

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

SYNCHRONIZATION OF CAMERA AND INERTIAL

MEASUREMENT UNIT

KAAMERA JA INERTSIAALSE MÕÕTESEADME

SÜNKRONISEERIMINE

MASTER THESIS

Student: Balakrishnan Guruprasath

Student code: 195425MAHM

Supervisors: Jeffrey Tuhtan, Associate Professor

Gert Toming, PhD

Cecilia Monoli, MSc

Co – Supervisor: Even Sekhri, Engineer

Tallinn 2021

2

(On the reverse side of title page)

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

3

Non-exclusive licence for reproduction and publication of a graduation thesis1

I, Balakrishnan Guruprasath ,

1. grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

Synchronization of Camera and Inertial Measurement Unit

supervised by Jeffrey Tuhtan (Associate Professor), Gert Toming and Cecilia Monoli

1.1 to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered

in the digital collection of the library of Tallinn University of Technology until expiry

of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

______________ (date)

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the

student's application for restriction on access to the graduation thesis that has been signed by

the school's dean, except in case of the university's right to reproduce the thesis for preservation

purposes only. If a graduation thesis is based on the joint creative activity of two or more

persons and the co-author(s) has/have not granted, by the set deadline, the student defending

his/her graduation thesis consent to reproduce and publish the graduation thesis in compliance

with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid

for the period.

4

Department of Electrical Power Engineering and Mechatronics: Mechatronics

and Autonomous Systems Centre

THESIS TASK

Student: Balakrishnan Guruprasath 195425MAHM

Study programme: MAHM02/18 - Mechatronics

main speciality:

Supervisor(s): Jeffrey Tuhtan, Associate Professor

 Gert Toming , PhD

 Cecilia Monoli, MSc

Co-supervisor: Even Sekhri , Engineer

Thesis topic:

(in English) Synchronization of camera and inertial measurement unit

(in Estonian) Kaamera ja inertsiaalse mõõteseadme sünkroniseerimine

Thesis main objectives:

1. Synchronize image frames with IMU data

2. Find methods to synchronize camera image frames with computer clock

3. Use Python scripts for image capture, image collection and timestamping

Thesis tasks and time schedule:

No Task description Deadline

1. Camera selection and image acquisition 28.02.2021

2. Delay estimation and development of Python script 31.03.2021

3. Tests and analysis of results 30.04.2021

Language: English Deadline for submission of thesis: 18 May 2021

Student: Balakrishnan Guruprasath “.......”…………...........20….a

 /signature/

Supervisor: Jeffrey Tuhtan “.......”......................20….a

 Gert Toming

 Cecilia Monoli

/signature/

Head of study programme: Mart Tamre “.......”......................20…..a

 /signature/

Terms of thesis closed defence and/or restricted access conditions to be formulated on

the reverse side

5

TABLE OF CONTENTS

List of abbreviations and symbols .. 6

List of Figures ... 7

List of Tables .. 9

1. INTRODUCTION ..10

2. LITERATURE OVERVIEW ..13

2.1 Objectives of This Thesis ..16

3. HARDWARE AND SOFTWARE ..18

3.1 Camera ..18

3.2 Wearable Sensing Unit ...21

3.3 EMP Coil ...22

3.4 Arduino UNO ...24

3.5 Python ...25

4. METHOD ..26

4.1 Image acquisition ..26

4.2 Data Acquisition ..28

4.3 Python Script ..29

4.4 Arduino code ...31

5. TESTS AND RESULTS ..32

5.1 Image capture delays ...32

5.2 Drop Test ...36

5.3 Gait Cycle Test ..42

SUMMARY ..52

KOKKUVÕTE ..54

LIST OF REFERENCES ...56

6

List of abbreviations and symbols

 No Abbreviations Explanation

 1 IMU Inertial Measurement Unit

 2 SD card Secure Digital Card

 3 RGB Red, Green and Blue

 4 Ref. No Reference Number

 5

6

PC

IoT

Personal Computer

Internet of Things

 7

8

LED

EMP

Light Emitting Diode

Electro-magnetic Pulse

7

List of Figures

Figure 2. 1 Evaluation of transmission time [11] ...14

Figure 3. 1 uEye Camera used in this thesis ...18

Figure 3. 2 Canyon C3 web camera ...19

Figure 3. 3 Wearable sensor unit ...21

Figure 3. 4 Electromagnetic pulse coil ..23

Figure 3. 5 General circuit plan of EMP coil...23

Figure 3. 6 EMP coil signal ...24

Figure 3. 7 Arduino Uno connected to EMP coil ...24

Figure 4. 1 uEye Cockpit user interface ...26

Figure 4. 2 Wearable sensor unit data displayed in an Excel sheet28

Figure 4. 3 Spike in Magnetic Strength reading (Mag Z)29

Figure 4. 4 Image capture and EMP coil activation script flowchart30

Figure 4. 5 Code written into the Arduino Board using Arduino IDE31

Figure 5. 1 Delay approximation setup ...32

Figure 5. 2 System time displayed in real time ..33

Figure 5. 3 Image ‘ex322’ ...34

Figure 5. 4 Image timestamps along with the difference35

Figure 5. 5 Sensor unit attached to a box for test ..36

Figure 5. 6 Time difference between the 1st and 2nd images37

Figure 5. 7 Image ‘ex0’ and the left and image ‘ex1’ on the right37

Figure 5. 8 Magnetic field strength plot ..38

Figure 5. 9 EMP signal register point (Data no. 1672) ...38

Figure 5. 10 Timestamps added to the sensor unit data ..39

Figure 5. 11 Data no vs acceleration plot ..39

Figure 5. 12 The point at which the acceleration values of Z axis start reducing40

Figure 5. 13 The point at which the acceleration values of z axis reaches back to the

nominal value ..40

Figure 5. 14 Image ‘ex363’ on the left and image ‘ex381’ on the right41

Figure 5. 15 Image timestamps ...41

Figure 5. 16 Sensor units attached to the thigh and lower leg42

Figure 5. 17 EMP synchronization coil setup ..43

Figure 5. 18 Magnetic field strength plot of the top sensor44

Figure 5. 19 Acceleration plot of the top sensor ...44

Figure 5. 20 ‘ex613’ on the left and ‘ex705’ on the right45

Figure 5. 21 Some intermediate image frames ..45

Figure 5. 22 Timestamps of image frames ‘ex613’ and ‘ex705’46

Figure 5. 23 Magnetic field strength spike of bottom sensor47

8

Figure 5. 24 Acceleration plot of the bottom sensor ...47

Figure 5. 25 Acceleration data of both sensor units after synchronization48

9

List of Tables

Table 2. 1 Previous work ...15

Table 3. 1 Camera Specifications ..18

Table 3. 2 PENTAX C1614-M Specifications ...19

Table 3. 3 Canyon C3 Specifications ...20

Table 3. 4 Differences in cameras ..20

Table 3. 5 Python libraries used ...25

Table 5. 1 Timestamps of sensor data and image frames compared41

Table 5. 2 Top sensor and image frame timestamps compared46

Table 5. 3 Bottom sensor and image frame timestamps compared48

Table 5. 4 Comparison of timestamps from further tests49

10

1. INTRODUCTION

Humans living in the 21st century, are highly reliant on technology to carry out almost

any task. From the time we wake up in the morning to the time we get into bed, we use

modern devices to make our lives easier. These devices employ sensors which measure

physical environment and convert the measurements to data, interpreted by humans or

by the devices themselves. Most of these devices employ more than one sensor so that

multiple parameters can be measured and thereby provide a more complete picture of

the environment to the interpreter.

Data from all the relevant sensors must be aligned with respect to some common

quantity so that the interpreter can make clear and accurate decisions based on them.

This “common quantity” is usually time. Synchronizing various data sets with respect to

time is straightforward in cases where all the sensors share the same controller and the

same clock. This is because the controller will be able to trigger the sensors to start and

stop collecting the data at the same time. Since the sensors also share the same clock,

additional processing of data for data synchronization or data fusion will be redundant.

Differently, synchronization of data from sensors controlled by independent controllers

with their own local clocks is not straightforward. This is due to issues like trigger delays

and local clock drift [1]. Trigger delay is the time delay between a trigger and the

moment data collection starts. Clock drift is the gradual variation of a local clock

compared to a reference clock. Also, since most current devices are also wireless,

transmission time, as time required to send data from the sensor node to the final node

or processing computer becomes a factor too. Therefore, while processing sensor data

for data fusion, the above-mentioned issues have to be accounted for.

Literature on such problems barely available and this thesis aims to address one such

technology gap. The main aim of this thesis is to synchronize video from camera to

wireless sensor (IMU – Inertial Measurement Unit) data which is not transmitted in real

time. This is known as offline data synchronization. In instances where wireless sensors

are used underwater, normal transmission of data via radio waves is not possible. This

is due to the interaction of electromagnetic waves and water [2] and as a result leads

to path loss, variation in velocity of propagation and absorption loss as detailed in

[3].The is also the reason why most underwater communications use acoustic waves

to communicate [4][5], especially in saltwater. Therefore, the sensor data will have to

be collected in storage devices such as SD cards (secure digital card) and later retrieved

to be analysed.

11

The result of this thesis will be especially useful in the medical industry. Specifically, for

gait analysis [6], the science of studying the biomechanics of motion during walking.

Currently, it is carried out using different type of equipment aiming at the definition and

evaluation of motion impairments, pathologies and injuries development. Underwater

Gait analysis is especially useful as rehabilitation exercise, for patients who have

problems in movement of their lower limbs either due to illness or old age [7] or due to

accidents. This is because an underwater environment can mimic lower gravity and

therefore can help patients begin their recovery without having to carry their entire body

weight.

Usually, the results of gait analysis (limb angle, position and acceleration) are plotted

into a graph and is analysed by the medical professionals or a video feed is obtained

(via regular cameras or specialized ones) to study the motion. Since the video feed is

in 2D, the motion might be oversimplified as depth perception is not available. But by

synchronizing both the video feed / image frames along with the sensor data, without

expensive or complicated systems, can make the analysis of obtained movement data

less complicated and less time consuming. This can also fill in the limits of each other

(IMU data and video feed) to provide a more accurate picture of limb movement. This

can also be used to help patients understand movement of their limbs without much

difficulty.

In this thesis the apparatus (camera and IMU sensors) used are from different

manufacturers and therefore the clock in the camera and the internal clocks in the

sensors are different. As the trigger mechanism for the sensors and the camera are

different, there is no simple way to synchronize the image frames with the sensor data.

Here, the station time (computer time) is used as the reference time (reference clock)

and synchronize the image frames from camera clock to the reference clock. Next, once

the data from the sensor have been obtained, synchronize the data to the reference

clock and thereby synchronize it to the obtained image frames. Synchronization of

image frames to sensor data will also require the approximation of camera exposure

time[8], transmission time and possible delays within the camera itself.

The methodology developed, tested and validated in this thesis is based on a seven-

stage workflow as follows:

1. A camera, which can obtain images with trigger signals from a Python script was

selected.

12

2. Experiment was conducted to calculate the approximate delay time (exposure

time and transmission time) of the images from the camera to computer.

3. The transmitted images were named sequentially and timestamped with the local

computer time.

4. The recorded sensor data were transferred to the computer and image

timestamps were matched to sensor data time.

5. Finally, the images were synchronized to corresponding sensor data.

6. Tests were conducted to ensure the image- data synchronization is within

accepted limits.

13

2. LITERATURE OVERVIEW

Most of the recent work exploited wireless sensors which transmit data to the local

computer in real time, as it is showed in the literature review resumed in Table 2.1 .

The algorithm proposed in [9] is to synchronise the data from the sensors rather than

synchronize all sensor node clocks. The authors have considered this method because

of various factors that can affect sensor node clock synchronization such as clock drift.

Specifically, IoT devices can be used in remote and extreme environments, mechanical

vibrations, temperature fluctuations, humidity and other factors can de-synchronize

node clocks. Also due to the use of IoT devices in remote environments, the authors

have assumed low range of network and therefore the data has to be passed from one

sensor node to the other until it reaches the sink node (computer). The algorithm

developed here, therefore, is highly reliant on residual time (the particular time period

a data packet remains within a node), no of steps (nodes) between the sensor node and

the sink node and average skew deviations, and therefore is not suitable for the cases

discussed in this thesis.

Bluetooth network for data transfer and mobile phone for data processing has been used

in [10]. The main goal of this paper was to minimize errors in synchronizing data sent

from various sensors to a mobile phone via Bluetooth. Here too, like the previous paper,

synchronization of data was preferred to synchronization of sensor clocks. The proposed

algorithm in this paper depends on Bluetooth transfer delays and timestamping delay.

This paper also deals with real time data fusion unlike this thesis which is offline (not

real time data synchronization) and no Bluetooth network is used.

[11] is concerned the synchronization of RGB depth camera and wearable IMU sensor

data that can be integrated in ambient assisted living applications. Essentially, it allows

healthcare professionals to monitor disabled or old patients in their home environment.

This, is the closest work that has been done related to the aim of this thesis. The RGB

depth camera used by the authors of was the Microsoft Kinect and the inertial

measurement unit here was manufactured by Shimmer Research. The data from the

IMU were sent to the local computer via Bluetooth. The local clock of the RGBD camera

was not accessible and therefore the authors timestamped the image frames when the

images were received by the computer. This requires estimation of exposure (the

amount of time the sensing device is open) and transfer delays (the time needed to

encapsulate and transmit the image frame from the camera to the computer) and the

authors have estimated them via an Arduino board controlling LEDs. The authors have

used a variant of Cristian’s algorithm[12] to synchronize the Shimmer IMU sensor and

14

the computer. The same algorithm couldn’t be used to synchronize the RGB depth

camera and the computer because the camera’s local clock was not accessible.

The Arduino board and the LEDs used in the above paper worked in the following way

to estimate transmission time. The Arduino board was connected to the same PC that

was connected to the RGB depth camera and controls 7 LEDs. When the PC received

the 1st frame (F0), a timestamp (t0_PC) was set and a command was sent to the Arduino

board. The Arduino board then waited for 20 milliseconds and turned on the LEDs

sequentially with a delay of 3 milliseconds. When frame F2 was received by the PC, a

timestamp (t2_PC) was set and by counting the number of LEDs on in the frame, the time

t2_K was calculated. The transmission time is then obtained by finding the difference

between t2_pc and t2_K. This is illustrated in the image below. The 20ms delay used in the

Arduino board was to centre the on/off LEDS at time t2_K. The same test was carried out

around 75 times and the average transmission time was chosen.

Figure 2. 1 Evaluation of transmission time [11]

Very little work has been done similar to [11] which involves synchronization of Camera

frames and IMU data. Other papers [13][14][15] discussing Camera-IMU systems

usually are interested in spatial and temporal calibration of the sensors. They typically

employ predictive algorithms such as Kalman Filters and Extended Kalman filters[16] to

calibrate their position in space. The authors of [13] used employ a visual-inertial sensor

unit where the triggering of both the camera and the IMU was done by the same

controller. Therefore, even though the camera and IMU have separate clocks,

synchronization was done in a relatively straightforward manner. The data coming in

from the sensor and the camera were timestamped according to delays based on the

methods proposed in [17].

15

Lastly, research dealing with data synchronization of wireless sensors in an underwater

environment is virtually non-existent. Most of the research done in underwater

environments deal with communication and advanced data acquisition methods[4][5]

rather than data fusion or data synchronization.

Table 2. 1 Previous work

Ref.No Date Paper Aim Approach/ Solution

[9] 2019 Synchronization of
data measurements
in wireless sensor

networks for IoT
applications

Algorithm to
synchronize data
from wireless

sensors rather than
synchronizing node
clocks

• Algorithm for wireless
sensors transmitting
data synchronization

• Deals with multiple
nodes and takes into
account the
transmission
time/distance to the
sink node

[10] 2013 A novel approach to
multi-sensor data
synchronization
using mobile phones

Algorithm to
synchronize data
received from
multiple sensors via

Bluetooth to mobile
phone

• Data transmission
through wireless
network (Bluetooth).
Involves delays

associated to
Bluetooth network

[11] 2015 Time Synchronization

and Data Fusion for
RGB-Depth Cameras
and Inertial Sensors
in AAL
Applications

Synchronization of

the data captured
from RGB-Depth
cameras and
wearable inertial
sensors

• The RGBD camera is

used to estimate
patient positions

• IMU is synchronized to
PC using Cristian’s
Algorithm. Camera
exposure and
transmission time

found using Arduino
with LEDs

[13] 2014 A Synchronized

Visual-Inertial
Sensor System with
FPGA Pre-Processing
for Accurate Real-

Time SLAM

Development of a

visual inertial sensor
unit to be deployed
in robots for
simultaneous

localization and
mapping capabilities

• Simultaneous

triggering of camera
and IMU

Single

processor/controller

[14] 2010 Visual-Inertial
Sensor Fusion:
Localization, Mapping

and Sensor-to-
Sensor Self-
calibration

To obtain an
algorithm, based on
unscented Kalman

Filter, for self-
calibration of the
transform between a
camera and an IMU.

• Algorithm based on
Kalman Filter mainly
for robot navigation.

• Sensor fusion rather
than data fusion

16

Table 2. 2 Previous work …. continued

Ref.No Date Paper Aim • Approach/ Solution

[15] 2014 Online temporal

calibration for

camera-IMU

systems: Theory

and algorithms

Algorithm for

temporal

calibration of

camera and IMU.

• Vision aided inertial

navigation.

• Focuses on offset

time estimation and

mainly 3d pose

estimation from the

camera- IMU data.

• Uses the offset time

along with EKF state

vectors to calculate

offset.

[17] 2010 Unified Temporal

and Spatial

Calibration for

Multi-Sensor

Systems

Estimate the

temporal offset

between

measurements of

different sensors

and their spatial

displacements

with respect to

each other

• Offset time method

to synchronize

multiple sensors in

space

2.1 Objectives of This Thesis

As mentioned above in the Literature Overview section, the amount of research/ papers

on offline synchronization of camera images and wireless IMU sensor data is limited.

Most of the papers dealt with wireless sensors and real time data synchronization. The

methods proposed in those papers are not suitable for this thesis as they do not deal

with both real time data and offline data at the same time. Furthermore, no previous

works were found on the specific topic of underwater sensor data and camera

synchronization.

Cippitelli’s study [11], overlaps fairly the objective and methodology of the current

Thesis work. Specifically, the RGB depth camera images were sent to the PC in a similar

way and a similar technique to estimate the average transmission time of images can

be used. Differently, since the camera used in this thesis employs user controllable

exposure settings, the method used to estimate exposure time in [11] is not required.

Concerning the sensors, the mentioned study exploits Shimmer IMU sensor with

Bluetooth network to transmit data in real time to the PC using a variant of Cristian’s

algorithm. Dissimilarly, the IMU sensors in this thesis are developed for underwater

purposes and cannot transmit data in real time, a different approach must be taken to

synchronize the IMU sensor data to the PC clock.

17

None of the above-mentioned papers use Python script to synchronize sensor data with

image frames. The decision to use Python code was made to guarantee flexibility and

versatility of the developed system, so that any camera with a Python library or

capability of interacting with a Python script can be used. This makes replacement of

the camera used in this thesis with any other camera having a Python library easy.

The above-mentioned technological and research gaps, which are also the objectives of

this thesis, are summarized below:

• Objective 1: Synchronize images from a camera (transmitted in real time to

the computer) with data from IMU sensors which are not transmitted to the

computer in real time.

• Objective 2: Experiment with various methods to synchronize the image

frames with the computer clock / reference clock.

• Objective 3: Use a Python script to do camera setup, data collection,

timestamping and synchronization.

• Objective 4: Make the Python script versatile enough for change in cameras

without major changes needed to the script.

18

3. HARDWARE AND SOFTWARE

3.1 Camera

The camera initially used in this thesis is a uEye UI-5240HE-M-GL, as shown in Figure

3.1 .

Figure 3. 1 uEye Camera used in this thesis

It is an industrial highspeed monochrome camera with a CMOS sensor. The

specifications of the camera are provided in the table 3.1

 Table 3. 1 Camera Specifications

Name Specification

Model UI-5240HE-M-GL

Sensor 0.5’’ CMOS

Resolution 1.3 Megapixel (1280x1024)

Maximum frame rate 60 frames per second

Colour Monochrome

Video Output Gigabit Ethernet

19

The images obtained by the camera are transmitted to the computer via an Ethernet

cable. The lens used with this camera is PENTAX C1614-M. This lens is controlled

manually and is mainly used for image processing applications. Some benefits of using

this lens are manual adjustability, high light intensity and lower distortion. Some

specifications of this lens are given in the table below.

Table 3. 2 PENTAX C1614-M Specifications

Name Specification

Format 2/3’’

Focal Length 16.0 mm

Aperture Range F1.4- 16

Iris Control Manual

Focus Control Manual

Minimum Object Distance 0.25 m

This uEye camera was chosen for its high frame rate which is closer to the data

acquisition rate of the sensing unit. But due to complications with the Python library,

explained further in the method section (4.1 Image Acquisition), this camera had to be

replaced with a different camera. The replacement camera chosen was Canyon C3 web

camera.

Figure 3. 2 Canyon C3 web camera

20

Table 3. 3 Canyon C3 Specifications

Name Specification

Model CNE-CWC3N

Sensor ¼’’ CMOS

Resolution Max. 12 Mega Pixel (1280x720)

Maximum frame rate 30 frames per second

Interface USB 2.0

There were several key differences between this web camera over the highspeed uEye

camera. They are listed in the table below.

Table 3. 4 Differences in cameras

uEye Camera Canyon C3 webcam

Ethernet connection to computer USB connection to computer

High speed camera Standard webcam

1280x1024 Maximum resolution 1280x720 Maximum resolution

Heavy Lightweight

Python library available Python library unavailable

Fixed 360-degree rotatable view

As shown in the table above, there were some advantages and disadvantages in using

the web camera over the uEye high speed camera. The image quality was higher in the

uEye camera compared to the web camera but this is not an indispensable issue as the

image quality of the web camera was clear enough to continue with tests. Also, since

the image size of the images obtained from the web camera were smaller, the change

from Ethernet connection, which has a higher throughput, to USB connection didn’t

affect any part of this thesis. The only advantages the uEye camera had over the

webcam were the high framerate capability and the Python library. The Python library

21

would enable much more control of the camera but due to reasons explained in the

methods section of this thesis, this advantage was not very helpful.

The webcam has some minor advantages over the uEye camera. Since it is lightweight

and rotatable, performing tests in various environments and angles become easier and

not cumbersome. Also, the webcam can be connected to any computer with a USB port

and easily accessed using Python libraries such as OpenCV to make use of basic

functionalities. The uEye camera required a lot of setup code within the Python script

and also required network port settings to be changed. The ‘pyueye’ Python library does

not come with any documentation and therefore would be difficult for an inexperienced

user to use many of the available functions.

3.2 Wearable Sensing Unit

The wearable sensing unit, named TinyTag, used in this thesis was designed by the

Center for Biorobotics of Tallinn University of Technology to be used in rehabilitation

clinics for underwater human and animal gait analysis. This unit consists of several parts

including the IMU. The unit itself, excluding the battery, is approximately 30mm in

length and 12mm in width. This unit without the battery is shown in the figure 3.3.

Figure 3. 3 Wearable sensor unit

22

The key components of this unit are listed below.

1. 32 bit ARM® Cortex®-M0+ SAM D21G microcontroller (Microchip) [18]

2. Absolute orientation sensor BMX160 (Bosch) [19]

3. Absolute pressure sensor MS5837-02BA [20]

4. Real time-clock RV-3028-C7 [21]

5. MicroSD card [22]

6. 50mAh lithium polymer battery [23]

The IMU unit used for this thesis (BOSCH BMX 160) is a low power nine axis sensor

consisting of a triaxial accelerometer, a triaxial gyroscope and a geomagnetic sensor.

The accelerometer is used measure the rate of change of velocity. This acceleration is

always measured relative to gravitational acceleration. Therefore, an acceleration of

zero means that the sensor is moving at a constant velocity or is at rest. The next

component in an IMU is the tri axial gyroscope that measures the angular velocity. This

is also used to maintain orientation of an object. The BMX 160 IMU outputs the angular

velocity in the units of degrees per second. Finally, the geomagnetic sensor measures

and outputs the magnetic field density and can be used to locate the north and south

poles and therefore the orientation.

The TinyTag device is turned on by coming into contact with an external magnet. It can

also turn itself on automatically by pre-programming the start date and time. The device

can be turned off using the magnet or by pre-setting a operational time. Ths sensor unit

is equipped with a standard 1.27mm pitch header row with 4 pins and can be connected

to a computer to transfer data, set time and date, set turn on and off time and also

charge the 50mAh battery.The device is waterproof and is electrically isolated so that it

doesn’t get into contact with human or animal body while performing tests. It is also

coated with a mixture of epoxy resin and polamide partices Vestosint 1101.

3.3 EMP Coil

Another instrument used in this thesis was an EMP (electromagnetic pulse) coil designed

by the Center for Biorobotics of Tallinn University of Technology. This coil, shown in

figure 3.4 , is used to create an electromagnetic pulse that can be clearly measured by

the magnetic sensors in the IMU. The spikes in magnetic readings can later be used to

synchronize multiple sensors with each other.

23

Figure 3. 4 Electromagnetic pulse coil

This pulse helps to synchronize the multiple wearable sensing unit measurements used

in this thesis with each other. The coil circuit diagram and the pulse generated when

the Test button or and external signal is given, is shown in the figures 3.5 and 3.6.

Figure 3. 5 General circuit plan of EMP coil

The trigger signal for the pulse is provided by an Arduino UNO board which is controlled

by a Python script. The 5V output from the Arduino board is connected to the “Sync in

connector” (shown in the figure 3.5) part of the coil.

24

Figure 3. 6 EMP coil signal

As shown in the above figure 3.6, the pulse lasts for 100ms and switches polarity at

50ms. The intensity of the signal registered depends on how close the sensor is to the

EMP coil and also the orientation. The Arduino signal to the coil doesn’t have to be turned

off because the EMP signal is only triggered at the rising edge of the input signal.

3.4 Arduino UNO

Figure 3. 7 Arduino Uno connected to EMP coil

25

The Arduino UNO board, connected to the computer and the EMP coil as shown in figure

3.7, is used here to trigger the EMP pulse when the camera starts recording. This is

setup using a Python script. The board itself is loaded with the code, using the Arduino

IDE, as shown in the methods section of this thesis. The Arduino board is connected to

the PC via a USB cable. Then pin number ‘8’ of the Arduino digital output, according to

the Python script, is connected to the positive (+) sync of the EMP coil’s connector

terminal (orange wire in the figure below). The ground pin in the Arduino board is

connected to the negative terminal of the power/ button box of the EMP coil (black wire

in Figure 3.7)

When the Python script activates pin ‘8’, the EMP signal, as explained previously, is

generated an impulse by the EMP coil. This part of the setup is only used during the

start of the test or experiment and can be removed once the EMP signal has been

generated. Since the code to setup the board for this task is stored in the board memory,

the Arduino IDE needs to be used only once.

3.5 Python

Python programming language has been chosen as main programming tool. This, due

to its simple use and availability of built libraries to simplify many tasks. The interpreter

engine used is Python version 3.8 and is run on a Windows 10 computer. The

development environment is PyCharm and the Python libraries used are given below.

Table 3. 5 Python libraries used

Python Library Version Purpose

pyueye 4.90.0.0 • The python library of the Ueye camera. Camera
functionalities can be accessed via this library

opencv 4.5.1.48 • To display, resize and save images

Datetime Inbuilt library • To import computer clock time and to help
timestamping

pandas 0.0.97 • To save image frame names with corresponding

timestamps as a csv file.

serial 3.5 • To enable communication with Arduino board

time Inbuilt library • To allow for sleep time in the programme

26

4. METHOD

4.1 Image acquisition

Image acquisition is one of the most crucial parts in this thesis. The time at which each

image is obtained must be recorded as accurately as possible to ensure good

synchronization with the data obtained from the IMU. The computer time is used in this

thesis to timestamp the images when received from the camera.

The uEye camera used in this thesis comes along with a dedicated software application

called “uEye Cockpit” [24]. Camera functionalities as Exposure settings, frame rates,

timestamping of video and saving can be accessed via this application. The user

interface is shown in figure 4.1 .

Figure 4. 1 uEye Cockpit user interface

Unfortunately, this software does not allow for the flexibility that is required to fulfil the

objectives of this thesis. uEye has a Python library (pyueye) which can be used in a

Python script to access various functionalities of the camera. Unfortunately, the library

does not allow for continuous capture of images via triggering by a Python script and

27

also doesn’t have an option to timestamp images. Therefore, a different approach was

needed to obtain single images with accurate timestamp.

OpenCV is a Python library that is mainly used for computer vision or machine vision

applications. This library was used in this thesis to obtain the video (image frames) from

the camera and display it in a separate window. One of the advantages of using the

OpenCV library is that this displayed video can also be cut down into individual image

frames and be saved to the computer. The Python script to setup the camera to record

video and display the images using the OpenCV library was already available in the IDS

Imaging Development Systems GmbH website. Therefore, the main modification to be

done to the script was to obtain the individual frames from the displayed window, name

each image frame sequentially, add timestamps (time at which the images were

displayed on a window) , save the images and create a file which lists the image names

along with their corresponding timestamps.

The uEye library, pyueye, does not include a function to save the images to the

computer. Therefore, a while loop was used to continuously read from the camera

memory, display and save the images to the computer. This presented several

challenges. Mainly, since the images couldn’t be saved to the computer directly from

the camera memory, they had to be saved using OpenCv functions after being displayed

in a separate window. This created additional delays and sometimes even duplicated

several images as the communication speed between the camera and the computer

varied.

These unpredictable delays made the timestamping unreliable. Also, since this was an

industrial camera, there weren’t any other available methods to save the images directly

from the camera. So, after several weeks of trying to accomplish the above task, it was

decided to abandon the uEye camera and to proceed with a simpler camera which would

provide much more accessibility.

The web camera chosen to replace the uEye camera was the Canyon C3. This camera

can capture images at a resolution of 720p and is connected to the computer via a USB

cable. The Canyon C3 camera doesn’t include a software application but it can be

controlled easily via a Python script to trigger snapshots, display images and also save

them to the computer. The time at which the trigger signal is sent was also recorded

and was added as the timestamp for that particular image frame. The timestamp,

obtained from the computer clock, were added to a csv file with the corresponding image

frame name.

28

4.2 Data Acquisition

The wearable sensing unit records several types of data, as showed in Figure 4.2: the

time elapsed since turning on the sensor, battery level, pressure, temperature and IMU

data (acceleration in 3 axis, gyroscopic measurements in 3 axis, magnetic field strength

in 3 axis).

These data are saved to a text file and are separated by commas. This can be imported

to an Excel file after the experiment to perform analysis or visualize variation in data by

the use of graphs. One such test example is shown below in figure 4.2 .

Figure 4. 2 Wearable sensor unit data displayed in an Excel sheet

The sensing unit is turned on when a magnet is placed near it. Then it starts recording

data every 10 milliseconds (100Hz). The data recording time can be changed by

modifying the “time” text file available in the device memory. Once elapsed time reaches

the set value in the text file, the sensing unit stops recording data and turns itself off.

The sensing unit is then connected to the computer via a USB cable and the recorded

data can be extracted from the device memory card.

To synchronize the data from the sensing unit to camera image frames, an

electromagnetic pulse coil is used. The pulse is triggered by the Python script which

sends signal to an Arduino UNO board output pin which in turn sends a 5V signal to the

EMP coil controller. The pulse generated rapidly spike, in both positive and negative

directions depending on the orientation and placement of the sensing unit within the

coil, the geomagnetic readings obtained by the sensing unit. Since the trigger signal is

29

sent to the coil at the same time at which the signal is sent to the camera, delays are

minimal and matching the image frames with sensor readings becomes easier.

Figure 4. 3 Spike in Magnetic Strength reading (Mag Z)

The figure 4.3 shows the magnetic strength readings of all three-axis obtained by the

sensing unit. The x axis is the number of readings and the y axis is the magnetic field

strength recorded. The spike in the readings (Mag Z value) is clearly visible near reading

no 4181. By equating the start point of the spike to the time at which the signal was

sent to the coil, consequent timestamps of recorded data can be obtained.

4.3 Python Script

The main Python script used in this thesis focuses on the camera image frame

acquisition and timestamping of images. It also includes a set of code for the Arduino

UNO unit which would send a signal to the EMP coil at the same time the image capture

begins. These codes, include establishing communication with the Arduino board and

also a function that would turn on a particular output pin in the board to output a voltage

of 5V. The code used here and elsewhere in this thesis are available in a repository [25]

(https://github.com/BalakrishnanGuruprasath/cameraimusync) .The code flow is shown

in the flowchart shown in figure 4.4 .

https://github.com/BalakrishnanGuruprasath/cameraimusync

30

Figure 4. 4 Image capture and EMP coil activation script flowchart

31

Since the initial camera used was the uEye camera, the first version of the image

acquisition Python code involved a lot of camera and communication setup. As

mentioned before, this part of the code was directly obtained from the uEye camera

manufacturer’s website. But, after replacing the uEye camera with the web camera, the

setup code was no longer needed and was replaced by image capture (trigger) code

using the Python OpenCv library. The trigger for image capture code was preceded and

followed by a couple of variables which recorded the computer time. This was done to

obtain the trigger time as accurately as possible.

After step 3 (image capture), the image was displayed in a separate window and the

image is saved to a specified folder in the computer. Then the image name along with

the two timestamps are added to separate Python lists. These lists were added to a csv

file after the completion of the test. Since steps 3 to 6 were placed inside a while loop,

after step 6 (display image), the operation of code returned back to step 3. This

continued until the key ‘q’ was pressed which breaks the loop and finishes the program

after saving the lists to a csv file.

4.4 Arduino code

The Arduino Uno board used in this thesis was step up with a simple code to output 5V

out of output pin number ‘8’ when instructed by the main Python script. If the serial

communication with Python script was available and the data sent from it was ‘1’ then

the output from pin ‘8’ would be high (5v). If not, then the output would be low (0v).

Although the function to activate the output pin in the Python script is within the while

loop, it is run only once (due to implementation of an ‘if’ statement).

Figure 4. 5 Code written into the Arduino Board using Arduino IDE

32

5. TESTS AND RESULTS

5.1 Image capture delays

The first task in this thesis was to approximate the difference between image

timestamps to the actual time at which the image was captured. This difference would

approximately be equal to the camera exposure delay and other minor delays associated

with communication between the PC (Python script) and the web camera. The

transmission delay from the web camera to the computer can be neglected in this thesis

because the timestamps are not logged when the image is received but when the

command is sent out to the camera to capture the image. Also, the frame rate at which

the camera captures images is not significant as each individual image frame is captured

via a trigger command in the Python script.

Figure 5. 1 Delay approximation setup

The test setup of Figure 5.1 is explained hereafter. The image timestamps, according to

the Python script, was obtained from the computer system clock. This time was given

33

up to milliseconds and in the format of “HH:mm:ss.000”, and displayed on screen in

real time via a different Python script run simultaneously. The main image capture

script, explained in the previous section, without the synchronization EMP signal setup

was then run. The camera was pointed to the screen displaying the system time. The

time captured by the web camera was compared to the system clock timestamps saved

to the csv file. The difference in these times gave the approximate delays. The

differences were then added to the timestamps to make it as accurate as possible. The

current time window is shown in figure 5.2.

Figure 5. 2 System time displayed in real time

A Python library called “TKinter” was used to display the computer system time. The

current system time was obtained using the inbuilt datetime Python library. The script

for this was saved in a different Python file and was accessed by both the image capture

script and also the time display script.

Once this test was run for a couple of minutes, the test was stopped and the images

saved were analysed with the timestamps. The csv file was opened in Microsoft excel

and the timestamp columns’ format was changed to the format which was used to

display the system time. Then several images containing the time were compared to

the timestamp (time just before capture). This was done manually to find out the

approximate delay between the initiation of trigger signal by the Python script and the

time at which the image was eventually captured.

For example, in this test 775 images were captured and saved. The corresponding

timestamps were also saved to a csv file. Image ‘ex322’ displays a time of 13:50:42.932

34

and the timestamp, the one right before capture, corresponding to that image in the

csv file logged in a time of 13:50:42.858. This shows a difference of 74 milliseconds.

The following figure 5.3 shows image ‘ex322’ and the time captured by it.

Figure 5. 3 Image ‘ex322’

Unfortunately, since the camera itself was not fast enough (capture rate a maximum of

30 frames per second), sometimes the millisecond region of the image was unclear. In

the case shown above, it was reasonably clear and therefore was used to calculate the

time difference. The figure 5.4 below shows the difference in time of some of these

images. Some cells have been highlighted in red because their captured images are not

clear enough to deduce the time.

35

Figure 5. 4 Image timestamps along with the difference

As mentioned previously, the ‘Time in Image’ column values were added manually and

the time difference, against ‘Time before capture’, was calculated. The difference in

values varied from 40 millisecond up to 90 milliseconds (from random images within

this test). This, obviously, also depends on the other processes running in the computer

background. There were several user programs where running in the background while

these data were collected. When many of the user programs were not operational, the

difference in varied between 40 and 60 milliseconds. Comparing the delay times from

various such tests it was safe to assume that the difference in times never exceeded

100 milliseconds.

36

5.2 Drop Test

The purpose of this test was to check if the images from the web camera can synchronize

with the data from the wearable sensor unit. For this initial test, the wearable sensor is

attached to a small box and is dropped from a height. In this way, the acceleration

values of a particular axis (the z axis in this case) will change from the gravitational

acceleration value (around 10m/s-2), just before releasing the box, back to a similar

value as before when it comes to rest on the floor. This makes it easier to verify the

synchronization of the images with the sensor data. The way the sensor unit was

attached to the box is shown the figure 5.5.

Figure 5. 5 Sensor unit attached to a box for test

The sensor unit was programmed to collect data for 1 minute after being turned on and

then turned itself off. The sensor unit was turned on by a magnet and was placed inside

the EMP coil loop and the image acquisition Python script was run. The command for

synchronization EMP signal was sent to the coil by the Python script at the same time

the image stream started. But, tests with the web camera pointing towards the leds

attached to the EMP coil circuit box showed that there was around 0.5 second delay

from when the command was run in the Python script and the time at which the EMP

coil was activated. This delay is clearly shown in the figure 5.6. Here, ‘ex0’ is the first

image captured and ‘ex1’ is the second image captured. The led is off in the first image

and is only turned on in the second image (ex1). Therefore, for this test and all the tests

37

that follow, the first image is disregarded. Images ‘ex0’ and ‘ex1’ are compared in the

figure 5.7.

Figure 5. 6 Time difference between the 1st and 2nd images

Figure 5. 7 Image ‘ex0’ and the left and image ‘ex1’ on the right

Next, the box was carried over in front of the web camera and was held at a height from

the floor for a few seconds. This was done to bring the acceleration values as close to

environmental values before release. Then, the box was dropped and image capture

and data collection continued until the sensor unit turned off automatically. The data

from the sensor unit was then transferred to the computer for analysis. In this test, a

total of 1732 images were captured. The sensor data count was 5849. Since the data

were saved into a csv text file, they were transferred to an Excel sheet where they can

be analysed properly.

The first step during analysis was to identify the point at which the EMP signal was

recorded by the sensor unit. Since amount of data obtained by the sensor unit, as

38

mentioned before, is very large, it was easier to plot the ‘Data no.’ column of the sheet

vs the magnetic field strength columns (Mag X, Mag Y and Mag Z) to find out the peak

point (the point at which the magnetic strength reading starts to spike). This plot is

shown in figure 5.8.

Figure 5. 8 Magnetic field strength plot

The above figure shows that the electromagnetic pulse was recorded by the sensor unit

at approximately Data no. 1673. The data around this point, on the Excel sheet, were

checked to pinpoint the exact point at which the pulse started to register. The exact

point was Data no. 1672 with a Mag Z value of – 3510.9 µT (highlighted in figure 5.9).

This peak lasts for 4 more sets (1673 to 1676) and then flips directions for 5 more sets

(1677 to 1681). Data no. 1671 had a value of -74.1 µT and data no. -72.9 had a value

of -68.4 µT. This shows the clear difference from when the pulse was active and when

it was not.

Figure 5. 9 EMP signal register point (Data no. 1672)

39

Next, the timestamp of the second image captured (ex1) is added as the timestamp for

data no. 1672 and the timestamps for the rest of the data are obtained by adding 10ms

to the timestamp from the previous row. This was done because the sensor unit records

data at a rate of 100 hz (every 10ms). The timestamp of ‘ex1’ of this test was

19:49:13.998. This and the consequent timestamps were added as shown in the figure

5.10 .

Figure 5. 10 Timestamps added to the sensor unit data

The next task was to see if the images and the sensor data timestamps correlate with

each other. To do this, the exact moment at which the box was released from a height

must be known. The acceleration values recorded show the point at which the box was

released. Again, similar to finding the magnetic field strength spike, the data numbers

are plotted against the acceleration columns in the sensor data Excel sheet. Figure 5.11

shows the plot.

Figure 5. 11 Data no vs acceleration plot

40

The plot shows that the spike in acceleration values occurred somewhere around data

no 2927 and 3136. Looking through the data it is clear that the Acceleration in the Z

axis has a value of around 10 ms-2 at rest (approximate gravitational acceleration) and

therefore is the axis that should be focused upon. It can be seen from figure 5.12 that

the acceleration values in the z axis start decreasing from the rest value at data no.

2983. The timestamp at this point is 19:49:27.108 (highlighted in blue in figure 5.12).

The values keep changing until data no 3044 where the value reaches 10.55 and then

goes back to the standard rest value. This shows that the box came to rest at this point.

The timestamp here is 19:49:27.718 (highlighted in orange in figure 5.13).

Figure 5. 12 The point at which the acceleration values of Z axis start reducing

Figure 5. 13 The point at which the acceleration values of z axis reaches back to the nominal

value

The final task was to check if the image frames at the point of release and at the point

of rest correspond to the timestamps from the above data. The image frame just before

release was ‘ex363’. The final rest on the floor occurs at image frame ‘ex381’. These

images are shown in the figure 5.14. The timestamps of those image frames are

illustrated in figure 5.15. The timestamps of these image frames have been compared

to the timestamps of the corresponding sensor data in the table 5.1.

41

Figure 5. 14 Image ‘ex363’ on the left and image ‘ex381’ on the right

Figure 5. 15 Image timestamps

Table 5. 1 Timestamps of sensor data and image frames compared

Position Timestamp of

sensor data

Timestamp of

image

Difference

Release 19:49:27.108 19:49:27.128 20 milliseconds

Rest 19:49:27.718 19.49.27.744 16 milliseconds

42

Table 5.1 also shows the time difference between the timestamp of the sensor unit data

and the timestamp of the image frames. The differences are very small and can be

attributed to the lower frame rate of the web camera and other variable delays. This

test also shows that the image frames are synchronized to a large extent with the sensor

data. A GUI can then be created to display the image frames with their corresponding

sensor data by using the timestamps as the common quantity. This can be further

enhanced by using a camera (high speed camera) which records images at the same

speed as the sensor unit.

5.3 Gait Cycle Test

In this test, two wearable sensor units are attached to a leg, one on the thigh and the

other just below the calf, to perform gait analysis as detailed in [26]. The goal here was

to synchronize the sensor data with the image frames obtained by the web camera. The

top sensor (the one attached to the thigh) is attached at a distance of 28 cm from the

hip and the bottom sensor is attached at a distance of 26.5 cm from the knee. The figure

5.16 shows the attachment of the sensors to the leg.

Figure 5. 16 Sensor units attached to the thigh and lower leg

43

Similar to the box drop test performed before, the sensors were turned on by a magnet

and then the image acquisition script was run. The EMP coil was placed around the two

sensors so that the synchronization electromagnetic pulse is sent to the sensors at the

same time. Since the sensors were attached to the leg further apart than the diameter

of the EMP coil, the leg was bent in the way shown in figure 5.17 to ensure the sensors

fit within the coil.

Figure 5. 17 EMP synchronization coil setup

After the above-mentioned synchronization signal was sent, the subject walked to a

position near the left edge of the web camera image frame. After, a few seconds of rest,

the subject walked across the frame to complete 1 gait cycle. When the cycle was

completed, the subject stood still until the sensors turned off automatically (1 minute

after turning on the sensor) and then the camera was also turned off.

The analysis part of this test is very similar to that of the box drop test performed

before. The main difference here is the use of 2 sensor units rather than just one. The

analysis is done initially for the top sensor and then for the bottom one. The sensor data

were again obtained from the sensors and were added to an Excel file for ease of

analysis. Then, the plot of Data no. vs magnetic field strength readings were plotted to

identify the point at which the EMP signal was registered. Figure 5.18 displays this plot

(for the top sensor unit) and the spike at approximately data no 2300. The exact point

at which the spike occurred was data no. 2294

44

Figure 5. 18 Magnetic field strength plot of the top sensor

Then, the timestamp of the second image captured was added as the timestamp of Data

no 2294. Then the consequent timestamps were obtained by adding 10 milliseconds to

the timestamp of the previous data. Next, the plot of data no vs acceleration values

were obtained to approximately figure out the start and end of the gait cycle. Figure

5.19 shows this plot. Unlike the plot in the drop test, this is slightly complicated due to

movement of the sensors in all three axis.

Figure 5. 19 Acceleration plot of the top sensor

The data from data no 2300 to 4181(shown by region A in figure 5.19) can be ignored

as these correspond to the movement of the subject after EMP synchronization (position

45

shown in figure 5.17) to the start of the gait cycle position. The subject stood at rest for

a few seconds when he reached the starting position. Then, he started walking (shown

by region B in figure 5.19). The same method was used for the consequent tests as

well. Next, the image frames obtained were analysed and the image frames

corresponding to the beginning and the finish of the gait cycle where obtained. The gait

cycle started at image frame ‘ex613’ and finished at image frame ‘ex 705’. These image

frames along with some intermediate image frames are shown in the following figures

to illustrate a complete gait cycle.

Figure 5. 20 ‘ex613’ on the left and ‘ex705’ on the right

Figure 5. 21 Some intermediate image frames

Next, the timestamps of the start and finish image frames were compared to the

timestamps of the acceleration in x axis. In this case the x axis is parallel to the ground

and is in the opposite direction to the direction of movement. Therefore, the acceleration

values start decreasing from the value at rest. Similar to the drop test analysis, the start

data and end data have been highlighted in blue and orange colours respectively. The

acceleration starts decreasing (goes negative) at data no 4480 with a timestamp of

11:34:30.701. At data no 4818 the acceleration values start stabilizing back to ‘rest’

values. The timestamp of this data is 11:34:34.081. The timestamps of the image

46

frames ‘ex613’ and ‘ex705’ have been compared to the top sensor unit data timestamps

in the table 5.2. Figure 5.22 shows the image timestamps. Rows 625 to 700 have been

hidden in the figure to show both timestamps in the same image.

Figure 5. 22 Timestamps of image frames ‘ex613’ and ‘ex705’

Table 5. 2 Top sensor and image frame timestamps compared

Position Timestamp of

sensor data

Timestamp of

image

Difference

Start 11:34:30.701 11:34:30.724 23 milliseconds

Finish 11:34:34.081 11:34:34.108 27 milliseconds

The final task was to do the same for the bottom sensor. Since both the top and bottom

sensor image frames captured were the same, the image timestamps for start and finish

of the gait cycle will be the same. The bottom sensor unit, unlike the top sensor unit,

was programmed to turn off after 2 minutes after turning on. This created additional 1

minute of data which was not useful and created issues while plotting graphs. Therefore,

all data after data number 5850 (the amount recorded by the top sensor) were deleted

for analysis purposes.

47

The magnetic field strength plot was created to find the approximate location of the

electromagnetic pulse spike. The figure 5.23 shows the spike at approximately between

data no. 1954 and 2171. Upon closer analysis the exact point is located as data no 2067.

Again, the timestamp of the second image captured, ‘ex1’, was added as the timestamp

of this data. The consequent timestamps were also obtained by adding 10 milliseconds

to the previous timestamp.

Figure 5. 23 Magnetic field strength spike of bottom sensor

Figure 5. 24 Acceleration plot of the bottom sensor

The data no vs acceleration values plot is shown in the above figure 5. 24. Acceleration

of x axis starts varying at data no. 4255 and the timestamp here is 11:34:30.721. The

48

gait cycle ends at data no. 4594 and the timestamp here is 11:34:34.111. The image

timestamps have been compared to the bottom sensor timestamps in the table 5.3

Table 5. 3 Bottom sensor and image frame timestamps compared

Position Timestamp of

sensor data

Timestamp of

image

Difference

Start 11:34:30.721 11:34:30.724 3 milliseconds

Finish 11:34:34.111 11:34:34.108 3 milliseconds

The accelerometer data (x axis) of both the top and the bottom sensor after the

synchronization signal were also plotted to show that the EMP signal indeed did

synchronize the data. The following figure 5.25 clearly shows (both signals having

similar pattern) that both the sensor data have been synchronized.

Figure 5. 25 Acceleration data of both sensor units after synchronization

The same type of gait cycle was carried out 9 more times in a similar way and the results

have been tabulated in the table below. Test no. 8 had some wiring issues (loose wiring)

with the EMP coil and didn’t produce the electromagnetic pulse. Therefore, this test

results were excluded from table 5.4.

49

Table 5. 4 Comparison of timestamps from further tests

Gait

Test

No.

Sensor

Position

Position Timestamp of

sensor data

Timestamp of

image

Difference

2 Top sensor Start (ex390) 11:38:49.853 11:38:49.890 36 ms

Finish (ex492) 11:38:52.993 11:38:52.949 43 ms

Bottom

Sensor

Start (ex390) 11:38:49.843 11:38:49.890 46 ms

Finish (ex492) 11:38:52.973 11:38:52.949 24 ms

3 Top sensor Start (ex471) 11:43:55.542 11:43:55.533 9 ms

Finish (ex564) 11:43:58.782 11:43:58.793 1 ms

Bottom

Sensor

Start (ex471) 11:43:55.622 11:43:55.533 89 ms

Finish (ex564) 11:43:58.792 11:43:58.793 1 ms

4 Top sensor Start (ex306) 11:48:19.618 11:48:19.637 19 ms

Finish(ex411) 11:48:23.208 11:48:23.127 81 ms

Bottom

Sensor

Start (ex471) 11:48:19.688 11:48:19.637 51 ms

Finish (ex564) 11:48:23.198 11:48:23.127 71 ms

5 Top sensor Start (ex497) 11:55:54.673 11:55:54.753 80 ms

Finish (ex587) 11:55:58.193 11:55:58.213 20 ms

Bottom

Sensor

Start (ex497) 11:55:54.713 11:55:54.753 40 ms

Finish (ex587) 11:55:58.263 11:55:58.213 50 ms

6 Top sensor Start(ex623) 12:16:06.151 12:16:06.086 75 ms

Finish(ex721) 12:16:09.271 12:16:09.352 83 ms

50

Table 5.4 Comparison of timestamps from further tests ……… continued

Gait

Test

No.

Sensor

Position

Position Timestamp

of sensor

data

Timestamp

of image

Difference

6 Bottom

Sensor

Start(ex623) 12:16:06.041 12:16:06.086 45 ms

Finish(ex721) 12:16:09.431 12:16:09.352 79 ms

7 Top

sensor

Start (ex638) 12:19:55.780 12:19:55.806 26 ms

Finish (ex734) 12:19:59.040 12:19:58.985 55 ms

Bottom

Sensor

Start (ex638) 12:19:55.750 12:19:55.806 56 ms

Finish (ex734) 12:19:58.970 12:19:58.985 15 ms

9 Top

sensor

Start (ex569) 12:30:38.135 12:30:38.189 54 ms

Finish (ex671) 12:30:41.605 12:30:41.589 16 ms

Bottom

Sensor

Start (ex569) 12:30:38.045 12:30:38.189 144 ms

Finish (ex671) 12:30:41.485 12:30:41.589 104 ms

10 Top

sensor

Start (ex561) 12:36:39.105 12:36:39.089 16 ms

Finish (ex652) 12:36:42.105 12:36:42.112 7 ms

Bottom

Sensor

Start (ex561) 12:36:38.995 12:36:39.089 91 ms

Finish (ex652) 12:36:42.025 12:36:42.112 87 ms

Tests 1 to 5 were conducted with the sensors attached to the left leg of the subject. The

subject walked from the right side of the image frame to the left. Tests 6-10 were

conducted with the sensors attached to the right leg and walked from the left side of

the image frame to the right. The test results show that the difference between the

image frame timestamp and the sensor data timestamps are within 100ms. The only

exception occurs in test number 9 bottom sensor where the differences are 144ms and

104ms.

51

These results show that the synchronization of camera image frames and IMU data

within 100ms (except in one case). The method however is not 100 percent error proof.

Since the IMU data that were analysed were the acceleration data, it can be quite

difficult to pinpoint the exact instance at which the leg started moving or the point at

which it is at rest.

52

SUMMARY

The first and main objective of this thesis was to synchronize image frames obtained

from a camera, transmitted to the computer in real time, with data from IMU sensors

which are not transmitted to the computer in real time. This objective was completed

as shown by the results in the previous chapter. All the tests (box drop test and gait

tests) have shown that the synchronization of the image frames with IMU data were

within 100ms and only above 100ms in one case (test no 9) . As discussed previously,

these differences occurred mainly due to the gap between the image acquisition rate

and the sensor data acquisition rate. Also, the acceleration values used to find the start

and end of the gait cycle could cause some errors. This is because an acceleration value

of zero could mean 2 possible states. One is that the sensor is at rest. The other is that

the sensor is moving at a constant velocity. The IMU sensors used in this thesis register

acceleration values up to 4 decimal places and can capture even tiny movements. Due

to these reasons, it is difficult to pinpoint the exact point at which the movement started.

There are a few further improvements that can be done in the future to make the

synchronization more accurate. The use of a highspeed camera which can capture

images at the same rate as the IMU sensor can drastically reduce the difference in

timestamps between the images and the sensor data. This would also be very useful

while analysing quick or minor movements of the sensors as the video can be slowed

down to a certain extent without missing intermediate frames.

The second objective was to synchronize the image frames with the computer clock.

The webcam used in this thesis did not contain an internal clock as many highspeed

cameras such as the uEye camera do. Therefore, the image frames from the web camera

had to be timestamped with the computer clock as the reference as it was the only clock

available. However, the image capture delay test shown in the Tests and Results chapter

can be used for a camera with its own clock to find out total delay (exposure delay +

transmission delay) and thereby synchronize the image timestamps with the computer

clock as the reference. This method would yield very accurate results for a camera which

can capture images at a fixed frame rate.

This method consumed a lot of time during analysis because it was done manually by

going through each and every image obtained in the test. But by conducting many tests

and obtaining thousands of image frames, a computer vision/ machine learning system

could be used in the future to figure out the delays automatically. This would make the

system more efficient and would require specialized knowledge.

53

The third objective was to use a Python script to do camera setup, image collection,

timestamping and synchronization. Everything except the synchronization part was

successfully completed using the Python script. Synchronization part couldn’t be

completed here due to complexities in data analysis and had to be done manually. This

part could be accomplished by a Python script in the future by employing several

libraries which deal with data analysis. Also, a Python based GUI could be used to

display, slow down, speed up, zoom in and out the image stream (video) and the

corresponding data simultaneously. In the case of Gait analysis, this would make

viewing and analysis of the data by as doctors or regular patients easier and convenient.

The final objective was to make the Python script simple and versatile enough so that

cameras could be changed without a major overhaul in Python script. This objective too

was accomplished successfully. The script used for image acquisition here can be used

with almost any web camera. The script also could be used for highspeed and other

external cameras but the camera setup, image acquisition and timestamping procedure

will have to be modified. New libraries that work with the camera will have to be

imported and used based on the camera and its brand.

54

KOKKUVÕTE

Käesoleva töö esmane ja peamine eesmärk oli sünkroniseerida kaamerast saadud ja

reaalajas arvutisse edastatavad kaadrid IMU (inertsiaalne mõõteseade) andurite

andmetega, mida ei edastata arvutisse reaalajas. See eesmärk täideti, nagu näitavad

eelmise peatüki tulemused. Kõik testid (kasti langemise test ja kõnnakutestid) näitasid,

et kaamera kaadrite sünkroniseerimisel IMU andmetega oli nihe 100 ms piires ja ainult

ühel juhul üle 100 ms (test nr 9). Nagu varem arutletud, ilmnesid need erinevused

peamiselt piltide salvestamise sageduse ja anduri andmete salvestamise sageduse

erinevuse tõttu. Samuti võivad kõnnaku alguse ja lõpu leidmiseks kasutatud

kiirendusväärtused põhjustada mõningaid vigu. Seda seetõttu, et nullkiirenduse väärtus

võib tähendada kahte võimalikku olekut: andur on puhkeasendis või andur liigub

ühtlasel kiirusel. Selles töös kasutatud IMU-d registreerivad kiirenduse väärtused kuni

4 kümnendkoha täpsusega ja suudavad tuvastada isegi väikeseid liigutusi. Nendel

põhjustel on raske täpselt kindlaks teha liikumise alguspunkti.

Sünkroonimise täpsemaks muutmiseks saaks tulevikus veel paar täiendust teha. Kiire

kaamera kasutamine, mille kaadrisagedus ühtiks sensorite andmesalvestuse kiirusega,

võib drastiliselt vähendada kaadrite ja andurite andmete ajatemplite erinevust. Samuti

oleks see väga kasulik andurite kiirete või väiksemate liikumiste analüüsimisel, kuna

videot saab aeglustada ilma kaadreid kaotamata.

Selle töö teine eesmärk oli sünkroonida video kaadrid arvuti kellaga. Selles lõputöös

kasutatud veebikaamera ei sisaldanud sisemist kellamoodulit, mida kasutavad paljud

suure kiirusega kaamerad, näiteks uEye kaamera. Veebikaamera kaadrid tuli

ajatempliga varustada arvuti kella abiga, kuna see oli ainus saadaval olev kell

süsteemis. Peatükis Tests and Results näidatud pildi jäädvustamise viivituskatset saab

aga kasutada oma kellaga kaamera jaoks, et teada saada kogu viivitus (särituse viivitus

+ andmete edastamise viivitus) ja sünkroonida seeläbi kaadrite ajatemplid arvutikellaga

kui võrdlusalusega. See meetod annaks väga täpseid tulemusi kaamera jaoks, mis

kasutab püsivat kaadrisagedust.

Kasutatud meetodi puhul kulus analüüsiks palju aega, kuna see tehti käsitsi, vaadates

läbi kõik testi käigus salvestatud kaadrid. Paljude testide läbiviimisel ja tuhandete piltide

hankimisel võiks edaspidi kasutada arvutinägemist / masinõppet, et viivitused

automaatselt välja selgitada. See muudaks süsteemi tõhusamaks ja nõuaks eriteadmisi.

Kolmas eesmärk oli Pythoni skripti kasutamine kaamera seadistamiseks, piltide

kogumiseks, ajatemplite lisamiseks ja sünkroonimiseks. Kõik, välja arvatud

55

sünkroniseerimine, õnnestus Pythoni skripti abil edukalt lõpule viia. Andmeanalüüsi

keerukuse tõttu ei saanud siin sünkroniseerimise osa lõpule viia ja see tuli teha käsitsi.

Selle osa saab tulevikus Pythoni skripti abil täita, kasutades mitut andmeanalüüsiga

tegelevat teeki. Samuti võiks Pythoni põhist GUI-d kasutada pildivoo (video) ning

vastavate andurist saadud andmete kuvamiseks, aeglustamiseks, kiirendamiseks,

suurendamiseks ja vähendamiseks jne. Kõnnaku analüüsi puhul muudaks see andmete

vaatamise ja analüüsi arstide või tavapatsientide poolt lihtsamaks ja mugavamaks.

Lõppeesmärk oli muuta Pythoni skript piisavalt lihtsaks, aga samas mitmekülgseks, et

saaks kasutada erinevaid kaameraid, ilma vajaduseta Pythoni skripti tõsiselt muuta. Ka

see eesmärk saavutati edukalt. Käesolevas töös piltide saamiseks kasutatud skripti saab

kasutada peaaegu iga veebikaameraga. Skripti võiks kasutada ka kiirete ja muude

väliste kaamerate jaoks, kuid sellisel juhul tuleb kaamera seadistust, piltide hankimise

ja ajatempli protseduuri muuta, vastavalt kasutatavale kaamerale. Samuti tuleb

importida vastava kaamera jaoks mõeldus teegid.

56

LIST OF REFERENCES

[1] H. Y. Kim, “Modeling and tracking time-varying clock drifts in wireless

networks,” no. August, 2014.

[2] “Electromagnetic-radiation absorption by water.”

https://www.researchgate.net/publication/321740338_Electromagnetic-

radiation_absorption_by_water (accessed Oct. 26, 2020).

[3] U. M. Qureshi et al., “RF path and absorption loss estimation for

underwaterwireless sensor networks in differentwater environments,” Sensors

(Switzerland), vol. 16, no. 6, p. 890, Jun. 2016, doi: 10.3390/s16060890.

[4] J. M. Hovem, “Underwater acoustics: Propagation, devices and systems,” J.

Electroceramics, vol. 19, no. 4, pp. 339–347, 2007, doi: 10.1007/s10832-007-

9059-9.

[5] Q. Wang, H. N. Dai, Q. Wang, M. K. Shukla, W. Zhang, and C. G. Soares, “On

connectivity of UAV-assisted data acquisition for underwater internet of things,”

IEEE Internet Things J., vol. 7, no. 6, pp. 5371–5385, 2020, doi:

10.1109/JIOT.2020.2979691.

[6] M. WHITTLE, “Applications of gait analysis,” in Gait Analysis, Elsevier, 1985, pp.

177–193.

[7] S. A. Bridenbaugh and R. W. Kressig, “Laboratory review: The role of gait

analysis in seniors’ mobility and fall prevention,” Gerontology, vol. 57, no. 3, pp.

256–264, 2011, doi: 10.1159/000322194.

[8] “Exposure time - SmartRay.” https://www.smartray.com/glossary/exposure-

time/ (accessed Nov. 17, 2020).

[9] K. Skiadopoulos et al., “Synchronization of data measurements in wireless

sensor networks for IoT applications,” Ad Hoc Networks, vol. 89, pp. 47–57,

2019, doi: 10.1016/j.adhoc.2019.03.002.

[10] J. Wahslen, I. Orhan, T. Lindh, and M. Eriksson, “A novel approach to multi-

sensor data synchronisation using mobile phones,” Int. J. Auton. Adapt.

Commun. Syst., vol. 6, no. 3, pp. 289–303, 2013, doi:

10.1504/IJAACS.2013.054830.

57

[11] E. Cippitelli et al., “Time synchronization and data fusion for RGB-Depth

cameras and inertial sensors in AAL applications,” 2015 IEEE Int. Conf.

Commun. Work. ICCW 2015, pp. 265–270, 2015, doi:

10.1109/ICCW.2015.7247189.

[12] “Cristian’s Algorithm - GeeksforGeeks.”

https://www.geeksforgeeks.org/cristians-algorithm/ (accessed Jan. 08, 2021).

[13] J. Nikolic et al., “A synchronized visual-inertial sensor system with FPGA pre-

processing for accurate real-time SLAM,” Proc. - IEEE Int. Conf. Robot. Autom.,

pp. 431–437, 2014, doi: 10.1109/ICRA.2014.6906892.

[14] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization,

mapping and sensor-to-sensor Self-calibration,” Int. J. Rob. Res., vol. 30, no. 1,

pp. 56–79, 2011, doi: 10.1177/0278364910382802.

[15] M. Li and A. I. Mourikis, “Online temporal calibration for camera-IMU systems:

Theory and algorithms,” Int. J. Rob. Res., vol. 33, no. 7, pp. 947–964, 2014,

doi: 10.1177/0278364913515286.

[16] “Introduction to Kalman Filter and Its Applications | IntechOpen.”

https://www.intechopen.com/books/introduction-and-implementations-of-the-

kalman-filter/introduction-to-kalman-filter-and-its-applications (accessed Oct.

26, 2020).

[17] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration

for multi-sensor systems,” IEEE Int. Conf. Intell. Robot. Syst., pp. 1280–1286,

2013, doi: 10.1109/IROS.2013.6696514.

[18] “ARM® Cortex®-M0+ SAM D21G.”

https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_D

ataSheet_DS40001882F.pdf (accessed May 14, 2021).

[19] “Bosch BMX160.” https://www.bosch-

sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmx160-

ds0001.pdf (accessed May 14, 2021).

[20] “MS5837-02BA.”

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrt

rv&DocNm=MS5837-02BA01&DocType=DS&DocLang=English (accessed May

14, 2021).

58

[21] “RV-3028-C7.”

https://www.microcrystal.com/fileadmin/Media/Products/RTC/Datasheet/RV-

3028-C7.pdf (accessed May 14, 2021).

[22] “Industrial microSD Cards | Western Digital.”

https://www.westerndigital.com/products/commercial-removable-

storage/industrial-microsd (accessed May 14, 2021).

[23] “50mAh Lithium polymer battery.”

https://www.tme.eu/Document/54b17ccb776f7893ef046d26519e6622/LP30102

0CL.40.pdf (accessed May 14, 2021).

[24] “IDS Software Suite - IDS Imaging Development Systems GmbH.”

https://en.ids-imaging.com/ids-software-suite.html (accessed May 14, 2021).

[25] “All Python and Arduino codes used in ‘Synchronization of Camera and Inertial

Measurement Unit’ by Balakrishnan Guruprasath (195425MAHM) are available

here.” https://github.com/BalakrishnanGuruprasath/cameraimusync (accessed

May 14, 2021).

[26] C. Monoli, J. F. Fuentez-Perez, N. Cau, P. Capodaglio, M. Galli, and J. A. Tuhtan,

“Land and Underwater Gait Analysis Using Wearable IMU,” IEEE Sens. J., vol.

21, no. 9, pp. 11192–11202, 2021, doi: 10.1109/JSEN.2021.3061623.

