loss plateaued for both training and validation with mi-nor improvements in training loss. However, object loss decreased as expected duringtraining but showed noticeable overfitting in the validation set after 150 epochs. Vali-dation in real patient data underscored the importance of selecting an appropriate confi-dence threshold tomitigate false positives and overlapping bounding boxes. A confidencethreshold of 0.5 provided the optimal balance between precision and recall for furthertests.In the subsequent phase of segmenting theΠΛ-tests, the goal is to extract distinct seg-ments from the drawing task. Although YOLO identifies only the corner points, segment-ing the entire drawing introduces the challenge of identifying the start and end points ofeach segment. Relying solely on timestamps is insufficient, as patients can revisit previ-ous sections to correct errors, complicating the segmentation process. To address this, aclustering-based technique is employed, using the x- and y-coordinates of the data points.The methodology operates as follows:
1. A data point is selected and designated as the seed of a new segment.
2. The algorithm identifies the nearest neighbouring point. If its distance from theseed of the segment is within a specified maximum distance threshold, it is addedto the segment.
3. The process is iterated until no additional points meet the distance criterion.
4. Then a new data point is chosen as the seed of the next segment and the procedureis repeated.
The described approach effectively simulates the patient’s sequential movement dur-ing the drawing task, delineating segments that correspond to distinct drawing strokes.An important advantage of this method is its independence from a predefined numberof clusters, making it more robust to irregularities or anomalous data points. By groupingspatially close data points, the clustering technique reliably overcomes the primary chal-lenge of segmenting the data of the ΠΛ test while maintaining resilience against drawinginconsistencies. We have established six different segment types based on the results ofthe YOLO algorithm and additional segmentation analysis. Please refer to Figure 22 Step4 for a more detailed explanation.Based on the YOLO results, we can extract the corner coordinates and their associatedclasses. However, it is crucial to distinguish and classify different types of lines separately.The classification of lines follows these criteria:
• A line connecting two corners at right angles is classified as a horizontal line.
• A line connecting two corners at acute angles is classified as a diagonal line.
• A line connecting one acute angle corner and one right angle corner is classified asa vertical line.
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To identify adjacent corners within a segment, we need to find the data points nextto each corner. As the remaining segment types consist of lines, we consider the tips ofthe lines, representing the two points with the maximum distance between them, as theclosest points to the corners. To achieve this, we used the convex hull of the data pointsand derive themaximumdistances between them. The next step involves determining thesegment types for the transitions from Π to Λ and from Λ to Π. This is accomplished bycategorising each lower acute corner as a) Π to Λ, b) Λ to Π. To make this determination,we analyse the preceding segments in the lower acute corner. If the previous segmentis a diagonal straight line or an upper acute angle corner, the type is classified as Λ to
Π. Conversely, if the previous segment is a horizontal line, a vertical line, or a right anglecorner, the type is classified asΠ toΛ. Once the segment types for the lower acute cornersare determined, all other segment data points are discarded and excluded from furtheranalysis. The subsequent phase involves determining the position of each segment withinthe test, specifically identifying the start, middle, and end parts. To accomplish this, welocate theminimumandmaximum x values from the data set, assigning to each data pointits respective position. The test is then divided into three equal length parts on the basisof the x-axis. If the mean x-value of a segment falls within the first part, it is classified asthe start segment. If it falls within the second part, it is categorised as a middle segment.In contrast, if the mean value x is located within the third part, it is designated as an endsegment. See Figure 22 Step 5 for a visual explanation. The starting segments are colouredblue, the middle segments green, and the end segments red.This segmentation-based approach directly addresses RQ3, which focuses on devel-oping machine learning frameworks that enhance clinical comprehensibility and ensurealignment with real-world workflows. By automatically identifying and classifying distinctsegments in digitised drawing tests, clinicians gain a clear, visual mapping of where andhow errors occur, making it simpler to link these patterns to specific motor impairments.Consequently, the framework not only maintains accuracy but also promotes an inter-pretable, step-by-step assessment that can be seamlessly integrated into existing clinicalpractices.
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3 Developed machine learning pipeline for fine motor skill 
diagnostics

The integration of advanced ML models, ranging from traditional classifiers to state-of-the-art CNNs, exploits the dynamic features of handwriting and drawing tests to iden-tify subtle motor impairments in patients with PD. This section presents the classificationmodels developed in this work, detailing their application, evaluation, and methodologi-cal rigor, while emphasising their underlying structures and performance.Feature selection is a cornerstone of effective model development. The studies pre-sented in this thesis leverage a sophisticated wrapper technique that evaluates subsets offeatures based on their contribution to classification accuracy [52]. This approach outper-forms filter methods by considering interactions between features, capturing attributesthat are diagnostically significant only in conjunction with others. To avoid overfittingand ensure unbiased evaluation, a nested cross-validation pipeline is implemented. Thisapproach confines feature selection and model training to the training set, isolating thetest set for independent validation. This setup prevents "information leakage", a com-mon issue in traditional cross-validation that can lead to overly optimistic performanceevaluations [53]. Traditional ML classifiers are extensively employed due to their robust-ness and interpretability. Models such as Logistic Regression (LR), Random Forests (RF),Support Vector Machines (SVMs), k-Nearest Neighbours (KNN), Decision Trees (DT) andAdaBoost (AB) are trained using features derived from dynamic drawing parameters likevelocity, pressure, and kinematics, employing metrics such as accuracy, precision, sensi-tivity, specificity, and F1 score to evaluate model performance. These measures help todetermine the model’s ability to accurately identify both PD patients and healthy con-trols, which is critical in medical diagnostics. For a detailed breakdown of the sequentialsteps and methodologies employed in our ML model development, including the criticalimplementation of nested cross-validation, refer to Figure 23.The experimental results of the Publication I demonstrated significant variability inthe performance of classifiers and feature selection strategies (see Tables 7 and 8). Forthe DraWritePD dataset, the non-nested wrapper-based feature selection combined withthe RF classifier achieved the highest accuracy of 92.16%, with sensitivity and specificityvalues of 90.48% and 93.94%, respectively. Similarly, for the PaHaW dataset, the non-nested wrapper method paired with LR achieved the best performance with an accuracyof 84.86%, a sensitivity of 80.36%, and a specificity of 88.57%. Across both datasets, thewrapper-based methods consistently outperformed filter-based methods, emphasisingthe importance of feature selection approaches tailored to the classification task. Whilenon-nested feature selection often resulted in higher accuracy, it carried a risk of featureselection bias, highlighting the need for careful validation. Ensemble classifiers, partic-ularly RF and AB, demonstrated strong performance across most configurations, effec-tively leveraging complex feature interactions. LR also performed robustly in scenariosthat included fewer features. Compared to the state-of-the-art methods in Table 9, theproposed framework achieved a higher accuracy in the PaHaW dataset, notably surpass-ing the benchmarks of [24] and [25] by 20% in some cases of metrics. These findingsvalidate the clinical relevance of the proposed tremor-related features, enriched with an-gular and differential parameters, and underscore their utility to discriminate between PDpatients and HC. The results also highlight the importance of stringent validation proto-cols, as nested feature selection methods provided more realistic performance estimatescompared to their non-nested counterparts. Future work will focus on expanding thesefindings to additional handwriting tasks and larger, more diverse datasets to ensure gen-eralisability and robustness.
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Figure 23: Machine learning pipeline overview with nested cross-validation. In this framework, su-
pervised feature selection strategies are nested within cross-validation iterations to ensure that only
the most discriminating features are selected based on the training set, thereby maintaining the in-
tegrity of the test set for validation.

Table 7: Classification performancewith non-nested and nested feature selection for the DraWritePD
dataset. The best scores for each feature selection method are presented in bold.

Feature
selection

Features Classifier Performance metrics

Pacc Pprec Psen Pspec

Wrappermethod

non
-ne

sted velocity_median,
α_accel_max,pressure_median

LR 90.20% 95.24% 80.16% 96.67%RF 92.16% 91.67% 90.48% 93.94%KNN 80.39% 78.57% 80.16% 81.52%SVM 88.24% 90.48% 80.16% 93.94%DT 80.39% 76.72% 79.37% 81.52%AB 86.27% 86.11% 80.95% 90.61%

nes
ted

shake_mass,shake_max,snap_mass,crackle_mass,pop_mass

LR 55.33% 25.67% 45.00% 61.67%RF 80.33% 80.00% 65.00% 90.00%KNN 82.00% 81.67% 70.00% 90.00%SVM 84.00% 86.67% 75.00% 90.00%DT 72.67% 65.83% 55.00% 83.33%AB 84.33% 81.67% 70.00% 93.33%
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Table 8: Classification performance with non-nested and nested feature selection for the PaHaW
dataset. The best scores for each feature selection method are presented in bold.

Feature
selection

Features Classifier Performance metrics

Pacc Pprec Psen Pspec

Wrappermethod

non
-ne

sted
accel_x_min,
α_accel_min,pressure_diff_max,shake_mean,shake_max

LR 84.86% 90.00% 80.36% 88.57%RF 59.81% 62.61% 52.50% 66.43%KNN 68.29% 72.00% 55.00% 80.36%SVM 73.62% 78.44% 71.79% 74.29%DT 61.24% 63.79% 52.50% 69.64%AB 62.86% 63.33% 61.43% 64.29%

nes
ted α_velocity_max,

α_accel_min,snatch_mean

LR 65.33% 67.33% 60.71% 69.29%RF 73.71% 76.62% 75.00% 71.43%KNN 63.90% 63.33% 66.79% 60.71%SVM 66.76% 70.67% 60.71% 72.14%DT 66.86% 70.33% 60.36% 71.29%AB 64.10% 66.90% 58.57% 69.29%

Table 9: Performance comparison with the state-of-the-art methods based on the Archimedean spi-
ral test from the PaHaW dataset.

Drotar et al (2016) Impedovo (2019) Angellilo et al (2019) Present work

non-nested 62.8 97.3 51.3 84.9nested - - 53.8 73.7

The results of automated segmentation introduced in Publication IV and described inSection 2.3.4 are summarised in Tables 10 (a), (b), (c)–11. The segment with the highestperformance was the acute angle at the start of the ΠΛ-copy task, which achieved anaccuracy of 93.8%, precision of 100.0%, sensitivity of 88.3%, and specificity of 100.0%(Table 10 (b)). This result underscores the diagnostic value of acute angles, likely due totheir complexity, which may reveal subtle motor impairments in patients with PD. Simi-larly, vertical lines showed consistently strong predictive power across all tasks. Notably,in the middle of the ΠΛ-continue task, vertical lines achieved accuracy of 96.7%, preci-sion of 95.0%, sensitivity of 100.0%, and specificity of 93.3% (Table 10 (c)). These resultsdemonstrate the stability and diagnostic reliability of vertical lines, which consistentlyoutperformed other line types. The ΠΛ-copy task stood out with the highest numberof informative segments, suggesting that the template’s presence may introduce com-plexity that highlights motor impairments. The ΠΛ-trace and ΠΛ-continue tasks, whilealso informative, exhibited slightly lower counts of segments with high predictive power,indicating task-specific nuances. Across all tasks, the performance of different line typesvaried. Acute angles generally outperformed right angles and diagonals, likely due to theirintricate movements, which are more challenging for patients with PD. Horizontal lines,while not as predictive as vertical lines or acute angles, still showed moderate diagnosticpotential. Their lower performance might be attributed to their shorter lengths, leadingto fewer data points for analysis. These results align with prior findings in [42], which re-ported an overall accuracy of 91.0%, and with observations in [54], which highlighted theinfluence of structured templates onmotor performance. Interestingly, the position of thesegment (start, middle, or end) did not significantly influence the predictive power acrosstasks. High-performing segments were distributed across positions, suggesting that diag-nostic insights are derived more from the type and complexity of the line than its positionwithin the task.
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(a) Comparison of ΠΛ-trace classification by segment type

Position Type Pacc Pprec Psen Pspec

Start Vertical 90.5 86.0 100.0 80.0Horizontal 77.6 85.0 71.7 86.7Acute angle 61.9 65.3 78.3 46.7Right angle 77.6 90.0 66.7 93.3Diagonal 87.1 91.0 86.7 86.7Middle Vertical 81.9 86.7 78.3 86.7Horizontal 74.3 88.3 68.3 80.0Acute angle 71.4 71.3 83.3 56.7Right angle 84.8 82.0 95.0 73.3Diagonal 72.4 78.0 71.7 73.3End Vertical 93.8 96.0 95.0 90.0Horizontal 65.7 76.3 65.0 63.3Acute angle 74.8 74.0 90.0 56.7Right angle 84.3 93.3 78.3 93.3Diagonal 77.6 75.3 86.7 66.7
(b) Comparison of ΠΛ-copy classification by segment type

Position Type Pacc Pprec Psen Pspec

Start Vertical 80.0 79.0 95.0 66.7Horizontal 81.0 90.0 78.3 83.3Acute angle 93.8 100.0 88.3 100.0Right angle 83.8 93.3 81.7 80.0Diagonal 87.6 91.0 90.0 83.3Middle Vertical 77.1 81.3 81.7 70.0Horizontal 80.5 88.3 78.3 86.7Acute angle 91.0 91.0 95.0 83.3Right angle 84.8 95.0 78.3 93.3Diagonal 84.3 85.0 90.0 76.7End Vertical 93.8 95.0 95.0 93.3Horizontal 82.0 92.0 83.3 80.0Acute angle 68.6 75.3 73.3 66.7Right angle 78.1 88.3 71.7 86.7Diagonal 86.7 86.0 93.3 76.7
(c) Comparison of ΠΛ-continue classification by segment type

Position Type Pacc Pprec Psen Pspec

Start Vertical 62.9 67.0 78.3 46.7Horizontal 86.7 90.0 88.3 86.7Acute angle 84.0 90.0 86.7 80.0Right angle 70.0 74.0 83.3 60.0Diagonal 82.0 85.0 88.3 76.7Middle Vertical 96.7 95.0 100.0 93.3Horizontal 78.0 76.7 86.7 70.0Acute angle 78.0 81.7 80.0 76.7Right angle 56.0 55.0 73.3 36.7Diagonal 82.7 90.0 86.7 80.0End Vertical 80.5 76.3 100.0 53.3Horizontal 78.7 92.0 76.7 86.7Acute angle 66.7 70.0 73.3 56.7Right angle 86.7 95.0 81.7 93.3Diagonal 78.1 93.3 68.3 93.3

Table 10: Comparison of ΠΛ-trace, ΠΛ-copy, and ΠΛ-continue classification by segment type.
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Table 11: ΠΛ-tests transition corners classification

Corner type Test type Pacc Pprec Psen Pspec

Start
Π to Λ Trace 75.6 68.0 69.0 81.0Copy 68.0 65.6 80.0 60.0Continue 69.8 66.7 41.7 86.7
Λ to Π Trace 72.9 65.0 70.0 75.3Copy 67.1 63.3 45.0 81.4Continue 71.8 68.4 66.7 75.3

Middle
Π to Λ Trace 76.5 77.3 65.0 84.3Copy 86.0 92.0 75.0 93.3Continue 74.4 76.3 63.3 81.3
Λ to Π Trace 74.0 73.3 55.0 86.7Copy 72.7 63.3 65.0 78.6Continue 70.6 53.3 36.7 88.7

End
Π to Λ Trace 74.0 79.8 63.0 83.3Copy 78.0 84.0 65.0 86.7Continue 84.7 93.3 66.7 96.0
Λ to Π Trace 81.1 88.3 61.7 92.7Copy 74.7 78.0 60.0 84.3Continue 71.1 72.7 60.0 76.0

The transition segments, which mark the changes between the Π and Λ configura-tions, exhibited lower overall performance compared to the other segments (Table 11).These segments showed particularly poor sensitivity, making them less suitable for an ac-curate diagnosis. For example, in the middle of the ΠΛ-copy task, the Π to Λ transitionachieved an accuracy of 86.0% but only a sensitivity of 75.0%. Among the transition seg-ments, the start position was particularly weak, suggesting that transitions alone may notprovide reliable diagnostic support.
Figure 24 highlights the most informative segments in tasks, depicted in red. Thesesegments represent areas of highest diagnostic relevance and are error-prone for patientswith PD. Visualisation corroborates the quantitative findings, emphasising the importanceof acute angles and vertical lines in diagnostic contexts.

Figure 24: The primary findings highlight the most informative (i.e. error-prone) segments (in red)
in Luria’s alternating series test for PD.

This analysis highlights the diagnostic potential of specific segments in the ΠΛ tests,particularly vertical lines and acute angles. While transition segments and horizontal linesare less informative, their inclusion can still contribute to a comprehensive diagnosticframework. Future work could explore the interaction between segment type and cog-nitive factors influencing task performance.
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An analysis of movements preceding freezing events in Publication III has yielded thefollowing results. Regardless of the number of features, the accuracy ranged from 77.0%to 82.0%, the precision varied between 79.0% and 85.0%, and the sensitivity (recall) wasobserved in the range of 82.0% to 93.0%. Specificity emerged as the only metric that lagbehind, fluctuating between 57.0% and 72.0%. The SVM classifier consistently exhibitedthe highest performance in all feature sets. The mean velocity values were included inevery feature set, followed by the angular velocity mass and the maximum altitude of thestylus, which appeared in three feature sets.
When examining movements after freezing events, the analysis revealed a higher ac-curacy (80.0% to 86.0%), precision (84.0% to 88.0%), and specificity (68.0% to 79.0%),while sensitivity remained relatively unchanged. In this case, the SVM classifier againdemonstrated superior performance among the classifiers tested. However, the featuresdiffered significantly. The standard deviation of velocity along the horizontal axis was in-cluded in all feature sets alongside the maximum pen altitude. This pair was followed bythe mean value of the angle that describes the change in the directional vector. Overall,post-freezingmovements appear to be better suited for analysis compared to pre-freezingevents.
To visualize these findings, a graph depicting velocity in a one-second window aroundfreezing episodes is provided:

-1 -0.5 0 0.5 1

Figure 25: Velocity profiles around freezing episodes for healthy control (HC) subjects (blue) and
Parkinson’s disease (PD) patients (yellow). The red line indicates the freezing point. The distinct dif-
ferences inmean values and standard deviations between the groups suggestmeasurable variations
in motion patterns associated with freezing episodes.

In Figure 25, the blue lines represent the velocities observed around freezing episodesin themotions of subjects with HC, while the yellow lines correspond to those observed inpatients with PD. The red line marks the freezing point. It is evident that the mean valuesand standard deviations differ noticeably between these groups.
When the samemethodology was applied to the entire sentence, the variability in themetrics that describe model performance increased. The accuracy ranged from 74.0%to 85.0%, the precision from 70.0% to 95.0%, and the sensitivity from 76.0% to 93.0%.However, the specificity rose to 93.0% for certain models with four or five features. Al-though SVM continued to perform best for models with four features, LR matched its per-formancewith four variables and surpassed it in quality when five features were included.The feature sets in this case more closely resembled those of post-freezing events, withthe notable addition of acceleration-based features.
A key challenge in comparing the results of the sentence writing test lies in the varia-tion in languages and sentence lengths. One frequently cited work employing techniques
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similar to the present research is [24], where subjects wrote the Czech sentence Tram-
vaj dnes už nepojede (The tram will not go today). Unlike the current study, writing wascombined with other tasks in a broader testing battery. Nonetheless, the model perfor-mance observed in the pre-freezing movement analysis matches the goodness reportedby [24], while the analysis of post-freezing movements resulted in models with higherperformance.

The study by [55] also investigates sentence writing tests, but its approach focusseson analysing individual letters rather than entiremovements. The performancemetrics ofthemodel in [55] fall within a similar range: accuracy between 73.0% and 82.0%, precisionfrom 71.0% to 91.0%, and recall from 61.0% to 93.0% (excluding SVM and KNN, whichperformed poorly). No single model emerged as a definitive winner. Furthermore, [55]identified the mean velocity and the mean acceleration mass of the angular change asthe most used features.
While the findings are insufficient to claim that the analysis of freezing episodes ismore informative than micrographia or other tests, they demonstrate comparable modelperformance,making this approach a valuable addition to computer-aided diagnostic sup-port. Furthermore, analysing individual elements of the test proved as informative asanalysing the entire test. This conclusion is consistent with [27], which showed that, indrawing tests, specific test segments can be as informative as the full test to diagnose PD.

3.1 Dimensional variants and transfer learning in convolutional neural
networks for drawing test classification

CNNs have become a pivotal tool in PD diagnostics, offering unparalleled capacity to anal-yse raw data and extract hierarchical features. In Publication VI, CNN architectures wereextended to one, two, and three dimensions to explore their ability to classify digital hand-writing tests (Figure 26). Each CNN variantwas designedwith identical architectures, vary-ing only in the size and dimensionality of the convolution kernels.

Figure 26: The CNN model employs the same architecture for one-, two-, and three-dimensional
convolutional networks, with the only difference being the convolution method used.

The experimental results summarised in Tables 12 and 13 demonstrate the impact ofencoding different dynamic features on the diagnostic performance of CNNs across one-,two-, and three-dimensional spaces using the DraWritePD and PaHaW datasets. In gen-eral, the addition of more dynamic features improved classification metrics such as preci-sion, sensitivity, specificity, accuracy, and F1 score. In a 1D space, the inclusion of velocity,acceleration, and jerk features progressively improved the performance of the model,with accuracy increasing from 51.67% to 62.56%. However, adding velocity features aloneled to minimal improvement, likely due to redundancy with coordinate features. The 2DCNN models showed a marked improvement over the 1D models, achieving a peak accu-racy of 80.38%with the inclusion of all dynamic features, including azimuth, altitude, and
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pressure. Furthermore, 3D CNNs consistently outperformed lower-dimensional models,achieving the highest diagnostic accuracy of 85.38%, specificity of 87.25%, and F1-scoreof 85.51% when all dynamic features were included. In particular, 3D CNNs maintainedcompetitive performance even with limited feature sets, highlighting their ability to ex-tract spatial and temporal patterns effectively. These results underscore the advantagesof encoding comprehensive dynamic features and using higher-dimensional convolutionaloperations to improve diagnostic accuracy in distinguishing PD patients from healthy con-trols.
Table 12: Performance comparison in the DraWritePD dataset.

Dimension Dynamic features Metrics (in %)
x y a l p v c j Pprec Psen Pspec Pacc Pf1

1D ✓ ✓ 50.50 53.32 50.25 51.67 52.03
✓ ✓ ✓ 51.67 61.75 52.67 56.93 54.51
✓ ✓ ✓ ✓ ✓ 52.25 63.32 51.67 57.73 56.67
✓ ✓ ✓ ✓ ✓ ✓ 59.72 62.50 56.25 59.38 61.03
✓ ✓ ✓ ✓ ✓ ✓ 63.72 67.25 59.67 62.56 65.21
✓ ✓ ✓ ✓ ✓ ✓ 60.67 65.32 57.75 58.73 63.45

2D ✓ ✓ 53.25 56.32 68.67 62.56 58.61
✓ ✓ ✓ 66.67 62.75 75.25 69.38 67.14
✓ ✓ ✓ ✓ ✓ 68.72 75.00 78.67 73.67 72.67
✓ ✓ ✓ ✓ ✓ ✓ 75.00 76.50 80.00 77.73 76.51
✓ ✓ ✓ ✓ ✓ ✓ 77.50 78.25 81.75 80.38 79.32
✓ ✓ ✓ ✓ ✓ ✓ 76.67 74.75 78.67 75.93 77.14

3D ✓ ✓ ✓ 72.25 78.00 80.25 76.58 75.21
✓ ✓ ✓ ✓ ✓ ✓ 77.50 86.50 81.75 82.34 81.45
✓ ✓ ✓ ✓ ✓ ✓ 82.50 82.50 87.25 85.38 85.51
✓ ✓ ✓ ✓ ✓ ✓ 77.25 86.25 80.00 83.34 81.95

Note: The abbreviations x, y denote the x- and y-coordinate features; and a, l and p are theazimuth, altitude and pressure features, respectively; velocity, acceleration, and jerk arerepresented by v, c, and j, respectively.
Table 13: Performance comparison in the PaHaW dataset.

Dimension Dynamic features Metrics (in %)
x y a l p v c j Pprec Psen Pspec Pacc Pf1

1D ✓ ✓ 50.00 57.14 50.00 53.33 53.33
✓ ✓ ✓ 53.93 57.14 61.75 56.67 57.33
✓ ✓ ✓ ✓ ✓ 58.14 58.48 62.50 60.67 59.14
✓ ✓ ✓ ✓ ✓ ✓ 59.03 71.43 56.25 63.33 64.58
✓ ✓ ✓ ✓ ✓ ✓ 62.31 75.71 62.50 64.22 65.29
✓ ✓ ✓ ✓ ✓ ✓ 57.93 68.73 56.25 60.67 63.92

2D ✓ ✓ 56.93 75.71 57.25 64.33 63.16
✓ ✓ ✓ 72.31 81.48 75.00 75.33 73.43
✓ ✓ ✓ ✓ ✓ 82.33 71.43 82.50 80.00 78.92
✓ ✓ ✓ ✓ ✓ ✓ 76.25 85.71 75.50 81.33 80.51
✓ ✓ ✓ ✓ ✓ ✓ 81.03 84.73 78.75 83.67 82.29
✓ ✓ ✓ ✓ ✓ ✓ 79.61 83.67 76.25 80.33 79.97

3D ✓ ✓ ✓ 62.31 82.73 61.25 68.67 73.29
✓ ✓ ✓ ✓ ✓ ✓ 75.93 90.48 75.00 82.22 82.50
✓ ✓ ✓ ✓ ✓ ✓ 83.61 87.31 85.50 84.67 85.71
✓ ✓ ✓ ✓ ✓ ✓ 82.71 85.71 80.25 81.73 81.50

Note: The abbreviations x, y denote the x- and y-coordinate features; and a, l and p are theazimuth, altitude, and pressure features, respectively; velocity, acceleration, and jerk arerepresented by v, c, and j, respectively.
The results in Table 14 highlight the performance of the proposed methodology(Publication VI) compared to state-of-the-art approaches for the PaHaW dataset. Drotár

et al [24] achieved an accuracy of 62.80% using handcrafted features combined with anSVM classifier, serving as a traditional benchmark. Diaz et al [23] demonstrated significantadvancements using DL techniques; their approach with 1D CNN-extracted features and a
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hybrid 1D CNN + BiGRU model achieved the highest accuracy of 93.75%. In contrast, thepresent work focused on 1D, 2D, and 3D CNNs trained on CNN-extracted features. The 1DCNN achieved an accuracy of 64.22%, which is slightly better than the traditional hand-crafted approach but falls short of advanced hybrid models. However, the accuracy im-proved significantly with 2D CNNs (83.67%) and 3D CNNs (84.67%), showcasing the bene-fits of higher-dimensional feature representations. These results underscore the strengthof leveraging 3D convolutional architectures to capture spatial and temporal informationmore effectively, narrowing the gap with the state-of-the-art performance of hybrid mod-els. The findings also demonstrate that higher-dimensional feature extraction is a criticalfactor in improving classification accuracy in Parkinson’s diagnostics.
Table 14: Comparisons with state-of-the-art works.

Author(s) Dataset Features Models Accuracy (in %)
Drotár et al. PaHaW hand-crafted SVM 62.80Diaz et al. PaHaW 1D CNN-extracted 1D CNN + BiGRU 93.75Diaz et al. PaHaW 2D CNN-extracted 2D CNN + SVM 75.00
Present work PaHaW 1D CNN-extracted 1D CNN 64.222D CNN-extracted 2D CNN 83.673D CNN-extracted 3D CNN 84.67

Evaluation of GAN-augmented data presented in Publication II and Section 2.3.2reveals an improvement in CNN-based diagnostic performance compared to baselineand traditional augmentation methods. Using CNN architectures such as AlexNet [56],ResNet50 [57], VGG11 [58], Inceptionv3 [59], and Xception [60], pre-trained on ImageNet[61] and adapted through transfer learning, we handle the classification of images derivedfrom digitised drawing tests. ResNet50 and Xception demonstrated the highest sensitiv-ity of 96.6% when trained with ProjectedGAN-generated images, outperforming all otheraugmentation techniques. These results underscore the strength of ProjectedGAN in gen-erating synthetic data that effectively capture disease-relevant patterns, aligning with itsdemonstrated superiority in convergence speed and data efficiency, as reported by itsauthors [47]. Although StyleGAN-based augmentations showed better specificity, par-ticularly with AlexNet and Inception v3, they fell short of the sensitivity improvementsachieved by ProjectedGAN. The findings also highlight the limitations of using unaug-mented datasets, as none of the CNN architectures achieved optimal scores without aug-mentation. Despite the computational cost associated with GAN training, the results em-phasise the potential of GAN-based augmentation in addressing the challenges posed bylimited labelled data, particularly in the context of PD diagnostics. The addition of syn-thetic GAN-generated images not only improved sensitivity scores by up to 5.7%, but alsodemonstrated the importance of using advanced enhancement techniques to improvethe robustness and reliability of deep learning models in clinical applications.
Table 15: Test dataset results. Mean scores over five runs. The values in bold indicate the best results
for a model. Sn - Sensitivity, Sp - Specificity.

Augmentation method AlexNet ResNet50 VGG11 Inception v3 Xception
Psen Pspec Psen Pspec Psen Pspec Psen Pspec Psen PspecNone 88.0 73.1 94.3 68.0 92.6 66.9 92.0 69.1 90.9 65.7Traditional 91.4 72.0 93.7 76.0 89.7 73.1 92.6 76.6 93.1 72.6StyleGAN2-ADA 85.1 75.4 90.9 71.4 94.3 68.0 90.3 76.6 93.7 68.0StyleGAN2-ADA + LeCam 88.6 68.6 95.4 69.1 93.7 66.9 94.3 69.1 95.4 63.4StyleGAN3 88.0 73.1 88.0 73.1 92.0 65.7 93.1 68.0 91.4 65.7Projected GAN 90.3 68.0 96.6 69.7 95.4 65.1 92.6 66.3 96.6 59.4

The results in Table 15 illustrate the sensitivity and specificity achieved by various CNN
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models under different augmentation methods. Without augmentation, ResNet50 ex-hibited the highest sensitivity (94.3%), while AlexNet showed the best specificity (73.1%).Traditional augmentation improved specificity for most models, with Inception v3 achiev-ing the highest value (76.6%), though sensitivity improvements were modest acrossarchitectures. StyleGAN2-ADA demonstrated competitive specificity, particularly withAlexNet and Inception v3, but sensitivity scores lagged behind traditional augmentation.StyleGAN2-ADA + LeCam achieved the highest sensitivity with AlexNet (88.6%) and im-proved specificity for Inception v3 compared to non-augmented data. StyleGAN3 pro-vided results similar to traditional augmentation but did not outperform it. ProjectedGAN achieved the best sensitivity for ResNet50 and Xception (96.6%) and also the high-est sensitivity overall for VGG11 (95.4%). However, its specificity values were generallylower than those achieved with traditional or StyleGAN-based augmentations. These re-sults indicate that GAN-based augmentation, particularly with Projected GAN, enhancessensitivity for specific models, making it a promising tool for improving CNN performancein PD diagnostics. The following are the most informative findings:
1. The addition of GAN-generated images improved the baseline sensitivity score by1.7-5.7% for four CNN models (ResNet50, VGG11, Inception v3, Xception).
2. The highest sensitivity score (96.6%) was achieved with the combination of Project-edGAN generated images and pre-trained CNN models of ResNet50 or Xception.
3. Models trained on the original dataset without any augmentation techniques didnot achieve top scores in any experimental settings.
4. It can be seen that the overall specificity scores were lower for the majority of set-tings. A highly specific test is good at excluding most people who do not have thecondition. However, minimising the probability of false negatives is more importantin this case.

3.2 Evaluating sensitivity-specificity trade-offs across experimental 
models for Parkinson’s disease diagnostics

This section analyses the performance of various experimental models designed to de-tect PD. Sensitivity and specificity, two critical metrics for evaluating diagnostic accuracy,are compared in different publications. Sensitivity reflects the model’s ability to correctlyidentify individuals with PD, while specificity measures its effectiveness in correctly iden-tifying those without the disease. By examining the distribution of these metrics throughviolin plots in Figure 27, we highlight the trade-offs, variability, and overall performanceof each model, providing insight into their strengths and limitations.The violin plots illustrate the distribution of sensitivity (red) and specificity (blue)across different experimental models, represented as Publications I, II, III, IV and VI. Eachplot captures the density of model performance scores, reflecting the range of results ob-served under varying configurations or experimental conditions. Each data point withinthe violin plot represents a single experiment or model configuration’s result in terms ofsensitivity or specificity.
Publication II stands out as a top performer due to its high median values and con-sistent results, making it potentially the most reliable model among those tested. Thishighlights the effectiveness of GAN-based data augmentation combined with CNNs in im-proving generalisation and robustness in PD classification. The sensitivity values peak be-tween 0.8 and 1.0, demonstrating the model’s consistent ability to correctly identify PD
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Figure 27: ML models’ performance in detecting PD across different experimental settings

cases. The sensitivity violin plot shows a wider spread, indicating a range of sensitivityscores across different configurations. However, the peak of the distribution is between0.8 and 1, suggesting thatmany configurations resulted in relatively high sensitivity scores.This concentration towards the higher end of the sensitivity range indicates that the Publi-
cation IImodel often achieved strong sensitivity performance. Meanwhile, the specificityplot has its own spread and, although it also shows higher values in some configurations,the peaks are not aligned with those of sensitivity, reinforcing the trade-off between opti-mising for sensitivity versus specificity. Publication III, which focused on microkinematicsaround freezing episodes, presents a unique distribution pattern. While its sensitivity issomewhat moderate with a broader spread (indicating model instability in some condi-tions), specificity tends to be higher and more concentrated. This suggests that while themodel reliably detects non-PD cases, it may underperform in complex detection scenarioslike freezing, possibly due to intra-subject variability in symptom expression. Publication
IV applies YOLO-based segmentation combined with microkinematic corner feature anal-ysis. The violin plots show tight clustering around high values for both metrics in someconfigurations, suggesting high precision and discriminative power, particularly within in-dividual handwriting segments. However, there is also variability, indicating sensitivityto segmentation accuracy and feature locality. This model showcases the potential ofprecise handwriting decomposition when paired with motor descriptors. The combinedperformance is centered around 0.8, reflecting moderate overall performance with sig-nificant variability. Publication I, which leveraged high-order derivatives (microkinemat-ics) and nested feature selection, shows more variability in sensitivity than in specificity.The wider spread in sensitivity indicates performance fluctuations across feature subsets,though many configurations still achieved moderate to high accuracy. This highlights thechallenge of feature stability, but also underscores the diagnostic potential of microkine-matics. In Publication I, sensitivity shows a broad distribution with a peak around 0.4 and0.7, suggesting moderate performance with noticeable variability across configurations.Specificity, however, peaks higher around0.6 to 0.9, indicating that themodels performedbetter at correctly identifying negatives. This contrast reveals a trade-offwhere specificity
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outperformed sensitivity, pulling the overall performance to a moderate level.Overall, the results reveal that DL-based models generally outperform classicalpipelines, particularly those enhanced by data augmentation Publication II and struc-tural decomposition Publication VI. The segmentation-based approach in Publication IVdemonstrates that even classical ML workflows can reach high precision if paired withmeaningful spatial decomposition and motor-relevant features. Moreover, the inclu-sion of microkinematics consistently improves interpretability and diagnostic granularityacrossmodels. While GAN-augmented CNNs exhibit themost robust sensitivity and speci-ficity balance, segmentation-based methods suggest promising potential for task-specificrefinement. These findings support the hybrid integration of fine-grained motor descrip-torswith advancedDL frameworks to enhance early PD detection in clinical and real-worldenvironments.It is important to explore these trade-offs further to determine which metric (sensitiv-ity or specificity) is more critical for the application at hand, and whether you can find amodel configuration that offers an acceptable compromise between the two.
3.3 Extending the framework to fatigue detection and analysis
The ML-based methodology presented in this subsection demonstrates the scalability ofthe PD-focused pipeline, adapting it for the detection and classification of fatigue. Fatigueis a complex and multifactorial condition, characterised by sustained cognitive or physi-cal exertion and commonly observed in both neurological disorders such as PD [62] andbroader contexts like transportation, healthcare, and occupational safety. Research es-timates that fatigue-related drowsiness contributes to 3.6% of fatal road accidents [63],emphasizing the need for accessible and early detection tools. Despite its widespreadimpact, fatigue remains underexplored in clinical and technological domains. Its diag-nosis is hindered by nonspecific symptoms, scarce labelled data, and the lack of reliablemonitoring tools [64, 65]. Fatigue has been associated with reduced physical functioning,diminished quality of life, and poor cognitive performance [66, 67, 68]. These challengesmirror those seen in PD diagnostics and further validate the need for objective and scal-able approaches. To address this, we extend our handwriting-based kinematic frameworkto classify fatigue states using smartphone input. This extension illustrates the versatilityof AI-based motor analysis for applications beyond PD, reinforcing the broader feasibilityof smartphone-based diagnostics in everyday and clinical contexts.Accurate labelling and classification of fatigue is particularly challenging, as it inte-grates subjective self-assessmentswithmeasurable behavioral data. Our approach inPub-
lication V employs a combination of self-reported questionnaires andmotor performancefeatures to define thresholds for fatigue categorisation. As shown in Table 16, fatigue issegmented into binary classes (fatigued, not fatigued) using indicators such as physical ormental exertion levels, sleep duration, and self-assessed tiredness level.In Publication VIII, fatigue categorisation was conducted by distinguishing ’non-fatigued’ and ’fatigued’ states through sequentialmental tasks, where the first sessionwaspresumed ’non-fatigued’ and the subsequent one ’fatigued.’ Self-assessment of fatiguelevels underwent iterative refinement, progressively narrowing fatigue class boundariesto enhance ML model performance by increasing decision boundary separation. The fea-tures used to train these models, as introduced in Section 2.3, capture intricate patternsof motor activity and behavioural cues. For example, trajectory angles (e.g., φ_mass) andmicro-accelerations (e.g., crackle_mass) reflect subtle fluctuations in fine motor controlthat correlate strongly with fatigue states. These features offer valuable insight into thenuanced effects of fatigue on motor performance. The final models, their correspond-
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Table 16: Fatigue categories for classification

Fatigue category Threshold Label

Physical exertion (PEF) = 0 Non-fatigued (32)
≥ 1 Fatigued (99)

Mental exertion (MEF) = 0 Non-fatigued (84)
≥ 1 Fatigued (47)

Sleep hours (SHF) ≥ 7 Non-fatigued (62)
≤ 6 Fatigued (69)

Self-assessed (SAF) ≤ 3 Non-fatigued (37)
≥ 6 Fatigued (47)

ing features and performance metrics are presented in Tables 17 and 18. The confusion matrices further illustrate their classification accuracy.
Table 17: Best performing machine learning models for fatigue detection using android application 
data Publication V.

Fatigue
cate-
gory

Features Classifier Pacc Psen Pspec Pprec Pf 1 Confusion Matrix

PEF (ASD) φ_mass,crackle_mass KNN 78.8 96.0 25.0 80.0 87.3

MEF (ASD) x_jerk_mass, dis-tance, acceleration RF 78.8 85.7 66.7 81.8 83.7

SHF (RTA) timeFromLast-Touch, timeFromFirst-CorrectColorRender RF 75.8 88.2 62.5 71.4 78.9

SAF

(ALL TESTS)
α_velocity_mass,crackle_mass,y_acceleration_mass,
α_jerk, γ_acceleration,velocity, y, z, abs, timeFrom-LastTouch

RF 75.8 83.3 66.7 79.0 84.2

The six classifiers exhibited comparable performance, with a slight advantage ob-served for the KNN and RF classifiers. The ASD test, complemented by RTA, emergedas the most informative assessment for detecting fatigue. In addition, for certain fatiguecategories determined by self-assessment (SAF), the combination of all tests yielded themost favourable results. Trajectory angles (e.g. φ_mass) and micro-changes in acceler-ation (e.g. crackle_mass) as described in Section 2.3, proved to be highly informative indetecting fatigue. These features capture nuanced fluctuations in fine motor movement,providing valuable insight into the effects of fatigue on motor performance. This high-
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Table 18: Best performingMLmodels for fatigue detection using extended dataset and self-assessed
features Publication VIII.

Fatigue
cate-
gory

Features Classifier Pacc Psen Pspec Pprec Pf 1 Confusion Matrix

MEF

α_jerk,
φ_acceleration,yaw_acceleration,jerk, yl , xr, phys-icalWorkScale, ef-fortScale, interestScale,timeFromLast-Touch_rts

RF 85.0 86.0 82.0 86.0 84.0

SAF
α_mass, physical-WorkScale, effortScale,anxietyScale RF 84.0 86.0 82.0 86.0 86.0

lights the capability of ML algorithms to discern between these two states based on thestudy’s utilised features, which, although subtle and imperceptible to the naked eye, pos-sess informative value for classification.The Publication VIII achieved a significantly higher accuracy 0f 85.0% compared toprevious research 0f 78.8% by incorporating a larger dataset, self-assessed fatigue levels,and hours of mental work as key labels. Features such as anxiety and effort scales, alongwith angular metrics such as trajectory angles (α_mass), were critical contributors to ro-bust model performance. These features captured subtle motor fluctuations related tofatigue, highlighting the potential of ML algorithms to detect nuanced changes in motorperformance.
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4 Discussion, limitations and prospects for future research
In line with the research gaps outlined in Section 1.1.1, this work specifically addressed:
(A) the pervasive problem of data scarcity and limited diversity, (B) the overlooked im-portance of robust feature engineering and selection practices, (C) the challenges ofcomprehensibility and clinical adoption of AI-based methods, and (D) the limited use ofnon-invasive and cost-effective data acquisition tools. Three primary research questionsguided the investigation:

RQ1: How can advanced feature engineering techniques and data augmentationmeth-
ods improve the diagnostic accuracy and robustness of AI models to detect Parkinson’s
disease? Many earlier studies on PD diagnostics reported high classification metrics, butthese findings were often overoptimistic due to improper validation strategies, includ-ing data leakage and non-nested feature selection [26][35]. This thesis addressed theseshortcomings by implementing a fully nested pipeline, rigorously separating training andvalidation to ensure unbiased evaluation. A systematic comparison of feature selectionmethods further underscored the detrimental impact of non-nested approaches, rein-forcing the need for rigorous validation practices in AI-based diagnostics.

Beyond improving validation protocols, this work introduced advanced kinematic fea-tures, including high-order derivatives and angular metrics, which outperformed severalstate-of-the-art methods. While high-order derivatives may appear mathematically ab-stract, they proved clinically relevant by capturing micro-changes in handwriting kinemat-ics - potential indicators of tremor and fine motor impairment in PD. Multi-dimensionaltransformations, previously unexplored in PD diagnostics, further enhanced classificationperformance, demonstrating their utility in handwriting-based assessments.
One of the key contributions of this work was the application of GANs for dataset aug-mentation. The GAN-augmented dataset not only expanded data diversity but also led tomeasurable classification improvements, outperforming traditional augmentation tech-niques. This highlights the potential of synthetic data generation for enhancing model ro-bustness in scenarios with limited real-world samples. Additionally, the generated datasetserves as a valuable resource for further experimentation in PD diagnostics and beyond.However, future research should explore the computational constraints associated withGAN-based augmentation, particularly for deployment in real-time clinical applications.
RQ2: How can scalable and cost-effective tools, such as smartphone-based appli-

cations, transform data collection practices for motor function diagnostics, allowing
widespread accessibility and real-world applicability? Prior efforts to digitise fine mo-tor skill assessment have increasingly explored portable devices, but many still reliedon specialised or resource-intensive hardware (e.g., high-resolution graphics tablets orlaboratory-grade sensors) [69][63]. Building on existing mobile health and wearable re-search, this thesis developed smartphone-based data acquisition protocols that capturenot only self-reported fatigue levels but also objective fine motor features derived fromhandwriting and movement patterns, lowering both technical and financial barriers (ad-dressing Gap D). Compared to earlier smartphone-driven solutions [70], which rely pri-marily on subjective Visual Analogue Scales (VAS) and sleep diaries, the proposed frame-work incorporates high-order kinematic features to quantify subtlemotor fluctuations. Byintegrating both subjective self-reports and micro-kinematic analysis, this work enhancesthe precision of fatigue detection. In the domain of fatigue analysis, the proposed frame-work has shown feasibility for real-world applications, such asmonitoring fatigue in criticalsectors such as transportation. Future research will investigate medical applications, suchas symptom monitoring during chemotherapy or stroke rehabilitation. ML could furtherenhance fine motor skill tests to track the progression of fatigue or recovery, offering a
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valuable tool for patient monitoring.
RQ3: How can machine learning frameworks be developed to enhance comprehen-

sibility for clinicians, integrate advanced features, and maintain high accuracy, ensuring 
alignment with clinical workflows and fostering real-world adoption? A key challenge in AI-assisted diagnostics is ensuring comprehensibility, allowing clinicians to align model predictions with clinically relevant observations. This thesis addresses this issue by lever-aging automated segmentation techniques that provide visual and structural mappings between model predictions and specific drawing components (addressing Gap C). The segmentation-based approach introduced in Publication IV (detailed in Section 2.3.4) enables the isolation of error-prone drawing segments, allowing for a direct comparison between model-identified difficulty regions and patient-executed trajectories. This method bridges the gap between raw AI predictions and visually interpretable motor im-pairments, making AI-assisted assessments more accessible for clinical reasoning. The segmentation results, summarised in Tables 10 (a), (b), (c) –11, revealed that specific com-ponents of the handwriting, such as acute angles and vertical lines, exhibited the highest predictive power for Parkinson’s-related motor impairments. Similarly, vertical lines demonstrated consistently high performance across tasks. These results reinforce the importance of specific kinematic features in distinguishing between healthy and patho-logical motor function. Furthermore, this work integrates high-order kinematic features that provide a quantitative representation of motor impairments. The ability to link ex-tracted microkinematics to observable motor deficits enhances the clinical utility of AI assessments, making them more interpretable rather than opaque decision systems. By combining segmentation-driven visual explanations with clinically relevant microkinemat-ics, this approach enhances the interpretability of AI-based handwriting assessments. It bridges model predictions with clinically meaningful motor dysfunctions, fostering trust and enabling evidence-based, clinician-guided diagnostics.While this research has yielded promising results across various areas, several limita-tions need to be addressed in future studies to enhance the applicability and impact of the findings. One of the primary limitations is the interpretability of DL models, particu-larly in the context of healthcare. The complexity of models, such as CNNs, often makes it challenging to understand how specific decisions are made. This "black box" nature of AI algorithms poses a significant hurdle in clinical settings where transparency is crucial. To address the interpretability challenge, our future research will focus on developing XAI techniques. We plan to integrate various saliency-based methods, such as Class Activa-tion Mapping (CAM) techniques, to visualise which regions of a drawing or aspects of a kinematic signal are most influential in the decision-making process of a model. Early experiments using these techniques have shown promising results, particularly in PD diag-nostics, where critical regions, such as the beginning and end portions of spiral drawings, typically problematic areas for patients, are consistently highlighted. Figure 28 illustrates the comparison between two models used for the diagnosis of PD based on spiral drawing tests. Both models demonstrate high accuracy, with only one misclassification. However, the explainability of their decisions varies significantly, which has important implications for clinical applications. In the first model, CAMs highlight regions extending beyond the spiral drawing, indicating potential overfitting or attention to irrelevant features. While the model performs well with specific test data, its ability to generalise to similar tasks remains uncertain, an important concern in medical diagnostics. In contrast, the second model exhibits activation patterns that closely align with clinical expectations. Its CAM visualisations focus within the spiral, particularly on the end portions, which are known to be challenging for PD patients. This clinically meaningful alignment suggests that the
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Model 1

Model II

Figure 28: Comparative analysis of model interpretability in PD spiral drawing classification. This
image shows the most informative regions highlighted in red by two different models. While both
models performed accurately, the second model aligned more closely with neurological expecta-
tions, focusing on critical areas of the spiral. The firstmodel, however, showed signs of hallucination,
highlighting non-essential regions outside the drawing, indicating potential issues with generalisa-
tion.

second model is not only accurate but also more interpretable and potentially more reli-able for real-world clinical applications. This comparison underscores the importance ofusing XAI techniques in the development of machine learning models for healthcare care,ensuring that the models are not only accurate, but also transparent and aligned with theevaluations of experts. The alignment between clinical observations and model explana-tions represents a positive step toward making AI more interpretable and trustworthy inhealthcare applications.
The nearly perfect classification performance reported in the literature warrants fur-ther scrutiny [23][26]. Clinical observations reveal that patients with early-stage PD undermedicationmay not exhibit significant differences in finemotor skills compared to healthyindividuals of similar age. In some cases, they can even outperform elderly individualswithout PD. This suggests the absence of a clear categorical distinction between thesegroups. Future research will test the methodologies described in these studies using theDraWritePD dataset to further explore these findings.

4.1 Exploring gross motor skill assessment as a new research avenue
Although fine motor skill assessments such as handwriting and drawing tests offer valu-able insight into early detection and monitoring of neurological conditions, a compre-hensive evaluation of motor function must also consider gross motor skills. Gross motorassessments, particularly in conditions such as cerebral palsy (CP), provide crucial infor-mation on movement and posture abnormalities, which are often overlooked in fine mo-
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tor evaluations. This section explores advances in grossmotor skill assessments, focussingon gait analysis and how AI-driven solutions are transforming traditional, labour-intensivemethods. CP is a group of permanent movement disorders that appear in early child-hood, affecting about 2.1 per 1,000 live births [71][72]. CP affects movement and posturedue to abnormalities in the developing brain, leading to lifelong disability. Diagnosis andmonitoring of CP are challenging due to the variability in symptoms and severity amongpatients. Traditional diagnostic methods include clinical evaluations and various motorfunction tests, but these can lack the sensitivity and specificity needed for effective treat-ment. Marker-basedmotion capture systems, despite being the gold standard, comewithlimitations such as high costs, time-intensive setups, and discomfort for patients due tomarker attachment [73][74]. Marker placement for gait analysis in patients with CP, whichrequires 1 to 2.5 hours for setup and additional hours for analysis, demands precision andexpertise from clinicians.

(a) Clinicians preparing reflective mark-
ers for gait analysis

(b) Utilising a laser for enhanced preci-
sion

(c) Comparative analysis of gait dynam-
ics: Video footage and 3D model visual-
isation

(d) Clinicians attaching reflective mark-
ers for gait analysis

Figure 29: Reflective marker setup (a, d), laser alignment for accuracy (b), and 3D model evaluation
(c) in HNRC’s gait lab.

This process, illustrated in Figure 29, involves extensive measurements and can beuncomfortable for young patients, sometimes prolonging sessions. Additionally, the heatfrom infrared cameras used in analysismay increase discomfort, adding to the procedure’sstrain. Acknowledging the challenges of traditional gait analysis, including clinician sub-jectivity and patient discomfort, researchers are exploring AI-driven, markerless solutions.These advances aim to reduce setup time, costs, and discomfort, enhancing the accuracyand usability of gait analysis for patients with CP.
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4.1.1 Advancing markerless gait analysis for cerebral palsyThis section contributes to the broader objective of digitalising motor skill assessments by exploring the use of 3D computer vision for markerless analysis of gait in individuals with cerebral palsy (CP). As detailed in Publication VII, this research supports the general objective of the thesis of making data acquisition more accessible and efficient, aligning directly with RQ2. The primary goal of this study was to demonstrate how video-based pose estimation techniques can replace traditional markers-dependent methods for gait analysis. CP gait analysis is typically performed with physical markers attached to the patient’s body, which can be invasive and uncomfortable. This research introduced a dual-camera setup using advanced pose estimation algorithms such as MediaPipe, OpenPose, Detectron2, HRNet, and Metrabs, which allowed the extraction of key gait parameters, such as joint angles, stride length, and walking speed, directly from video footage.Creating a comprehensive 3D model of human gait involves a meticulous process that begins with the acquisition of video data from various angles. This is crucial for extracting 2D keypoints using advanced pose estimation algorithms, such as MediaPipe, which capture essential posture details. These keypoints are then triangulated to construct a 3D representation by correlating 2D data points across different camera views (see Figure 30). In order to evaluate the performance of multiple pose estimation frameworks, Figure 31 presents sample outputs from Detectron2, HRNet, OpenPose, Metrabs, and MediaPipe. Each framework applies a distinct approach to detecting and mapping keypoints in human motion, as reflected in the varying densities and precision of the skeletal overlays. For the single-patient context of CP gait analysis, MediaPipe emerged as the most suitable choice, offering robust accuracy, free availability, and near real-time processing without an Nvidia GPU - features that align well with the overarching aim of creating a scalable and cost-effective solution for clinical settings. This work underscores that foot keypoints play a pivotal role in evaluating stride and stance phases, making frameworks like MediaPipe, which provides comprehensive lower-limb coverage, particularly suitable in a clinical context. By enabling robust, near real-time detection without reliance on high-end hardware, MediaPipe aligns with the overarching goal of delivering a cost-effective, scalable approach to markerless gait analysis. To ensure accuracy, the process requires precise camera calibration to determine intrinsic parameters such as focal lengths and optical centres. Calibration typically involves the use of a calibration pattern, such as a chessboard, to fine-tune these parameters, allowing for an accurate overlay of the 2D points into 3D space. This calibration facilitates the calculation of relative positions and orientations of the cameras using geometric transformations based on observed calibra-tion images. Triangulation then synthesises these calibrated measurements into a full 3D model by estimating the spatial relationships and real-world coordinates of the observed keypoints. This methodology not only provides a dynamic visualisation of gait, but also en-ables detailed kinematic analysis across different planes, sagittal, frontal, and transverse, offering insights into the mechanics of movement during the gait cycle. Such models are invaluable for both clinical evaluations and research on gait abnormalities, providing a rich data set from which to derive quantitative kinematic variables. By removing the need for physical markers, this approach simplifies the data collection process, reducing setup time, and enhancing patient comfort. The digital nature of the system also allows for as-sessments in more natural environments, further increasing the ecological validity of the results. The study demonstrated the potential for these pose estimation technologies to produce accurate gait metrics comparable to traditional methods, making it a practical solution for clinical settings.
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3D point

Center of projectionCenter of projection

Extracted keypoints in 2D 
from the left camera angle

Extracted keypoints in 2D 
from the right camera angle

Generated 3D model

Figure 30: Overview of the 3D gait analysis pipeline, illustrating camera calibration, 2D keypoint de-
tection, and triangulation methods used to build a comprehensive 3D model for accurate kinematic
assessments.

MediaPipe

OpenPose Detectron2

Hrnet

Metrabs

Figure 31: Comparison of pose estimation framework outputs: Visualising results from Detectron2,
Hrnet, OpenPose,Metrabs, andMediaPipe for evaluating performance andaccuracy across different
models.
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Looking ahead, this research opens the door to future applications of mobile devices in gait analysis. With advances in smartphone camera technology and real-time processing, it is feasible that similar 3D vision-based methods could be integrated into smartphone applications, offering a scalable and cost-effective solution for the continuous monitoring of motor impairments. Such developments would be especially beneficial for conditions like CP, where ongoing monitoring of motor function is critical.Another promising avenue for future work is the development of a rehabilitation de-cision support system for CP. Several studies including Publication VII have demonstrated success in assessing keypoints and gait dynamics through pose estimation techniques. The next logical step involves leveraging ML for more sophisticated analyses. Ongoing collaborations with Estonian hospitals aim to expand data collection and improve the system. A particular focus will be on leveraging accessible camera systems and smart devices for early diagnosis, which is critical for minimising the long-term impact of CP. Integrating ML into these tools has the potential to significantly enhance neurological assessments.
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5 Conclusion
Parkinson’s disease (PD) places a heavy burden on healthcare systems due to its lifelong,progressive nature and the absence of a cure. Managing the disease requires continuousmedical care, and thewide range ofmotor and non-motor symptomsmakes diagnosis andtreatment more challenging. Traditional diagnostic methods, such as clinical evaluationsand neuroimaging, often lack sensitivity or are prohibitively expensive, highlighting theneed for scalable, objective solutions. In recent years, machine learning based diagnosticshave gained significant popularity for their ability to analyse real-time data, detect subtleabnormalities, and potentially streamline patient care. This thesis introduced AI-drivenmethodologies for fine motor function diagnostics, addressing key challenges in featureengineering, data augmentation, scalable assessments, and clinical adoption. By lever-aging high-order kinematic features, GAN-based data expansion, smartphone-integratedmotor tests, and machine learning, this work contributes to cost-effective and scalablesolutions for neurological assessments.

The methodologies developed in this thesis bridge the gap between laboratory-baseddiagnostics and scalable digital health solutions, making AI-powered motor assessmentsmore accessible for both clinical and remote applications. The culmination of these effortshas led to several contributions, outlined below:
Contributions

✓ Developed novel kinematic and angular feature engineering techniques(e.g., high-order derivatives, angular metrics) to capture subtle motoranomalies indicative of PD. — Addressed: Gap B, C | Publication: I
✓ A framework for GAN-driven augmentation, expanding the variability ofhandwriting and drawing samples. — Addressed: Gap A | Publication: II
✓ Introduced a smartphone-based dataset for fine motor function assess-ment. — Addressed: Gap A | Publication: V, VIII
✓ Established a rigorous AI validation pipeline, mitigating common issues likedata leakage and non-nested feature selection. — Addressed: Gap B |

Publication: I, III, IV
✓ Improved the clinical comprehensibility of handwriting-based diagnosticsby automating drawing segmentation, enabling clinicians to visually alignAI-identified patterns with symptomatically relevant drawing characteris-tics. — Addressed: Gap C | Publication: IV
✓ Demonstrated the feasibility of smartphone-based diagnostics for continu-ous motor function and fatigue assessment, offering a cost-effective, scal-able alternative to specialised lab equipment, thereby broadening acces-sibility in real-world settings. — Addressed: Gap D | Publication: V

Moving forward, a key priority is enhancing the comprehensibility and real-world util-ity of AI-driven diagnostics to support evidence-based clinical decisions and personalisedtherapy. Additionally, ongoing collaborations with healthcare providers will explore pilotimplementations of these AI-driven systems across diverse clinical populations. Ensur-ing generalisability requires rigorous validation beyond controlled datasets, particularly
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through multi-institutional studies that assess system performance in real-world clinicalsettings. Beyond PD diagnostics, this research lays the groundwork for broader applica-tions in motor function assessment. The demonstrated feasibility of smartphone-basedmonitoring suggests future expansion into continuous, remote tracking of motor impair-ments. AI-driven gait analysis, particularly using markerless 3D pose estimation, has thepotential to transform cerebral palsy rehabilitation and early diagnosis by offering non-invasive, cost-effective alternatives to traditional motion capture. Similarly, fine motorskill assessments may be further adapted for detecting fatigue in high-risk occupations,monitoring rehabilitation progress in stroke recovery, or evaluating neurological declinein aging populations.Ultimately, this thesis highlights how AI can advance clinical diagnostics, rehabilita-tion, and long-term patient monitoring. The developed frameworks not only improvediagnostic precision but also emphasise the need for ethically sound, transparent, andinterpretable AI models. As AI continues to shape the future of healthcare, its success willdepend on aligning with clinical workflows, addressing real-world constraints, and trulyserving patient needs.
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Abstract
Leveraging artificial intelligence for microkinematic analysis of
fine motor skills in Parkinson’s disease detection
This doctoral research explores the transformative potential of artificial intelligence (AI)and digital tools in advancing motor function diagnostics and addressing the challengesof data scarcity, scalability, and clinical adaptability. Central to this work is the integra-tion of advanced feature engineering techniques, machine learning architectures, andsmartphone-based applications to improve diagnostic precision for Parkinson’s disease(PD) and beyond. Novel tremor-related characterictics were engineered through high-order diffential- and angular-type features to capture micro-movements in handwriting,enhancing early PD detection. Additionally, the thesis tackles the scarcity of diverse, high-quality datasets by employing generative adversarial networks (GANs), which enricheddatasets with realistic synthetic variations, improving the robustness and generalisabil-ity of diagnostic models. A notable contribution was the development of a comprehen-sive experimental workflow using smartphone-based tools to assess fine motor skills andfatigue. This feasibility study demonstrated the potential for scalable, cost-effective di-agnostics outside clinical settings. By combining structured motor skill tests with self-reported metadata, and applying machine learning techniques, the system achieved highsensitivity in detecting fatigue, highlighting the viability of smartphones as accessible plat-forms for digital health assessments.To bridge the gap between AI-driven diagnostics and clinical workflows, interpretableframeworks were developed, including deep learning-based handwriting segmentationand kinematic feature analysis. These tools revealed diagnostically relevant patterns, en-abling precise differentiation betweenPDpatients andhealthy controlswhile aligningwithclinical expectations.This research advances AI-driven motor skill diagnostics, providing tangible, clinicallyrelevant solutions. The methodologies developed herein promise to improve early detec-tion, enable continuous patient monitoring, and enhance diagnostic precision for PD andrelated neurological conditions, ultimately fostering better patient outcomes and support-ing widespread, practical adoption of AI in healthcare.
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Kokkuvõte
Tehisintellekti rakendamine peenmotoorika mikrokinemaatili-
ses analüüsis Parkinsoni tõve tuvastamiseks
Käesolev doktoritöö käsitleb tehisintellekti (TI) ja digivahendite transformatiivset potent-siaali motoorsete funktsioonide diagnostikas, keskendudes ühtlasi andmenappuse, ska-leeritavuse ja kliinilise tõlgendatavuse probleemide lahendamisele. Uurimistöö fookuseson tunnuste inseneerimise tehnikate, masinõppe arhitektuuride ja nutitelefonirakendus-te integreerimine Parkinsoni tõve (PD) diagnostilise täpsuse ning praktilise rakendatavu-se parandamiseks. Töö raames tutvustati kõrgemat järku diferentsiaalseid ja geomeetrili-si tunnuseid käekirja mikroliigutuste analüüsiks, mis võimaldas täpsemalt tuvastada Par-kinsoni tõvele iseloomulikke motoorseid kõrvalekaldeid. Töös käsitleti ka mitmekesiste jakvaliteetsete andmekogumite nappuse probleemi, rakendades generatiivseid vastandu-vaid närvivõrke (GAN), mis täiendasid olemasolevaid andmeid realistlike sünteetiliste va-riatsioonidega. See parandas diagnostiliste mudelite töökindlust ja üldistamisvõimet eri-nevates olukordades. Tähtis osa uurimistööst oli ka nutitelefonipõhise hindamisplatvormiloomine,mis võimaldabmotoorsete oskuste ja väsimuse skaleeritavat ja kulutõhusat jälgi-mist. Näiteks töötati välja väsimuse tuvastamise süsteem,mis saavutas kõrge tundlikkuse,kasutades masinõppemudeleid, mis olid treenitud motoorsete testide ja isehinnangulistemetaandmete põhjal tuletatud tunnuste abil.Töös arendati ka tõlgendatavaid tehisintellektil põhinevaid raamistikke, et ületada lõheautomaatse diagnostika ja kliiniliste töövoogude vahel. Sellised lahendused nagu süvaõp-pel põhinev käekirja automaatne segmenteerimine ning kinemaatiline tunnuste analüüsvõimaldasid tuvastada diagnostiliselt olulisi mustreid, mis parandasid oluliselt Parkinsonitõve patsientide ja tervete kontrollisikute eristamise täpsust.Käesolev uurimistöö edendab tehisintellektil põhinevatmotoorsete oskuste diagnosti-kat, pakkudes kliiniliselt asjakohaseid ja tõlgendatavaid lahendusi. Väitekirjas välja tööta-tudmetoodikad parandavad haiguse varajast avastamist, võimaldavad patsientide pidevatjälgimist ning suurendavad Parkinsoni tõve ja teiste neuroloogiliste häirete diagnostilisttäpsust. See omakorda toetab paremaid ravitulemusi ning soodustab tehisintellekti laial-dasemat ja praktilisemat rakendamist tervishoiusüsteemis.

79





Appendix 1

IElli Valla, Sven Nõmm, Kadri Medijainen, Pille Taba, and Aaro Toomela.Tremor-related feature engineering formachine learning based Parkinson’sdisease diagnostics. Biomedical Signal Processing and Control, 75:103551,2022

81





Graphical Abstract

Tremor-Related Feature Engineering for Machine Learning Based Parkinson’s Disease Diagnostics
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A B S T R A C T

Growing research interest has arisen towards the possibility to automatically discriminate between the patients 
with neurodegenerative disease and healthy controls based on the information extracted from the digital drawing 
tests. 

In this paper, we propose novel higher-order derivative based, angular-type and integral-like features 
extracted from the Archimedean spiral drawing tests for machine learning based Parkinson’s disease diagnostics. 
The proposed features describe micro-changes in the handwriting trajectory, which are hard or impossible to 
detect with visual observation. However, they may hold valuable information in terms of tremor-like symptom 
analysis. 

Two datasets are considered in this study: DraWritePD (acquired by the authors) and PaHaW (well known 
from the literature). A filter (Fisher’s score) and wrapper (Recursive Feature Elimination) methods were used for 
feature selection. Six classifiers were trained and evaluated in a nested cross-validated loop to discriminate 
between healthy controls and Parkinson’s patients. 

A nested wrapper-type feature selection method combined with the ensemble classifiers predicted a disease 
with an accuracy of 84.33%, sensitivity of 70.00% and specificity of 93.20% (DraWritePD), and accuracy of 
73.71%, sensitivity of 75.00% and specificity of 71.43% (PaHaW). The non-nested feature selection showed an 
over-optimistically high performance for both datasets: an accuracy of 92.16% (DraWritePD) and 84.86% 
(PaHaW). 

The proposed novel tremor-related features were among the best performing predictors in the case of both 
datasets. Furthermore, the results indicate that the nested feature selection procedure plays a significant part in 
the classification performance.   

1. Introduction 

Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, 
are a class of neurological disorders where neurons from the central 
nervous system die or are damaged, causing severe disabilities [1]. 
Parkinson’s disease (PD) is the second most common neurodegenerative 
disease after Alzheimer’s. PD has a prevalence of approximately 0.5 to 
1% among persons 65 to 69 years of age, rising to 1 to 3% among persons 
80 years of age and older [2]. Several studies have produced evidence 
that pinpoints neurological disorders as one of the greatest burdens on 
the healthcare system. The Global Burden of Disease study suggests that 

6.2 million patients are diagnosed with PD, and this number will double 
by 2040, surpassing the growth of Alzheimer’s disease [3]. Finding ac-
curate biomarkers for early diagnosis may significantly improve clinical 
intervention and treatment and can be utilised to monitor the progress of 
the disease [1,4]. Disorders in motor function performance, such as 
tremor, bradykinesia (slowness of movement), and rigidity (muscular 
stiffness), are the cardinal symptoms of PD [1,5]. Tremor occurs in 
approximately 75% of patients with PD [5–7]. According to the study, 
[5], early diagnosed PD patients find tremor the second most trouble-
some symptom, and advanced PD patients (progressed over six years) 
ranked it as the first motor-related symptom that diminishes the quality 
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of their life. Traditionally, medical diagnosis is based on subjective ob-
servations from different clinical tests. For example, standardised 
handwriting tasks can provide quantitative measures for the assessment 
of tremor [8]. In their classical pen and paper setting, these pure human 
assessments suffer from several drawbacks: the presence of a subjective 
component; the limits of human perception, like inability to measure 
velocity, pressure applied, not to mention derivatives such as jerk, 
shake, etc.; completion time being the only precisely measurable 
parameter of the test; and finally, there is no clear definition nor 
description of errors in these type of assessments. It has been well 
documented that the digital signals extracted from the handwriting of 
PD patients are affected and therefore might serve as a diagnostic 
marker in a computer-aided analysis [9–11]. While existing results may 
lead highly accurate results [16,19,21] not a lot attention has been paid 
to the feature selection process, making achieved results less interpret-
able and attractive for the medical community. While in some papers, 
features are selected purely based on their discriminating power, many 
other contributions omit in-depth discussion of the feature selection 
process. In this paper, we also compare non-nested and nested feature 
selection processes to confirm the importance of the chosen methods in a 
classification pipeline (Section 3.3). Based on the digital Archimedean 
spiral drawing test [22], we demonstrate that the proposed novel 
tremor-related features possess high discriminating power and provide 
accurate diagnostics support. 

The rest of this paper is organised as follows. Section 1.1 reviews the 
works related to this problem. Sections 2 and 3 respectively describe the 
materials and methods used in this research. Sections 4 and 5 report and 
discuss the experimental results to highlight the effectiveness of the 
proposed method. 

1.1. State of the art 

Drawing and writing tests have been used in psychology and 
neurology for at least a century [23]. The analysis of these handwritten 
tasks has proven effective in the diagnosis and progression monitoring of 
PD patients [13,14]. Spiral drawing tests have been frequently used for 
studying motor control deficits in PD patients [9,12]. It is proved to be a 
useful tool for assessing tremor-related symptoms [24]. Dynamic 
methods make use of digital tablets [18], smartpens with axial pressure 
of ink and tri-axial accelerometers [25], tablet computers [19] and other 
devices [9]. The main advantage of online acquisition devices is their 
ability to acquire dynamics of the writing process, which are lost with 
offline systems. More specifically, dynamic features are the position of 
the pen (coordinates), pressure (force applied on the writing surface), 
azimuth (pen orientation), altitude (pen inclination), and timestamp 
[10]. The most commonly used approaches in the relevant studies can be 
categorised as follows: numeric methods, where kinematics of the 
handwriting are analysed [16–19] and deep learning based approach 
[21,25], where the image or time-series data is extracted and used for 
classification. In numerical analysis, a typical processing chain involves 
the pre-processing of raw signals followed by feature extraction and 
classification. Most proposed methods make use of supervised learning 
techniques, such as Logistic Regression, AdaBoost, Naive Bayes, SVM, 
KNN, Random Forests, Decision Trees, LDA. By far the most used clas-
sifier in all researched diseases is SVM [9,10,12]. Deep neural networks 
are not as popular as the more conventional algorithms mentioned 
before [9,10], but they are starting to gain their popularity [21,25–27]. 

One of the first contributions describing the results of the digitised 
drawing test was Marquardt et al. (1994) [15]. More than 30 years of 
research has resulted in the fact that the original set of four parameters 
proposed by [15] has grown significantly to hundreds of parameters 
[16,18,19]. 

Significant research has been done by Drotar et al. [18], where the 
various features for the prediction of PD are extracted using digital 
tablets. Kinematic and pressure parameters were computed from in-air 
as well as on-surface time intervals. The classification was carried out 

by applying Support Vector Machine (SVM), and the maximum accuracy 
of the spiral drawing test was 62.9%. The authors also suggested that 
classification accuracy depends on the choice of the template. Ensemble 
of all tests obtained an accuracy of 81.3% on the kinematic and pressure 
features. The study was conducted on the PaHaW database with a 
sample size of 75 test subjects. 

In the research of Nõmm et al. [28,19] the set of features initially 
proposed in [29] to measure the quantity and smoothness of the human 
motions observed during the gross motor activity were adapted for the 
case of fine motor motions observed during drawing tests. The main 
distinctive component of [28,19] is the tuple integral-like parameters 
referred as motion mass. On the example of Luria’s alternating series 
tests, it was demonstrated by [19] that motion mass parameters possess 
higher discriminating power compared to commonly used average 
values and time duration of the test. 

Impedovo (2019) [16] investigates a wide set of velocity-based 
features for PD patients and healthy controls (HC) discrimination. The 
extended feature set includes parameters obtained from the Sigma- 
Lognormal model, the Maxwell–Boltzmann distribution, and the 
Discrete Fourier Transform applied to the velocity profile of hand-
writing. The prediction was 97.3% accurate based on the spiral drawing 
test. 

Rios-Urrego et al. (2019) [30] proposed to use geometrical and non- 
linear dynamic features in addition to kinematic features. It was 
assumed that these features are able to capture the irregularities of 
handwriting, which increase as the disease advances. The results showed 
that the kinematic features were most accurate and that it is possible to 
discriminate between Parkinson’s patients and healthy controls with 
accuracies up to 83.3%. 

Angelillo et al. (2019) [17] investigated the predictive potential of an 
optimal subset of tasks for an automatised PD diagnosis. First, several 
features exploiting the dynamics of the handwriting process are 
extracted from the raw data of different tasks. Then, the predictive po-
tential of each task is evaluated individually. Finally, the best tasks, i.e., 
those with the highest prediction accuracy, are fed into an ensemble of 
classifiers whose predictions are obtained via majority voting. Experi-
ments were performed on the PaHaW dataset, as it includes several tasks 
performed by the same subjects. Non-nested and nested cross-validation 
performance were compared and analysed. Overall performance 
degradation was noticeable and therefore concluded the importance of 
the nested feature selection step in the cross-validation. Poor perfor-
mance was obtained by the spiral task. The accuracy score of 53.75% 
was achieved using SVM with RBF kernel, confirming the findings 
already reported in [18]. Assembling all tasks for classification showed 
significant improvement in performance. The best performing model 
with SVM (linear kernel) achieved 88.75% accuracy. It is important to 
note that it was obtained with non-nested feature selection, as was done 
in [18,16]. Ensemble of tasks performance with nested feature selection 
was 66.25% and was obtained with SVMRBF. 

Yang et al. (2019) [31] extracted features using polar expressions 
from the hand-drawn Archimedean spiral and straight-line drawing 
tests. Features including deviation (cm), accumulation angle (rad), and 
drawing velocity (cm/s), were engineered and differentiated for normal 
control groups and groups with Parkinson’s disease or essential tremor. 
The SVM-based classifier showed promising results, with a mean true 
negative rate (specificity) of 86.79% for identifying normal controls, a 
mean true positive rate (sensitivity) of 93.72% for identifying PD and ET 
cases, and a mean hit rate of 90.84% for identifying the correct classes. 
In [20] hash transformation is used to map polar expression features to a 
high-dimensional space. The proposed decision-making classifier ach-
ieved a higher mean true negative rate (98.96%), mean true positive rate 
(98.93%), and mean hit rate (98.93%). The important thing to note here 
is that the difference between the mean age of control subjects and 
Parkinson’s patients who participated in the study is 15.27 (17.57 in 
[31]) years, and there is no overlap in terms of standard deviation. This 
is a quite significant difference considering that the performance of 
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human motor functions declines with age [32–34]. High classification 
accuracy in their studies may be partly related to the fact that the fine 
motor skills of Parkinson’s patients were impaired both because of the 
disease and because of age; this fact might have increased the differences 
between the groups. 

For the sake of fair comparison, we included the studies that used 
statistical machine learning methods, excluding the papers with deep 
learning algorithms. Other criteria for inclusion are the use of the 
Archimedean spiral task from the PaHaW dataset and a clear description 
of the feature selection procedure. For this reason, results of the 
following studies were chosen for comparison: [16–18]. 

2. Materials 

Two datasets are considered in this research. The first one, here and 
after referred to as DraWritePD, was acquired by the authors. The second 
dataset, PaHaW, is well known from the literature and was kindly pro-
vided by the authors of [35,18]. The PaHaW [18] database was used as 
an additional dataset to test the stability and performance of the pro-
posed method. 

2.1. Drawing and handwriting tests for Parkinson’s diagnostics, 
DraWritePD 

Data acquisition was performed with an Apple iPad Pro (2016) tablet 
computer and an Apple Pencil. The tablet has a 26.77 cm (10.5 inches) 
diagonal. The iPad Pro scans the Apple Pencil’s signal with a frequency 
of 240 points per second. From a software perspective - data was 
collected using a custom iOS application developed by the research 
team. The dynamic features (time-sequences) captured by the tablet are 
as follows: x-coordinate (mm); y-coordinate (mm); timestamp (sec); 
pressure (arbitrary unit of force applied on the surface: [0,…, 6.0]); 
altitude (rad); azimuth (rad). Total of 24 PD patients (mean age 74.1 ±
6.7) and 34 age- and gender-matched healthy control subjects (mean age 
74.1 ± 9.1)) participated in the creation of the database. The overall task 
was to complete a testing battery consisting of 12 different drawing and 
writing tests. In this paper, we focus only on the Archimedean spiral test. 
Few sample images of healthy and Parkinson’s patient’s spiral drawings 
are depicted in Fig. 1. The data acquisition process was conducted with 
the strict guidance of privacy law. The Research Ethics Committee of the 
University of Tartu (No. 1275T − 9) approved the study. 

2.2. Parkinson’s disease handwriting (PaHaW) database 

Data acquisition of the PaHaW dataset is described in detail in 
[18,35]. For the sake of self-sufficiency main properties of this dataset 
important for the present studies are described in this section. Age and 
gender distribution of the PaHaW dataset is similar to those of Dra-
WritePD. The data set consists of 37 PD patients and 38 age- and gender- 
matched healthy controls (HC). HC subjects have a mean age of 62.4 

years (standard deviation 11.3), whereas PD patients have a mean age of 
69.3 years (standard deviation 10.9) [18]. During the acquisition of 
PaHaW dataset, each subject was asked to complete a handwriting task 
according to the prepared pre-filled template at a comfortable speed. 
Subjects were allowed to repeat the task in case of some error or mistake 
during handwriting [18]. The handwriting signals were recorded using a 
Wacom Intuos digitising tablet overlaid with a blank sheet of paper, the 
sampling rate was set to 100 samples per second. The tablet captured the 
following dynamic features: x-coordinate; y-coordinate; timestamp; 
button status; pressure; altitude, and azimuth. All features were con-
verted to the same units as in DraWritePD. The battery of the tasks 
presented in PaHaW dataset differs much from the one employed in 
DraWritePD. However, the Archimedean spiral drawing test is present in 
both datasets and was thus used in this research. 

3. Methods 

The methodology used in the present study consists of three main 
stages: feature engineering, feature selection, and classification. Details 
of each stage are presented in the following subsections and depicted in 
Fig. 2. 

3.1. Feature engineering 

Raw time-series described in Section 2.1: pen position (x- and y-co-
ordinates), timestamp, pen pressure, pen inclination (altitude), and pen 
orientation (azimuth) can be used to compute an infinite number of 
features. Tables 1, 2 represent feature classes selected for the present 
research. Kinematic (displacement, velocity, acceleration, etc.), spa-
tial–temporal (duration, distance), geometric (altitude, azimuth, yaw, 
etc.), and pressure features were derived. Feature extraction resulted in 
either a single-valued feature or a vector feature. For all resulting vector 
features, the following statistical measures were calculated: mean, me-
dian, standard deviation, maximum and minimum value. In addition, 
horizontal and vertical components of the kinematic features were 
computed. In this research, each subject was instructed to draw a spiral 
in one stroke; therefore, stroke-related and on/off-screen time values, 
that are explored in [35,18], are omitted. 

Our contribution to this feature engineering is the addition of the 
higher-order derivatives with respect to time. For instance, given a 
respective timestamp we can calculate the velocity of the position vector 
r→ = [pi,pi+1]. In other words, velocity is the rate at which displacement 
of the position vector changes with respect to time. Similarly, acceler-
ation was computed as the rate of change in velocity and jerk as the rate 
of change in acceleration with respect to time. This approach is visual-
ised in Fig. 3. Following the sequence, we considered up to the sixth time 
derivative of the position vector. There are no universally accepted 
names for the fourth and higher time derivatives of the displacement. 
However, the terms snap, crackle, and pop are used in literature for the 
fourth, fifth, and sixth time derivatives of displacement [37]. The same 

Fig. 1. Sample drawings of an Archimedean spiral performed by a healthy control subject (a) and the PD patients (b, c) from DraWritePD dataset.  
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approach was taken for calculating additional pressure parameters. Up 
to fourth-time derivatives of pressure (force applied on the surface) were 
computed. These derivatives are referred to as yank, tug, snatch, and 
shake, respectively [37]. 

It is worth noting that pen inclination and orientation angles are not 
widely exploited in related studies. In addition to altitude (pen incli-
nation) and azimuth (pen orientation), we are considering three angles 
of the position vectors. Pen’s trajectory can be observed in Fig. 3 (note 
that in Fig. 3 magnified part was downsampled for illustration pur-
poses). Given the slope k of the position vector, we can extract angle α. 
Let N be the number of observation points and (xi, yi) are the coordinates 
of the point pi, where i ∈ {1,2,…,N}, then the slope (k) and respective 
angle are represented as follows: 

k =
yi − yi− 1

xi − xi− 1
, (1)  

α = arctank, (2) 

Fig. 3 depicts other two angles that are considered in the current 
research: a rotational angle ϕ (3) and a yaw angle γ (4): 

ϕi = π +αi− 1 − αi (3)  

γi = αi − αi− 1 (4)  

Yaw is described as the change in direction in which the point vector is 
pointing. The angular feature set was also enriched with up to third 
respective time derivatives. 

These micro-changes in changes or differential features alongside the 

angular features of the drawing trajectory are hard or even impossible to 
detect with the visual observation; however, they may hold valuable 
information in terms of tremor-like symptom analysis. Tremor associ-
ated with the PD is usually reflected by the less smooth motions, which 
in turn means greater accelerations, more directional changes, and in-
creases in other similar parameters. This symptom is often described as 
an involuntary quivering, shaky movement and rhythmical declination 
of trajectory, which gives the basis to relate proposed differential and 
angular features with the disease. The results indicate that proposed 
features can be successfully exploited in addition to kinematic and 
pressure information to enrich feature representation further. 

A study conducted by [19] showed that the tuple of integral-like 
features computed based on kinematic parameters and pressure 
possess sufficiently high discriminating power to distinguish PD patients 
from HC control subjects. In [38] it was also demonstrated that these 
features might allow machine learning techniques to detect mental fa-
tigue; therefore, these features are included in the present research. For 
the sake of self-sufficiency, the computational procedure of the motion 
parameters is described in the following subsection. 

3.1.1. Motion mass parameters 
Motion mass parameters were introduced by [29] to describe the 

amount and smoothness of motion of a limb or some other group of 
joints. For each kinematic, geometric, and pressure parameter that 
changes during the test sum of the absolute values at each observation 
point may be computed. Let N be the number of observation points in the 
test (or a part of the test). Denote vk the velocity along the directional 
vector of the stylus movement at observation point k where k ∈ {1,…,N} 

Fig. 2. General methodology. The novel features engineered are described in Section 3.1. Non-nested and nested feature selection visualisation depicts the difference 
between the two approaches. In the case of the non-nested method, the features are selected based on all the samples and then used for training. The correct way 
(nested) would be to perform feature selection inside the cross-validation fold using only the samples from the train set, keeping the test set ”unseen”. [36]. 
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then velocity mass is defined by equation 

VN =
∑

k = 1N |vk| (5)  

In the same way, mass parameters are defined for the acceleration - AN, 
jerk - JN, yank YN, tug - TN, snatch - SnN and shake - ShN. The same logic 
applies to the pressure (force applied on the surface) and angular pa-
rameters describing changes in the stylus direction. In [19] trajectory 
length and time duration were combined with velocity, acceleration, 
jerk, and pressure masses into the tuple referred as motion mass. The 
present research adds mass parameters for the higher derivatives of the 
accelerations and treats them as the features to be used by machine 
learning methods. 

3.2. Feature selection 

A total of 202 features were extracted from the raw signals. Most 
discriminative predictors were selected to reduce dimensionality and 
increase interpretability using filter- and wrapper-type feature selection 
procedures. 

Filter methods use independent statistical techniques to evaluate the 
relationship between a feature predictor and a target variable. They are 
widely used among bioinformatics researchers due to their straightfor-
ward and computationally inexpensive implementation [39]. Among 
filter models suggested by [40], the Fisher score is the most natural 
choice due to the numerical representation of the features. For each 
feature, the Fisher score is computed by the following Eq. (6). Large 
values of the Fisher’s score indicate higher discriminating power and, 
therefore, better suitability for machine learning classifiers. The algo-
rithm used in this paper returns the ranks of the variables based on 
Fisher’s score in descending order. 

F =

∑k

j=1
pj(μj − μ)2

∑k

j=1
pjσ2

j

(6) 

Table 1 
Sample subset of vector features.  

Feature set Feature Description     

Spatial- 
temporal  
features 

displacement di =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xi− 1)
2
+ (yi − yi− 1)

2
√

Kinematic 
features 

velocity Rate of change in displacement 
with respect to time.      
First time derivative of the 
displacement.     

acceleration Rate of change in velocity with 
respect to time.      
Second time derivative of the 
displacement.     

jerk Rate of change in acceleration 
with respect to time.      
Third time derivative of the 
displacement.     

snap Rate of change in jerk with 
respect to time.      
Fourth time derivative of the 
displacement.     

crackle Rate of change in snap with 
respect to time.      
Fifth time derivative of the 
displacement.     

pop Rate of change in crackle with 
respect to time.      
Sixth time derivative of the 
displacement.            

Pressure 
features 

pressure_diff Change in pressure between 
points [pi,pi+1 ]

yank Rate of change in pressure.      
First time derivative of the 
force applied on the surface.     

tug Rate of change in yank.      
Second time derivative of the 
force applied on the surface.     

snatch Rate of change in tug.      
Third time derivative of the 
force applied on the surface.     

shake Rate of change in snatch.      
Fourth time derivative of the 
force applied on the surface.            

Geometric  
features 

altitude_diff Change in altitude angle 
between points [pi,pi+1 ]

azimuth_diff Change in the azimuth angle 
between points [pi,pi+1 ]

alphas_diff Change in alpha angle between 
points [pi,pi+1 ]

phi_angle_diff Change in phi angle between 
points [pi,pi+1 ]

yaw_diff Change in yaw angle between 
points [pi,pi+1 ]

Table 2 
Sample subset of single-value features.  

Feature set Feature Description      

Spatial- 
temporal  
features 

duration Time interval 
between first and 
last time stamp 
signal              

Kinematic 
features 

velocity_mass Velocity mass of 
the point vector [p1,

p2,…,pk,…,pN]

acceleration_x_mass Mass of the x- 
directional rate of 
change in velocity      

jerk_median Median value of the 
rate of change in 
acceleration      

snap_mass Mass of the fifth 
time derivative of 
displacement.             

Pressure 
features 

shake_median Median value of the 
fifth time 
derivative of 
pressure (force 
applied on the 
surface).      

pressure_ 
diff_min 

Minimum 
difference  
of pressure 
between  
points [pi,pj ]

tug_mass Mass of the second  
time derivative of  
pressure (force  
applied on the  
surface)              

Geometric  
features 

ϕ_mass Mass of the angle ϕ  
(in radians), see  

Fig. 3      
α_accel_min Minimum  

acceleration of the  
angle α, see Fig. 3       

yaw_std Standard deviation 
of  
the yaw, see Fig. 3       
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Pair-wise Pearson correlations among the sorted features were then 
computed and explored. A set of features with a Pearson correlation 
below the threshold of 0.7 was constructed. 

Although filter methods are fast and scalable, they have the disad-
vantage of ignoring the interaction with the classifier. For this reason, 
wrapper methods are commonly utilised in the feature selection process. 
In this case, the evaluation is done by training and testing a specific 
classification model that estimates the relevance of a given subset of 
features. Wrapper methods are proven to be more efficient but also more 
computationally expensive [41]. In this paper, we consider the SVM 
recursive feature elimination (SVM-RFE) wrapper method proposed by 
[41]. 

3.3. Statistical classification 

In the proposed framework, supervised feature selection strategies 
are nested within the cross-validation iterations so that the most 
discriminating features are chosen based only on the training set, while 
the test set is kept only for validation. The problem with the a priori or 
so-called non-nested feature selection is that the predictors have an 

unfair advantage, as they were chosen on the basis of all of the samples. 
This procedure does not correctly mimic the application of the classifier 
to a completely independent test set since these predictors “leak the 
information” from train to test set. [17,36] In other words, a non-nested 
feature selection may introduce a bias that may lead to overfitting a 
model and, therefore, to an over-optimistic performance. In this paper, 
we report results for both nested and non-nested feature selection to 
analyse this effect. Six machine learning classifiers Logistic Regression 
(LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), De-
cision Tree (DT), Random Forest (RF), AdaBoost (AB), were trained and 
cross-validated in a k-fold loop, k ∈ [3,5,10]. Training and validation of 
the classifiers were performed using the scikit-learn library [42] for 
Python. 

The performance of the classifiers was reported according to the 
following metrics: accuracy, precision, sensitivity, and specificity. Ac-
curacy alone does not provide insights into the rate of true positive and 
true negative predictions by ignoring per-class performance evaluation. 
Statistical measures: specificity (true negative rate) - refers to the ability 
of the test to identify subjects without the disease correctly; sensitivity 
(recall or true positive rate) - refers to the ability of the test to identify 
those patients with the disease correctly; are therefore widely used in 
medical diagnostic settings. 

4. Results 

In this section, we report the results of a series of experiments aimed 
at evaluating the performance of the proposed workflow. 

4.1. Numerical results 

In the following Tables 3, 4, the mean accuracy, precision, sensi-
tivity, and specificity values are reported, averaged over all the itera-
tions of a k-fold cross-validation scheme. Feature set remained the same 
from one fold of cross-validation to another. Low variability is an indi-
cation of a stable feature selection algorithm. 

The related state-of-the-art results obtained on the PaHaW dataset 
are depicted in Table 5. 

4.2. Discussion 

The degradation of the overall performance in the case of the nested 
feature selection indicates that the model built from the pre-selected 
features may have been overoptimistic. In addition, in Tables 3 and 4 
it can be seen that the wrapper method outperformed the filter-type 
feature selection algorithm. Proposed tremor-related features were 
present for all feature selection procedures. For the DraWritePD dataset, 
the differential features shake, snap, crackle, and pop with their 
respective motion mass parameters selected by a nested wrapper-type 
feature selection combined with an ensemble classifier, demonstrated 
a high performance with an accuracy score of 84.33%, sensitivity 
70.00%, and specificity of 93.33%. The same methodology performed 
on the PaHaW dataset showed an accuracy of 73.71%, a sensitivity of 
75.00%, and specificity of 71.43%; the selected predictors contained a 
combination of the differential and angular features with their respec-
tive statistical measurements. Although Logistic Regression was among 
the best performing classifiers in a majority of the settings, in the case of 
nested wrapper-type feature selection, ensemble algorithms (AdaBoost 
and Random Forest) showed greater performance. 

It is important to note, that Impedovo (2019) [16] and Drotar et al. 
(2016) [18] used the non-nested validation scheme. This means that, 
while the results reported by [16] (see Table 5) are remarkable, they still 
suffer feature selection bias described in Section 3.3. 

The nearly perfect classification performance presented in the liter-
ature [16,20,21,26,43] is another topic for discussion. Clinical obser-
vations show that early-stage patients with Parkinson’s disease under 
medication do not necessarily differ significantly from healthy 

Fig. 3. Visual representation of the differential-type (a) and angular-type 
(b) features. 
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Table 3 
Classification performance with non-nested and nested feature selection for the DraWritePD dataset. The best scores for each feature selection method are presented in 
bold.    

Features Classifier Pacc Pprec Psen Pspec 

Filter method 

non-nested ϕ_mass, duration, pressure_median 

LR 84.18% 88.33% 75.00% 90.00% 
RF 88.18% 92.00% 80.00% 93.81% 
KNN 78.36% 78.33% 65.00% 87.14% 
SVM 80.36% 88.33% 65.00% 87.14% 
DT 80.18% 72.00% 75.00% 83.81% 
AB 78.36% 71.00% 70.00% 83.81% 

nested slopes_min, altitude_median, duration 

LR 68.63% 55.56% 34.13% 90.00% 
RF 56.86% 33.99% 61.90% 56.67% 
KNN 49.02% 25.10% 42.86% 56.67% 
SVM 52.94% 27.06% 44.44% 57.58% 
DT 54.90% 13.73% 33.33% 66.67% 
AB 54.90% 13.73% 33.33% 66.67%         

Wrapper method 

non-nested velocity_median, α_accel_max, pressure_median 

LR 90.20% 95.24% 80.16% 96.67% 
RF 92.16% 91.67% 90.48% 93.94% 
KNN 80.39% 78.57% 80.16% 81.52% 
SVM 88.24% 90.48% 80.16% 93.94% 
DT 80.39% 76.72% 79.37% 81.52% 
AB 86.27% 86.11% 80.95% 90.61% 

nested shake_mass, shake_max, snap_mass, crackle_mass, pop_mass 

LR 55.33% 25.67% 45.00% 61.67% 
RF 80.33% 80.00% 65.00% 90.00% 
KNN 82.00% 81.67% 70.00% 90.00% 
SVM 84.00% 86.67% 75.00% 90.00% 
DT 72.67% 65.83% 55.00% 83.33% 
AB 84.33% 81.67% 70.00% 93.33%  

Table 4 
Classification performance with non-nested and nested feature selection for the PaHaW dataset. The best scores for each feature selection method are presented in bold.    

Features Classifier Pacc Pprec Psen Pspec    

Filter method non- 
nested 

shake_mean, accel_x_mass, α_accel_max, shake_median, 
α_accel_min 

LR 79.17% 80.67% 77.78% 80.56%       

RF 69.44% 72.50% 66.67% 72.22%       
KNN 61.11% 58.63% 75.00% 47.22%       
SVM 63.89% 62.16% 80.56% 47.22%       
DT 62.50% 62.63% 66.67% 58.33%       
AB 66.67% 67.64% 69.44% 63.89%                

nested pressure_diff_min, shake_mean, shake_median LR 65.28% 55.00% 67.50% 65.00%       
RF 58.33% 61.64% 63.89% 52.78%       
KNN 56.94% 42.59% 52.78% 61.11%       
SVM 50.00% 33.33% 66.67% 33.33%       
DT 55.56% 58.28% 75.00% 36.11%       
AB 52.78% 55.93% 69.44% 36.11%               

Wrapper 
method 

non- 
nested 

accel_x_min, α_accel_min, pressure_diff_max, shake_mean, 
shake_max 

LR 84.86% 90.00% 80.36% 88.57%       

RF 59.81% 62.61% 52.50% 66.43%       
KNN 68.29% 72.00% 55.00% 80.36%       
SVM 73.62% 78.44% 71.79% 74.29%       
DT 61.24% 63.79% 52.50% 69.64%       
AB 62.86% 63.33% 61.43% 64.29%                

nested α_velocity_max, α_accel_min, snatch_mean LR 65.33% 67.33% 60.71% 69.29%       
RF 73.71% 76.62% 75.00% 71.43%       
KNN 63.90% 63.33% 66.79% 60.71%       
SVM 66.76% 70.67% 60.71% 72.14%       
DT 66.86% 70.33% 60.36% 71.29%       
AB 64.10% 66.90% 58.57% 69.29%     

Table 5 
Performance comparison with the state-of-the-art methods based on the Archimedean spiral test from the PaHaW dataset.   

Drotar et al. (2016) Impedovo (2019) Angellilo et al. (2019) Present work     

non-nested 62.8 97.3 51.3 84.9     
nested – – 53.8 73.7      
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individuals of comparable age and may perform even better than the 
fine motor skills of elderly individuals without Parkinson’s disease. In 
other words, there is no clear-cut categorical difference between fine- 
motor skills of individuals with and without Parkinson’s disease. 
Future work would involve testing methodologies introduced in these 
studies on our own (DraWritePD) dataset to investigate this conclusion 
further. 

5. Conclusion 

The handwriting- and drawing-based computer-aided analysis have 
the potential to serve as the decision support tool for clinicians in 
neurodegenerative disease diagnostics. Its successful implementation 
would play a significant role in reducing the burden on the public health 
system. Our study proposes a set of tremor-related features to discrim-
inate Parkinson’s disease patients (PD) and healthy controls (HC) based 
on the Archimedean spiral drawing test. More specifically, the set of 
variables was enriched with angular, differential, and integral-like pa-
rameters resulting in a database with over 200 features. To reduce the 
dimensionality and maximise the model’s performance, we applied fil-
ter- and wrapper-type feature selection algorithms. As indicated in 
Table 3, the proposed tremor-related features were among the best 
performing predictors in the PD and HC classification task. It was also 
demonstrated that a non-nested feature selection method might lead to 
over-optimistic results and, therefore, should be avoided in the classi-
fication pipeline. These findings were reproduced on the PaHaW data-
set, see Table 4. The classification accuracy obtained in the present 
research is 20% higher compared to those reported in the literature (case 
of a nested feature selection), which confirms that the novel tremor- 
related features possess greater discriminating power for the di-
agnostics of Parkinson’s disease. 

A couple of remarks have to be recognised when interpreting the 
results. The proposed framework was conducted based only on the 
Archimedean spiral test. In our future work, we plan to include other 
handwriting and drawing tasks. Repeated measurements from the same 
subjects should be obtained and analysed to confirm the possible rela-
tion of the proposed features with tremor-based motor dysfunctions and 
assess the severity of the symptom. To demonstrate the reliability and 
generalisability of the proposed framework, we need to perform testing 
on more extensive and more diverse groups of patients. A small sample 
size is a significant limitation of the present study. In this particular 
problem domain, developing a large labelled dataset for automatic 
machine learning based analysis is an ongoing issue. Our future work 
strives to overcome this obstacle by providing additional databases and 
new methods for data enhancement and augmentation. Despite these 
limitations, the reported performance values are indeed very promising. 
Concept-wise and from the soft- and hardware perspective, the proposed 
framework is ready for clinical use. 
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Abstract: Growing research interest has arisen towards automated neurodegenerative disease
diagnostics based on the information extracted from the digital drawing tests. Since the
performance of modern modelling techniques (machine learning, deep learning) relies heavily
on the size of training data available, data scarcity is one of the most significant problems
in computer-aided diagnostics. This paper proposes using Generative Adversarial Networks
to synthesise digital drawing tests acquired from Parkinson’s patients and healthy controls.
Four different architectures (StyleGAN2-ADA, StyleGAN2-ADA + LeCam, StyleGAN3 and
ProjectedGAN) are evaluated and compared with the traditional data augmentation methods.
Convolutional neural networks are utilised for Parkinson’s disease diagnostics. Our results
indicate that GAN-generated images’ addition outperforms the standard augmentation methods
in classifying Parkinson’s disease in some settings. Therefore, the proposed framework could
serve as a potential decision support tool for clinicians in computer-aided fine-motor analysis
for neurodegenerative disease diagnostics.

Keywords: Decision making and cognitive processes, assistive technology and rehabilitation
engineering, cognitive system engineering, deep learning, generative adversarial networks

1. INTRODUCTION

The Global Burden of Disease study suggests that 6.2
million patients are diagnosed with Parkinson’s disease
(PD), and this number will double by 2040, surpassing the
growth of Alzheimer’s disease Dorsey et al. (2018). Finding
accurate biomarkers for early diagnosis may significantly
improve clinical intervention and treatment and can be
utilised to monitor the progress of the disease De Lau
and Breteler (2006) He et al. (2018). It has been well
documented that the digital signals extracted from the
handwriting of PD patients are affected and therefore
might serve as a diagnostic marker in a computer-aided
analysis Rosenblum et al. (2013), Vessio (2019)Eichhorn
et al. (1996), Phillips et al. (1991), Marquardt and Mai
(1994), Impedovo (2019), Angelillo et al. (2019), Drotar
et al. (2016), Nõmm et al. (2018), Yang et al. (2019),
Valla et al. (2022). The most commonly used approaches
in the relevant studies can be categorised as follows:
numeric methods, where kinematics of the handwriting are

analysed Impedovo (2019), Angelillo et al. (2019), Drotar
et al. (2016), Nõmm et al. (2018), Valla et al. (2022)
and deep learning based approach Diaz et al. (2021),
Pereira et al. (2016b), Kamran et al. (2021a) where the
digital image is used as an input for a convolutional
neural network (CNN) based classification. CNNs have
achieved high performance as a decision support tools
for Parkinson’s disease diagnostics Kamran et al. (2021b),
Diaz et al. (2021). However, modern deep learning models
rely heavily on the size of training data available. Labelling
medical image data is an expensive, time- and resource-
consuming task.

Generative neural networks like Generative Adversarial
Networks (GAN) Goodfellow et al. (2014) have become
popular, primarily because of their ability to generate
never before seen images out of training data. In 2014,
Goodfellow et al. Goodfellow et al. (2014) designed a
new generative neural network framework called Gen-
erative Adversarial Network. This new framework used
an adversarial process to train the model, which meant
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et al. (2016), Nõmm et al. (2018), Yang et al. (2019),
Valla et al. (2022). The most commonly used approaches
in the relevant studies can be categorised as follows:
numeric methods, where kinematics of the handwriting are

analysed Impedovo (2019), Angelillo et al. (2019), Drotar
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Networks (GAN) Goodfellow et al. (2014) have become
popular, primarily because of their ability to generate
never before seen images out of training data. In 2014,
Goodfellow et al. Goodfellow et al. (2014) designed a
new generative neural network framework called Gen-
erative Adversarial Network. This new framework used
an adversarial process to train the model, which meant

simultaneously training two models (generator and dis-
criminator), similar to a two-player minimax game. The
adversarial training allows GANs to create much better
quality outputs than other models, which often produce
blurry results. Furthermore, the training process for GANs
is unsupervised, which removes the need for data labelling
in the training process, making it more straightforward
from a data collecting view. However, training two models
simultaneously made the training process more unstable.
Additionally, the first GAN models needed a lot of real
input training data and produced low-resolution images.
The work by Karras et al. Karras et al. (2020c) allowed for
better control of the image generation process and better
quality images. Their GAN model named StyleGAN2 uses
a style transfer based approach and a new generative
model to improve the state-of-the-art performance and
allow for more variety in the generated images. However,
the amount of training data needed and the computational
resources remained an issue. Karras et al. (2020a) pro-
posed a new method to train GANs called adaptive dis-
criminator augmentation (ADA) to decrease the amount
of data needed for training. Their approach applies data
augmentation during training to both the generated and
real data. This helped stabilise the training process in
cases where limited data is available. By using ADA on
StyleGAN2, they improved the baseline Fréchet inception
distance (FID) and kernel inception distance (KID) scores
significantly. Unfortunately, this performance does not lin-
early scale when using 100% of the data, resulting in only
a slight increase in performance. Tseng et al. Tseng et al.
(2021a) proposed to add a regularisation scheme to the
discriminator under limited data training. They showed
that this regulariser limits the LeCam-divergence, which
is more prevalent when training with limited data and, as a
result, managed to improve the StyleGAN2-ADA baseline
FID score by a few points.

With the help of these architectures, it might be possible to
generate new Parkinson’s handwriting and drawing images
and use the synthetic images to train the convolutional
neural network (CNN) model. GANs have not been ap-
plied to synthesise Parkinson’s patients’ digital test images
for computer-aided disease diagnostics. Therefore, it would
be essential to study if those methods could help classify
Parkinson’s disease. The developed framework could po-
tentially help to reduce the resources and time needed to
diagnose a patient and serve as a decision support tool for
medical practitioners.

2. PROBLEM STATEMENT

In this work, we evaluate the use of generative adversarial
networks (GANs) to increase the robustness and overall
classification performance of five pre-trained CNN models.

The problem is divided to the following sub-questions:

• Can generative neural networks be used to generate
meaningful Parkinson’s patients’ handwriting and
drawing image training data?

• How does the addition of GAN-generated data affect
CNN model classification performance for Parkin-
son’s disease diagnostics?

3. EXPERIMENTAL SETTING

3.1 Data acquisition

Four Parkinson’s patients’ drawing datasets consisting of
digital and hand-drawn Archimedean spiral tests were
used in this study.

DraWritePD Our research group performed the data
acquisition with an Apple iPad Pro (2016) tablet computer
and an Apple Pencil. The tablet has a 26.77cm (10.5
inches) diagonal. The iPad Pro scans the Apple Pencil’s
signal with a frequency of 240 points per second. From
a software perspective — data was collected using a
custom iOS application developed by the research team.
The dynamic features (time-sequences) captured by the
tablet are as follows: x-coordinate (mm); y-coordinate
(mm); timestamp (sec); pressure (arbitrary unit of force
applied on the surface: [0,..., 6.0]); altitude (rad); azimuth
(rad). Total of 24 PD patients (mean age 74.1 ± 6.7)
and 34 age- and gender-matched healthy control subjects
(mean age 74.1 ± 9.1)) participated in the creation of
the database. The overall task was to complete a testing
battery consisting of 12 different drawing and writing tests.
In this paper, we focus only on the Archimedean spiral
test. The data acquisition process was conducted with
the strict guidance of privacy law. The Research Ethics
Committee of the University of Tartu (No. 1275T − 9)
approved the study.

Additionally we used Archimedean spiral drawing tests
from ParkinsonHW (Sakar et al. (2013); Isenkul et al.
(2014)), HandPD (Pereira et al. (2016a)), NewHandPD
(Pereira et al. (2016b)) and Parkinson’s drawings from
(Zham et al. (2017)).

In total, we collected 930 images, of which 312 were healthy
controls (HC), and 618 were Parkinson’s patients (PD). As
the NewHandPD dataset is an extension of the HandPD
dataset, these datasets contain intra-dataset duplicate im-
ages. Furthermore, we noted that the NewHandPD dataset
contains inter-dataset duplicate images and healthy spiral
images with bad image quality (between H16-H37). The
duplicates and images with bad quality were removed
from our dataset splits. This left us with 702 images (210
Controls and 492 Parkinson’s). The images were divided
in an 80%/10%/10% train/validation/test split, where the
validation and test set were balanced, as seen in Table 2.
Every split contained images from each dataset propor-
tionally to the size of each dataset.

For augmenting the images, we used the Albumentations
library Buslaev et al. (2020). The augmentation pipeline
is described in Table 3.

3.2 Preprocessing

As the images used by the classification and GAN models
come from several different datasets, the style and image
quality vary significantly between datasets. Before train-
ing, each image was passed through preprocessing step,
where the background noise and template were removed
and the images were turned into grayscale. For HandPD
and NewHandPD datasets, we followed the image prepro-
cessing steps from Pereira et al. (2015), which consisted
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Table 1. Configurations for GAN training

GAN Batch size R1 regularization Base config LeCam lambda

StyleGAN2-ADA 64 0.2048 auto -
StyleGAN2-ADA + LeCam 64 0.2048 auto 3 ∗ 10−7

StyleGAN3 64 0.2048 StyleGAN3-T -
Projected GAN 64 - FastGAN-lite -

Table 2. Dataset split. HC - Healthy control,
PD - Parkinson’s disease

Label Train Validation Test

HC 146 35 35
PD 422 35 35

Table 3. Image augmentation pipeline

Augmentation pipeline

HorizontalFlip()
VerticalFlip()

RandomRotate90()
GridDistortion(border mode=cv2.BORDER CONSTANT, value=255)

RandomScale()
RandomBrightnessContrast()

of blurring the image and thresholding. We used a similar
preprocessing pipeline with Parkinson’s drawing dataset,
as these images are grayscale; instead of thresholding
based on the difference in each colour channel, we thresh-
olded based on the intensity of the black values.

3.3 GAN

For image generation we used four different GAN ar-
chitectures: StyleGAN2-ADA (Karras et al. (2020b)),
StyleGAN2-ADA + LeCam (Tseng et al. (2021b)), Style-
GAN3 (Karras et al. (2021)), Projected GAN (Sauer et al.
(2021)). These models were selected because they were
specifically created with limited training data in mind and
have shown to generate good quality images under these
conditions (Karras et al. (2020b); Tseng et al. (2021b);
Karras et al. (2021); Sauer et al. (2021)). The overall work-
flow was implemented using PyTorch framework Paszke
et al. (2019).

With each GAN architecture, we trained two uncondi-
tional GAN models, one which generates spiral images of
healthy controls and the other that generates spiral images
of Parkinson’s patients.

Each of the GAN models was trained using transfer
learning from a model trained on the FFHQ dataset
(Karras et al. (2019)). We used only the train split,
which was amplified with horizontal, vertical flips and
horizontal + vertical flips, during GAN training. The
generated images are of size 256x256 pixels. Each model
was trained on a single NVIDIA A100 GPU for three days.
Configuration for each of the GAN architectures can be
seen in Table 1. R1 regularisation value was selected based
on the formula found in Section D in Karras et al. (2020b).

For model evaluation, we used Kernel Inception Distance
(KID), which measures the dissimilarity between proba-
bility distributions and is unbiased when used with small
datasets, unlike Fréchet Inception Distance (FID), which is
more commonly used as a GAN quality metric (Bińkowski
et al. (2018)). We calculated KID every 50 steps and
selected the model checkpoint with the lowest score as the
best.

3.4 Image classification

For image classification we used PyTorch implementations
of AlexNet (Krizhevsky et al. (2012)), ResNet50 (He et al.
(2015)), VGG11 (Simonyan and Zisserman (2015)), In-
ception v3 (Szegedy et al. (2015)), and Xception (Chollet
(2017)). The models were trained using transfer learning
with the base models trained on the ImageNet dataset
(Deng et al. (2009)). The configuration used for training
image classification model can be seen in Table 4.

Table 4. Configuration for classificator training

Option Value

Epochs 30
Batch size 64

Initial learning rate 0.0001
Learning rate decay Exponential

Learning rate decay gamma 0.9
Optimizer Adam

Optimizer weight decay 0.0005
Loss Cross Entropy

To measure the effectiveness of GAN generated images
in the classification task, we created multiple training
sets. For each of the GAN architectures, we extended
the original training set with images generated from the
GAN models. Furthermore, we extended one training
set with traditionally augmented images to compare the
GAN-augmented training sets. The extended training sets
contain nearly the same amount of images of healthy
controls and Parkinson’s patients. The sizes of the training
sets can be seen in Table 5.

Table 5. Training sets

Training set Size HC PD

Original 568 146 422
Augmented 1998 996 1002

GAN-augmented 1998 996 1002

4. MAIN RESULTS

4.1 GAN evaluation

The best KID score for each of the trained GAN architec-
tures can be seen in Table 6. Out of the StyleGAN based
architectures, StyleGAN2-ADA gave the best results for
both HC and PD. StyleGAN2-ADA + LeCam and Style-
GAN3 both gave worse results for both classes. The best
KID is achieved by Projected GAN, which has an order
of magnitude lower KID. The subset of GAN-generated
synthetic images is depicted in Fig 1.

We performed 50 experiments to evaluate the effect the
classification model architecture and augmentation type
have on the performance of the models. The results are
reported as the average of 5 runs using the test set and
are seen in Table 7.
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the original training set with images generated from the
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The best KID score for each of the trained GAN architec-
tures can be seen in Table 6. Out of the StyleGAN based
architectures, StyleGAN2-ADA gave the best results for
both HC and PD. StyleGAN2-ADA + LeCam and Style-
GAN3 both gave worse results for both classes. The best
KID is achieved by Projected GAN, which has an order
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We performed 50 experiments to evaluate the effect the
classification model architecture and augmentation type
have on the performance of the models. The results are
reported as the average of 5 runs using the test set and
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Fig. 1. The comparison of the original (left) and the GAN-
generated synthesised (right) digital spirals.

4.2 Baseline evaluation

First, we used the original training set and measured
how the CNN architectures perform with no augmented
data. We saw that the best results were produced by
ResNet, which managed to achieve a sensitivity of 94.3%
and specificity of 68.0%. The other architectures produced
similar but slightly worse results. AlexNet had the highest
specificity with 73.1%.

4.3 Augmentation evaluation

We found that using traditional augmented data achieved
better results with every architecture both in terms of
specificity with the exception of AlexNet, where specificity
fell by 1.1%. The specificity of the other model increased
by 6-7%. Sensitivity was more of a mixed bag. Three of
the five models saw an increase, with the most significant
being AlexNet 3.4% and Xception 2.2%. Inception v3
saw a marginal increase of 0.6%. The sensitivity of VGG
decreased the most by 2.9%, and ResNet decreased by
0.6%.

4.4 GAN-augmentation evaluation

Projected GAN augmented data achieved the best sensi-
tivity when compared to the other GAN-augmented train-
ing sets. Furthermore, it produced the best sensitivity
scores with three of the five CNN models and the highest
overall sensitivity of 96.6% with ResNet and Xception.
Projected GAN also surpassed the sensitivity of traditional
augmentation, with only one exception (AlexNet) and the
original training set. StyleGAN based GANs managed to
outperform Projected GAN’s sensitivity only once.

StyleGAN based augmentation seems to favour specificity
more than the Projected GAN. StyleGAN2-ADA matched
the highest specificity score of traditional augmentation
76.6% (Inception v3) and got the best specificity out of all
the augmentation methods when used with AlexNet. Using
StyleGAN2-ADA + LeCam, StyleGAN3, or Projected
GAN generated data results in poorer specificity than
traditional augmentation with every CNN architecture.

Table 6. Best KID scores of each trained GAN
model

GAN
KID (↓)

HC PD

StyleGAN2-ADA 0.01416 0.01054
StyleGAN2-ADA + LeCam 0.01826 0.02517

StyleGAN3 0.02148 0.02113
Projected GAN 0.001264 0.0009285

5. DISCUSSION

The limited amount of labelled data available is a major
hurdle for adopting deep learning methods in clinical
imaging. To overcome this issue, we evaluated the use of
synthetic images derived from the digital handwriting and
drawings of Parkinson’s patients. Following are the most
informative findings:

(1) The addition of the GAN generated images improved
the baseline sensitivity score (by 1.7-5.7%) in the
case of four CNN models (ResNet50, VGG11, In-
ception v3, Xception). The shallowest CNN archi-
tecture, AlexNet, showed better sensitivity combined
with the standard augmentation methods than GAN-
based augmentation.

(2) The highest sensitivity (96.6%) score was achieved
with the combination of Projected GAN generated
images and ResNet50 or Xception pre-trained CNN
models. The authors of Projected GAN Sauer et al.
(2021) showed its superiority in terms of conver-
gence speed and data efficiency. Their research with
Projected-GAN achieved the lowest FID (Fréchet In-
ception Distance) compared with the state-of-the-art
models. Our result, combined with the claims made
by Sauer et al. (2021), makes the Projected GAN a
suitable choice for this particular problem domain.

(3) The models trained on the original dataset with-
out any augmentation techniques didn’t achieve top
scores in any experimental settings. This finding con-
cludes the importance of exploring additional aug-
mentations methods to improve the deep learning
based diagnostics performance.

(4) It can be seen that the overall specificity scores were
lower for the majority of the settings. A highly specific
test is good at excluding most people who do not have
the condition. However, minimising the probability
of false negatives is more important in this case. The
more sensitive a test, the less likely an individual with
a negative test, will have the disease.

Our results showed that with certain settings, the addition
of synthetic GAN-generated images performed better than
the standard augmentation method. The only drawback
of the proposed methodology is the higher computational
cost of training GAN models.
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Table 7. Test dataset results. Mean scores over five runs. The values in bold indicate the best
results for a model. Sn - Sensitivity, Sp - Specificity.

Augmentation method
AlexNet ResNet50 VGG11 Inception v3 Xception

Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%)

None 88.0 73.1 94.3 68.0 92.6 66.9 92.0 69.1 90.9 65.7
Traditional 91.4 72.0 93.7 76.0 89.7 73.1 92.6 76.6 93.1 72.6
StyleGAN2-ADA 85.1 75.4 90.9 71.4 94.3 68.0 90.3 76.6 93.7 68.0
StyleGAN2-ADA + LeCam 88.6 68.6 95.4 69.1 93.7 66.9 94.3 69.1 95.4 63.4
StyleGAN3 88.0 73.1 88.0 73.1 92.0 65.7 93.1 68.0 91.4 65.7
Projected GAN 90.3 68.0 96.6 69.7 95.4 65.1 92.6 66.3 96.6 59.4

6. CONCLUSION

The findings presented in this paper conclude that gen-
erative adversarial networks have a strong potential as
an augmentation tool for CNN based Parkinson’s disease
diagnostics. Our future work will extend the experimental
settings with more GAN architectures and other neu-
rodegenerative disease oriented handwriting and drawing
datasets. In addition to the novel GAN-based Parkinson’s
digital handwriting and drawing image data augmentation
framework, an extensive database of original and syn-
thesised images for Parkinson’s disease diagnostics is an
outcome of the current research. To minimise the scarcity
and high cost of labelled data, all means should be used
to make more efficient use of the available data.
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Abstract: Freezing of the upper limb in Parkinson’s disease patients occurring during writing
tests constitutes the research subject of the present paper. Digitisation of the writing and
drawing tests coupled with artificial intelligence techniques have demonstrated accurate results
in supporting the diagnostics of Parkinson’s disease. In the digital setting, the analysis of freezing
episodes did not get much attention. The main goal of the present paper is to determine if the
neighbourhood of the point where freezing occurred possesses sufficient discriminating power to
distinguish between the Parkinson’s disease patients and healthy control individuals. For each
freezing episode, time intervals of one second before and after are considered. These intervals
are described by the hand movement’s kinematic and pressure parameters. These parameters
are used as features for the standard machine learning workflow that applies a nested cross-
validation loop. The paper’s main findings have demonstrated that analysis of the freezing
neighbourhoods allows distinguishing Parkinson’s disease patients from age matched healthy
controls. The best results were achieved based on the movements occurring one second after
the freezing episode. Kinematic and pressure-based features describing these movements have
allowed training classifiers whose accuracy, precision, and recall have reached the values of 0.86,
0.86 and 0.93, respectively. Furthermore, the achieved results are comparable to those available
in the literature.
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1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
whose symptoms include unintended motions, rigidity,
tremors and freezing Kalia and Lang (2015) which may
severely affect the life quality of the patient Louis and
Machado (2015). Unfortunately, there is no cure for PD.
Nevertheless, the quality of the patient’s life may be im-
proved by the proper treatment, which relies on the early
diagnosis. The results of Smits et al. (2014) demonstrate
that PD frequently affect fine-motor motions. The lat-
est does writing and drawing tests the valuable tools to
support PD diagnostics Moustafa et al. (2016), Nackaerts
et al. (2017). Digitisation of the writing and drawing
tests has started with the seminal paper Marquardt and
Mai (1994). Although the digital tables dominate as the
primary medium of data acquisition Drotár et al. (2016),
some recent results demonstrate the applicability of Tablet

PC devices Nõmm et al. (2018), Valla et al. (2022) for the
same tasks. In the area of sentence writing, the analysis is
either based on the kinematic and pressure description of
the entire test or its elements; words and individual letters
Netšunajev et al. (2021). The present research turns its
attention to the freezing phenomenon observed during the
writing tests Heremans et al. (2015) which alongside with
phenomenon of micrographia Wagle Shukla et al. (2012),
Van Gemmert et al. (2003) considered to be important
to support diagnostics of PD. The working hypothesis of
the present research is that the pressure and kinematic
description of the hand movements immediately before
and after the freezing possesses sufficient discriminating
power to distinguish between PD patients and healthy
control (HC) subjects. To confirm or reject this hypothesis
machine-learning (ML) approach is applied. The workflow
of the present research consists of the following steps.
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Netšunajev et al. (2021). The present research turns its
attention to the freezing phenomenon observed during the
writing tests Heremans et al. (2015) which alongside with
phenomenon of micrographia Wagle Shukla et al. (2012),
Van Gemmert et al. (2003) considered to be important
to support diagnostics of PD. The working hypothesis of
the present research is that the pressure and kinematic
description of the hand movements immediately before
and after the freezing possesses sufficient discriminating
power to distinguish between PD patients and healthy
control (HC) subjects. To confirm or reject this hypothesis
machine-learning (ML) approach is applied. The workflow
of the present research consists of the following steps.

Machine Learning Based Analysis of the
Upper Limb Freezing During Handwriting

in Parkinson’s Disease Patients

Vassili Gorbatsov ∗ Elli Valla ∗ Sven Nõmm ∗
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Abstract: Freezing of the upper limb in Parkinson’s disease patients occurring during writing
tests constitutes the research subject of the present paper. Digitisation of the writing and
drawing tests coupled with artificial intelligence techniques have demonstrated accurate results
in supporting the diagnostics of Parkinson’s disease. In the digital setting, the analysis of freezing
episodes did not get much attention. The main goal of the present paper is to determine if the
neighbourhood of the point where freezing occurred possesses sufficient discriminating power to
distinguish between the Parkinson’s disease patients and healthy control individuals. For each
freezing episode, time intervals of one second before and after are considered. These intervals
are described by the hand movement’s kinematic and pressure parameters. These parameters
are used as features for the standard machine learning workflow that applies a nested cross-
validation loop. The paper’s main findings have demonstrated that analysis of the freezing
neighbourhoods allows distinguishing Parkinson’s disease patients from age matched healthy
controls. The best results were achieved based on the movements occurring one second after
the freezing episode. Kinematic and pressure-based features describing these movements have
allowed training classifiers whose accuracy, precision, and recall have reached the values of 0.86,
0.86 and 0.93, respectively. Furthermore, the achieved results are comparable to those available
in the literature.
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1. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
whose symptoms include unintended motions, rigidity,
tremors and freezing Kalia and Lang (2015) which may
severely affect the life quality of the patient Louis and
Machado (2015). Unfortunately, there is no cure for PD.
Nevertheless, the quality of the patient’s life may be im-
proved by the proper treatment, which relies on the early
diagnosis. The results of Smits et al. (2014) demonstrate
that PD frequently affect fine-motor motions. The lat-
est does writing and drawing tests the valuable tools to
support PD diagnostics Moustafa et al. (2016), Nackaerts
et al. (2017). Digitisation of the writing and drawing
tests has started with the seminal paper Marquardt and
Mai (1994). Although the digital tables dominate as the
primary medium of data acquisition Drotár et al. (2016),
some recent results demonstrate the applicability of Tablet

PC devices Nõmm et al. (2018), Valla et al. (2022) for the
same tasks. In the area of sentence writing, the analysis is
either based on the kinematic and pressure description of
the entire test or its elements; words and individual letters
Netšunajev et al. (2021). The present research turns its
attention to the freezing phenomenon observed during the
writing tests Heremans et al. (2015) which alongside with
phenomenon of micrographia Wagle Shukla et al. (2012),
Van Gemmert et al. (2003) considered to be important
to support diagnostics of PD. The working hypothesis of
the present research is that the pressure and kinematic
description of the hand movements immediately before
and after the freezing possesses sufficient discriminating
power to distinguish between PD patients and healthy
control (HC) subjects. To confirm or reject this hypothesis
machine-learning (ML) approach is applied. The workflow
of the present research consists of the following steps.
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Recognition of freezing episodes from the test recordings.
Feature extraction and selection, application of the ML
classifiers, and comparison with the results available from
the literature. The paper is organised as follows. Research
hypothesis and problem statement constitute the section
2. Software and hardware setting alongside the data ac-
quisition procedure presented in the section 3. Section
4 presents employed techniques. Achieved results are re-
sented in section 5. Discussion of the achieved results and
comparison to those available from the literature consti-
tutes the section 6. Conclusions are drawn in the last
section

2. PROBLEM STATEMENT

The working hypothesis of the present research as-
sumes that the kinematic and pressure parameters of the
hand movements observed in certain time-neighbourhood
around the freezing episode allow us to distinguish if the
PD patient or HC subject performs the test. Supporting
this hypothesis requires the handwriting dataset, a tech-
nique to recognise freezing, a method to extract kinematic
and pressure-related features, and machine learning clas-
sifiers’ application.

3. EXPERIMENTAL SETTING

The current research belongs to the large project aiming
to support diagnostics of the PD using the analysis of
the gross- and fine- motions. Experimental setting for the
present research has been explicitly described in Nõmm
et al. (2018), Netšunajev et al. (2021) and Valla et al.
(2022) to make this paper self-sufficient main facts describ-
ing hardware and software settings alongside of testing
process are listed below.

3.1 Hardware and software

Apple iPad pro (2016) with a 9.7-inch screen and Apple
pen was used as the medium to perform writing tests. The
team members developed special software to provide an
interface and acquire motions of the tip of the Apple Pen
(stylus). The coordinates of the stylus tip and its pressure
applied to the screen are collected to the matrix. Rows of
the matrix correspond to the observation points acquired
up to two hundred times per second, and columns contain
information about x and y coordinates, pressure applied to
the screen, the orientation of the stylus and time stamp. In
addition, the latest allows computing numerous kinematic
parameters describing the motion. Upon the completion of
each test, this information is saved for future processing
in JSON files.

3.2 Handwriting data acquisition

The group of volunteers consisting of 24 PD patients, with
confirmed diagnosis, (mean age 74.1 ± 6.7) and 30 gender-
matched HC subjects (mean age 74.1 ± 9.1)) took part in
the testing process. Participants were asked to complete
the batter consisting of 12 tests. In the present paper,
only a sentence writing test is considered. The subjects
whose native language is Estonian were asked to handwrite
the sentence Kui Arno isaga kooli-majja jõudsid, olid

tunnid juba alanud, which means When Arno with his
father arrived at the school lessons had already started.
This sentence is taken from the book learned in all the
schools in Estonian by the school children of age between
7 and 9. Figure 1 depicts the sentence written on the
screen of a tablet. The research was performed in a strict
accordance to the data protection law and was approved
by the Research Ethics Committee of the University of
Tartu (No. 1275T − 9).

Fig. 1. Sentence written on the screen of a tablet.

4. METHODS AND RESULTS

The data processing was performed offline, employing two
standalone applications. The first one was used to recog-
nise freezing and extract the neighbourhoods correspond-
ing to the 0.5 second time intervals around it. Then the
second application was used to perform feature extraction
and nested cross-validation with respect to the six most
commonly used machine learning classifiers Logistic Re-
gression (LR), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Decision Tree (DT), Random Forest
(RF), AdaBoost (AB). Nested cross-validation allows to
avoid bias which may lead to overfitting and, in turn to
the over-optimistic model goodness Hastie et al. (2002),
Angelillo et al. (2019).

4.1 Feature extraction

The feature extraction step follows the idea proposed by
Nõmm et al. (2016) and later extended by Valla et al.
(2022). The first part is similar to many other results from
Marquardt and Mai (1994) to Drotár et al. (2016) and
requires one to compute velocity, acceleration and higher
derivatives; jerk - JN , yank YN , tug - TN , snatch - SnN

and shake - ShN , describing the kinematic parameters of
motion Valla et al. (2022). Initial set of parameters is com-
plemented by the parameters describing angle between the
directional vectors in two consequent observation points.
Alongside with measures of descriptive statistics (maxi-
mum, mean, variance etc.) initial feature set is comple-
mented by the integral-like parameters referred as motion
mass Nõmm et al. (2016). Let us illustrate the way these
parameters are computed on the example of velocity and
its corresponding mass parameter. Adopt the following
notations; N the number of observation points of interest,
vi the velocity (computed on the basis of two neighbouring
points and along the directional vector of the stylus tip
movement) i where i ∈ {1, . . . , N} then velocity mass is
defined by equation 4.1
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VN =
N∑

i=1

|vi| (1)

The same logic applies to computing mass values of the
other kinematic and pressure parameters.

4.2 Freezing episode

The freezing of the hand during the writing is referred as
freezing episode. According to Perez-Lloret et al. (2014)
the freezing episode is defined as a sudden, variable, and
often unpredictable transient break in movement. This defi-
nition needs to be formalised to allow automatic detection.
The authors of Heremans et al. (2015) have adapted the
definition for the case of hand movement during writing
in the following way: handwriting freezing was defined as
an involuntary stop or clear absence of effective writing
movements during at least 1 second. The latest allows
being implemented in the form of programming code. Of
course, one has to consider that while the hand may freeze,
small jigging in the coordinates may occur. The proper
setting of threshold values may easily solve such problems.
Once freezing episodes are detected, timestamps of the
points where they begin and end provide the information
about the ending and beginning points of the intervals to
extract. In this research, the length of such interval was
found experimental to be 1 of a second. Figure 2 depicts
freezing episodes, numbered and marked by yellow lines
with green arrows.

Fig. 2. Freezing episodes.

It is important to note that the number of freezing episodes
may vary between the PD patients and HC subjects. To
avoid problems caused by unbalanced data sets, proper
sampling was applied to guarantee an equal number of
freezing episodes and proper proportions of the episodes
from the different parts of the sentence. Then feature
extraction procedure described in the previous subsection
was applied to these intervals. After each test, all the freez-
ing episodes were described by the tuple of kinematic, pres-
sure and motion mass parameters. Each tuple inherited the
label of the test it had been computed from, consequently
forming the dataset to be used for ML analysis.

4.3 Feature selection and classification

According to Aggarwal (2015) there are four primary
feature selection techniques; filter models (sometimes re-
ferred to as filter methods), wrapper methods, embedded

techniques and probabilistic techniques. In this research,
filter models and wrapper techniques are considered. The
two remaining techniques require larger data sets and
are therefore left for future studies. Kinematic, pressure
and motion mass parameters describing the movements of
the stylus tip are numeric, which makes Fisher’s score 2
the natural choice for feature selection. Aggarwal (2015)
Fisher’s score belongs to the filter-model feature selection
techniques and assigns to each feature a numeric value,
allowing to order the features with respect to their dis-
criminating power.

F =

∑N
i=1 pj(µ− µi)

2

∑N
i=1 piσ

2
i

(2)

In (2) N is the number of classes, µ and µi are the mean
value for the entire set along the given feature and mean
value of the class i, respectively; pi proportion of the class
i and σi is the standard deviation of the class i. Larger
values of the Fisher’s score indicate higher discriminating
power. In parallel the feature selection was performed us-
ing a wrapper method. The evaluation is done by training
and testing a specific classification model that estimates
the relevance of a given subset of features. Although filter
methods are fast and scalable, they have the disadvantage
of ignoring the interaction with the classifier. Wrapper
methods are proven to be more efficient but also more
computationally expensive Guyon et al. (2002). In Valla
et al. (2022) authors found that the features selected with
a wrapper method possessed greater discriminating power
compared to the filter method based selection. In this
paper, we consider the SVM recursive feature elimination
(SVM-RFE) wrapper method proposed by Guyon et al.
(2002). Unlike the non-nested feature selection, when fea-
tures are selected based on an entire training set, and
then cross-validation procedure is applied, nested cross-
validation requires one to perform feature selection for
each fold Hastie et al. (2002). The difference is that in
the first case model sees the testing set implicitly, which
may lead to overoptimistic results, whereas the second case
resembles real-life scenarios more precisely Angelillo et al.
(2019).

5. MAIN RESULTS

The workflow described in the previous section has been
applied to the three following cases:

(1) Analysis of the movements immediately before the
freezing episodes.

(2) Analysis of the movements immediately after the
freezing episodes.

(3) Analysis of the movements of entire sentences.

The last case was performed to ease the comparison with
the other results in the area. For each classifier, evaluation
was performed with 2, 3, 4 and 5 features. Experimenting
with a larger number of features did not make sense,
considering the size of the data set available for the
research.

5.1 Fisher’s score based feature selection

In the case of filter model (Fisher’s score) feature selection,
the analysis of the movements occurring before the freezing
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episodes has led to the following results. The mean of
the velocity, its vertical projection and standard deviation
alongside the mean and standard deviation of the accelera-
tion appeared to possess the highest discriminating power.
The number of features did not affect the metrics describ-
ing the goodness of the models. The accuracy have varied
between 0.73 and 0.78, precision 0.76 and 0.78, recall 0.81
and 0.93. While goodness metrics of different classifiers
did not vary much, SVM has demonstrated the highest
performance, closely followed by logistic regression. For
the movements occurring after the freezing episodes, ac-
celeration mean and standard deviation topped the list of
most discriminating features, followed by their projections
on the vertical axis and velocity mean. At the same time,
their Fisher’s score values were, on average, ten per cent
higher compared to those computed based on movements
before the freezing episodes. This difference is reflected
by the goodness of the classifiers trained on this data.
The accuracy have varied between 0.78 and 0.71, precision
0.82 and 0.85, recall 0.85 and 0.91. In this case, logistic
regression has demonstrated the strongest performance,
closely followed by the SVM classifier. For the analysis
of the entire sentence, Fisher’s score has indicated that
acceleration and jerk based features possess the highest
discriminating power. Model goodness metrics have varied
as follows: the accuracy has varied between 0.74 and 0.8,
precision 0.79 and 0.81, recall 0.86 and 0.91. The SVM
demonstrated the best performance.

5.2 Wrapper method based feature selection

Application of the wrapper method has allowed to reach
higher goodness for some classifiers. Also it has demon-
strated high variations in performance metrics. Analysis
of the movements occurring before the freezing events
has led to the following results. Although irrespective of
the number of features, the accuracy has varied between
0.77 and 0.82, precision 0.79 and 0.85, recall 0.82 and
0.93. These results are comparable with those reported
by Drotár et al. (2016) and slightly below model goodness
achieved by Valla et al. (2022). Specificity appears to be
the only goodness criteria lacking behind the competition
ranging between 0.57 and 0.72. SVM classifier has demon-
strated the most substantial performance for any number
of variables. The mean of the velocity values has been
presented in all the feature sets, followed by the angular
velocity mass and a maximum altitude of the stylus; the
both were presented in three feature sets. Analysis of the
movements occurring after the freezing events has led to
higher accuracy (0.8 - 0.86), precision (0.84 - 0.88) and
specificity (0.68 - 0.79), whereas recall (sensitivity) did not
change significantly. For this case SVM was the strongest
among all the tested classifiers. However, the feature sets
have changed dramatically. The standard deviation of the
velocity along the horizontal axis was presented in all the
feature sets alongside the maximum value of pen altitude.
This pair was followed by the mean value of the angle
describing the change of the directional vector. Overall,
one can expect that movements after the freezing are
better suited than those before the freezing event. To
illustrate the results one can plot the graph of the velocity
in one second neighbourhood around the freezing episode.
In Figure 3 blue lines represent the velocities observed
around freezing episodes in the motions of HC subjects,
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Fig. 3. Freezing episodes.

and yellow lines represent the velocities observed around
freezing episodes in the motions of PD patients. Red line
represents the freezing point. One may see that the mean
values and standard deviations would be distinguishable
between those groups. Finally, when the same procedure
was applied to the entire sentence variance of the metrics
describing model goodness increased. The accuracy has
varied between 0.74 and 0.85, precision 0.70 and 0.95,
recall 0.76 and 0.93. At the same time, for some models of
four and five features, specificity has risen to 0.93. While
SVM has remained the top performer for the models with
four features, LogReg has demonstrated the same perfor-
mance with four variables with better quality for the case
of five features. The feature sets for this case more closely
resemble the case of the movements after the freezing
event. The only significant change is the appearance of
the features based on acceleration.

6. COMPARISON AND DISCUSSION

The main problem in comparison to the results of sentence
writing tests is that they perform in different languages
and frequently have different lengths. One of the most
cited works in this area whose techniques are similar to
those used in the present research is Drotár et al. (2016),
where the tested subjects were asked to write the sentence
Chezch Tramvaj dnes už nepojede which means The tram
will not go today. Unlike the present research, the writing
was combined with the other tasks of the testing battery.
Nevertheless, comparing achieved model goodness, one
may conclude that the analysis of movements observed
before the freezing led to the similar goodness as reported
by Drotár et al. (2016). The Movements observed after the
freezing episodes lead to models of higher goodness. The
work of Netšunajev et al. (2021) also analyses sentence
writing tests. Unlike the present research, the research is
based on finding and analysing individual letters. Never-
theless, Netšunajev et al. (2021) was achieved on the same
dataset as the present research, allowing a more detailed
comparison. Metrics of model goodness in Netšunajev
et al. (2021) vary in the same range as the current re-
search’s; the accuracy has varied between 0.73 and 0.82,
precision 0.71 and 0.91, recall 0.61 and 0.93 (excluding
SVM and KNN which have demonstrated extremely poor
performance). Neither of the models can be declared the
ultimate winner. Finally, in Netšunajev et al. (2021) most
frequently used features are the mean of the velocity and
the mean of acceleration mass of the angular change. While
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where the tested subjects were asked to write the sentence
Chezch Tramvaj dnes už nepojede which means The tram
will not go today. Unlike the present research, the writing
was combined with the other tasks of the testing battery.
Nevertheless, comparing achieved model goodness, one
may conclude that the analysis of movements observed
before the freezing led to the similar goodness as reported
by Drotár et al. (2016). The Movements observed after the
freezing episodes lead to models of higher goodness. The
work of Netšunajev et al. (2021) also analyses sentence
writing tests. Unlike the present research, the research is
based on finding and analysing individual letters. Never-
theless, Netšunajev et al. (2021) was achieved on the same
dataset as the present research, allowing a more detailed
comparison. Metrics of model goodness in Netšunajev
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ultimate winner. Finally, in Netšunajev et al. (2021) most
frequently used features are the mean of the velocity and
the mean of acceleration mass of the angular change. While

achieved results are not enough to claim that the analysis
of freezing episodes is more informative than micrographia
or other tests, it provides the results of comparable good-
ness and therefore is a valuable addition to computer-aided
diagnostics support. Another essential point to note is that
analysis of the elements of the test is no less informative
in comparison to the analysis of the entire test. The latest,
in some sense, coincides with the results of Nomm et al.
(2019), which demonstrates that in drawing tests, part of
the test may be the same informative as an entire test in
diagnostics of PD.

7. CONCLUSIONS

The attention of the present research has been focused
on the stylus tip movements observed one second before
and one second after the hand freezing episodes. It was
demonstrated that movement occurring after the freezing
episode might be as informative as the entire test. Also,
goodness metrics of the trained ML classifiers are compa-
rable and sometimes even better than those reported in
the literature.
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Abstract—This research paper focuses on the analysis of
various segments of Luria’s alternating series drawing test as
a diagnostic support for Parkinson’s disease. Digitization of
drawing tests has allowed capturing pen movement parameters
imperceptible to the naked eye, enabling precise neurological
disorder diagnosis. However, this analysis of parameters presents
a disparity between the pre-digital era’s human-assisted as-
sessment and the machine learning algorithm employed today.
While human practitioners primarily emphasized overall perfor-
mance and subject errors, the machine learning method relies
on kinematic and pressure features to characterize pen tip
movements. The paper aims to bridge this gap by utilizing the
deep learning object detection algorithm to identify test elements
and classical machine learning techniques to analyze kinematic
and pressure parameters associated with drawing these elements.
The main research contribution centers around two key aspects:
1) evaluating the individual informativeness of test elements at
different stages, i.e., beginning, middle, and final parts of the
test, and 2) establishing an efficient automatic segmentation
framework aimed at enhancing decision support systems in the
context of Parkinson’s disease diagnosis.

Index Terms—deep learning, yolo, Luria’s alternating series,
Parkinson’s disease, handwriting dataset

I. INTRODUCTION

Through the digitization of drawing tests, it has become
feasible to describe characteristics that were previously in-
visible to the naked eye. By combining these descriptions
with machine learning techniques, highly accurate models
have been developed to support the diagnosis of neurologi-
cal disorders, including Parkinson’s disease (PD). The latest
is a neurodegenerative disorder [1] that can severely affect
motor functions in a patient. PD symptoms encompass non-
purposeful motions, tremor [2], and freezing [3], adversely af-
fecting the patient’s everyday life quality. Despite the absence
of a cure for PD, early diagnosis and appropriate treatment

can alleviate symptoms and help maintain a fulfilling daily life.
The evaluation procedure for symptoms in Parkinson’s disease,
as suggested by [4], involved drawing and writing tests. These
tests were originally conducted using paper and pencil, relying
on visual assessment by the practitioner. This approach inher-
ently carried subjectivity in the assessment process. However,
the introduction of digital tablets and tablet PCs has spurred
research into digitizing these drawing and writing tests. From
the pioneering findings of [5] until recently, the primary ap-
proach involved constructing features based on the kinematic
and pressure parameters of pen tip movements during the test.
Machine learning classifiers [6] were then applied to these
features for analysis. The most commonly used approaches
in the relevant studies can be categorised as follows: numeric
methods, where kinematics of the handwriting are analysed [7]
[8] [9] [10] [11] [12] [13] and deep learning based approach
[14] [15] [16] [17] where the digital image is used as an input
for a convolutional neural network (CNN) based classifica-
tion. CNN’s have achieved high performance as a decision
support tool for Parkinson’s disease diagnostics [14] [18].
However, modern deep learning models rely heavily on the
size of training data available. Labelling medical image data is
an expensive, time- and resource-consuming task. Observing
the model performance achieved by [7] and [11], alongside
other relevant studies, prompts the question of whether more
research should be directed towards studying new tests. In
this study, Luria’s alternating series test was utilized (see Fig.
1) [19]. Several important arguments warrant consideration.
Firstly, Luria’s alternating series tests enable the determination
of whether the disease has primarily affected the motion
planning function or the motion execution function. Secondly,
these tests facilitate the identification of errors caused by
the persevering phenomenon, which involves the inability to
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switch between consequent motor actions. Lastly, the question
of which elements of the test hold greater informativeness
to support PD diagnostics has received insufficient attention.
This last question has value from both academic and practical
perspectives. The practical perspective is concerned with the
ability to perform tests on devices with a small screen. To
address these questions, deep learning object detection models
are employed to recognize individual elements of the alter-
nating series tests. Subsequently, a machine learning-based
analysis is conducted on the various types of test elements.
The structure of this paper is as follows: Section II outlines
the research hypotheses. Section III provides a comprehensive
discussion of the research methods, experimental settings,
and the hardware and software utilized. The main research
findings are presented in Section IV, followed by an in-depth
discussion of the attained results in Section V. Finally, the
paper concludes in the last section.

II. RESEARCH HYPOTHESIS

There are two main hypotheses that span current research.
The first hypothesis suggests that different parts of the test
(repeating patterns observed in the beginning, middle, and end)
possess varying discriminating power. This hypothesis draws
inspiration from the results of [20]. The second hypothesis
proposes that the kinematic and pressure parameters describing
the movements of the stylus tip in perseveration-representing
parts of the test are more informative than other segments in
distinguishing between PD patients and healthy control (HC)
subjects.

The following subproblems must be solved to
support or reject the stated hypotheses.

1) Train corner detection model for automatic seg-
mentation.

2) Segment the drawing tests into previously defined
parts.

3) Calculate kinematic- and pressure-related features
as described in [11].

4) Analyse discriminating power of the different
segments:

a) the beginning, middle, and end part of the test;
b) the perseveration describing switching points.

III. RESEARCH METHODS AND WORKFLOW

This chapter presents all the methods utilized to extract the
various segments from the ΠΛ-tests (see Fig. 1).

A. Data acquisition

The research team utilized a custom iOS application to
gather the data. The tablet recorded the following dynamic
features in the form of time-sequences: x-coordinate (mm); y-
coordinate (mm); timestamp (sec); pressure (arbitrary unit of
force applied on the surface: [0,..., 6.0]); altitude (rad); azimuth

Fig. 1. Luria alternating series patterns. The subject was assigned three
distinct tasks. The initial pattern is depicted in yellow, while the blue line
represents the trajectory of the subject’s drawings.

(rad). Total of 24 PD patients (mean age 74.1 ± 6.7) and 34
age- and gender-matched healthy control subjects (mean age
74.1 ± 9.1)) participated in the creation of the database. The
overall task was to complete a testing battery consisting of
12 different drawing and writing tests. In this paper, we focus
only on the Luria’s alternating series test. The data acquisition
process was conducted with the strict guidance of privacy law.
The Research Ethics Committee of the University of Tartu (No.
1275T − 9) approved the study.

B. Corner detection

The ”You Only Look Once” algorithm, or YOLO, is used to
detect corners in the ΠΛ test. It is a series of end-to-end deep
learning models designed for fast object detection, developed
by Joseph Redmon et al. and first described in [21].

The corners are divided into the following categories:
• Right angle corners
• Upper acute angle corners
• Lower acute angle corners
When labeling the corners, an area around the corner is

selected to get sufficient data points and analyze the corners
separately from the straight and diagonal lines. It is not just
the center point of the corner; it encompasses an area around
it. Fig. 2 represents the overall segmentation workflow. Firstly,
YOLO is trained on synthetic corners and then used to predict
corners on the real patients’ data. Step 2 of Fig. 2 is described
in the subsequent section.

1) YOLO training process: Three augmentation methods,
namely horizontal flip, rotation, and shear, were applied to
enhance the training dataset, resulting in a total of 288 images
for training. The initial dataset consisted of 90 images, with
an 80/20 split between training and validation, yielding 18
validation images. YOLO was trained for 300 epochs, and
the best epoch (237) achieved the following metrics: mean
average precision (mAP) 0.5:0.95 of 0.295, mAP 0.5 of
0.833, precision of 0.84, and recall of 0.82. The mAP scores
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Fig. 2. The role of YOLO in the overall workflow. The Step 4 image visualizes the different segment types derived after corner detection. 1: lower acute
angle corners (orange), 2: vertical lines (green), 3: right angle corners (red), 4: horizontal lines (purple), 5: diagonal lines (blue), 6: upper acute angle corners
(brown).

improved initially for 50 epochs, plateauing after 150 epochs.
Precision and recall showed similar patterns, plateauing after
about 100 epochs. The box loss decreased gradually during
training without overfitting. Class loss reached a plateau for
both training and validation, with slight improvements in
training loss. Object loss decreased as expected for training but
showed significant overfitting in the validation after approxi-
mately 150 epochs. Real patient data validation highlighted the
importance of an appropriate confidence threshold to control
false positives and overlapping bounding boxes. A confidence
threshold of 0.5 offered the best balance of precision and recall
for future tests on real patient data.

C. Test segmentation process

The subsequent phase in segmenting the ΠΛ-tests involves
the extraction of distinct segments. While YOLO provides
solely the corner points of the ΠΛ-test, our objective is to par-
tition the entire dataset, presenting the challenge of discerning
the initiation and termination points of individual segments.
Employing the timestamps associated with the data points
alone does not offer a viable solution, as it is plausible that the
patient may have attempted to rectify an earlier mistake made
during the drawing procedure. The methodology employs a
clustering technique wherein all data points falling within a
specified distance are grouped together as a singular segment.
Initially, a data point is chosen and assigned as the seed of a
new segment. Subsequently, the nearest neighboring point is
examined, and if its distance from the segment seed is within
the maximum permissible distance threshold, it is incorporated
into the segment. This process is iterated until no points
satisfying the maximum distance criterion remain. Following
this, a new data point is selected as a fresh seed, establishing
a new segment, and the procedure is repeated. The rationale
behind this approach is to simulate the sequential movement
of the patient during the drawing process, thereby delineating

segments that correspond to distinct drawing strokes. The
clustering technique employed effectively tackles the primary
challenge of segmentation by exclusively utilizing the x- and
y-coordinates of the data points to demarcate segments. An
advantageous aspect of this method is its independence from
a predefined number of clusters, rendering it more resilient to
irregularities or anomalous data points.

1) Segmentation by type: We have established six distinct
segment types based on the outcomes of the YOLO algorithm
and additional segmentation analysis. Please refer to Fig. 2
Step 4 for a more detailed explanation.

Based on the YOLO results, we can obtain the corner co-
ordinates and their respective classes. However, it is essential
to distinguish and classify different line types separately. The
classification of lines is based on the following criteria:

• A line connecting two corners at right angles is classified
as a horizontal line.

• A line connecting two corners at acute angles is classified
as a diagonal line.

• A line connecting one acute angle corner and one right
angle corner is classified as a vertical line.

To identify adjacent corners within a segment, we need to
find the data points next to each corner. As the remaining
segment types consist of lines, we consider the tips of the
lines, representing the two points with the maximum distance
between them, as the closest points to the corners. To achieve
this, we utilize the convex hull of the data points and derive
the maximum distances between them.

The next step involves determining the segment types for
transitions from Π to Λ and from Λ to Π. This is accomplished
by categorizing each lower acute corner as either: a) Π to Λ, b)
Λ to Π. To make this determination, we analyze the preceding
segments to the lower acute corner. If the previous segment is
a diagonal straight line or an upper acute angle corner, the type
is classified as Λ to Π. Conversely, if the previous segment
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is a horizontal line, a vertical line, or a right angle corner,
the type is classified as Π to Λ. Once the segment types for
the lower acute corners are determined, all other segment data
points are discarded and excluded from further analysis.

2) Segmentation by position: The subsequent phase in-
volves determining the position of each segment within the
test, specifically identifying the start, middle, and end parts.
To accomplish this, we locate the minimum and maximum x-
values from the dataset, assigning each data point its respective
position. The test is then divided into three equal-length parts
based on the x-axis. If the mean x-value of a segment falls
within the first part, it is classified as a start segment. If it falls
within the second part, it is categorized as a middle segment.
Conversely, if the mean x-value is situated within the third
part, it is designated as an end segment. See Fig. 2 Step 5 for
visual explanation. The start segments are denoted by the color
blue, the middle segments by green, and the end segments by
red.

In subsequent machine learning-based analyses, we will
consider both the segment types and positions as relevant
factors.

D. Feature engineering and classification

Raw time-series data, including pen position (x- and y-
coordinates), timestamp, pen pressure, pen inclination (al-
titude), and pen orientation (azimuth), can be utilized to
compute an infinite number of features. In this study, we de-
rived kinematic features (displacement, velocity, acceleration,
etc.), spatial-temporal features (duration, distance), geometric
features (altitude, azimuth, yaw, etc.), and pressure features.

Specifically, velocity represents the rate at which the dis-
placement of the position vector changes with respect to time.
Similarly, we computed acceleration as the rate of change
in velocity and jerk as the rate of change in acceleration
with respect to time. To comprehensively analyze the data,
we considered up to the sixth time derivative of the position
vector.

By examining the slope of the position vector, we were
able to extract angle α, and yaw (γ) was defined as the
change in the direction in which the point vector is pointing.
Additionally, the φ angle was derived from the aforementioned
angles. Enriching the angular feature set, we included up to
a third of their respective time derivatives. Fig. 3 visually
illustrates the calculations of the features mentioned above.
Feature extraction resulted in either a single-valued feature or
a vector feature. For all resulting vector features, the following
statistical measures were calculated: mean, median, standard
deviation, maximum and minimum value. In addition, hori-
zontal and vertical components of the kinematic features were
computed. A total of 202 features were extracted from the raw
signals of the fully segmented ΠΛ tests. An SVM recursive
feature elimination wrapper method was used to decrease the
dimensionality of the data. Six machine learning classifiers
are trained, Logistic Regression, Support Vector Machine,
K-Nearest Neighbors, Decision Tree, Random Forest, and
AdaBoost. Each test is divided by position and segment type.

Fig. 3. Angular and kinematic features extracted from the digital signals.

TABLE I
ΠΛ-TRACE CLASSIFICATION BY SEGMENT TYPE

Position Type Pacc Pprec Psen Pspec

Start Vertical 0.905 0.860 1.000 0.800
Horizontal 0.776 0.850 0.717 0.867

Acute angle 0.619 0.653 0.783 0.467
Right angle 0.776 0.900 0.667 0.933

Diagonal 0.871 0.910 0.867 0.867
Middle Vertical 0.819 0.867 0.783 0.867

Horizontal 0.743 0.883 0.683 0.800
Acute angle 0.714 0.713 0.833 0.567
Right angle 0.848 0.820 0.950 0.733

Diagonal 0.724 0.780 0.717 0.733
End Vertical 0.938 0.960 0.950 0.900

Horizontal 0.657 0.763 0.650 0.633
Acute angle 0.748 0.740 0.900 0.567
Right angle 0.843 0.933 0.783 0.933

Diagonal 0.776 0.753 0.867 0.667

The best results averaged over a 5-fold nested [22] cross-
validated loop are presented in Section IV.

IV. RESULTS

The following section describes highest scores averaged
over 5-fold nested cross-validated runs of the segmented ΠΛ
tests. These scores are visualized in Tables I, II, III. The best-
performing segment with an accuracy of 93.8%, precision of
100.0%, sensitivity of 88.3%, and specificity of 100.0% is
the acute angle at the beginning of the ΠΛ-copy task. The
vertical lines showed a stable performance across all three
ΠΛ tests, achieving high accuracy of 96.7%, precision 95.0%,
sensitivity 100.0%, and specificity 93.3% in the middle of
the ΠΛ-continue task. The vertical lines provided the most
considerable predictive power of all the lines. In the ΠΛ-copy
task, all the segment types were informative and distributed
across the task. The ΠΛ-copy task also had the largest count
of informative segments.

The transition segments exhibited lower performance com-
pared to other segments (see Tables IV, V, VI), particularly
showing poor sensitivity, which makes them less suitable for
accurately diagnosing patients. Among the transition segments,
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Fig. 4. The primary findings highlight the most informative (i.e. error-prone) segments (in red) in Luria’s alternating series test for PD.

TABLE II
ΠΛ-COPY CLASSIFICATION BY SEGMENT TYPE

Position Type Pacc Pprec Psen Pspec

Start Vertical 0.800 0.790 0.950 0.667
Horizontal 0.810 0.900 0.783 0.833

Acute angle 0.938 1.000 0.883 1.000
Right angle 0.838 0.933 0.817 0.800

Diagonal 0.876 0.910 0.900 0.833
Middle Vertical 0.771 0.813 0.817 0.700

Horizontal 0.805 0.883 0.783 0.867
Acute angle 0.910 0.910 0.950 0.833
Right angle 0.848 0.950 0.783 0.933

Diagonal 0.843 0.850 0.900 0.767
End Vertical 0.938 0.950 0.950 0.933

Horizontal 0.820 0.920 0.833 0.800
Acute angle 0.686 0.753 0.733 0.667
Right angle 0.781 0.883 0.717 0.867

Diagonal 0.867 0.860 0.933 0.767

TABLE III
ΠΛ-CONTINUE CLASSIFICATION BY SEGMENT TYPE

Position Type Pacc Pprec Psen Pspec

Start Vertical 0.629 0.670 0.783 0.467
Horizontal 0.867 0.900 0.883 0.867

Acute angle 0.840 0.900 0.867 0.800
Right angle 0.700 0.740 0.833 0.600

Diagonal 0.820 0.850 0.883 0.767
Middle Vertical 0.967 0.950 1.000 0.933

Horizontal 0.780 0.767 0.867 0.700
Acute angle 0.780 0.817 0.800 0.767
Right angle 0.560 0.550 0.733 0.367

Diagonal 0.827 0.900 0.867 0.800
End Vertical 0.805 0.763 1.000 0.533

Horizontal 0.787 0.920 0.767 0.867
Acute angle 0.667 0.700 0.733 0.567
Right angle 0.867 0.950 0.817 0.933

Diagonal 0.781 0.933 0.683 0.933

TABLE IV
ΠΛ-TRACE CLASSIFICATION (ONLY TRANSITION CORNERS)

Position Type Pacc Pprec Psen Pspec

Start Π to Λ 0.756 0.680 0.690 0.810
Λ to Π 0.729 0.650 0.700 0.753

Middle Π to Λ 0.765 0.773 0.650 0.843
Λ to Π 0.740 0.733 0.550 0.867

End Π to Λ 0.740 0.798 0.630 0.833
Λ to Π 0.811 0.883 0.617 0.927

TABLE V
ΠΛ-COPY CLASSIFICATION (ONLY TRANSITION CORNERS)

Position Type Pacc Pprec Psen Pspec

Start Π to Λ 0.680 0.656 0.800 0.600
Λ to Π 0.671 0.633 0.450 0.814

Middle Π to Λ 0.860 0.920 0.750 0.933
Λ to Π 0.727 0.633 0.650 0.786

End Π to Λ 0.780 0.840 0.650 0.867
Λ to Π 0.747 0.780 0.600 0.843

TABLE VI
ΠΛ-CONTINUE CLASSIFICATION (ONLY TRANSITION CORNERS)

Position Type Pacc Pprec Psen Pspec

Start Π to Λ 0.698 0.667 0.417 0.867
Λ to Π 0.718 0.684 0.667 0.753

Middle Π to Λ 0.744 0.763 0.633 0.813
Λ to Π 0.706 0.533 0.367 0.887

End Π to Λ 0.847 0.933 0.667 0.960
Λ to Π 0.711 0.727 0.600 0.760

the start position was found to be particularly weak in terms
of predictive power. As a result, using these segments alone
may not provide reliable and accurate diagnostic support.

V. DISCUSSION

Overall, the segments with the best predictive power were
the vertical lines and acute angles. Fig. IV depicts the most
informative segments for each test. The better performance
of the acute angles compared to the right angles might be
attributed to the occurrence of more complex movements at
the acute angles. Although their metrics were not low, the
horizontal lines did not perform as well as the other two line
types. This result might be because horizontal lines are usually
shorter than the rest, meaning the number of data points is
more diminutive. The results also align with the results from
[10], which achieved an accuracy of 91.0%. Each test had
the best segment from different positions. Interestingly, the
segment’s position did not seem to affect the results. The large
count of informative segments in the ΠΛ-copy task suggests
that the presence of the template may simplify the task for
Parkinson’s patients and thus make detection more complex.
A similar finding was presented in [23], page 105, where the
performance of gross motor skills was affected by adding the
more structured template.
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VI. CONCLUSIONS

Our successful implementation of handwriting- and
drawing-based computer-aided analysis holds promise as a de-
cision support tool for clinicians in neurodegenerative disease
diagnostics, potentially alleviating the burden on the public
health system. The proposed method automatically segments
Luria’s alternating series test and identifies the most informa-
tive parts for Parkinson’s disease diagnostics. Results demon-
strate varying discriminative power among different segments,
The acute angle at the beginning of the ΠΛ-copy task per-
forming the best (93.8% accuracy, 100.0% precision, 88.3%
sensitivity, and 100.0% specificity). The vertical lines showed
a stable performance across all three ΠΛ-tests, achieving high
accuracies (up to 96.7%) in the middle and end positions. This
suggests the significance of specific handwritten segments in
Parkinson’s disease detection.

In the future, we plan to expand our analysis to include other
handwriting tests, such as Archimedean spiral and sentence
writing. Additionally, we aim to explore deep learning-based
analysis of the segments. Overall, this automatic test segmen-
tation combined with machine learning-based decision support
software could find practical application in clinical settings.

REFERENCES

[1] L. V. Kalia and A. E. Lang, “Parkinson’s disease,” The Lancet, vol. 386,
no. 9996, pp. 896 – 912, 2015.

[2] E. D. Louis and D. G. Machado, “Tremor-related quality of life:
a comparison of essential tremor vs. parkinson’s disease patients,”
Parkinsonism & related disorders, vol. 21, no. 7, pp. 729–735, 2015.

[3] E. Heremans, E. Nackaerts, G. Vervoort, S. Vercruysse, S. Broeder,
C. Strouwen, S. P. Swinnen, and A. Nieuwboer, “Amplitude
manipulation evokes upper limb freezing during handwriting in
patients with parkinson’s disease with freezing of gait,” PLOS
ONE, vol. 10, no. 11, pp. 1–13, 11 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0142874

[4] E. Smits, A. Tolonen, L. Cluitmans, M. Gils, B. Conway, R. C Zietsma,
K. Leenders, and N. Maurits, “Standardized Handwriting to Assess
Bradykinesia, Micrographia and Tremor in Parkinson’s disease,” PloS
one, vol. 9, 05 2014.

[5] C. Marquardt and N. Mai, “A computational procedure for movement
analysis in handwriting,” Journal of Neuroscience Methods, vol. 52,
no. 1, pp. 39 – 45, 1994.

[6] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, and
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Background: The condition of fatigue is a complex and multifaceted disorder that encompasses physical, mental,

and psychological dimensions, all of which contribute to a decreased quality of life. Smartphone-based systems

are gaining significant research interest due to their potential to provide noninvasive monitoring and diagnosis

of diseases.

Objective: This paper studies the feasibility of using smartphones to collect motor skill related data for machine

learning based fatigue detection. The authors’ main goal is to provide valuable insights into the nature of fatigue

and support the development of more effective interventions to manage it.
Methods: An application for smartphones running on Android OS is developed. Two aim-based reaction tests, an

Archimedean spiral test, and a tremor test, were assembled. 41 subjects participated in the study. The resulting

dataset consists of 131 trials of fatigue assessment alongside digital signals extracted from the motor skill tests.

Six machine learning classifiers were trained on computed features extracted from the collected digital signals.

Results: The collected dataset SmartPhoneFatigue is presented for further research. The real-world utility of

this database was shown by creating a methodology to construct a fatigue predictive model. Our approach

incorporated 60 distinct features, such as kinematic, angular, aim-based, and tremor-related measures. The

machine learning models exhibited a high degree of prediction rate for fatigue state, with an accuracy exceeding

70%, sensitivity surpassing 90%, and an f1-score greater than 80%.

Conclusion: The results demonstrate that the proposed smartphone-based system is suitable for motion data

acquisition in non-controlled environments and shows promise as a more objective and convenient method for

measuring fatigue.

1. Introduction

In numerous industries such as transportation, healthcare, and man-

ufacturing, fatigue presents a significant challenge that can result in
accidents, mistakes, and decreased productivity. The cited studies [1]

have revealed a concerning statistic: 3.6% of fatal road accidents are

caused by physical exhaustion or drowsiness, highlighting the critical

importance of recognizing early signs of fatigue. Fatigue can be de-

scribed as a change in the psychobiological state caused by prolonged

periods of demanding cognitive and physical activity, sleep deprivation,

and other factors [2][3][4][5][6]. This state is associated with stress,

aging, depression, illness, neurological disorder such as multiple scle-

rosis, Parkinson’s disease, post-stroke, and Alzheimer’s disease [7]. The

prevalence and impact of fatigue have also been documented in can-

* Corresponding author.

E-mail addresses: elli.valla@taltech.ee (E. Valla), ain-joonas.toose@taltech.ee (A.-J. Toose), sven.nomm@ttu.ee (S. Nõmm), aaro.toomela@tlu.ee (A. Toomela).

cer patients [8][9]. There are two main types of fatigue: peripheral

(physical) and central (mental) fatigue [10]. Physical fatigue is com-

monly characterized as decreased ability to engage in physical tasks

following prior physical exertion. Mental fatigue is identified through

a decline in performance on tasks that demand alertness, as well as

the retrieval and manipulation of information from memory [11]. Con-

cepts like tiredness [12][13], or loss of focus [14] come up when talked

about mental fatigue. Despite fatigue being a well-known phenomenon,

its underlying mechanisms and effects are still not fully understood, ne-

cessitating further investigation [15]. By analyzing fatigue through the

lens of fine motor ability, this paper seeks to deepen our understanding

of this complex condition. The findings of this study hold potential for

the development of improved hypotheses and more effective interven-

tions for fatigue management.
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Fig. 1. The sequence of the Fatigue Application.

Technology advancements have led to the development of smart-

phone-based systems that use sensors and the capabilities of smart-

phones to capture data on an individual’s physical and cognitive abil-

ities. Several studies have introduced smartphone-based frameworks 
(m-Health) to monitor health and well-being in free-living environ-

ments [16][17][18][19][20][21].

1.1. Related work

Traditional approaches to fatigue assessment have limitations re-

garding accuracy and/or practicality. Authors of [22] have successfully 
tracked eye movement to assess mental fatigue through an extensive 
camera system. The blink duration, the mean velocity of the saccade, 
and the saccade duration were assessed. However, their tests were not 
focused on motor skills, nor could they provide test scenarios acces-

sible to most people. In another study [23], the author used a digital 
version of the Stroop test [24] and heart rate monitors to measure ath-

letes’ mental fatigue before and after various physical tests. The study 
of [25] used electroencephalogram (EEG) signals to monitor the men-

tal fatigue of construction workers. The proposed framework aligned 
cognitive fatigue state classifications with self-reported fatigue states, 
achieving an accuracy of 88.85%. Previous studies have analyzed how a 
state of fatigue impairs motor skills [26][27]. The results suggested that 
movement was slowed in the presence of mental fatigue. The authors 
observed a ∼10% increase in actual movement duration, indicating an 
impairment of motor skills following a lengthy cognitively demanding 
task. Prior research has connected mental fatigue to spiral drawing tests. 
In [28], a tablet-based spiral drawing test demonstrated reproducible 
patterns for various levels of mental fatigue. Another study [29] de-

scribed connections between muscular fatigue to hand tremors in a 
closed position test. However, the study’s results by [30] showed no 
difference in hand tremors for mental fatigue.

This research uniquely combines motor skill abilities and fatigue 
analysis using a smartphone application offering a more convenient 
method for measuring fatigue. The hypothesis is that a feature set de-

rived from smartphone data can effectively differentiate between three 
fatigue states: self-assessed tiredness, physical exertion, and mental ex-

ertion.

The novel contributions of this work are as follows:

1. We developed a smartphone system to collect fatigue-related data.

2. We collected data to evaluate the effectiveness of detecting fatigue 
from digitized fine motor skill tests.

3. We present the dataset describing numeric features acquired with 
the proposed framework.

4. We employ machine learning to analyze and classify fatigued state.

The rest of this paper is organized as follows. Sections 2 and 3

describe the materials and methods used to develop the proposed frame-

work. Section 3.2 and Appendix A introduce the characteristics of the 
published dataset. Sections 4 and 5 report and discuss the experimental 
results to highlight the effectiveness of the proposed method. The paper 
is summarized in Section 6.

2. Smartphone application

To encourage repeated usage, the mobile application was designed 
with accessibility as a key requirement, as depicted in Fig. 1, illustrating 
its overall structure and workflow.

The participant’s journey begins with accepting the Terms of Ser-

vice agreement, which outlines the research topic, data collection goals, 
data characteristics, and withdrawal information. Following this, a gen-

eral tutorial familiarizes participants with test-taking procedures and 
phone positioning. Prior to engaging in motor skill tests, participants 
are required to complete a questionnaire with non-personally identifi-

able information (non-PII) (see Fig. 2).

Alongside the collected features, the motor skill tests are described 
in the following sections.

2.1. Digitized motor tests

The mobile application includes four tests. Two of these tests (the 
first and third) are reaction tests, which have been proven as a valid 
assessment method for determining mental fatigue [31] [32].

2.1.1. Reaction test simple (RTS)

The first reaction test (see Fig. 3a) consists of 15 randomly rendered 
targets on the screen with varying sizes (45-150 pixels). The objective 
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Fig. 2. Screen view of the questionnaire for collecting non-PII. The provided 
ranges are as follows - age: under 18, 18-25, 26-30, 31-35, above 35 (these 
ranges were selected to target the most probable participants’ age range); height 
(cm): under 100, 101-150, 151-175, 176-185, 186-190, 191-205, above 205; 
weight (kg): under 50, 50-60, 61-75, 76-90, 91-105, 106-120, above 120; gen-

der: female, male, other; dominant hand: left, right, ambidextrous; self-assessed 
severity of tiredness on a scale of 1-10 (descriptors were provided for each op-

tion of tiredness: 1 - No exhaustion, 2 - Very very slight, 3 - Very slight, 4 -
Slight, 5 - Moderate, 6 - Somewhat severe, 7 - Severe, 8 - Very severe, 9 - Very 
very severe, 10 - Maximal); hours slept: 0-12 (any above 12 is considered 12 
hours); hours spent on physical activity: 0-12; hours spent on mental activity: 
0-12.

is to click on each target as quickly as possible. Data collection starts 
after the first target is hit, recording every input including its location, 
reaction time, and identifying missed moves.

2.1.2. Archimedean spiral drawing test (ASD)

The Archimedean spiral drawing (ASD) test (see Fig. 3b) is the sec-

ond test of the suite, where the user must draw in the whitespace 
between the lines. Spiral analysis has long been classified as a clinically 
valid method for objectively evaluating disorders such as Parkinson’s 
disease or tremor disorder [33][34]. Data collected from the drawing 
is acquired every 15 - 17 milliseconds, and the 𝑥− and 𝑦−coordinates 
are recorded, along with timestamps and finger position. From this, a 
large selection of kinematic and geometric variables is computed (see 
Section 3.1).

2.1.3. Reaction test advanced (RTA)

Another version of the aim test was also included in the suite, which 
follows the principle of a reaction test but with added difficulty (see 

Fig. 3c). This version uses the color-matching logic from the Stroop 
test, requiring the test-taker to only react to a target that shares the 
same color as a rendered color guide. This version also records a point 
of reaction time from the correct color hit.

2.1.4. Tremor test
The final test in the suite is the tremor test (see Fig. 3d). While previ-

ous studies did not find a connection between hand tremors and mental 
fatigue, they did not assess different aspects of tremors relevant to fa-

tigue. Since human fine motor skills are asymmetric, with the dominant 
hand typically being more precise, changes in motor asymmetry may 
occur under limited resources, such as fatigue. To explore this, we de-

signed a test to measure the asymmetry between left- and right-hand 
tremor activity. In this test, the participant holds the phone in front 
with their hand fully extended, facing the tester, and waits for 10 sec-

onds. A successful test completion requires passing the tremor test using 
both hands. The initial position serves as calibration, and all movement 
changes are recorded from that point. Acceleration data on the 𝑋−, 
𝑌−, and 𝑍−planes are captured every 15-17 milliseconds throughout 
the test, providing a record of overall time and accelerations for all 
planes.

3. Data collection and analysis

Raw time series described in the previous section: finger position 
(𝑥− and 𝑦−coordinates) and timestamps can be used to compute many 
features. This section and Table 1 describe the engineered feature set.

3.1. Feature extraction and engineering

Kinematic features: Given a respective timestamp, we can calculate 
the velocity of the position vector 𝑟 = [𝑝𝑖, 𝑝𝑖+1]. In other words, veloc-

ity is the rate at which displacement of the position vector changes 
with respect to time. Similarly, acceleration was computed as the rate 
of change in velocity and jerk as the rate of change in acceleration 
with respect to time. Following the sequence, we considered up to the 
sixth time derivative of the position vector. There are no universally 
accepted names for the fourth and higher time derivatives of displace-

ment. However, the terms snap, crackle, and pop are used in literature 
for the fourth, fifth, and sixth time derivatives of displacement [35]. 
These high-order derivative features, which can be interpreted as micro-

changes in movement acceleration, were introduced in [36] in the 
context of Parkinson’s disease diagnostics. Fig. 4 gives a visual repre-

sentation of described differential-type features.

Angular features: Given the slope 𝑘 of the position vector, we can 
extract angle 𝛼. Let 𝑁 be the number of observation points and (𝑥𝑖, 𝑦𝑖)
are the coordinates of the point 𝑝𝑖, where 𝑖 ∈ {1, 2, … , 𝑁}, then the slope 
(𝑘) and respective angle are represented as follows:

𝑘 =
𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

, (1)

𝛼 = arctan𝑘, (2)

Fig. 4 depicts all the angles that are considered in the current re-

search:

𝜙𝑖 = 𝜋 + 𝛼𝑖−1 − 𝛼𝑖 (3)

𝛾𝑖 = 𝛼𝑖 − 𝛼𝑖−1 (4)

Yaw (𝛾) is described as the change in direction in which the point 
vector is pointing. The angular feature set was enriched with up to a 
third of respective time derivatives.

A study conducted by [37] showed that the tuple of integral-like 
features computed based on kinematic parameters and pressure possess 
sufficiently high discriminating power to distinguish Parkinson’s disease 
patients from healthy control subjects. In [38], it was also demonstrated 
that these features might allow machine learning techniques to detect 
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Fig. 3. Screen views of the four digitized motor skill tests.

Table 1

Subset of computed features. A total of 51 features were computed for the ASD test. The given subset describes the

notation for better understanding. The tremor values were defined as an asymmetry between the left- and the right-

hand points, computed as the subtraction.

Test name Feature set Description

ASD distance 𝑑𝑖 =
√
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 (Euclidean distance)

acceleration Rate of change in velocity with respect to time. The second time

derivative of the distance.

𝜙_angle_mass Mass of the angle 𝜙 (in radians), see Fig. 4

𝑥_jerk_mass Mass of the rate of change in x-directional acceleration

crackle_mass Mass of the fifth time derivative of the distance

RTS and RTA wasHitOnTarget Boolean values True if the area of the touch overlaps with at least one

pixel of the rendered circle.

timeFromLastTouch Time between touches

timeFromFirstCorrect-

ColorRender

The difference in time between two matching color renders

Tremor 𝑥, 𝑦, 𝑧 Acceleration along 𝑥−, 𝑦−, 𝑧−axis

absolute acceleration 𝑎𝑏𝑠 =
√
𝑥2 + 𝑦2 + 𝑧2

Fig. 4. Visual representation of the differential-type (a) and angular-type (b) features.
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Fig. 5. Machine learning pipeline.

mental fatigue; therefore, these features are included in the present re-

search. For the sake of self-sufficiency, the computational procedure of

the motion parameters is described in the following paragraph.

Motion mass parameters: Motion mass parameters were introduced

by [39] to describe the amount and smoothness of motion of a limb

or some other group of joints. A sum of the absolute values at each

observation point may be computed for each kinematic and geometric

parameter that changes during the test. Let 𝑁 be the number of obser-

vation points in the test (or a part of the test). Denote 𝑣𝑘 the velocity 
along the directional vector of the stylus movement at observation point

𝑘 where 𝑘 ∈ {1, … , 𝑁} then velocity mass is defined by equation

𝑉𝑁 =
𝑁∑
𝑘=1

|𝑣𝑘| (5)

3.2. Database for fatigue assessment through digital fine-motor skill tests
(SmartPhoneFatigue)

We created a database of digital signals from 41 subjects complet-

ing motor skill tests and self-assessing their fatigue levels. The Tallinn

University Board of Ethics 12.05.2021 decision nr 12 regulated the data

collection process. Overall, 157 tests were collected from 41 test sub-

jects. Data cleaning (removal of faulty tests, outlier detection) resulted

in 131 trials eligible for further analysis. Detailed non-PI information

about participants is described in Appendix A Table 5. Each row of the

specific test corresponds to the digital signals collected for every times-

tamp (see Section 3.1). The shapes of the datasets for every test are

described in Appendix A in Table 6.

3.3. Machine learning pipeline

A total of 60 features were engineered from the raw signals. Most

discriminative predictors were selected to reduce dimensionality using

wrapper-type feature selection procedures. We consider the SVM recur-

sive feature elimination (SVM-RFE) wrapper method proposed by [40].

Six machine learning classifiers were used for the classification and re-

search:

Table 2

Fatigue categories for classification.

Fatigue category Threshold Label

Physical exertion (PEF) == 0 not tired (32)

>= 1 tired (99)

Mental exertion (MEF) == 0 not tired (84)

>= 1 tired (47)

Sleep hours (SHF) >= 7 not tired (62)

<= 6 tired (69)

Self-assessed (SAF) <= 3 not tired (37)

>= 6 tired (47)

- Logistic Regression (LR)

- Support Vector Machine (SVM)

- K-Nearest Neighbors (KNN)

- Decision Tree (DT)

- Random Forest (RF)

- AdaBoost (AB)

These were trained and cross-validated in a nested k-fold loop. It
means that supervised feature selection strategies are nested within the

cross-validation iterations so that the most discriminating features are

chosen based only on the training set, while the test set is kept only for

validation [41]. This way, we avoid possible bias that may lead to model

overfitting. Training and validation of the classifiers were performed

using the scikit-learn library for Python [42]. Accuracy, precision, sen-

sitivity, specificity, and f1-score were used to assess the performance of

classifiers. The fatigue categories are presented in Table 2, where the

target value (tired, not tired) is classified based on physical or mental

exertion, sleep hours, and self-assessed tiredness.

The overall workflow is depicted in Fig. 5.

4. Results

Across the iterations of a 5-fold cross-validation scheme, the

averaged mean accuracy, precision, sensitivity, specificity, and f1-

score values are reported. Table 3 shows the resulting scores for
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Table 3

Fatigue classification based on self-assessed levels of tiredness. Cross-validated model performance. The best scores for each test are presented in bold.

Test Features Classifier 𝑃𝑎𝑐𝑐 𝑃𝑝𝑟𝑒𝑐 𝑃𝑠𝑒𝑛 𝑃𝑠𝑝𝑒𝑐 𝑃𝑓1

ASD test 𝜙_angle_mass, 
crackle_mass

LR 65.29% 65.29% 87.55% 37.50% 73.96%

RF 60.59% 63.00% 76.44% 40.00% 68.10%

KNN 66.69% 73.30% 72.00% 58.57% 70.03%

SVM 62.94% 62.06% 89.56% 29.29% 65.46%

DT 55.81% 60.74% 76.67% 29.64% 65.46%

AB 59.41% 62.26% 74.44% 40.36% 67.01%

RTS test wasHitOnTarget, 
timeFromLastTouch

LR 59.34% 60.16% 78.44% 34.64% 68.01%

RF 45.37% 49.34% 54.89% 31.79% 51.07%

KNN 55.88% 60.24% 61.11% 48.57% 60.20%

SVM 52.35% 56.88% 63.11% 37.86% 58.96%

DT 47.65% 51.02% 48.67% 46.07% 49.24%

AB 54.63% 58.00% 63.11% 42.50% 59.83%

RTA test timeFromLastTouch, 
timeFromFirstCorrect-

ColorRender

LR 66.76% 65.23% 86.87% 40.36% 74.40%

RF 58.38% 62.44% 65.56% 47.86% 63.58%

KNN 61.91% 65.50% 70.22% 51.07% 67.22%

SVM 63.09% 62.63% 86.67% 31.79% 72.08%

DT 49.92% 55.41% 50.67% 48.21% 52.61%

AB 54.93% 58.42% 63.33% 42.86% 60.35%

Tremor test 𝑦, 𝑎𝑏𝑠 LR 58.30% 58.26% 89.33% 18.93% 70.34%

RF 68.31% 64.40% 58.89% 57.14% 59.74%

KNN 55.88% 58.82% 67.56% 40.36% 62.27%

SVM 51.18% 53.68% 89.11% 0.025% 66.97%

DT 56.03% 65.71% 63.11% 46.43% 60.46%

AB 65.51% 69.59% 71.55% 56.79% 69.36%

All tests joined 𝛼_velocity_mass, 
crackle_mass, 
y_acceleration_mass, 
𝛼_jerk, yaw_acceleration, 
velocity, 𝑦, 𝑧, 𝑎𝑏𝑠, 
timeFromLastTouch

LR 74.00% 67.71% 88.00% 61.33% 76.18%

RF 74.00% 78.00% 76.00% 74.67% 74.11%

KNN 72.00% 64.88% 92.00% 53.33% 75.93%

SVM 70.00% 63.81% 88.00% 54.00% 73.64%

DT 64.00% 62.33% 72.00% 58.67% 65.21%

AB 62.00% 61.67% 60.00% 65.33% 59.33%

Table 4

Best performing machine learning models for fatigue classification.

self-assessed fatigue levels for a better understanding of the back-

ground procedures. Based on the cross-validated performance, the 
best-performing classifiers with the respective feature set were trained 

on the whole dataset (split 1/3 test/train set) for each fatigue cate-

gory. Table 4 describes the final models with a respective performance 
review.
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All six classifiers exhibited comparable performance, with a slight 
advantage observed for the KNN and RF classifiers. The ASD test, com-

plemented by RTA, emerged as the most informative assessment for 
detecting fatigue. Moreover, for certain fatigue categories determined 
through self-assessment (SAF), the combination of all tests yielded the 
most favorable outcomes. Trajectory angles (e.g. 𝜙_angle_mass) and 
micro-changes in acceleration (e.g. crackle_mass) as described in Sec-

tion 4, proved to be highly informative in detecting fatigue. These 
features capture nuanced fluctuations in fine motor movement, provid-

ing valuable insights into the effects of fatigue on motor performance. 
This highlights the capability of machine learning algorithms to discern 
between these two states based on the study’s utilized features, which, 
although subtle and imperceptible to the naked eye, possess informative 
value for classification.

5. Discussion

The work aims to investigate the relationships between motor skill 
tests and the level of tiredness, workload, and hours of sleep assessed by 
a person. First, we were interested in how well fatigue can be predicted 
by kinematic and angular features extracted from the ASD test. The pro-

posed features exhibited near-perfect sensitivity in identifying fatigued 
individuals based on the characteristics of physical exertion. Further-

more, this finding highlights the importance of kinematic features in 
detecting fatigue, specifically trajectory angles and micro-changes in 
acceleration of fine motor movements. This suggests that subtle varia-

tions in movement patterns, undetectable to the unaided eye, and motor 
control can serve as valuable indicators of fatigue. Given their potential 
significance, it is imperative to conduct further research to fully ex-

plore the implications and mechanisms behind these subtle variations. 
Additionally, the introduction of asymmetry as a new characteristic is 
significant. Tracking its development may hold potential as an aspect 
of stroke rehabilitation, warranting further discussion.

To enhance the specificity score, it is necessary to include additional 
non-tired samples. The expected low specificity arises from the fact that 
patterns among tired individuals exhibit less variation compared to non-

tired individuals. In our future research, we intend to develop models 
tailored to individual users, as human motor ability and its expression 
(the degree of “clumsiness”) in a fatigued state can differ significantly 
[43]. This personalized approach aims to train the model using in-

ternal measurements specific to each individual, ultimately creating a 
personalized “fatigue meter.” Furthermore, in the context of regular ap-

plication usage, it is vital to consider proficiency as a separate variable. 
Although the limited number of trials in the present study did not sig-

nificantly affect proficiency, future studies involving a greater number 
of repeated trials must account for its potential influence. By address-

ing this factor, we can achieve a more comprehensive understanding of 
the application’s effectiveness.

Our study identifies weaknesses in the current approach. While the 
machine learning model achieved acceptable accuracy, we believe that 
more accurate oversight of test takers could further enhance results. 
Providing more detailed tutorials warrants further experimentation. 
Additionally, the exclusion of pressure signals poses a potential limi-

tation, as pressure-related features are relevant in digitized ASD tests 
[34][36][28]. Future work will address these obstacles and incorporate 
analysis of pressure-related data.

Artificial intelligence has shown high accuracy (over 90%) in identi-

fying motor-impairing diseases like Parkinson’s disease [44]. However, 
distinguishing fatigue through motor performance poses challenges as 
fatigue’s manifestations and definitions remain unclear. These questions 
drive current and future research in fatigue analysis. Smartphone-based 
systems offer real-time fatigue assessment, enabling proactive measures 
from preventing accidents to supporting cancer patients experiencing 
treatment-induced fatigue. Tracking fatigue levels over time with these 
systems can inform treatment effectiveness and enhance patient out-

comes.

6. Conclusion

A framework was presented that utilizes a smartphone application 
to facilitate the collection and analysis of data for fatigue assessment. 
The proposed system incorporates four motor skill tasks for capturing 
digital signals, along with a questionnaire to gather subjective mea-

sures of fatigue. By examining the relationships between motor skill 
tests and various measures of fatigue, including a level of tiredness, 
workload, and hours of sleep, the authors aim to develop a more com-

prehensive understanding of the factors that contribute to fatigue. The 
SmartPhoneFatigue database, including digital signals from four mo-

tor skill tests performed by 41 subjects, is introduced and available 
upon request. Additionally, a methodology for creating a predictive 
fatigue model, using 60 distinct features such as kinematic, angular, 
aim-based, and tremor-related measures, has been developed to exhibit 
the database’s practical applications. Through the integration of these 
features, our findings demonstrate an acceptable level of accuracy in 
classifying fatigue, surpassing 70%. Moreover, we observe high sensi-

tivity (above 90%) and f1-score (above 80%). These results emphasize 
the importance of imperceptible variations in movement patterns and 
motor control as crucial indicators for fatigue detection. Our database 
and methodology exhibit substantial potential for enhancing our com-

prehension of fatigue and fostering the development of more effective 
management strategies. The potential benefits extend beyond accident 
prevention to broader healthcare applications. Standardized data col-

lection and testing of subjects on multiple occasions is necessary, and 
it is the aim of our future research. Overall, the proposed system could 
potentially be used as a tool for monitoring fatigue levels in real-world 
settings, providing a more convenient and less resource-expensive ap-

proach compared to traditional methods.

7. Summary points

Problem: Fatigue presents a significant challenge that can result in 
accidents, mistakes, and decreased productivity across numerous indus-

tries. However, fatigue assessment in non-controlled environments is 
not trivial.

What is already known: Traditional approaches to fatigue assessment, 
such as self-reporting and physiological measures (eye movement track-

ers, heart monitor devices), have limitations regarding accuracy, acces-

sibility, and/or practicality. Technology advancements have led to the 
development of smartphone-based fatigue assessment systems, offering 
a more objective and convenient method for measuring fatigue.

What this paper adds: Our research proposes and evaluates a novel 
smartphone-based application of digital motor skill tasks to assess fa-

tigue. A total of 60 features (kinematic, geometric, and other) were 
engineered from the raw signals. Through machine learning-based eval-

uation, the set of features with the best performance was identified, 
resulting in the detection of fatigue with high levels of sensitivity (over 
90%). The collected data is assembled in a novel dataset (SmartPhone-

Fatigue) and is presented for further research.
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Appendix A

Table 5

Detailed non-PII about participants.

id height weight age gender tired scale mental work

scale

physical work

scale

sleep scale main hand created

1 176 - 185 76-90 >35 Male 5 0 1 7 R 19:23:06

176 - 185 76-90 >35 Male 6 0 1 8 R 19:27:42

176 - 185 76-90 >35 Male 2 0 1 7 R 05:39:01

176 - 185 76-90 >35 Male 8 0 1 7 R 19:45:22

176 - 185 76-90 >35 Male 5 0 1 7 R 04:48:27

176 - 185 76-90 >35 Male 4 0 1 7 R 04:57:43

2 151 - 175 50-60 31-35 Female 1 3 8 9 R 07:19:23

151 - 175 50-60 31-35 Female 1 3 8 9 R 07:26:22

3 151 - 175 50-60 31-35 Female 4 5 2 8 R 15:33:42

4 176 - 185 76-90 31-35 Female 4 6 2 7 R 07:12:47

176 - 185 76-90 31-35 Female 4 1 2 8 R 15:17:19

5 176 - 185 76-90 31-35 Male 2 3 1 8 R 10:39:25

6 176 - 185 76-90 >35 Male 6 6 2 6 R 14:02:24

7 186 - 190 >120 26-30 Male 6 6 7 6 R 23:48:06

186 - 190 >120 26-30 Male 6 6 7 6 R 23:41:52

101 - 150 50-60 18-25 Male 1 6 7 5 L 22:29:41

186 - 190 >120 26-30 Male 6 6 7 6 R 00:02:21

186 - 190 >120 26-30 Male 7 7 7 6 R 18:40:16

186 - 190 >120 26-30 Male 6 6 7 6 R 22:59:20

151 - 175 <50 26-30 Female 7 7 7 12 A 20:48:17

186 - 190 >120 26-30 Male 6 6 7 6 R 23:58:56

186 - 190 >120 26-30 Male 7 7 7 6 R 00:19:49

8 176 - 185 91-105 26-30 Male 5 7 3 7 R 21:18:13

176 - 185 91-105 26-30 Male 2 0 0 10 R 08:50:10

176 - 185 91-105 26-30 Male 4 0 0 9 R 07:08:03

176 - 185 91-105 26-30 Male 5 6 2 7 R 22:06:37

176 - 185 91-105 26-30 Male 1 5 0 7 R 08:10:34

176 - 185 91-105 26-30 Male 5 6 3 7 R 21:27:49

9 176 - 185 76-90 <18 Male 8 5 1 5 R 11:30:49

10 151 - 175 50-60 <18 Female 5 1 0 4 R 09:14:46

11 186 - 190 61-75 18-25 Male 4 0 0 12 R 19:23:43

186 - 190 61-75 18-25 Male 1 0 0 9 R 13:48:33

186 - 190 61-75 18-25 Male 4 0 0 12 R 20:07:00

186 - 190 61-75 18-25 Male 3 0 0 12 R 21:36:53

12 151 - 175 61-75 18-25 Female 6 6 1 6 L 08:32:35

151 - 175 61-75 18-25 Female 6 7 1 4 L 19:24:06

151 - 175 61-75 18-25 Female 6 8 11 5 L 23:26:45

13 176 - 185 61-75 18-25 Male 4 0 1 8 R 11:22:15

176 - 185 61-75 18-25 Male 3 0 2 6 R 10:01:39

14 151 - 175 61-75 >35 Female 3 0 0 7 R 06:09:44

151 - 175 61-75 >35 Female 3 0 3 7 R 21:06:47

151 - 175 61-75 >35 Female 2 0 0 10 R 07:20:48

151 - 175 61-75 >35 Female 6 1 3 10 R 22:03:05

151 - 175 61-75 >35 Female 6 6 0 6 R 20:19:06

151 - 175 61-75 >35 Female 4 0 0 7 R 04:34:05

151 - 175 61-75 >35 Female 5 7 1 8 R 21:03:35

151 - 175 61-75 >35 Female 3 0 0 8 R 04:32:43

151 - 175 61-75 >35 Female 4 7 1 7 R 19:46:12

151 - 175 61-75 >35 Female 2 0 0 7 R 04:36:52

151 - 175 61-75 >35 Female 4 9 2 7 R 20:57:21

151 - 175 61-75 >35 Female 2 0 0 6 R 04:49:18

151 - 175 61-75 >35 Female 5 8 2 7 R 20:35:33

151 - 175 61-75 >35 Female 2 9 0 7 R 04:20:16

15 151 - 175 50-60 18-25 Male 7 7 1 7 R 22:50:31

151 - 175 50-60 18-25 Male 5 4 0 4 R 08:37:25

151 - 175 50-60 18-25 Male 7 5 0 4 R 22:44:24

16 151 - 175 50-60 18-25 Female 1 0 0 6 R 08:32:07

151 - 175 50-60 18-25 Female 1 2 0 7 R 08:35:22
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Table 5 (continued)

id height weight age gender tired scale mental work 
scale

physical work 
scale

sleep scale main hand created

17 186 - 190 >120 26-30 Male 4 0 4 7 R 16:10:43

186 - 190 >120 26-30 Male 5 9 2 9 R 21:18:46

186 - 190 >120 26-30 Male 3 0 1 7 R 12:01:49

18 186 - 190 76-90 <18 Male 1 0 0 8 R 09:42:52

186 - 190 76-90 <18 Male 1 1 1 7 R 09:14:27

186 - 190 76-90 <18 Male 1 1 2 7 R 16:23:49

186 - 190 76-90 <18 Male 1 0 0 8 R 22:16:27

19 151 - 175 50-60 <18 Female 6 0 7 6 R 05:22:17

151 - 175 50-60 <18 Female 6 0 7 6 R 09:13:01

151 - 175 50-60 <18 Female 6 0 7 6 R 16:27:27

151 - 175 50-60 <18 Female 6 0 7 6 R 10:24:21

151 - 175 50-60 <18 Female 6 0 7 6 R 16:52:46

151 - 175 50-60 <18 Female 6 0 7 6 R 11:53:29

151 - 175 50-60 <18 Female 10 0 1 5 R 17:35:24

151 - 175 50-60 <18 Female 8 0 1 8 R 19:35:56

151 - 175 50-60 <18 Female 6 0 7 6 R 14:26:01

20 186 - 190 61-75 <18 Male 1 0 0 0 R 09:08:47

21 - 76-90 31-35 Female 4 2 0 6 R 15:22:16

22 151 - 175 50-60 <18 Male 4 2 3 6 R 09:15:19

23 151 - 175 >120 >35 Male 3 1 1 6 R 07:45:18

151 - 175 >120 >35 Male 4 4 3 5 R 18:33:48

151 - 175 >120 >35 Male 7 7 1 6 R 21:01:18

151 - 175 >120 >35 Male 3 2 0 7 R 06:52:22

151 - 175 >120 >35 Male 5 4 1 5 R 18:43:04

151 - 175 >120 >35 Male 1 6 1 6 R 07:05:41

151 - 175 >120 >35 Male 5 4 3 7 R 18:37:31

151 - 175 >120 >35 Male 7 7 1 6 R 21:20:48

151 - 175 >120 >35 Male 7 5 1 4 R 02:57:52

151 - 175 >120 >35 Male 6 6 0 9 R 19:34:23

151 - 175 >120 >35 Male 6 6 0 7 R 19:33:33

151 - 175 >120 >35 Male 4 1 1 8 R 06:49:35

151 - 175 >120 >35 Male 4 5 1 6 R 03:00:32

151 - 175 >120 >35 Male 7 4 1 7 R 03:02:55

151 - 175 >120 >35 Male 5 6 0 6 R 04:02:22

24 176 - 185 61-75 <18 Female 7 4 1 3 L 11:31:15

25 151 - 175 <50 <18 Female 8 1 1 7 R 17:32:34

151 - 175 <50 <18 Female 8 1 1 6 R 09:12:34

26 176 - 185 61-75 18-25 Female 4 0 0 10 R 07:42:08

27 176 - 185 91-105 18-25 Female 4 4 3 5 R 20:17:56

176 - 185 91-105 18-25 Female 2 4 1 5 R 09:12:00

28 151 - 175 <50 <18 Female 6 3 0 5 R 22:19:46

29 151 - 175 50-60 <18 Male 4 0 7 5 R 21:46:17

151 - 175 50-60 <18 Male 4 0 7 5 R 09:49:56

151 - 175 50-60 <18 Male 4 0 7 5 R 07:57:23

151 - 175 50-60 <18 Male 4 0 7 5 R 15:34:09

151 - 175 50-60 <18 Male 4 0 7 5 R 18:22:47

30 151 - 175 91-105 26-30 Male 7 0 2 5 R 21:44:27

151 - 175 91-105 26-30 Male 7 0 0 5 R 11:09:16

151 - 175 91-105 26-30 Male 8 0 2 4 R 12:36:07

31 151 - 175 <50 18-25 Female 5 0 0 6 R 07:26:52

151 - 175 <50 18-25 Female 7 1 1 7 R 22:00:45

32 151 - 175 <50 <18 Female 2 4 3 6 A 18:24:54

151 - 175 <50 <18 Female 1 0 1 8 A 12:01:54

151 - 175 <50 <18 Female 6 10 2 6 A 18:04:38

151 - 175 <50 <18 Female 2 6 2 6 A 12:38:57

33 151 - 175 61-75 <18 Female 5 3 7 5 R 07:46:33

151 - 175 61-75 <18 Female 5 3 7 5 R 15:25:48

34 176 - 185 76-90 <18 Male 3 6 2 5 R 09:09:44

176 - 185 76-90 <18 Male 2 6 1 6 R 06:49:44

176 - 185 76-90 <18 Male 5 2 1 8 R 14:35:05

35 191 - 205 91-105 <35 Male 4 7 1 5 R 09:46:18

191 - 205 91-105 <35 Male 4 7 1 5 R 15:22:55

36 176 - 185 61-75 18-25 Male 7 4 4 4 R 11:27:41

37 151 - 175 <50 <18 Female 3 10 2 11 R 19:39:38

151 - 175 <50 <18 Female 2 10 3 8 R 13:22:29

38 176 - 185 61-75 18-25 Male 3 1 1 5 R 10:01:25

(continued on next page)
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Table 5 (continued)

id height weight age gender tired scale mental work

scale

physical work

scale

sleep scale main hand created

39 186 - 190 <120 26-30 Male 7 12 3 6 R 20:17:48

186 - 190 >120 26-30 Male 7 12 3 6 R 01:35:57

186 - 190 >120 26-30 Male 4 6 2 7 R 15:39:24

40 151 - 175 61-75 <18 Female 5 5 3 8 R 19:08:54

41 151 - 175 61-75 18-25 Female 7 12 2 6 R 16:38:51

151 - 175 61-75 18-25 Female 4 2 2 12 R 14:37:46

151 - 175 61-75 18-25 Female 4 8 2 6 R 17:17:44

Table 6

Characteristics of the database.

Dataframe by test Shape (timestamp x features)

1 Reaction Test Simple test (RTSdata) 2057 rows x 22 columns

2 Reaction Test Advanced (RTAdata) 2562 rows x 23 columns

3 Archimedean Spiral Drawing test (ASDdata) 131000 rows x 83 columns

4 Tremor test right hand (TTRdata) 66134 rows x 20 columns

5 Tremor test left hand (TTLdata) 66083 rows x 20 columns

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ijmedinf .2023 .105152.
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A B S T R A C T

Subject: In this article, convolutional networks of one, two, and three dimensions are compared with respect
to their ability to distinguish between the drawing tests produced by Parkinson’s disease patients and healthy
control subjects.
Motivation: The application of deep learning techniques for the analysis of drawing tests to support the
diagnosis of Parkinson’s disease has become a growing trend in the area of Artificial Intelligence.
Methods: The dynamic features of the handwriting signal are embedded in the static test data to generate one-
dimensional time series, two-dimensional RGB images and three-dimensional voxelized point clouds, and then
one-, two-, and three-dimensional CNN can be used to automatically extract features for effective diagnosis.
Novelty: While there are many results that describe the application of two-dimensional convolutional models
to the problem, to the best knowledge of the authors, there are no results based on the application of
three-dimensional models and very few using one-dimensional models.
Main result: The accuracy of the one-, two- and three-dimensional CNN models was 59.38%, 77.73% and
82.34% in the DraWritePD dataset (acquired by the authors) and 63.33%, 81.33% and 82.22% in the PaHaW
dataset (well known from the literature), respectively. For these two data sets, the proposed three-dimensional
convolutional classification method exhibits the best diagnostic performance.

1. Introduction

The present paper compares the one-, two- and three-dimensional
deep convolutional neural network (CNN) models for the analysis of
the drawing tests used to support the diagnosis of Parkinson’s disease
(PD). Parkinson’s disease is one of the most common neurodegenerative
disorders. Its symptoms like rigidity, tremor, and non-purposeful mo-
tions severely affect the quality of patient’s life. Although at the time
of writing of this article there is no cure for PD, proper therapy may
allow one to eliminate these symptoms or reduce their effect on motion
and improve the quality of daily life. Drawing tests have been used to
diagnose PD and assess its severity for nearly a century [1]. These tests
require one to continue, copy, or trace the repeating pattern or contour
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of an object. Only paper and pen were required to perform the test,
while the evaluation was performed visually by the practitioner. This
method is limited by the practitioner’s experience, the ability of the
naked eye, and the fact that the smoothness parameters of the drawing
could not be recorded for future analysis and comparison. The seminal
paper [2] laid the basis for computer-aided analysis of drawing and
writing tests. In [2] it was suggested to use a digital table to acquire
time-stamped coordinates of the tip of the stylus and compute the
kinematic parameters that describe the movements of the tip of the
stylus relative to the device screen. After that, kinematic parameters
can be computed that describe the drawing movements observed during
the test. In addition to providing kinematic and pressure descriptions
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of the testing process, digitisation of the tests offers the possibility
of performing testing before the visit to the doctor, saving valuable
time and providing access for medical professionals. The digitisation
of the testing procedures has greatly expanded the set of features [3]
and demonstrated the importance of features based on tremor [4]
to achieve highly accurate results. The results mentioned above use
statistical machine learning techniques, whereas the data are presented
in tabular form. Without undermining the importance of these results,
it is important to mention that the evaluation procedure is different
from that used by the human practitioner. This makes it difficult for the
practitioner to interpret the results of digitised tests. The core difference
is that a human mostly assesses the shapes of the drawn contours,
smoothness of the movements (as the naked eye can see), and presence
or absence of the errors, whereas statistical learning algorithms use
the set of values describing the kinematic and pressure parameters.
One way to mimic the human practitioner is to employ deep learning
techniques to classify drawings according to their shapes [5]. Such a so-
lution would be closer to human assessment. However, it would ignore
the advantages of performing the test on digital tables or tablet PCs that
can capture the kinematic and pressure parameters that describe the
test. The colouration of the drawn lines was proposed in [6] to encode
the pressure parameter. This may be seen as the bridge between mim-
icking analysis made by human practitioners and novel approaches that
are based on features described by kinematic and pressure properties of
the motion. Later, [7,8] expanded on this idea and suggested varying
the thickness of the drawn contours to encode one more kinematic or
pressure parameter in the drawings. Later in [9], the ‘‘hand-crafted’’
and CNN-learnt features were compared. These approaches assume that
the data are provided in the form of images and that the CNN classifier
is used to estimate whether the test drawing was produced by the
PD patient or the healthy control (HC) subject. In theory, encoding
more kinematic and pressure parameters in the drawing could further
increase the goodness of the diagnostic support model [10–12]. Follow-
ing this idea, applications of three-dimensional convolutional neural
networks seem to be a logical step. At the same time, one-dimensional
CNN has been successfully applied to similar problems [13], leading to
the idea of comparing the three cases. The CNN structures best suited
for the particularities of the images resulting from the drawing testing
procedures will be selected first. Then, different feature sets will be
selected to encode in the original drawings. The selected models will
then be trained and validated to determine the quality of the models
and the required training time. The organisation of the paper follows
the classical academic style. An overview of the literature necessary to
position the current contribution and explain its novelty is presented
in Section 2. Section 3 introduces the problem statement and elabo-
rates the research motivation. Background information explaining how
symptoms of PD influence the feature engineering process is presented,
together with a description of the hardware and software settings used
for data acquisition in Section 4. The choice of CNN architectures
to compare with all other parameters of computational experiments
is presented in Section 5. The main results are stated in Section 6.
The results achieved and their medical interpretation are discussed in
Section 7. Conclusions are drawn in the last section.

2. Literature overview and state of the art

The CNN concept was formalised in [23] for two-dimensional image
recognition. Now, nearly 30 years later, there are numerous types
of CNN architecture [24] used for image recognition and video pro-
cessing. Although most CNN types are within two-dimensional CNN
models, one can distinguish one-dimensional and three-dimensional
CNN types [25].

Dynamic handwriting analysis benefits from the use of digital
tablets and electronic pens [26]. Using these devices, it is possible to
directly measure the temporal and spatial variables of handwriting, the
pressure applied to the writing surface, the inclination of the pen, and

the movement of the pen when it is not in contact with the surface
(i.e. in air) [14]. Currently, the most popular approach to investigate
the potential of automated handwriting analysis for the diagnosis of
PD involves the use of dynamic information in the handwriting process
to produce a more discriminating feature set of different dimensional
data.

The applicability of kinematic, geometric, and non-linear dynamic
characteristics was explored in a model of handwriting impairment in
PD patients [6], and dynamic pressure features were encoded as colour.
Furthermore, aerial movement during handwriting has a significant
impact on the precision of disease classification [14]. The spectrum
was used as the input of one-dimensional CNN, and the discrimination
ability of different directions in the process of drawing motion was
analysed, and the best diagnostic performance was obtained in X and
Y directions [13]. In addition, a hybrid model [21] combining one-
dimensional convolution network and Bidirectional Gated Recurrent
Units (BiGRUs) was applied to the original features and derived features
to capture the unique handwriting patterns that reflect Parkinson’s
disease. On the other hand, since dynamic analysis needs to consider
not only the underlying generative process but also the geometry of
handwritten patterns, graph analysis in a two-dimensional space is
usually preferred to signal analysis in a one-dimensional space. En-
couraged results have recently been reported to quantitatively assess
the visual properties of handwritten motion samples from patients
with PD using raw, filtered median and edge images [5]. However,
according to others [10] a better understanding can be obtained using
‘‘dynamic augmentation’’ of static handwriting. Instead of simply using
images of handwritten patterns, less realistic but more discriminating
images are obtained by including additional dynamic information in the
generation process. Furthermore, the application of three-dimensional
CNN is limited in the area of analysis of drawing tests, as far as
the author knows, this is the first attempt to use a three-dimensional
CNN for Parkinson’s diagnosis based on digitised handwriting tests.
This leads to the exploration and comparison of the performance of
one-, two- and three-dimensional CNN models in spiral drawing test
classification.

One of the most serious problems to solve before applying deep
learning techniques in the analysis of drawing and writing tests is the
small size of the data sets available for training and validation. Due
to the differences between testing protocols used in different medical
centres and strict data handling requirements, acquiring sufficiently
large data sets for training is not a viable solution. On the side of deep
learning, there are two techniques that are used to overcome this prob-
lem. The first technique is data augmentation [27]. The augmentation
procedure is based on the application of affine transformations, local
nonlinear distortions, colour alternation, and noising to each image of
the data set many times, whereas each alternated clone inherits the
label of the original image. The set of transformations and their magni-
tude is chosen at random. This method was used in [7,8] and [28]. The
latest has provided an analysis of different transformation types and
their influence on modelling quality. Alternatively to this unsupervised
technique, applications of generative adversary networks (GANs) [29,
30] may be used. Table 1 summarises the main characteristics of
previous works on PD diagnosis based on digital drawings: reference,
dataset, feature set, method, performance, and year.

3. Problem statement

Main motivation of the present research is that, while 2D CNN is
the dominant type when talking about image analysis, 3D models may
allow for the encode of more kinematic and pressure parameters of the
motion. Of course, one may suggest increasing the dimensionality even
higher and using all the available parameters, but higher-dimensional
convolutions are difficult to interpret. Therefore, CNNs with dimensions
larger than three are left outside of the current research framework. On
the contrary, one-dimensional CNNs have been used successfully before
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Table 1
Overview of the related works.

Author(s) Dataset Features Models Accuracy Year

Drotár et al. [14] PaHaW kinematic features SVM 85.61 2014
Drotár et al. [15] PaHaW kinematic and SVM 88.13 2015

spatio-temporal features
Drotár et al. [3] PaHaW kinematic and pressure SVM 87.4 2016
Pereira et al. [16] HandPD kinematic features SVM 65.88 2016
Pereira et al. [17] HandPD time series based features 2D CNN 96.35 2018
Gil-Martín et al. [13] [18] kinematic features 1D CNN 96.5 2019
Diaz et al. [19] PaHaW dynamically enhaced static 2D CNN + SVM 75 2019
Naseer et al. [20] PaHaW fine-tuned-ImageNet features AlexNet 98.28 2020
Diaz et al. [21] PaHaW raw and derived features 1D CNN-BiGRU 93.75 2021
Gazda et al. [22] PaHaW fine-tuned-ImageNet features 2D CNN 85.7 2022

HandPD 92.7

Fig. 1. The workflow for diagnosis of Parkinson’s disease.

and are easy to interpret. This leads to the formal problem statement of
the present investigation. Compare the performance of one-, two-, and
three-dimensional CNN models for spiral drawing tests classification.
This requires one to answer the following research questions.

1. Choose data set enhancement technique to encode different
kinematic and drawing parameters into the drawing.

2. Choose the data set augmentation technique such that it acts in
a similar way for one-, two-, and three-dimensional cases.

3. Choose the feature set(s) to encode.
4. Choose the CNN models structures which are the most similar

among the one-, two-, and three-dimensional cases.

4. Materials

In this work, two data sets have been considered. The first data set,
called DraWritePD [12], was acquired by the authors. The second data
set, known as PaHaW, was kindly provided by the authors of [14,31].
Both datasets use similar digital signal acquisition equipment, and the
handwriting data contains the same dynamic features (time sequences).
In addition, they all contain a similar number of samples from each
class, making the experiments more balanced.

4.1. DraWritePD

The ‘‘Drawing and handwriting tests for Parkinson’s diagnostics’’
(DraWritePD) collects handwriting data from 25 patients with PD and
34 healthy control (HC) subjects of the same age and sex. For the
group of patients with PD, the mean age was 74.1 ± 6.7 years. For
the group of subjects with HC, the mean age was 74.1 ± 9.1 years. To
acquire handwriting signals, special applications were designed for the
Apple IPad Pro (9.6 inch, 2016 year) with the first generation of the
Apple Pen. The application displays test instructions and the reference
drawing on the IPad screen and records dynamic information from the
Apple Pen tip accompanied by the time stamp. PD patients and their
HC counterparts were asked to complete a series of handwriting tests
consisting of 12 different drawing and writing tasks. When the task
was completed, this dynamic information was stored in the file for
later processing. It may be seen as a matrix with rows corresponding
to the timestamps and columns corresponding to independent dynamic
features, including: 𝑥 coordinate (mm); 𝑦 coordinate (mm); timestamp

(sec); pressure (arbitrary unit of force applied on the surface: [0, ⋯,
6.0]); altitude (rad); azimuth (rad). In the present research, only digital
versions of the Archimedes spiral drawing test (ASD) were considered.

4.2. PaHaW

The ‘‘Parkinson’s disease handwriting database’’ (PaHaW ) collects
handwriting data from 37 patients with PD and 38 HC subjects [14,31].
No significant differences were found between the groups with respect
to age or sex. The database was acquired in cooperation with the
Movement Disorders Centre of the First Department of Neurology,
Masaryk University, and St. Anne’s University Hospital in Brno, Czech
Republic. Each subject was asked to complete multiple handwriting
tasks according to the prepared filled template at a comfortable speed.
A tablet was overlaid with an empty paper template (containing only
printed lines and a square box specifying the area for the Archimedean
spiral), and a conventional ink pen was held in a normal fashion,
allowing for immediate full visual feedback. Handwriting signals were
recorded using an Intuos 4M (Wacom technology) digitising tablet at
a sampling frequency of 150 Hz during pressure on the writing surface
and movement over the writing surface. We denote these signals by on-
surface movement and on-air movement, respectively. The recordings
started when the pen touched the surface of the digitiser and finished
when the task was completed. The tablet captured the following in-
dependent dynamic features: 𝑥 coordinate; 𝑦 coordinate; timestamp;
button status; pressure; altitude; and azimuth. The button status was
a binary variable, being 0 for pen-up state (in-air movement) and 1
for the pen-down state (on-surface movement). Although the task set
presented in the PaHaW dataset is quite different from that used in the
DraWritePD dataset, ASD was present in both datasets and was therefore
used in this work.

5. Research workflow

In this section, we continue the idea of embedding dynamic hand-
writing features into static handwriting images. Specifically, more kine-
matic and pressure features are gradually encoded to generate higher-
dimensional data representations, so that the corresponding one-, two-,
and three-dimensional convolutional neural networks are used to anal-
yse handwriting tasks to support the diagnosis of PD. Fig. 1 shows
a general overview of the proposed automatic PD diagnosis system.
Details of each stage are presented in the following subsections.
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Table 2
Dynamic eigenvalues of three adjacent data points in the sample input.
𝑡 𝑥 𝑦 𝑝 𝑎 𝑙

533033966.322112 446.2969 −431.0742 0.723517 0.518733 1.059078
533033966.352263 449.875 −439.7695 0.739844 0.490138 1.059078
533033966.374942 454.7188 −448.125 0.800081 0.444148 1.059078

Note: The abbreviations 𝑥, 𝑦 denote the x- and y- coordinate features; and 𝑎, 𝑙 and 𝑝 are the azimuth, altitude and pressure features, respectively;
timestamp is represented by 𝑡.

Fig. 2. Schematic diagram of the sample input, where each data point collects six
independent features, and the arrow direction indicates the drawing direction. The
abbreviations 𝑥, 𝑦 denote the x- and y- coordinate features; and 𝑎, 𝑙 and 𝑝 are the
azimuth, altitude and pressure features, respectively; timestamp is represented by 𝑡.

5.1. Data processing

Data processing consists of three main steps: data preparation, data
enhancement, and data augmentation. Note that the following are
introduced through the 1D, 2D, and 3D cases, respectively. In addition,
the sample input is illustrated in Fig. 2. First, since the raw dataset
inevitably contains some features that are not suitable for direct use,
such as the units of the features being different, as illustrated in
Table 2, the raw dynamic features are preprocessed with maximum and
minimum normalisation before data enhancement to convert them into
the same unit. Subsequently, the data enhancement gradually encodes
dynamic features to generate enhanced data of different dimensions.
Specifically, for the 1D case, the data encoding method is to directly
regard the raw dynamic features (such as the x coordinate and the 𝑦
coordinate) in the handwriting signal as 1D time series data. However,
it should be noted that the encoding method of the timestamp feature
is to replace the timestamp feature itself with the velocity feature
calculated by combining the timestamp feature and the coordinate
features. For the 2D RGB image encoding method, the coordinate
features (the 𝑥 coordinate and y coordinate) used in the 1D case are
used as the pixel position information corresponding to each data
point. Moreover, the azimuth, altitude, and pressure features of each
data point are used as the red (R), green (G), and blue (B) colour
information of the corresponding pixel. The velocity feature is encoded
as line width information. For the 3D case, the only difference from
the 2D case is the location information for each data point. It not only
utilises the coordinate features (the 𝑥 coordinate and 𝑦 coordinate), but
also combines the time feature (timestamp) to calculate the velocity
feature of each data point, thus adopting (x coordinate, 𝑦 coordinate,
velocity) as the 3D position information of each data point. Afterwards,
the generated raw point cloud data is voxelized into a matrix form
acceptable to the CNN model with a fixed grid resolution (for con-
venience, hereinafter referred to as point cloud). It is worth noting
that CNN has a powerful feature extraction ability [25], so the raw
dynamic features were used directly for the enhancement of the data
and no additional hand-crafted features were designed except for the
velocity feature. Fig. 3 shows the results of the data enhancement in

different dimensions. It is worth noting that velocity-based features
can lead to better model performance [11,12], so the velocity is also
replaced by acceleration or jerk respectively in the next experiments.
Furthermore, a major challenge for the diagnosis of PD is the lack of
suitable data. The direct application of CNN cannot effectively process
raw handwriting signals collected from patients. One current approach
to address this challenge is to augment data through data augmentation
techniques or by combining multiple datasets [28], or employ pre-
trained transfer learning strategies [20]. In the present work, data
augmentation techniques are employed to significantly increase the
diversity of PD handwriting samples, which can be roughly classified
into the following categories; original, flipping, rotation, illumination,
and jitter.

• Flipping: Flipping produces a mirror data, where the RGB image is
flipped horizontally and vertically, and the point cloud is flipped
along the 𝑥-axis and 𝑦-axis, respectively.

• Rotation: The data are rotated by a given angle, such as 90, 180,
or 270 degrees, where the RGB image is rotated around the centre
point, and the point cloud is rotated around the 𝑧-axis.

• Illumination: Illumination can be implemented by adjusting the
colour map (RGB values), where random values are added to the
R, G, and B channels of RGB images and point clouds.

• Jitter: Jitter can be implemented by adjusting the values of the
coordinate features in the handwriting signal, where random
values are added to the values of the coordinate features, and the
resulting signal is enhanced.

Note that the first three data augmentation techniques are not suitable
for the 1D case. Furthermore, relatively large data can negatively affect
training time, while concise features can lead to under-fitting. Based on
the available data, we first propose that the data sizes of 1D, 2D, and
3D are resized to 128, 1282, and 1283, respectively.

5.2. Neural network

The convolutional neural networks are bioinspired variants of multi-
layer perceptrons (MLP) that can perform a variety of machine learning
tasks without requiring the user to design and provide any hand-crafted
features [25]. Recently, due to the development of new CNN variants,
they have shown promising performance in traditionally challenging
tasks with breakthrough progress [32,33]. The paradigm-shifting re-
sults provided by CNN are done in part with the help of extremely large
training datasets. However, as mentioned earlier, one of the biggest
limitations in the medical community is the inability to access larger,
labelled, high-quality data that are sensitive, confidential, and difficult
to collect. Due to the insufficient amount of data, in this work, in
addition to using data augmentation techniques to augment data, we
also incorporate a simplified version of the AlexNet [34] architecture,
which consists of two main parts (convolutional layers for feature
extraction and fully connected layers for classification), similar to [20].
Furthermore, it is worth pointing out that for fair comparisons, the one-
, two-, and three-dimensional convolutional neural networks use the
same network architecture, and the only difference is the size of the
convolution kernel and the convolution method.

The simplified AlexNet architecture consists of four convolutional
layers, a maximum pooling layer, a dropout layer, and three fully
connected layers. The output of the fully connected layer is passed to
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Fig. 3. Enhanced data in different dimensional cases. In the one-dimensional (1D) case, the handwriting signal is enhanced into a time series, in which the raw dynamic features
(such as x-coordinate and y-coordinate) are directly used; in the two-dimensional (2D) case, the handwriting signal is enhanced into an RGB image, in which the coordinate features
(x-coordinate, y-coordinate) are used as (x,y) position information, and the (azimuth, altitude, pressure) features are used as (R,G,B) colour information, and the velocity feature
is used as line width information; in the three-dimensional (3D) case, the handwriting signal is enhanced into a point cloud, in which the features (x-coordinate, y-coordinate,
velocity) are used as (x,y,z) position information, and the (azimuth, altitude, pressure) features are used as (R,G,B) colour information.

Table 3
Architectural differences between one-, two-, and three-dimensional convolutional neural networks.

Layers Filter S 1D CNN 2D CNN 3D CNN

Input K Input K Input K

Conv+ReLU 48 2 (6, 128) 5 (3, 128, 128) (5, 5) (3, 128, 128, 128) (5, 5, 5)
MaxPooling – – (48, 64) – (48, 64, 64) – (48, 64, 64, 64) –
Conv+ReLU 128 2 (48, 32) 5 (48, 32, 32) (5, 5) (48, 32, 32, 32) (5, 5, 5)
MaxPooling – – (128, 16) – (128, 16, 16) – (128, 16, 16, 16) –
Conv+ReLU 192 1 (128, 8) 3 (128, 8, 8) (3, 3) (128, 8, 8, 8) (3, 3, 3)
Conv+ReLU 192 1 (192, 8) 3 (192, 8, 8) (3, 3) (192, 8, 8, 8) (3, 3, 3)
MaxPooling – – (192, 8) – (192, 8, 8) – (192, 8, 8, 8) –
Flatten – – (192, 4) – (192, 4, 4) – (192, 4, 4, 4) –
FC+ReLU – – 768 – 3072 – 12288 –
Dropout – – 192 – 192 – 192 –
FC+ReLU – – 192 – 192 – 192 –
Dropout – – 128 – 128 – 128 –
FC+Softmax – – 128 – 128 – 128 –

Params 0.39MB 1.33MB 4.83MB

Note: The abbreviations Conv, ReLU, and FC denote the convolutional layer, Rectified Linear Unit, and fully connected layer; and K and S are the kernel size and stride size;
Params = parameters .

a softmax layer to produce a distribution on the labels of the 2 class.
The first convolutional layer uses 48 kernels of size 5 with a stride of
2. The second convolutional layer takes as input the output of the first
layer (ReLU activation and Max pooling) and filters it using 128 kernels
of size 5. The third layer has 192 kernels of size 3 connected to the
activated and pooled outputs of the second layer, while the fourth layer
contains 192 kernels of size 3. The dropout layer in the fully connected
layer temporarily removes nodes from the network with probability
50% during network training. The specific convolution kernel and the
convolution operation are shown in Fig. 4. Details of the simplified
AlexNet architecture deployed in our experiments are shown in Table 3
and Fig. 5.

5.3. Implementation

Model training and testing were carried out on a PC that has an
Intel(R) Core(TM) i7 − 11700K CPU with 3.60 GHZ(8 CPU), 32GB RAM
and an NVIDIA GEFORCE RTX3070Ti graphics card with 8 GB memory.
It is worth noting that data partition scheme should be nested in
five-fold cross-validation. The initial learning rate was set to 1𝑒 − 4,
and Adam [35] optimiser was used to train the model. The cross-
entropy loss function was used to optimise the model parameters and
L2 regularisation is used to avoid overfitting. Various metrics were used
to measure the performance of the model in more detail, including
accuracy, precision, sensitivity, specificity, and 𝐹1-score (see [36]).

6. Experimental results

In this section, we report a series of experimental results aimed
at comparing the classification performance of the one-, two-, and
three-dimensional convolutional neural network in the diagnosis of
PD. Tables 4 and Table 5 show the dynamic features used in the
data enhancement process and the corresponding model diagnostic
results obtained. To obtain robust experimental conclusions, both the
DraWritePD data set [37] and the PaHaW data set [3,14] were consid-
ered. In addition, we analysed the previous literature with the PaHaW
database in order to contextualise our results. The related state-of-the-
art results obtained on the PaHaW data set are shown in Table 6.
First, we evaluated the impact of embedding different sets of dynamic
features in the same-dimensional space on the diagnostic performance
of the model. Specifically, in the baseline experiment of each dimension
space, only the coordinate feature or its derived velocity feature is
used to encode the position information, and then, on this basis, other
dynamic features gradually encode the colour information and line
width information in the enhanced data. The experimental results in
Tables 4 and 5 show that, in the same dimensional space, overall
diagnostic performance predictably presents the same upward trend,
and the continuous improvement of performance confirms that en-
coding more dynamic features in the enhancement of the data helps
to distinguish PD patients from HC subjects. In particular, the en-
coding of colour information and line width information makes the
enhanced data more discriminating. There is, however, one exception.
In the one-dimensional space, compared with the baseline experi-
ment, the addition of velocity features failed to provide reasonable
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Fig. 4. The schematic diagram of convolution operation in different dimensions. The green area represents the convolution area, and the blue area represents the convolution
result, where 𝑚, 𝑛, and ℎ are the feature map sizes, and 𝑘 represents the convolution kernel size.

Fig. 5. The convolutional neural network model, in which the one-, two-, and three-dimensional convolutional neural networks use the same model architecture, only the
convolution method is different.

Table 4
Performance comparison in the DraWritePD dataset.

Dimension Dynamic features Metrics (in%)

𝑥 𝑦 𝑎 𝑙 𝑝 𝑣 𝑐 𝑗 Precision Sensitivity Specificity Accuracy 𝐹1 score

1D ✔ ✔ 50.50 53.32 50.25 51.67 52.03
✔ ✔ ✔ 51.67 61.75 52.67 56.93 54.51
✔ ✔ ✔ ✔ ✔ 52.25 63.32 51.67 57.73 56.67
✔ ✔ ✔ ✔ ✔ ✔ 59.72 62.50 56.25 59.38 61.03
✔ ✔ ✔ ✔ ✔ ✔ 63.72 67.25 59.67 62.56 65.21
✔ ✔ ✔ ✔ ✔ ✔ 60.67 65.32 57.75 58.73 63.45

2D ✔ ✔ 53.25 56.32 68.67 62.56 58.61
✔ ✔ ✔ 66.67 62.75 75.25 69.38 67.14
✔ ✔ ✔ ✔ ✔ 68.72 75.00 78.67 73.67 72.67
✔ ✔ ✔ ✔ ✔ ✔ 75.00 76.50 80.00 77.73 76.51
✔ ✔ ✔ ✔ ✔ ✔ 77.50 78.25 81.75 80.38 79.32
✔ ✔ ✔ ✔ ✔ ✔ 76.67 74.75 78.67 75.93 77.14

3D ✔ ✔ ✔ 72.25 78.00 80.25 76.58 75.21
✔ ✔ ✔ ✔ ✔ ✔ 77.50 86.50 81.75 82.34 81.45
✔ ✔ ✔ ✔ ✔ ✔ 𝟖𝟐.𝟓𝟎 82.50 𝟖𝟕.𝟐𝟓 𝟖𝟓.𝟑𝟖 𝟖𝟓.𝟓𝟏
✔ ✔ ✔ ✔ ✔ ✔ 77.25 86.25 80.00 83.34 81.95

Note: The abbreviations 𝑥, 𝑦 denote the x- and y- coordinate features; and 𝑎, 𝑙 and 𝑝 are the azimuth, altitude and pressure features, respectively; velocity, acceleration, and jerk
are represented by 𝑣, 𝑐, and 𝑗, respectively.

predictions, possibly because the velocity features were derived from
coordinate features, resulting in redundant discriminating information.
Furthermore, we compared the diagnostic performance of convolu-
tional neural networks in different dimensions. It is worth noting
that for a fair comparison, all convolutional neural network models
used the same network architecture. First, the experimental results in
Tables 4 and 5 confirm that, with the same dynamic feature encoding,
on average, convolutional neural networks achieve increasingly better
diagnostic performance with increasing dimensionality, with the most
competitive diagnostic results obtained by 3D convolutional neural
networks. For example, in terms of diagnostic accuracy, the 1D, 2D and
3D convolutional networks achieved sequentially increasing diagnostic
performance of 63.33%, 81.33% and 84.67%, respectively, in the Pa-
HaW data set. In addition, interestingly, the diagnostic performance
of 3D convolutional neural networks is almost comparable to that of
low-dimensional convolutional neural networks even if only location
information is given. For example, in the DaWritePD data set, the 3D
convolutional neural network can achieve 75.21% diagnostic accuracy

only in the baseline experiment; on the contrary, the optimal diagnostic
accuracy of 1D and 2D convolutional neural network 1 D and 2 D is just
65.21% and 79.32% respectively.

7. Discussion

Comparing Tables 4 5 that summarise model goodness metrics
(computed on the basis of testing data) for the different feature sets and
model dimensionalities one can observe that encoding more features
into the image usually causes model goodness to increase and increas-
ing dimensionality of the convolutional kernel also leads to better
models. In the case of the DraWritePD data set, exceptions occur with
specificity and precision. In the case of the PaHaW data set, exceptions
also occur in the sensitivity of the models. Such anomalies in the
behaviour of goodness metrics may be caused by the presence and ab-
sence of the feature describing the velocity that is related to the amount
of tremor in the motions. Currently, there are many new features (spiral
specific features) or improvements to existing features [12] that can
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Table 5
Performance comparison in the PaHaW dataset.

Dimension Dynamic features Metrics (in%)

𝑥 𝑦 𝑎 𝑙 𝑝 𝑣 𝑐 𝑗 Precision Sensitivity Specificity Accuracy 𝐹1 score

1D ✔ ✔ 50.00 57.14 50.00 53.33 53.33
✔ ✔ ✔ 53.93 57.14 61.75 56.67 57.33
✔ ✔ ✔ ✔ ✔ 58.14 58.48 62.50 60.67 59.14
✔ ✔ ✔ ✔ ✔ ✔ 59.03 71.43 56.25 63.33 64.58
✔ ✔ ✔ ✔ ✔ ✔ 62.31 75.71 62.50 64.22 65.29
✔ ✔ ✔ ✔ ✔ ✔ 57.93 68.73 56.25 60.67 63.92

2D ✔ ✔ 56.93 75.71 57.25 64.33 63.16
✔ ✔ ✔ 72.31 81.48 75.00 75.33 73.43
✔ ✔ ✔ ✔ ✔ 82.33 71.43 82.50 80.00 78.92
✔ ✔ ✔ ✔ ✔ ✔ 76.25 85.71 75.50 81.33 80.51
✔ ✔ ✔ ✔ ✔ ✔ 81.03 84.73 78.75 83.67 82.29
✔ ✔ ✔ ✔ ✔ ✔ 79.61 83.67 76.25 80.33 79.97

3D ✔ ✔ ✔ 62.31 82.73 61.25 68.67 73.29
✔ ✔ ✔ ✔ ✔ ✔ 75.93 𝟗𝟎.𝟒𝟖 75.00 82.22 82.50
✔ ✔ ✔ ✔ ✔ ✔ 𝟖𝟑.𝟔𝟏 87.31 𝟖𝟓.𝟓𝟎 𝟖𝟒.𝟔𝟕 𝟖𝟓.𝟕𝟏
✔ ✔ ✔ ✔ ✔ ✔ 82.71 85.71 80.25 81.73 81.50

Note: The abbreviations 𝑥, 𝑦 denote the x- and y- coordinate features; and 𝑎, 𝑙 and 𝑝 are the azimuth, altitude and pressure features, respectively; velocity, acceleration, and jerk
are represented by 𝑣, 𝑐, and 𝑗, respectively.

Table 6
Comparisons with state-of-the-art works.

Author(s) Dataset Features Models Accuracy (in %)

Drotár et al. [31] PaHaW hand-crafted SVM 62.80
Diaz et al. [21] PaHaW 1D CNN-extracted 1D CNN + BiGRU 93.75
Diaz et al. [19] PaHaW 2D CNN-extracted 2D CNN + SVM 75.00
Present work PaHaW 1D CNN-extracted 1D CNN 64.22

2D CNN-extracted 2D CNN 83.67
3D CNN-extracted 3D CNN 84.67

further improve the classification performance, similar to the diagnostic
accuracy in 90% obtained using multiple raw and derived features
in [21]. Although such an investigation is beyond the scope of this
paper, it may constitute the direction of future studies. Another point to
discuss is that while the differences in performance metrics are similar
between one- and two-dimensional CNNs, the difference between two-
and three-dimensional CNNs is greater for the DraWritePD dataset. This
may be triggered by the fact that in the case of PaHaW no reference
drawing is provided, but in the case of DraWritePD a reference drawing
is presented, making it easier to complete the test. The direction of the
drawing and the age groups of the subjects tested may also contribute
to this difference.

8. Conclusions

The application of one-, two-, and three-dimensional deep convo-
lutional neural networks for the analysis of spiral drawing tests to
support the diagnosis of Parkinson’s disease has been investigated.
Through comparative experiments on the two datasets, our hypothe-
sis is confirmed that data representation and classification models in
high-dimensional space are more beneficial to distinguish PD patients
from HC subjects. Additionally, although we adapted the raw dynamic
feature set for feature encoding to obtain high diagnostic accuracy, we
believe that there is still room for improvement. Future research will be
directed towards determining the specific feature sets to be encoded.
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Abstract—This paper introduces a framework for analyzing
cerebral palsy (CP) gait using a markerless 3D computer vision
system equipped with two RGB cameras. The system employs
advanced pose estimation algorithms and machine learning
techniques to analyze gait dynamics. Although limited by the
model’s simplicity at certain joints—particularly the pelvis, which
is represented by just two points—the system integrates the four
most clinically relevant out of 11 measured kinematic variables.
The system excels in capturing large joint angles like knee
flexion/extension but faces challenges with smaller angles such
as hip abduction/adduction due to the limitations of single-point
representation. Comprehensive gait metrics, including cadence
and walking speed, are derived by projecting foot movements
onto the floor plane, providing valuable insights into gait mechan-
ics. This research simplifies the technology required for precise
gait analysis and enhances its accessibility in clinical settings,
offering significant advancements in the diagnosis and treatment
of movement disorders.

I. INTRODUCTION

Cerebral palsy (CP) represents the most common childhood
motor disability, where precise gait analysis is key to rehabil-
itation [1]. Traditional marker-based motion capture systems,
despite being the gold standard, come with limitations such as
high costs, time-intensive setups, and discomfort for patients
due to marker attachment [2] [3] [4]. Marker placement for gait
analysis in CP patients, requiring 1 to 2.5 hours for setup and
additional hours for analysis, demands precision and expertise
from clinicians. This process, illustrated in Fig 1a, b, c,
involves extensive measurements and can be uncomfortable for
young patients, sometimes prolonging sessions. Additionally,
the heat from infrared cameras used in analysis may increase
discomfort, adding to the procedure’s strain.

Acknowledging the challenges of traditional gait analysis,
including clinician subjectivity and patient discomfort, this
study introduces a less invasive markerless computer vision
technique. By employing two standard RGB cameras, we’ve
developed a system for 3D pose estimation, enhancing gait
analysis accessibility for CP patients. This innovation mini-
mizes the need for extensive human interaction from clinical
staff, paving the way for future advancements in analysis tools.

While markerless gait analysis systems are not new [4] [5]
[6] [7], the novelty of our work lies in its application and

validation for CP gait analysis using only two regular cameras
for 3D pose estimation. We have successfully demonstrated
that kinematic parameters extracted from the keypoints can
be used to reconstruct relevant metrics, such as sagittal and
frontal angles of the lower limbs. This advancement represents
a significant step forward in leveraging computer vision for
medical applications, particularly in the context of CP, where
detailed analysis of gait patterns can inform more targeted and
effective rehabilitation strategies.

A. Related Work

Recent advancements in deep learning and computer vision
have shown significant potential in analyzing human move-
ment from video footage, offering substantial benefits for
studying disease populations. Integrating these technologies
with smartdevices could transform rehabilitation practices by
enabling the assessment of real-world movements without the
need for specialized hardware.

Standard 3D gait analysis uses multi-camera systems and
skin markers, limited by cost, setup complexity, and pa-
tient discomfort [8] [9] [10]. Markerless technologies offer
alternatives, though multi-camera setups are impractical for
ambulatory settings [2] [11] [12] [13]. Single- and dual camera
methods, utilizing RGB-depth cameras, provide a simpler
solution for 2D kinematic analysis, essential for screening and
treatment evaluation [14] [15]. Most open-source deep learning
methods, such as AlphaPose and OpenPose [16] [17] [18] are
trained on general movement data rather than specific gait
patterns, and do not adhere to clinical gait analysis standards.
Additionally, their training datasets often exclude individuals
with gait impairments, compromising the optimization of these
methods for clinical use and their validity in clinical settings.

A study by Moro et al. [4] explored the efficacy of marker-
less versus marker-based motion tracking systems, employing
three cameras to achieve results on par with traditional meth-
ods that typically require eight cameras. This advancement,
propelled by machine learning technologies, suggests the feasi-
bility of using as few as three cameras for accurate tracking of
joint and limb movements, challenging the long-standing need
for more extensive camera setups for precise motion tracking.
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In their study, Ma et al. [19] assessed the Microsoft Kinect
camera’s effectiveness for gait analysis in children with CP.
It compares Kinect’s lower limb joint kinematics against a
traditional marker-based system. Initial results show modest
to poor correlation, but calibration with linear regression and
Long Short Term Memory (LSTM) algorithms significantly
improves accuracy, especially in hip and knee sagittal kine-
matics. The study by Nieto et al. [7] demonstrated the use of
a smartphone with cloud computing to accurately extract gait
features, achieving 95% accuracy for side views and 80% for
frontal views. Meanwhile, Maex et al. [5] successfully utilized
a single video camera for lower body sagittal plane kinematic
analysis, revealing high correlations up to 0.99. These results
are promising; however, for comprehensive kinematic analysis
across all anatomical planes, not limited to the sagittal plane,
a setup with at least two cameras is necessary to capture 3D
data.

The study of Haberfehler et al. [20] explores using machine
learning and video analysis to assess dystonia in dyskinetic
cerebral palsy patients, aiming to automate the scoring process
currently reliant on clinical evaluation. By extracting 2D stick
figures from videos and analyzing them with DeepLabCut [21]
for pose estimation, the research achieved tracking accuracy
and trained models to predict clinical scores, comparing favor-
ably with human scoring. This proof-of-concept demonstrates
the potential for machine learning to efficiently and accurately
assess dystonia, offering a scalable and less subjective alter-
native to traditional methods.

II. PROBLEM STATEMENT

This study advances cerebral palsy (CP) gait analysis by in-
tegrating a dual-camera system with advanced pose estimation
algorithms to construct precise 3D gait models. It focuses on
the critical question:

How effectively can advanced computer vision tech-
niques and automated keypoint extraction analyze and
model the complex gait dynamics of cerebral palsy pa-
tients?

Our markerless dual-camera setup simplifies traditional
methods, reducing setup times and discomfort for CP patients.
We evaluate its ability to autonomously extract and analyze
kinematic features, comparing it directly with the established
Vicon system to assess precision and accessibility.

III. MATERIALS AND METHODOLOGY

This section outlines the study’s methodical strategy in
creating a markerless system for analyzing cerebral palsy gait.

A. Data acquisition and experimental setting

At the Haapsalu Neurological Rehabilitation Centre
(HNRC) [22], the clinical motion and gait analysis laboratory
plays a crucial role in assessing patients’ specific symptoms.
Equipped with advanced technology, including 8 MX T-Series
infrared cameras, 2 Basler pilot piA640-210gc video cameras
(positioned to record the patient from both the side and front),
and 2 AMTI force plates, the laboratory utilizes Vicon’s

(a) Clinicians preparing reflective markers for gait analysis

(b) Utilizing a laser for enhanced precision in marker placement
for gait analysis

(c) Comparative analysis of gait dynamics: Video footage and
3D model visualization

Fig. 1: Reflective marker setup (a, b), laser alignment for
accuracy (b), and 3D model evaluation (c) in HNRC’s gait
lab.

comprehensive software suite (Vicon Polygon, Vicon Nexus,
among others) for data recording, processing, and reporting.
Central to the analysis process are reflective markers attached
to the patient, tracked meticulously by the infrared cameras to
monitor movement.

This study employs two Basler pilot piA640-210gc RGB
cameras to capture gait from side and front views at HNRC,
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aiming to achieve the comprehensive analysis typically per-
formed with eight MX T-Series infrared cameras. The explo-
ration seeks to evaluate the effectiveness of utilizing fewer
cameras alongside force plates, compared to the conventional
eight MX T-series camera setup.

B. Pose Estimation Frameworks

The following frameworks were examined and tested for
potential use: MediaPipe [23], AlphaPose [24], OpenPose [25],
Metrabs [26], TensorFlow Movenet [27], HRNet [28], and
Detectron2 [29]. These frameworks offer capabilities such
as real-time multimedia processing, pose estimation, multi-
person pose estimation, object tracking, and computer vision
tasks like image classification and instance segmentation.

1) The number of keypoints: Our primary focus is on
keypoints, particularly their body coverage and accuracy. Most
freely available models only provide the basic 17 keypoints,
excluding critical data like the foot. MediaPipe, however, of-
fers a more comprehensive solution with 32 keypoints covering
the entire body, making it a standout choice for our needs (see
Fig. 3a).

2) Stability test: In our stability evaluation, we converted a
single image into a 768-frame video at 30 fps and 1280x720
resolution to simulate continuous movement for testing differ-
ent pose estimation frameworks. Each framework processed
this video to assess the consistency of keypoint tracking across
frames. The standard deviation of keypoint placement, detailed
in Table I, quantifies the precision of each framework, with 2
pixels roughly equivalent to 1 centimeter.

TABLE I: Standard deviation for different models

Model x (pixels) y (pixels)
MediaPipe 0.2459 0.4226
Detectron2 0.5519 0.4298

TensorFlow Movenet 2.1118 2.9386
HRNet 26.7547 28.8701

3) Conclusive analysis: Table II compares various pose
estimation frameworks, highlighting their suitability for sin-
gle versus multi-person detection, compatibility with Nvidia
GPUs, and licensing terms. In our single-patient lab setting,
multi-person detection was not necessary, and MediaPipe’s
capability for single-person detection aligned well with our
requirements. MediaPipe stands out due to its accuracy, com-
prehensive model availability for free use, and near real-time
processing speed, all without the necessity of Nvidia GPUs.
This framework performs well even with lower-quality images
and features a user-friendly API, making it the preferred choice
for our research purposes.

C. Gait cycle prediction

This study employs machine learning techniques for gait
cycle analysis, focusing on classifying gait phases [30] through
body landmarks identified by pose estimation. Key to this
process is selecting specific lower-body landmarks: 27-32
in Fig. 3a, and applying median filtering to reduce noise,

TABLE II: Pose estimation framework comparison

Framework Single Multiple Nvidia GPU License
MediaPipe + - - +
Hrnet + + + +
OpenPose + + + -
AlphaPose + + - -
Metrabs + + - -
Tensorflow + - - +
Detectron2 + + - +

Fig. 2: Process for labelling frames for machine learning based
gait cycle prediction.

thus ensuring precise phase identification. Movement is cap-
tured through the calculation of coordinate changes between
frames, essential for distinguishing different gait phases. The
methodology involves detailed frame-by-frame data annota-
tion, categorizing each frame into one of four classes based
on leg positions and movement accuracy, enhancing the quality
and reliability of gait analysis. This systematic annotation,
illustrated in Fig 2, uses a coding system to represent the gait
cycle accurately, promoting consistency across studies.

D. 3D model construction

Creating a 3D model of a subject’s gait is a complex
process that begins with capturing video from multiple angles.
It involves extracting 2D poses from these videos using pose
detection frameworks, and then calculating the 3D pose by
triangulating these 2D poses. Central to this process is rigorous
camera calibration, determining intrinsic parameters like focal
lengths, skew factor, and principal points. This calibration is
crucial for accurately mapping 2D images to a 3D space,
ensuring the model reflects true dimensions and orientations.
Calibration relies on images featuring a chessboard pattern,
with around 30 images optimizing calibration accuracy and
laying a solid foundation for subsequent 3D model synthesis.

Following calibration (see Fig. 4a), the cameras’ relative
positions and orientations are accurately determined using
images of the calibration device captured simultaneously by
both cameras. This process involves calculating translation and
rotation matrices that describe the positioning of one camera
relative to the other with about five images being optimal.
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(a) 2D keypoints extracted from the pose estimation algorithm
(MediaPipe)

(b) Constructed 3D model

Fig. 3: 3D model illustration.

The triangulation (see Fig. 4b) phase is central for creating
the 3D model, involving precise estimation of the 3D location
of points in space based on their 2D projections from each
camera. This step is critical for transforming 2D data into
a comprehensive 3D model, requiring adjustments for lens
distortions and addressing inherent imprecisions in projecting
complex human movements into 2D images.

E. Kinematic variables and general gait parameters

This study evaluates motion across the sagittal, frontal, and
transverse planes to calculate kinematic variables, offering a
deep dive into the intricacies of human gait mechanics. Kine-
matic variables, or gait kinematics, are essential measurements
that describe the motion of the body’s segments throughout
the gait cycle. These measurements are categorized based on
three anatomical planes that correspond to the human body’s
movement directions: the sagittal plane, which divides the
body into right and left portions; the frontal (or coronal) plane,
dividing it into front and back portions; and the transverse
plane, splitting it into upper and lower portions.

The study’s analysis of kinematic variables within these
planes includes:

• Sagittal plane:
– Pelvis anterior/posterior
– Hip flexion/extension
– Knee flexion/extension

(a) Calibration using chessboard

(b) Triangulation scheme

Fig. 4: Steps in the process of the 3D model creation: camera
calibration (a) and triangulation (b).

– Ankle dorsiflexion/plantar flexion
• Frontal plane:

– Pelvis superior/inferior
– Knee varus/valgus
– Hip abduction/adduction

• Transverse plane:
– Foot progression angle
– Pelvis transverse rotation
– Hip internal/external rotation
– Knee internal/external rotation

The Vicon system facilitates the calculation of these vari-
ables, though its documentation, focused on marker-based
measurements, required adaptations for our marker-less sys-
tem.

IV. RESULTS AND DISCUSSION

Our developed 3D model (see Fig. 3b) captures the nu-
ances of human gait, providing a basis for in-depth analysis
and understanding of movement patterns. Out of 11 kine-
matic variables (see Section III-E) measured at HNRC, four
measurements are integrated into the proposed system. This
limitation stems largely from the model having insufficient
points on certain joints. For example, the model’s pelvis is
represented by just two points, making it essentially a 2D
object and unable to calculate full three-dimensional rotation.
However, integrating four out of the 11 variables is notable as
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it includes the variables most commonly used by clinicians at
HNRC, allowing for a comprehensive analysis of the system’s
capabilities.

(a) Knee flexion/extension

(b) Hip flexion/extension

(c) Ankle dorsiflexion/plantar extension

(d) Hip abduction/adduction

Fig. 5: Gait analysis - ground truth comparison. The black/bold
line represents data calculated using the proposed framework,
while the dashed line shows the ground truth data from the
Vicon system.

As shown in Fig. 5 and Table III, our study’s system
performs well with large joint angles, such as knee flex-
ion/extension (Fig. 5a), but less so with smaller angles like
hip abduction/adduction. The primary issue stems from Medi-
aPipe’s detection process, which does not diminish its overall
accuracy but points to the difficulty of accurately depicting
complex joints with a single point. At HNRC, gait analysis
focuses on assessing patients’ kinematic variables and gait
parameters. This includes comparing numerical data and an-
alyzing graphs to observe joint angle variations throughout a
gait cycle. Special attention is given to the graphical represen-

tation of gait patterns, emphasizing the symmetry between the
patient’s left and right sides and their alignment with standard
control data. Given the HNRC clinicians’ emphasis on graph
shapes, the authors highlight the effectiveness of the proposed
framework for analyzing larger angles that significantly influ-
ence gait mechanics.

Furthermore, authors report a range of general gait param-
eters including cadence, single support, double support, final
contact, step length, step width, walking speed, and limp index,
calculated in close collaboration with HNRC clinicians. These
parameters were obtained by projecting foot movements onto
the floor plane and aligning walking trajectories along the
x-axis, facilitating straightforward calculations, as illustrated
in Fig. 6. This method combines in-depth kinematic analysis
with essential gait metrics, offering a comprehensive insight
into gait mechanics crucial for enhancing the diagnosis and
treatment of movement disorders.

V. CONCLUSIONS
This study introduces a markerless system for analyzing

cerebral palsy gait using dual RGB cameras and MediaPipe
for pose estimation, aimed at enhancing rehabilitation through
3D modeling. It achieved promising correlations for kinematic
variables like knee, hip, and ankle in the sagittal plane. The
authors detail essential gait parameters like cadence and step
length, offering a thorough view into gait mechanics vital for
improving movement disorder treatments. Despite limitations
with smaller angle changes due to markerless detection, this
study lays the groundwork for a cost-effective, efficient gait
analysis system, offering a foundation for future research and
potential improvements in clinical practice. Future work stands
to improve our understanding of motor performance in natural
settings, mitigating the influence of unnatural behaviors often
observed in clinical assessments.
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Abstract

Background: Mental fatigue significantly affects cognitive functions and productivity. Recognized in healthcare,
education, and workplace safety, there is a growing need for objective fatigue detection tools. Smartphones, with their
advanced capabilities, are promising platforms for innovative fatigue detection systems.
Objective: This study aims to develop a smartphone-based system for iOS and Android to detect mental fatigue using
fine motor skill tests and a questionnaire, collecting data to train machine learning models.
Methods: Participants completed tasks before and after activities inducing cognitive fatigue, using 166 devices re-
sulting in 347 sessions. From raw signals, 60 features were engineered. Dimensionality reduction used wrapper-type
feature selection. Six machine learning algorithms were employed: Logistic Regression, Support Vector Machine,
K-Nearest Neighbors, Decision Tree, Random Forest, and AdaBoost, cross-validated with a nested k-fold approach.
Results: The study achieved 0.86 sensitivity using machine learning models with self-assessed fatigue and mental
work hours. Key features included anxiety, effort scales, and the kinematic feature linked to handwriting changes and
hand tremors. The most effective model combined these features with data from fine motor skill tests, highlighting a
multi-dimensional approach to fatigue classification.
Conclusion: The findings offer applications in workplace safety, education, and healthcare, and the dataset provides
a valuable resource for further research into cognitive and motor functions.

Keywords: fatigue, machine learning, fine motor skills, microkinematics, smartphone application, eHealth, dataset

1. Introduction

Fatigue poses significant challenges in various indus-
tries, contributing to accidents and decreased produc-
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(Sven Nõmm), aaro.toomela@tlu.ee (Aaro Toomela)

tivity. Studies have shown that fatigue, often resulting
from prolonged cognitive or physical activity, sleep de-
privation, and other factors, is linked to stress, aging, de-
pression, illness, and neurological disorders [1][2][3]. It
manifests in two main types: peripheral (physical) and
central (mental) [4], affecting performance in tasks de-
manding alertness and information retrieval [5].
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Extensive research has explored fatigue’s nuanced ef-
fects on cognitive and physical performance. Studies
have demonstrated its detrimental impact, such as in-
creased reaction times and errors in tasks requiring pro-
longed attention [6], and impaired physical performance
following cognitive tasks [7]. Additionally, a substan-
tial study involving 228 participants revealed fatigue’s
progressive impact on attention [8], while another ex-
amined varying cognitive tasks, linking task complexity
with fatigue severity [9]. In real-world contexts, occu-
pational fatigue has been shown to significantly impair
cognitive functioning [10]. Another interesting study
analysed the effect of fatigue on speech over 24 hours,
noting changes in speech patterns [11].

Advancements in technology have enabled the use
of smartphone sensors in monitoring physical and
cognitive abilities, offering new avenues in health
and well-being monitoring in free-living environments
[12][13][14][15][16][17]. This paper explores the con-
cept of fatigue through fine motor ability, aiming to con-
tribute to fatigue management strategies.

1.1. Related Work
Recent studies have leveraged machine learning

(ML) and smartphones for fatigue detection. Hooda et
al. [18] reviewed 67 articles on fatigue detection using
ML, finding that combining biological and physical fea-
tures yields high accuracy. Jasim et al. [19] compared
48 papers on drowsiness detection, recommending a hy-
brid approach combining physiological and behavioral
features for optimal results.

In Parkinson’s disease research, handwriting tasks
have been analysed using ML techniques to diagnose
the condition [20]. Similarly, a mobile app was de-
veloped for assessing Multiple Sclerosis-related fatigue
[21], offering real-time symptom monitoring. The Un-
tire mHealth app was found effective in managing fa-
tigue among cancer patients and survivors [22]. For
Barth syndrome, a phone app measured fatigue in real-
time, differentiating between affected and control par-
ticipants [23].

In contrast to these qualitative approaches, this study
combines qualitative and quantitative data from smart-
phone sensors. In Valla et al. [24] authors used an
Android app for fine motor skill assessment, achieving
promising results in fatigue prediction. Research has
also linked fatigue with impaired motor skills. Stud-
ies [25][26] observed slowed movements and increased
movement duration under mental fatigue. Senkiv et al.
[27] employed a spiral drawing test to evaluate mental
fatigue levels, and Lippold et al. [28] connected mus-
cular fatigue to hand tremors, though Budini et al. [29]

found no significant tremor differences with mental fa-
tigue.

These works demonstrate the potential of ML in fa-
tigue detection for various applications. However, exist-
ing solutions require improvements for broader applica-
tion and increased accessibility.

This research aims to combine motor skills analysis
and fatigue assessment using a smartphone application,
hypothesizing that data from smartphones can effec-
tively differentiate various fatigue states: self-assessed
fatigue, physical exertion, and mental exertion.

1.2. Problem Statement

The primary aim of this research is to explore the
possibility of detecting mental fatigue using a smart-
phone application designed for fine motor skill assess-
ment. The central research question guiding this inves-
tigation is: Can mental fatigue be effectively identi-
fied through fine motor skill tests administered via a
smartphone application?

This study strives to broaden the application of smart-
phone apps for tasks that assess fine motor skills, em-
ploying machine learning (ML) models to identify signs
of mental fatigue. A critical element of this study is the
enhancement of data collection methods, focusing on
evaluating changes in fine motor skills before and after
tasks that induce mental fatigue. Additionally, the re-
search aims to refine user questionnaires to broaden the
dataset, investigating if these improvements can boost
the ML model’s accuracy in detecting fatigue.

Furthering previous endeavors, this study will anal-
yse an existing Android application [24] and develop an
updated iOS version to widen the scope of participant
diversity. The novel contributions of this research are
multifaceted:

1. Advanced application for analysing motor skills
and fatigue, offering an innovative tool for fatigue
assessment.

2. Collection of new data to evaluate the effective-
ness of detecting fatigue through digitised fine mo-
tor skill tests, contributing to the empirical under-
standing of fatigue detection.

3. Presentation of the collected dataset to the scien-
tific community for further research, facilitating
collaborative advancements in the field.

4. Introduction of new proposed categorisations of fa-
tigue, enhancing the conceptual understanding and
classification of this complex condition.
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5. Development of new machine learning models
with improved performance in detecting fatigue,
showcasing the potential of ML in health and well-
being applications.

This approach not only leverages technological ad-
vancements in smartphone capabilities but also con-
tributes significantly to the ongoing discourse in fatigue
research through innovative data collection and analysis
techniques.

The rest of this paper is organised as follows. Sec-
tion 2 describes the materials and methods used to de-
velop the proposed framework. Section 2.9 and Ap-
pendix 1 introduce the characteristics of the published
dataset. Sections 4 and 5 report and discuss the experi-
mental results to highlight the effectiveness of the pro-
posed method. The paper is summarised in Section 6.

2. Methods

The subsequent sections provide a comprehensive
overview of the development process and functionalities
of the smartphone application designed for fatigue de-
tection. Additionally, these sections detail the data col-
lection procedures, describe the collected dataset, and
introduce the ML pipeline employed in this study.

2.1. Development of the Smartphone Application for
Fatigue Detection

The research outlined in [24] has been extended to
include further development of two key software com-
ponents: the back-end application and the Android mo-
bile application. Concurrently, a dedicated mobile ap-
plication tailored for iOS devices (see Appendix 3) was
initiated from scratch.

The back-end system underwent a significant update,
integrating advanced logic within its controller. This
logic is vital for discerning whether a device is being
utilised for initial or subsequent test attempts within
the application. A critical feature of this update is the
enforcement of a time interval between test attempts.
Moreover, novel methodologies were implemented to
provide users with feedback regarding any improve-
ments or regressions between their first and second at-
tempts. An additional endpoint was also established to
facilitate the retrieval of test data over specified date
ranges.

A depiction of the application workflow is provided
in Figure 1. This high-level flow chart illustrates the
interactions among the different components of the sys-
tem.

Figure 1: Back-end workflow diagram for the smartphone-based men-
tal fatigue detection system

In total, the user is required to complete four differ-
ent tests within the application. This section presents
the application’s workflow in chronological order to-
gether with screenviews captured from the iOS appli-
cation. When opening the application, users are first
prompted to agree to the terms of use, a prerequisite
for further interaction with the app. The user can read
the terms of use by tapping on ”Click here to read our
Terms of Use” which directs the user to the document.
The terms of use document is brought out in Appendix
2. After accepting these terms, users are given general
instructions for performing the tests.

The questionnaire designed to collect qualitative
metadata from the users before the first completion of
the test is depicted in Figure 2. The metadata includes
the participants’s gender, age, height, weight, education
level, dominant hand, self-evaluation of fatigue, and as-
sessment of the nature of daily activities. After complet-
ing the fatigue-inducing task (such as a lecture, meeting,
or exam), the user’s level of interest in their most recent
task, assessment of its mental demands, anxiety level,
and exhaustion level are recorded. These assessments
range from 0 to 10. Additionally, information regarding
the number of hours spent on physical and mental ac-
tivities during the day and the previous night’s sleep is
collected, with values ranging from 0 to 12.

2.2. The Reaction Test - Simple

The Reaction Test Simple (RTS) is the first test within
the application and is designed to evaluate the user’s re-
sponse times, accuracy, and mistakes. In this test, the
user is expected to tap on black dots that appear at var-
ious locations on the screen in a randomised manner,
each differing in size. The total count of these black
dots that the user must hit is fifteen. Instruction for the
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Figure 2: Questionnaire for collecting qualitative metadata from users
before test initiation.

user on how to execute the RTS is provided through an
animated tutorial, which demonstrates the appropriate
method for undertaking the test. The user’s workflow in
this test is brought out in Figure 3.

The application records several parameters during the
test: each screen tap, the coordinates of these taps,
the accuracy of tapping directly on the black dots, the
elapsed time in milliseconds between taps, and the di-
mensions of the screen of the user’s smartphone. More-
over, the application also tracks the duration from the
moment the user initiates the test to the point where the
fifteenth black dot is tapped. The test starts when the
user taps the green ’START’ button (shown in the sec-
ond section of Figure 3).

2.3. The Archimedean Spiral Drawing Test
The Archimedean Spiral Drawing Test (ASD) is the

second test within the application and is designed to
have the user draw a spiral while maintaining the line
within specified boundaries. Instructional guidance for
this test is provided to the user through an animated tu-
torial, which demonstrates the correct technique for per-
forming the spiral drawing task. The user’s workflow in
this test is brought out in Figure 4.

Figure 3: Screen views of the first reaction test (RTS) in the applica-
tion.

Several key metrics are recorded during this test.
These include the height and width of the drawable area
on the screen (depending on screen size), the coordi-
nates of each point of the line drawn by the user, and
an assessment of whether each point coincides with the
pre-defined background line. Additionally, the total du-
ration taken by the user to complete the spiral drawing
is measured. Another feature of the test is the real-time
calculation of the percentage of the drawing that aligns
with the background line, which is incorporated into the
resulting data object after the completion of the test.

Figure 4: Screen views of the Archimedean spiral test in the applica-
tion.

2.4. The Reaction Test - Advanced
The Reaction Test Advanced (RTA) is the third test

within the application and is designed to challenge users
to tap on dots that correspond with a colour indicated
at the bottom right of the screen. The dots appear at
various locations on the screen in a randomised manner
each differing in size and colour. This test features fea-
turing four pre-selected colours - purple, blue, yellow,
and black. The user’s task is to accurately tap on a dot
when its colour matches the indicated colour. An ani-
mated tutorial is provided to instruct users on the proper
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execution of this test. The user’s workflow in this test is
brought out in Figure 5.

This test records a variety of metrics: the height of
the screen, the coordinates of each tap, the accuracy of
tapping on the correct dot, the elapsed time since the last
tap, and the time elapsed since the first appearance of a
correctly coloured dot. Additionally, the total duration
taken by the user to complete the test is also captured.
The test starts when the user taps the green ’START’
button (shown in the second section of Figure 5) and
finishes when the last correct dot is tapped.

Figure 5: Screen views of the advanced reaction test (RTA) in the
application.

2.5. The Tremor Test
The Tremor Test is the last test within the applica-

tion and is designed to measure the hand tremors of the
user. The users are expected to extend one hand out-
ward while initiating the test by pressing the start but-
ton on the screen with their other hand. This test is re-
peated with both hands. Instructional guidance for this
test is conveyed through an image, which demonstrates
the correct method for conducting the tremor test. The
user’s workflow in this test is brought out in Figure 6.

During this test, the smartphone’s accelerometer sen-
sors actively measure the hand’s movements in all direc-
tions over 10 seconds. The test is to be conducted iden-
tically with both hands to ensure consistent data collec-
tion starting with the left hand. The first half of the test
starts with left-hand measurements when the user taps
the green ’START LEFT HAND’ button (shown in the
second section of Figure 6) and finishes when 10 sec-
onds have passed (timer shown in the third section of
Figure 6). The second part of the test for the right hand
is identical to that of the left hand as seen from Figure
6.

2.6. Last application view and feedback
Upon completing the tests for the second time, the

application’s back-end processes the data from both ses-
sions and displays the results to the user, as depicted in

Figure 6: Screen views of the Tremor test in the application.

Figure 7 on the right. Results for each test are presented
individually. For the RTS, the feedback shows the dif-
ference in the number of mistakes and the change in test
duration. The RTA similarly provides feedback on vari-
ations in the number of errors and duration. In the case
of ASD, feedback not only includes changes in mistakes
and duration but also other metrics, marked with a green
upward arrow for improvements and a red downward ar-
row for declines. Likewise, the Tremor test feedback
displays changes in hand asymmetry using green up-
ward or red downward arrows, paralleling the feedback
format of ASD.

Figure 7: Success message displays upon test completion: initial (left)
and subsequent (right).

2.7. Data collection and analysis

The principal methodology for data acquisition in this
study involved a collaborative arrangement with uni-
versities to facilitate data collection during academic
lessons. The process commenced with a preliminary
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presentation to the students, outlining the research ob-
jectives and introducing the functionalities of the ap-
plication. Subsequently, students were encouraged to
download the application, fill out the questionnaire, and
perform the tasks. A follow-up session was scheduled
post-lesson to prompt students to complete the applica-
tion tasks a second time, ensuring an inter-test interval
of approximately 1.5 hours.

Additionally, as a secondary approach to data collec-
tion, comprehensive information documents were dis-
seminated to various educational institutions. These
documents explicitly detailed the test completion pro-
cedures and articulated the specific types of data being
collected, along with the underlying reasons for their
collection.

A tertiary method involved circulating informational
documents within personal and professional networks.
Participants in this group were instructed to initially un-
dertake the application’s tasks, engage in a mentally
strenuous activity comparable to an academic lesson or
a cognitively demanding professional meeting, and sub-
sequently revisit the application’s tasks for a second as-
sessment.

The decision number 12 by the Tallinn Univer-
sity Board of Ethics, dated May 12, 2021, established
guidelines for the process of data collection.

2.7.1. Experimental setting
In the context of this research, the primary experi-

mental protocol necessitated a two-phase engagement
with the application. Initially, participants were obliged
to answer a series of foundational questions and exe-
cute four tasks within the application, each designed to
assess fine motor skills. After this preliminary interac-
tion, participants were involved in activities designed to
induce cognitive fatigue for a duration of no less than
one hour, optimally extending to ninety minutes. These
activities varied, encompassing academic lessons, cog-
nitively demanding non-physical work, or professional
meetings, to simulate real-world scenarios that could in-
crease mental fatigue.

Upon completion of these cognitively demanding ac-
tivities, participants were asked to return to the appli-
cation for a second session of questionnaires and task
performance. This follow-up interaction was especially
important for evaluating potential changes in fine motor
skills, which are hypostudyed to be indicative of fatigue.

The data collection process was meticulously struc-
tured to detect subtle changes in motor skill perfor-
mance related to cognitive fatigue. Each participant
was subsequently provided with personalised feedback,
based on a comparative analysis of their performance

metrics across the two test sessions. This approach
aligns with the study’s aim of deploying ML models to
identify fatigue by analysing shifts in fine motor skills
as measured through smartphone application usage.

2.8. Feature extraction and engineering

Time series data, such as finger positions (represented
by x− and y−coordinates) and timestamps, are utilised
to derive a variety of features. This section, along with
Table 1, outlines the engineered feature set developed
from this data.

Kinematic Features: For any given timestamp, the
velocity of the position vector r⃗ = [pi, pi+1] can be cal-
culated. Essentially, velocity measures how quickly the
position vector’s displacement changes over time. Sim-
ilarly, acceleration is determined as the rate of change
of velocity, and jerk as the rate of change of accelera-
tion, with respect to time. This analysis extends to the
sixth time derivative of the position vector. While there
are no universally accepted terms for the fourth and
higher time derivatives of displacement, the terms snap,
crackle, and pop are commonly used in literature for
the fourth, fifth, and sixth derivatives, respectively [30].
These higher-order derivative features, which reflect
micro-changes in movement acceleration, have been ap-
plied in studies such as [31] for Parkinson’s disease di-
agnostics. Figure 8 visually depicts these differential-
type features.

Angular Features: The angle α of a position vector
can be derived from its slope k. Considering N obser-
vation points, where (xi, yi) are the coordinates of point
pi for i ∈ {1, 2, . . . ,N}, the slope (k) of the line and the
corresponding angle α are calculated as follows:

k =
yi − yi−1

xi − xi−1
, (1)

α = arctan k, (2)

Figure 8 depicts all the angles that are considered in
the current research:

ϕi = π + αi−1 − αi (3)

γi = αi − αi−1 (4)

Yaw (γ) represents the change in the direction that the
point vector points toward. The set of angular features
was expanded to include up to the third derivative of
yaw over time.

A study by [32] demonstrated that integral-like fea-
tures, derived from kinematic parameters and pressure
measurements, have significant discriminating power
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to distinguish between Parkinson’s disease patients and
healthy control subjects. Furthermore, research in [27]
showed that these features could potentially enable ML
techniques to detect mental fatigue; thus, they have
been incorporated into this study. To ensure the self-
sufficiency of this paper, the computational methods for
these motion parameters are detailed below.

Motion Mass Parameters: Introduced by [33], mo-
tion mass parameters quantify the amount and smooth-
ness of motion across a limb or group of joints. These
parameters are calculated as the sum of the absolute
values of each kinematic and geometric parameter that
varies during the test. Let N represent the number of
observation points in the test (or a segment of the test).
If vk denotes the velocity along the directional vector
of the stylus movement at observation point k, where
k ∈ {1, . . . ,N}, then the velocity mass is defined by the
following equation:

VN =

N∑

k=1

|vk | (5)

2.9. Database for Fatigue Assessment Through Digital
Fine-Motor Skill Tests (SmartPhoneFatigueV2)

The tests were completed a total of 347 times. A sig-
nificant portion of the dataset, comprising 94 devices,
completed the tests precisely twice, while 35 devices
registered a single test completion. In total, 166 unique
devices were involved in completing the tests using mo-
bile applications. Appendix 1 offers insights into the de-
mographics and characteristics of the participants. Out
of the total data entries, a notable distribution was ob-
served in terms of the operating systems used for record-
ing the data with 51.2% using Android and the remain-
der, a close 48.8%, opting for iOS. This highlights the
importance of having a cross-operating system applica-
tion, ensuring the data collection process is inclusive
and representative of both major mobile platforms.

The collected data includes a comprehensive set of
features calculated from the users’ interactions with
the application. Section 2.7 describes these computed
features, including metrics such as Euclidean distance,
jerk, angular velocity, and cumulative slope angles,
which provide detailed insights into the dynamics of
user movements. These features are critical for assess-
ing fine motor skills and detecting fatigue.

In refining the dataset for improved analytical accu-
racy, a careful approach was adopted for the Tremor
Test data. Analysis of user interactions during univer-
sity lessons revealed a common deviation from the in-
structed procedure. Notably, many participants tended

Figure 8: Visual representation of the differential-type (a) and
angular-type (b) features
.

to reverse the recommended sequence of actions: in-
stead of extending their hand before initiating the
Tremor Test via the screen button, they pressed the but-
ton before extending their hand. This pattern is illus-
trated in Figure 9, showing the button press preceding
hand extension. To ensure data integrity, the initial 15%
portion of time in each tremor test dataset was system-
atically excluded from the analysis.

In addition to removing all instances with missing
values, entries showcasing the smallest distance in the
spiral drawing task were rigorously examined through
visual inspection using the front-end application. This
step was necessary to verify the accuracy of both the
length and shape of the spiral drawings. Following the
purification procedure, the dataset was reduced to a total
of 343 records.

After segmenting the dataset following the comple-
tion of tests within the prescribed timeframe, the dataset
diminished to a count of 218 records. These were evenly
split into two groups: 109 entries in the ’before’ group
and 109 in the ’after’ group. This partitioning was es-
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Table 1: A subset of engineered features derived from fine motor skill test data. See Figure 8 for visual representation.

Test name Feature set Description

ASD

distance di =
√

(xi − xi−1)2 + (yi − yi−1)2 (Euclidean distance)

jerk

The rate of change in acceleration with respect to time, defined as the
third time derivative of distance. It quantifies how quickly acceleration
is increasing or decreasing, providing insights into the dynamics of mo-
tion.

ϕ velocity The rate of change of the angle ϕ, measured in radians per unit time,
capturing the angular velocity throughout the test.

slope mass

The cumulative sum of the slope angles measured across all observation
points during the test. It is indicative of the smoothness of fine motor
skills, reflecting the overall consistency and fluidity of the movements
recorded.

RTS and RTA

wasHitOnTarget Boolean values True if the area of the touch overlaps with at least one
pixel of the rendered circle.

timeFromLastTouch Time between touches
timeFromFirstCorrect-
ColorRender The difference in time between two matching color renders

Tremor x, y, z Acceleration along x−, y−, z−axis
absolute acceleration abs =

√
x2 + y2 + z2

sential for subsequent ML analysis, ensuring a balanced
and precise dataset that accurately reflects the test ses-
sions.

3. Machine Learning Based Analysis for Fatigue De-
tection

In the context of detecting mental fatigue using ML
algorithms, it is imperative to categorise the data into
two distinct labels: ’fatigued’ and ’non-fatigued’.

3.1. Fatigue categorisation

Initially, the differentiation between ’non-fatigued’
and ’fatigued’ states was determined through the com-
pletion of mental tasks in two sequential sessions, with
the presumption that the first session represents a ’non-
fatigued’ state and the subsequent session signifies a ’fa-
tigued’ state. Furthermore, the extent of mental exertion
encountered over the course of a day was considered as
a criterion for labelling. This was followed by incor-
porating the duration of sleep attained as a parameter
for label assignment. Finally, self-assessment of fatigue
levels was also integrated into the labelling process, pro-
viding a subjective measure to the classification scheme.
The criteria for the fatigue categories are systematically
outlined in Table 2.

3.1.1. ”Fatigue inducing tasks” as a label
In the process of the first data categorisation, the la-

bels were determined based on the timing of the test
relative to the lesson. Consequently, this resulted in the
formation of two distinct groups: Group 1, comprising
109 data entries for tests conducted before the fatigue
inducing task (lesson, lecture, exam, meeting, etc), and

Table 2: Fatigue categories used for ML-based classification.

Category Threshold Count / Label

Performing a fatigue-inducing task Before the lesson 109 (non-fatigued)
After the lesson 109 (fatigued)

Mental work performed in hours v1 > 1 103 (non-fatigued)
115 (fatigued)

Mental work performed in hours v2 > 2 140 (non-fatigued)
78 (fatigued)

Sleep hours v1 < 6 136 (non-fatigued)
30 (fatigued)

Sleep hours v2 < 7 104 (non-fatigued)
62 (fatigued)

Sleep hours v3 < 8 42 (non-fatigued)
124 (fatigued)

Self-assessed fatigue 1 ≤ 3 69 (non-fatigued)
≥ 6 44 (fatigued)

Self-assessed fatigue 2 ≤ 3 69 (non-fatigued)
≥ 7 24 (fatigued)

Self-assessed fatigue 3 ≤ 2 51 (non-fatigued)
≥ 8 14 (fatigued)

Self-assessed fatigue 4 = 1 40 (non-fatigued)
≥ 6 44 (fatigued)

Group 2, also consisting of 109 entries, conducted af-
ter. It is important to note that certain features - specif-
ically those pertaining to effort, interest, anxiety, and
self-assessed fatigue - were not recorded during the ini-
tial completion of the tests.

Furthermore, to standardise the data, the values for
physical work hours recorded during the first test com-
pletion were inferred from the corresponding values of
the second completion. In addition, the mental work
hours for the first test completion were adjusted to be
one hour less than those recorded in the second comple-
tion. This adjustment was made to account for the time
elapsed between the two test completions. The sleep
hour data was excluded from the dataset due to a preva-
lence of zero values, which indicated a lack of variabil-
ity and reliability in this particular measure.
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Figure 9: Example output of right-hand tremor measurements.

3.1.2. ”Hours of mental work performed” as a label
In the analysis focusing on the hours of mental work

performed, several columns were excluded from the
dataset due to the prevalence of zero values or because
they were not recorded during the initial test comple-
tion. Specifically, the columns representing sleep scale,
effort, interest, anxiety, and self-assessed fatigue were
omitted from consideration. To maintain consistency
across test completions, the values for physical work
hours recorded during the first test were inferred from
their counterparts in the second test. Additionally, the
mental work hours for the first test were adjusted to be
one hour less than those for the second test, acknowl-
edging the passage of time between the two sessions.

A further breakdown of the data reveals that when
more than two hours of mental work were performed,
the participants were classified as ’fatigued’ in 78 in-
stances and ’non-fatigued’ in 140 instances. Similarly,
when the mental work exceeded one hour, there were
115 instances classified as ’fatigued’ and 103 as ’non-
fatigued’.

3.1.3. ”Hours of sleep” as a label
In the third phase of the analysis, we focused on

sleep hours. The classification of the ’non-fatigued’
group was based on varying thresholds of sleep dura-
tion. For instance, defining ’non-fatigued’ as individ-
uals who slept more than 5 hours resulted in 136 indi-
viduals in the ’non-fatigued’ category and 30 in the ’fa-
tigued’ category. Altering this threshold to more than 6

hours of sleep reclassified the groups, resulting in 104
individuals in the ’non-fatigued’ category and 62 in the
’fatigued’ group.

Further adjustment of the threshold to over 7 hours of
sleep caused a notable shift in group sizes, with 42 in-
dividuals categorised as ’non-fatigued’ and 124 as ’fa-
tigued’. These varying group sizes based on sleep dura-
tion thresholds are likely to influence the sensitivity and
specificity of the model. Sensitivity, or the true positive
rate, could be affected by the smaller size of the ’non-
fatigued’ group at certain thresholds, potentially leading
to a higher rate of false negatives. Similarly, specificity,
or the true negative rate, might be impacted by the larger
’fatigued’ group sizes, influencing the model’s ability to
correctly identify true negatives.

3.1.4. ”Self-assessed fatigue level” as a label
In the analysis, self-assessed fatigue was a focal

point. A meticulous data sorting process resulted in
155 relevant data rows for analysis. We tested differ-
ent value ranges for labeling fatigue levels. Initially,
entries with self-assessed fatigue rated at levels 4 or 5
were excluded, resulting in 113 rows. For classification,
ratings above 5 were labeled as ’fatigued’, yielding 69
’non-fatigued’ and 44 ’fatigued’ instances. To further
refine the dataset, we excluded the value 6. Ratings of
7-10 were categorised as ’fatigued’, and 1-3 as ’non-
fatigued’, effectively eliminating moderate fatigue lev-
els. This adjustment produced 69 ’non-fatigued’ and 24
’fatigued’ instances, enhancing the separation between
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the two classes. Further refinement involved excluding
values 3-7, resulting in 51 ’non-fatigued’ and 14 ’fa-
tigued’ instances. In the most stringent classification,
using a value of 1 to indicate ’non-fatigued’ and values
over 5 to indicate ’fatigued’, we achieved a distribution
of 40 ’non-fatigued’ and 44 ’fatigued’ instances.

These partitioning strategies aimed to increase the de-
cision boundary separation for ML models, thereby im-
proving their ability to accurately classify and predict
fatigue levels.

3.2. Machine Learning Pipeline
A total of 60 features were engineered from the raw

signals. Most discriminative predictors were selected to
reduce dimensionality using wrapper-type feature selec-
tion procedures. Feature selection was systematically
conducted, choosing subsets of 1, 2, 3, 4, 5, and 10
features, utilising methods such as Recurrent Feature
Elimination (RFE) [34] and SelectFromModel (SFM).
Given the inherent diversity in the algorithmic nature
of ML models, six distinct algorithms were selected for
this study.

- Logistic Regression (LR)

- Support Vector Machine (SVM)

- K-Nearest Neighbors (KNN)

- Decision Tree (DT)

- Random Forest (RF)

- AdaBoost (AB)

These were trained and cross-validated in a nested k-
fold loop. It means that supervised feature selection
strategies are nested within the cross-validation itera-
tions so that the most discriminating features are chosen
based only on the training set, while the test set is kept
only for validation [35]. This way, we avoid possible
bias that may lead to model overfitting. For each it-
eration within this process, the dataset was standardised
using the StandardScaler. Critical evaluation metrics in-
cluding accuracy, precision, sensitivity, specificity, and
F1 score were meticulously measured to gauge model
efficacy. The overall workflow is visualized in Figure
10.

4. Results

A nested cross-validation was utilised to determine
the most effective models, feature selectors, and la-
belling strategies. This method was essential for identi-

fying the optimal setup. The fatigue classification cat-
egories, critical to the model’s functionality, are thor-
oughly outlined in Table 2.

4.1. Best performing models for fatigue detection

The models were trained using the insights gained
from cross-validation and applied to the entire dataset,
which was divided with a split of 1/3 (test) and 2/3
(train). Table 3 presents the top models that showed
the best performance. The highest accuracy was ob-
served in a model using the RF classifier with 10 fea-
tures, achieving an accuracy of 0.85. This high accu-
racy can be attributed to a combination of features from
the spiral test, tremor tests, and the simple reaction test,
along with self-assessed features.

Further analysis of these features shows that a com-
bination of the calculated slope mass with self-assessed
effort and anxiety, as well as hours of previous physical
work, also resulted in a high accuracy of 0.84, even with
a reduced set of only four features. Notably, removing
the feature related to physical work hours decreased the
accuracy to 0.80, highlighting its importance in the ef-
fective detection of self-assessed fatigue.

5. Discussion

The results obtained from ML models have yielded
valuable insights into fatigue detection. The expanded
dataset, coupled with the inclusion of additional ques-
tions in the questionnaire, contributed to achieving su-
perior results. In a previous study that exclusively
utilised an Android application, the peak accuracy
recorded was 0.79 [24]. However, in this current re-
search, a significantly higher accuracy of 0.85 was
achieved, employing self-assessed fatigue and hours of
mental work as labels. This finding underscores the fea-
sibility of using self-reported fatigue levels and mental
workload as possible fatigue detection indicators. Anal-
ysis revealed that feature selectors prominently identi-
fied the anxiety and effort scales, along with calculated
features, as key contributors to these robust detection
results. It was observed that the trajectory angle of the
spiral drawing, slope mass, emerged as a particularly
vital component in training the models. It has been doc-
umented that these angular type features (α, ϕ, etc., see
Figure 8) are describing some forms of micro-changes
in handwriting and can be linked to hand tremors [36].
These features capture nuanced fluctuations in fine mo-
tor movement, providing valuable insights into the ef-
fects of fatigue on motor performance. This highlights
the capability of ML algorithms to discern between
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Figure 10: A wrokflow for the machine learning based classification.

these two states based on the study’s utilised features,
which, although subtle and imperceptible to the naked
eye, possess informative value for classification. Fur-
thermore, the most effective model integrated kinematic
and tremor features with self-assessed categories and
the reaction test, enhancing its performance. These find-
ings have significant implications for developing fatigue
detection systems, emphasising the importance of sub-
jective self-assessment and specific psychometric scales
in enhancing system accuracy.

In the medical field, the implications are substan-
tial. Healthcare professionals could benefit from a re-
liable fatigue assessment tool that extends beyond self-
reported measures. Patients with chronic conditions,
neurological disorders, or undergoing medical treat-
ments could use this tool for objective fatigue level
monitoring.

The model’s applicability extends beyond the med-
ical realm to industries where human performance is
critical, such as aviation, transportation, and manufac-
turing. Implementing fatigue detection systems could
enhance safety and productivity. Professionals in de-
manding environments, like pilots, truck drivers, or shift
workers, could benefit from real-time fatigue assess-
ments for informed work and rest decisions.

In education, this technology could assess and man-
age student fatigue during exams or academic activi-
ties. Identifying fatigue patterns allows educators to ad-

just curriculum and schedules, optimising learning out-
comes.

The dataset collected offers potential for diverse ap-
plications beyond fatigue detection, including reaction
tests, spiral drawing tests, and hand tremor assessments.
This opens up novel research and practical application
avenues in various domains.

The reaction test data, indicative of cognitive process-
ing speed and motor function, could be leveraged for
applications in cognitive neuroscience and motor con-
trol studies. This extensive dataset could offer insights
into cognitive performance, reaction time variability,
and motor coordination, valuable for studying cogni-
tive impairments or evaluating cognitive-enhancing in-
terventions.

Spiral drawing tests provide opportunities for explor-
ing fine motor skills and coordination. The dataset’s de-
tailed information on drawing patterns and stability pa-
rameters could aid research in motor skill development,
therapy impact assessment, or digital art and design ap-
plications.

Hand tremor tests offer unique insights into tremor
patterns and potential links to health conditions. The
dataset could be invaluable for tremor assessment, aid-
ing in early detection of conditions like essential tremor
or Parkinson’s disease, and analysing tremor character-
istics in relation to demographic and health factors.

Looking ahead, there are several promising directions
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Table 3: Best performing ML models for fatigue classification.
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for future research. Expanding the dataset size would be
beneficial, as larger datasets can provide more compre-
hensive training for the models, potentially improving
their accuracy and robustness. Additionally, the appli-
cation of explainable AI techniques would offer valu-
able insights by elucidating the underlying decision-
making processes of the models, thereby enhancing our
understanding of their predictive capabilities. The test-
ing suite within the smartphone application has poten-
tial for further advancement by incorporating micro-
phone and camera-based tests. This would leverage ad-
ditional smartphone sensors, enriching the testing capa-
bilities and overall functionality.

6. Conclusion

This study developed a smartphone application to as-
sess mental fatigue using fine motor skill tests and a
comprehensive questionnaire. The app, compatible with
both iOS and Android, collected data through tasks con-
ducted before and after potentially mentally exhausting
activities. A two-phase data collection process was used
to capture cognitive changes through these fine motor
skills tests. The study then used machine learning tech-
niques to analyse the data and develop predictive mod-
els for mental fatigue.

Key findings highlighted the predictive power of self-
reported fatigue level and workload, alongside changes

in fine motor skills, in assessing fatigue. The application
and resulting models offer significant potential for real-
time fatigue monitoring in environments such as safety-
critical workplaces and educational settings. Moreover,
the dataset generated from this research provides a valu-
able resource for future studies on cognitive and motor
functions. Overall, this study contributes to the field by
offering a comprehensive tool and dataset that enhances
our ability to understand and monitor mental fatigue in
various contexts.
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ert, Ł. Świkecicki, Smartphone as a monitoring tool for bipolar
disorder: a systematic review including data analysis, machine
learning algorithms and predictive modelling, International jour-
nal of medical informatics 138 (2020) 104131.

[15] M. Kheirkhahan, S. Nair, A. Davoudi, P. Rashidi, A. A. Wani-
gatunga, D. B. Corbett, T. Mendoza, T. M. Manini, S. Ranka,
A smartwatch-based framework for real-time and online assess-
ment and mobility monitoring, Journal of biomedical informat-
ics 89 (2019) 29–40.

[16] Y. Fukazawa, T. Ito, T. Okimura, Y. Yamashita, T. Maeda, J. Ota,
Predicting anxiety state using smartphone-based passive sens-
ing, Journal of biomedical informatics 93 (2019) 103151.

[17] V. P. Cornet, R. J. Holden, Systematic review of smartphone-
based passive sensing for health and wellbeing, Journal of
biomedical informatics 77 (2018) 120–132.

[18] R. Hooda, V. Joshi, M. Shah, A comprehensive review of ap-
proaches to detect fatigue using machine learning techniques,
Chronic Diseases and Translational Medicine (2021).

[19] S. S. Jasim, A. Hassan, Modern drowsiness detection tech-
niques: A review, International Journal of Electrical and Com-
puter Engineering 12 (3) (2022) 2986.

[20] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal,
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[27] O. Senkiv, S. Nõmm, A. Toomela, Applicability of spiral
drawing test for mental fatigue modelling, IFAC-PapersOnLine
51 (34) (2019) 190 – 195, 2nd IFAC Conference on Cyber-
Physical and Human Systems CPHS 2018. doi:https:

//doi.org/10.1016/j.ifacol.2019.01.064.
URL http://www.sciencedirect.com/science/

article/pii/S2405896319300679

[28] O. Lippold, The tremor in fatigue, Human muscle fatigue: Phys-
iological mechanisms (1981) 234–248.

[29] F. Budini, L. Labanca, M. Scholz, A. Macaluso, Tremor, fin-
ger and hand dexterity and force steadiness, do not change af-
ter mental fatigue in healthy humans, Plos one 17 (8) (2022)
e0272033.

[30] R. N. Jazar, Advanced Dynamics. Rigid Body, Multibody, and
Aerospace Applications, John Wiley & Sons, Inc, 2007.
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Appendix 1 - Subject data

Table 4: Distribution of participants’ demographics.

Feature name Most common value Percentage from total values
Height 151-175 51.8%
Weight 61-75 31.3%
Age 18-25 41.6%
Gender Male 65%
Received education Higher 32.5%
Daily Work Type Mental/Physical combined 44%
Dominant Hand Right hand 91%

Table 5: Demographic data and characteristics of participants.

ID height weight age gender education dailyWork mainHand
1 <100 <50 <10 Male None Physical RIGHT
2 <100 <50 <10 Female None Physical RIGHT
3 <100 <50 <10 Male None Physical RIGHT
4 <100 <50 <10 Male None Physical RIGHT
5 <100 <50 <10 Male None Physical RIGHT
6 <100 <50 <10 Male None Physical RIGHT
7 <100 50-60 <10 Female Higher Mental RIGHT
8 101-150 <50 10-13 Male Primary 50/50 RIGHT
9 151-175 <50 10-13 Male Primary 50/50 RIGHT
10 151-175 50-60 10-13 Male Primary 50/50 RIGHT
11 151-175 50-60 10-13 Female Primary 50/50 RIGHT
12 151-175 50-60 10-13 Male Primary 50/50 RIGHT
13 151-175 50-60 10-13 Female Primary 50/50 RIGHT
14 151-175 <50 10-13 Male Primary 50/50 RIGHT
15 151-175 50-60 10-13 Female None 50/50 RIGHT
16 151-175 <50 10-13 Male Primary 50/50 LEFT
17 176-185 76-90 10-13 Female Primary 50/50 RIGHT
18 151-175 <50 10-13 Female Primary 50/50 RIGHT
19 151-175 <50 10-13 Male Primary 50/50 RIGHT
20 151-175 <50 10-13 Male Primary 50/50 LEFT
21 101-150 <50 10-13 Male Primary 50/50 RIGHT
22 151-175 <50 10-13 Female Primary 50/50 RIGHT
23 151-175 50-60 10-13 Female Primary 50/50 RIGHT
24 151-175 <50 10-13 Other Higher Physical RIGHT
25 151-175 50-60 10-13 Female Primary 50/50 RIGHT
26 101-150 <50 10-13 Female Primary 50/50 RIGHT
27 151-175 <50 10-13 Female Basic 50/50 LEFT
28 151-175 50-60 10-13 Female Primary 50/50 RIGHT
29 101-150 <50 10-13 Female Primary 50/50 RIGHT
30 151-175 <50 10-13 Female Primary Physical AMBIDEXTROUS
31 101-150 <50 10-13 Female Primary 50/50 RIGHT
32 176-185 61-75 14-17 Male Primary 50/50 RIGHT
33 151-175 61-75 14-17 Male None 50/50 RIGHT
34 176-185 61-75 14-17 Male Basic Mental RIGHT
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35 101-150 61-75 14-17 Female Secondary 50/50 RIGHT
36 151-175 61-75 14-17 Male Secondary 50/50 RIGHT
37 101-150 <50 14-17 Female Primary 50/50 RIGHT
38 151-175 50-60 14-17 Female Primary 50/50 RIGHT
39 151-175 50-60 14-17 Male Primary 50/50 RIGHT
40 151-175 <50 14-17 Female Higher Physical RIGHT
41 176-185 76-90 14-17 Other Primary 50/50 RIGHT
42 176-185 61-75 14-17 Male Basic 50/50 RIGHT
43 151-175 <50 14-17 Female None Physical RIGHT
44 151-175 <50 14-17 Male Primary 50/50 RIGHT
45 151-175 76-90 14-17 Male Primary 50/50 RIGHT
46 176-185 61-75 14-17 Male Basic 50/50 RIGHT
47 151-175 61-75 14-17 Female Primary 50/50 RIGHT
48 151-175 50-60 14-17 Female Basic 50/50 RIGHT
49 191-205 61-75 14-17 Male Basic Mental RIGHT
50 151-175 50-60 14-17 Female Primary Mental RIGHT
51 151-175 50-60 14-17 Male Secondary 50/50 RIGHT
52 151-175 50-60 14-17 Female Secondary Mental RIGHT
53 186-195 76-90 14-17 Male None Physical RIGHT
54 151-175 50-60 14-17 Female Secondary 50/50 RIGHT
55 151-175 <50 14-17 Female None Physical RIGHT
56 151-175 50-60 14-17 Male Secondary Mental RIGHT
57 186-190 76-90 14-17 Male Primary 50/50 RIGHT
58 151-175 <50 14-17 Male Basic Physical RIGHT
59 176-185 61-75 14-17 Male None 50/50 RIGHT
60 151-175 50-60 14-17 Male Basic 50/50 RIGHT
61 151-175 50-60 14-17 Male Basic 50/50 RIGHT
62 176-185 76-90 14-17 Male Basic 50/50 RIGHT
63 191-205 91-105 14-17 Male Basic Physical RIGHT
64 176-185 76-90 14-17 Male Basic Physical RIGHT
65 151-175 <50 14-17 Male Basic Physical RIGHT
66 151-175 50-60 14-17 Female Primary Physical RIGHT
67 176-185 61-75 18-25 Other Secondary Mental LEFT
68 176-185 61-75 18-25 Male Secondary 50/50 RIGHT
69 151-175 61-75 18-25 Male Secondary 50/50 RIGHT
70 151-175 61-75 18-25 Male Higher Mental AMBIDEXTROUS
71 176-185 91-105 18-25 Male Secondary Mental RIGHT
72 186-195 76-90 18-25 Male Basic Mental RIGHT
73 176-185 50-60 18-25 Male Basic Physical RIGHT
74 176-185 <50 18-25 Female Higher Mental RIGHT
75 >205 61-75 18-25 Male Secondary 50/50 RIGHT
76 176-185 61-75 18-25 Male Secondary Mental RIGHT
77 196-205 76-90 18-25 Male Higher 50/50 RIGHT
78 151-175 61-75 18-25 Female Primary Mental AMBIDEXTROUS
79 176-185 50-60 18-25 Female Higher Mental RIGHT
80 151-175 61-75 18-25 Female Basic Physical RIGHT
81 176-185 61-75 18-25 Male Primary 50/50 RIGHT
82 176-185 76-90 18-25 Male Higher Mental LEFT
83 151-175 91-105 18-25 Female Secondary Mental RIGHT
84 176-185 76-90 18-25 Male Secondary Mental RIGHT
85 186-190 61-75 18-25 Male Higher Mental RIGHT
86 176-185 61-75 18-25 Male Higher Mental RIGHT
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87 176-185 76-90 18-25 Male Secondary Physical RIGHT
88 176-185 61-75 18-25 Male Basic Physical RIGHT
89 151-175 61-75 18-25 Male Secondary 50/50 AMBIDEXTROUS
90 151-175 61-75 18-25 Male Basic Mental RIGHT
91 191-205 61-75 18-25 Male Basic 50/50 RIGHT
92 151-175 <50 18-25 Female Secondary 50/50 RIGHT
93 151-175 50-60 18-25 Male Secondary Mental RIGHT
94 151-175 <50 18-25 Female Secondary Mental RIGHT
95 176-185 61-75 18-25 Male Secondary Mental RIGHT
96 151-175 50-60 18-25 Female Higher Mental RIGHT
97 151-175 <50 18-25 Female Secondary 50/50 RIGHT
98 176-185 91-105 18-25 Male Secondary Mental RIGHT
99 151-175 <50 18-25 Male Basic Mental RIGHT

100 151-175 50-60 18-25 Male Higher 50/50 RIGHT
101 151-175 61-75 18-25 Female Higher 50/50 RIGHT
102 176-185 76-90 18-25 Male Secondary Mental RIGHT
103 151-175 50-60 18-25 Female Secondary 50/50 RIGHT
104 176-185 76-90 18-25 Male Secondary Mental RIGHT
105 176-185 76-90 18-25 Male Higher 50/50 RIGHT
106 191-205 91-105 18-25 Male Secondary Mental RIGHT
107 186-195 91-105 18-25 Male Secondary Mental RIGHT
108 186-190 76-90 18-25 Male Higher Mental RIGHT
109 176-185 61-75 18-25 Male Secondary 50/50 RIGHT
110 151-175 76-90 18-25 Female Higher Mental RIGHT
111 151-175 61-75 18-25 Female Higher Mental LEFT
112 151-175 50-60 18-25 Female Secondary Mental RIGHT
113 191-205 76-90 18-25 Male Basic Mental RIGHT
114 191-205 76-90 18-25 Male Secondary Physical RIGHT
115 191-205 76-90 18-25 Male Secondary 50/50 RIGHT
116 186-190 76-90 18-25 Male Higher Mental RIGHT
117 151-175 61-75 18-25 Female Higher 50/50 RIGHT
118 186-190 91-105 18-25 Male Secondary 50/50 RIGHT
119 151-175 76-90 18-25 Male Secondary Physical RIGHT
120 176-185 76-90 18-25 Male Basic 50/50 RIGHT
121 176-185 61-75 18-25 Male Secondary 50/50 RIGHT
122 176-185 50-60 18-25 Female None Physical RIGHT
123 191-205 76-90 18-25 Male Secondary Mental RIGHT
124 151-175 50-60 18-25 Male Higher Mental RIGHT
125 176-185 50-60 18-25 Female Secondary Mental RIGHT
126 151-175 61-75 18-25 Female Secondary 50/50 RIGHT
127 176-185 91-105 18-25 Male Primary Mental RIGHT
128 186-190 76-90 18-25 Male Higher 50/50 RIGHT
129 151-175 61-75 18-25 Female Higher 50/50 LEFT
130 151-175 61-75 18-25 Male Basic 50/50 RIGHT
131 151-175 61-75 18-25 Male Higher 50/50 RIGHT
132 151-175 61-75 18-25 Male Secondary Physical RIGHT
133 151-175 61-75 18-25 Male Higher Physical RIGHT
134 151-175 >120 18-25 Female Secondary Mental LEFT
135 151-175 61-75 18-25 Male Higher Mental RIGHT
136 186-195 76-90 26-30 Male Higher Mental RIGHT
137 151-175 61-75 26-30 Male Higher Mental RIGHT
138 151-175 61-75 26-30 Male Higher Mental RIGHT
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139 176-185 91-105 26-30 Male Higher 50/50 RIGHT
140 151-175 76-90 26-30 Male Higher Mental LEFT
141 176-185 76-90 26-30 Male Higher 50/50 RIGHT
142 151-175 50-60 26-30 Female Higher Mental RIGHT
143 <100 106-120 26-30 Female Higher Physical RIGHT
144 151-175 <50 26-30 Female Secondary Mental RIGHT
145 151-175 61-75 26-30 Female Higher Mental LEFT
146 176-185 61-75 31-35 Male Higher 50/50 RIGHT
147 191-205 91-105 31-35 Male Higher Mental LEFT
148 151-175 61-75 31-35 Female Higher Mental RIGHT
149 151-175 91-105 31-35 Male Higher Mental RIGHT
150 151-175 61-75 31-35 Male Higher Mental RIGHT
151 176-185 61-75 31-35 Male Higher 50/50 RIGHT
152 176-185 76-90 36-45 Male Higher 50/50 RIGHT
153 186-195 76-90 36-45 Male None Mental RIGHT
154 186-195 >120 36-45 Male Higher Mental RIGHT
155 151-175 61-75 36-45 Male Higher Mental RIGHT
156 151-175 61-75 36-45 Male Higher Mental RIGHT
157 176-185 91-105 36-45 Male Higher Mental RIGHT
158 176-185 76-90 36-45 Male Higher Mental RIGHT
159 151-175 61-75 36-45 Male Higher Mental RIGHT
160 151-175 61-75 36-45 Male Higher Mental RIGHT
161 176-185 76-90 36-45 Male Higher Mental RIGHT
162 151-175 61-75 36-45 Male Higher 50/50 RIGHT
163 151-175 76-90 46-55 Male Higher Mental RIGHT
164 186-195 91-105 46-55 Male Higher Mental RIGHT
165 151-175 61-75 46-55 Female Higher Mental RIGHT
166 151-175 61-75 56-65 Female Higher Mental RIGHT

Appendix 2 - Fatigue Test Terms of Use
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RESEARCH PARTICIPATION INFORMATION SHEET

Welcome to the Fatigue Test Application Terms of Use agreement. For purposes of this

agreement, “App” refers to our mobile application in which users are asked to complete the

questionnaire and three fine-motor skill related tests. The terms “we,” “us,” and “our” refer

to the Fatigue Test App. “You” refers to you, as a participant in this research.

The following Terms of Use apply when you use the App on your mobile device.

Please review the following terms carefully and signify your agreement to these Terms of

Use at the bottom by clicking Agree. If you do not agree to be bound by these Terms of Use

in their entirety, you may not access or use the App.

I - INTRODUCTION

This research is conducted by researchers at the Tallinn University of Technology

Department of Software Science. The main scope of the study is to develop a framework for

human motor function and cognitive impairment analysis. Movement and neurological

disorders pose a significant burden on the healthcare system.

Our goal is to provide decision support tools to help clinicians with data collection,

diagnostics, and treatment processes. The more data we collect, the more accurate and

reliable applications we can develop. We are thankful for any contribution. Participation is

entirely voluntary, and you can withdraw your data anytime.

II - INFORMATION WE COLLECT

We collect “Non-Personal Information”. Non-Personal Information includes information that

cannot be used to personally identify you, such as anonymous usage data, and general

demographic information we may collect. The collected data is specified below.

1. Data that we collect through the questionnaire:

a. gender

b. age (interval)

c. height (interval)

d. weight (interval)

e. education level



f. type of main daily activities (mental, physical, 50/50)

g. dominant hand

h. interest level in the last task with which the user was engaged with (scale 1-10)

i. mental demand level in the last task with which the user was engaged with (scale

1-10)

j. the current perceived state of anxiety (scale 1-10)

k. the current perceived state of fatigue (scale 1-10)

l. the number of hours slept the previous night (scale 0-12)

m. the number of hours spent on a physical activity (scale 0-12)

n. the number of hours spent on a mental activity (scale 0-12)

2. Data that we collect through tests:

a. reaction time

b. test duration

c. error rate

d. kinematic and dynamic parameters:

i. screen coordinates

ii. time

e. axial derivations recorded by the accelerometer

III. HOW WE USE AND SHARE INFORMATION

The collected data will be used as research data by the TalTech University the Department of

Software Science to further the knowledge around cognitive impairment and human

motor function analysis.

IV. HOW WE STORE AND PROTECT INFORMATION

We further protect your information from potential security breaches by implementing

encrypted data transfer over a secure socket layer connection and storing it in a secured

database. The data will become accessible over an off-site application programming

interface by authorized users. However, these measures do not guarantee that your

information will not be accessed, disclosed, altered, or destroyed by a breach of such

firewalls and secure server software. By using our App, you acknowledge that you

understand and agree to assume these risks.

We keep information for as long as we need it for our research. We decide how long we

need information on a case-by-case basis.



V. YOUR RIGHTS REGARDING THE USE OF YOUR DATA

You have the right to erasure. You can request for your data to be deleted from our

databases at any time.

VI. CONTACT US

If you have any technical questions and concerns regarding the practices of this App, please

contact us by sending an email to elli.valla@taltech.ee.

Last Updated: This Information Sheet was last updated on 30.10.2023.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS RESEARCH PARTICIPATION INFORMATION

SHEET , UNDERSTAND THE TERMS OF USE, AND WILL BE BOUND BY THESE TERMS AND

CONDITIONS. YOU FURTHER ACKNOWLEDGE THAT THESE TERMS OF USE REPRESENT THE

COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US AND THAT IT

SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT ORAL OR WRITTEN, AND ANY OTHER

COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.



Appendix 3 - Fatigue Test iOS Application

https://apps.apple.com/ee/app/fatigue-test-taltech/id6449683047
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Supplementary material
Table 19: Boolean search queries

Database Search Query Results

PubMed

((parkinson*[Title] OR fatigue*[Title]) AND (digitaltool*[Title/Abstract] OR digital test*[Title/Abstract] OR smart-phone*[Title/Abstract] OR tablet*[Title/Abstract] OR mobileapplication*[Title/Abstract] OR handwriting[Title/Abstract] ORstylus[Title/Abstract] OR touchscreen[Title/Abstract] OR digitalassessment[Title/Abstract] OR wearable*[Title/Abstract]) AND(fine motor[Title/Abstract] OR handwriting[Title/Abstract] ORdrawing[Title/Abstract] OR "motor function"[Title/Abstract]OR kinematic*[Title/Abstract] OR tremor*[Title/Abstract] OR"motor control"[Title/Abstract] OR dexterity[Title/Abstract]OR "movement disorder"[Title/Abstract]) AND (artificial in-telligence[Title/Abstract] OR machine learning[Title/Abstract]OR deep learning[Title/Abstract] OR "feature extrac-tion"[Title/Abstract] OR classification[Title/Abstract] OR diag-nostics[Title/Abstract] OR detection[Title/Abstract] OR moni-toring[Title/Abstract] OR "pattern recognition"[Title/Abstract]OR predictive[Title/Abstract])) NOT (gait[Title/Abstract]OR speech[Title/Abstract] OR voice[Title/Abstract]OR vocal*[Title/Abstract] OR MRI[Title/Abstract] OREEG[Title/Abstract]))

155

Google Scholar

(parkinson* OR fatigue*) AND ("fine motor" OR handwritingOR drawing OR "motor function" OR tremor* OR kinematic*)AND ("artificial intelligence" OR "machine learning" OR "deeplearning" OR "feature extraction" OR classification) AND ("dig-ital tool*" OR smartphone* OR tablet* OR "mobile applica-tion*" OR wearable* OR touchscreen*) -gait -speech -voice -vocal -MRI -EEG -"multiple sclerosis" -"alzheimer*" -review -survey

112

Scopus

(TITLE ( parkinson* OR fatigue* ) AND TITLE-ABS-KEY ( "digitaltool*" OR "digital test*" OR "smartphone*" OR "tablet*" OR"mobile application*" OR "handwriting" OR stylus OR "touch-screen" OR "digital assessment" OR "wearable" ) AND TITLE-ABS-KEY ( "fine motor" OR handwriting OR drawing OR "motorfunction" OR "kinematic*" OR "motor performance" OR "mo-tor impairment" OR tremor* OR "motor control" OR dexterityOR "movement disorder" ) AND TITLE-ABS-KEY ( "artificial in-telligence" OR "machine learning" OR "deep learning" OR "fea-ture extraction" OR classification OR diagnostics OR detectionOR monitoring OR "pattern recognition" OR predictive ) ANDNOT ( gait OR review OR speech OR voice OR vocal* OR mri OReeg ) )

73

Web of Science

TS=(parkinson* OR fatigue*) AND TS=("fine motor" OR hand-writing OR drawing OR "motor function" OR tremor* OR kine-matic*) AND TS=("artificial intelligence" OR "machine learn-ing" OR "deep learning" OR "feature extraction" OR classifica-tion) AND TS=("digital tool*" OR smartphone* OR tablet* OR"mobile application*" OR wearable* OR touchscreen*) NOTTS=(gait OR speech OR voice OR vocal* OR MRI OR EEG OR"multiple sclerosis" OR alzheimer* OR review OR survey)

163
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Table 20: Inclusion and exclusion criteria

Criteria Specified Criteria

Inclusion

• Studies that analysedmotor functions (e.g., gait analysis, finemo-tor skills) in the context of diagnosing PD. Classification of PD fromhealthy controls (HC).
• Peer-reviewed articles, conference proceedings, reports, theses,and dissertations.
• Studies written in English.

Exclusion

• Studies that did not apply machine learning methods.
• Studies that did not use motor function data for analysis (e.g.,speech data, brain scan images, EEG signals) unless they are com-bined with motor data for diagnosing neurological disorders.
• Studies focused solely on non-diagnostic applications such assymptom classification, treatment response, disease progression,or severity assessment without a primary focus on diagnosis.
• Studies that used non-human subjects (e.g., animal models).
• Review articles, including literature reviews, scoping reviews, andoverviews.
• Studies not written in English.
• Non-peer-reviewed articles.
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Table 21: Comprehensive overview of PD studies
Category Sub-category Description References

Dat
aac

quis
itio

n
tech

nolo
gy

Pen and paper
Traditional paper-based tests including handwriting sam-ples, drawing tasks, or other manual activities that arelater digitised and analysed for motion or tremor assess-ment. [75][33][76][32][77][78][19][79]

Wearable sensors Includes smartwatches, trackers, IMUs, accelerometers,gyroscopes, etc for monitoring motion or tremors. [80][81][14][82][83][84]

Non-wearable sensors
External devices such as digital/graphic tablets, an intelli-gent sensory pen integrated with accelerometers and gy-roscopes, keyboard and mouse used in structured web-based tests to assess motor functions like typing andhand movement, or handwriting datasets for motiontracking.

[28][22][85][25][23][26][18][86][87][88][89][90][91][92][93][14][94][18][29][16][95][96][97][98][15][24][99][100][101][36][102][103]

Smart devices Smartphone and tablet based systems with integratedapps for monitoring. [104][31][30][105][106][107][20][21][27][14][108][109][110][111][112][113][114]

Ma
chin

e
lear

ning tech
-

niqu
es

Traditional machinelearning Algorithms such as SVM,Decision Trees, RandomForests,and k-means clustering.
[28][30][105][106][25][26][18][75][86][87][33][76][32][80][81][107][20][21][19][27][91][92][14][82][108][94][109][18][110][29][16][95][111][96][97][98][24][99][83][100][36][102]

Deep learning Neural network-based techniques such as CNNs, RNNs,and BiGRUs for advanced pattern recognition. [104][31][22][85][23][33][88][77][78][80][107][89][90][21][93][14][115][16][96][15][83][112][113][114][84][101][79][103]

Dat
aty

pes

Time series Sequential data captured from sensors during tasks likespiral drawing or motor tests. Pose data extracted fromcamera recordings.
[104][31][30][85][105][106][25][23][26][18][86][33][87][88][33][76][32][80][81][107][20][89][21][27][91][92][93][14][82][108][115][94][109][18][110][111][97][98][24][99][83][112][113][114][84][100][101][79]

Image data Static images such as spirals, lines, or handwriting sam-ples analysed for kinematic/geometric properties. [28][104][22][85][75][88][86][32][77][78][89][90][19][14][96][15][102]
Hybrid data Combination of different types for multi-modal analy-sis. Combination of on-surface (contact) and in-air (no-contact) handwriting movements. [33][107][14][29][16][95][99][100][101][36][103]

Exc
trac

ted
feat

ure
s

Kinematic and dynamic Metrics such as velocity, angular velocity, pressure differ-ence, and acceleration derived from handwriting data.
[104][85][105][106][25][23][26][18][86][33][87][88][76][32][80][81][107][20][89][21][19][27][91][92][93][14][82][115][94][109][18][29][16][95][111][97][98][24][99][83][114][84][101][36][103]

Geometric
Variability in spiral tracing and character formation pat-terns during writing tasks. Variability in writing size,spiral precision, and other shape-specific parameters.Analysing drawing shape, or handwriting dynamics andtracing metrics like deviation from centerline and accu-racy in predefined patterns.

[28][75][86][33][86][32][20][19][92][14][109][29][16][96][97][15][100][99][101][102][79][103]

User interactionpatterns
Natural smartdevice interactions analysed for fine mo-tor impairments. Some examples may include keystrokehold time, flight time, Metrics like typing response time,accuracy, and false presses during keyboard tests. [110][112][113][114][100][103]

Advanced metrics

Includes features such as entropy measures (e.g., Shan-non and Renyi entropy), energy metrics (e.g., Taeger-Kaiser energy), and non-linear dynamics features likecomplexity and chaos in handwriting signals. Other ex-amples may include Histogram of Oriented Gradients(HOG) for capturing detailed spatial relationships in thedrawings, Spectral analysis features like DiscreteWaveletTransform (DWT) and Fast Fourier Transform (FFT) ap-plied to handwriting dynamics. High-dimensional featurevectors automatically extracted by CNN architectures.

[104][31][30][22][85][25][23][88][77][78][80][81][20][89][90][21][19][27][91][93][14][82][108][115][94][18][29][96][98][97][36][102]
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– Python libraries: Expert in NumPy, pandas, scikit-learn, TensorFlow, PyTorch,among many others.
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– Pose estimation algorithms: Knowledgeable in computer vision techniquesfor human pose estimation.
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