

Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IDX70LT

Margarita Aravina 100257IAPMM

DEVELOPING METHODS FOR ANALYSIS

AND EVALUATION OF REGRESSION

TESTING PROCESS

Master’s thesis

Supervisor: Jaak Tepandi

 Professor

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IDX70LT

Margarita Aravina 100257IAPMM

REGRESSIOONITESTIMISE PROTSESSI

ANALÜÜSI JA HINDAMISE MEETODITE

ARENDAMINE

Magistritöö

Juhendaja: Jaak Tepandi

 Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Margarita Aravina

26.04.2016

4

Abstract

Regression testing is an integral part of the software quality assurance process, essential

for gaining confidence in the quality of modified software. Regression testing is an

extremely expensive activity – every new version of a software has to be regression

tested, and the amount of regression testing effort increases as the software evolves.

Thus, effective regression testing strategies and approaches are crucial for the effective

quality assurance system. Many studies on optimization of regression testing exist, most

of them are focused on the analysis and evaluation of various optimization methods.

The current work focuses on the analysis and evaluation of the overall regression testing

process. The main goal is to develop systematic methods for the analysis and evaluation

of the overall regression testing process with the aim of its further improvement.

As a result of the given work two reference and guideline models have been developed

for the analysis, evaluation and further improvement of the maturity, efficiency and

effectiveness of regression testing process. The first model is intended for the analysis,

evaluation and improvement of the level of process maturity, which is based on the

evaluation of various process characteristics, like strategies and approaches employed.

The second model represents a set of core metrics for the analysis and evaluation of the

efficiency and effectiveness of regression testing.

The maturity model can also be used as reference model for establishing a mature and

effective regression testing practice.

The models were evaluated by applying them to a real regression testing practice. As a

result, key areas for improvement in the regression testing process have been detected

and corresponding proposals for improvements have been made.

This thesis is written in English and is 68 pages long, including 6 chapters, 5 figures and

3 tables.

5

Annotatsioon

Regressioonitestimise protsessi analüüss ja hindamise

meetodite arendamine

Regressioonitestimine on tarkvara kvaliteedi tagamise protsessi lahutamatu osa, mis on

oluline modifitseeritud tarkvara kvaliteedi usaldatavuse saavutamiseks.

Regressioonitestimine on äärmiselt kulukas tegevus – iga uut tarkvaraversiooni tuleb

regressioonitestida ning tarkvara arenedes suureneb ka regressioonitestimise maht.

Seega on efektiivsed regressioonitestimise strateegiad ja lähenemisviisid otsustava

tähtsusega efektiivse kvaliteeditagamise süsteemi jaoks. Regressioonitestimise

optimeerimise kohta on olemas mitmeid uuringuid ning enamus neist keskenduvad

erinevate optimeerimismeetodite analüüsile ja hindamisele. Käesoleva töö keskmes on

üldise regressioonitestimise protsessi analüüs ja hindamine. Põhiülesandeks on luua

süstemaatilised meetodid üldise regressioonitestimise protsessi analüüsiks ja

hindamiseks nende edasise täiustamise eesmärgil.

Käesoleva töö tulemusena koostati kaks etalon- ja juhtmudelit regressioonitestimise

protsessi valmiduse, tõhususe ja efektiivsuse analüüsiks, hindamiseks ja täiustamiseks.

Esimene mudel on mõeldud protsessi valmiduse analüüsiks, hindamiseks ja

arendamiseks, mis põhineb erinevate protsessi karakteristikute hindamisel, nagu

kasutusel olevad strateegiad ja käsitlused. Teine mudel kujutab endast põhiparameetrite

kogumit regressioonitestimise tõhususe ja efektiivsuse analüüsiks ja hindamiseks.

Vastavaid mudeleid saab kasutada ka etalonmudelitena valmisoleva ja efektiivse

regressioonitestimise praktikate loomisel.

Mudeleid rakendati reaalse regressioonitestimise praktika analüüsiks ja hindamiseks.

Selle tulemusena on välja selgitatud täiustamist vajavad põhivaldkonnad ning esitatud

vastavad parandusettepanekud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 68 leheküljel, 6 peatükki, 5

joonist, 3 tabelit.

6

List of abbreviations and terms

RT Regression Testing

CMMI Capability Maturity Model Integration

TMMi Test Maturity Model Integration

PA Process Area

SG Specific Goal

SP Specific Practice

RTMM Regression Testing Maturity Model

CI

Continuous Integration. The practice, in software engineering,

of merging all developer working copies to a shared mainline

several times a day [50].

Error Guessing

A test method in which test cases used to find bugs in programs

are established based on experience in prior testing. The scope

of test cases usually relies on the software tester involved, who

uses past experience and intuition to determine what situations

commonly cause software failure, or may cause errors to appear

[27].

Exploratory Testing
An approach to software testing that is concisely described as

simultaneous learning, test design and test execution [28].

GUI Graphical User Interface

SUT System Under Test

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon Regressioontestimise protsessi analüüss ja hindamise meetodite

arendamine.. 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 10

List of tables ... 11

1 Introduction ... 12

1.1 Background ... 12

1.2 Goals and Objectives .. 13

1.3 Scope .. 14

1.4 Outline of the Thesis... 14

2 Regression Testing .. 16

2.1 Software Regression ... 16

2.2 Regression Testing Definition, Goals and Purposes .. 16

2.3 Regression Testing in Software Development Process .. 17

2.3.1 Sequential Software Development Methodologies 17

2.3.2 Iterative-incremental Software Development Methodologies 18

2.4 Regression Testing as part of overall Test Plan ... 18

2.5 Regression Testing Approaches and Methodologies.. 20

2.5.1 Automated vs. Manual ... 23

2.5.2 Regression Testing Optimization Techniques ... 25

2.5.3 Selection, Minimization and Optimization Methods 26

2.6 Researches on Regression Testing ... 27

2.7 Regression Testing Practices .. 29

3 Regression Testing Maturity Model (RTMM) .. 33

3.1 Introduction to Test Maturity Model (TMMi) .. 34

3.1.1 TMMi Maturity Levels and Process Areas ... 34

8

3.1.2 Structure of the TMMi ... 37

3.2 RTMM Overview ... 38

3.2.1 RTMM Maturity Level 1: Initial ... 40

3.2.2 RTMM Maturity Level 2: Managed .. 41

3.2.3 RTMM Maturity Level 3: Measured ... 41

3.2.4 RTMM Maturity Level 4: Optimized .. 41

3.2.5 RTMM Maturity Level 5: Integrated .. 42

3.2.6 RTMM Maturity Goals .. 42

3.2.7 RTMM Maturity Actions .. 43

4 Regression Testing Metrics Model .. 53

4.1 Introduction to Software Metrics .. 53

4.1.1 Software Measurement and Analysis .. 53

4.1.2 Software Metrics ... 54

4.1.3 Software Measurement and Analysis Frameworks and Standards 55

4.1.4 Software Testing Metrics .. 57

4.2 Regression Testing Metrics .. 61

4.2.1 Regression Test Coverage ... 62

4.2.2 Regression Test Suite Efficiency ... 63

4.2.3 Regression Test Suite Effectiveness .. 65

4.2.4 Regression Testing Effectiveness .. 66

5 Practical Application ... 67

5.1 Background ... 67

5.1.1 Software Application ... 67

5.1.2 Development Methodology ... 68

5.1.3 Release Schedule ... 68

5.1.4 Test Organization .. 68

5.1.5 Regression Testing .. 69

5.2 Analysis .. 70

5.2.1 Process Static Analysis .. 70

5.2.2 Process Dynamic Analysis .. 77

5.3 Evaluation ... 77

5.3.1 Process Evaluation ... 77

5.3.2 Model evaluation ... 79

6 Summary .. 80

9

References .. 81

10

List of figures

Figure 1. Regression Testing Approaches and Methodologies 23

Figure 2. TMMi Maturity Levels and Process Areas ... 35

Figure 3. TMMi Structure and Components .. 38

Figure 4. RTMM Maturity Levels .. 40

Figure 5. RTMM in the context of TMMi .. 44

11

List of tables

Table 1. Researches on Regression Testing ... 28

Table 2. Software Testing Metrics ... 59

Table 3. Regression Testing Practice Analysis using RTMM Model 70

12

1 Introduction

1.1 Background

Regression testing, or testing of modified software with the aim to ensure that no

regression defects were introduced in result of changes, is an integral part of the

software quality assurance process. It is essential for gaining confidence in the quality

of modified software, what is especially important when software is developed

iteratively and incrementally, continually evolved and changed frequently. Every

change, even a small one, is a potential source of the software regression – unexpected

defects in the previously working software. Regression testing is intended to mitigate

this risk: enable early detection of regression defects and ensure continuous quality

assurance.

As much regression testing is important, so much it is expensive. Regression testing is a

time and effort consuming activity – every time a new version of software is released it

should be regression tested, also the amount of regression testing increases as software

evolves. The frequency with which regression testing should be performed and the

continuous increase of the amount of required effort lead to the fact that regression

testing consumes much more resources than any other testing-related activity in a

project. Studies show that up to 80% of the overall testing effort falls on the regression

testing [24].

The importance of regression testing and its high cost imply that effective strategies for

regression testing are crucial for the effectiveness of the test process, quality assurance,

and generally for the success of a software development project.

There are many studies on how to improve the efficiency and effectiveness of regression

testing. Most of them are focused on the optimization of the process, specifically on the

regression testing optimization techniques, such as minimization, selection and

prioritization, and the effectiveness of these techniques in different contexts. The given

work focuses on the regression testing process in general. The primary goal of this

13

thesis is to develop systematic methods for the analysis and evaluation of regression

testing process aimed at improving it. No relevant studies were identified.

In order to be able to analyze and evaluate the process of regression testing from

different perspectives and aspects, two methods of analysis are proposed. One of the

proposed methods can be referred as static analysis. Static analysis of regression testing

process is performed based on the evaluation of relatively static characteristics of the

process, like strategies and approaches employed, and aimed at assessing the level of

process maturity. The introduced model for static analysis of regression testing is

intended for the analysis, evaluation and improvement of the level of process maturity,

which depends on strategies and approaches employed, and the effectiveness of these

approaches in the context of regression testing. The other method can be referred as

dynamic analysis. Dynamic analysis of regression testing process is performed based on

process performance indicator data obtained during the execution of the process, and

aimed at assessing the efficiency and effectiveness of the process. The introduced model

for dynamic analysis of regression testing represents a set of core metrics for measuring

the efficiency and effectiveness of the process.

The proposed models are intended to serve as reference and guideline models for the

regression testing process establishment, analysis, evaluation and further improvement.

The models can be considered as complementary and can be used in combination in

order to get better insight into a process of regression testing – analyze and evaluate the

existing process from different perspectives, considering its various aspects. The

maturity model can also be used as reference models for establishing mature and

effective regression testing practices.

1.2 Goals and Objectives

The goals and objectives of this thesis are the following:

 Develop methods and models for the analysis and evaluation of regression

testing process:

o Develop a framework for analysis and evaluation of maturity of

regression testing process.

14

o Develop a metrics model for analysis and evaluation of the efficiency

and effectiveness of regression testing process.

 Apply the proposed models to the real world context:

o Analyze and evaluate a real regression testing practice based on the

proposed methods.

o Examine and evaluate the proposed models in terms of their applicability

to the real world context.

1.3 Scope

The current work is focused on the analysis and evaluation of maturity, efficiency and

effectiveness of the overall regression testing process. The analysis and evaluation of

the effectiveness of various test strategies and approaches (e.g. manual vs. automated

testing), regression testing optimization techniques (minimization, selection and

prioritization) and methods are out of scope.

1.4 Outline of the Thesis

The given work is organized as follows:

 Chapter 2 contains introduction to regression testing:

o The definition of regression testing;

o Systematic review on regression testing;

o Review of researches on regression testing;

o Review of regression testing practices;

 In Chapter 3 the Regression Testing Maturity Model (RTMM) is introduced.

This chapter includes:

o Research on Test Maturity Model (TMMi);

o Development of maturity model for regression testing process;

 In Chapter 4 the Regression Testing Metrics Model is introduced. This chapter

includes:

o Research on software measurement and analysis;

o Research on software measurement process standards and frameworks;

15

o Research on software metrics and software testing metrics;

o Development of core regression testing metrics;

 Chapter 5 contains analysis and evaluation of industrial regression testing

practice based on the proposed methods:

o Analysis and evaluation of industrial regression testing practice based on

RTMM.

16

2 Regression Testing

2.1 Software Regression

Software regression is a software quality deterioration which may happen in result of

introducing any kind of changes to the previously stable parts of a software system.

Software regression can be:

 Functional – meaning faults in the tested and previously operating functions of a

software system;

 Non-functional – meaning deterioration of non-functional characteristics of a

software system, for example decrease in software performance, increase of

software vulnerability to security threats, etc.

The changes that may affect the quality of a software system include:

 Change of the executable code of a software (for example, bug fixes, system

enhancements, system optimization);

 Change of the underlying components (third-party components or operating

system components);

 Change of the configuration of a software system (for example, hardware /

network changes);

 Change in any user data. [23]

In order to ensure that no regressions (functional and non-functional regression defects)

have been introduced to a software system in result of changes, or reveal regression

defects, regression testing is performed.

2.2 Regression Testing Definition, Goals and Purposes

ISTQB Glossary gives the following generalized definition for regression testing:

17

“Regression Testing is a testing of a previously tested program following modification

to ensure that defects have not been introduced or uncovered in unchanged areas of the

software as a result of the changes made. It is performed when the software or its

environment is changed.” [16]

In a broader sense regression testing can be defined as follows:

 Regression testing is a distinct type of software testing, which essentially

contrasts from the primary testing process (test planning and verification of new

(untested) functional and non-functional features of a software product) due to

the differences in purposes, goals and methods.

 Regression testing is a repetitive testing of the previously tested software

components, functional and non-functional features of a software product with

the aim to ensure that no regressions (functional defects, decline in performance,

etc.) were introduced in result of changes in a software or its environment.

 The triggers of regression testing are any changes or modifications introduced to

a software product or its environment (bug fixes, system enhancements, system

optimization, system configuration changes, system components changes,

network / hardware changes, etc.).

 Regression testing can be performed on any test level (component, integration,

system), with any types of tests (unit, functional, performance, etc.), and at

different stages of the development process, depending on triggers, goals and

purposes.

 As software development is a highly continuous process, the results of

regression testing serve as an important indicator of software quality.

2.3 Regression Testing in Software Development Process

2.3.1 Sequential Software Development Methodologies

The life cycle model of sequential software development methodologies, like Waterfall,

consists of distinct, sequential phases, where each subsequent phase starts when its

preceding phase has been successfully completed. Waterfall phases in the order of their

18

execution are the following: System and Software Requirements, Analysis, Design,

Coding, Testing, and Operations and Maintenance [17].

In Waterfall development regression testing usually takes place during Maintenance

phase which consists in fixing defects found during operational use of a software

system, optimization, adding enhancements to product functionality or deleting obsolete

capabilities to meet evolving customer requirements. Each new release of the product

has to be regression tested to ensure that previously working functionality has not been

broken by introduced changes.

2.3.2 Iterative-incremental Software Development Methodologies

The life cycle model of iterative-incremental software development methodologies, like

Agile (XP, Scrum), consists of multiple iterations, where each iteration involves

different software development activities, such as planning, designing, coding, and

testing, and results in a working product.

The main idea of iterative-incremental development, and Agile methodology in

particular, is to “build properly tested product increments within short iterations” [18].

Therefore, testing in general and effective regression testing in particular have an

important role in Agile development. In agile context the main purposes of regression

testing are to ensure continuity of business functions, and to give a rapid feedback on

quality of a software system to allow development team to respond efficiently on

encountered issues [19].

In Agile development regression testing usually takes place either at the end of each

iteration or as a part of continuous integration process after each build in the form of

automated tests [20, 21].

2.4 Regression Testing as part of overall Test Plan

Regression testing, as part of overall testing process on the one hand, and as quality

assurance discipline with its own specific goals and methods on the other hand, requires

planning and certain degree of formalization. It is considered a good practice to plan

regression testing activity as a part of the overall testing strategy, and outline regression

testing goals and methods in the outset of the project. When planning regression testing

19

activity, the following points need to be clearly defined:

 The goals of regression testing, and / or the quality goals expected to be

accomplished by employing regression testing;

 The risks addressed by regression testing;

 Regression testing strategy, for example:

o Systematic or exploratory testing, or combination of both;

o Manual or automated testing, or combination of both;

o Automation strategy.

 Regression testing approach, for example:

o At what level(s) regression testing is performed (e.g. component level,

system level, business level) [49];

o Types of testing to be performed for regression testing (e.g. functional

testing, non-functional testing);

o Types of test cases to be used for regression testing (e.g. GUI test cases,

functional test cases, system test cases, positive test cases, negative test

cases, boundary / corner test cases, etc.);

o ‘Retest all’ or selective testing;

o The source of regression test cases (e.g. re-use existing test cases, create

dedicated regression test cases);

o Regression testing optimization techniques to be applied (minimization,

selection, prioritization);

o The methods for test suite minimization, test case selection and

prioritization to be applied (ad hoc, error guessing, systematic

approaches);

o The scope and coverage of regression testing:

20

 Items and features to be regression tested;

 Criteria for the selection of test cases (modification-based,

coverage-based, risk analysis-based);

 Expected regression test coverage.

 Regression testing application policy:

o Regression testing triggers (e.g. system enhancements, bug fixes, system

configuration changes, etc.);

o Regression testing execution schedule:

 Periodic execution (e.g. daily, weekly, monthly, etc.);

 Rule-based execution (e.g. after any change, after changing

critical parts only, after certain amount of changes, etc.).

2.5 Regression Testing Approaches and Methodologies

Two main questions arise when planning regression testing: how to test, and what to

test.

The first question comes down to the selection of a testing approach to be applied, and

there are at least two possible options: applying a systematic approach (or so-called

scripted testing) or performing heuristics and experience based exploratory testing*.

The second question consists in determining a scope of regression testing, and may

include:

 Determination of items and features to be covered with regression tests. The

selection can be done based on different kinds of risks, for example, based on

change risks – the risks concerned with introduced changes (selecting items,

functional areas or features that are more affected or may be potentially

affected by changes), business risks (selecting items, functional areas or

features that are more critical or prioritized from business point of view). Also

selection may be dictated by the requirements to test coverage specified in the

21

regression test strategy (e.g., to cover to some degree all items, functional areas

or features);

 Determination of test scenarios and test cases to be executed. The main

requirement in the selection of test cases is that they have to ensure adequate

regression testing:

o On one side, ensure proper testing – address potential risks and the most

critical functionalities; ensure proper coverage, both in terms of

functional coverage and in terms of how these functions are examined

(with what kind of test cases: GUI test cases, functional test cases,

system test cases, positive test cases, negative test cases, boundary /

corner test cases, etc.);

o On the other side, ensure optimal testing – avoid duplication of test

effort and thus be cost effective in terms of time and resources required

for execution.

In case of systematic regression testing approach (scripted testing), it is expected, that

test scenarios have been defined during previous testing sessions and prescribed test

cases and procedures exist. Thereby the determination of a scope of regression testing

mostly comes down to the question of how to select proper test cases among the

existing ones. The most well-known approaches to regression testing and techniques for

selection of effective regression tests – widely studied, described in various literatures

and used in practice – are the following:

 ‘Retest all’ approach. Means execution of all existing test cases for regression

testing. It may be considered as the most reliable approach, but in most cases

practically impossible due to its high cost, time and resource restrictions.

 ‘Selective Testing’ approach. Means execution of a subset of existing test

cases for regression testing. Selective regression testing implies application of

certain regression testing optimization techniques. These techniques are

minimization, selection and prioritization. Regression test suites are compiled

and optimized using various minimization, selection and prioritization

methods:

22

o In an ad hoc way, without application of any systematic approaches.

o With error guessing, or experience and heuristics based approach,

where test cases are selected based on testers knowledge and experience

with a system under test:

 Based on domain knowledge and experience: what are the

business processes, what are the most critical functions, how the

system is used in practice, what are the needs and goals of real

users, etc.

 Based on technical knowledge and experience: how the system

is built, what technologies are used, how the system

communicates with third-party applications, etc.

 Based on testing experience and intuition: what are the typical

problems and defects, how the changes may affect the system,

etc.

o Based on strict rules or guidelines for the selection of tests cases for

regression testing. These rules or guidelines are normally defined as a

part of the regression testing strategy, and may indicate the risks to be

addressed when selecting test cases, the requirements for test coverage

that has to be fulfilled, certain items, functional areas or features that

has to be covered with regression tests, types of tests to be selected, etc.

o By application of systematic methods and algorithms for test suite

minimization, test case selection and prioritization.

Systematic regression testing approach can be implemented both through manual

execution of pre-designed and pre-defined test cases or by automating them.

Exploratory testing does not imply the existence of pre-designed test cases, and test

cases are not defined in advance. Testers identify potential risks, risky areas and test

cases addressing these risks based on error guessing* - prior experience and intuition.

Exploratory testing is done manually.

23

Regression testing approaches and methodologies are depicted in the picture below.

Figure 1. Regression Testing Approaches and Methodologies

2.5.1 Automated vs. Manual

Two general approaches to software testing exist – manual testing and automated

How to test?

Scripted Testing

 Requires Test Cases

 Manual & Automated

Exploratory Testing

 No Test Cases

 Manual

What to test?

How to select Test Cases?
Error Guessing*

Retest All

Apply RT*

Optimization

Techniques:

 Minimization

 Selection

 Prioritization

Optimization

Algorithms &

Methods

Rules & Guidelines

24

testing. Manual testing is carried out manually by human, and automated testing is

executed automatically with the assistance of software test automation tools.

There are many advantages and disadvantages of both automated testing and manual

testing and the benefits of one over another, and also many opinions and debates in the

software development community on which approach (fully manual, fully automated or

some combination) is more reliable and cost-effective, in what cases, and what are the

criteria to define that. Among these disputes, the question of automation of regression

tests is the most topical, because of the repetitive and tedious nature of regression

testing. There is broad agreement that regression tests are the number-one candidates for

automation, because:

 Regression tests are expected to be executed repeatedly over a long period of

time;

 Regression testing is expected to be as fast as possible (especially in case of

agile development, aggressive delivery schedules and time limits), but still

reliable, both in terms of accuracy and the amount of test coverage;

Automated regression tests have numerous apparent advantages in comparison with

manual test execution:

 Automated tests can be executed repeatedly for an extended period of time;

 Automated tests are significantly faster than manual execution;

 Automated tests can be run at any time, even overnight;

 Automated tests can be run simultaneously on different machines, with different

operating systems, against different configurations and test data, etc.;

 Automated regression testing can ensure higher test coverage due to greater

amount of test cases that can be executed in certain time frames compared to

manual execution;

 Few human resources are required to execute automated regression tests.

Also there are some controversial advantages that in some cases can be considered as

25

drawbacks:

 Automated tests are considered to be more accurate and reliable, because they

precisely perform the same operations, and never miss defects that can be

overlooked by a human. The problem is that automated tests never find defects

that are out of the strictly defined path of execution, while testers by means of

exploratory testing and error guessing are able to discover these issues.

The disadvantages of automation are the following:

 Test automation skill-set, including programming skills, is required from testers;

 Time investment is required to establish test automation. This may include time

for developing test automation strategy, developing test automation tools and

frameworks (if internal automation tools are expected to be used), developing

automated tests, etc.

 Financial investments are required. This may include the costs of automaton

tools (if third party automation tools are expected to be used), trainings,

automation environments (hardware), etc.

 Automated tests maintenance can be complicated and time consuming.

When deciding what approach to apply, it is essential to weight all costs and benefits. At

least the following aspects need to be considered [26]:

 The ability of project team to carry out automated testing;

 The complexity of a system under test and, as a consequence, the complexity of

a test automation solution;

 Development cycle and the frequency of test runs;

 The profitability of test automation (cost-benefit analysis).

2.5.2 Regression Testing Optimization Techniques

As it was mentioned in previous sections, there are three main techniques for regression

testing optimization exist. These techniques are – minimization, selection and

26

prioritization.

 Test suite minimization (in some literature referred as reduction) is a process

that seeks to identify and eliminate obsolete or redundant test cases from a test

suite [30]. The goal of test suite minimization is to create a representative

regression test suite containing minimum number of test cases that ensure proper

functional coverage and effective in finding regression defects.

 Test case selection deals with the problem of selecting a subset of test cases that

will be used to test changed parts of a software [30].

 Test case prioritization concerns the identification of the ‘ideal’ ordering of test

cases that maximizes desirable properties, such as early fault detection [30].

As it was also already mentioned, test suite minimization, test case selection and

prioritization can be conducted in different ways:

 In an ad hoc way, without application of any systematic approaches;

 Based on error guessing (tester’s knowledge, prior experience and intuition);

 Based on rules or guidelines specified in the test strategy;

 By application of systematic methods and algorithms.

2.5.3 Selection, Minimization and Optimization Methods

There are many various methods and algorithms for test suite minimization, test case

selection and prioritization have been proposed by researchers and practitioners so far.

In order to determine which of the proposed methods is most appropriate for a certain

situation several factors need to be considered [40]. One of the factors is the input – an

artifact of software development, which is required for a particular technique, and which

serves as a basis for test case selection. Most of the proposed techniques are code based

(source, intermediate or binary code) [e.g. 29, 30, 43], but there are also exist various

model-based techniques [e.g. 46], specification-based techniques [e.g. 32, 33, 44, 45],

and techniques based on different project data [e.g. 41, 42, 46], for example failure

reports and tests execution history.

27

Also an important factor that needs to be considered is empirical evidence. Evaluative

case studies and comparative experiments are conducted in order to evaluate different

regression testing techniques and optimization methods and indicate most effective ones

in specific contexts [e.g. 39]. In order to have an overview of regression testing

techniques reported in the literature and empirically evaluated, several surveys have

been undertaken [29, 31].

2.6 Researches on Regression Testing

David Parsons, Teo Susnjak and Manfred Lange, in their work ‘Influences on

Regression Testing Strategies in Agile Software Development Environments’ [20],

widely analyzed literature on regression testing and identified a number of common

research themes. They categorized them into three sets of concerns:

 Operational concerns of regression testing. These researches relate to

techniques for optimization of test suites: selection, minimization and

prioritization. Much prior research has been done in these areas, including

extensive reviews of the literature such as E. Engström, P. Runeson and M.

Skoglund (2010) [29], who analyze previous work on test selection, and S. Yoo,

M. Harman who additionally look at prioritization and minimization.

 Organizational concerns of regression testing. These researches relate more to

the day-to-day management of regression testing within an organization. This

covers areas such as test plans, testing standards and metrics. This also has been

well explored in the literature.

 Regression testing strategy. This relates to the impact of context on how an

organization adopts, organizes and evolves its regression testing policies and

implementation. The context can be external (e.g. market) and internal (e.g. the

level of maturity of an organization).

All three levels of concerns, indicative literature (as per D. Parsons, T. Susnjak and M.

Lange) and some literature that influenced the current work are presented in the table

below:

28

Table 1. Researches on Regression Testing

Level 1: Operational Regression Testing

RT Optimization Techniques E. Engström, P. Runeson and M. Skoglund (2010). A

systematic review on regression test selection

techniques [29]

R. P. Gorthi, A. Pasala, K. K. Chanduka, B. Leong

(2008). Specification-based Approach to Select

Regression Test Suite to Validate Changed Software

[32]

S. Yoo, M. Harman (2012). Regression Testing

Minimization, Selection and Prioritization: A Survey

[30]

M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li, M.

Moore (2011). Prioritizing Requirements-Based

Regression Test Cases: A Goal-Driven Practice [33]

A. S. A. Ansari, K. K. Devadkar, P. Gharpure (2013).

Optimization of test suite-test case in regression test

[34]

R. R. Miranda, O. S. Gomez, G. D. Rodriguez (2015).

15 Years of Software Regression Testing Techniques: A

Survey [31]

Level 2: Organizational Regression testing

RT Practices E. Engström, P. Runeson (2010). A Qualitative Survey

of Regression Testing Practices [24]

M. Puleio (2006). How Not to do Agile Testing [35]

Metrics M. Gittens, H. Lutfiyya, M. Bauer, D. Godwin, Y. W.

Kim, P. Gupta (2002). An empirical evaluation of

29

system and regression testing [36]

Level 3: Regression Testing Strategy

External Context H. Svensson and M. Host (2005). Introducing an Agile

Process in a Software Maintenance and Evolution

Organization [37]

Internal Context L. Damm, L. Lundberg, D. Olsson (2005). Introducing

Test Automation and Test-Driven Development: An

Experience Report [38]

2.7 Regression Testing Practices

In order to better understand the variety of regression testing practices in industry,

identify their strengths and weaknesses, a qualitative survey [24] has been conducted by

Emelie Engström and Per Runeson from Lund University, Sweden.

A total of 46 software engineers from 38 different organizations participated in the focus

group and questionnaire survey. The questionnaire consisted of questions on what

regression testing is, how regression testing is performed (what regression testing

techniques are used, manual vs. automatic testing), and how satisfied the respondents

are with the regression testing practices taken in their organizations. The results of the

survey were analyzed and represented based on Zachman framework [24] and focused

on three categories: what, how and when.

What

There is a common understanding of what the regression testing is and what its main

purpose is. The majority of the survey respondents defined regression testing as a

repetitive test execution with the aim to check if previously working software has not

been broken by changes.

The goal of the regression testing varies between different organizations – it can be find

defects, obtain a measure of the quality of a software, or obtain a guide for further

30

priorities in a project (for example, focus on bug fixing instead of further development

of new features). In general, most of the respondents agreed that regression testing

should ensure that nothing has been affected or destroyed in result of changes.

The kind of changes to a software system that may affect its quality and serve as a basis

for starting regression testing, mentioned in the focus group discussion and confirmed

by the majority of the respondents, are the following: new versions, new configurations,

fixes, changed solutions, new hardware, new platforms, new designs and new interfaces.

One third of the respondents indicated that regression testing is applied regardless of

changes. The amount and frequency of regression testing is determined by the assessed

risk, the amount of new functionality, the amount of fixes and the amount of available

resources.

When

Regression testing is carried out at different levels (module level, component level,

system level) and on different stages of the development process. Some organizations

perform regression testing as early as possible in order to enable early detection of

defects, some postpone regression testing as late as possible in the process for

certification or type approval purposes, some carry out regression testing continuously

throughout the whole development process.

Regarding how often the regression testing is performed, the most common approach is

to regression test before release (indicated by 95% of the respondents), and only 10% of

the respondents do regression testing daily.

How

It was identified that tests used for regression testing may be a selection of developer’s

tests, a selection of tester’s tests, a selection of tests from a specific regression test suite,

or new test cases are designed. The most common is to reuse test cases designed by

testers. Strategies for regression test selection mentioned in the focus group were:

complete retest, combine static and dynamic selection, complete retest of safety critical

parts, select test cases concentrating on changes and possible side effects, ad-hock

selection, smoke test, prioritize and run as many as possible, and focus on functional

test cases. It is common to run a set of specified regression test cases every time,

31

together with a set of situation dependent test cases.

Both manual and automatic regression testing are applied. 50% of the respondents

indicate an equal amount of manual and automatic regression testing, while 30%

perform regression testing exclusively manually.

Regression testing problem areas

As a result of focus group discussions a lot of problem areas related to regression testing

have been identified. The most specific of them are presented below:

 Test case selection. As was mentioned by the respondents, it is hard to assess the

impact of changes on existing code and to make a good selection of test cases,

prioritize test cases with respect to product risks and fault detection ability, be

confident in not missing safety critical faults, determine the required amount of

tests, and assess the test coverage. Participants emphasized the importance and

need of regression testing guidelines at different stages of a project with respect

to quality aspects.

 Automated vs. manual regression testing. Manual regression testing is less

problematic, but time and resource consuming. Automating regression testing

causes problems, such as assessment of cost/benefit of test automation, building

and maintaining environments for automated testing, implementing and

maintaining automated tests, analysis and presentation of test results, but can be

more efficient in terms of time and resource usage. Testing automation is

particularly important for regression testing, as the same tests are repeated many

times. Nonetheless, most participants pointed on the importance of a good

balance between automated and manual testing. Use of manual testing was

recommended for testing of user experience and for exploratory testing.

 Regression test suite and test case maintenance were recognized to be a

problem. Much of the regression testing becomes redundant with respect to test

coverage because of poor methods, tools and processes for maintenance of tests

in case of changes in a product, traceability between test cases and requirements

and minimization of redundant tests.

32

Survey conclusions

Besides answering the research questions posed: what is meant by regression testing in

industry, which problems or challenges related to regression testing exist and which

good practices on regression testing exist; the researchers have come to the conclusion

that many of the challenges and practices, highlighted in the study, are not specific to

regression testing but common to testing in general. However, they have a significant

impact on how effective the regression testing becomes, and this indicates, that

regression testing should not be addressed nor researched in isolation; rather it should

be an important aspect of the software testing practice and research to take into account.

33

3 Regression Testing Maturity Model (RTMM)

Further, a model is proposed for static analysis of regression testing process.

Static analysis of regression testing process is proposed to be performed based on

relatively static characteristics of the process, like strategies and approaches employed.

The degree of process quality is proposed to be determined by the level of process

maturity, whereas the level of process maturity depends on strategies and approaches

employed, and the effectiveness of these approaches in the context of regression testing.

In the development of the proposed model, the effectiveness of particular strategies and

approaches was considered as absolute truth, proven by experience (like, automated

regression testing is more cost effective than manual regression testing), without

consideration of the particular context. While during the evaluation of concrete

regression testing practices, the context always should be taken into account, as the

effectiveness of the approaches depends on various parameters and may vary in

different contexts.

The proposed model for static analysis of regression testing process is Regression

Testing Maturity Model, or RTMM. RTMM is based on the TMMi framework and can

be considered as elaboration of TMMi with primary focus on regression testing process.

The TMMi focuses on the entire test process and does not address regression testing in

sufficient detail. The main idea of RTMM is to provide a detailed reference and

guideline framework for regression testing process establishment, assessment and

improvement.

The main purposes of RTMM are the following:

 Support in analyzing, evaluating and improving current regression testing

practices:

o RTMM is intended to serve as a reference model for analysis and

evaluation of the current regression testing practice within an

organization or a project. RTMM is expected to help in detecting

34

problematic areas and areas for improvement.

o RTMM is intended to serve as a guideline for improvement of the current

regression testing practice within an organization or a project. RTMM is

expected to help in identification of improvement opportunities.

 Support in developing and establishing a new process for regression testing.

The main goal of RTMM is to establish an efficient and effective regression testing

process.

3.1 Introduction to Test Maturity Model (TMMi)

Test Maturity Model integration, or TMMi framework [22], is a guideline and reference

framework for test process assessment and improvement. TMMi is developed by TMMi

Foundation [47], a non-profit organization dedicated to improving test practices, and

positioned as a complementary model to the software process improvement model

CMMI [48].

The main purpose of TMMi model is to support in establishing of a more effective and

efficient test process:

 TMMi provides a reference model to be used during the assessment of the

testing process – understanding the current position relative to the selected

model or standard, and identification of areas for improvement and improvement

opportunities.

 TMMi provides a full framework to be used as a reference model during test

process improvement.

3.1.1 TMMi Maturity Levels and Process Areas

As CMMI, TMMi uses the concepts of maturity levels. In the TMMi there are five

levels of maturity which represents an evolutionary path to test process improvement.

Each level has a set of process areas, goals and practices that need to be implemented by

an organization in order to achieve maturity at that level. TMMi maturity levels and

respective process areas are shown in the picture below.

35

Figure 2. TMMi Maturity Levels and Process Areas

On Level 1 – Initial testing is an undefined process:

 Testing is performed in an ad-hoc way.

The main objective of testing at TMMi level 1 is to ensure that the software runs

without major failures.

On Level 2 – Managed testing becomes a managed process:

 Test policy is established.

TMMi Level 3: Defined

Test Organization

Test Training Program

Test Lifecycle and Integration

Non-functional Testing

Peer reviews

TMMi Level 5: Optimization

Defect Prevention

Test Process Optimization

Quality Control

TMMi Level 4: Measured

Test Measurement

Software Quality Evaluation

Advanced Peer Reviews

TMMi Level 2: Managed

Test Policy and Strategy

Test Planning

Test Monitoring and Control

Test Design and Execution

Test Environment

TMMi Level 1: Initial

36

 Test strategy is established.

 Test plans are developed:

o Product risks assessment performed.

o Test approach is defined.

o Test effort estimated.

o Commitments to the test plan are established with stakeholders.

 Testing is monitored and controlled.

 Test design techniques are applied for deriving and selecting test cases from

specifications.

The main objective of testing at TMMi level 2 is to verify that the product satisfies the

specified requirements.

At TMMI level 2 testing is considered as post code, execution-based activity, which

takes place relatively late in the development life-cycle, for example, during design or

implementation.

On Level 3 – Defined testing is no longer considered as a phase that follows coding,

testing is fully integrated into the development life-cycle and the associated milestones.

Testing starts at early project stages, for example, during the requirements phase.

 A formal review program is implemented.

 Non-functional testing is included.

 A test organization and a specific test training program exist.

A critical distinction between TMMi maturity level 2 and 3 is the scope of standards,

process descriptions, and procedures. At maturity level 3 the set of organization’s

standard test processes is established and improved over time. Project specific test

processes are tailored from the organization’s set of standards, and thus more consistent.

On Level 4 – Measured testing is a thoroughly defined, well-founded and measurable

37

process.

 Test measurement program is implemented.

 Reviews and inspections are fully integrated with the dynamic testing process.

On Level 5 – Optimization an organization is capable of continually improving its

processes based on quantitative understanding of statistically controlled process. An

optimized test process, as defined by the TMMi, is the one that is:

 Managed, defined, measured, efficient and effective;

 Statistically controlled and predictable;

 Focused on defect prevention;

 Supported by automation as much is deemed an effective use of resources;

 Able to support technology transfer from the industry to the organization;

 Able to support re-use of test assets;

 Focused on process change to achieve continuous improvement.

3.1.2 Structure of the TMMi

TMMi model consists of the following main components:

 Maturity Levels

 Process Areas

 Specific Goals

 Specific Practices

Maturity Level is an evolutionary stage of test process improvement. Each level

progressively develops an important part of the organization’s test process.

Each maturity level consists of several process areas (PA). Each process area identifies a

cluster of test related activities on which an organization should focus to improve its test

38

process.

A specific goal (SG) describes the unique characteristics that must be present to satisfy

the associated process area.

A specific practice (SP) is the description of an activity that is considered important in

achieving the associated specific goal.

Figure 3. TMMi Structure and Components

3.2 RTMM Overview

The maturity of regression testing process is proposed to be assessed on the basis of the

following characteristics of the process:

 The level of formalization of the regression testing process;

 Regression testing strategies employed:

o Scripted testing vs. exploratory testing:

Maturity Levels

Process Area 2 Process Area n

Specific

Goals

Specific

Practices

Generic

Goals

Generic

Practices

Process Area 1

39

 The amount of scripted testing effort vs. exploratory testing

effort;

o Manual testing vs. automated testing:

 The amount of automation vs. manual testing effort;

o ‘Retest all’ vs. selective testing;

 Regression testing optimization techniques employed;

 Regression testing optimization methods employed:

o Systematic methods vs. non-systematic methods;

 The ability of the process to be measured.

The level of the maturity of regression testing process depends on the presence of these

characteristics, the maturity of these characteristics in terms of the effectiveness of used

approaches, and the adequacy and applicability of these approaches to certain contexts.

As TMMi, RTMM has a staged architecture. Five levels of the maturity of regression

testing process are proposed. These levels are:

1 Initial –> 2 Managed –> 3 Measured –> 4 Optimized –> 5 Integrated

Maturity levels represent an evolutionary path to regression testing process

improvement. Each level is associated with certain maturity goals and actions (that are

similar to TMMi specific goals and practices). Maturity goals describe process

characteristics that must be present to satisfy particular maturity level, and actions

describe what have to be done in order to achieve these characteristics.

Regression testing maturity model is depicted below.

40

Figure 4. RTMM Maturity Levels

An overview of the maturity levels of the regression testing process is presented below.

3.2.1 RTMM Maturity Level 1: Initial

At RTMM Level 1 regression testing is chaotic:

 Not defined and not planned in advance.

 The approach is rather exploratory-experience based.

 Execution is mostly manual.

 The execution is not systematic and is triggered when necessary.

RTMM Level 3: Measured

RTMM Level 5: Integrated

RTMM Level 4: Optimized

RTMM Level 2: Managed

RTMM Level 1: Initial

41

3.2.2 RTMM Maturity Level 2: Managed

At RTMM Level 2 regression testing is a managed process:

 The goals and purposes of the regression testing are defined.

 The strategy for regression testing is defined:

o The approach is mostly systematic. Exploratory testing is a

complementary method.

o Test execution is still mostly manual. Automation can be partially

implemented.

 The approach to regression testing is defined:

o Selective testing approach is used.

o Certain optimization techniques are used, mostly minimization.

o Test cases are mostly selected based on error guessing, experience and

knowledge of the system, or specific guidelines based on risk analysis

and coverage criteria.

 Regression testing execution is rule-based and systematic.

3.2.3 RTMM Maturity Level 3: Measured

At RTMM Level 3 regression testing process is measured, analyzed and evaluated:

 Process performance is measured.

 Metrics are defined and applied to measure, assess and improve the regression

testing process if necessary.

3.2.4 RTMM Maturity Level 4: Optimized

At RTMM Level 4 regression testing tended to be optimized:

 Based on the evaluation of the current process:

o Employed optimization techniques and methods are revised and

42

improved if necessary;

o More systematic optimization methods are preferred.

 The amount of automation increased.

3.2.5 RTMM Maturity Level 5: Integrated

At RTMM Level 5 regression testing is integrated into development process:

 Execution is mostly automated. Manual testing is done only in cases when

automation is impossible, too hard or impractical. Exploratory testing is a

complementary method.

 Regression testing is executed as a part of Continuous Integration (CI)*.

Maturity level 5 is considered to be optional since it strongly depends on external

context – the software development methodology applied to a project, and the

application of Continuous Integration practices in the software development process.

3.2.6 RTMM Maturity Goals

The summary of RTMM maturity goals per each maturity level is presented below.

(RTMM) Level 2: Managed

 (RTMM) Goal 1: Establish regression testing process

o (RTMM) Sub Goal 1.1: Establish regression testing goals and objectives

o (RTMM) Sub Goal 1.2: Establish regression testing strategy

o (RTMM) Sub Goal 1.3: Establish regression testing approach

 (RTMM) Goal 2: Establish regression testing process performance measurement

and analysis process

 (RTMM) Level 3: Measured

 (RTMM) Goal 3: Measure and analyze regression testing process performance

 (RTMM) Goal 4: Determine regression testing process improvements

43

(RTMM) Level 4: Optimized

 (RTMM) Goal 5: Implement regression testing process improvements

o (RTMM) Sub Goal 5.1: Increase amount of automated regression testing

(RTMM) Level 5: Integrated

 (RTMM) Goal 6: Incorporate regression testing into development process

3.2.7 RTMM Maturity Actions

The actions required for the achievement of the desired maturity level of the regression

testing process are presented in the context of TMMi model. There are several reasons

for such approach:

 Regression testing, as part of the overall testing process, cannot be considered in

isolation of it. Referring to TMMi can give a better overview of the master

process. All activities related to test planning and execution can directly or

indirectly influence the process of regression testing. Some activities, like test

execution and defects reporting, are common, and do not require any special

consideration in the context of regression testing.

 TMMi model contains related activities that can be either elaborated for

regression testing process, or used as a basis for defining specific RTMM

actions. Therefore, RTMM actions are defined within or based on related TMMi

practices and corresponding RTMM levels are incorporated into the respective

TMMi levels. The arrangement of RTMM levels within TMMi model is

depicted below.

44

Figure 5. RTMM in the context of TMMi

RTMM actions and related TMMi levels and practices are presented below.

TMMi RTMM

Level TMMi Level 2: Managed RTMM Level 2: Managed

TMMi Level 3: Defined

TMMi Level 5: Optimization

TMMi Level 4: Measured

TMMi Level 2: Managed

TMMi Level 1: Initial

RTMM Level 1: Initial

RTMM Level 2: Managed

RTMM Level 3: Measured

RTMM Level 4: Optimized

RTMM Level 5: Integrated

45

Process Area PA 2.1 Test Policy and Strategy

Goal SG 1 Establish a Test Policy (RTMM) Goal 1: Establish

regression testing process

(RTMM) Sub Goal 1.1: Establish

regression testing goals and

objectives

Practice SP 1. 2 Define test policy

RTMM Actions

1. Define the risks addressed by regression testing.

2. Define the goals of regression testing, and / or the quality goals expected to be

accomplished by employing regression testing.

TMMi RTMM

Level TMMi Level 2: Managed RTMM Level 2: Managed

Process Area PA 2.1 Test Policy and Strategy

Goal SG 2 Establish a Test Strategy (RTMM) Goal 1: Establish

regression testing process

(RTMM) Sub Goal 1.2: Establish

regression testing strategy

Practice SP 2.2 Define test strategy

RTMM Actions

Define the strategy for regression testing.

Examples of topics to be addressed as part of regression testing strategy may include

46

the following:

 Testing approach to be employed: systematic testing, exploratory testing,

or combination of them;

 Testing approach to be employed: manual testing, automated testing, or

combination of them;

 Automation strategy;

 Regression testing application policy:

o Triggers for regression testing (e.g. system enhancements, bug

fixes, system configuration changes, etc.);

o Execution schedule:

 Periodic execution (e.g. daily, weekly, monthly, etc.);

 Rule-based execution (e.g. after any change, after

changing critical parts only, after certain amount of

changes, etc.).

TMMi RTMM

Level TMMi Level 2: Managed RTMM Level 2: Managed

Process Area PA 2.1 Test Policy and Strategy

Goal SG 3 Establish Test Performance

Indicators

(RTMM) Goal 2: Establish

regression testing process

performance measurement and

analysis process

Practice SP 3.1 Define test performance

47

indicators

RTMM Actions

1. Define the objectives of regression testing process performance measurement

and analysis.

2. Define performance indicators for regression testing process.

Examples of performance indicators for regression testing process may include

the following:

 Direct metrics:

o Total number of test cases in regression suite;

o Total number of regression test cases executed;

o Regression test coverage (overall, distributed across

components);

o Number of test cases in regression test suite that resulted in

logging defects;

o Number of valid regression defects found during regression

testing;

o Number of valid regression defects found during operational use

of a software;

 Indirect (computed) metrics:

o Regression suite efficiency;

o Regression testing effectiveness.

3. Define how regression testing performance indicators will be obtained and

stored

4. Define how regression testing performance indicators will be analyzed and

48

reported

TMMi RTMM

Level TMMi Level 2: Managed RTMM Level 2: Managed

Process Area PA 2.2 Test Planning

Goal SG 2 Establish a Test Approach (RTMM) Goal 1: Establish

regression testing process

(RTMM) Sub Goal 1.3: Establish

regression testing approach

Practice SP 2.2 Define the test approach

RTMM Actions

Define the approach to regression testing.

Examples of topics to be addressed as a part of regression testing approach may include

the following:

 At what level(s) regression testing is performed (e.g. component level,

system level, business level);

 Types of testing to be performed for regression testing (e.g. functional

testing, non-functional testing);

 Types of test cases to be used for regression testing (e.g. GUI test cases,

functional test cases, system test cases, positive test cases, negative test

cases, boundary / corner test cases, etc.);

 Regression testing approach to be employed: ‘Retest all’ or selective

testing;

49

 The source of regression test cases (e.g. re-use existing test cases, create

dedicated regression test cases);

 Regression testing optimization techniques to be applied: minimization,

selection, prioritization;

 The methods for test suite minimization, test case selection and

prioritization to be applied;

o Manual / automatic;

 Regression test suite maintenance policy (triggers, actions,

responsibilities);

 The scope and coverage of regression testing:

o Items and features to be regression tested;

o Criteria for the selection of test cases (modification-based,

coverage-based, risk analysis-based, etc.);

o Expected regression test coverage;

TMMi RTMM

Level TMMi Level 3: Defined RTMM Level 3: Measured

Process

Area

PA 3.1 Test Organization

Goal SG 4 Determine, Plan and

Implement Test Process

Improvements

(RTMM) Goal 3: Measure and

analyze regression testing process

performance

Practice SP 4.1 Assess the organization’s

50

test process

RTMM Actions

1. Obtain regression testing performance indicator data.

2. Analyze and interpret regression testing performance indicator data.

TMMi RTMM

Level TMMi Level 3: Defined RTMM Level 3: Measured

Process Area PA 3.1 Test Organization

Goal SG 4 Determine, Plan and

Implement Test Process

Improvements

(RTMM) Goal 4: Determine

regression testing process

improvements

Practice
SP 4.2 Identify the organization’s

test process improvements

RTMM Actions

Based on regression testing performance indicator data and on the assessment of the

efficiency and effectiveness of the regression testing process determine problem areas

and possible regression testing improvements.

Examples of possible improvement areas may include the following:

 Revise employed regression testing optimization techniques. Consider

using different / multiple techniques:

o Minimization;

o Selection;

51

o Prioritization;

 Revise employed regression testing optimization methods;

o Consider using advanced methods;

o Consider using automatic methods;

 Consider increasing the amount of automated testing.

TMMi RTMM

Level TMMi Level 3: Defined RTMM Level 4: Optimized

Process

Area

PA 3.1 Test Organization

Goal SG 4 Determine, Plan and

Implement Test Process

Improvements

(RTMM) Goal 5: Implement

regression testing process

improvements

Practice
SP 4.4 Implement test process

improvements

RTMM Actions

Continually implement regression testing process improvements.

TMMi RTMM

Level TMMi Level 3: Defined RTMM Level 5: Integrated

Process PA 3.3 Test Lifecycle and

52

Area Integration

Goal SG 2 Integrate the Test Lifecycle

Models with the Development

Models

(RTMM) Goal 6: Incorporate

regression testing into

development process

Practice
SP 2.1 Establish integrated

lifecycle models

RTMM Actions

Integrate automated regression tests with Continuous Integration environment.

53

4 Regression Testing Metrics Model

Further, a model is proposed for dynamic analysis of the regression testing process.

Dynamic analysis of regression testing process is proposed to be performed on the basis

of the process performance indicator data obtained during the execution of the process.

The proposed model represents a set of core metrics that can be used to measure the

efficiency and effectiveness of regression testing process. It should be taken into

account that the proposed metrics are of general nature. Any specific metrics should be

defined and developed within a certain context, considering specific needs and

concerns.

The proposed metrics are based on core testing metrics and developed with the

consideration of various metrics identification methodologies. For that reason, key

concepts of software measurement and analysis has been widely studied.

4.1 Introduction to Software Metrics

4.1.1 Software Measurement and Analysis

Nowadays software measurement and analysis has become an integral part of good

software engineering practices. Measurement and analysis activities involve gathering

of the quantitative data about products, processes and projects, and analysis of this data

with the aim to get objective information, which enables to [2]:

 characterize, or gain insight into products, processes and projects;

 evaluate, or assess the current status of products, processes and projects against

targets and benchmarks;

 predict values of the various attributes of products, processes and projects;

 improve the various attributes of products, processes and projects by identifying

risks and problematic areas and applying corrective actions.

54

The results of software measurement and analysis serve as a basis for management

decisions making.

4.1.2 Software Metrics

Software metric is a key concept in software measurement and analysis area. In

different sources [2, 5], metric is referred to as a unit of measurement, measurement

based technique, or a quantifiable measurement, which is applied to the different aspects

of a software product, process or project with the aim to measure and quantify them.

IEEE Standard for a Software Quality Metrics Methodology (1061-1998), defines

Software Metric or Software Quality Metric as “a function whose inputs are software

data and whose output is a single numerical value that can be interpreted as the degree

to which software possesses a given attribute that affects its quality” [1].

Metrics can be classified into various categories [2, 3, 4] depending on their targets,

purposes, or the ways of derivation and computation. The most notable of them are the

following:

 In general, all metrics are divided into three main categories: process metrics,

product metrics and project metrics. IEEE Standard for a Software Quality

Metrics Methodology (1061-1998) gives the following definitions for process

and product metrics: Process Metric is “a metric used to measure characteristics

of the methods, techniques, and tools employed in developing, implementing,

and maintaining the software system”, and Product Metric is “a metric used to

measure characteristics of any intermediate or final product of the software

development process” [1]. Project Metric can be defined as a metric used to

measure various characteristic and execution of a software development project,

like cost, schedule, and resources.

 From observation or measurement perspective, metrics can be classified into

primitive (direct) and computed (indirect / derived) metrics. Primitive or direct

metrics are those that can be directly observed / measured and no other attributes

or entities are required for computation., for example Number of Defects.

Computed or indirect / derived metrics are those that cannot be directly observed

but are computed in some manner from other measurements and / or metrics, for

example Defect Density, which is derived from the number of defects divided by

55

the size of the software.

 From objectivity perspective, metrics can be classified into objective and

subjective metrics. Objective metrics should provide objective information, and

always result in identical values, even if measured by two or more qualified

observers. Subjective metrics may result in different values as subjective

judgment of qualified observers is involved in derivation of measured value.

In order for a software metric to be useful – be capable to describe a product or a

process, indicate the current status of a product or a process, or predict product or

process parameters – it has to meet several quality requirements [4]:

 Metric must be simple and precisely definable. It should be clear how it can be

evaluated;

 Metric must be objective to the greatest extent possible;

 Metric must be easily obtainable;

 Metric must be reliable and valid. It should measure exactly what it is intended

to measure;

 Metric must be robust, relatively insensitive to insignificant changes in the

product or process.

4.1.3 Software Measurement and Analysis Frameworks and Standards

In order to define useful metrics – both in terms of applicability to a particular context

and in terms of compliance with the quality requirements – several software

measurement and analysis frameworks and standards have been proposed [1, 6, 7, 8,

15]. The main purposes of these standards are the following:

 To define and standardize software measurement and analysis processes –

activities and tasks that are necessary to successfully identify, define, select,

apply and improve measurement within a software development project [15];

 To propose software metrics identification methodologies – systematic

approaches to establishing quality requirements and identifying, implementing,

56

analyzing and validating the process and product software quality metrics for a

software system [1].

The most well-known of them are:

 [Process] Process Improvement and the Capability Maturity Model (CMM), A

Support Process Area at Maturity Level 2, Measurement and Analysis;

 [Process] ISO International Standards, Systems and software engineering -

Measurement process: ISO/IEC 15939:2007;

 [Methodology] Goal-Question-Metrics (GQM) Approach;

 [Methodology] IEEE Standard for a Software Quality Metrics Methodology:

1061-1998.

Mentioned standards do not prescribe specific metrics, but provide a guideline on how

to define, implement and evaluate them. Despite the differences in details, the given

approaches have much in common:

 The process of software measurement and analysis involves the following

activities [6]:

1. Specifying the objectives of measurement and analysis such that they are

aligned with identified information needs and objectives;

2. Specifying the measures, analysis techniques and mechanism for data

collection, data storage, reporting and feedback;

3. Implementing the collection, storage, analysis and reporting of the data;

4. Providing objective results that can be used in making informed

decisions and taking appropriate corrective actions.

 The approach for identification of appropriate software metrics involve the

following three steps:

1. On conceptual level, identification of quality requirements for a software

product and / or process;

57

2. On operational level, identification of the ways of how the respective

quality requirements can be measured and assessed;

3. On quantitative level, definition of measures and metrics.

4.1.4 Software Testing Metrics

Software testing metrics are a subset of overall software metrics. While software

metrics are applicable to the whole development process, from initiation, when cost

must be estimated, to monitoring the reliability of the end product in the field, software

metrics are concentrated on the testing phase and act as indicators of software quality

and fault proneness [9].

As mentioned above, testing metrics can be divided into two categories: test process

metrics and test product metrics.

Test process metrics provide information about preparation for testing, test execution

and test progress. They are utilized to monitor the progress of testing, status of design

and development of test cases and outcome of test cases after execution. They don’t

provide information about the test state of the product and are primarily of use in

measuring progress of the test phase. Process metrics describe the effectiveness and

quality of the processes that produce the software product. Examples of test process

metrics:

 Number of test cases designed;

 Number of test cases executed;

 % of test cases executed;

 % of test cases passed;

 % of test cases failed;

 Total actual execution time / total estimated execution time;

 Average execution time of a test case. [2]

Test product metrics provide information about the test state and testing status of a

58

software product and are generated by test execution. By using these metrics, it is

possible to measure the products test state and the indicative level of quality, useful for

product release decisions. Examples of test product metrics:

 Estimated time for testing;

 Actual testing time;

 % of time spent = (Actual time spent / Estimated testing time) * 100;

 Average time interval between failures;

 Maximum and minimum failures experienced in any time interval;

 Average number of failures experienced in time intervals;

 Time remaining to complete the testing. [2]

The importance and purposes of software testing metrics are manifested in the following

[2, 10]:

 Testing metrics assist to understand the current position of a project;

 Testing metrics aid in prioritizing activities to reduce the risk of schedule over-

runs on software releases;

 Testing metrics provide a basis for estimation and facilitates planning for closure

of the performance gap;

 Testing metrics provide a means for control / status reporting;

 Testing metrics enable to identify risk areas that require more testing;

 Testing metrics enable to identify potential problems and areas of improvement;

 Testing metrics provide an objective measure of the effectiveness and efficiency

of testing;

 Testing metrics enable to set quality benchmarks for several tasks and processes

involved in the development.

59

There are many various software testing metrics, and a lot of literature is available

where different kinds of testing metrics are compiled, described, analyzed, new metrics

proposed, etc. [2, 3, 5, 9, 11, 12, 13, 14]. Some of the most common and widely used

software testing metrics / metric types are presented in Table1.

Table 2. Software Testing Metrics

Metric / Metric Type Description

Test Coverage In general, two main conceptions of Test Coverage exist:

Test Design Coverage – shows the extent to which the

functionality of the product is covered by test cases. Expressed

as percentage or ratio of covered requirements (or other items of

interest) to the total number of requirements. The respective

metric is used as an indicator of quality of test design and used

to improve test coverage.

Test Execution Coverage – shows the extent to which the

functionality of the product has been covered during testing.

Expressed as percentage or ratio of the requirements (or other

items of interest) covered during testing to the total number of

requirements. The respective metric is used as an indicator of the

completeness of testing, and can serve as a criterion to stop or

continue testing.

Coverage could be with respect to requirements, business flows,

use cases, etc.

Number of Defects /

Defect Discovery Rate

The respective metric shows the total number of defects found

across a given period of time.

Defect Distribution

Metrics

The respective metrics show the distribution of existing defects

by various criteria: category, severity, priority, state, component,

etc.

60

Metric / Metric Type Description

Defect Density Defect Density can be calculated against different aspects:

As the ratio of valid defects to the total size of software product

under test, expressed in number of (thousands) Lines of Code

(KLOC), Functional Points (FP), requirements, etc.

This metric indicates the quality of the software. It can be used

as a basis for estimating defects to be addressed in the next

phase or the next version.

As the ratio of valid defects to the number of executed test cases.

This metric indicates the stability of the software.

Test Case Execution

Statistics

The respective metrics provide an overall summary of test

execution activities. For example:

% of executed / not completed / passed / failed / blocked / etc.

test cases

Actual execution time vs. estimated execution time

Test Case Efficiency /

Test Case Defect

Density

The respective metric is calculated as the ratio of the number of

test cases that resulted in logging defects to the total number of

executed test cases.

This metric indicates the effectiveness of the test cases and the

stability of the software.

61

Metric / Metric Type Description

Test Effectiveness /

Defect Removal

Efficiency and Defect

Leakage

Test Effectiveness / Defect Removal Efficiency metric shows the

efficiency of removing defects by internal testing before

delivering to customer. It is calculated as the percentage of

defects caught by internal testing team vs. the total number of

defects reported against the product, both during the testing life

cycle and post-delivery to end-customer.

Test Efficiency= (DT / (DT + DU)) * 100

This metric indicates the effectiveness of testing, and serves as

an indirect indicator of the quality of the product.

Defect Leakage metric, in contradistinction to Defect Removal

Efficiency, measures the percentage of defects missed during

internal testing.

Defect Leakage = (DU / (DT + DU)) * 100

This metric indicates the efficiency of internal testing.

Where, DT = Number of valid defects identified during testing.

DU = Number of valid defects identified by user after release of

application.

Test Execution

Productivity

Test Execution Productivity metric determines the number of

test cases that can be executed per person-day of effort. This can

be used for estimating future testing activities.

4.2 Regression Testing Metrics

As proposed by various metric identification methodologies [1, 7], the indication of the

right metrics starts from the definition of quality requirements to the software product or

process. The basic requirements to regression testing process are the following:

62

 Regression testing should ensure that no regression defects have been introduced

into previously working software after changes.

 Regression testing should effectively reveal regression defects;

The fulfillment of the first requirement can be assessed through:

 Evaluation of the amount of functionality covered by regression test suite;

The fulfillment of the second requirement can be assessed through:

 Evaluation of the capability of regression test suite to reveal regression defects;

 Evaluation of the ratio of defects found during regression testing to the

regression defects found during the operational use of the software.

The assessment of the capability to reveal regression defects will answer the question:

“Do we select the right test cases for regression testing?”. The assessment of the amount

of functionality covered by regression testing will answer the question: “Do we do

enough of regression testing?”.

The main purposes of the proposed regression testing metrics are the following:

 Assess the efficiency of regression testing in terms of coverage and the

capability of regression test sets to reveal regression defects;

 Assess the effectiveness of regression testing in reducing regression defects.

The proposed regression testing metrics are presented in the following section.

4.2.1 Regression Test Coverage

Name Regression Test Coverage (RTC)

Description The metric shows the extent to which software functionality is covered

by regression test suite. Measured as the ratio of items of interest

covered by the regression test suite to the total number of the

respective items. Coverage could be with respect to requirements, use

63

cases, business flows, etc.

Impact If minimum target coverage is defined for regression testing, the

metric would indicate the extent to which the respective requirement is

satisfied. If the actual test coverage is less than the expected one,

corresponding corrective actions must be taken in order to improve the

situation. For example, revise regression test suite: replace inefficient

(from coverage point of view) test cases with the ones that provide

better coverage; extend regression test set with more test cases, etc.

The respective metric may serve as indirect indicator of the quality of

maintenance of regression test suites. It might indicate that regression

test suites are out of sync with the ongoing development, especially

when static regression test suites are used for regression testing.

Measures Total number of items of interest (TI);

 Number of items of interest, covered by the regression test set

(CI).

Items of interest: requirements, use cases, business flows, etc.

Measurements can be made both on the overall product level and on

component level.

Computation ORTC = (CI / TI) * 100%

4.2.2 Regression Test Suite Efficiency

Name Regression Test Suite Efficiency (RTSEffcy)

Description The metric shows the efficiency of a regression test suite in terms of

how many effective test cases it contains (how many test cases within

a test suite are capable to reveal regression defects). Measured as the

ratio of test cases resulted in logging valid regression defects to the

64

total number of executed test cases.

Relevant only in conjunction with Regression Testing Effectiveness

(RTE) metric (the overall effectiveness of regression testing).

Impact The metric is a direct indicator of the quality of regression test suites

and the effectiveness of test selection and minimization methods

employed.

Low efficiency of a regression suite might indicate that the suite

contains irrelevant or redundant test cases.

If overall effectiveness of regression testing is normal or high:

 And there are no strict requirements to test coverage, the

respective metric might indicate that:

o The regression suite contains redundant test cases.

o Unnecessary effort is spent on regression testing.

If overall effectiveness of regression testing is low:

 The respective metric might indicate that wrong (irrelevant)

test cases are selected for regression testing.

If any of these issues are valid employed test minimization and

selection methods need to be revised.

Measures Number of (effective) test cases in the regression test suite that

resulted in logging of valid regression defects (ETC);

 Total number of executed test cases in the regression test suite

(TTC).

Computation RTSEffcy = (ETC / TTC) * 100%

65

4.2.3 Regression Test Suite Effectiveness

Name Regression Test Suite Effectiveness (RTSEffness)

Description The metric shows the effectiveness of a regression suite in detecting

regression defects (the capability of a regression test suite to reveal

regression defects). Measured as the ratio of the number of valid

defects detected during regression testing to the number of executed

test cases.

Relevant only in conjunction with Regression Testing Effectiveness

(RTE) metric.

Impact The metric is a direct indicator of the quality of regression test suites

and the effectiveness of test selection and minimization methods

employed.

Low effectiveness of a regression suite might indicate that the suite

contains irrelevant test cases or insufficient amount of test cases

(insufficient regression test coverage).

If overall effectiveness of regression testing is low:

 And the effectiveness of a regression suite is low, then the

respective metric might indicate that the regression suite

contains irrelevant test cases and / or insufficient amount of

test cases (insufficient regression test coverage).

 And the effectiveness of a regression suite is normal or high,

then the respective metric might indicate that the regression

suite contains insufficient amount of test cases (insufficient

regression test coverage).

If any of these issues are valid employed test minimization and

selection methods need to be revised.

Measures Total number of valid regression defects detected during

66

regression testing (TD);

 Total number of executed test cases in the regression test suite

(TTC).

Computation RTSEffness = (TD / TTC) * 100%

4.2.4 Regression Testing Effectiveness

Name Regression Testing Effectiveness (RTE)

Description The metric shows the effectiveness of regression testing in reducing

regression defects. Measured as the ratio of the number of valid

regression defects detected during regression testing to the total

number of valid regression defects.

Impact This metric is the main indicator of the effectiveness of regression

testing. If the effectiveness of regression testing is low, then it is

necessary to review the whole process (strategies, approaches,

optimization techniques and approaches, etc.).

Measures Total number of valid regression defects detected during

regression testing (TDR);

 Total number of valid regression defects (TD).

Computation RTE = (TDR / TD) * 100%

67

5 Practical Application

The following section contains analysis and evaluation of a real regression testing

practice based on the proposed models. The objectives of this case study are the

following:

 To analyse and evaluate a real regression testing practice with the aim of

identifying areas for improvement.

 To examine the application of the proposed models to the real world context;

5.1 Background

Regression testing practice taken as an example for the examination of the proposed

models is a real regression testing process that requires thorough analysis and

improvements.

The regression testing practice under consideration adopted in a Project, which is

carried out by IT Organization belonging to a Company. The IT Organization is

responsible for development of enterprise software applications, and the Project is one

of the largest projects within the Company initiated for developing a core business

Application.

5.1.1 Software Application

Application is a complex core business application. From functional point of view, it

consists of three major functional domains. Two of them encompass functionality

related to the two main businesses of the Company, and one is a cross-functional

domain, which encompasses functionality common to these businesses. Each functional

domain consists of a number of functional areas (e.g. ‘Customer Maintenance’ in cross-

functional domain, and in total cross-functional domain consists of ca. 15 functional

areas), and each functional area in its turn consists of a number of functional

requirements and use cases (e.g. ‘Create Customer’).

From technical point of view, Application is a GUI client/server application based on

Java technologies. Application is a part of large enterprise system – it is integrated with

multiple external enterprise systems and applications.

68

The Application is intended to replace the currently used application. The new

Application is being built using modern technologies and expected to provide extended

coverage of business processes.

5.1.2 Development Methodology

Application is developed using incremental Waterfall model.

5.1.3 Release Schedule

The development of the Application is divided into four major releases. Each major

release is delivered to production and includes a considerable amount of functionality.

Major releases are normally divided into twelve sub-releases. The first six sub-releases

are part of development phase, during which the Application’s functionality is

incrementally implemented, and after which corresponding major release is delivered to

production. The next six releases are part of maintenance phase, during which change

requests are implemented and delivered to production.

The development of a next major release and the maintenance of the one which is

currently in production are done in parallel.

Each sub-release may have multiple bug-fix and hot-fix releases.

Currently the second major release is in production, and the third one is at the end of its

development phase.

5.1.4 Test Organization

A Test Team of the Project is responsible for system test phase.

In general test strategy can be defined as classical systematic scripted testing with

clearly defined test processes and procedures. Test process consists of test planning, test

preparation and test execution phases. During test preparation phase detailed test cases

(GUI, functional, system, integration) are developed. Test execution phase includes

testing of new functionality and regression testing. Defect management process is also

defined.

69

5.1.5 Regression Testing

Regression testing is a continuous activity within the considered test process. It is

executed for each sub-release (including bug-fix and hot-fix releases) of a major release

which is currently in production, and for each sub-release of a major release which is at

the end of its development phase. According to the statistical data, regression testing

consumes up to 65% of the overall test effort.

Besides the amount of time and effort required for regression testing, there is also a

human factor, which also plays an important role. Due to the fact that regression suites

are relatively static and execution is 100% manual, the respective activity is considered

by Test Team as demotivating.

A survey was conducted among the members of the Test Team to determine the

problems they experience with the current approach to regression testing. Most of the

team members have agreed in opinion that:

 Regression suites are not maintained properly:

o Regression suites include outdated and duplicated test cases;

o Regression test cases marked as requiring correction are not corrected for

a long period of time.

 Running the same test cases all the time is very demotivating, people stop

noticing problems, ignore things that worked before.

Due to all above mentioned facts, regression testing is recognized by the management

and members of the Test Team as a problematic area in the test process that requires

improvements.

Thereby the considered regression testing practice has been selected as a subject for the

present case study:

 It requires thorough analysis and improvements;

 It allows to examine and evaluate the proposed models in terms of their

applicability to the real world context.

70

5.2 Analysis

5.2.1 Process Static Analysis

Static analysis of the regression testing process under consideration is performed based on RTMM model, the results are presented below.

Table 3. Regression Testing Practice Analysis using RTMM Model

RTMM Goal Current Practice Status / Comments

(RTMM) Goal 1:

Establish regression

testing process

Regression testing is a defined process

YES

(RTMM) Sub Goal 1.1:

Establish regression

testing goals and

objectives

The goal of regression testing is defined

Regression testing goal is declared as ‘Ensure that previous tested

application components are still working correctly and no new defects

have been introduced through changes in application itself or its

environment (new features, defect fixes, interface changes or external

systems). Ensure high test coverage at the end of test execution of

each release’.

YES

71

(RTMM) Sub Goal 1.2:

Establish regression

testing strategy

The strategy for regression testing is defined

 100 % systematic scripted testing; exploratory testing not

employed.

 100% manual testing.

 Automation strategy is defined.

 Application policy: rule-based execution (every sub-release

(including bug-fix and hot-fix releases) of a major release

which is currently in production, and every sub-release of a

major release which is at the end of its development phase).

YES

Automation strategy is defined, and to

some extent automated testing is

implemented. But because of the specifics

of the selected approach, the results of

automated testing are unstable and

unreliable. Due to this fact they are never

taken into account during regression

testing. Test cases covered by automated

tests are still executed manually.

Nevertheless, one of the goals for

regression testing defined in the test

strategy is ‘to reach a high automation

rate’.

(RTMM) Sub Goal 1.3:

Establish regression

testing approach

The approach to regression testing is defined

 Test types to be performed are defined in the regression test

strategy: ‘Regression testing comprises almost all test types. It

will be defined during test execution depending on problem

YES

 Although test selection technique

is declared in the regression test

strategy, in most cases it is not

72

areas of SUT and functionalities where code changes have

been implemented’. Regression suites normally include

various test types – GUI, functional, integration.

 Selective testing approach is employed.

 Regression test cases are selected among the test cases created

during test preparation phase.

 Optimization techniques employed: minimization, selection.

 Optimization methods employed:

o Test selection approach is two-tiered;

o At the first stage minimization technique is employed.

A representative regression test suite is compiled from

all existing test cases. Representative regression suite

includes the most basic test cases of various types, and

covering all functional areas. Test cases in

representative regression suite are marked as

‘regression test candidates’. Normally there are two

applied. Entire representative

regression test suites are used for

regression testing. Selection is

applied only in case of hot-fix

releases, and it is mostly

experience-based and is done

manually.

 Although it is implied that every

member of the Test Team is

responsible for maintaining

regression test cases, nobody

actually follows this rule. As a

result, regression test suites are of

poor quality.

73

representative regression suites – one extended for

major release regression testing, another with limited

scope for bug-fix and hot-fix releases. Representative

regression suites are static and recompiled only for the

subsequent major releases.

o At the next stage selection technique is employed.

Among the test cases contained in a representative

regression test suite, a test suite for regression testing

session is compiled. Selection is modification-based,

coverage-based and risk analysis-based.

o Selection is supported by an internal automatic tool;

 Test maintenance policy is not strictly defined. It is implied

that every member of the Test Team is responsible for

maintaining regression test cases – deleting obsolete and

duplicated test cases from representative test suites, updating

and improving outdated test cases, etc.

 Test coverage criteria defined:

74

o All functional areas should be covered with regression

tests;

o Regression test suites should contain 40% of total

number of test cases.

(RTMM) Goal 2:

Establish regression

testing process

performance

measurement and

analysis process

Regression testing process performance measurement and

analysis process is not defined

NO

(RTMM) Goal 3:

Measure and analyze

regression testing

process performance

Regression testing process performance is not measured NO

75

(RTMM) Goal 4:

Determine regression

testing process

improvements

Regression testing improvements are not defined and not

implemented

NO

(RTMM) Goal 5:

Implement regression

testing process

improvements

Regression testing improvements are not defined and not

implemented

NO

(RTMM) Sub Goal 5.1:

Increase amount of

automated regression

testing

The amount of test automation is increased YES

Automated tests are developed, and

automation coverage constantly increases,

but as it was previously mentioned the

results of automated regression testing are

not taken into account, and the same test

cases are still executed manually.

76

(RTMM) Goal 6:

Incorporate regression

testing into development

process

Automated regression tests are not integrated with Continuous

Integration environment

NO

77

5.2.2 Process Dynamic Analysis

Dynamic analysis of the regression testing process under consideration using the

proposed RT Metrics Model has not been performed. The main reason is that the

process is hardly measurable (see Table 3, Regression testing process performance

measurement and analysis process is not defined). In this situation it is almost

impossible to assess the effectiveness of the overall regression testing process (see

Chapter 4.2.4 Regression Testing Effectiveness), because defects are not being

distinguished as regression and non-regression. Without knowing the actual

effectiveness of the process it is impractical to assess, analyse and evaluate the

efficiency and effectiveness of regression test suites.

5.3 Evaluation

5.3.1 Process Evaluation

As a result of static analysis of the regression testing process under consideration

conducted using RTMM model the following conclusions regarding the maturity of the

process were made:

 The respective regression testing process is a well-defined process with clearly

defined goals, strategies and approaches.

 It is on the second level of the process maturity scale according to RTMM (see

Chapter 3.2.2 RTMM Maturity Level 2: Managed):

o The process is managed;

o The goals and purposes of the regression testing are defined;

o The strategy for regression testing is defined:

 The approach is systematic;

 Test execution is mostly manual. Automation is partially

implemented.

o The approach to regression testing is defined:

78

 Selective testing approach is used;

 Certain optimization techniques are used: minimization and

selection.

 Test cases are selected based on experience and knowledge of the

system, and specific guidelines based on risk analysis and

coverage criteria.

o Regression testing execution is rule-based and systematic.

 In order to improve its maturity level at least the following further actions need

to be taken:

o Establish and implement the process to measure and analyse the

performance of regression testing;

o Increase the proportion of automated testing.

 Certain problem areas and areas for improvement have been detected.

The following areas for improvement are detected:

 Regression testing automation;

 Optimization techniques and methods;

 Regression test suite maintenance.

The following proposals for improvement are made:

 Establish and implement the process to measure and analyse the performance of

regression testing;

 Revise automation strategy, make it more stable and reliable. Increase the

proportion of automated testing for regression testing. Replace manual effort

with automated testing.

 Revise methods for test case selection. Make them more systematic, frequent

and automated as possible.

79

 Establish regression test suite maintenance policy. Make it more systematic –

define responsibilities and application policy.

 Incorporate exploratory testing into regression testing process. This can help to

improve the motivation of the Test Team and overcome the well-known

pesticide paradox issue, which consists in that repeating the same test cases over

and over again makes them inefficient in finding defects.

5.3.2 Model evaluation

As a result of analysis of the regression testing process under consideration conducted

using the proposed models the following conclusions regarding the applicability of

these models to the real world context were made:

 RTMM facilitates analysis of a regression testing process – it allows

systematically examine the process and reveal its strengths and weaknesses.

This, in its turn, allows to determine areas for improvement. RTMM proposes

general solutions to improve the process and increase the level of its maturity.

 Application of RTMM model to the regression testing process under

consideration revealed problem areas that reflect the negative experience of the

Test Team members mentioned in the survey (see Chapter 5.1.5 Regression

Testing). Solving these problems would improve the overall motivation of the

Test Team.

 Inability to apply RT Metrics Model to the regression testing process under

consideration pointed to the importance of establishing a proper measurement

program for regression testing.

80

6 Summary

The main goal of this thesis was to develop systematic methods for the analysis and

evaluation of the process of regression testing. In order to achieve this goal an extensive

review on regression testing was carried out: the most common regression testing

methodologies and approaches were reviewed and systemized, various researches on

regression testing were analysed and interpreted, also, in order to develop metrics for

the assessment of regression testing process, key concepts of software measurement and

analysis were studied.

As a result of this work two models for the analysis, evaluation and further

improvement of the maturity, efficiency and effectiveness of regression testing process

were introduced. One of the proposed models is intended for the analysis, evaluation

and improvement of the level of process maturity, which is based on the evaluation of

various process characteristics, like strategies and approaches employed. The other

model represents a set of core metrics for the analysis and evaluation of the efficiency

and effectiveness of regression testing. Both models can serve as reference and

guideline models for regression testing process establishment, analysis, evaluation and

further improvement.

The maturity model (RTMM) was applied for the analysis and evaluation of a real

regression testing practice. As a result, key areas for improvement in the respective

regression testing process have been detected and corresponding proposals for

improvements were made. Also the applicability of the proposed models was examined.

It was determined that the maturity model (RTMM) facilitates analysis, evaluation and

improvement of a regression testing process – allows systematically examine the

process, reveal its strengths and weaknesses, identify problem areas and possible

solutions for improvement.

81

References

1. IEEE Standard for a Software Quality Metrics Methodology: IEEE Std 1061-

1998 (R2009), IEEE Standards, 1998

2. S. U. Farooq, S. M. K. and N. Ahmad. Software measurements and metrics: role

in effective software testing. Internal Journal of Engineering Science and

Technology, Vol. 3, no. 1, 2011, pp. 671-680

3. Ming-Chang Lee, To Chang. Software Measurement and Software Metrics in

Software Quality. International Journal of Software Engineering and Its

Applications, Vol. 7, No. 4, July, 2013

4. Everald E. Mill. Software Metrics: SEI Curriculum Module SEI-CM-12-1.1.

Carnegie Mellon University, Software Engineering Institute. December, 1988

5. Mr. Premal B. Nirpal, Dr. K. V. Kale. A Brief Overview of Software Testing

Metrics. International Journal on Computer Science and Engineering, Vol. 3, No.

1, Jan 2011

6. CMMI for Development: Version 1.2. Carnegie Mellon University, Software

Engineering Institute. August, 2006

7. Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach. The Goal Question

Metric Approach. 1994

8. Measurement Frameworks and Standards, [WWW]

http://www.dcs.qmul.ac.uk/~norman/papers/qa_metrics_article/section_7_standa

rds.html (19.11.2015)

9. Kaur Arvinder, Suri Bharti, Sharma Abhilasha. Software Testing Product Metrics

- A Survey. Proceedings of National Conference on Challenges & Opportunities

in Information Technology (COIT-2007) RIMT-IET, Mandi Gobindgarh. March

23, 2007

82

10. Pusala, Ramesh. Operational Excellence through efficient Software Testing

Metrics. Infosys, 2006

11. Testing Metrics, [WWW]

http://www.mindlance.com/documents/test_management/testing_metrics.pdf

(20.11.2015)

12. Important Software Test Metrics and Measurements, [WWW]

http://www.softwaretestinghelp.com/software-test-metrics-and-measurements/

(20.11.2015)

13. Realizing Efficiency & Effectiveness in Software Testing through a

Comprehensive Metrics Model, Infosys, [WWW]

http://www.infosys.com/engineering-services/white-

papers/Documents/comprehensive-metrics-model.pdf (20.11.2015)

14. Gregory Jose, Jusha Joseph. Test Metrics and KPI's, [WWW] http://www.ust-

global.com/en/images/stories/pdf/Test_Metrics_and%20KPI_s.pdf (22.11.2015)

15. ISO International Standards, Systems and software engineering - Measurement

process: ISO/IEC 15939:2007, 01.08.2007

16. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black. Foundations

of Software Testing, ISTQB Certification, ISTQB Glossary

17. Waterfall model, [WWW] https://en.wikipedia.org/wiki/Waterfall_model

(07.01.2016)

18. Agile Methodology, [WWW] http://agilemethodology.org/ (11.01.2016)

19. Regression Testing with an Agile Mindset, [WWW]

http://blog.xebia.com/regression-testing-with-an-agile-mindset/ (11.01.2016)

20. David Parsons, Teo Susnjak, Manfred Lange. Influences on Regression Testing

Strategies in Agile Software Development Environments. [WWW]

https://www.academia.edu (05.02.2016)

21. Talby, D, Keren, A, Hazzan, O, & Dubinsky, Y. (2006). Agile software testing in

83

a large-scale project. IEEE Software, 23(4), 30 – 37

22. Test Maturity Model integration (TMMi): Release 1.0. TMMi Foundation, 2012

23. Inder P Singh. What is software regression? [WWW]

http://inderpsingh.blogspot.com.ee/2011/04/what-is-software-regression.html

(28.02.2016)

24. Emelie Engstrom, Per Runeson. A Qualitative Survey of Regression Testing

Practices. In M. Ali Babar, Matias Vierimaa, Markku Oivo (Eds.), Product-

Focused Software Process Improvement, LNCS, vol. 6156, Springer, Berlin,

Heidelberg, 2010, pp. 3-16.

25. Zachman Framework. [WWW]

https://en.wikipedia.org/wiki/Zachman_Framework (02.03.2016)

26. Maiqin Cui and Chengyao Wang, 2015. Cost-Benefit Evaluation Model for

Automated Testing Based on Test Case Prioritization. Journal of Software

Engineering, 9: 808-817.

27. Error guessing. [WWW] https://en.wikipedia.org/wiki/Error_guessing

(20.03.2016)

28. Exploratory testing. [WWW] https://en.wikipedia.org/wiki/Exploratory_testing

(20.03.2016)

29. E. Engström, P. Runeson and M. Skoglund (2010). A systematic review on

regression test selection techniques. Information and Software Technology, 52,

14-30

30. S. Yoo, M. Harman (2012), Regression Testing Minimization, Selection and

Prioritization: A Survey. Software Testing, Verification and Reliability, 22(2),

67-120

31. R. Miranda, O. Gomez, G. Rodriguez (2015), “15 Years of Software Regression

Testing Techniques: A Survey”, International Journal of Software Engineering

and Knowledge Engineering

http://inderpsingh.blogspot.com.ee/2011/04/what-is-software-regression.html

84

32. R. P. Gorthi, A. Pasala, K. K. Chanduka and B. Leong, "Specification-Based

Approach to Select Regression Test Suite to Validate Changed Software",

Software Engineering Conference, 2008. APSEC '08. 15th Asia-Pacific, Beijing,

2008, pp. 153-160

33. M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li and M. Moore, "Prioritizing

Requirements-Based Regression Test Cases: A Goal-Driven Practice", Software

Maintenance and Reengineering (CSMR), 2011 15th European Conference on,

Oldenburg, 2011, pp. 329-332.

34. A. S. A. Ansari, K. K. Devadkar and P. Gharpure, "Optimization of test suite-test

case in regression test", Computational Intelligence and Computing Research

(ICCIC), 2013 IEEE International Conference on, Enathi, 2013, pp. 1-4.

35. M. Puleio, "How not to do agile testing," Agile Conference, 2006, Minneapolis,

MN, 2006, pp. 7 pp.-314.

36. M. Gittens, H. Lutfiyya, M. Bauer, D. Godwin, Y. W. Kim, P. Gupta (2002). An

empirical evaluation of system and regression testing. Proceedings of the 2002

conference of the Centre for Advanced Studies on Collaborative research

(CASCON ‘02), 3

37. H. Svensson and M. Host, "Introducing an Agile Process in a Software

Maintenance and Evolution Organization", Software Maintenance and

Reengineering, 2005. CSMR 2005. Ninth European Conference on, 2005, pp.

256-264.

38. Lars-Ola Damm, Lars Lundberg, David Olsson, Introducing Test Automation

and Test-Driven Development: An Experience Report, Electronic Notes in

Theoretical Computer Science, Volume 116, 19 January 2005, pp 3-15

39. T. L. Graves, M. J. Harrold, J. Kim, A. Porters and G. Rothermel, "An empirical

study of regression test selection techniques", Software Engineering, 1998.

Proceedings of the 1998 International Conference on, Kyoto, 1998, pp. 188-197.

40. P. Runeson, E. Engström, “Regression Testing in Software Product Line

Engineering”, Advances in Computers, Volume 86, 2012, Pages 223-263

85

41. E. D. Ekelund and E. Engström, "Efficient regression testing based on test

history: An industrial evaluation", Software Maintenance and Evolution

(ICSME), 2015 IEEE International Conference on, Bremen, 2015, pp. 449-457

42. Jung-Min Kim and A. Porter, "A history-based test prioritization technique for

regression testing in resource constrained environments", Software Engineering,

2002. ICSE 2002. Proceedings of the 24rd International Conference on, Orlando,

FL, USA, 2002, pp. 119-129

43. Di Nardo, D., Alshahwan, N., Briand, L., and Labiche, Y. (2015), Coverage-

based regression test case selection, minimization and prioritization: a case study

on an industrial system. Softw. Test. Verif. Reliab., 25, 371–396

44. Yanping Chen, Robert L. Probert, D. Paul Sim, “Specification-based Regression

Test Selection with Risk Analysis”, CASCON '02 Proceedings of the 2002

conference of the Centre for Advanced Studies on Collaborative research, 2012

45. Wasiur Rhmann, Taskeen Zaidi, Vipin Saxena, “Test Cases Minimization and

Prioritization Based on Requirement, Coverage, Risk Factor and Execution

Time”, British Journal of Mathematics & Computer Science 01/2016; 14(1):1-9

46. L. Naslavsky, H. Ziv and D. J. Richardson, "A model-based regression test

selection technique", Software Maintenance, 2009. ICSM 2009. IEEE

International Conference on, Edmonton, AB, 2009, pp. 515-518

47. TMMi Foundation. [WWW] http://www.tmmi.org/ (09.04.2016)

48. Capability Maturity Model Integration. [WWW]

https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration

(09.04.2016)

49. Anti-Regression Approaches: Impact Analysis and Regression Testing

Compared and Combined: Part III: Regression Testing. [WWW]

http://gerrardconsulting.com/?q=node/553 (17.04.2016)

50. Continuous integration. [WWW]

https://en.wikipedia.org/wiki/Continuous_integration (19.04.2016)

