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1. INTRODUCTION 

Humans living in the 21st century, are highly reliant on technology to carry out almost 

any task. From the time we wake up in the morning to the time we get into bed, we use 

modern devices to make our lives easier. These devices employ sensors which measure 

physical environment and convert the measurements to data, interpreted by humans or 

by the devices themselves. Most of these devices employ more than one sensor so that 

multiple parameters can be measured and thereby provide a more complete picture of 

the environment to the interpreter.  

 

Data from all the relevant sensors must be aligned with respect to some common 

quantity so that the interpreter can make clear and accurate decisions based on them. 

This “common quantity” is usually time. Synchronizing various data sets with respect to 

time is straightforward in cases where all the sensors share the same controller and the 

same clock. This is because the controller will be able to trigger the sensors to start and 

stop collecting the data at the same time. Since the sensors also share the same clock, 

additional processing of data for data synchronization or data fusion will be redundant. 

 

Differently, synchronization of data from sensors controlled by independent controllers 

with their own local clocks is not straightforward. This is due to issues like trigger delays 

and local clock drift [1]. Trigger delay is the time delay between a trigger and the 

moment data collection starts. Clock drift is the gradual variation of a local clock 

compared to a reference clock. Also, since most current devices are also wireless, 

transmission time, as time required to send data from the sensor node to the final node 

or processing computer becomes a factor too. Therefore, while processing sensor data 

for data fusion, the above-mentioned issues have to be accounted for. 

 

Literature on such problems barely available and this thesis aims to address one such 

technology gap. The main aim of this thesis is to synchronize video from camera to 

wireless sensor (IMU – Inertial Measurement Unit) data which is not transmitted in real 

time. This is known as offline data synchronization. In instances where wireless sensors 

are used underwater, normal transmission of data via radio waves is not possible. This 

is due to the interaction of electromagnetic waves and water [2] and as a result leads 

to path loss, variation in velocity of propagation and absorption loss as detailed in 

[3].The  is also the reason why most underwater communications use acoustic waves 

to communicate [4][5], especially in saltwater. Therefore, the sensor data will have to 

be collected in storage devices such as SD cards (secure digital card) and later retrieved 

to be analysed. 
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The result of this thesis will be especially useful in the medical industry. Specifically, for 

gait analysis [6], the science of studying the biomechanics of motion during walking. 

Currently, it is carried out using different type of equipment aiming at the definition and 

evaluation of motion impairments, pathologies and injuries development. Underwater 

Gait analysis is especially useful as rehabilitation exercise, for patients who have 

problems in movement of their lower limbs either due to illness or old age [7] or due to 

accidents. This is because an underwater environment can mimic lower gravity and 

therefore can help patients begin their recovery without having to carry their entire body 

weight. 

 

Usually, the results of gait analysis (limb angle, position and acceleration) are plotted 

into a graph and is analysed by the medical professionals or a video feed is obtained 

(via regular cameras or specialized ones) to study the motion. Since the video feed is 

in 2D, the motion might be oversimplified as depth perception is not available. But by 

synchronizing both the video feed / image frames along with the sensor data, without 

expensive or complicated systems, can make the analysis of obtained movement data 

less complicated and less time consuming. This can also fill in the limits of each other 

(IMU data and video feed) to provide a more accurate picture of limb movement. This 

can also be used to help patients understand movement of their limbs without much 

difficulty. 

 

In this thesis the apparatus (camera and IMU sensors) used are from different 

manufacturers and therefore the clock in the camera and the internal clocks in the 

sensors are different. As the trigger mechanism for the sensors and the camera are 

different, there is no simple way to synchronize the image frames with the sensor data. 

Here, the station time (computer time) is used as the reference time (reference clock) 

and synchronize the image frames from camera clock to the reference clock. Next, once 

the data from the sensor have been obtained, synchronize the data to the reference 

clock and thereby synchronize it to the obtained image frames. Synchronization of 

image frames to sensor data will also require the approximation of camera exposure 

time[8], transmission time and possible delays within the camera itself. 

 

The methodology developed, tested and validated in this thesis is based on a seven-

stage workflow as follows: 

 

1. A camera, which can obtain images with trigger signals from a Python script was 

selected.  
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2. Experiment was conducted to calculate the approximate delay time (exposure 

time and transmission time) of the images from the camera to computer.  

3. The transmitted images were named sequentially and timestamped with the local 

computer time.  

4. The recorded sensor data were transferred to the computer and image 

timestamps were matched to sensor data time.  

5. Finally, the images were synchronized to corresponding sensor data.  

6. Tests were conducted to ensure the image- data synchronization is within 

accepted limits. 
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2. LITERATURE OVERVIEW 

Most of the recent work exploited wireless sensors which transmit data to the local 

computer in real time, as it is showed in the literature review resumed in Table 2.1 . 

The algorithm proposed in [9] is to synchronise the data from the sensors rather than 

synchronize all sensor node clocks. The authors have considered this method because 

of various factors that can affect sensor node clock synchronization such as clock drift. 

Specifically, IoT devices can be used in remote and extreme environments, mechanical 

vibrations, temperature fluctuations, humidity and other factors can de-synchronize 

node clocks. Also due to the use of IoT devices in remote environments, the authors 

have assumed low range of network and therefore the data has to be passed from one 

sensor node to the other until it reaches the sink node (computer). The algorithm 

developed here, therefore, is highly reliant on residual time (the particular time period 

a data packet remains within a node), no of steps (nodes) between the sensor node and 

the sink node and average skew deviations, and therefore is not suitable for the cases 

discussed in this thesis.  

 

Bluetooth network for data transfer and mobile phone for data processing has been used 

in [10]. The main goal of this paper was to minimize errors in synchronizing data sent 

from various sensors to a mobile phone via Bluetooth. Here too, like the previous paper, 

synchronization of data was preferred to synchronization of sensor clocks. The proposed 

algorithm in this paper depends on Bluetooth transfer delays and timestamping delay. 

This paper also deals with real time data fusion unlike this thesis which is offline (not 

real time data synchronization) and no Bluetooth network is used.  

 

[11] is concerned the synchronization of RGB depth camera and wearable IMU sensor 

data that can be integrated in ambient assisted living applications. Essentially, it allows 

healthcare professionals to monitor disabled or old patients in their home environment. 

This, is the closest work that has been done related to the aim of this thesis. The RGB 

depth camera used by the authors of was the Microsoft Kinect and the inertial 

measurement unit here was manufactured by Shimmer Research. The data from the 

IMU were sent to the local computer via Bluetooth. The local clock of the RGBD camera 

was not accessible and therefore the authors timestamped the image frames when the 

images were received by the computer. This requires estimation of exposure (the 

amount of time the sensing device is open) and transfer delays (the time needed to 

encapsulate and transmit the image frame from the camera to the computer) and the 

authors have estimated them via an Arduino board controlling LEDs. The authors have 

used a variant of Cristian’s algorithm[12] to synchronize the Shimmer IMU sensor and 
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the computer. The same algorithm couldn’t be used to synchronize the RGB depth 

camera and the computer because the camera’s local clock was not accessible. 

 

The Arduino board and the LEDs used in the above paper worked in the following way 

to estimate transmission time. The Arduino board was connected to the same PC that 

was connected to the RGB depth camera and controls 7 LEDs. When the PC received 

the 1st frame (F0), a timestamp (t0_PC) was set and a command was sent to the Arduino 

board. The Arduino board then waited for 20 milliseconds and turned on the LEDs 

sequentially with a delay of 3 milliseconds. When frame F2 was received by the PC, a 

timestamp (t2_PC) was set and by counting the number of LEDs on in the frame, the time 

t2_K was calculated. The transmission time is then obtained by finding the difference 

between t2_pc and t2_K. This is illustrated in the image below. The 20ms delay used in the 

Arduino board was to centre the on/off LEDS at time t2_K. The same test was carried out 

around 75 times and the average transmission time was chosen. 

 

Figure 2. 1 Evaluation of transmission time [11] 

 
Very little work has been done similar to [11] which involves synchronization of Camera 

frames and IMU data. Other papers [13][14][15] discussing Camera-IMU systems 

usually are interested in spatial and temporal calibration of the sensors. They typically 

employ predictive algorithms such as Kalman Filters and Extended Kalman filters[16] to 

calibrate their position in space. The authors of [13] used employ a visual-inertial sensor 

unit where the triggering of both the camera and the IMU was done by the same 

controller. Therefore, even though the camera and IMU have separate clocks, 

synchronization was done in a relatively straightforward manner. The data coming in 

from the sensor and the camera were timestamped according to delays based on the 

methods proposed in [17].  



15 

Lastly, research dealing with data synchronization of wireless sensors in an underwater 

environment is virtually non-existent. Most of the research done in underwater 

environments deal with communication and advanced data acquisition methods[4][5] 

rather than data fusion or data synchronization. 

 

Table 2. 1 Previous work 

Ref.No Date Paper Aim Approach/ Solution 

[9] 2019 Synchronization of 
data measurements 
in wireless sensor 

networks for IoT 
applications 

Algorithm to 
synchronize data 
from wireless 

sensors rather than 
synchronizing node 
clocks 

• Algorithm for wireless 
sensors transmitting 
data synchronization 

• Deals with multiple 
nodes and takes into 
account the 
transmission 
time/distance to the 
sink node 

[10] 2013 A novel approach to 
multi-sensor data 
synchronization 
using mobile phones 

Algorithm to 
synchronize data 
received from 
multiple sensors via 

Bluetooth to mobile 
phone 

• Data transmission 
through wireless 
network (Bluetooth). 
Involves delays 

associated to 
Bluetooth network 

[11] 2015 Time Synchronization 

and Data Fusion for 
RGB-Depth Cameras 
and Inertial Sensors 
in AAL 
Applications 

Synchronization of 

the data captured 
from RGB-Depth 
cameras and 
wearable inertial 
sensors 

• The RGBD camera is 

used to estimate 
patient positions 

• IMU is synchronized to 
PC using Cristian’s 
Algorithm. Camera 
exposure and 
transmission time 

found using Arduino 
with LEDs 

[13] 2014 A Synchronized 

Visual-Inertial 
Sensor System with 
FPGA Pre-Processing 
for Accurate Real-

Time SLAM 

Development of a 

visual inertial sensor 
unit to be deployed 
in robots for 
simultaneous 

localization and 
mapping capabilities 

• Simultaneous 

triggering of camera 
and IMU 

Single 

processor/controller 

[14] 2010 Visual-Inertial 
Sensor Fusion: 
Localization, Mapping 

and Sensor-to-
Sensor Self-
calibration 

To obtain an 
algorithm, based on 
unscented Kalman 

Filter, for self-
calibration of the 
transform between a 
camera and an IMU. 

• Algorithm based on 
Kalman Filter mainly 
for robot navigation. 

• Sensor fusion rather 
than data fusion 
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Table 2. 2 Previous work …. continued 

Ref.No Date Paper Aim • Approach/ Solution 

[15] 2014 Online temporal 

calibration for 

camera-IMU 

systems: Theory 

and algorithms 

Algorithm for 

temporal 

calibration of 

camera and IMU.  

• Vision aided inertial 

navigation. 

• Focuses on offset 

time estimation and 

mainly 3d pose 

estimation from the 

camera- IMU data. 

• Uses the offset time 

along with EKF state 

vectors to calculate 

offset. 

[17] 2010 Unified Temporal 

and Spatial 

Calibration for 

Multi-Sensor 

Systems 

Estimate the 

temporal offset 

between 

measurements of 

different sensors 

and their spatial 

displacements 

with respect to 

each other 

• Offset time method 

to synchronize 

multiple sensors in 

space 

 

2.1 Objectives of This Thesis  

As mentioned above in the Literature Overview section, the amount of research/ papers 

on offline synchronization of camera images and wireless IMU sensor data is limited. 

Most of the papers dealt with wireless sensors and real time data synchronization. The 

methods proposed in those papers are not suitable for this thesis as they do not deal 

with both real time data and offline data at the same time. Furthermore, no previous 

works were found on the specific topic of underwater sensor data and camera 

synchronization. 

 

Cippitelli’s study [11], overlaps fairly the objective and methodology of the current 

Thesis work. Specifically, the RGB depth camera images were sent to the PC in a similar 

way and a similar technique to estimate the average transmission time of images can 

be used. Differently, since the camera used in this thesis employs user controllable 

exposure settings, the method used to estimate exposure time in [11] is not required. 

Concerning the sensors, the mentioned study exploits Shimmer IMU sensor with 

Bluetooth network to transmit data in real time to the PC using a variant of Cristian’s 

algorithm. Dissimilarly, the IMU sensors in this thesis are developed for underwater 

purposes and cannot transmit data in real time, a different approach must be taken to 

synchronize the IMU sensor data to the PC clock. 
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None of the above-mentioned papers use Python script to synchronize sensor data with 

image frames. The decision to use Python code was made to guarantee flexibility and 

versatility of the developed system, so that any camera with a Python library or 

capability of interacting with a Python script can be used. This makes replacement of 

the camera used in this thesis with any other camera having a Python library easy. 

 

The above-mentioned technological and research gaps, which are also the objectives of 

this thesis, are summarized below: 

 

• Objective 1: Synchronize images from a camera (transmitted in real time to 

the computer) with data from IMU sensors which are not transmitted to the 

computer in real time. 

 

• Objective 2: Experiment with various methods to synchronize the image 

frames with the computer clock / reference clock. 

 

• Objective 3: Use a Python script to do camera setup, data collection, 

timestamping and synchronization. 

 

• Objective 4: Make the Python script versatile enough for change in cameras 

without major changes needed to the script. 
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3. HARDWARE AND SOFTWARE 

3.1 Camera 

The camera initially used in this thesis is a uEye UI-5240HE-M-GL, as shown in Figure 

3.1 .  

 

 

 

 

 

 

 

 

Figure 3. 1 uEye Camera used in this thesis 

  

It is an industrial highspeed monochrome camera with a CMOS sensor. The 

specifications of the camera are provided in the table 3.1 

 Table 3. 1 Camera Specifications 

Name Specification 

Model UI-5240HE-M-GL 

Sensor 0.5’’ CMOS 

Resolution 1.3 Megapixel (1280x1024) 

Maximum frame rate 60 frames per second 

Colour Monochrome 

Video Output Gigabit Ethernet 
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The images obtained by the camera are transmitted to the computer via an Ethernet 

cable. The lens used with this camera is PENTAX C1614-M. This lens is controlled 

manually and is mainly used for image processing applications. Some benefits of using 

this lens are manual adjustability, high light intensity and lower distortion. Some 

specifications of this lens are given in the table below. 

 

Table 3. 2  PENTAX C1614-M Specifications 

Name Specification 

Format 2/3’’ 

Focal Length 16.0 mm 

Aperture Range F1.4- 16 

Iris Control Manual 

Focus Control Manual 

Minimum Object Distance 0.25 m 

 

This uEye camera was chosen for its high frame rate which is closer to the data 

acquisition rate of the sensing unit. But due to complications with the Python library, 

explained further in the method section (4.1 Image Acquisition), this camera had to be 

replaced with a different camera. The replacement camera chosen was Canyon C3 web 

camera. 

 

 

 

 

 

 

 

 

 

Figure 3. 2 Canyon C3 web camera 
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Table 3. 3  Canyon C3 Specifications 

Name Specification 

Model CNE-CWC3N 

Sensor ¼’’ CMOS 

Resolution Max. 12 Mega Pixel (1280x720) 

Maximum frame rate 30 frames per second 

Interface USB 2.0 

 

There were several key differences between this web camera over the highspeed uEye 

camera. They are listed in the table below. 

 

Table 3. 4  Differences in cameras 

uEye Camera Canyon C3 webcam 

Ethernet connection to computer USB connection to computer 

High speed camera Standard webcam 

1280x1024 Maximum resolution 1280x720 Maximum resolution 

Heavy Lightweight 

Python library available Python library unavailable 

Fixed 360-degree rotatable view 

 

As shown in the table above, there were some advantages and disadvantages in using 

the web camera over the uEye high speed camera. The image quality was higher in the 

uEye camera compared to the web camera but this is not an indispensable issue as the 

image quality of the web camera was clear enough to continue with tests. Also, since 

the image size of the images obtained from the web camera were smaller, the change 

from Ethernet connection, which has a higher throughput, to USB connection didn’t 

affect any part of this thesis. The only advantages the uEye camera had over the 

webcam were the high framerate capability and the Python library. The Python library 
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would enable much more control of the camera but due to reasons explained in the 

methods section of this thesis, this advantage was not very helpful.  

 

The webcam has some minor advantages over the uEye camera. Since it is lightweight 

and rotatable, performing tests in various environments and angles become easier and 

not cumbersome. Also, the webcam can be connected to any computer with a USB port 

and easily accessed using Python libraries such as OpenCV to make use of basic 

functionalities. The uEye camera required a lot of setup code within the Python script 

and also required network port settings to be changed. The ‘pyueye’ Python library does 

not come with any documentation and therefore would be difficult for an inexperienced 

user to use many of the available functions.  

 

3.2 Wearable Sensing Unit 

The wearable sensing unit, named TinyTag, used in this thesis was designed by the 

Center for Biorobotics of Tallinn University of Technology to be used in rehabilitation 

clinics for underwater human and animal gait analysis. This unit consists of several parts 

including the IMU. The unit itself, excluding the battery, is approximately 30mm in 

length and 12mm in width. This unit without the battery is shown in the figure 3.3. 

 

 

Figure 3. 3  Wearable sensor unit 
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The key components of this unit are listed below. 

 

1. 32 bit ARM® Cortex®-M0+ SAM D21G microcontroller (Microchip) [18] 

2. Absolute orientation sensor BMX160 (Bosch) [19] 

3. Absolute pressure sensor MS5837-02BA [20] 

4. Real time-clock RV-3028-C7 [21] 

5. MicroSD card [22] 

6. 50mAh lithium polymer battery [23] 

 

The IMU unit used for this thesis (BOSCH BMX 160) is a low power nine axis sensor 

consisting of a triaxial accelerometer, a triaxial gyroscope and a geomagnetic sensor. 

The accelerometer is used measure the rate of change of velocity. This acceleration is 

always measured relative to gravitational acceleration. Therefore, an acceleration of 

zero means that the sensor is moving at a constant velocity or is at rest. The next 

component in an IMU is the tri axial gyroscope that measures the angular velocity. This 

is also used to maintain orientation of an object. The BMX 160 IMU outputs the angular 

velocity in the units of degrees per second. Finally, the geomagnetic sensor measures 

and outputs the magnetic field density and can be used to locate the north and south 

poles and therefore the orientation. 

 

The TinyTag device is turned on by coming into contact with an external magnet. It can 

also turn itself on automatically by pre-programming the start date and time. The device 

can be turned off using the magnet or by pre-setting a operational time. Ths sensor unit 

is equipped with a standard 1.27mm pitch header row with 4 pins and can be connected 

to a computer to transfer data, set time and date, set turn on and off time and also 

charge the 50mAh battery.The device is waterproof and is electrically isolated so that it 

doesn’t get into contact with human or animal body while performing tests. It is also 

coated with a mixture of epoxy resin and polamide partices Vestosint 1101. 

 

 

3.3 EMP Coil 

Another instrument used in this thesis was an EMP (electromagnetic pulse) coil designed 

by the Center for Biorobotics of Tallinn University of Technology. This coil, shown in 

figure 3.4 , is used to create an electromagnetic pulse that can be clearly measured by 

the magnetic sensors in the IMU. The spikes in magnetic readings can later be used to 

synchronize multiple sensors with each other. 
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Figure 3. 4  Electromagnetic pulse coil 

 

This pulse helps to synchronize the multiple wearable sensing unit measurements used 

in this thesis with each other. The coil circuit diagram and the pulse generated when 

the Test button or and external signal is given, is shown in the figures 3.5 and 3.6. 

 

 

Figure 3. 5 General circuit plan of EMP coil 

 

 
The trigger signal for the pulse is provided by an Arduino UNO board which is controlled 

by a Python script. The 5V output from the Arduino board is connected to the “Sync in 

connector” (shown in the figure 3.5) part of the coil. 
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Figure 3. 6 EMP coil signal 

 

As shown in the above figure 3.6, the pulse lasts for 100ms and switches polarity at 

50ms. The intensity of the signal registered depends on how close the sensor is to the 

EMP coil and also the orientation. The Arduino signal to the coil doesn’t have to be turned 

off because the EMP signal is only triggered at the rising edge of the input signal. 

 

3.4 Arduino UNO 

 

Figure 3. 7 Arduino Uno connected to EMP coil  
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The Arduino UNO board, connected to the computer and the EMP coil as shown in figure 

3.7, is used here to trigger the EMP pulse when the camera starts recording. This is 

setup using a Python script. The board itself is loaded with the code, using the Arduino 

IDE, as shown in the methods section of this thesis. The Arduino board is connected to 

the PC via a USB cable. Then pin number ‘8’ of the Arduino digital output, according to 

the Python script, is connected to the positive (+) sync of the EMP coil’s connector 

terminal (orange wire in the figure below). The ground pin in the Arduino board is 

connected to the negative terminal of the power/ button box of the EMP coil (black wire 

in Figure 3.7) 

 
When the Python script activates pin ‘8’, the EMP signal, as explained previously, is 

generated an impulse by the EMP coil. This part of the setup is only used during the 

start of the test or experiment and can be removed once the EMP signal has been 

generated. Since the code to setup the board for this task is stored in the board memory, 

the Arduino IDE needs to be used only once. 

3.5 Python 

Python programming language has been chosen as main programming tool. This, due 

to its simple use and availability of built libraries to simplify many tasks. The interpreter 

engine used is Python version 3.8 and is run on a Windows 10 computer. The 

development environment is PyCharm and the Python libraries used are given below. 

Table 3. 5  Python libraries used 

Python Library Version Purpose 

pyueye 4.90.0.0 • The python library of the Ueye camera. Camera 
functionalities can be accessed via this library 

opencv 4.5.1.48 • To display, resize and save images 

Datetime Inbuilt library • To import computer clock time and to help 
timestamping 

pandas 0.0.97 • To save image frame names with corresponding 

timestamps as a csv file.  

serial 3.5 • To enable communication with Arduino board 

time Inbuilt library • To allow for sleep time in the programme 

 



26 

4. METHOD 

4.1 Image acquisition 

Image acquisition is one of the most crucial parts in this thesis. The time at which each 

image is obtained must be recorded as accurately as possible to ensure good 

synchronization with the data obtained from the IMU. The computer time is used in this 

thesis to timestamp the images when received from the camera. 

 

The uEye camera used in this thesis comes along with a dedicated software application 

called “uEye Cockpit” [24]. Camera functionalities as Exposure settings, frame rates, 

timestamping of video and saving can be accessed via this application. The user 

interface is shown in figure 4.1 .  

 

 

Figure 4. 1 uEye Cockpit user interface 

 
Unfortunately, this software does not allow for the flexibility that is required to fulfil the 

objectives of this thesis. uEye has a Python library (pyueye) which can be used in a 

Python script to access various functionalities of the camera. Unfortunately, the library 

does not allow for continuous capture of images via triggering by a Python script and 
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also doesn’t have an option to timestamp images. Therefore, a different approach was 

needed to obtain single images with accurate timestamp.  

OpenCV is a Python library that is mainly used for computer vision or machine vision 

applications. This library was used in this thesis to obtain the video (image frames) from 

the camera and display it in a separate window. One of the advantages of using the 

OpenCV library is that this displayed video can also be cut down into individual image 

frames and be saved to the computer. The Python script to setup the camera to record 

video and display the images using the OpenCV library was already available in the IDS 

Imaging Development Systems GmbH website. Therefore, the main modification to be 

done to the script was to obtain the individual frames from the displayed window, name 

each image frame sequentially, add timestamps (time at which the images were 

displayed on a window ) , save the images and create a file which lists the image names 

along with their corresponding timestamps. 

 

The uEye library, pyueye, does not include a function to save the images to the 

computer. Therefore, a while loop was used to continuously read from the camera 

memory, display and save the images to the computer. This presented several 

challenges. Mainly, since the images couldn’t be saved to the computer directly from 

the camera memory, they had to be saved using OpenCv functions after being displayed 

in a separate window. This created additional delays and sometimes even duplicated 

several images as the communication speed between the camera and the computer 

varied.  

 

These unpredictable delays made the timestamping unreliable. Also, since this was an 

industrial camera, there weren’t any other available methods to save the images directly 

from the camera. So, after several weeks of trying to accomplish the above task, it was 

decided to abandon the uEye camera and to proceed with a simpler camera which would 

provide much more accessibility. 

 

The web camera chosen to replace the uEye camera was the Canyon C3. This camera 

can capture images at a resolution of 720p and is connected to the computer via a USB 

cable. The Canyon C3 camera doesn’t include a software application but it can be 

controlled easily via a Python script to trigger snapshots, display images and also save 

them to the computer. The time at which the trigger signal is sent was also recorded 

and was added as the timestamp for that particular image frame. The timestamp, 

obtained from the computer clock, were added to a csv file with the corresponding image 

frame name. 
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4.2 Data Acquisition 

The wearable sensing unit records several types of data, as showed in Figure 4.2: the 

time elapsed since turning on the sensor, battery level, pressure, temperature and IMU 

data (acceleration in 3 axis, gyroscopic measurements in 3 axis, magnetic field strength 

in 3 axis). 

 

These data are saved to a text file and are separated by commas. This can be imported 

to an Excel file after the experiment to perform analysis or visualize variation in data by 

the use of graphs. One such test example is shown below in figure 4.2 . 

 

 

Figure 4. 2 Wearable sensor unit data displayed in an Excel sheet 

 

The sensing unit is turned on when a magnet is placed near it. Then it starts recording 

data every 10 milliseconds (100Hz). The data recording time can be changed by 

modifying the “time” text file available in the device memory. Once elapsed time reaches 

the set value in the text file, the sensing unit stops recording data and turns itself off. 

The sensing unit is then connected to the computer via a USB cable and the recorded 

data can be extracted from the device memory card. 

 

To synchronize the data from the sensing unit to camera image frames, an 

electromagnetic pulse coil is used. The pulse is triggered by the Python script which 

sends signal to an Arduino UNO board output pin which in turn sends a 5V signal to the 

EMP coil controller. The pulse generated rapidly spike, in both positive and negative 

directions depending on the orientation and placement of the sensing unit within the 

coil, the geomagnetic readings obtained by the sensing unit. Since the trigger signal is 
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sent to the coil at the same time at which the signal is sent to the camera, delays are 

minimal and matching the image frames with sensor readings becomes easier. 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Figure 4. 3  Spike in Magnetic Strength reading (Mag Z) 

 

The figure 4.3 shows the magnetic strength readings of all three-axis obtained by the 

sensing unit. The x axis is the number of readings and the y axis is the magnetic field 

strength recorded. The spike in the readings (Mag Z value) is clearly visible near reading 

no 4181. By equating the start point of the spike to the time at which the signal was 

sent to the coil, consequent timestamps of recorded data can be obtained. 

 

4.3 Python Script  

The main Python script used in this thesis focuses on the camera image frame 

acquisition and timestamping of images. It also includes a set of code for the Arduino 

UNO unit which would send a signal to the EMP coil at the same time the image capture 

begins. These codes, include establishing communication with the Arduino board and 

also a function that would turn on a particular output pin in the board to output a voltage 

of 5V. The code used here and elsewhere in this thesis are available in a repository [25] 

(https://github.com/BalakrishnanGuruprasath/cameraimusync) .The code flow is shown 

in the flowchart shown in figure 4.4 . 

 

https://github.com/BalakrishnanGuruprasath/cameraimusync
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Figure 4. 4  Image capture and EMP coil activation script flowchart 
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Since the initial camera used was the uEye camera, the first version of the image 

acquisition Python code involved a lot of camera and communication setup. As 

mentioned before, this part of the code was directly obtained from the uEye camera 

manufacturer’s website. But, after replacing the uEye camera with the web camera, the 

setup code was no longer needed and was replaced by image capture (trigger) code 

using the Python OpenCv library. The trigger for image capture code was preceded and 

followed by a couple of variables which recorded the computer time. This was done to 

obtain the trigger time as accurately as possible.  

 

After step 3 (image capture), the image was displayed in a separate window and the 

image is saved to a specified folder in the computer. Then the image name along with 

the two timestamps are added to separate Python lists. These lists were added to a csv 

file after the completion of the test. Since steps 3 to 6 were placed inside a while loop, 

after step 6 (display image), the operation of code returned back to step 3. This  

continued until the key ‘q’ was pressed which breaks the loop and finishes the program 

after saving the lists to a csv file. 

 

4.4 Arduino code  

The Arduino Uno board used in this thesis was step up with a simple code to output 5V 

out of output pin number ‘8’ when instructed by the main Python script. If the serial 

communication with Python script was available and the data sent from it was ‘1’ then 

the output from pin ‘8’ would be high (5v). If not, then the output would be low (0v). 

Although the function to activate the output pin in the Python script is within the while 

loop, it is run only once (due to implementation of an ‘if’ statement). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5  Code written into the Arduino Board using Arduino IDE 
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5. TESTS AND RESULTS 

5.1 Image capture delays 

The first task in this thesis was to approximate the difference between image 

timestamps to the actual time at which the image was captured. This difference would 

approximately be equal to the camera exposure delay and other minor delays associated 

with communication between the PC (Python script) and the web camera. The 

transmission delay from the web camera to the computer can be neglected in this thesis 

because the timestamps are not logged when the image is received but when the 

command is sent out to the camera to capture the image. Also, the frame rate at which 

the camera captures images is not significant as each individual image frame is captured 

via a trigger command in the Python script. 

 

 

Figure 5. 1  Delay approximation setup 

 

The test setup of Figure 5.1 is explained hereafter. The image timestamps, according to 

the Python script, was obtained from the computer system clock. This time was given  
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up to milliseconds and in the format of “HH:mm:ss.000”, and displayed on screen in 

real time via a different Python script run simultaneously. The main image capture 

script, explained in the previous section, without the synchronization EMP signal setup 

was then run. The camera was pointed to the screen displaying the system time. The 

time captured by the web camera was compared to the system clock timestamps saved 

to the csv file. The difference in these times gave the approximate delays. The 

differences were then added to the timestamps to make it as accurate as possible. The 

current time window is shown in figure 5.2. 

 

 

Figure 5. 2  System time displayed in real time 

 

A Python library called “TKinter” was used to display the computer system time. The 

current system time was obtained using the inbuilt datetime Python library. The script 

for this was saved in a different Python file and was accessed by both the image capture 

script and also the time display script.  

 

Once this test was run for a couple of minutes, the test was stopped and the images 

saved were analysed with the timestamps. The csv file was opened in Microsoft excel 

and the timestamp columns’ format was changed to the format which was used to 

display the system time. Then several images containing the time were compared to 

the timestamp (time just before capture). This was done manually to find out the 

approximate delay between the initiation of trigger signal by the Python script and the 

time at which the image was eventually captured. 

 

For example, in this test 775 images were captured and saved. The corresponding 

timestamps were also saved to a csv file. Image ‘ex322’ displays a time of 13:50:42.932 
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and the timestamp, the one right before capture, corresponding to that image in the 

csv file logged in a time of 13:50:42.858. This shows a difference of 74 milliseconds. 

The following figure 5.3 shows image ‘ex322’ and the time captured by it. 

 

Figure 5. 3  Image ‘ex322’ 

 

Unfortunately, since the camera itself was not fast enough (capture rate a maximum of 

30 frames per second), sometimes the millisecond region of the image was unclear. In 

the case shown above, it was reasonably clear and therefore was used to calculate the 

time difference. The figure 5.4 below shows the difference in time of some of these 

images. Some cells have been highlighted in red because their captured images are not 

clear enough to deduce the time. 
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Figure 5. 4  Image timestamps along with the difference 

 
As mentioned previously, the ‘Time in Image’ column values were added manually and 

the time difference, against ‘Time before capture’, was calculated. The difference in 

values varied from 40 millisecond up to 90 milliseconds (from random images within 

this test). This, obviously, also depends on the other processes running in the computer 

background. There were several user programs where running in the background while 

these data were collected. When many of the user programs were not operational, the 

difference in varied between 40 and 60 milliseconds. Comparing the delay times from 

various such tests it was safe to assume that the difference in times never exceeded 

100 milliseconds.  
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5.2 Drop Test 

The purpose of this test was to check if the images from the web camera can synchronize 

with the data from the wearable sensor unit. For this initial test, the wearable sensor is 

attached to a small box and is dropped from a height. In this way, the acceleration 

values of a particular axis (the z axis in this case) will change from the gravitational 

acceleration value (around 10m/s-2), just before releasing the box, back to a similar 

value as before when it comes to rest on the floor. This makes it easier to verify the 

synchronization of the images with the sensor data. The way the sensor unit was 

attached to the box is shown the figure 5.5. 

 

 

Figure 5. 5  Sensor unit attached to a box for test 

 
The sensor unit was programmed to collect data for 1 minute after being turned on and 

then turned itself off. The sensor unit was turned on by a magnet and was placed inside 

the EMP coil loop and the image acquisition Python script was run. The command for 

synchronization EMP signal was sent to the coil by the Python script at the same time 

the image stream started. But, tests with the web camera pointing towards the leds 

attached to the EMP coil circuit box showed that there was around 0.5 second delay 

from when the command was run in the Python script and the time at which the EMP 

coil was activated. This delay is clearly shown in the figure 5.6. Here, ‘ex0’ is the first 

image captured and ‘ex1’ is the second image captured. The led is off in the first image 

and is only turned on in the second image (ex1). Therefore, for this test and all the tests 
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that follow, the first image is disregarded. Images ‘ex0’ and ‘ex1’ are compared in the 

figure 5.7. 

 

  

 

 

 

 

 

 

 

 

Figure 5. 6  Time difference between the 1st and 2nd images 

 

 

Figure 5. 7  Image ‘ex0’ and the left and image ‘ex1’ on the right 

 
Next, the box was carried over in front of the web camera and was held at a height from 

the floor for a few seconds. This was done to bring the acceleration values as close to 

environmental values before release. Then, the box was dropped and image capture 

and data collection continued until the sensor unit turned off automatically. The data 

from the sensor unit was then transferred to the computer for analysis. In this test, a 

total of 1732 images were captured. The sensor data count was 5849. Since the data 

were saved into a csv text file, they were transferred to an Excel sheet where they can 

be analysed properly. 

 

The first step during analysis was to identify the point at which the EMP signal was 

recorded by the sensor unit. Since amount of data obtained by the sensor unit, as 
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mentioned before, is very large, it was easier to plot the ‘Data no.’ column of the sheet 

vs the magnetic field strength columns (Mag X, Mag Y and Mag Z) to find out the peak 

point (the point at which the magnetic strength reading starts to spike). This plot is 

shown in figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 8  Magnetic field strength plot 

 
The above figure shows that the electromagnetic pulse was recorded by the sensor unit 

at approximately Data no. 1673. The data around this point, on the Excel sheet, were 

checked to pinpoint the exact point at which the pulse started to register. The exact 

point was Data no. 1672 with a Mag Z value of – 3510.9 µT (highlighted in figure 5.9). 

This peak lasts for 4 more sets (1673 to 1676) and then flips directions for 5 more sets 

(1677 to 1681). Data no. 1671 had a value of -74.1 µT and data no. -72.9 had a value 

of -68.4 µT. This shows the clear difference from when the pulse was active and when 

it was not. 

 

Figure 5. 9  EMP signal register point (Data no. 1672) 
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Next, the timestamp of the second image captured (ex1) is added as the timestamp for 

data no. 1672 and the timestamps for the rest of the data are obtained by adding 10ms 

to the timestamp from the previous row. This was done because the sensor unit records 

data at a rate of 100 hz (every 10ms). The timestamp of ‘ex1’ of this test was 

19:49:13.998. This and the consequent timestamps were added as shown in the figure 

5.10 . 

 

 

Figure 5. 10  Timestamps added to the sensor unit data 

 
The next task was to see if the images and the sensor data timestamps correlate with 

each other. To do this, the exact moment at which the box was released from a height 

must be known. The acceleration values recorded show the point at which the box was 

released. Again, similar to finding the magnetic field strength spike, the data numbers 

are plotted against the acceleration columns in the sensor data Excel sheet. Figure 5.11 

shows the plot. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 11  Data no vs acceleration plot 
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The plot shows that the spike in acceleration values occurred somewhere around data 

no 2927 and 3136. Looking through the data it is clear that the Acceleration in the Z 

axis has a value of around 10 ms-2 at rest (approximate gravitational acceleration) and 

therefore is the axis that should be focused upon. It can be seen from figure 5.12 that 

the acceleration values in the z axis start decreasing from the rest value at data no. 

2983. The timestamp at this point is 19:49:27.108 (highlighted in blue in figure 5.12). 

The values keep changing until data no 3044 where the value reaches 10.55 and then 

goes back to the standard rest value. This shows that the box came to rest at this point. 

The timestamp here is 19:49:27.718 (highlighted in orange in figure 5.13).  

 

 

Figure 5. 12  The point at which the acceleration values of Z axis start reducing 

 

 

 
 

Figure 5. 13  The point at which the acceleration values of z axis reaches back to the nominal 

value 

 
The final task was to check if the image frames at the point of release and at the point 

of rest correspond to the timestamps from the above data. The image frame just before 

release was ‘ex363’. The final rest on the floor occurs at image frame ‘ex381’. These 

images are shown in the figure 5.14. The timestamps of those image frames are 

illustrated in figure 5.15. The timestamps of these image frames have been compared 

to the timestamps of the corresponding sensor data in the table 5.1. 
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Figure 5. 14  Image ‘ex363’ on the left and image ‘ex381’ on the right 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 15  Image timestamps 

 

Table 5. 1  Timestamps of sensor data and image frames compared 

Position Timestamp of 

sensor data 

Timestamp of 

image 

Difference 

Release 19:49:27.108 19:49:27.128 20 milliseconds 

Rest 19:49:27.718 19.49.27.744 16 milliseconds 
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Table 5.1 also shows the time difference between the timestamp of the sensor unit data 

and the timestamp of the image frames. The differences are very small and can be 

attributed to the lower frame rate of the web camera and other variable delays. This 

test also shows that the image frames are synchronized to a large extent with the sensor 

data. A GUI can then be created to display the image frames with their corresponding 

sensor data by using the timestamps as the common quantity. This can be further 

enhanced by using a camera (high speed camera) which records images at the same 

speed as the sensor unit. 

 

5.3 Gait Cycle Test 

In this test, two wearable sensor units are attached to a leg, one on the thigh and the 

other just below the calf, to perform gait analysis as detailed in [26]. The goal here was 

to synchronize the sensor data with the image frames obtained by the web camera. The 

top sensor (the one attached to the thigh) is attached at a distance of 28 cm from the 

hip and the bottom sensor is attached at a distance of 26.5 cm from the knee. The figure 

5.16 shows the attachment of the sensors to the leg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. 16  Sensor units attached to the thigh and lower leg 
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Similar to the box drop test performed before, the sensors were turned on by a magnet 

and then the image acquisition script was run. The EMP coil was placed around the two 

sensors so that the synchronization electromagnetic pulse is sent to the sensors at the 

same time. Since the sensors were attached to the leg further apart than the diameter 

of the EMP coil, the leg was bent in the way shown in figure 5.17 to ensure the sensors 

fit within the coil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. 17  EMP synchronization coil setup 

 
After the above-mentioned synchronization signal was sent, the subject walked to a 

position near the left edge of the web camera image frame. After, a few seconds of rest, 

the subject walked across the frame to complete 1 gait cycle. When the cycle was 

completed, the subject stood still until the sensors turned off automatically (1 minute 

after turning on the sensor) and then the camera was also turned off.  

 

The analysis part of this test is very similar to that of the box drop test performed 

before. The main difference here is the use of 2 sensor units rather than just one. The 

analysis is done initially for the top sensor and then for the bottom one. The sensor data 

were again obtained from the sensors and were added to an Excel file for ease of 

analysis. Then, the plot of Data no. vs magnetic field strength readings were plotted to 

identify the point at which the EMP signal was registered. Figure 5.18 displays this plot 

(for the top sensor unit) and the spike at approximately data no 2300. The exact point 

at which the spike occurred was data no. 2294 
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Figure 5. 18  Magnetic field strength plot of the top sensor 

 

Then, the timestamp of the second image captured was added as the timestamp of Data 

no 2294. Then the consequent timestamps were obtained by adding 10 milliseconds to 

the timestamp of the previous data. Next, the plot of data no vs acceleration values 

were obtained to approximately figure out the start and end of the gait cycle. Figure 

5.19 shows this plot. Unlike the plot in the drop test, this is slightly complicated due to 

movement of the sensors in all three axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 19  Acceleration plot of the top sensor 

The data from data no 2300 to 4181(shown by region A in figure 5.19) can be ignored 

as these correspond to the movement of the subject after EMP synchronization (position 
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shown in figure 5.17) to the start of the gait cycle position. The subject stood at rest for 

a few seconds when he reached the starting position. Then, he started walking (shown 

by region B in figure 5.19). The same method was used for the consequent tests as 

well. Next, the image frames obtained were analysed and the image frames 

corresponding to the beginning and the finish of the gait cycle where obtained. The gait 

cycle started at image frame ‘ex613’ and finished at image frame ‘ex 705’. These image 

frames along with some intermediate image frames are shown in the following figures 

to illustrate a complete gait cycle. 

 

 

Figure 5. 20  ‘ex613’ on the left and ‘ex705’ on the right 

 

 

 
 

Figure 5. 21  Some intermediate image frames 

 
Next, the timestamps of the start and finish image frames were compared to the 

timestamps of the acceleration in x axis. In this case the x axis is parallel to the ground 

and is in the opposite direction to the direction of movement. Therefore, the acceleration 

values start decreasing from the value at rest. Similar to the drop test analysis, the start 

data and end data have been highlighted in blue and orange colours respectively. The 

acceleration starts decreasing (goes negative) at data no 4480 with a timestamp of 

11:34:30.701. At data no 4818 the acceleration values start stabilizing back to ‘rest’ 

values. The timestamp of this data is 11:34:34.081. The timestamps of the image 
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frames ‘ex613’ and ‘ex705’ have been compared to the top sensor unit data timestamps 

in the table 5.2. Figure 5.22 shows the image timestamps. Rows 625 to 700 have been 

hidden in the figure to show both timestamps in the same image. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 22  Timestamps of image frames ‘ex613’ and ‘ex705’ 

 

Table 5. 2  Top sensor and image frame timestamps compared  

Position Timestamp of 

sensor data 

Timestamp of 

image 

Difference 

Start 11:34:30.701 11:34:30.724 23 milliseconds 

Finish 11:34:34.081 11:34:34.108 27 milliseconds 

 

The final task was to do the same for the bottom sensor. Since both the top and bottom 

sensor image frames captured were the same, the image timestamps for start and finish 

of the gait cycle will be the same. The bottom sensor unit, unlike the top sensor unit, 

was programmed to turn off after 2 minutes after turning on. This created additional 1 

minute of data which was not useful and created issues while plotting graphs. Therefore, 

all data after data number 5850 (the amount recorded by the top sensor) were deleted 

for analysis purposes. 
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The magnetic field strength plot was created to find the approximate location of the 

electromagnetic pulse spike. The figure 5.23 shows the spike at approximately between 

data no. 1954 and 2171. Upon closer analysis the exact point is located as data no 2067. 

Again, the timestamp of the second image captured, ‘ex1’, was added as the timestamp 

of this data. The consequent timestamps were also obtained by adding 10 milliseconds 

to the previous timestamp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. 23  Magnetic field strength spike of bottom sensor 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 24  Acceleration plot of the bottom sensor 

 

The data no vs acceleration values plot is shown in the above figure 5. 24. Acceleration 

of x axis starts varying at data no. 4255 and the timestamp here is 11:34:30.721. The 
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gait cycle ends at data no. 4594 and the timestamp here is 11:34:34.111. The image 

timestamps have been compared to the bottom sensor timestamps in the table 5.3 

 

Table 5. 3  Bottom sensor and image frame timestamps compared 

Position Timestamp of 

sensor data 

Timestamp of 

image 

Difference 

Start 11:34:30.721 11:34:30.724 3 milliseconds 

Finish 11:34:34.111 11:34:34.108 3 milliseconds 

 

The accelerometer data (x axis) of both the top and the bottom sensor after the 

synchronization signal were also plotted to show that the EMP signal indeed did 

synchronize the data. The following figure 5.25 clearly shows (both signals having 

similar pattern) that both the sensor data have been synchronized. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 25  Acceleration data of both sensor units after synchronization  

 

The same type of gait cycle was carried out 9 more times in a similar way and the results 

have been tabulated in the table below. Test no. 8 had some wiring issues (loose wiring) 

with the EMP coil and didn’t produce the electromagnetic pulse. Therefore, this test 

results were excluded from table 5.4. 
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Table 5. 4  Comparison of timestamps from further tests 

Gait 

Test 

No. 

 

Sensor 

Position 

Position Timestamp of 

sensor data 

Timestamp of 

image 

Difference 

2 Top sensor Start (ex390) 11:38:49.853 11:38:49.890 36 ms 

Finish (ex492) 11:38:52.993 11:38:52.949 43 ms 

Bottom 

Sensor 

Start (ex390) 11:38:49.843 11:38:49.890 46 ms 

Finish (ex492) 11:38:52.973 11:38:52.949 24 ms 

3 Top sensor Start (ex471) 11:43:55.542 11:43:55.533 9 ms 

Finish (ex564) 11:43:58.782 11:43:58.793 1 ms 

Bottom 

Sensor 

Start (ex471) 11:43:55.622 11:43:55.533 89 ms 

Finish (ex564) 11:43:58.792 11:43:58.793 1 ms 

4 Top sensor Start (ex306) 11:48:19.618 11:48:19.637 19 ms 

Finish(ex411) 11:48:23.208 11:48:23.127 81 ms 

Bottom 

Sensor 

Start (ex471) 11:48:19.688 11:48:19.637 51 ms 

Finish (ex564) 11:48:23.198 11:48:23.127 71 ms 

5 Top sensor Start (ex497) 11:55:54.673 11:55:54.753 80 ms 

Finish (ex587) 11:55:58.193 11:55:58.213 20 ms 

Bottom 

Sensor 

Start (ex497) 11:55:54.713 11:55:54.753 40 ms 

Finish (ex587) 11:55:58.263 11:55:58.213 50 ms 

6 Top sensor Start(ex623) 12:16:06.151 12:16:06.086 75 ms 

Finish(ex721) 12:16:09.271 12:16:09.352 83 ms 
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Table 5.4 Comparison of timestamps from further tests ……… continued 

Gait 

Test 

No. 

 

Sensor 

Position 

Position Timestamp 

of sensor 

data 

Timestamp 

of image 

Difference 

6 Bottom 

Sensor 

Start(ex623) 12:16:06.041 12:16:06.086 45 ms 

Finish(ex721) 12:16:09.431 12:16:09.352 79 ms 

7 Top 

sensor 

Start (ex638) 12:19:55.780 12:19:55.806 26 ms 

Finish (ex734) 12:19:59.040 12:19:58.985 55 ms 

Bottom 

Sensor 

Start (ex638) 12:19:55.750 12:19:55.806 56 ms 

Finish (ex734) 12:19:58.970 12:19:58.985 15 ms 

9 Top 

sensor 

Start (ex569) 12:30:38.135 12:30:38.189 54 ms 

Finish (ex671) 12:30:41.605 12:30:41.589 16 ms 

Bottom 

Sensor 

Start (ex569) 12:30:38.045 12:30:38.189 144 ms 

Finish (ex671) 12:30:41.485 12:30:41.589 104 ms 

10 Top 

sensor 

Start (ex561) 12:36:39.105 12:36:39.089 16 ms 

Finish (ex652) 12:36:42.105 12:36:42.112 7 ms 

Bottom 

Sensor 

Start (ex561) 12:36:38.995 12:36:39.089 91 ms 

Finish (ex652) 12:36:42.025 12:36:42.112 87 ms 

 

 
Tests 1 to 5 were conducted with the sensors attached to the left leg of the subject. The 

subject walked from the right side of the image frame to the left. Tests 6-10 were 

conducted with the sensors attached to the right leg and walked from the left side of 

the image frame to the right. The test results show that the difference between the 

image frame timestamp and the sensor data timestamps are within 100ms. The only 

exception occurs in test number 9 bottom sensor where the differences are 144ms and 

104ms.  



51 

These results show that the synchronization of camera image frames and IMU data 

within 100ms (except in one case). The method however is not 100 percent error proof. 

Since the IMU data that were analysed were the acceleration data, it can be quite 

difficult to pinpoint the exact instance at which the leg started moving or the point at 

which it is at rest. 

 

  



52 

SUMMARY 

The first and main objective of this thesis was to synchronize image frames obtained 

from a camera, transmitted to the computer in real time, with data from IMU sensors 

which are not transmitted to the computer in real time. This objective was completed 

as shown by the results in the previous chapter. All the tests (box drop test and gait 

tests) have shown that the synchronization of the image frames with IMU data were 

within 100ms and only above 100ms in one case (test no 9) . As discussed previously, 

these differences occurred mainly due to the gap between the image acquisition rate 

and the sensor data acquisition rate. Also, the acceleration values used to find the start 

and end of the gait cycle could cause some errors. This is because an acceleration value 

of zero could mean 2 possible states. One is that the sensor is at rest. The other is that 

the sensor is moving at a constant velocity. The IMU sensors used in this thesis register 

acceleration values up to 4 decimal places and can capture even tiny movements. Due 

to these reasons, it is difficult to pinpoint the exact point at which the movement started.   

 

There are a few further improvements that can be done in the future to make the 

synchronization more accurate. The use of a highspeed camera which can capture 

images at the same rate as the IMU sensor can drastically reduce the difference in 

timestamps between the images and the sensor data. This would also be very useful 

while analysing quick or minor movements of the sensors as the video can be slowed 

down to a certain extent without missing intermediate frames.  

 

The second objective was to synchronize the image frames with the computer clock. 

The webcam used in this thesis did not contain an internal clock as many highspeed 

cameras such as the uEye camera do. Therefore, the image frames from the web camera 

had to be timestamped with the computer clock as the reference as it was the only clock 

available. However, the image capture delay test shown in the Tests and Results chapter 

can be used for a camera with its own clock to find out total delay (exposure delay + 

transmission delay) and thereby synchronize the image timestamps with the computer 

clock as the reference. This method would yield very accurate results for a camera which 

can capture images at a fixed frame rate. 

 

This method consumed a lot of time during analysis because it was done manually by 

going through each and every image obtained in the test. But by conducting many tests 

and obtaining thousands of image frames, a computer vision/ machine learning system 

could be used in the future to figure out the delays automatically. This would make the 

system more efficient and would require specialized knowledge.   
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The third objective was to use a Python script to do camera setup, image collection, 

timestamping and synchronization. Everything except the synchronization part was 

successfully completed using the Python script. Synchronization part couldn’t be 

completed here due to complexities in data analysis and had to be done manually. This 

part could be accomplished by a Python script in the future by employing several 

libraries which deal with data analysis. Also, a Python based GUI could be used to 

display, slow down, speed up, zoom in and out the image stream (video) and the 

corresponding data simultaneously. In the case of Gait analysis, this would make 

viewing and analysis of the data by as doctors or regular patients easier and convenient. 

 

The final objective was to make the Python script simple and versatile enough so that 

cameras could be changed without a major overhaul in Python script. This objective too 

was accomplished successfully. The script used for image acquisition here can be used 

with almost any web camera. The script also could be used for highspeed and other 

external cameras but the camera setup, image acquisition and timestamping procedure 

will have to be modified. New libraries that work with the camera will have to be 

imported and used based on the camera and its brand. 
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KOKKUVÕTE 

Käesoleva töö esmane ja peamine eesmärk oli sünkroniseerida kaamerast saadud ja 

reaalajas arvutisse edastatavad kaadrid IMU (inertsiaalne mõõteseade) andurite 

andmetega, mida ei edastata arvutisse reaalajas. See eesmärk täideti, nagu näitavad 

eelmise peatüki tulemused. Kõik testid (kasti langemise test ja kõnnakutestid) näitasid, 

et kaamera kaadrite sünkroniseerimisel IMU andmetega oli nihe 100 ms piires ja ainult 

ühel juhul üle 100 ms (test nr 9). Nagu varem arutletud, ilmnesid need erinevused 

peamiselt piltide salvestamise sageduse  ja anduri andmete salvestamise sageduse 

erinevuse tõttu. Samuti võivad kõnnaku alguse ja lõpu leidmiseks kasutatud 

kiirendusväärtused põhjustada mõningaid vigu. Seda seetõttu, et nullkiirenduse väärtus 

võib tähendada kahte võimalikku olekut: andur on puhkeasendis või andur liigub 

ühtlasel kiirusel. Selles töös kasutatud IMU-d registreerivad kiirenduse väärtused kuni 

4 kümnendkoha täpsusega ja suudavad tuvastada isegi väikeseid liigutusi. Nendel 

põhjustel on raske täpselt kindlaks teha liikumise alguspunkti. 

 

Sünkroonimise täpsemaks muutmiseks saaks tulevikus veel paar täiendust teha. Kiire 

kaamera kasutamine, mille kaadrisagedus ühtiks sensorite andmesalvestuse kiirusega, 

võib drastiliselt vähendada kaadrite ja andurite andmete ajatemplite erinevust. Samuti 

oleks see väga kasulik andurite kiirete või väiksemate liikumiste analüüsimisel, kuna 

videot saab aeglustada ilma kaadreid kaotamata. 

 

Selle töö teine eesmärk oli sünkroonida video kaadrid arvuti kellaga. Selles lõputöös 

kasutatud veebikaamera ei sisaldanud sisemist kellamoodulit, mida kasutavad paljud 

suure kiirusega kaamerad, näiteks uEye kaamera. Veebikaamera kaadrid tuli 

ajatempliga varustada arvuti kella abiga, kuna see oli ainus saadaval olev kell 

süsteemis. Peatükis Tests and Results näidatud pildi jäädvustamise viivituskatset saab 

aga kasutada oma kellaga kaamera jaoks, et teada saada kogu viivitus (särituse viivitus 

+ andmete edastamise viivitus) ja sünkroonida seeläbi kaadrite ajatemplid arvutikellaga 

kui võrdlusalusega. See meetod annaks väga täpseid tulemusi kaamera jaoks, mis 

kasutab püsivat kaadrisagedust. 

 

Kasutatud meetodi puhul kulus analüüsiks palju aega, kuna see tehti käsitsi, vaadates 

läbi kõik testi käigus salvestatud kaadrid. Paljude testide läbiviimisel ja tuhandete piltide 

hankimisel võiks edaspidi kasutada arvutinägemist / masinõppet, et viivitused 

automaatselt välja selgitada. See muudaks süsteemi tõhusamaks ja nõuaks eriteadmisi. 

Kolmas eesmärk oli Pythoni skripti kasutamine kaamera seadistamiseks, piltide 

kogumiseks, ajatemplite lisamiseks ja sünkroonimiseks. Kõik, välja arvatud 
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sünkroniseerimine, õnnestus Pythoni skripti abil edukalt lõpule viia. Andmeanalüüsi 

keerukuse tõttu ei saanud siin sünkroniseerimise osa lõpule viia ja see tuli teha käsitsi. 

Selle osa saab tulevikus Pythoni skripti abil täita, kasutades mitut andmeanalüüsiga 

tegelevat teeki. Samuti võiks Pythoni põhist GUI-d kasutada pildivoo (video) ning 

vastavate andurist saadud andmete kuvamiseks, aeglustamiseks, kiirendamiseks, 

suurendamiseks ja vähendamiseks jne. Kõnnaku analüüsi puhul muudaks see andmete 

vaatamise ja analüüsi arstide või tavapatsientide poolt lihtsamaks ja mugavamaks. 

 

Lõppeesmärk oli muuta Pythoni skript piisavalt lihtsaks, aga samas mitmekülgseks, et 

saaks kasutada erinevaid kaameraid, ilma vajaduseta Pythoni skripti tõsiselt muuta. Ka 

see eesmärk saavutati edukalt. Käesolevas töös piltide saamiseks kasutatud skripti saab 

kasutada peaaegu iga veebikaameraga. Skripti võiks kasutada ka kiirete ja muude 

väliste kaamerate jaoks, kuid sellisel juhul tuleb kaamera seadistust, piltide hankimise 

ja ajatempli protseduuri muuta, vastavalt kasutatavale kaamerale. Samuti tuleb 

importida vastava kaamera jaoks mõeldus teegid. 
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