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Chapter 1

Introduction

1.1 State of the Art

Nowadays, the control theory operates with many various approaches and
methods to solve a full range of problems. They were created and devel-
oped in different ways. Many techniques have been obtained from the real
needs and established for a specific tasks. Other methods are purely theo-
retical and meanwhile have not been implemented in real applications. In
connection with the above, in this thesis we solve a number of theoretical
problems and show the practical applicability of the obtained results. The
developed application allows to verify created theory and find new direc-
tions. Thus this thesis may be considered as a symbioses of theory and
practice. The thesis is devoted to the development of practice oriented
theory about modeling and control of nonlinear systems.

Various methods and techniques have been created for the analysis and
modeling of control systems. One of the most popular and widely used ap-
proaches is based on differential geometry, see, for example, [44] and [73].
However, there are also exist a lot of alternative methods. One of them is
based on an algebraic point of view. The idea of the algebraic approach
is based on the vector spaces of differential one-forms over suitable fields
of nonlinear functions, see [23] for more details. Upon the latter a poly-
nomial framework can be built. Together they are well suited for solving
problems for both continuous- and discrete-time cases. Moreover, using the
tools based on differential one-forms and the related methods based on the
theory of the skew polynomial rings, one can work with algebraic equations
rather than with differential counterparts, what inherently is more simple.
Polynomial approach has been used so far to study problems like reduction
of nonlinear i/o equations [54], linear i/o [51] and transfer equivalence [52],
controllability [101] and used also in introducing the concept of transfer
function into the nonlinear domain [36, 100]. Thus it has been already
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proved itself as a practical and reliable mathematical tool.

Within the polynomial framework a lot of different problems can be
solved. Some of them are recalled in this thesis. Polynomial methods are
used to provide a solution for two typical modeling and control system
design problems. First, the realization of nonlinear i/o equations in the
state-space form is presented. Second, the model matching problem is
considered. Finally, the third problem, for which the polynomial formalism
is not used in the explicit form, is a stability issue of a certain class of
nonlinear systems linearized by output feedback.

One usually has to deal with an i/o data rather than with analytical
description of the studied object when working with the real-life processes.
To identify and then to analyze the system and its behavior one of the
simplest and convenient way is to use the i/o models. This allows to de-
scribe adequately and represent in a compact form the object of practical
interest [26]. However, despite the simplicity and success of this approach,
state-space description usually becomes the basis for analysis and control
of nonlinear systems. Indeed, if the model was not derived from the physi-
cal laws of the system, then it is most likely not realizable in the classical
state-space form [31], which makes it highly undesirable for further analysis
and control design. Thus, one of the goals of this thesis is to bridge the
gap between two modeling approaches and present the algorithm allowing
to construct a classical state-space equations from an arbitrary i/o model
whenever possible. It should be mentioned that under classical we under-
stand a minimal form for which the order of the i/o model coincides with
the number of state equations.

The state-space realization of nonlinear i/o models has been the sub-
ject of many research works over the years. Some of the existing results
may be found in [23, 24, 25, 66, 86, 91, 99] for continuous-time systems
and in [60, 63, 64, 80, 81] for discrete-time systems, respectively. Note that
a great number of the results have been obtained for single-input single-
output (SISO) systems. However, multi-input multi-output (MIMO) case
has not been left aside. There are many various approaches developed
to solve this problem, among others based either on the sequence of the
subspaces of differential one-forms [23], on the sequence of distributions of
vector fields as in [91], on the iterative Lie brackets of the vector fields as
in [25]. The comparison of different methods and the explicit relations be-
tween them have been reported in [56] and [57] for SISO and MIMO cases,
respectively. One of the most common approaches is based on the algebraic
formalism using the theory of differential one-forms [23]. However, it is not
as transparent as polynomial approach in which the system is described
by two polynomials from the skew polynomial ring, see, for example, [39]
and [86]. Therefore, in this thesis we have restricted our attention to this
approach and studied the realization problem for different types of systems.
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Though, a lot of work has been done in this area, there are still some gaps
related to this topic. Thus, in this thesis recently obtained results by the
author are presented. In addition, the realization algorithm proposed in
this thesis combines well with the existing results for the reduction prob-
lem. A small selection of articles on this subject can be represented by the
following references [49, 53, 54] with respect to the types of the systems
recalled in the thesis. Both the results presented in the references and this
work rely on the same polynomial description of the system. Note that we
have not considered the reduction problem in this thesis. Nevertheless, it is
worth to be mentioned, because both methods allow to create a complete
procedure for deriving state equations starting from the possibly reducible
i/o equations. Namely, the realization procedure ends up with the control-
lable (accessible) realization iff the i/o equation is reduced to the simplest
form, being transfer equivalent to the original equation.

Another common problem in the control theory that can be solved
within the polynomial framework is a so-called model matching problem
(MMP). It is usually used for control system design. The beauty of this
problem lies in the fact that it accommodates various other problems such
as i/o linearization, disturbance decoupling, model tracking, etc. The ba-
sic idea of MMP may be illustrated on the basis of linear systems, where
one naturally requires the equality of the transfer functions of the reference
model and that of the compensated system. In other words, the output of
the controlled object has to coincide with the output of the etalon model af-
ter a certain amount of time. On the one hand, the MMP for nonlinear case
has been mainly studied within the state-space approach, see [16, 17, 43, 72].
On the other hand, few results exist for systems described by the i/o equa-
tions [33, 47, 48]. The reason to state and solve the MMP for the i/o case is
justified by the fact that nonlinear systems are not always realizable in the
state-space form [38]. However, the MMP statements and solutions given in
terms of i/o equations are not that simple and transparent as those relying
on the state-space approach. Nevertheless, we can use a transfer function
formalism, which can be naturally deduced from the polynomial formalism
providing an alternative tool for modeling and analysis of nonlinear control
systems [36]. Note that in [41] the transfer function formalism was applied
for solving the MMP of nonlinear continuous-time systems. Here we de-
scribe a possible way to adapt the results of [41] for nonlinear discrete-time
systems. In fact, this procedure is not straight-forward, because the poly-
nomial ring is different as well as the basic operations used therein. The
main difference is that the derivative and shift operators define the differ-
ent multiplication rules. Two types of compensators are usually considered
within the MMP, namely feedforward and feedback. Thus within the same
problem two subtasks can be simultaneously solved. Note that in case of
continuous-time systems it was shown that, unlike the feedback case, the
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feedforward solution of the MMP does not always exist. Therefore, this
case has to be considered in more detail.

The last theoretical problem considered in this thesis is a feedback lin-
earization problem. Indeed, it is well known and has a relatively long his-
tory. At different times this problem and its subproblems were successfully
solved by various researchers. During the last three decades there has been
made a significant research, both in continuous-time, see [18, 23, 44, 45, 68],
and in discrete-time, see [3, 34, 71], cases, respectively. Over the years dif-
ferent aspects of the feedback linearization technique were considered and
analyzed such as exact, input-output, input-to-state linearization, etc.

Note that in the classical statement of the problem the stability prop-
erty of the closed-loop is not required. Usually, one is seeking for an ap-
propriate feedback function of control which allows to transform equations
describing the object to be controlled to a linear form. Thus, the stability
is usually considered separately what, in principle, is logical. This is due to
the fact that the issue of calculating the correct position of the poles of the
closed-loop system is always solvable, whenever the system is controllable.
Nevertheless, both problems have to be considered together before imple-
menting the real control. In this thesis we analyze the stability problem for
a certain class of nonlinear discrete-time systems, which can be linearized
by an output feedback. On the one hand, such a restriction is not necessary
and the presented technique may be extended to a more general class of
systems. On the other hand, it will be shown that even in such relatively
simple case, the solution of the stated problem becomes a very difficult
task because of the high computational complexity. In fact, we consider
this problem from a slightly different point of view. Since the stability of
the closed-loop system can be achieved under certain conditions, we turned
our attention to what happens to the control signal inside the closed-loop,
and for which of the reference signals it remains bounded.

Creation and development of specific electronic devices such as comput-
ers, smartphones or tablets can be considered through the prism of history
as the close cooperation of the theory and practice. A lot of theoretical
algorithms were implemented in the form of various programs, thus becom-
ing the engine for further development and improvement. As a result of
the advanced computing abilities and ease of use, electronic devices infil-
trated into all spheres of human activity. For example, they may be found
in different places ranging from battleships to industrial robots, medical
tools, and even children’s toys. Moreover, complex systems and labour-
consuming calculations have led to necessity of additional assistance, and
therefore, development of specific computer software. Scientific disciplines
also have not left aside. Huge class of practical problems can be solved
by numerical methods. They play a much more prominent role in con-
trol systems theory and practice than symbolic computations. However,
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analytical results are very attractive prospect and thus interest in the use
of symbolic computations does not decrease. Some techniques in control
are especially well-suited for computer algebra applications, for example
transformation of the system description into another one or system equa-
tions into various types of normal/canonical forms or finding the reduced
order equivalent system representation. Note that defining normal forms
and deriving algorithms to compute them is a classical topic in computer
algebra.

This thesis is focused on the methods based on the theory of differen-
tial one-forms and skew polynomials. There exist several symbolic software
packages which implement the methods of commutative polynomial theory
for control. Two most complete applications are Polynomial Control Sys-
tems, written in Computer Algebra System (CAS) Mathematica, and Polyx,
written for MATLAB; both deal with linear systems. Additionally, there
exists a small Maple-based package Polycon, which utilizes commutative
algebra to handle systems with rational nonlinearities, see [32]. As for the
software related to non-commutative polynomials that is the study case of
this thesis, the situation is different. In [21] the authors describe the Maple
package OreModules, which offers symbolic tools to investigate the struc-
tural properties of multidimensional linear systems over Ore algebras. For
Maple there is also available a general-purpose Ore algebra package called
OreTools, described in [1], which does not include any built-in control tools.
Comparing the two packages, OreTools seems to us more user friendly and
its procedures provide a better basis for applications. Nevertheless, regard-
ing the possible extension of OreModules and OreTools for nonlinear control
systems, both have the small but crucial shortage: there is no possibility
to define the Ore ring by system equations. In other words, one has to
add a procedure for replacing some variables appearing in polynomial co-
efficients by expressions, defined by i/o equations. Otherwise the result of
calculations may be erroneous. In fact, it is unclear if this replacement can
be added upon the package by supplementary procedure, or, what is more
likely, requires modifying the code of the original package. Finally, there
is a small package GTF Tools, see [75], built upon OreTools, implementing
the construction of the transfer function of nonlinear system. We are not
aware of any other software applying the theory of Ore polynomial rings to
nonlinear control problems.

Therefore, the special NLControl package was created in the Institute
of Cybernetics at Tallinn University of Technology [62]. Originally, the
package was created by M. Tõnso, and during long period of time she was
developing it alone, see [85]. NLControl is based on the algebraic methods
of differential one-forms and skew polynomials, and is developed within
symbolic software system Mathematica. It was created for solving different
problems from the control theory. However, considering the subject of this
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work further we will focus on a subpackage inside NLControl, which im-
plements the polynomial formalism. The first part of the software includes
the functions that implement the basic operations with Ore polynomials,
since there is neither built-in functions nor supplement package available
for Mathematica, addressing these operations. The second part contains
the programs for solving modelling problems by polynomial methods.

1.2 Outline and Contributions of the thesis

The thesis is organized such that each subsequent chapter is logically related
to the previous one. Therefore, there are five connected parts excluding
Chapter 2 which establishes the theoretical background for the problems
discussed below. The problem statements and the main contributions of
the thesis are presented in Chapters 3-5. Chapter 6 contains new contribu-
tions, but mostly focuses on implementation of the results from the previous
chapters. Note that at the beginning of each chapter a certain amount of
introductory material, necessary for a more accurate understanding of the
obtained results, is presented.

Chapter 2

This chapter contains a brief summary of mathematical tools that directly
or indirectly are used in the next parts of the thesis. The algebraic and
polynomial frameworks as well as related notions are presented. More-
over, some basic definitions are recalled. The main methods, important for
understanding the rest part of the thesis, are also considered.

Chapter 3

In this chapter the realization problem of nonlinear i/o equations in the
classical state-space form is presented. We applied the polynomial formal-
ism in which the system is described by two polynomials with elements
from the non-commutative ring of skew polynomials. Such approach has
allowed to simplify significantly the existing step-by-step algorithm based
on certain sequences of one-forms. Polynomial formalism appeared to be a
very flexible and convenient tool with respect to a given problem. It made
possible to unify the solution of this problem for systems defined in different
time domains. The presented new explicit formulas allow to compute the
differentials of the state coordinates directly from the polynomial descrip-
tion of the nonlinear system. The proposed algorithm combines well with
the existing results for the reduction problem, since both rely on system
description in terms of two polynomials. Thus, it has led to the possibil-
ity of establishing a constructive algorithm which results in the accessible
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state-space realization whenever possible. Finally, note that the software
programmes based on polynomial formulas are more transparent what in
detail is considered in Chapter 6.

Chapter is based on the material presented in [11], [10], [8], [9], and
[12]. In each of the listed articles roles of the authors were distributed
in approximately equal parts. Ü. Kotta stated the problem to be solved
and provided the necessary theoretical background. M. Tõnso has imple-
mented the obtained results in Mathematica software NLControl package,
that made possible to check and improve some moments. The role of the
author was deriving main results and writing the corresponding articles, as
well as illustrating the developed theory by means of different examples.
The only exceptions are papers [9] and [10], in which in addition to the
author and Ü. Kotta also P. Kotta has made a contribution. It should be
mentioned that in [9], [10] the author proved the main propositions and
found the corresponding realizability conditions. Additionally, he derived
realizable subclass of an arbitrary order.

Chapter 4

The model matching problem of nonlinear SISO discrete-time systems is
considered. We analyze both feedforward and feedback cases. For that
purposes the transfer function approach, in which the system is described
by the quotient of two polynomials from the non-commutative ring of skew
polynomials, is used. It turns out that, in general, the feedforward solution
does not always exist. However, the feedback solution always exists. Some-
times there is a need in finding a solution in a class of proper compensators.
Therefore, the conditions for the existence of the proper compensator are
provided.

Materials from the paper [8] were used for writing Chapter 4. The
mentioned article was mostly written by the author of this thesis. But to
be honest, he relied on the co-authors’ previous results presented in [41]
for the case of nonlinear continuous-time systems. So as a matter of fact
[8] can be considered as an adaptation of the material from [41] for the
discrete-time systems. However, it should be mentioned that in this case
there are a number of difficulties due to the use of different time-domain
and polynomial formalism, which includes the different multiplication rule.
Thus, the role of co-authors was to check the obtained results and the
legitimacy of such a transfer. In addition, the author specified a subclass
of nonlinear control systems for which the feedforward model matching
problem is always solvable.
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Chapter 5

This chapter raises the question of stability of a certain class of closed-
loop systems. Static and dynamic feedback linearization algorithms may
be used to transform the nonlinear controlled system to a linear form. Such
approach allows to solve at once two related problems, namely stabilization
of the controlled system and stability of the closed loop. Clearly, after
obtaining a linear closed-loop system, one can always use the algorithms
like pole placement in order to guarantee the stability of the i/o relation.
However, we state the related problem that is the stability of the control
signal with respect to the reference and output signals. Moreover, we derive
the relevant conditions which allow to guarantee that the whole control
system behaves in the proper way.

The material presented in this chapter is based on the results published
in [15]. Statement and solution of the problem discussed above are mostly
belong to the author. The role of the co-author was reduced to verification
and refinement of the obtained results, which, to a word, has appeared to
be a very valuable.

Chapter 6

The objective of the chapter is devoted to the description of the Mathemat-
ica software package NLControl. At the beginning of the first section we
acquaint the reader with the basic syntax and commands, as well as with
the idea of creating special objects to perform various operations. After
that the narration passes in the description of functions created on the ba-
sis of the theory presented in Chapters 3 and 4. It is followed by illustrative
examples with detailed comments. The end of the chapter is devoted to
web site, which provides a possibility to use the basic functionality of the
NLControl package outside Mathematica environment.

Chapter is mainly based on the results presented in [14] and [87]. The
contribution of the author can be divided into two parts. First, the author
has created functions related to the model matching problem. However,
the contribution of the author to development of the package is not limited
to it, and there are other programs and functions beyond the research pre-
sented within the framework of this thesis. Second, in order to overcome a
number of problems associated with the availability of the NLControl pack-
age by external users, the special web page has been created on the basis
of webMathematica service, see [74]. Couple of years ago the management
and maintenance of the site was given to the author of this thesis. Then, in
cooperation with V. Kaparin, the old web page has been severely altered.
V. Kaparin was responsible for the new design to make the site more simple
and user-friendly. In addition, to implement the ideas of his colleague, the
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author rewrote all the functionality and the engine. Thus the structure of
the site was simplified, unified, and the amount of code was significantly
reduced. Now, the addition of new parts and elements does not take much
time compared to the previous version.
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Chapter 2

Preliminaries

The control theory operates with many concepts borrowing definitions and
notions from various scientific disciplines. Therefore, this chapter will serve
as a brief introduction to only basic mathematical tools which will be im-
portant throughout the whole thesis.

2.1 Nonlinear control systems

In this section the author has compiled the basic facts of nonlinear discrete-
time systems. Notions of the input-output and state-space forms of the
system are presented.

2.1.1 Input-output systems

Consider a nonlinear single-input single-output discrete-time dynamical
system, described by the input-output difference equation

y(t+ n) = φ(y(t), . . . , y(t+ n− 1), u(t), . . . , u(t+ s)), (2.1)

where u : Z→ R is the input, y : Z→ R is the output, φ : Rn × Rs+1 → R
is a real analytic function. Moreover, we assume that n, s are non-negative
integers such that s < n.

2.1.2 State-space systems

Consider a nonlinear single-input single-output discrete-time system, de-
scribed by the state equations

x(t+ 1) = f(x(t), u(t))

y(t) = h(x(t))
(2.2)
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where x : Z→ Rn is the n-dimensional state vector, u : Z→ R is the input,
y : Z → R is the output, f : Rn × R → Rn and h : Rn → R are the real
analytic functions.

2.2 Algebraic framework

This section is devoted to a brief explanation of the algebraic framework
based on the theory of differential one-forms.

2.2.1 Difference field

Consider the system described by equation (2.1). Let K denote the field of
meromorphic functions in a finite number of independent system variables
from the infinite set

C = {y(t), y(t+ 1), . . . , y(t+ n− 1), u(t+ k), k ≥ 0}.

The forward-shift operator σ : K → K is defined as follows

σ(F )(y(t), y(t+ 1), . . . , y(t+ n− 1), u(t), u(t+ 1), . . . , u(t+ l)) :=

F (y(t+ 1), y(t+ 2), . . . , φ(·), u(t+ 1), u(t+ 2), . . . , u(t+ l + 1)),

meaning that σ is applied in the element wise manner, i.e. to each argument
of the function F . In other words, the arguments of the function are shifted
according to the rules σy(t + i) = y(t + i + 1), σu(t + j) = u(t + j + 1).
Moreover, it should be mentioned that application of the operator σ to
y(t+n− 1) results in y(t+n) which, according to (2.1), has to be replaced
by φ(·), whenever it occurs in some expression.

Assume that σ is an injective endomorphism on K. It means that,
according to [64], system (2.1) has to be submersive, that can be guaranteed
by

∂φ

∂(y(t), u(t))
6≡ 0. (2.3)

Under the latter assumption, the pair (K, σ) is a difference field.

The inverse σ operator is denoted by σ−1 and called the backward-shift
operator. In general, the field K is not inversive meaning that σ−1ζ may not
have pre-image in K for any ζ ∈ K. Note that under assumption (2.3), there
exists, up to an isomorphism, a unique difference overfield K∗, called the
inversive closure of K such that K ⊂ K∗ and the extension of σ to K∗ is an
automorphism, see [22]. A construction of K∗ for practical computations is
given in [3]; for the case φ in (2.1) being a rational function, a more detailed
construction is given in [40].
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According to this procedure one needs the rule to compute the k-step
backward shifts σ−k, k ≥ 1 of the system variables. Note that the in-
dependent variables of the field K are given by the elements of the set
C, whereas the inversive closure K∗ contains, in addition, the variables
σ−iy(t) and σ−iu(t), i ≥ 1, where σ−i means the i-time application of the
backward-shift operator σ−1. However, take into account that not all of
those variables are independent. From (2.1), one can readily calculate the
backward shifts of variable y(t), if the condition ∂φ/∂y(t) 6≡ 0 holds and
σ−ku(t) are given. This can be done by solving equation (2.1) with respect
to y(t) and applying the backward shift to the result the required number
of times. This shows that σ−ky(t) for k ≥ 1 must not be considered as
independent variables of the field extension K∗ in the sense that they can
be expressed as functions of the other variables such as σ−ku(t) and those
from C. Note that alternative possibility is to specify σ−ky(t) as the in-
dependent variables of the field extension K∗. Then under the assumption
that ∂φ/∂u(t) 6≡ 0 equation (2.1) can be solved for u(t) and shifted back to
compute σ−ku(t) as dependent variables of K∗. To conclude, we have two
possibilities to solve equation (2.1), namely with respect to y(t) or u(t),
meaning that either σ−ku(t) or σ−ky(t) for k ≥ 1, respectively, have to be
chosen as the independent variables for the construction of the inversive
closure K∗. Although the choice of variables is not unique, each possible
choice brings up a field extension of K which is isomorphic to K∗.

It should be mentioned that sometimes in the thesis we use the abridged
notation σϕ(t) = ϕ(t+ 1) =: ϕ+, σ−1ϕ(t) = ϕ(t− 1) =: ϕ− and σkϕ(t) =
ϕ(t + k) =: ϕ[k] for higher-order shifts to make the expressions visually
more compact in case of discrete-time systems.

2.2.2 Differential forms

Define the difference vector space E spanned over the field K∗ as E =
spanK∗dC, where either

dC = {dy(t), dy(t+ 1), . . . ,dy(t+ n− 1),dy(t− k), k ≥ 1,du(t+ l), l ≥ 0}

or

dC = {dy(t),dy(t+ 1), . . . ,dy(t+ n− 1),du(t+ l), l ≥ 0, du(t− k), k ≥ 1}

with respect to the chosen independent variables. The elements of E are
called one-forms. Note that any element in E is a vector of the form
ω =

∑
i αidζi with ζi ∈ K, where only a finite number of αi 6= 0 ∈ K∗.

Then the operator σ : K → K induces the operator σ : E → E by σ(ω) :=∑
i σαid(σζi) and σ−1 : E → E by σ−1(ω) :=

∑
i σ
−1αid(σ−1ζi).
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Define for system (2.1) the non-increasing sequence {Hk}∞k=1 of sub-
spaces of E as follows [64]

H1 = spanK∗{dy(0), . . . ,dy(n− 1),du(0), . . . ,du(s)},
Hk+1 = {ω ∈ Hk | σ(ω) ∈ Hk}, k ≥ 1.

(2.4)

There exists an integer k∗ such that H1 ⊃ H2 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 =
Hk∗+2 = · · · =: H∞. Existence of k∗ comes from the fact that each Hk is
finite-dimensional K∗-vector space, so that at each step either its dimension
decreases or Hk+1 = Hk.

We say that ω ∈ E is an exact one-form, if there exists ζ ∈ K∗ such that
dζ = ω. A one-form ω for which dω = 0 is said to be closed. A subspace
is said to be completely integrable or closed, if it has locally a basis which
consists only of exact one-forms. Integrability of the subspace of one-forms
may be checked by the Frobenius theorem below, where the symbol dω
denotes the exterior derivative of one-form ω and ∧ means the exterior or
wedge product.

Theorem 2.1 ([20]) Let V = spanK∗{ω1, . . . , ωr} be a subspace of E. V
is closed if and only if for all k = 1, . . . , r

dωk ∧ ω1 ∧ · · · ∧ ωr = 0. (2.5)

2.2.3 Reducibility

Definition of the irreducible system is based on the notion of autonomous
element.

Definition 2.1 A function ϕ 6≡ const with arguments in K∗ is said to be
an autonomous element for system (2.1) if there exist an integer ν ≥ 1 and
a non-constant meromorphic function F such that F (ϕ, σϕ, . . . , σνϕ) = 0.

Note that the function ϕ depends on y(t), u(t), their forward time shifts
and represents the lack of controllability of the nonlinear system. It means
that if ϕ exists and does not equal to constant, then system (2.1) is not
accessible. The notion of autonomous element can be used to define (local)
irreducibility of the system as follows.

Definition 2.2 The system (2.1) is said to be generically irreducible if
there does not exist any non-constant autonomous element for (2.1) in K∗.
Otherwise system (2.1) is called reducible.

The definition of the autonomous element can be alternatively repre-
sented in terms of the subspace H∞. A practical condition for evaluating
reducibility of system (2.1) is formulated in the following theorem.
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Theorem 2.2 ([64]) The system (2.1) is irreducible iff H∞ = {0}.

Henceforth we assume that the i/o difference equation (2.1) is irre-
ducible in the sense that the system does not have autonomous element.
In other words, this means that there does not exist the i/o equation of
order n′ < n, which is transfer equivalent to the original system (2.1).
Irreducibility plays an important role in finding accessible state equations.

2.2.4 Observability

Given a system of the form (2.2), let us denote by X ,Yk,Y and U the
following subspaces of differential one-forms

X = spanK{dx(t)},
Yk = spanK{dy(t+ j), 0 ≤ j ≤ k},
Y = spanK{dy(t+ j), j ≥ 0},
U = spanK{du(t+ j), j ≥ 0}.

The chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ O2 ⊂ · · · ⊂ Ok ⊂ · · · ,

where Ok = X ∩ (Yk + U) is called the observability filtration. The limit of
the observability filtration may be denoted by O∞ = X ∩ (Y + U).

Definition 2.3 The subspace O∞ is called the observable space of system
(2.2).

Proposition 2.1 ([50]) System (2.2) is locally single-experiment observ-
able if O∞ = X .

The dimension of the observable space can be computed, according to
[82], by

dimO∞ = rankK∗
∂
(
h(x(t)), σh(x(t)), . . . , σn−1h(x(t))

)
∂x(t)

= n̄. (2.6)

Remark 2.1 Note that system (2.2) is said to be single-experiment observ-
able if the observability matrix in (2.6) has generically full rank. In other
words, the dimension of the observable space equals to the number of states,
i.e. n̄ = n.

2.3 Polynomial framework

In this section we recall the polynomial formalism which allows to represent
the nonlinear i/o equation (2.1) via two polynomials and extend the notion
of a transfer function to the case of nonlinear system.
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2.3.1 Non-commutative polynomial ring

A left shift polynomial can be uniquely written in the form

a(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn (2.7)

for αi ∈ K∗, i = 0, . . . , n, where z is a formal variable (polynomial inde-
terminate) and a(z) 6= 0 if and only if at least one of the functions αi,
for i = 0, . . . , n, is non-zero. The highest power in the polynomial a(z) is
known as its degree and may be denoted by deg(a(z)).

Definition 2.4 The left skew polynomial ring, induced by (K, z), is the
ring K∗[z;σ] of polynomials in the indeterminate z with usual addition and
multiplication satisfying the relation

z · α = σ(α)z (2.8)

for any α ∈ K∗.
The skew polynomial ring K∗[z;σ] is proved to satisfy the following left

Ore condition.

Proposition 2.2 ([30]) For all non-zero a, b ∈ K∗[z;σ] there exist non-
zero a1, b1 ∈ K∗[z;σ] such that a1b = b1a.

If the condition of the above proposition holds, then the skew polynomial
ring is called the Ore ring.

Thus, the ring K∗[z;σ] can be embedded into the field of fractions,
denoted as K∗(z;σ), see [76]. In K∗(z;σ) one can define the sum of two
quotients as

b−1
1 a1 + b−1

2 a2 = (β2b1)−1(β2a1 + β1a2),

where β2b1 = β1b2 satisfy the Ore condition and the product as

b−1
1 a1b

−1
2 a2 = (β2b1)−1α1a2, (2.9)

where β2a1 = α1b2 again satisfy the Ore condition.
A ring is called an integral domain, if it does not contain any zero

divisors. This means that for any two elements a and b of the ring, ab = 0
implies either a = 0 or b = 0.

Proposition 2.3 ([69])

(i) The ring K∗[z;σ] is an integral domain.

(ii) If a(z) and b(z) are non-zero shift polynomials, then deg(a(z)·b(z)) =
deg a(z) + deg b(z).

Note that since σ is an automorphism on K∗, the left division operation
is well-defined in K∗[z;σ], see [19]. The latter means that given two polyno-
mials p(z), q(z) ∈ K∗[z;σ], q(z) 6= 0 with deg(p(z)) > deg(q(z)) there exist
a unique left quotient polynomial γ(z) and unique left remainder polyno-
mial ρ(z) such that p(z) = q(z)γ(z) + ρ(z) and deg(ρ(z)) < deg(q(z)).
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2.3.2 Polynomial system description

In order to describe the i/o equation (2.1) via two skew polynomials from
the ring K∗[z;σ], we define

zidy := dy(t+ i), zjdu := du(t+ j) (2.10)

for i = 0, . . . , n− 1 and j ≥ 0 in the vector space E . An arbitrary one-form

ω =
n−1∑
i=0

aidy(t+ i) +
l∑

j=0

bjdu(t+ j),

where ai, bj ∈ K∗, can be expressed in terms of two skew polynomials as

ω =

(
n−1∑
i=0

aiz
i

)
dy(t) +

 l∑
j=0

bjz
j

du(t).

A skew polynomial may be understood as an operator from E to E ,
satisfying the property(

k∑
i=0

aiz
i

)
(αdζ) :=

k∑
i=0

ai
(
zi · α

)
dζ

with ai, α ∈ K∗ and dζ ∈ {dy(t),du(t)}. Moreover, it is easy to notice that
z(ω) = σ(ω) for ω ∈ E .

Now, by differentiating the i/o equation (2.1) and using (2.10), we get

p(z)dy + q(z)du = 0 (2.11)

with p(z) = zn −
∑n−1

i=0 piz
i, q(z) = −

∑s
j=0 qjz

j and pi = ∂φ
∂y(t+i) ∈ K

∗,

qj = ∂φ
∂u(t+j) ∈ K

∗.

2.3.3 Transfer functions

Now, we recall the definition of the transfer function from [37], see also [36].

Definition 2.5 An element of the form F (z) := p−1(z)q(z) ∈ K∗(z;σ),
such that dy = F (z)du, is said to be a transfer function of nonlinear system
(2.1).

Note that in the linear case each proper rational function may be inter-
preted as a transfer function, corresponding to the certain i/o equation of
a control system. However, the nonlinear case is more complex. Though
every system can be described by the rational function called the transfer
function of the nonlinear system, the converse is not always true. It means
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that not every quotient of skew polynomials necessarily represents a control
system, since the corresponding one-form may be non-integrable, see [37]
for more details.

It follows from (2.11) that the transfer function of (2.1) can be repre-
sented as

F (z) = (zn + · · ·+ p1z + p0)−1 (qsz
s + · · ·+ q1z + q0) .

Definition 2.6 The transfer function F (z) is said to be proper if s =
deg q(z) ≤ n = deg p(z) and strictly proper if s < n.

Definition 2.7 For a proper or strictly proper transfer function, the dif-
ference n− s, denoted as rel degF (z), is called the relative degree.

Remark 2.2 It should be mentioned that the theory presented above is
recalled for the shift operator based discrete-time systems. It was motivated
by the fact that the most of the results accommodate the discrete-time case.
However, in the following sections part of the presented theory will also
be extended for other types of systems such as continuous- and difference
operator based discrete-time cases.
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Chapter 3

State-space realization of i/o
equations

This chapter is devoted to the problem of finding classical state equations
from a nonlinear input-output system. It is known form the literature that
not every i/o model can be transformed into a state-space form. This is
the main difference from the linear case in which the classical state-space
realization for the proper systems always exists. Therefore, the problem
under consideration can be stated in the following way. Suppose that an
arbitrary i/o equation is given. Find, if possible, the state coordinates
x(t) ∈ Rn such that in these coordinates the system takes the classical
state-space form and the sequences, generated by i/o and state equations,
coincide. The i/o equation is said to be realizable if it admits the classical
state-space realization. Hereinafter talking about classical we understand
minimal, i.e. accessible realization with respect to the theory presented
in Section 2.2. More precisely the problem will be stated in the following
sections.

Many control methods and techniques require the system to be in the
state-space form. Therefore, in this chapter the basic idea of the realiza-
tion procedure is explained as well as the corresponding algorithms and
formulas for the certain types of systems are derived. Note that presented
algorithms are constructive and, therefore, allow to derive the differentials
of the state equations directly from the polynomial system description, as-
suming that the system is realizable and irreducible. First, the case of the
single-input single-output equation, defined in terms of the pseudo-linear
operator, is presented. After that we consider the realizability conditions
for bilinear and quadratic discrete-time systems, and analyze the appli-
cability of the tools developed in the framework of the linear parametric
varying systems. Finally, the case of nonlinear multi-input multi-output
continuous-time systems is addressed.
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3.1 Realization of i/o equations via the tools of
pseudo-linear algebra

In this section the realization problem is stated and solved in a unified
manner. In particular, this means that both the i/o and state equations
are described in terms of the pseudo-linear operator, and the formulas to
find the state coordinates are also given in terms of these operators. For
the special cases of continuous- and discrete-time systems, these operators
take the form of differential, difference or shift operators.

3.1.1 Theoretical background

Below we shortly recall the algebraic formalism from [53], which allows to
extend the theory presented in Section 2.2 for the discrete-time case, see
also [19].

Let K be a field and σ : K → K an automorphism of K.

Definition 3.1 A map δ : K → K, which satisfies

δ(a+ b) = δ(a) + δ(b),

δ(ab) = σ(a)δ(b) + δ(a)b
(3.1)

for a, b ∈ K, is called a pseudo- or σ-derivation.

Definition 3.2 A σ-differential field is a triple (K, σ, δ), where K is a field,
σ is an automorphism of K and δ is a σ-derivation.

Hereinafter (K, σ, δ) will be denoted by K. Let V be a vector space over
the field K.

Definition 3.3 An operator θ : V → V is called pseudo-linear if

θ(v + w) = θ(v) + θ(w),

θ(aw) = σ(a)θ(w) + δ(a)w
(3.2)

for any a ∈ K, v, w ∈ V .

Note that any field K is a vector space itself. Hence, (3.2) holds for any
a, v, w ∈ K. Any pseudo-derivation δ : K → K is a pseudo-linear operator
by letting θ = δ. Also for a shift operator, when δ = 0, (3.2) is clearly
satisfied by letting θ = σ. Thus, pseudo-linear operators allow to handle
differential, shift and difference structures from a unified standpoint. The
basic types of operators that can be addressed within the pseudo-linear
algebra are listed in Table 3.1.

Further in this section we use the abridged notation θ(y(t)) = y〈1〉.
It can be a derivation y〈1〉 = ẏ that corresponds to the continuous-time
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Table 3.1: Basic types of operators

Operator σ δ θ f 〈1〉(t)

differential idK
d
dt δ df(t)

dt

shift σ 0 σ f(t+ 1)

difference σ ∆ δ 1
µ(f(t+ 1)− f(t))

case, a shift y〈1〉 = σ(y), or a difference y〈1〉 = 1
µ

(
σ(y) − y

)
with µ ∈ R

that correspond to two alternative discrete-time cases. Moreover, we use
notation θk(y(t)) = y〈k〉 for the k-fold application of the pseudo-linear
operator.

Consider a nonlinear control system, described by the i/o equation

y〈n〉 = φ
(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
, (3.3)

where u, y ∈ R are the input and the output of the system, respectively,
φ is a real analytic function, and n, s are non-negative integers such that
s < n. Assume that system (3.3) is generically submersive, i.e.

rank
∂σn(y)

∂(y, u)
6≡ 0. (3.4)

Note that assumption (3.4) is not restrictive since it is necessary condi-
tion for system accessibility. Besides, it reduces to the well-known condi-
tion (2.3) in case of nonlinear discrete-time systems when y〈1〉 = σ(y) [35],
and is trivially satisfied in case of continuous-time systems y〈1〉 = ẏ when
σ(y) = y.

Let K denote the field of meromorphic functions in the independent
system variables C =

{
y, y〈1〉, . . . , y〈n−1〉, u〈k〉, k ≥ 0

}
and let δ be a pseudo-

derivation defined on K. The field K may be endowed with a σ-differential
structure (K, σ, δ), determined by the system equations (3.3), see [53]. De-
fine a pseudo-linear operator θ : K → K separately for derivation, shift and
difference operators:

• if σ = idK and δ = d/dt, then a pseudo-linear operator θ = δ and

δϕ
(
y〈j〉, u〈k〉

)
=

∂ϕ

∂y〈j〉
δy〈j〉 +

∂ϕ

∂u〈k〉
δu〈k〉,

where δy〈j〉 = y〈j+1〉 for j = 0, . . . , n − 2, δu〈k〉 = u〈k+1〉 for k ≥ 0,
but δy〈n−1〉 is defined by equation (3.3)

δy〈n−1〉 = φ
(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
;
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• if δ = 0, then a pseudo-linear operator θ = σ and

σϕ
(
y〈j〉, u〈k〉

)
= ϕ

(
σy〈j〉, σu〈k〉

)
,

where σy〈j〉 = y〈j+1〉 for j = 0, . . . , n− 2, σy〈n−1〉 = φ(·) and σu〈k〉 =
u〈k+1〉 for k ≥ 0;

• if δ = 1
µ(σ − idK) =: ∆ with µ ∈ R, then a pseudo-linear operator

θ = ∆ and

∆ϕ
(
y〈j〉, u〈k〉

)
=

1

µ

[
ϕ
(
σy〈j〉, σu〈k〉

)
− ϕ

(
y〈j〉, u〈k〉

)]
,

where σ = µ∆ + idK, ∆y〈j〉 = y〈j+1〉 for j = 0, . . . , n − 2, ∆y〈n−1〉 =
φ(·) and ∆u〈k〉 = u〈k+1〉 for k ≥ 0.

Under assumption (3.4), there exists, up to an isomorphism, a unique
difference overfield K∗ ⊇ K, called the inversive closure of K, with σ being
an automorphism of K∗, see [22]. An explicit construction of inversive
closure is given in [6] and [3, 40] for the cases when θ is the difference or
shift operator, respectively. Note that in the continuous-time case when
σ = idK, K∗ = K.

Recall that in general, the new independent variables of the (isomor-
phic) field extension may be chosen in two different ways, either as σ−k(y),
k ≥ 1, or as σ−k(u), k ≥ 1. Here the σ−k means the k-time application of
the backward-shift operator σ−1. The other variables, that is, σ−k(u), or
σ−k(y), respectively, may be calculated from the i/o equation (3.3), apply-
ing to it σ−1 the required number of times.

Over the field K∗ one can define the vector space E := spanK∗dC of
differential one-forms, where either

dC =
{

dy,dy〈1〉, . . . ,dy〈n−1〉,dy〈−k〉, k ≥ 1,du〈l〉, l ≥ 0
}

or
dC =

{
dy,dy〈1〉, . . . ,dy〈n−1〉, du〈l〉, l ≥ 0, du〈−k〉, k ≥ 1

}
with respect to the chosen independent variables. The space E may be also
endowed with the pseudo-linear operator θ : E → E as follows

θ(αdζ) = σ(α)d(θ(ζ)) + δ(α)dζ.

Note that the operator θ commutes with the operator d, θ(dϕ) = d(θ(ϕ)),
and reduces to the well-known rules

δv =
∑
i

[γid(δζi) + δ(γi)dζi]
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and

σv =
∑
i

σ(γi)d(σζi)

for the special cases of continuous-time systems (σ = idK, θ = δ = d/dt)
and discrete-time systems (δ = 0, θ = σ), respectively.

Next, the polynomial formalism presented in Section 2.3 is extended
to the case of systems defined in terms of pseudo-linear operator. A left
polynomial can be uniquely written in the form a(z) =

∑n
i=0 αiz

n−i, αi ∈
K∗, where z is a formal variable (polynomial indeterminate) and a(z) 6= 0
if and only if at least one of the functions αi, i = 0, . . . , n is non-zero.
Therefore, Definition 2.4 can be rewritten as follows.

Definition 3.4 Automorphism σ and σ-derivation δ induce the left skew
polynomial ring K∗[z;σ, δ] of polynomials in z over K∗ with usual addition,
and multiplication satisfying the relation

z · α = σ(α)z + δ(α) (3.5)

for any α ∈ K∗.

The ring K∗[z;σ, δ] is an integral domain, see [69].

Remark 3.1 For any differential field K with a derivation δ = d/dt,
K∗[z; idK, δ] =: K∗[z; δ] is the ring of linear ordinary differential oper-
ators. If σ is the automorphism over K∗ which takes t to t + 1, then
K∗[z;σ, 0] =: K∗[z;σ] is the ring of linear shift operators, while K∗[z;σ,∆],
where ∆ = 1

µ(σ − 1K), µ ∈ R is the ring of linear difference operators, see
[19].

Since σ is an automorphism on K∗, the left division algorithm is appli-
cable to the polynomials of K∗[z;σ, δ] in the way described in Section 2.3.
Thus, the nonlinear system (3.3) may be represented in terms of two skew
polynomials in K∗[z;σ, δ]. For this differentiate (3.3) to obtain

dy〈n〉 −
n−1∑
i=0

∂φ

∂y〈i〉
dy〈i〉 −

s∑
j=0

∂φ

∂u〈j〉
du〈j〉 = 0 (3.6)

which may be rewritten as

p(z)dy + q(z)du = 0, (3.7)

where p(z) = zn −
∑n−1

i=0 piz
i, q(z) = −

∑s
j=0 qjz

j and pi = ∂φ
∂y〈i〉

∈ K∗,
qj = ∂φ

∂u〈j〉
∈ K∗, i.e. are polynomials over the σ-differential field K∗.
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3.1.2 Realization

The realization problem can be formally stated as follows. Given an i/o
equation of the form (3.3), find, if possible, the state coordinates x ∈ Rn
such that in these coordinates system takes the classical state-space form

x〈1〉 = f(x, u)

y = h(x)
(3.8)

and sequences {u(t), y(t), t ≥ 0}, generated by descriptions (3.3) and (3.8),
coincide. The i/o equation (3.3) is said to be realizable if it admits the clas-
sical state-space realization of the form (3.8). Again, since we are looking
for minimal, i.e. accessible and observable realization, irreducibility plays
an important role. An nth-order realization of equation (3.3) is accessible if
and only if system (3.3) is irreducible, see [53] for technical details. Besides,
according to [82], system (3.8) is said to be single-experiment observable if
the observability matrix has generically full rank, namely

rankK∗
∂
(
h(x), . . . , h〈n−1〉 (x, u, . . . , u〈n−2〉))

∂x
= n.

Define the non-increasing sequence {Hk}∞k=1 of subspaces of E as follows

H1 = spanK∗
{

dy, . . . , dy〈n−1〉, du, . . . ,du〈s〉
}
,

Hk+1 =
{
ω ∈ Hk | ω〈1〉 ∈ Hk

}
, k ≥ 1,

(3.9)

playing the key role in the study of realization problem, see [55]. Now, we
recall the necessary and sufficient realizability conditions.

Theorem 3.1 ([55]) The nonlinear i/o equation (3.3) has an observable
state-space realization if and only if the subspace Hs+2, defined by (3.9), is
completely integrable.

Though [55] provides necessary and sufficient realizability conditions for
i/o equation (3.3), and the sufficiency part of the proof suggests that the
integrable basis of Hs+2 defines the differentials of the state coordinates
dxi, i = 1, . . . , n, it does not address the computation of the subspace
Hs+2. Whereas [55] and this thesis both use the formalism of differential
forms, we build upon the latter the polynomial framework as in [53]. Our
main result formulated below in Theorem 3.2 provides explicit polynomial
formulas for computing the basis vectors of the subspace Hs+2.

Recall that since σ is an automorphism of K∗, the left division operation
is well-defined in K∗[z;σ, δ]. Below we need certain sequences of left quo-
tients, which are computed by starting with the skew polynomials p0 := p
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and q0 := q in (3.7) and then the element pl (ql) for l = 1, . . . , n is found
as the left quotient of pl−1 (ql−1) and the polynomial z:

pl−1 = z · pl + rl, deg rl = 0,

ql−1 = z · ql + ρl, deg ρl = 0.
(3.10)

We introduce certain one-forms, in terms of which we will formulate the
main result of this section in Theorem 3.2:

ωl =
[
pl ql

] [dy
du

]
, l = 1, . . . , n. (3.11)

Theorem 3.2 For the input-output model (3.3), the subspaces Hk may be
calculated as

Hk = spanK∗
{
ω1, . . . , ωn,du, . . . ,du

〈s−k+1〉
}

(3.12)

for k = 1, . . . , s+ 1 and

Hs+2 = spanK∗{ω1, . . . , ωn}. (3.13)

Proof: see Appendix.

Remark 3.2 On the one hand, according to Theorem 3.1, the state coordi-
nates can be obtained by integrating the exact basis elements of the subspace
Hs+2. In addition, the polynomial formulas, presented above, may be used
to explicitly define the differentials of the state coordinates. Thus, we do
not need to calculate all the previous1 subspaces. On the other hand, in
order to show that the subspace Hs+2, constructed according to (3.12) or
(3.13), coincides with the classical definition of subspaces (3.9), we have to
use mathematical induction and show that the elements of the subspace Hk
are in Hk−1 and so on.

Remark 3.3 Note that though in case of the realizable i/o equation, Hs+2,
defined by (3.13), is completely integrable, the one-forms ωl for l = 1, . . . , n
are not necessarily always exact. In such a case, one has to find for Hs+2

a new (locally) exact basis, using linear transformations over the field K∗.

1In fact, those subspaces may be useful for checking whether the system is realizable
or not, since, for example, if already H3 is not integrable one may conclude that the
i/o equations are not realizable. Another illustrative problem for which the previous
subspaces may be important is the problem of lowering the input derivatives in the
generalized state equations, see [61] for details.
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In the algorithm below we summarize the realization procedure.
Algorithm:

Step 1. Given the i/o equation (3.3), find the polynomial description of
the system by rewriting (3.6) in the form (3.7), using the rule (3.5).

Step 2. Given p0(z) := p(z) and q0(z) := q(z), obtained at Step 1, calcu-
late, according to (3.10), two sequences {pl(z)}nl=1, {ql(z)}nl=1 of left
quotients of polynomials p(z) and q(z), respectively.

Step 3. Construct the vector space Hs+2 = spanK∗{ω1, . . . , ωn}, where
the one-forms ωl := pl(z)dy + ql(z)du, for l = 1, . . . , n, and simplify
the basis elements of Hs+2 whenever possible.

Step 4. Check the integrability of the vector space Hs+2. If Hs+2 is inte-
grable, go to Step 5. Otherwise, inform that the i/o equation is not
realizable and go to Step 7.

Step 5. Check whether the basis one-forms of Hs+2 are exact or not. If
this is true, integrate the one-forms ω1, . . . , ωn to get x1, . . . , xn. Oth-
erwise, use before a linear transformation to find a new integrable
basis.

Step 6. Compute the state equations, applying the pseudo-linear operator
to x1, . . . , xn.

Step 7. End of the algorithm.

Example 3.1 Consider the i/o equation

y〈2〉 + α1y
〈1〉 + α0y

(
1 + ε1y

2
)

= β0(1 + ε2y)u, (3.14)

where α0, α1, β0, ε1, ε2 ∈ R. In [98] the system was studied separately for
continuous- and discrete-time cases, the latter being based on the differ-
ence operator description. Here, however, we address the model within the
framework of pseudo-linear algebra which accommodates both special cases
in a single model.

Equation (3.14) can be described as in (3.7) by two polynomials p(z) =
z2 + α1z + α0 + 3α0ε1y

2 − β0ε2u and q(z) = −β0(1 + ε2y). From (3.14),
n = 2 and s = 0. Given p0(z) = p(z) and q0(z) = q(z), compute iteratively,
according to (3.10), the polynomials pl(z) and ql(z) for l = 1, 2 dividing
respectively pl−1(z) and ql−1(z) by z from the left:

p0(z) = z2 + α1z + α0 + 3α0ε1y
2 − β0ε2u, q0(z) = −β0(1 + ε2y),

p1(z) = z + α1, q1(z) = 0,

p2(z) = 1, q2(z) = 0.
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Since s = 0, according to Remark 3.3 and using (3.11), the basis ele-
ments of the last subspaceHs+2 = H2 = spanK∗{ω1, ω2} can be represented
in the following form

ω1 = p1(z)dy + q1(z)du = (z + α1)dy,

ω2 = p2(z)dy + q2(z)du = dy.

Finally, we get H2 = spanK∗
{

dy,dy〈1〉 + α1dy
}

. Simplifying the basis

one-forms, the subspace may be rewritten as H2 = spanK∗
{

dy,dy〈1〉
}

. The

basis elements are exact, so one may choose dx1 = dy,dx2 = dy〈1〉 and the
state equations are

x
〈1〉
1 = x2

x
〈1〉
2 = −α1x2 − α0

(
1 + ε1x

2
1

)
x1 + β0(1 + ε2x1)u

y = x1

(3.15)

For the special cases of continuous- and discrete-time models, (3.15)
takes the forms

ẋ1 = x2 x∆
1 = x2

ẋ2 = f(x1, x2, u) and x∆
2 = f(x1, x2, u)

y = x1 y = x1

respectively, with f(x1, x2, u) = −α1x2 − α0

(
1 + ε1x

2
1

)
x1 + β0(1 + ε2x1)u,

like in [98].

It should be mentioned that since equation (3.14) depends only on u,
but not on u〈k〉 for k ≥ 1, by (3.9), H2 = spanK∗

{
dy,dy〈1〉

}
, see [23] for

details. In fact, we may skip the intermediate computations and directly
write out the state-space realization of i/o equations (3.14); however, we
decided to show them to illustrate the theory presented above.

Example 3.2 Consider the i/o equation

y〈2〉 = y〈1〉u〈1〉 + uy

that may be described as in (3.7) by two polynomials p(z) = z2−u〈1〉z−u
and q(z) = −y〈1〉z − y. Note that n = 2 and s = 1. Given p0(z) := p(z)
and q0(z) := q(z), compute, according to (3.10), two sequences of the left
quotients as follows

p1(z) = z − σ−1
(
u〈1〉

)
, q1(z) = −σ−1

(
y〈1〉
)
,

p2(z) = 1, q2(z) = 0.
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By (3.11), one-forms of the subspace Hs+2 = H3 = spanK∗{ω1, ω2} are

ω1 = p1(z)dy + q1(z)du =
(
z − σ−1

(
u〈1〉

))
dy − σ−1

(
y〈1〉
)

du,

ω2 = p2(z)dy + q2(z)du = dy.

Since dy is the basis vector of the subspace H3, ω1 may be simplified,
resulting inH3 = spanK∗

{
dy,dy〈1〉 − σ−1(y〈1〉)du

}
. Note that integrability

of H3 depends on σ−1
(
y〈1〉
)
. Next, we separately consider three typical

cases. In the continuous-time case, when σ = σ−1 = idK, the subspace

H3 = spanK{dy,dẏ − ẏdu}

is, by Theorem 2.1, integrable. The choice x1 = y, x2 = e−uẏ yields the
classical state equations

ẋ1 = eux2

ẋ2 = e−uux1

y = x1

In the discrete-time case, when θ = σ and σ−1(σ(y)) = y, the subspace

H3 = spanK∗{dy,dσ(y)− ydu}

is again, by Theorem 2.1, integrable, yielding the state coordinates x1 = y,
x2 = σ(y)− uy and the state equations

σ(x1) = ux1 + x2

σ(x2) = ux1

y = x1

In the discrete-time case, when θ = ∆, the subspace

H3 = spanK∗
{

dy,dy∆ − σ−1
(
y∆
)

du
}

=

= spanK∗

{
dy,

1

µ
dσ(y) +

1

µ

(
σ−1(y)− y

)
du

}
.

Since dω2 ∧ ω1 = 1
µd[σ−1(y)] ∧ du ∧ dy 6= 0, then, according to Theorem

2.1, H3 is not integrable. Recall that either σ−1(y) or σ−1(u) may be
chosen as the independent variable of field extension K∗. In the latter case

σ−1(y) = σ(y)−2y−yu+σ−1(u)y
(µ2+1)σ−1(u)−u−1

, yielding again that dω2 ∧ ω1 6= 0. Therefore,

the system is not realizable.
Example 3.3 Consider the ”ball and beam” system, with input being the
angle and output being the ball position. The input-output equation of the
system is

y〈2〉 =
mR2

J +mR2

(
y
(
u〈1〉

)2
− g sin(u)

)
, (3.16)
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where the constant parameters J,R,m represent, respectively, the inertia,
radius and mass of the ball, and g is the gravitational constant. Usually,
system (3.16) is considered separately for continuous- and discrete-time
cases, see for example [42] and [77], respectively. Here, however, we consider
the pseudo-linear operator based system description which accommodates
both continuous and discrete-time models.

System (3.16) can be described as in (3.7) by two polynomials p(z) =

z2 − mR2

J+mR2

(
u〈1〉

)2
and q(z) = − 2mR2

J+mR2 yu
〈1〉z + gmR2

J+mR2 cos(u). Note that
n = 2 and s = 1. Given p0(z) := p(z) and q0(z) := q(z), compute, according
to (3.10), the left quotients of the polynomials pl(z) and ql(z) for l = 1, 2
as

p1(z) = z, q1(z) = − 2mR2

J +mR2
σ−1

(
yu〈1〉

)
,

p2(z) = 1, q2(z) = 0.

By (3.11), one-forms of the subspace Hs+2 = H3 = spanK∗{ω1, ω2} are

ω1 = p1(z)dy + q1(z)du = dy〈1〉 − 2mR2

J +mR2
σ−1

(
yu〈1〉

)
du,

ω2 = p2(z)dy + q2(z)du = dy.

By analogy with the previous example, consider separately three typical
cases. In the continuous-time case, when σ = σ−1 = idK, the subspace

H3 = spanK

{
dy,dẏ − 2mR2

J+mR2 yu̇du
}

is not integrable.
In the discrete-time case, when θ = σ, the subspace

H3 = spanK∗
{

dy,dσ(y)− 2mR2

J+mR2σ
−1(y)udu

}
is not integrable.

In the discrete-time case, when θ = ∆, the subspace

H3 = spanK∗
{

dy,dy∆ − 2mR2

J+mR2σ
−1
(
yu∆

)
du
}

is not integrable.
Thus, we may conclude that it is not possible to find the classical state-

space realization of system (3.16) for the cases listed above.

3.2 Realization of i/o bilinear and quadratic mod-
els

In this section bilinear and quadratic equations are analyzed. Note that
both are special cases of equation (2.1).
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3.2.1 Introduction

A nonlinear control system, described by the i/o difference equation, is
called bilinear if the equation contains the products of the input and output
at the same or different time instances, but is otherwise linear in the output
and input

y(t+ n) =

n∑
i=1

aiy(t+ n− i) +

n∑
i=1

biu(t+ n− i)+

+

n∑
i=1

n∑
j=1

cijy(t+ n− i)u(t+ n− j). (3.17)

It is a simple nonlinear extension of a linear system. Bilinear systems are
common in engineering design and are also used as models of natural phe-
nomena with variable growth rates, see [29, 70]. Furthermore, the bilinear
structure is often assumed in system identification as a simple approxima-
tion of nonlinear dynamics, see [27, 84, 97]. Note that if the accuracy of
the identified bilinear model is not enough or the corresponding order is
too high, one may use quadratic models as a reasonable extension, see [83]
for details.

y(t+ n) =

n∑
i=1

aiy(t+ n− i) +

n∑
i=1

biu(t+ n− i)+

+

n∑
i=1

n∑
j=1

cijy(t+ n− i)u(t+ n− j)+

+
n∑
i=1

n∑
j=i

dijy(t+ n− i)y(t+ n− j)+

+
n∑
i=1

n∑
j=i

eiju(t+ n− i)u(t+ n− j).

(3.18)

Unfortunately, the majority of nonlinear i/o equations, including those
of bilinear equations, cannot be represented by state equations. Thus, the
goal of this section is devoted to the study of the low-order discrete-time
bilinear and quadratic equations with respect to realizability in the classical
state-space form. More precisely, we demonstrate that the certain restric-
tions on the coefficients make the system to be realizable. In addition, a
new realizable subclass and the corresponding state equations for bilinear
system of the general order are presented. Both types of models are at-
tractive because of their simplicity in form and identification, since both
models are linear in parameters. In many cases a simple structure provides
a reasonable approximation. Note that some realizable model structures
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allow simple translation from the i/o equation to state equations, whereas
in the other cases the relationship is more complicated.

3.2.2 Main tools

Here, we recall the basic theoretical aspects which allow to define realiz-
ability conditions for bilinear and quadratic equations.

Theorem 3.3 ([64]) The nonlinear system described by the irreducible
input-output difference equation (2.1) has an observable and accessible state-
space realization if and only if for 1 ≤ k ≤ s + 2 the subspaces Hk defined
by (2.4) are completely integrable.

Theorem 3.3 provides the solution of the minimal realization problem
for an arbitrary nonlinear i/o difference equation of the form (2.1). In
fact, Theorem 3.3 follows as a special case from Theorem 3.1. However,
further in this section we analyze equations using polynomial framework.
Therefore, in order to work with the polynomials (2.11) describing system
(2.1), we recall the following definition.

Definition 3.5 ([63]) The shift-and-cut operator σ−1
c : K∗[z;σ]→ K∗[z;σ]

is defined as σ−1
c (p(z)) = σ−1(p(z)− p0).

Note that Definition 3.5 presents a natural extension to the nonlinear
case of the shift-and-cut operator introduced for linear time-invariant sys-
tems in [79]. Iterated k-fold application of σ−1

c is denoted as σ−kc . Moreover,
the shift-and-cut operator obeys the following elementary property which
is used further in deriving realizability conditions. Let r(z) ∈ K∗[z;σ] and

r(z) =
∑ζ

i=0 riz
i, then

σ−lc (r(z)) =

ζ∑
i=l

(
σ−lri

)
zi−l.

Now, using definition of the shift-and-cut operator, the following theo-
rem can be formulated, which allows to find subspaces Hk in case of poly-
nomial system description.

Theorem 3.4 ([63]) For the i/o model (2.1), the subspaces Hk for k =
2, . . . , s+2 can be calculated as Hk = spanK∗{ωl, du(t), . . . ,du(t+s−k+1)},
where for l = 1, . . . , k − 2

ωl = σ−lc
[
p(z) q(z)

] [dy(t)
du(t)

]
. (3.19)
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Remark 3.4 It is not hard to see that the shift-and-cut operator, recalled
in Definition 3.5, is a special case of the left division operation of two
polynomials from K∗[z;σ] presented in Section 2.3 and illustrated by rela-
tions (3.10) for a more general case. In other words, suppose that pl(z) =∑n

i=0 pi,lz
n−i for l = 1, . . . , n in (3.10). Then, due to the commutation

rule (2.8), the relation pl−1 = z · pl + rl, deg rl = 0 can be rewritten as
pl = σ−1(pl−1 − rl) with rl = pn,l−1. Moreover, the application of the
shift-and-cut operator is less time consuming than the division operation.

3.2.3 Realizability conditions for bilinear models

Proposition 3.1 The third-order bilinear system described by the i/o equa-
tion

y+++ = a1y
++ + a2y

+ + a3y + b1u
++ + b2u

+ + b3u+

+ c11y
++u++ + c12y

++u+ + c13y
++u+ c21y

+u+++

+ c22y
+u+ + c23y

+u+ c31yu
++ + c32yu

+ + c33yu (3.20)

is realizable in the classical state-space form if and only if one of the fol-
lowing five conditions is satisfied:

(i) a3 = c21 = c31 = c32 = c33 = 0;

(ii) b1 = c11 = c21 = c31 = c32 = 0;

(iii) b2 = b3 = c12 = c13 = c22 = c23 = c32 = c33 = 0;

(iv) b3 = c13 = c23 = c31 = c33 = 0;

(v) c13 = c21 = c31 = c32 = 0.

Proof: see Appendix.
Compared with the results obtained in [58], using the polynomial ap-

proach, we have found an additional restriction (i), meaning that the earlier
conditions were actually only sufficient, whereas those presented in Propo-
sition 3.1 are both necessary and sufficient. The novelty of the approach
consists in consideration of two possible routes for construction of the in-
versive closure of the difference field K. In the earlier paper only y− was
taken as an independent variable of K∗, whereas in the proof presented in
Appendix also the alternative case of u−, being the independent variable
of K∗, is taken into account.

Proposition 3.2 The fourth-order bilinear system described by the i/o
equation (3.17) with n = 4 is realizable in the classical state-space form
if and only if one of the following conditions is satisfied:
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(i) a3 = a4 = c21 = c31 = c32 = c33 = c34 = c41 = c42 = c43 = c44 = 0;

(ii) a4 = b1 = c11 = c21 = c31 = c32 = c41 = c42 = c43 = c44 = 0;

(iii) a4 = c14 = c21 = c31 = c32 = c41 = c42 = c43 = c44 = 0;

(iv) b1 = b2 = c11 = c12 = c21 = c22 = c31 = c32 = c41 = c42 = c43 = 0;

(v) b1 = b4 = c11 = c14 = c21 = c24 = c31 = c34 = c41 = c42 = c43 = 0;

(vi) b1 = c11 = c14 = c21 = c31 = c32 = c41 = c42 = c43 = 0;

(vii) b2 = b3 = b4 = c12 = c13 = c14 = c22 = c23 = c24 = c32 = c33 = c34 =
c42 = c43 = c44 = 0;

(viii) b3 = b4 = c13 = c14 = c23 = c24 = c33 = c34 = c41 = c43 = c44 = 0;

(ix) c13 = c14 = c21 = c24 = c31 = c32 = c41 = c42 = c43 = 0.

Proof: sketch of the proof is given in Appendix.

On the basis of Propositions 3.1 and 3.2 we introduce the new nth-order
realizable subclass of the i/o bilinear models.

Proposition 3.3 The class of bilinear models

y(t+ n) =
2∑
i=1

aiy(t+ n− i) +
n∑
i=1

biu(t+ n− i)+

+

2∑
i=1

n∑
j=i

cijy(t+ n− i)u(t+ n− j) (3.21)

is realizable in the classical state-space form

x1(t+ 1) = x2(t) + (a1 + c11u(t))x1(t) + b1u(t)

x2(t+ 1) = (a2 + c22u(t))x1(t) + b2u(t)+

+ c12u(t)[x2(t) + (a1 + c11u(t))x1(t) + b1u(t)]

y(t) = x1(t)

(3.22)
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for n = 2 and

x1(t+ 1) = x2(t) + (a1 + c11u(t))x1(t) + b1u(t)+

+
n−1∑
i=2

(bi + c1ix1(t))xn−i+2(t)

x2(t+ 1) = (a2 + c22u(t))x1(t) + bnx3(t)+

+ x1(t)
n∑
i=3

c2ixn−i+3(t)+

+ c1nx3(t)

[
x2(t) + (a1 + c11u(t))x1(t) + b1u(t)+

+

n−1∑
i=2

(bi + c1ix1(t))xn−i+2(t)

]
x3(t+ 1) = x4(t)

...

xn−1(t+ 1) = xn(t)

xn(t+ 1) = u(t)

y(t) = x1(t)

for n ≥ 3.

Proof: see Appendix.

Example 3.4 Consider the system of a jacketed Continuously Stirred Tank
Reactor (CSTR) from [5], described by the third-order i/o bilinear equation

y+++ = 1.3187y++ − 0.2214y+ − 0.1474y − 8.6337u+++

+ 2.9234u+ + 1.2493u− 0.0858y++u++ + 0.0050y+u+++

+ 0.0602y+u+ + 0.0035yu++ − 0.0281yu+ 0.0107yu, (3.23)

where the output y := y(t) and the input u := u(t) of the model denote
the temperature and the cooling water flow rate, respectively.

By inspection of equation (3.23) one can easily check that c12 = c13 =
c23 = 0. However, Proposition 3.1 states that the third-order i/o bilinear
model is realizable if and only if at least one of the conditions (i)-(v) is
satisfied. Thus, we may conclude that model (3.23) is not realizable in the
classical state-space form. Note that in [5] the approximate state equations
with five states were found.
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Example 3.5 The model of a grain drying process is described by the
following third-order i/o bilinear equation, see [59]

y+++ = 1.6389y++ − 0.4397y+ − 0.1803y + 0.0019u++ − 0.0041u++

+ 0.0021u− 0.0082y++u++ − 0.0042y+u+ − 0.0074yu. (3.24)

Next, analyzing equation (3.24), we find that c12 = c13 = c21 = c23 =
c31 = c32 = 0 and, according to Proposition 3.1, we conclude (case (v))
that the presented model is realizable in the following classical state-space
form

x+
1 = x2 + (0.0019− 0.0082x1)u

x+
2 = x3 − (0.00099 + 0.0176x1)u

x+
3 = −0.1803x1 − 0.4397x2 + 1.6389x3 − (0.00035 + 0.0327x1)u

y = x1

3.2.4 Realizability conditions for quadratic models

Proposition 3.4 The second-order quadratic system described by the i/o
equation (3.18) with n = 2 is realizable in the classical state-space form if
one of the following conditions is satisfied:

(i) a2 = c21 = c22 = d12 = d22 = 0;

(ii) b2 = c12 = c22 = e12 = e22 = 0;

(iii) c21 = e12 = 0.

Proof: see Appendix.
From the results of [60], applied to the second-order quadratic systems,

one may obtain alternative sufficient conditions:

(I) a2 = c21 = c22 = d12 = d22 = 0;

(II) c21 = e12 = 0.

Comparing the above results with those in Proposition 3.4, note that
(I) and (II) coincide with conditions (i) and (iii), respectively. However, we
suggest an additional possibility (ii).

Remark 3.5 From the earlier results obtained in [58] for the second-order
bilinear i/o equation, we can conclude that conditions (i) and (iii) extend
condition c21 = 0, and also (ii) extends b2 = c12 = c22 = 0.

Proposition 3.5 The third-order quadratic system described by the i/o
equation (3.18) with n = 3 is realizable in the classical state-space form if
one of the following conditions is satisfied:
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(i) a2 = a3 = c21 = c22 = c23 = c31 = c32 = c33 = d12 = d13 = d22 =
d23 = d33 = 0;

(ii) a3 = c21 = c31 = c32 = c33 = d13 = d23 = d33 = e13 = 0;

(iii) b1 = c11 = c21 = c31 = c32 = e11 = e12 = e13 = e23 = 0;

(iv) b2 = b3 = c12 = c13 = c22 = c23 = c32 = c33 = e12 = e13 = e22 =
e23 = e33 = 0;

(v) b3 = c13 = c23 = c31 = c33 = e12 = e13 = e23 = e33 = 0;

(vi) c13 = c21 = c31 = c32 = d13 = e12 = e13 = e23 = 0.

Proof: see Appendix.

By analogy with the previous proposition, from the results of [60], ap-
plied to the third-order quadratic systems, one may obtain alternative suf-
ficient conditions:

(I) a2 = a3 = c21 = c22 = c23 = c31 = c32 = c33 = d12 = d13 = d22 =
d23 = d33 = 0;

(II) a3 = c21 = c31 = c32 = c33 = d13 = d23 = d33 = e13 = 0;

(III) b1 = c11 = c21 = c31 = c32 = e11 = e12 = e13 = e23 = 0;

(IV) c13 = c21 = c31 = c32 = d13 = e12 = e13 = e23 = 0.

Comparing the above results with those in Proposition 3.5, note that
(I)-(IV) coincide with conditions (i)-(iii) and (vi). However, we suggest
additional possibilities (iv) and (v).

Remark 3.6 Note that all conditions (i)−(vi) from Proposition 3.5 extend
conditions for the third-order bilinear i/o equation presented in Proposition
3.1. However, in the bilinear case condition (i) becomes the special case of
(ii).

Remark 3.7 Note that the complete list of the necessary and sufficient
conditions would involve complex relations between different coefficients of
(3.18); for instance, calculating the elements of the subspace H3 in Propo-
sition 3.4, we get the relations 2a2e22 − b2c22 = 0 and 4d22e22 − c2

22 = 0.
From the identification point of view, these conditions seem artificial, since
there is no reason to assume the relations between the coefficients to hold.
For that reason we suggested the special cases of i/o equations given in
Propositions 3.4 and 3.5 to be used for modeling purposes.
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Example 3.6 Consider the model of a hydraulically actuated electronic
unit injection (HEUI) system from [65]

y++ = 0.67421y+ + 0.35097× 10−5y2 − 0.31181y+

+ 6.6372
(
u+
)2

+ 86.549u+ + 10.661u2 − 0.53194× 10−2y+u+

+ 0.01297yu+ − 23.182u+u+ 0.10221× 105.

Notice that though the presented model contains the constant term, the
change of variables y = ỹ + 16030.4 allows us to convert the system into
the form (3.18)

ỹ++ = 0.67421ỹ+ − 0.31181ỹ + 294.464u+ − 85.216u−
− 0.0053ỹ+u+ 0.01297ỹu+ + 3.5097× 10−6ỹu+

+ 6.6372
(
u+
)2 − 23.182u+u+ 10.661u2, (3.25)

where the output ỹ and the input u of the model denote the fuel rate and
the injection pressure, respectively.

By simple inspection of equation (3.25) one can easily check that b2 =
c11 = d11 = d12 = d21 = d22 = e21 = 0. However, relying on the result
presented in Proposition 3.4, we may conclude that the model (3.25) is not
realizable in the classical state-space form.

3.3 Application of realization theory of linear pa-
rameter varying systems to bilinear models

In this section the basic theory of the linear parameter varying systems is
recalled. After that, the applicability of the LPV tools to the realization
problem of nonlinear input-output systems is analyzed.

3.3.1 Introduction

The standard approach in nonlinear control is to work with differentials of
the system equations, i.e with the so-called ’tangent linearized system’ equa-
tions rather than with nonlinear equations themselves [23]. This approach,
though well-suited for checking generic necessary and sufficient solvabil-
ity conditions of various control problems, has some drawbacks. Namely,
to find the control law to be implemented, or equivalent reduced system
equations, for example, at the last step one has to integrate the differential
one-forms to get back to the equations level. In general, the integration
of (integrable in principle) differential one-forms is known to be a difficult
task.
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In the linear parameter varying systems, relations between signals are
considered to be linear, but the model parameters are assumed to be func-
tions of time-varying signals, the so-called scheduling variable p. It is sug-
gested in numerous papers [67, 90, 95, 96] that the LPV approach may
provide a complimentary, and sometimes easier way to tackle the nonlin-
ear control problems, since by the result of this parameter variation, the
class of LPV systems may describe both time-varying and nonlinear phe-
nomena. For example, in [95, 96] a nonlinear system is embedded globally
into a linear time-varying system (LTV). This is done by replacing certain
appropriate independent functions of inputs, outputs and their derivatives
by free time-varying parameters. Then the system properties like stability
and controllability have been analyzed using the skew polynomial methods
developed for LTV systems and it is claimed that the structural results are
applicable also for the original nonlinear systems. By structural properties
one means the properties that are valid for all parameter p values. As for
accessibility, it is shown in [96] that the structural accessibility of the LTV
model implies the accessibility of the original nonlinear system but not vice
versa. As for stability, the original nonlinear model is stable if the LTV
model is structurally stable. Again, the converse is not necessarily true, see
[96] for details.

The main goal of this section is to study when the tools, worked out in
[90] for realizability of LPV systems, are applicable for nonlinear control
systems.

A basic issue in the conversion a nonlinear problem into an LPV problem
is the choice of a scheduling signal p. In principle, the proof of realization
property of the LPV system relies on the assumption that p has to be
considered as an independent signal of the control system. Of course, in
converting a nonlinear system description into the LPV system description,
this assumption is violated. Next, we study two simple examples which
allow to explain in plain words the problem under consideration.

Consider two second-order bilinear i/o equations,

y++ = y+u+ + y+u (3.26)

and

y++ = y+u+ yu+. (3.27)

According to the nonlinear realization theory presented in [58, 64], the
model (3.26) is realizable, whereas model (3.27) is not. Next, we find an
LPV state-space representation for model (3.26) following [90]. Suppose
that p := y and σ(p) = p+ := y+. Then, taking x1 = y and x2 = y+ − pu,
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we obtain

x+
1 = x2 + pu

x+
2 = p+u

y = x1

(3.28)

After that, substituting p = y = x1 and p+ = y+ = x+
1 = x2 + x1u into

(3.28), the state equations are

x+
1 = x2 + x1u

x+
2 = (x2 + x1u)u

y = x1

Consider now an LPV state-space representation of the model (3.27).
Suppose again that p := y. Then, taking x1 = y and x2 = y+ − p−u, we
obtain

x+
1 = x2 + p−u

x+
2 = p+u

y = x1

(3.29)

Finally, substituting p = y = x1 and p− = x−1 into (3.29), the state
equations can be rewritten as

x+
1 = x2 + x−1 u

x+
2 = x+

1 u

y = x1

which are not in the classical state-space form because of the term x−1 .

In fact, a given nonlinear system description can be transformed into
the LPV form in several ways. The freedom comes from the different pos-
sibilities to choose the scheduling variable p. For example, in the model
(3.26), the alternative choice for p would be p := u. After completing the
computations like above, we get x1 = y, x2 = y+ − (p− + p)y, and the
state-space representation

x+
1 = ux1 + u−x1 + x2

x+
2 = 0

y = x1

is not in the classical state-space form.
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3.3.2 Relationship between realizability of the i/o bilinear
equations and their LPV models

The results on the realization problem of LPV systems are recalled from
[90]. The LPV system in the i/o form can be described by equation

y[n] =
n−1∑
i=0

ai(p)y[i] +
s∑
j=0

bj(p)u[j], (3.30)

where ai, bj are functions on p.

Proposition 3.6 ([13]) The state coordinates for i/o equation (3.30) are
defined as

xl = σ−lc

[
n−1∑
i=0

ai(p)zi
∑s

j=0 bj(p)zj

][
y
u

]
, (3.31)

where l = 1, . . . , n.

Note that in [90] the different notations are used to represent polyno-
mials and cut-and-shift operator. Also note the similarity of the formulas
(3.31) and (3.19). Instead of y and u the expression (3.19) includes the
differentials dy(t) and du(t). The formula (3.31) gives state coordinates,
whereas (3.19) yields a set of one-forms, which should be integrated to
obtain state coordinates.

It should be mentioned that, according to [90], an LPV i/o equation
is always realizable in the state-space form. To keep the study simple, we
restrict our attention to the case of the second-order discrete-time bilinear
control systems. We demonstrate on the basis of the second-order bilinear
model that if the bilinear i/o equation is realizable, according to nonlinear
realization theory, then there exists a suitable parameterization in the LPV
framework that lead to a state-space realization, though not all parame-
terizations lead to classical state equations. However, if the bilinear i/o
equation is not realizable, no such parameterizations exist.

Proposition 3.7 ([58]) The second-order bilinear system, described by
the i/o equation

y++ = a1y
+ + a2y + b1u

+ + b2u+

+ c11y
+u+ + c12y

+u+ c21yu
+ + c22yu (3.32)

is realizable in the classical state-space form iff one of the following condi-
tions is satisfied:

(i) c21 = 0;

(ii) b2 = c12 = c22 = 0.
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Since our aim is to study realizability of the second-order bilinear sys-
tems (3.32) using the LPV approach, we first have to transform equation
(3.32) into the LPV form as described in [89]. Equation (3.32) includes four
nonlinear terms: c11y

+u+, c12y
+u, c21yu

+ and c22yu, each being a product
of two variables. Thus, we have 24 = 16 different possibilities to choose
parameters. Below the state equations for all these parameterizations are
presented. In order to illustrate the basic idea of the realization procedure,
consider in detail one specific parametrization.

Let in the terms c11y
+u+ and c12y

+u the variable y+ := p+
1 , in c21yu

+

let y := p1 and in c22yu let u := p2. Then the respective LPV system has
the form

y++ = a1y
+ + a2y + b1u

+ + b2u+

+ c11p
+
1 u

+ + c12p
+
1 u+ c21p1u

+ + c22p2y.

Rewriting the above equation in the polynomial form (2.11) as[
z2 − a1z − (a2 + c22p2)

]
y −

[(
b1 + c11p

+
1 + c21p1

)
z + b2 + c12p

+
1

]
u = 0

allows to find the state coordinates by Proposition 3.6

x1 = y

x2 = y+ − a1y −
(
b1 + c11p1 + c21p

−
1

)
u

and the state equations

x+
1 = b1u+ c11p1u+ c21p

−
1 u+ a1x1 + x2

x+
2 = b2u+ c12p

+
1 u+ a2x1 + c22p2x1

y = x1

After replacing parameters regarding that

p−1 = y− = x−1 ,

p1 = y = x1,

p+
1 = y+ = x+

1 = b1u+ c11x1u+ c21x
−
1 u+ a1x1 + x2,

p2 = u,

we obtain

x+
1 = b1u+ c11x1u+ c21x

−
1 u+ a1x1 + x2

x+
2 = b2u+ a2x1 + c22ux1

+ c12

(
b1u+ c11x1u+ c21x

−
1 u+ a1x1 + x2

)
u

y = x1

(3.33)
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Clearly, the latter system is not in the classical state-space form due to x−1 ,
which cannot be eliminated.

Using the different parameterizations of the i/o equation (3.32), we may
alternatively reach to the following three representations:

x+
1 = b1u+ a1x1 + c11ux1 + x2

x+
2 = b2u+ a2x1 + c22ux1 + c21u

+x1+

+ c12(b1u+ a1x1 + c11ux1 + x2)u

y = x1

(3.34)

x+
1 = b1u+ a1x1 + c12u

−x1 + c11ux1 + x2

x+
2 = b2u+ a2x1 + c22ux1 + c21u

+x1

y = x1

(3.35)

and
x+

1 = b1u+ c21ux
−
1 + a1x1 + c12u

−x1 + c11ux1 + x2

x+
2 = b2u+ a2x1 + c22ux1

y = x1

(3.36)

Note that none of (3.33)-(3.36) is in the classical state-space form. Table
3.2 shows which state equations correspond to different choices of scheduling
variables.

The conclusion is that for system (3.32), in general, does not exist
parametrization yielding classical state equations.

Next, we separately study the realizable cases specified by Proposition
3.7.

Realizable case (i). Suppose that c21 = 0 in (3.32), then

y++ = a1y
+ + a2y + b1u

+ + b2u+ c11y
+u+ + c12y

+u+ c22yu. (3.37)

Since equation (3.37) contains only three nonlinear terms, there are in
total 23 = 8 different choices for parameters. Application of the realization
procedure for all parameterizations provides two different state equations:

x+
1 = b1u+ a1x1 + c11ux1 + x2

x+
2 = b2u+ a2x1 + c22ux1+

+ c12(b1u+ a1x1 + c11ux1 + x2)u

y = x1

(3.38)

and
x+

1 = b1u+ a1x1 + c12u
−x1 + c11ux1 + x2

x+
2 = b2u+ a2x1 + c22ux1

y = x1

(3.39)
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Table 3.2: Parameterizations and realizations for system (3.32)

parameterization of the nonlinear part state equations

c11u
+p+ + c12up

+ + c21u
+p + c22up (3.33)

c11u
+p+

1 + c12up
+
1 + c21u

+p1 + c22yp2 (3.33)

c11u
+p+

1 + c12up
+
1 + c21yp

+
2 + c22up1 (3.34)

c11u
+p+

1 + c12up
+
1 + c21yp

+
2 + c22yp2 (3.34)

c11u
+p+

1 + c12y
+p2 + c21u

+p1 + c22up1 (3.36)

c11u
+p+

1 + c12y
+p2 + c21u

+p1 + c22yp2 (3.36)

c11u
+p+

1 + c12y
+p2 + c21yp

+
2 + c22up1 (3.35)

c11u
+p+

1 + c12y
+p2 + c21yp

+
2 + c22yp2 (3.35)

c11y
+p+

2 + c12up
+
1 + c21u

+p1 + c22up1 (3.33)

c11y
+p+

2 + c12up
+
1 + c21u

+p1 + c22yp2 (3.33)

c11y
+p+

2 + c12up
+
1 + c21yp

+
2 + c22up1 (3.34)

c11y
+p+

2 + c12up
+
1 + c21yp

+
2 + c22yp2 (3.34)

c11y
+p+

2 + c12y
+p2 + c21u

+p1 + c22up1 (3.36)

c11y
+p+

2 + c12y
+p2 + c21u

+p1 + c22yp2 (3.36)

c11y
+p+

2 + c12y
+p2 + c21yp

+
2 + c22up1 (3.35)

c11y
+p+ + c12y

+p + c21yp
+ + c22yp (3.35)

Table 3.3: Parameterizations and realizations for system (3.37)

parameterization of the nonlinear part state equations

c11u
+p+ + c12up

+ + c22up (3.38)

c11u
+p+

1 + c12up
+
1 + c22yp2 (3.38)

c11u
+p+

1 + c12p2y
+ + c22up1 (3.39)

c11u
+p+

1 + c12p2y
+ + c22yp2 (3.39)

c11y
+p+

2 + c12up
+
1 + c22up1 (3.38)

c11y
+p+

2 + c12up
+
1 + c22yp2 (3.38)

c11y
+p+

2 + c12p2y
+ + c22up1 (3.39)

c11y
+p+ + c12py

+ + c22yp (3.39)
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Note that equations (3.38) are in the classical state-space form, whereas
equations (3.39) are not because of the term u−. Table 3.3 shows which
state equations correspond to every possible choice of parameters.

We have shown that for the nonlinear system (3.37) there exist pa-
rameterizations, which allow to transform this system into the classical
state-space form using the LPV approach. Unfortunately, not all parame-
terizations yield the classical state equations and there is no rule to choose
the right parametrization a priori.

Realizable case (ii). Suppose that b2 = c12 = c22 = 0 in (3.32), then

y++ = a1y
+ + a2y + b1u

+ + c11y
+u+ + c21yu

+. (3.40)

Equation (3.40) has two nonlinear terms, therefore there are 22 = 4
possibilities for parameterization, which yields two different state equations:

x+
1 = b1u+ a1x1 + c11ux1 + x2

x+
2 = a2x1 + c21u

+x1

y = x1

(3.41)

and
x+

1 = b1u+ c21ux
−
1 + a1x1 + c11ux1 + x2

x+
2 = a2x1

y = x1

(3.42)

Neither of these equations is in the classical state-space form. Table 3.4
shows the correspondence between possible parameterizations and state
equations.

Table 3.4: Parameterizations and realizations for system (3.40)

parameterization of the nonlinear part state equations

c11u
+p+ + c21u

+p (3.42)

c11u
+p+

1 + c21yp
+
2 (3.41)

c11y
+p+

2 + c21u
+p1 (3.42)

c11y
+p+ + c21yp

+ (3.41)

To conclude, the LPV approach is not a proper tool to find the state-
space realization of the i/o equation (3.40), because none of the possible
choices of parameters yields the classical state equations.

3.4 On realization of nonlinear MIMO continuous-
time equations

In this section the polynomial method is applied to solve the realization
problem of nonlinear multi-input multi-output continuous-time systems.
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It should be mentioned that the proposed algorithm combines well with
the existing results for the reduction problem [54]. Both the results of
[54] and those of this section rely on system description in terms of two
polynomial matrices. Thus, the basic different theoretical points between
the mathematical tools used for the discrete- and continuous-time systems
are explained.

3.4.1 Introduction

Consider a nonlinear MIMO continuous-time system, described by a set of
higher order i/o differential equations, relating the inputs uυ, υ = 1, . . . ,m,
the outputs yν , ν = 1, . . . , p and a finite number of their time derivatives

y
(ni)
i = φi

(
yν , ẏν , . . . , y

(niν)
ν , ν = 1, . . . , p,

uυ, u̇υ, . . . , u
(siυ)
υ , υ = 1, . . . ,m

)
(3.43)

for i = 1, . . . , p. In (3.43) u = [u1, . . . , um]T ∈ Rm, y = [y1, . . . , yp]
T ∈

Rp and φi are real analytic functions. Define n := n1 + · · · + np and
s := max{siυ, i = 1, . . . , p, υ = 1, . . . ,m}. Moreover, we assume that the
following assumptions hold for system (3.43).

Assumption 3.1 System (3.43) is strictly proper, i.e. siυ < ni.

Assumption 3.2 System (3.43) is in the canonical form2, which means
that niν < min{ni, nν}.

Note that if the system under consideration is not in the form (3.43),
then it can be transformed into (3.43) using the approach proposed in [92],
at least locally.

3.4.2 Main tools

Here, we adopt the algebraic and polynomial formalisms presented in Sec-
tions 2.2 and 2.3, respectively, for the case of nonlinear multi-input multi-
output continuous-time equations.

By analogy with Section 2.2, let K denote the field of meromorphic
functions in a finite number of the independent system variables from the
set

C =
{
yi, ẏi, . . . , y

(ni−1)
i , i = 1, . . . , p, u(lυ)

υ , υ = 1, . . . ,m, lυ ≥ 0
}
,

2The form (3.43) is an extension of the Guidorzi canonical form, introduced in [7] for
linear systems. The other forms, like Hermite or Popov forms, may also be used.
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and let δ : K → K be the time derivative operator d
dt . Then the pair

(K, δ) is a differential field, see [46] for details. Over the field K one can
define a differential vector space, E := spanK {dϕ | ϕ ∈ K} spanned by the
differentials of the elements of K. Consider a one-form ω ∈ E such that ω =∑

i αidϕi, αi, ϕi ∈ K. Its derivative ω̇ is defined by ω̇ =
∑

i(α̇idϕi+αidϕ̇i).
A sequence {Hk}∞k=1 of subspaces of E is defined by

H1 = spanK

{
dyi,dẏi, . . . ,dy

(ni−1)
i , i = 1, . . . , p,

duυ,du̇υ, . . . ,du
(s)
υ , υ = 1, . . . ,m

}
,

Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.

(3.44)

The necessary and sufficient conditions for the system of the form (3.43)
to be realizable in the classical state-space form are presented in the fol-
lowing theorem.

Theorem 3.5 ([23]) The nonlinear system, described by the set of irre-
ducible i/o differential equations (3.43), has an observable and accessible
state-space realization iff for 1 ≤ k ≤ s + 2 the subspaces Hk defined by
(3.44) are completely integrable. Moreover, the state coordinates can be
obtained by integrating the basis vectors of Hs+2.

Next, the polynomial formalism for the case of MIMO continuous-time
systems is presented. The differential field (K, δ) induces a ring of the left
differential polynomials, which is denoted by K[z; δ] with respect to Remark
3.1. Note that for α ∈ K the multiplication is defined by

z · α := α · z + δ(α), (3.45)

which is different compared to the discrete-time case, but directly follows
from (3.5) for σ = idK, δ = d/dt, and θ = δ.

Using notations and definitions presented above, the nonlinear system
(3.43) can be represented in terms of two polynomial matrices as

P (z)dy +Q(z)du = 0, (3.46)

where P (z) and Q(z) are p×p and p×m-dimensional matrices, respectively,
whose elements piν(z), qiυ(z) ∈ K[z; δ] and

piν(z) =


zni −

niν∑
α=0

piν,αz
α, if i = ν,

−
niν∑
α=0

piν,αz
α, if i 6= ν,

qiυ(z) = −
siυ∑
β=0

qiυ,βz
β,
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where piν,α = ∂φi

∂y
(α)
ν

∈ K, qiυ,β = ∂φi

∂u
(β)
υ

∈ K. Further, the notations pi·(z) :=

[pi1(z), . . . , pip(z)] and qi·(z) := [qi1(z), . . . , qim(z)] are used for row vectors
of P (z) and Q(z), respectively.

3.4.3 Realization

Now, we introduce the certain one-forms in terms of which the main result
of this section will be formulated. Let

ωi,l =
[
pi·,l(z) qi·,l(z)

] [dy
du

]
(3.47)

for i = 1, . . . , p, l = 1, . . . , ni, where pi·,l(z) and qi·,l(z) are Ore polynomials,
which can be recursively calculated from the equalities

pi·,l−1(z) = z · pi·,l(z) + ξi·,l, deg ξi·,l = 0,

qi·,l−1(z) = z · qi·,l(z) + γi·,l, deg γi·,l = 0
(3.48)

with initial polynomials pi·,0(z) := pi·(z) and qi·,0(z) := qi·(z).

Theorem 3.6 For the input-output model (3.43), the subspaces Hk may be
calculated as

Hk = spanK

{
ωi,l, i = 1, . . . , p, l = 1, . . . , ni,

duυ, . . . ,du
(s−k+1)
υ , υ = 1, . . . ,m

}
(3.49)

for k = 1, . . . , s+ 1 and

Hs+2 = spanK{ωi,l, i = 1, . . . , p, l = 1, . . . , ni}. (3.50)

Proof: see Appendix.
To illustrate the effectiveness of the described approach, consider the

following examples.
Example 3.7 Consider the system

ÿ1 = u2ẏ1 + u̇1y2

y
(3)
2 = −u1ẏ1 + y1ẏ2 − ü2

(3.51)

that can be described by two polynomial matrices in the following way

P (z) =

(
z2 − u2z −u̇1

u1z − ẏ2 z3 − y1z

)
and

Q(z) =

(
−y2z −ẏ1

ẏ1 z2

)
.
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From (3.51) one can get that n1 = 2, n2 = 3, n11 = 1, n12 = 0, n21 =
1, n22 = 1 and s11 = 1, s12 = 0, s21 = 0, s22 = 2. Thus, for system (3.51),
n = n1 + n2 = 5 and s = max{s11, s12, s21, s22} = 2. Compute, according
to (3.48), sequences of the left quotients of each element in matrices P (z)
and Q(z) as[
p11,0(z) p12,0(z) q11,0(z) q12,0(z)

]
=
[
z2 − u2z −u̇1 −y2z −ẏ1

]
,[

p11,1(z) p12,1(z) q11,1(z) q12,1(z)
]

=
[
z − u2 0 −y2 0

]
,[

p11,2(z) p12,2(z) q11,2(z) q12,2(z)
]

=
[
1 0 0 0

]
and[
p21,0(z) p22,0(z) q21,0(z) q22,0(z)

]
=
[
u1z − ẏ2 z3 − y1z ẏ1 z2

]
,[

p21,1(z) p22,1(z) q21,1(z) q22,1(z)
]

=
[
u1 z2 − y1 0 z

]
,[

p21,2(z) p22,2(z) q21,2(z) q22,2(z)
]

=
[
0 z 0 1

]
,[

p21,3(z) p22,3(z) q21,3(z) q22,3(z)
]

=
[
0 1 0 0

]
.

Further, recall that dy = [dy1, dy2]T , du = [du1,du2]T . Since s = 2,
using (3.47), the elements ωi,j , i = 1, 2, j = 1, . . . , ni of the subspace of the
one-forms Hs+2 = H4 can be represented in the following form

ω1,1 =
[
z − u2 0 −y2 0

] [dy
du

]
= dẏ1 − u2dy1 − y2du1,

ω1,2 =
[
1 0 0 0

] [dy
du

]
= dy1,

ω2,1 =
[
u1 z2 − y1 0 z

] [dy
du

]
= u1dy1 + dÿ2 − y1dy2 + du̇2,

ω2,2 =
[
0 z 0 1

] [dy
du

]
= dẏ2 + du2,

ω2,3 =
[
0 1 0 0

] [dy
du

]
= dy2.

Though the subspace H4 is completely integrable, ω1,1 and ω2,1 are not
exact and, according to Remark 3.3, we have to replace them by integrable
linear combinations of one-forms from H4 to obtain the differentials of the
state coordinates

dx1 = ω1,2 = dy1,
dx2 = ω2,3 = dy2,
dx3 = ω1,1 + u2ω1,2 − u1ω2,3 = d(ẏ1 − u1y2),
dx4 = ω2,2 = d(ẏ2 + u2),
dx5 = ω2,1 − u1ω1,2 + y1ω2,3 = d(ÿ2 + u̇2).
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In these coordinates the system has the classical state-space form

ẋ1 = u1x2 + x3

ẋ2 = x4 − u2

ẋ3 = u2x3 + u1(u2(x2 + 1)− x4)

ẋ4 = x5

ẋ5 = x1(x4 − u2)− u1(u1x2 + x3)

y1 = x1

y2 = x2

Example 3.8 Consider a hopping robot, consisting of a body and a single
leg, that can be described by the i/o equations as in [23]

ÿ1 =
u2

m
+ y1ẏ

2
3

ẏ2 = −m
J
y2

1 ẏ3

ÿ3 = −u1 + 2my1ẏ1ẏ3

my2
1

(3.52)

where m is the mass of the leg, J the inertia momentum of the body, y1

denote the length of the leg, y2 the angular position of the body, and y3 the
angular position of the leg. Moreover, u1 and u2 control the orientation of
the body with respect to the leg and the length of the leg, respectively.

Like in the previous example, (3.52) can be described by two polynomial
matrices as follows

P (z) =

 z2 − ẏ2
3 0 −2y1ẏ3z

2my1ẏ3
J z

my21
J z

2ẏ3
y1
z − 2(u1+my1ẏ1ẏ3)

my31
0 z2 + 2ẏ1

y1
z


and

Q(z) =

 0 − 1
m

0 0
1

my21
0

 .

From (3.52), n = 5 and s = 0. Compute, according to (3.48), sequences
of the left quotients of each element in matrices P (z) and Q(z) as[

p1·,1(z) q1·,1(z)
]

=
[
z 0 −2y1ẏ3 0 0

]
,[

p1·,2(z) q1·,2(z)
]

=
[
1 0 0 0 0

]
,[

p2·,1(z) q2·,1(z)
]

=
[
0 1

my21
J 0 0

]
,[

p3·,1(z) q3·,1(z)
]

=
[

2ẏ3
y1

0 z + 2ẏ1
y1

0 0
]
,[

p3·,2(z) q3·,2(z)
]

=
[
0 0 1 0 0

]
.
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Further, recall that dy = [dy1,dy2,dy3]T , du = [du1, du2]T . By (3.47),
we get the following basis one-forms of the last subspace H2

ω1,1 =
[
z 0 −2y1ẏ3 0 0

] [dy
du

]
= dẏ1 − 2y1ẏ3dy3,

ω1,2 =
[
1 0 0 0 0

] [dy
du

]
= dy1,

ω2,1 =
[
0 1

my21
J 0 0

] [dy
du

]
= dy2 +

my2
1

J
dy3,

ω3,1 =
[

2ẏ3
y1

0 z + 2ẏ1
y1

0 0
] [dy

du

]
=

2ẏ3

y1
dy1 + dẏ3 +

2ẏ1

y1
dy3,

ω3,2 =
[
0 0 1 0 0

] [dy
du

]
= dy3.

Finally, we getH2 = spanK

{
dẏ1 − 2y1ẏ3dy3,dy1, dy2 +

my21
J dy3,

2ẏ3
y1

dy1 + dẏ3 + 2ẏ1
y1

dy3,dy3

}
.

Simplifying the basis one-forms, the subspace can be rewritten as H2 =
spanK{dy1, dẏ1, dy2, dy3, dẏ3}, which is closed. Therefore, the state equa-
tions are

ẋ1 = x2

ẋ2 =
u2

m
+ x1x

2
5

ẋ3 = −m
J
x2

1x5

ẋ4 = x5

ẋ5 = −u1 + 2mx1x2x5

mx2
1

y1 = x1

y2 = x3

y3 = x4

It should be mentioned that since equations (3.52) do not include deriva-
tives of the control variables u1, u2, we need to integrate the elements of the
subspace H2, which according to (3.44) is always in the obtained form, see
[23] for details. In fact, we can skip intermediate computations and directly
write out the state space realization of i/o equations (3.52); however, we
decided to show them to demonstrate the applicability of the polynomial
method.
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Chapter 4

Model matching problem:
transfer function approach

In this chapter the model matching problem of nonlinear single-input single-
output discrete-time systems is considered. Both feedforward and feedback
solutions are given. The problem is studied within the transfer function
approach presented in Section 2.3. It was mentioned that in this case
the system is described by the quotient of two polynomials from the Ore
polynomial ring.

4.1 Feedforward compensator

Consider a nonlinear system F and a model G described by their transfer
functions

F (z) = p−1
F (z)qF (z) (4.1)

and

G(z) = p−1
G (z)qG(z), (4.2)

respectively. Find a (proper) feedforward compensator R described by its
transfer function

R(z) = p−1
R (z)qR(z)

such that the transfer function of the compensated system coincides with
that of the model G, i.e.

G(z) = F (z)R(z),

or equivalently

R(z) = F−1(z)G(z), (4.3)

as depicted in Figure 4.1.
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G(z)

F (z)R(z)
dv(t) du(t) dy(t)

Figure 4.1: Compensated system

Proposition 4.1 Given F (z) 6= 0 and G(z), the feedforward model match-
ing problem is solvable if the one-form pR(z)du(t)−qR(z)dv(t) is integrable.

Proof: see Appendix.

Proposition 4.1 gives a weak result, because it does not define the class
of nonlinear systems for which the feedforward compensator exists. In
Proposition 4.2 below we specify one such subclass.

Proposition 4.2 The one-form pR(z)du(t) − qR(z)dv(t) is always inte-
grable if the system F and the model G are given by

y(t+ nF ) = f1(y(t), y(t+ 1), . . . , y(t+ nF − 1))+

+ f2(u(t), u(t+ 1), . . . , u(t+ sF )) (4.4)

and

y(t+ nG) = g1(y(t), y(t+ 1), . . . , y(t+ nG − 1))+

+ g2(v(t), v(t+ 1), . . . , v(t+ sG)), (4.5)

respectively, such that
pF (z) = γF (z)ρ(z),

pG(z) = γG(z)ρ(z),
(4.6)

where γF (z) and γG(z) are polynomials with real coefficients, and ρ(z) =∑m
i=0 ρiz

m−i with ρi ∈ K∗.

Proof: see Appendix.

In most cases one is interested in finding a solution in a class of proper
compensators. Therefore, to guarantee the existence of the solution one
has to introduce the restriction on the relative degree of the model G.

Proposition 4.3 The transfer function of compensator (4.3) is proper (causal)
if and only if

rel degG(z) ≥ rel degF (z). (4.7)
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Proof: see Appendix.
Example 4.1 Consider the system

y(t+ 2) = y(t) + u(t)u(t+ 1)

and compute its transfer function

F (z) =
(
z2 − 1

)−1
(u(t)z + u(t+ 1))

which is strictly proper. Suppose that the reference model is

G(z) = z−2.

By (4.3) and (2.9), we can find the transfer function of the compensator

R(z) = (u(t)z + u(t+ 1))−1
(
z2 − 1

)
z−2 =

=
(
u(t+ 2)z3 + u(t+ 3)z2

)−1 (
z2 − 1

)
,

where the Ore condition β
(
z2 − 1

)
= αz2 is satisfied for α = z2 − 1 and

β = z2. Note that R(z) results in the integrable one-form, yielding the
compensator given by the equation

u(t+ 2)u(t+ 3) = v(t+ 2)− v(t).

Moreover, this compensator has a classical state-space realization of the
form

u(t) = η1(t)

η1(t+ 1) = η2(t) +
v(t)

η1(t)

η2(t+ 1) =
η3(t)

v(t) + η1(t)η2(t)

η3(t+ 1) = −v(t)

(
η2(t) +

v(t)

η1(t)

)
Example 4.2 Consider the system

y(t+ 2) = u(t)y(t) + u(t+ 1) (4.8)

with the transfer function

F (z) =
(
z2 − u(t)

)−1
(z + y(t)).

Suppose that the reference model is

G(z) = z−2.
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By (4.3) and (2.9), one can find

R(z) = (z + y(t))−1
(
z2 − u(t)

)
z−2 =

=
(
z3 + y(t+ 2)z2

)−1 (
z2 − u(t+ 2)

)
, (4.9)

where the Ore condition β2

(
z2 − u(t)

)
= α1z

2 is satisfied for α1 = z2−u(t+
2) and β2 = z2. Thus, the transfer function (4.9) results in the one-form

du(t+ 3) + y(t+ 2)du(t+ 2) = dv(t+ 2)− u(t+ 2)dv(t),

which after replacing y(t+2) by the right-hand side of equation (4.8) yields

du(t+ 3) + (u(t+ 1) + u(t)y(t))du(t+ 2) =

= dv(t+ 2)− u(t+ 2)dv(t). (4.10)

According to condition (2.5), the one-form (4.10) is non-integrable. The
latter means that R(z) in (4.9) does not correspond to any compensator R.

Thus, unlike the linear time-invariant case, a class of nonlinear systems
for which the solution in terms of a feedforward compensator exists is, due
to the integrability condition, quite restricted. Therefore, it is natural to
look for a solution in a (more general) class of feedback compensators.

4.2 Feedback compensator

Consider a nonlinear system F and a model G described by their transfer
functions

F (z) = p−1
F (z)qF (z) (4.11)

and
G(z) = p−1

G (z)qG(z), (4.12)

respectively, find a (proper) feedback compensator R

du(t) = Rv(z)dv(t) +Ry(z)dy(t), (4.13)

described by the transfer functions from dv(t) to du(t) and dy(t) to du(t),
i.e. by

Rv(z) = p−1
R (z)qRv(z), (4.14)

Ry(z) = p−1
R (z)qRy(z), (4.15)

respectively, such that the transfer function of the compensated system
coincides with that of the model G

G(z) = (1− F (z)Ry(z))
−1F (z)Rv(z) (4.16)

as depicted in Figure 4.2.
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G(z)

F (z)R(z)
dv(t) du(t) dy(t)

Figure 4.2: Compensated system

Assumption 4.1 deg pG(z) ≥ deg pF (z).

Theorem 4.1 Given F (z) 6= 0 and G(z) satisfying Assumption 4.1, the
model matching problem by feedback (4.13) is always solvable.

Proof: see Appendix.

Remark 4.1 Assumption 4.1 in the proof of Theorem 4.1 is clearly neces-
sary to get a reasonable solution by the left division algorithm of pG(z) and
pF (z). However, this assumption is not restrictive, since instead of model
(4.12) with deg pG(z) < deg pF (z) one can always, without loss of gener-

ality, use the transfer function G′(z) =
[
zkpG(z)

]−1
zkqG(z) being transfer

equivalent to G(z), such that deg
(
zkpG(z)

)
≥ deg pF (z). Roughly speak-

ing, modulo transfer equivalence there always exists a feedback compensator
which solves the model matching problem for given F (z) and G(z).

If one is looking for a solution within a class of proper compensators,
then the situation is similar to that of the case of a feedforward solution.

Proposition 4.4 R(z) is proper (causal) if and only if

rel degG(z) ≥ rel degF (z). (4.17)

Proof: see Appendix.

Remark 4.2 In [48] the solution of the MMP via dynamic output feedback
was proposed. Comparing to our results the authors of [48] consider only
the case of proper compensators. Moreover, solution is based on applica-
tion of the implicit function theorem. As a result, it is constructive up to
application of this theorem. Therefore, we may conclude that the approach
based on the transfer function formalism is more compact and transparent.
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Example 4.3 Consider the system and the model from Example 4.2, where
the feedforward solution did not exist. Note that

pF (z) = z2 − u(t), pG(z) = z2,

qF (z) = z + y(t), qG(z) = 1.

Using the left division algorithm, we get γ(z) = 1 and qRy(z) = −u(t)
such that pG(z) = γ(z)pF (z) − qRy(z). The compensator pR(z)du(t) =
qRv(z)dv(t) + qRy(z)dy(t) is determined by the polynomials

qRv(z) = qG(z) = 1,

qRy(z) = −u(t),

pR(z) = γ(z)qF (z) = z + y(t).

Thus, the one-form, corresponding to the compensator R, is

du(t+ 1) + y(t)du(t) = dv(t)− u(t)dy(t). (4.18)

Integrating (4.18) yields u(t + 1) = v(t) − u(t)y(t). Finally, the com-
pensator has the following state-space realization

u(t) = η(t)

η(t+ 1) = v(t)− y(t)η(t)

Example 4.4 Consider the system and the model from Example 4.1. In
the same manner as in the previous example, we get γ(z) = 1, qRy(z) = −1,
qRv(z) = qG(z) = 1, pR(z) = γ(z)qF (z) = u(t)z + u(t+ 1) and

(u(t)z + u(t+ 1))du(t) = dv(t)− dy(t),

yielding the equation of the compensator u(t)u(t+1) = v(t)−y(t). Finally,
note that the compensator has the following state-space realization

u(t) = η(t)

η(t+ 1) =
v(t)− y(t)

η(t)
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Chapter 5

Region of admissible
reference signal values

In this chapter the input-output linearization of a single-input single-output
nonlinear discrete-time system by output feedback is recalled from [78]. We
investigate the problem of stability of a control signal. The main variable
which plays a key role in the behavior of the control function is a refer-
ence signal. Clearly, for the different reference signals the control signal
behaves in different ways. Thus, it may happen that for some of them it
becomes unbounded. Therefore, the main problem under consideration is
determination of conditions under which the control signal remains stable.
First, we formulate a condition ensuring a bounded-input bounded-output
behavior of the controlled object by using a static output feedback. Next,
we derive conditions for the algorithm based on a dynamic output feedback.

5.1 Notations and definitions

This section will serve as a brief introduction containing only basic nota-
tions which will be used throughout this chapter.

5.1.1 Boundedness

Definition 5.1 A function f(x) : R → R is called bounded if there exists
a real number M <∞ such that |f(x)| ≤M for all x ∈ R.

Theorem 5.1 ([93], Theorem 17.23) A continuous real-valued function
on a compact topological space is bounded.
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5.1.2 Functional and numerical series

Definition 5.2 The series

∞∑
i=1

fi(x) = f1(x) + f2(x) + · · ·+ fl(x) + · · · , (5.1)

the terms of which are functions fi(x) : R→ R, is called a functional series.

The sequence of partial sums can be defined as Sl(x) =
∑l

i=1 fi(x). Fixing
x = x0 in (5.1), one gets the corresponding numerical infinite series

∞∑
i=1

fi(x0) = f1(x0) + f2(x0) + · · ·+ fl(x0) + · · · , (5.2)

which can:

(i) converge to a real number A, i.e. liml→∞ Sl(x0) = A;

(ii) diverge to ±∞, i.e. liml→∞ Sl(x0) = ±∞;

(iii) neither converge nor diverge to ±∞, i.e. oscillate or diverge by oscil-
lation.

Remark 5.1 The last item (iii) states that functional series (5.1) diverges
by oscillation at the point x = x0, however, the numerical series (5.2) is
both upper and lower bounded.

Definition 5.3 The set of values of the independent variable x for which
the series (5.1) converges constitutes what is called the region of convergence
of that series, denoted by R.

5.1.3 Stability

In order to get reasonable results, it is necessary to put the following re-
striction on the reference signal v(t).

Assumption 5.1 The function v(t) is supposed to be bounded.

In order to behave properly the i/o system must usually have the fol-
lowing property: bounded inputs must produce bounded outputs, i.e. the
system is nonexplosive. This property forms the basis of the following def-
inition of stability used in this chapter, see for instance [28].

Definition 5.4 A system (2.1) is said to be bounded-input bounded-output
stable if any admissible bounded input signal u(t) results in a bounded output
y(t).
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5.2 Input-output linearization by output feedback

Below we briefly recall the basic facts about output feedback linearization
from [78], which allows to describe the class of the systems that can be
analyzed.

System is said to be partially linearizable by input-output injections if
there is a coordinates transformation ξ = Φ(x(t)), an integer n̄, computed
according to (2.6), and n̄ functions φ1(y(t), u(t)), . . . , φn̄(y(t), u(t)), such
that the system in the new coordinates reads locally as

ξ1(t+ 1) = ξ2(t) + φ1(y(t), u(t))

...

ξn̄−1(t+ 1) = ξn̄(t) + φn̄−1(y(t), u(t))

ξn̄(t+ 1) = φn̄(y(t), u(t))

ξn̄+1(t+ 1) = f̄n̄+1(ξ(t), u(t))

...

ξn(t+ 1) = f̄n(ξ(t), u(t))

y(t) = ξ1(t)

If n̄ happens to be n, i.e. equals to the number of the state equations,
then the system is said to be fully linearizable by input-output injections.

Define V0 = 0, V l = spanK∗{dy(t), . . . ,dy(t + l − 1),du(t), . . . ,du(t +
l − 1)}, for l ≥ 1.

Lemma 5.1 ([78]) dy(t + n̄) ∈ V is linearizable by n̄ input-output injec-
tions φ1, . . . , φn̄, when

dy(t+ n̄) = dσn̄−1φ1(y(t), u(t))+

+ dσn̄−2φ2(y(t), u(t)) + · · ·+ dφn̄(y(t), u(t)).

5.2.1 Static output feedback

System (2.2) is said to be i/o linearizable by static output feedback if there
is a regular static output feedback

u(t) = H(y(t), v(t)) (5.3)

such that the closed-loop system

x(t+ 1) = f(x(t), H(h(x(t)), v(t)))

y(t) = h(x(t))
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is diffeomorphic to

ξ1(t+ 1) = Aξ1(t) + bv(t)

ξ2(t+ 1) = f̄2(ξ(t), v(t))

y(t) = cξ1(t)

where ξ1 ∈ Rn̄, ξ2 ∈ Rn−n̄, (c, A) is an observable pair.

Theorem 5.2 ([78]) Let r be the finite relative degree (r <∞) of system
(2.2). The system is input-output linearizable by static output feedback if
and only if

(i) dy(t+ n̄) is linearizable by n̄ output injections
φ1(y(t), u(t)), . . . , φn̄(y(t), u(t));

(ii) dimR(spanR{dy(t), dφ1(y(t), u(t)), . . . ,dφn̄(y(t), u(t))}) = 2.

5.2.2 Dynamic output feedback

System (2.2) is said to be i/o linearizable by dynamic output feedback if
there exists a dynamic output feedback

u(t) = H(y(t), η(t), v(t))

η(t+ 1) = F (y(t), η(t), v(t))
(5.4)

such that the closed-loop system

x(t+ 1) = f(x(t), H(h(x(t)), η(t), v(t)))

η(t+ 1) = F (y(t), η(t), v(t))

y(t) = h(x(t))

is diffeomorphic to

ξ1(t+ 1) = Aξ1(t) + bv(t)

ξ2(t+ 1) = f̄2(ξ(t), η(t), v(t))

y(t) = cξ1(t)

where η(t) ∈ Rq, ξ1 ∈ Rn̄, ξ2 ∈ Rn+q−n̄, (c, A) is an observable pair.

Theorem 5.3 ([78]) Let r be the finite relative degree (r <∞) of system
(2.2). The system is input-output linearizable by dynamic output feedback
if and only if

dy(t+ n̄) = λ1dy(t+ n̄− 1) + · · ·+ λr−1dy(t+ n̄− r + 1)+

+ dφn̄(·, y(t), u(t)) ◦ σφn̄−1(·, y(t), u(t)), ◦ · · ·
· · · ◦ σφr+1(·, y(t), u(t)) ◦ φr(y(t), u(t)).
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The theory presented in this section allows to determine whether the
controlled system is linearizable by static or dynamic output feedback or
not. The algorithm for constructing an appropriate controller can be found
in [78].

5.3 Region of admissible values

Consider a linear closed-loop system consisting of nonlinear controlled sys-
tem defined by equation (2.1) or (2.2) and a regulator based on the input-
output feedback linearization algorithm. Then, the structure of the corre-
sponding control system is represented schematically in Figure 5.1.

G(z)

Nonlinear
system

Feedback
linearization

algorithm

v(t) u(t) y(t)

Figure 5.1: Control system

Let the reference model, defining the relation between the output of the
system and the reference signal of the control system presented in Figure
5.1, be described by the following equation

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) =

= bn−rv(t+ n− r) + · · ·+ b0v(t), (5.5)

where ai, bj ∈ R for i = 0, . . . , n− 1, j = 0, . . . , n− r are parameters of the
reference model, or by the transfer function

G(z) =
bn−rz

n−r + bn−r−1z
n−r−1 + · · ·+ b1z + b0

zn + an−1zn−1 + an−2zn−2 + · · ·+ a1z + a0
,

where G(z) is a linear discrete-time reference model defining dynamics of
the closed-loop control system, with characteristic polynomial being Schur
stable, i.e. all its roots are placed inside the unit circle.

It should be mentioned that the main idea of using a control strategy
based on the output feedback linearization algorithm consists in modifying
the system structure by suitable feedbacks, replacing nonlinear relations
between y(t) and u(t) with linear ones, so that the closed-loop control sys-
tem can be described by the linear transfer function G(z) or equivalently
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by (5.5). It means that after transformation one can work with the control
system as with linear one. The fundamental requirement is that this ap-
proach would lead to a bounded-input bounded-output stable closed-loop
system. Thus, choosing a linear reference model (5.5) with all its poles
strictly inside the unit circle and constructing an appropriate regulator,
one can guarantee that the regulator generates a control signal resulting
in the bounded output. However, nothing definite can be said about u(t).
In other words, observing only the output, we cannot say for sure whether
u(t) is bounded or not. It is not difficult to model a situation when the
use of any specific function v(t) or even v(t) = const yields an unbounded
control signal, whereas, the output of the system remains bounded.

Example 5.1 Consider the system y(t + 1) = u(t)y(t)2, which can be

linearized by the feedback u(t) = v(t)
y(t)2

. The application of u(t) to the

system results in the stable closed-loop system described by the relation
y(t + 1) = v(t), since the only pole is in the origin. Let us define the
reference signal as v(t) = e−t

2
. The latter means that

u(t) =
v(t)

y(t)2
=

v(t)

v(t− 1)2
=

e−t
2

e−2(t−1)2
= et

2−4t+2,

which exponentially grows as t tends to infinity.

Definition 5.5 The set of values of the reference signal v(t) for which the
control signal u(t), produced by regulator (5.3) or (5.4), remains bounded is
called the region of admissible values and denoted by Ω.

Our next task is to specify Ω. Due to the fact that there are two different
types of regulators, the solution of the above problem is investigated first
in the simpler static output regulator case and then in the dynamic case.

5.3.1 The case of static output feedback

Consider the control system presented in Figure 5.1, in which the regulator
is defined by equation (5.3). The behavior of the control signal u(t) can be
determined by the following proposition.

Proposition 5.1 If the function H(y(t), v(t)) in (5.3) is continuous on the
whole real line R, then the control signal u(t) is always bounded.

Proof: see Appendix.

Corollary 5.1 The region of admissible values is a whole real line, i.e.
Ω = R.
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Though Proposition 5.1 states a nice result, it should be mentioned that
the condition on continuity of the function H(y(k), v(k)) is too restrictive.
As a result, such regulator, which is a special case of (5.3) under this
assumption, can be applied to a very small class of nonlinear models.
Example 5.2 Consider the following neutron kinetics system, from [4],
described via the state-space equations as

x1(t+ 1) = x2(t) + b1u(t)x1(t)

x2(t+ 1) = a2x1(t) + b2u(t) + a1b1u(t)x1(t)

y(t) = x1(t)

(5.6)

where x1(t) denote the population of neutrons, x2(t) denote the average
population of precursor groups, u(t) is the reactivity and is a control vari-
able. The relative variables and the parameters are: a1 = 1.24, a2 = −0.24,
b1 = 0.9, b2 = 0.891.

Now, one can check that both conditions of Theorem 5.2 are fulfilled.
Thus, controlled system defined by (5.6) can be i/o linearized. In [78]
the output feedback u(t) = v(t)/y(t) was proposed. However, easy cal-
culations show that the closed-loop system has the following pair of poles
z1 = 0.24 and z2 = 1. From the control point of view, this choice is
undesirable, since the second pole causes the non-asymptotic behavior of
the control system. Therefore, we propose the alternative output feedback
u(t) = (v(t)−K)/y(t) with K ∈ (0, 760/891) which solves the problem with
stability of the output signal. Obviously, under Assumption 5.1, conditions
(5.5) and v(t) 6≡ 0 the function describing the control signal will always be
bounded resulting to the stable behavior of the control system. Moreover,
the region of admissible values in this case is Ω = R \ {v(t) ≡ 0}.

Note that the controlled system is fully linearized, i.e. n̄ = n = 2, and
the closed-loop system reads as

ξ(t+ 1) = Aξ(t) + bv(t)

y(t) = cξ(t)

with

A =

(
0 1

−0.24− 0.891K 1.24− 0.9K

)
,

b =

(
0.9

2.007− 0.81K

)
, c =

(
1 0

)
,

ξ1(t) = x1(t), ξ2(t) = x2(t), ξ(t) ∈ R2 in the state-space representation, or
as

y(t+ 2) + (0.9K − 1.24)y(t+ 1) + (0.891K + 0.24)y(t) =

= 0.9v(t+ 1) + 0.891v(t)

in the input-output form, respectively.
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5.3.2 The case of dynamic output feedback

In practice, the conditions of Theorem 5.2 can seldom be fulfilled, and
regulator (5.4) can be applied to a very restricted class of nonlinear models.
Therefore, we specify Ω in the context of dynamic output feedback. Thus,
the main purpose of the further part is establishing the conditions allowing
to confirm that not only the output of the system, but also the control
signal remain bounded.

Next, we present the algorithm, with explanatory comments, for de-
termining the region of admissible values, which helps us to formulate the
criterion for the control signal to be both upper and lower bounded during
the control period of time.

Algorithm:

Step 1. Apply the backward-shift operator to the states η(t + 1) of reg-
ulator (5.4) the sufficient number of times and substitute them into
the function of control signal as

u(t) = H̃(y(t), y(t− 1), . . . , y(t− n̄+ 1),

v(t), v(t− 1), . . . , v(t− n̄+ 1),

u(t− 1), u(t− 2), . . . , u(t− n̄+ 1)). (5.7)

Step 2. Replace all time instances of the output in (5.7) by the corre-
sponding time instances of the reference signal under condition (5.5)

yielding that u(t) = ˜̃H(·).

Step 3. Assuming that the initial conditions u(0) := u0, u(−1) := u1, . . . ,
u(−n̄+ 1) := un̄−1, solve the difference equation

u(t) = ˜̃H(·). (5.8)

Now, two cases are possible:

(i) if it is not possible to solve (5.8), then stop1;

(ii) if the solution of (5.8) exists

u(t) =

t∑
i=1

ϕi(·), (5.9)

then go to Step 4.

1To be more precise, it is a very common situation, when the nonlinear difference
equation is not solvable analytically.
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Since we are looking for the control signal to be bounded at infinity,
i.e. when t → ∞, for the sake of convenience, the upper bound of
(5.9) can be replaced by infinity. The latter means that (5.9) can be
rewritten in the form of the infinite functional series

u(t) =
∞∑
i=1

ϕi(·). (5.10)

Step 4. Since we are looking for u(t) to be both upper and lower bounded,
under Assumption 5.1, it is enough to consider the case when the ref-
erence signal is a constant function, i.e. v(t) = const =: v. Assuming
that the initial conditions are v(0) := v0, v(−1) := v1, . . . , v(−2n̄ +
1) := v2n̄−1, equation (5.10) can be rewritten as follows

u(t) =
∞∑
i=1

ϕ̃i(v). (5.11)

Step 5. Determine the region of convergence R of (5.11) in the sense of
Definition 5.3.

Notice that R gives us only the set of points where (5.11) converges.

Step 6. Check all the boundary points where (5.11) diverges with respect
to Remark 5.1 and denote the set of all points where the corresponding
numerical series appears to be bounded by D.

Finally, the region of admissible values can be calculated by the for-
mula

Ω = R∪D. (5.12)

Step 7. End of the algorithm.

Now, using Definition 5.5 and the algorithm presented above, we can
formulate the following theorem.

Theorem 5.4 The controlled system (2.1) is bounded-input bounded-output
stable if and only if v(t) ∈ Ω.

Proof: see Appendix.
Example 5.3 Consider the i/o equation

y(t+ 2) = y(t+ 1) + a1u(t+ 1) + a2u(t) + y(t+ 1)u(t+ 1) + y(t)u(t),

where a1, a2 ∈ R.
First, note that the relative degree of this system is equal to one. Af-

ter that, one can check that condition (ii) of Theorem 5.2 is not fulfilled;
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however, the condition of Theorem 5.3 is satisfied. Thus, using the ap-
proach proposed in [78], dynamic regulator (5.4) can be represented by the
following equations

u(t) =
η1(t)− y(t)

a1 + y(t)
, (5.13)

η1(t+ 1) = v(t)− a2u(t)− u(t)y(t) (5.14)

and the closed-loop system reads as

y(t+ 2) = v(t). (5.15)

Now, in order to calculate the region of admissible values, we use the
algorithm introduced above. First, apply the backward-shift operator to
equation (5.14) once and substitute the obtained expression into the func-
tion of control signal (5.13) as follows

u(t) =
v(t− 1)− (a2 + y(t− 1))u(t− 1)− y(t)

a1 + y(t)
. (5.16)

Next, using relation (5.15), we can replace all time instances of the
output by the corresponding time instances of the reference signal and
rewrite equation (5.16) in the following form

u(t) =
v(t− 1)− (a2 + v(t− 3))u(t− 1)− v(t− 2)

a1 + v(t− 2)
. (5.17)

After that, assuming that u(−1) = 0, the solution of (5.17) can be
represented in the closed form by

u(t) =

[
t−1∏
i=1

−a2 − v(i− 2)

a1 + v(i− 1)

]
·
t−1∑
j=0

v(j)− v(j − 1)

(a1 + v(j − 1))
∏j
i=1

−a2−v(i−2)
a1+v(i−1)

. (5.18)

Let the reference signal be defined as a step function

v(t) =

{
v, t > 0,

0, t ≤ 0.
(5.19)

Now, according to Step 4 of the algorithm, after the simplification of
(5.18) with respect to conditions (5.19), we obtain

u(t) =

∞∑
i=0

(−1)i+1 a2v(v + a2)i

a1(v + a1)i+1
= − a2v

a1(v + a1)

∞∑
i=0

(
−v + a2

v + a1

)i
(5.20)

for t > 2.
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Notice that the first three partial sums for time instances t = 0, 1, 2
in (5.18) cannot be calculated from (5.20) and their values are S0(v) =
0, S1(v) = 0 and S2(v) = v/a1, respectively.

Obviously, (5.20) is a special case of geometric series
∑∞

i=0 cq
i with

c = − a2v
a1(v+a1) and q = −v+a2

v+a1
. It means that (5.20) converges if and only

if |q| < 1. Solving this inequality, we obtain the following three cases

(i) if a1 > a2, then v > −a1+a2
2 ;

(ii) if a1 < a2, then v < −a1+a2
2 ;

(iii) if a1 = a2, then u(t) =
∑∞

i=0 c(−1)i does not converge in the sense
of Remark 5.1; however, it is both upper and lower bounded, hence
v(t) ∈ R.

Now, according to Step 6, we have to check the boundary points for the
first two cases (i) and (ii). After substituting d0 = −a1+a2

2 into (5.20), we
get u(t) = − a2v

a1(v+a1) concluding that for d0 the corresponding numerical
series converges.

Finally, summarizing the obtained information, we may conclude that

• if a1 > a2, then R1 =
(
−a1+a2

2 ,∞
)

which together with D = {d0}
by (5.12) give us the following region of admissible values Ω1 =[
−a1+a2

2 ,∞
)
;

• if a1 < a2, then R2 =
(
−∞,−a1+a2

2

)
which together with D = {d0}

by (5.12) give us the following region of admissible values Ω2 =(
−∞,−a1+a2

2

]
;

• if a1 = a2, then Ω3 = R.

It means that if we choose an arbitrary function v(t) whose values are
inside the region Ωi, then the control signal u(t) for the corresponding case,
produced by the regulator (5.4), will remain bounded during the control
period of time and the object will be bounded-input bounded-output stable.
Example 5.4 The second-order discrete-time model is described by the
i/o equation [94]

y(t+ 2) = 1.2y(t+ 1)− 0.8y(t) + u(t+ 1)+

+ 0.6u(t) + 0.2y(t+ 1)u(t+ 1).

One can check that the static compensator is not applicable. However,
the following dynamic regulator (5.4) can be used

u(t) =
η1(t)− 1.2y(t)

1 + 0.2y(t)
,

η1(t+ 1) = v(t)− 0.6u(t) + 0.8y(t).
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Note that the calculation procedure of Ω is similar to the one illustrated
in the previous example and is therefore omitted. One can check that
Ω = (−∞,−8]

⋃
[−2,+∞).

Remark 5.2 If the system is not fully linearizable by output feedback, then
we have to make an additional assumption about stable zero dynamics. In
fact, this assumption is not restrictive, but necessary in order to guarantee
stability of non-linearized states.
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Chapter 6

Symbolic polynomial tools as
subpackage of NLControl

In this chapter the theory of Ore polynomials, presented in Chapter 2, is
encapsulated in the form of Mathematica functions through the NLControl
package. We have developed a set of functions for solving the modelling
problems of nonlinear control systems, based on the theory of Ore polyno-
mial rings. The implemented functions can be divided into several groups
according to their functionality and tasks to be solved. The first part of
the software includes the assistant functions that do not solve any con-
trol problems directly. For example there is a number of functions that
implement the basic operations with Ore polynomials, since there is nei-
ther built-in functions nor supplement package available for Mathematica,
addressing these operations. These basic functions include addition and
multiplication, the left (right) quotient and reminder, the greatest common
left (right) divisor and the least common left (right) multiple. The second
part contains the programs for solving different problems arising in the
control theory by means of polynomial formalism. These are, for example
reduction, realization and model matching. Note that the problems listed
above are only those studied in this thesis; however, the functionality of
NLControl is not limited only by corresponding functions, and the package
contains more different options and possibilities.

At the beginning of the chapter a brief overview of the package is pre-
sented. After that the basic operations that can be performed with Ore
polynomials are explained. Next, the transformations between different
system descriptions are shown, followed by the model matching problem.
In the next section a number of illustrative examples is presented. Finally,
small notes about the realization of the package by means of webMathe-
matica service conclude the chapter.
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6.1 Overview of the NLControl package

This section provides necessary information on the NLControl package and
presents a number of important functions.

Mathematica uses certain data structures or so-called control objects to
represent the control system. These objects contain all necessary informa-
tion about the system. The most typical examples within the framework
of the package are StateSpace, IO and TransferFunction. In order to
provide the possibility to use the functions from the package, one should
load it, what can be done by the following command

In[1]:= «NLControl‘Master‘

To perform computations with the system described by the state equa-
tions, it should be entered in the form determined by Mathematica and
NLControl package as shown below, which can be obtained using the fol-
lowing function

StateSpace[f, Xt, Ut, t, h, Yt, Type],

where f is a list of the state functions, Xt, Ut and Yt define lists of the state,
input and output variables, respectively; t is a time argument and h defines
the output function. The argument Type may have one of the following
values: TimeDerivative stands for continuous-time case and Shift for
discrete-time case.

To enter the i/o system, one has to use the syntax

IO[eqs, Ut, Yt, t, Type],

where the meanings of the arguments Ut, Yt, t and Type are the same as
in the case of StateSpace, and eqs defines the i/o equation.

The third object is

TransferFunction[z, F, Ut, Yt, t, Type],

which represents a system given by its transfer matrix F with z being
polynomial indeterminate. Remaining arguments are the same as for i/o
equations.

Note that the keywords StateSpace, IO and TransferFunction act
also as functions transforming system between different representations.
For example, if one desires to get the transfer function of the i/o equation,
then the following shortened code may be called: TransferFunction[z,

IO] with IO being previously defined as a Mathematica object. Thus, one
may see, and it will be shown further more precisely, that there exist several
alternative ways to solve the same problem.

78



Remark 6.1 The tools of NLControl are not designed for approximate cal-
culations. Therefore, all real (floating-point) numbers are transformed into
rational numbers by StateSpace and IO.

Sometimes the form of the objects, determined by Mathematica and
NLControl package, differs from the traditional and familiar form. Thus,
to make the output pleasant to read the function BookForm was introduced.
One of the optional arguments of this function is TimeArgument. Its value
can be True, False or Subscripted. If the value is

• True, then the time argument t will be printed for each variable in
brackets [];

• False, then the time argument will be left out to make the output
result visually more compact;

• Subscripted means that t will be printed as a subscript.

The default value of TimeArgument is True.

6.2 Ore polynomials: standard operations

Recall that polynomials, describing nonlinear system, belong to the Ore
polynomial ring. Moreover, the polynomial coefficients belong to the dif-
ferential/difference field depending on the type of the system under con-
sideration. Thus, NLControl uses a special object OreRing to store and
handle the corresponding information. It encapsulates all necessary data
about relations between variables. In order to create the object OreRing,
the following function has to be used

DefineOreRing[z, sys],

where z is a polynomial variable and sys is a control system. Note that
it is also possible to work with Ore rings not associated with any control
system. In this case, the object OreRing can be created by

DefineOreRing[z, t, Shift],

if the polynomial coefficients are from a difference field, and by

DefineOreRing[z, t, TimeDerivative],

if the polynomial coefficients are from a differential field.
Additionally, we define the objects representing the Ore polynomial and

the fraction of Ore polynomials. The reason for creating a special object can
be seen from the fact that by default Mathematica changes the order of the
factors related by the standard multiplication operator ”*”. For example,
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the expression y[t]*z would be converted to zy[t]. However, according to
(2.8) or (3.45), such a permutation is wrong for Ore polynomials. Therefore,
the Ore polynomial of the form (2.7) can be represented as

OreP[a0, a1, . . ., an],

where a0, . . . ,an are polynomial coefficients. The fraction of two polynomi-
als p−1(z)q(z) has to be entered as

OreR[p, q].

Another useful function

OreSimplify[p, R]

simplifies the polynomial p, assuming it belongs to the Ore ring R. The
argument R has to be given as the object OreRing. If there are relations
defined between polynomial coefficients, this yields that certain expressions
in the field K are equal to zero. The function OreSimplify applies these
relations to polynomial coefficients and then simplifies the result. Note that
these relations are not applied automatically, since the polynomial object
OreP has no information about them.

Addition of polynomials may be performed by Mathematica standard
summation operator ”+”, but addition of polynomial fractions requires a
special function

OrePlus[OreR[p1, q1], OreR[p2, q2], R],

where p1,q1,p2,q2 are polynomials from the Ore ring R. The function

OreMultiply[p1, q1, R]

computes a product of polynomials p1,q1 from the Ore ring R and is based
on commutation rule (2.8) or (3.45), depending on the time domain. The
product of left fractions may be found by the same function.

Suppose that p and q are polynomials from the Ore ring R. The following
functions may be applied to them:

• LeftQuotientRemander[p, q, R] returns a list {γ, ρ}, where γ is
the left quotient and ρ is the left remainder;

• LeftQuotient[p, q, R] finds the left quotient;

• LeftRemainder[p, q, R] finds the left remainder;

• LeftGCD[p, q, R] finds the greatest common left divisor;

• LeftLCM[p, q, R] finds the least common left multiple.
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Corresponding right functions are also available. For that purposes one
needs to replace Left by Right in the name of the function. Finally, there
are three functions for matrices with entries belonging to the Ore ring R:

• OreDot[A1, . . ., An, R] finds the product of polynomial matrices
A1, . . . ,An analogously with the standard matrix multiplication func-
tion Dot;

• LowerLeftTriangularMatrix[A, R] transforms the polynomial ma-
trix A into the lower left triangular form;

• OreInverse[A, R] computes the inverse of the polynomial matrix A.

6.3 Polynomial system description

Sometimes it is necessary to have possibility for working with polynomials
describing the system. Moreover, some of the programs implemented in the
NLControl package requires that the system was put into the polynomial
form. It can be performed by the following function

FromIOToOreP[sys],

where the argument sys represents a system defined by the i/o equation. In
general, this function computes and returns the p×p and p×m-dimensional
matrices P (z) and Q(z), respectively, with entries from the Ore polynomial
ring. Note that in case of SISO systems the function returns matrices
consisting of only single element each. By default all the functions, based on
polynomial formalism, use FromIOToOreP to transform the original system,
represented by the i/o equations into the polynomial form.

6.4 Reduction and Realization problems

Let us start from the system described by the i/o equation or the set of
i/o equations. In Chapter 3 the basic idea of the realization procedure
was explained as well as the corresponding algorithms and formulas for the
certain types of systems were derived. Note that presented algorithms are
constructive, and therefore, allow to derive the classical state-space form
directly from the polynomial system description. It means that they can
be formalized and easily implemented within Mathematica or any other
software. However, we would like to emphasize that the obtained polyno-
mial formulas and algorithms are designed for the realizable and irreducible
systems. It was mentioned in Section 2.2 that an nth-order realization of
the i/o equation under consideration is accessible if and only if the sys-
tem is irreducible. Thus, the following function has been implemented in
NLControl
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Irreducibility[sys],

where the argument sys represents a system. This function allows to check
whether the original system is reducible or not. Obviously, if the returned
answer is False, then one may be sure that the state equations will be
accessible whenever they exist. However, if the answer is True, then one
may use another function

Reduction[sys],

where the meaning of the argument sys is the same as in case of the func-
tion Irreducibility. Reduction returns a new lower order i/o system,
which is transfer equivalent to the original one. It means that the transfer
functions of these systems are equivalent. In fact, one is not obliged to use
the function Irreducibility and in principle may directly use the func-
tion Reduction, which in case of irreducible equations returns the original
equations.

Once we have obtained new equations or made sure that the original
system is irreducible, we may proceed further. It is known that the classical
state-space realization does not necessarily exist for every nonlinear i/o
model. Therefore, to check whether the system is realizable or not, one
may use the following function

Realizability[sys],

where sys again represents a system. If the returned answer is False,
then the minimal state-space representation does not exist. However, if the
answer is True, then one may use the following function

Realization[sys, x#[t]&],

where the second argument x#[t]& stands for the so-called pure function,
which determines the state variables to be denoted as x1[t], x2[t], . . .,
xn[t], where n is an order of the system. The alternative possibility is to
replace the pure function by the predefined list of state variables {x1[t],
. . ., xn[t]}, but in this case one has to be careful and choose a list of
the correct length. Realization returns a set of state equations. By
analogy with Reduction in principle one may immediately use the function
Realization, which in case of non-realizable equations returns the empty
set.

The general scheme of deriving the state equations from the i/o equa-
tions by means of Realization function is shown in Figure 6.1.

Note that the block Assumptions in Figure 6.1 requires a number of
different system specific assumptions, defined in the previous chapters, to be
hold. It means that as soon as the user defined the i/o equation, programm
starts to check whether the entered data is correct or not.
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Figure 6.1: The block-diagram of the function Realization
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6.5 Model matching problem

At the beginning of the chapter the basic idea of representing a system in
the form of the TransferFunction object was explained. It can be used
in several ways for solving different problems. Here, we will show how the
transfer functions can be applied to the model matching problem. It is
known that there are two typical feedforward and feedback compensators,
considered for open- and closed-loop systems, respectively. For the both
cases the general statement of the problem can be formulated as follows.
Given a model to be controlled and a reference model described by their
transfer functions. Find a compensator described by its transfer function
such that the transfer function of the compensated system coincides with
that of the reference model.

In case of the feedforward compensator the following function can be
used

FeedforwardCompensator[eqs1, eqs2],

where eqs1 and eqs2 are the i/o equations of the system and reference
model, respectively. However, this function was designed in such a way
that alternative input arguments can be used, namely

FeedforwardCompensator[F, G],

where F and G stand for the transfer functions of the system and reference
model, respectively. In the first case the function produces the output in
the form of IO object, i.e. the function returns the i/o equation of the com-
pensator. Note that, according to the theory, the feedforward solution does
not always exist. It means that the one-form representing the compensator
may not be integrable. Therefore, it may happen that the function returns
the empty set. As for the second case the output is always in the form of
TransferFunction object, whenever the problem is solvable.

In case of the feedback compensator the similar function is available.
Its name is FeedbackCompensator. The meaning of the arguments is the
same as for the feedforward case. It should be mentioned that, according
to the theory, the solution and as a result the corresponding compensator
are always exist, meaning that the output of the function cannot be the
empty set.

Remark 6.2 Some of the functions, presented above as well as available
in NLControl, are designed for MIMO systems. For the more detailed in-
formation we refer the reader to [62], [88] and the web page [74] discussed
below.

It should be mentioned that if the called function is not able to produce
the output, or the calculation process was interrupted, then Mathematica
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generates an error message. Thus, in order to keep specifications according
to Mathematica requirements, we created a number of warning and error
messages, which can be easily distinguished by a particular color, name, or
semantic load.

6.6 Examples

In the following example the functions discussed above will be illustrated
with a brief explanation of the basic theoretical and technical moments.
Example 6.1 Consider the discrete-time model of the controlled van der
Pol oscillator derived in [2]

y(t+ 2) = θ1y(t+ 1)− θ2y(t) + θ3y(t)2y(t+ 1) + θ4y(t)3 + θ5u(t), (6.1)

where θi ∈ R for i = 1, . . . , 5. In order to use the functions described above,
we first have to load the NLControl package.

In[1]:= «NLControl‘Master‘

Next, we enter the system as follows.

In[2]:= eqs = {y[t+2] == θ1y[t+1]- θ2y[t]+ θ3y[t]
2y[t+1]+

θ4y[t]
3 + θ5u[t]};

Ut = {u[t]};
Yt = {y[t]};
sysIO = IO[eqs, Ut, Yt, t, Shift];
BookForm[sysIO]

Out[6]= y[t+2] = θ5u[t]- θ2y[t]+ θ4y[t]
3 +
(
θ1 + θ3y[t]

2
)
y[t+1]

Let us start the analysis by examining whether model (6.1) is reducible
or not. It can be performed by running the following command

In[7]:= Reduction[sysIO]
Reduction::irred: The system already has irreducible form.

Out[7]= IO[{y[t+2] == θ5u[t]- θ2y[t]+ θ4y[t]
3 + θ1y[t+1]+

θ3y[t]
2y[t+1]}, {u[t]}, {y[t]}, t, Shift]

From the output of the function and generated warning message we can
see that the system has irreducible form. This means that there is no any
other model of the lower order. Since the system is irreducible, we may
continue our analysis and proceed to the next function, which allows to
find the state equations, whenever possible.

In[8]:= {cls,repl} = Realization[sysIO, {x1[t], x2[t]}];
BookForm[cls]
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Out[9]= x1[t+1] = x2[t]

x2[t+1] = θ5u[t]- θ2x1[t]+ θ4x1[t]
3 +
(
θ1 + θ3x1[t]

2
)
x2[t]

y[t] = x1[t]

Thus, the system is realizable and it was possible to construct the classical
state equations. Now, we proceed to the functions which allow to calculate
the feedforward and feedback compensators. Suppose that the reference
model is

In[10]:= rmIO = IO[{y[t+2] == v[t]}, {v[t]}, {y[t]}, t, Shift];
BookForm[rmIO]

Out[11]= y[t+2] = v[t]

The following commands have to be used for the case of feedforward com-
pensator

In[12]:= FeedforwardCompensator[sysIO, rmIO]
FeedforwardCompensator::unable: The function is unable to construct

feedforward compensator.

IntegrateOneForms::nonint: The set of differential one-forms is not completely

integrable.

Out[12]= {}

and for the case of feedback compensator

In[13]:= fbc = FeedbackCompensator[sysIO, rmIO];
BookForm[fbc]

Out[14]= θ5u[t]-v[t]- θ2y[t]+ θ4y[t]
3 +
(
θ1 + θ3y[t]

2
)
y[t+1] = 0

It has been already mentioned that the class of systems for which the
feedforward compensator can be found is quite restricted. That is the
case for system (6.1). It means that there is no any compensator which
solves the feedforward model matching problem. On the other hand, the
feedback MMP is always solvable and the corresponding i/o equation was
found. However, the output is given by the implicit function. Thus, before
implementing the control, one has to solve the corresponding equation with
respect to the control signal, what can be done by the functions available
in the standard Mathematica version.

Next, we present several separate examples, which illustrate the essence
of each function. Suppose that for each of the following examples the
NLControl package is already loaded.
Example 6.2 Recall the system from Example 4.1

y(t+ 2) = y(t) + u(t)u(t+ 1), (6.2)

which can be entered as follows
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In[2]:= sysIO = IO[{y[t+2] == y[t]+u[t]u[t+1]}, {u[t]}, {y[t]},
t, Shift];

BookForm[sysIO]

Out[3]= y[t+2] = u[t]u[t+1]+y[t]

After that, we construct the Ore ring associated with system (6.2).

In[4]:= K = DefineOreRing[z, sysIO];

Now, we find the polynomial description of the system.

In[5]:= {psys, qsys} = Flatten[FromIOToOreP[sysIO]];
BookForm[psys, K]
BookForm[qsys, K]

Out[6]= z2 -1

Out[7]= -u[t]z-u[t+1]

Next, compute the transfer function, according to Definition 2.5.

In[8]:= TFsys = OreR[psys, -qsys];
BookForm[TFsys, K]

Out[9]=
u[t]z+u[t+1]

z2 -1

Note that the same visual (output) result can be obtained by using the
function TransferFunction with the sysIO as input argument. However,
the generated output objects will be different. Thus, the use of the function
TransferFunction is more preferable, because it generates the correct
object. But in spite of this for our illustrative purposes we use the way
presented above.

Suppose that the reference model is given by the following i/o equation

y(t+ 2) = v(t),

which has to be entered as follows

In[10]:= rmIO = IO[{y[t+2] == v[t]}, {v[t]}, {y[t]}, t, Shift];
BookForm[sysIO]

Out[11]= y[t+2] = v[t]

In order to calculate the transfer function of the reference model, by
analogy with system (6.2) we can perform the same steps
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In[12]:= {prm, qrm} = Flatten[FromIOToOreP[rmIO]];
TFrm = OreR[prm, -qrm];
BookForm[TFrm, K]

Out[14]=
1

z2

By (4.3) multiplying transfer functions TFsys and TFrm, we can find
the transfer function representing the compensator

In[15]:= TFcomp = OreMultiply[Power[TFsys, -1], TFrm, K];
BookForm[TFcomp, K]

Out[16]=
z2 -1

u[t+2]z3 +u[t+3]z2

Next, we check whether the corresponding one-form is integrable or not.
For that purposes we need to preform an intermediate step

In[17]:= dcomp = FromOrePToSpanK[{{TFcomp[[1]]}}, {{-TFcomp[[2]]}},
{u[t]}, {y[t]}, t, Shift];

BookForm[dcomp]

Out[18]= SpanK[u[t+3]dlu[t+2]+u[t+2]dlu[t+3]+dlv[t]-dlv[t+2]]

Note that the keyword SpanK represents the subspace spanned over the set
of one-forms. Now, we can use the function which allows to integrate the
one-form

In[19]:= IntegrateOneForms[dcomp]

Out[19]= {u[t+2]u[t+3]+v[t]-v[t+2]}

The latter after equating to zero becomes an ordinary i/o equation. That is
the reason why the obtained result is always in the implicit form. However,
in the previous example it was already mentioned that it is not a crucial
problem and the standard Mathematica functions may be used for obtaining
the explicit solution, if the latter is necessary. Note that the MMP for the
feedback case may be analyzed in the same way and the similar functions
can be used.

The next example demonstrates the step-by-step realization technique,
described in Chapter 3.
Example 6.3 Recall the model presented in Example 5.4

y(t+ 2) = 1.2y(t+ 1)− 0.8y(t) + u(t+ 1)+

+ 0.6u(t) + 0.2y(t+ 1)u(t+ 1). (6.3)
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By direct observation of the system (6.3) we may see that it is a special
case of the second-order bilinear models. This means that it is possible
to apply the theoretical results obtained in [58] under which the system is
realizable.

Create the object IO for this system

In[2]:= ioeq = IO[{y[t+2] == 1.2y[t+1]-0.8y[t]+u[t+1]+
0.6u[t]+0.2y[t+1]u[t+1]}, {u[t]}, {y[t]}, t, Shift];

and associate the Ore ring

In[3]:= K = DefineOreRing[z, ioeq];

Next, equation (6.3) can be described by two polynomials

In[4]:= {p, q} = Flatten[FromIOToOreP[ioeq]];
BookForm[p, K]
BookForm[q, K]

Out[5]= z2 +
(
-
6

5
-
1

5
u[t+1]

)
z+

4

5

Out[6]=

(
-1-

1

5
y[t+1]

)
z-

3

5

After that, we compute, according to (3.10) for the shift operator based
discrete-time case, two sequences of the left quotients as follows

In[7]:= BookForm[p1 = LeftQuotient[p, OreP[1, 0], K], K]
BookForm[p2 = LeftQuotient[p1, OreP[1, 0], K], K]

Out[7]= z+
1

5
(-6-u[t])

Out[8]= 1

In[9]:= BookForm[q1 = LeftQuotient[q, OreP[1, 0], K], K]
BookForm[q2 = LeftQuotient[q1, OreP[1, 0], K], K]

Out[9]=

(
-1-

y[t]

5

)
Out[10]= 0

which represent the one-forms ω1 = p1dy+q1du, ω2 = p2dy+q2du. Indeed,
the same operation can be performed by means of the following function

In[11]:= omega =
SimplifyBasis[StateDifferentialsLeftQuotient[ioeq]];
BookForm[omega]
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Out[12]= SpanK[dly[t], 5dly[t+1]+(-5-y[t])dlu[t]]

Note that the function SimplifyBasis was used. This is due to the fact
that, according to Remark 3.3, we can preform the linear transformations
with basis one-forms in Hk. After integration of the one-forms

In[13]:= states = IntegrateOneForms[omega]

Out[13]= {y[t], -
1

5
u[t](5+y[t])+y[t+1]}

the state equations can be found as

In[14]:= {cls, repl} = Realization[ioeq, {x1[t], x2[t]}, states];
BookForm[cls]

Out[15]= x1[t+1] = u[t](1+0.2x1[t])+x2[t]

x2[t+1] = u[t](1.8+0.24x1[t])-0.8x1[t]+1.2x2[t]

y[t] = x1[t]

To conclude, one may easily check that system (6.3) is a special case of
the system presented in Proposition 3.3 for the case n = 2, where the
corresponding state equations were derived.

6.7 webMathematica application

Mathematica is a commercial software program conceived by Stephen Wol-
fram and developed by the Wolfram Research company. It allows to create
your own package library. Since Mathematica does not contain any built-in
functions or packages related to the nonlinear control theory, Institute of
Cybernetics created so-called NLControl package addressing all the com-
mon problems such as modeling, analysis, synthesis, etc. However, NL-
Control is not a standalone application and can be used only within the
Mathematica environment. As a result all the implemented functions can-
not be used outside the Mathematica making it necessary to be installed
on the local computer. In order to overcome this limitation, the Wolfram
Research company proposes to use the webMathematica service. It allows a
web browser to act as a front end to a remote Mathematica server. It means
that any application written in Mathematica can be remotely accessed via a
browser on any platform. Therefore, we have developed an application that
partially contains the productivity of NLControl. The latter means that
now any researcher, student or just interested in the control theory person
can use capabilities of this package through the world-wide-web without
necessity to install Mathematica software. It should be mentioned that this
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way of using does not give full access to Mathematica, but only to the part
of NLControl package.

Note that the Nonlinear Control web site has several restrictions in com-
parison with the full version of package available for the standard Math-
ematica. First, only the most important functions are accessible through
the web site. Second, the application automatically interrupts all the com-
putations lasting longer than 30 seconds. We had to implement this rule,
because at the moment there is only one Mathematica kernel running on
the server, which is shared among all users. It is clear that the interruption
time can be set up with respect to the load on the server. Third, equa-
tions entered by the user into the fields on the web site have to be in the
plain text form. The latter means that, for example, instead of subscripted
variables x1, x2, . . . one has to use x1, x2, . . ., and there are similar incon-
venient problems with some other symbols naturally used in Mathematica
environment.

The Nonlinear Control web site may be divided into two basic parts.
The first is a web graphical user interface, which provides access to ba-
sic functions, help files and additional information. Its structure is simple
and consists of menu with several tabs and pages with access points to the
corresponding functions. The implemented functions from NLControl are
grouped according to the time domain, e.g. continuous- and discrete-time,
in order to make their use more convenient for users. The functionality of
the visible part of the site was implemented using HTML and JavaScript
language. The other (invisible or computational) part consists of files incor-
porating HTML and Java language. The overall computational (request-
response) process can be described as follows.

• User enters the data to be calculated into the corresponding text fields
and selects additional possibilities (output format, the presence of the
time argument, etc).

• The browser sends a request, which includes symbolic expressions and
additional information, to the server side.

• The webMathematica kernel manager acquires the Mathematica ker-
nel. The entered data is sent to this kernel.

• The Mathematica kernel is initialized with input (request) param-
eters. It carries out all the necessary calculations and returns the
result to the server.

• The webMathematica server sends results back to the browser.

• The obtained result is shown on a separate web page.
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Note that requests are sent to the server with webMathematica web pages
that are based on two standard Java technologies, which are Java Servlet
and JavaServer Pages (JSP). Servlets are special Java programs that run in
a Java-enabled web server, which is typically called a ”servlet container”.
JavaServer Pages use a special library of tags that works with Mathematica.
This library of tags is called the MSP Taglib, for the more precise informa-
tion we refer the reader to [88] and the references therein. The developed
web page is available at [74].
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Conclusions

This thesis is devoted to study several important problems in design of non-
linear control systems. In the introductory part of this work we showed the
basic idea of constructing the polynomial formalism upon the linear alge-
braic framework. The latter is based on the theory of differential one-forms.
After that the polynomial methods were recalled to solve the modelling and
control system design problems. In this chapter we summarize main results
presented in the thesis.

First, the computation of the state coordinates for nonlinear i/o equa-
tions was addressed for realizable systems. Our goal was to obtain explicit
polynomial formulas that are easy to implement. The solution has been
obtained by the tools from the theory of skew polynomial rings for the
cases of SISO equations, defined in terms of pseudo-linear operator, and
MIMO continuous-time systems. The latter requires system to be repre-
sented via polynomial description. The explicit formulas to compute the
basis one-forms of certain vector space directly from the polynomial sys-
tem description were presented. If this vector space is not integrable, the
i/o equation is not realizable in the state-space form. However, when the
vector space is integrable, integration of its exact basis elements results
in the desired state coordinates. The approach presented in this thesis,
in comparison with the algebraic method based on the solution of the set
of nonlinear equations, has a number of advantages. First, it is straight-
forward, meaning that there is no need to compute step-by-step all the Hk
subspaces, for k = 1, . . . , s + 2, in order to find Hs+2 as was proposed in
[23, 55]. In other words, using the polynomial representation of the sys-
tem, one can immediately find the subspace Hs+2 with one-forms defining
the state coordinates. Second, the results of this thesis combine well with
those presented in [53, 54] allowing to work out the complete procedure for
deriving the minimal state equations starting from the possibly reducible
i/o equation. Finally, we have implemented the results of this work in
Mathematica package NLControl. In this regard, we may conclude that
the program code of the introduced algorithms is shorter and more com-
pact compared with the previous methods. Moreover, this approach can
be implemented within the most of symbolic programming languages.
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Second, the realization problem of the discrete-time i/o bilinear and
quadratic control systems in the classical state-space form was addressed.
In [58] it was shown that, in general, the bilinear i/o difference equation is
not realizable in the state-space form. However, certain structural restric-
tions in terms of system parameters can guarantee the realizability property.
The complete list of necessary and sufficient conditions for the realizabil-
ity of the third- and fourth-order systems has been given. Moreover, one
additional realizable subclass of an arbitrary order was presented. Besides,
using the approach presented in this thesis, we have derived a number of
sufficient realizability conditions for the second- and third-order quadratic
equations.

Third, we have demonstrated that the LPV approach is not applicable
to the realization problem in the classical state-space form, unless the non-
linear system is not identified (approximated) directly as an LPV model.
The reason comes from the fact that LPV i/o equations are always trans-
formable into the state-space form, whereas this is not always true for non-
linear i/o equations considered in the thesis. The results were illustrated
on the basis of the second-order discrete-time bilinear equations. One may
conclude that when the i/o bilinear equation is not realizable in the state-
space form, according to the theory presented above, no parametrization
exists that allows to develop the state equations using the LPV approach.
Namely, for all possible parameterizations yielding the i/o LPV model, the
corresponding state equations, when the parameters are replaced by the
respective variables used in parameterizations are not anymore in the clas-
sical state-space form. Moreover, for the realizable i/o equations results
depend on the ”good/bad” choice of the parameterizations. It means that
some parameterizations yield a classical state equations, whereas the others
do not. The drawback is that one has not formal rules to distinguish be-
tween ”good” and ”bad” choices before making computations. Therefore,
at least for the nonlinear realization problem, the LPV approach does not
provide the proper tools.

The fourth problem considered in the thesis is the model matching prob-
lem. The transfer function formalism was employed to solve the MMP of
nonlinear SISO discrete-time systems. The problem was studied within the
transfer function approach in which the system is described by the quotient
of two polynomials from the skew polynomial ring. Both feedforward and
feedback solutions were given in which the input-output map is transfer
equivalent to a prespecified model. It was shown that the feedforward so-
lution requires a restrictive integrability condition and therefore does not
always exist. Thus, the respective subclass of nonlinear control systems
was specified. In contrast, the feedback compensator exists whenever the
system is nontrivial. Moreover, the properness of the compensator is jus-
tified by inequality of the relative degrees of the system and that of the
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model.
The last theoretical problem presented in the thesis is the stability of

nonlinear discrete-time systems linearized by output feedback. In fact,
we determined the criteria ensuring the bounded-input bounded-output
stability of the whole control system. This may be divided into two parts.
The second part can be solved introducing the assumption on the linear
reference model to be Schur stable. However, the first part is more complex.
To solve it, the notion of the region of admissible values for the reference
signal as well as the algorithm for its determination were explained. The
static and dynamic cases were presented separately.

In addition to the theoretical problems listed above, the NLControl
package based on Mathematica software and its webMathematica applica-
tion are described. The package was created to simplify a large number
of symbolic computations arising in the case of nonlinear control systems.
The thesis describes one of the subpackages of NLControl. It provides
the possibility to solve several modeling and design problems for nonlinear
control systems and mathematically relies on the polynomial formalism.
All NLControl functions described above are designed for several types of
systems. It should be mentioned that the polynomial approach allows to
address a multitude of other problems, not discussed in this thesis. In other
words, the functionality of NLControl is not restricted only by the exam-
ined problems and there are a lof of tasks outside of the thesis that can be
solved by means of the tools provided by the package.

To conclude, the author would like to recall the following quotation:

Many can imagine or picture the green sun but to make a world inside
which the green sun will be credible will probably require hard labour and

thought.
J.R.R. Tolkien.
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Appendix

Proofs

Proof of Theorem 3.2

The proof is based on the principle of mathematical induction. First, we
show that formula (3.12) holds for k = 1. To show this, prove that H1 in
(3.9) may be represented as (3.12) for k = 1. In order to simplify the proof
note that the recursive formulas (3.10) may be rewritten for l = 1, . . . , n
explicitly as

p(z) = zl · pl(z) +Rl(z), degRl(z) < l,

q(z) = zl · ql(z) + Pl(z), degPl(z) < l
(A.1)

with Rl(z) =
∑l

i=1 z
i−1ri and Pl(z) =

∑l
j=1 z

j−1ρj .

Suppose l = n. According to (3.11), ωn = pn(z)dy + qn(z)du. Due
to the structure of the i/o equation, deg(p(z)) = n, and p(z) is monic.
Then, it follows from (A.1) that pn(z) is a left quotient of p(z) and zn, i.e.
pn(z) = 1. Notice that s < n meaning that the quotient of q(z) and zn is
equal to zero. Consequently, ωn = dy. Next, take l = n − 1 and compute
ωn−1. Now, it follows from (A.1) that pn−1(z) is a polynomial of the first
degree. Thus, ωn−1 = dy〈1〉 + αωn + βdu with α, β ∈ K∗, where ωn and du
are independent elements in H1, so ωn−1 may be replaced by the simpler
one-form dy〈1〉. Continuing in the similar manner, it is possible to show
that the remaining basis one-forms ωl, for l = n − 2, . . . , 1, in H1 may be
replaced by dy〈2〉, . . . ,dy〈n−1〉, respectively. As a result, the statement is
true for k = 1.

Assume now that formula (3.12) holds for r and prove it to be valid for
r + 1. We have to prove that

Hr+1 = spanK∗
{
ω1, . . . , ωn,du, . . . ,du

〈s−r〉
}
, (A.2)

calculated according to formula (3.12), satisfies condition (3.9).

First, note that the one-forms ω1, . . . , ωn,du, . . . ,du
〈s−r〉 ∈ Hr, since

(3.12) holds for r. Second, we have to prove that the derivatives of the

97



basis one-forms in (A.2) belong to Hr. By (3.11), we have for l = 1, . . . , n

ω
〈1〉
l =

[
z · pl(z) z · ql(z)

] [dy
du

]
.

Using relations (3.10), we get

ω
〈1〉
l =

[
pl−1(z)− rl ql−1(z)− ρl

] [dy
du

]
or after reordering the terms

ω
〈1〉
l =

[
pl−1(z) ql−1(z)

] [dy
du

]
−
[
rl ρl

] [dy
du

]
. (A.3)

Thus, the one-form ω
〈1〉
l is represented as a sum of two terms. For

the first term we consider two separate cases. In case l = 1, the first
term yields p0(z)dy + q0(z)du = p(z)dy + q(z)du = 0 due to polynomial
system description (3.7). In case l = 2, . . . , n, the first term of (A.3) is
equal to ωl−1 by (3.11) and, therefore, in Hr. The second term of (A.3)
is a linear combination of dy,du ∈ Hr, since the elements of rl and ρl are

functions from K∗. Consequently, ω
〈1〉
l ∈ Hr for l = 1, . . . , n. Finally, we

observe that the derivatives of the rest of the basis one-forms in (A.2) are
du〈1〉, . . . ,du〈s−r+1〉, which are also in Hr. It should be mentioned that the
subspace Hs+2 does not contain the elements du〈j〉, j = 1, . . . , s. Thus, we
have shown that Hk, computed according to (3.12) for k = 1, . . . , s+ 1 and
(3.13) for k = s+ 2, agrees with definition (3.9). �

Proof of Proposition 3.1

System (3.20) can be described in the form (2.11), where

p(z) = z3 −
(
a1 + c11u

++ + c12u
+ + c13u

)
z2−

−
(
a2 + c21u

++ + c22u
+ + c23u

)
z −

(
a3 + c31u

++ + c32u
+ + c33u

)
and

q(z) = −
(
b1 + c11y

++ + c21y
+ + c31y

)
z2−

−
(
b2 + c12y

++ + c22y
+ + c32y

)
z −

(
b3 + c13y

++ + c23y
+ + c33y

)
.

Next, two different cases will be considered separately.

Case 1: σ−ky, k ≥ 1 are the independent variables in the construction
of the inversive closure.
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According to Theorem 3.3, we have to check the integrability of all
subspaces Hk for k = 1, . . . , 4. By (2.4), whatever the i/o equation (2.1)
for n = 3,

H1 = spanK∗
{

dy,dy+,dy++,du,du+,du++
}

and

H2 = spanK∗
{

dy,dy+, dy++, du,du+
}
,

which are always integrable. Thus, compute H3 = spanK∗{dy,dy+,du, ω1},
where ω1 is given by (3.19) as follows

ω1 = σ−1
c

(
3∑
i=1

piz
i−1dy +

2∑
i=1

qiz
i−1du

)
= σ−1(p3)z2dy+

+ σ−1(p2)zdy + σ−1(p1)z0dy + σ−1(q2)zdu+ σ−1(q1)z0du. (A.4)

Since dy,dy+ and du are the basis vectors of the subspace H3, the
second, third and fifth terms can be eliminated from the right-hand side of
(A.4). Thus, after simplification we obtain H3 = spanK∗ {dy,dy+,du, ω̃1}
with

ω̃1 = dy++ − (b1 + c11y
+ + c21y + c31y

−)du+.

Now, it follows from Theorem 2.1 that H3 is completely integrable iff
dω̃1 ∧ ω̃1 ∧ dy ∧ dy+ ∧ du = 0 or alternatively, iff

c31dy− ∧ dy ∧ dy+ ∧ dy++ ∧ du ∧ du+ = 0. (A.5)

From the previous equation we get the condition forH3 to be integrable,
i.e.

c31 = 0. (A.6)

Next, we examine the integrability of H4 = spanK∗{dy, ω1, ω2} under
the condition (A.6), where ω1 and ω2 are given by (3.19) as follows

ω1 = σ−1(p3)z2dy + σ−1(p2)zdy + σ−1(p1)z0dy+

+ σ−1(q2)zdu+ σ−1(q1)z0du (A.7)

and

ω2 = σ−2(p3)zdy + σ−2(p2)z0dy + σ−2(q2)z0du. (A.8)

Start with ω1. Since dy is the element of the subspace H4, the term
σ−1(p1)z0dy can be eliminated from the expression of ω1. Thus, we obtain

ω̃1 = dy++ −
(
a1 + c11u

+ + c12u+ c13u
−) dy+−

−
(
b1 + c11y

+ + c21y
)

du+ −
(
b2 + c12y

+ + c22y + c32y
−) du. (A.9)
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Notice that we have chosen y− as the independent variable of the inver-
sive closure; therefore, we have to get rid of u− in (A.9). The latter can be
done by applying the backward-shift operator σ−1 to equation (3.20) once
and expressing u− from it via y− and the other variables

u− = −
(
b3 + c13y

+ + c23y + c33y
−)−1×

×
(
a1y

+ + a2y + a3y
− + b1u

+ + b2u+ c11u
+y++

+ c12uy
+ + c21u

+y + c22uy + c32uy
− − y++

)
. (A.10)

Finally, substituting (A.10) into (A.9), we get

˜̃ω1 = dy++ −
(
b2 + c12y

+ + c22y + c32y
−) du−

−
(
b1 + c11y

+ + c21y
)

du+−

−
(
a1 + c11u

+ + c12u−
c13

b3 + c13y+ + c23y + c33y−
×

×
(
a1y

+ + a2y + a3y
− + b1u

+ + b2u+ c11u
+y++

+ c12uy
+c21u

+y + c22uy + c32uy
− − y++

))
dy+.

Next, we continue with ω2 given by (A.8) that after simplification yields

ω̃2 = dy+ −
(
b1 + c11y

+ + c21y
)

du.

In order to guarantee the integrability of H4 = spanK∗{dy, ˜̃ω1, ω̃2}, the
following conditions have to be satisfied

d˜̃ω1 ∧ ˜̃ω1 ∧ ω̃2 ∧ dy = 0 (A.11)

and

dω̃2 ∧ ˜̃ω1 ∧ ω̃2 ∧ dy = 0. (A.12)

From (A.12) one gets

c21

(
b1 + c11y

+ + c21y
)

dy− ∧ dy ∧ dy+ ∧ du ∧ du++

+ c21dy− ∧ dy ∧ dy+ ∧ dy++ ∧ du = 0, (A.13)

yielding the condition

c21 = 0. (A.14)
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Taking into account (A.14), condition (A.11) takes the form(
c32 −

(
b3 + c13y

+ + c23y + c33y
−)−2

(b1 + c11y)c13

(
(a3 + c32u)×

×
(
b3 + c13y

+ + c23y + c33y
−)− c33

(
a1y

+ + a2y + a3y
−+

+ b1u
+ + b2u+ c11y

+u+ + c12y
+u+ c22yu+

+ c32y
−u− y++

)))
dy− ∧ dy ∧ dy+ ∧ dy++ ∧ du+

+
(
c32

(
b1 + c11y

+
)
−
(
b3 + c13y

+ + c23y + c33y
−)−2×

× c13(b1 + c11y)
(
b1 + c11y

+
) (

(a3 + c32u)
(
b3 + c13y

+ + c23y + c33y
−)−

− c33

(
a1y

+ + a2y + a3y
− + b1u

+ + b2u+ c11y
+u+ + c12y

+u+

+ c22yu+ c32y
−u− y++

)))
dy− ∧ dy ∧ dy+ ∧ du ∧ du+ = 0

(A.15)
that can be guaranteed in three different ways, either by

a3 = c32 = c33 = 0, (A.16)

or by
b1 = c11 = c32 = 0, (A.17)

or by
c13 = c32 = 0. (A.18)

Now, summarizing the above cases, we have:

• (A.6), (A.14) and (A.16);

• (A.6), (A.14) and (A.17);

• (A.6), (A.14) and (A.18)

that will yield the conditions (i), (ii) and (v) of Proposition 3.1, respectively.
These cases are presented schematically in Figure A.1. Any of these three
conditions will yield a realizable system.

Figure A.1 illustrates the basic steps of the proof of the first case. One
should read it from top to bottom. Above the dotted line we consider the
H3 subspace and the condition for its integrability obtained from equation
(A.5). Besides that, under the dotted line the subspace H4 is considered.
In order to find its integrability conditions and to simplify the subsequent
calculations, we change the order of the examined equations (A.11) and
(A.12), since equation (A.15) is more complex than (A.13) which in turn
already implies the condition (A.14). To conclude, passing successively
along all arrows from top to bottom and gathering together all obtained
conditions, one will get the complete necessary and sufficient conditions for
(3.20) to be realizable, for Case 1.
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a3 = c32 = c33 = 0 c13 = c32 = 0 b1 = c11 = c32 = 0

c21 = 0

(A.11)

c31 = 0

(A.12)

H3

H4

Figure A.1: Realizability conditions for Case 1

Case 2: σ−ku, k ≥ 1 are the independent variables in the construction
of the inversive closure.

In the same manner as in Case 1, we have to check the integrability of
Hk for k = 1, . . . , 4. Again, H1 and H2 are integrable by (2.4). Therefore,
compute H3 = spanK∗ {dy,dy+, du, ω1}, where ω1 can be calculated as in
(A.4), and replaced by the simplified one-form

ω̃1 = dy++ −
(
b1 + c11y

+ + c21y + c31y
−) du+. (A.19)

However, note that unlike in Case 1 we have chosen u− as the indepen-
dent variable, and therefore, we have to replace y− in (A.19) in terms of
independent variables. This can be done by applying backward-shift oper-
ator to equation (3.20) once and solving it with respect to y− via u− and
other independent variables as follows

y− = −
(
a3 + c31u

+ + c32u+ c33u
−)−1 (

a1y
+ + a2y+

+ b1u
+ + b2u+ b3u

− + c11y
+u+c12y

+u+ c13y
+u−+

+ c21yu
+ + c22yu+ c23yu

− − y++
)
. (A.20)

Substituting (A.20) into (A.19), we get

˜̃ω1 = dy++ −
(
b1 + c11y

+ + c21y −
c31

a3 + c31u+ + c32u+ c33u−
×

×
(
a1y

+ + a2y + b1u
+ + b2u+ b3u

− + c11y
+u++

+ c12y
+u+ c13y

+u− + c21yu
+ + c22yu+ c23yu

− − y++
))

du+.

Now, it follows from Theorem 2.1 that H3 = spanK∗
{

dy,dy+,du, ˜̃ω1

}
is

completely integrable iff d˜̃ω1∧ ˜̃ω1∧du∧dy∧dy+ = 0. The above condition
holds if either

b3 = c13 = c23 = c33 = 0 (A.21)
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or

c31 = 0. (A.22)

Next, we examine the integrability of H4 = spanK∗{dy, ω1, ω2} under
the conditions (A.21) and (A.22) separately since they will lead to different
basis vectors of the subspace H4.

Case 2.1: Condition (A.21) is satisfied.

Then, ω1 and ω2 are given by (A.7) and (A.8). Since u− is the inde-
pendent variable, y− has to be eliminated like in the computation of H3.
However, now the expression for y− will be simplified because of (A.21) as
follows

y− = −
(
a3 + c31u

+ + c32u
)−1 (

a1y
+ + a2y + b1u

+ + b2u+

+ c11y
+u+ + c12y

+u+ c21yu
+ + c22yu− y++

)
. (A.23)

Next, we substitute (A.23) into the expressions for ω1 and ω2, respec-
tively. In order to guarantee the integrability ofH4, the following conditions
have to be satisfied

dω1 ∧ ω1 ∧ ω2 ∧ dy = 0 (A.24)

and

dω2 ∧ ω1 ∧ ω2 ∧ dy = 0. (A.25)

One can check that (A.24) is always true, therefore we need only to
analyze the condition (A.25), which can be satisfied in two different ways,
either by

b2 = c12 = c22 = c32 = 0 (A.26)

or by

c31 = 0. (A.27)

Now, we can summarize the obtained conditions:

• (A.21) and (A.26);

• (A.21) and (A.27)

that will yield conditions (iii) and (iv) of Proposition 3.1, respectively.
These cases are presented schematically in Figure A.2. Any of these con-
ditions will yield a realizable system.

Case 2.2: Condition (A.22) is satisfied.

We omit the computations for this case, because they lead to already
known conditions (ii) and (v). �
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c31 = 0 b2 = c12 = c22 = c32 = 0

b3 = c13 = c23 = c33 = 0

(A.25)

H3

H4

Figure A.2: Realizability conditions for Case 2.1

Proof of Proposition 3.2

The proof of this proposition is based on the same technique as used in
the case n = 3 and is therefore omitted. Notice only that conditions (i),
(ii), (iii), (iv), (vi) and (ix) can be found if we choose σ−ky, k ≥ 1 as the
independent variables of the inversive closure and the main steps of the
proof are represented schematically in Figure A.3.

c13 = c21 = c24 =
= c32 = c43 = 0

b1 = c11 = c21 =
= c32 = c43 = 0

b2 = c12 = c22 =
= c32 = c43 = 0

a4 = c32 = c43 =
= c44 = 0

a3 = c21 = c32 =
= c33 = c34 = 0

c14 = c21 =
= c32 = 0

H5

c14 = c31 =
c42 = 0

b1 = c11 = c21 =
c31 = c42 = 0

a4 = c31 = c42 =
c43 = c44 = 0

H4

c41 = 0H3

Figure A.3: Realizability conditions: (i)-(iv), (vi) and (ix)

The choice σ−ku, k ≥ 1 as independent variables leads to the remaining
special cases as summarized in Figure A.4. �

Proof of Proposition 3.3

The result can be checked directly by eliminating the state vector x(t) from
the state equations, using for example the technique from [23]. However,
we illustrate the basic idea for the second-order system (3.22).

Applying the forward-shift operator σ to the output y(t) of the system
and replacing in it x1(t) by y(t), we get

y(t+ 1) = x1(t+ 1) = x2(t) + (a1 + c11u(t))y(t) + b1u(t). (A.28)
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b4 = c14 = c24 =
= c34 = c44 = 0

b2 = c12 = c22 =
= c32 = c42 = 0

b3 = c13 = c23 =
= c33 = c43 = 0

H5

b1 = c11 = c21 =
= c31 = c42 = 0

b3 = c13 = c23 =
= c33 = c43 = 0

c41 = 0

H4

c41 = 0
b4 = c14 = c24 =
= c34 = c44 = 0

H3

Figure A.4: Realizability conditions: (v), (vii), (viii)

Note that (A.28) can be solved for x2(t) in terms of the inputs and
outputs. Next, we apply σ to (A.28), yielding

y(t+ 2) = x2(t+ 1) + (a1 + c11u(t+ 1))y(t+ 1) + b1u(t+ 1) =

= (a2 + c22u(t))y(t) + b2u(t) + (a1 + c11u(t+ 1))y(t+ 1)+

+ b1u(t+ 1) + c12u(t)[x2(t) + (a1 + c11u(t))y(t) + b1u(t)],

and substitute x2(t) from (A.28) into it to get

y(t+ 2) = a1y(t+ 1) + a2y(t) + b1u(t+ 1) + b2u(t)+

+ c11u(t+ 1)y(t+ 1) + c12u(t)y(t+ 1) + c22u(t)y(t),

that coincides with (3.21) for n = 2.

Note that Proposition 3.3 can be proved in the alternative way. The
i/o equations (3.21) may be understood as the special case of the realizable
subclass

y(t+ n) = ϕ1(y(t+ p+ l), . . . , y(t+ n− 1), u(t+ l), . . . ,

u(t+ p+ l)) +
n−k−2∑
i=0

ϕn−k−i(y(t+ p+ i), . . . ,

y(t+ k + i+ 1), u(t+ i), . . . , u(t+ p+ i)), (A.29)

where k = 0, . . . , n − 1, p = 0, . . . , k, l = n − k − 1, given in [60]. Notice
that one may take in formula (A.29) parameters mentioned above to be
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k = n− 2, p = k, l = 1 and get

ϕ1(·) = a1y(t+ n− 1) +
n−1∑
i=1

(bi + y(t+ n− 1)c1i)u(t+ n− i),

ϕ2(·) = a2y(t+ n− 2) + bnu(t) + c1ny(t+ n− 1)u(t)+

+ y(t+ n− 2)
n∑
i=2

c2iu(t+ n− i),

in order to find the state-space representation for (3.21). �

Proof of Proposition 3.4

The proof of this proposition is based on the same technique as used for the
bilinear case and is therefore omitted. Just notice that conditions (i) and
(iii) can be found if we choose σ−ky, k ≥ 1 as the independent variables of
the inversive closure. The choice σ−ku, k ≥ 1 as the independent variables
leads to the remaining case (ii). �

Proof of Proposition 3.5

The proof of this proposition is based on the same technique as used for the
bilinear case and is therefore omitted. Notice that conditions (i)-(iii) and
(vi) can be found if we choose σ−ky, k ≥ 1 as the independent variables of
the inversive closure. The choice σ−ku, k ≥ 1 as the independent variables
leads to the remaining special cases. �

Proof of Theorem 3.6

The proof is based on the principle of mathematical induction. Throughout
the proof we assume that i, ν = 1, . . . , p and υ = 1, . . . ,m. First, we show
that for k = 1 the subspace, calculated according to (3.49), is equivalent to
the subspace H1 defined by (3.44). To show this take in (3.49) k = 1 that
yields

H1 = spanK

{
ωi,l, l = 1, . . . , ni, duυ, . . . ,du

(s)
υ

}
. (A.30)

In order to simplify the presentation note that the recursive formulas
(3.48) may be rewritten for l = 1, . . . , ni explicitly as

pi·,0(z) = zl · pi·,l(z) + Ξi·,l(z), deg Ξi·,l(z) < l,

qi·,0(z) = zl · qi·,l(z) + Γi·,l(z), deg Γi·,l(z) < l.
(A.31)

Suppose l = ni. According to (3.47), ωi,ni = pi·,ni(z)dy + qi·,ni(z)du.
Due to the structure of the i/o equations, deg(pii(z)) = ni and pii(z)
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is monic. Then, it follows from (A.31) that pii,ni(z) is a left quotient
of pii(z) and zni , i.e. pii,ni(z) = 1. Degrees of all other polynomials
{piν(z), i 6= ν, qi·(z)} are strictly less than ni meaning that the quotient
of any polynomial {piν(z), i 6= ν, qi·(z)} and zni is zero. Consequently,
ωi,ni = dyi. Next, take l = ni − 1 and compute ωi,ni−1. Now, it follows
from (A.31) that pii,ni−1(z) is a polynomial of the first degree. There-
fore, ωi,ni−1 = dẏi +

∑p
ν=1 αiνων,nν +

∑m
υ=1 βiυduυ with αiν , βiυ ∈ K. It

means that ωi,ni−1 is a linear combination of dẏi and the other elements
ων,nν , duυ from H1 given by (3.49). Thus, the basis element ωi,ni−1 of H1

may be replaced by the more simple one-form dẏi. Continuing in the simi-
lar manner, it is possible to show that the remaining basis one-forms ωi,l,
for l = 1, . . . , ni − 2, in (A.30) may be replaced by more simple ones. As a
result, the statement is true for k = 1 and (A.30) agrees with (3.44).

Assume now that formula (3.49) holds for r and we prove it to be valid
for r + 1. We have to prove that

Hr+1 = spanK

{
ωi,l, du, . . . ,du

(s−k)
}
, (A.32)

calculated according to formula (3.49), satisfies condition (3.44).
First, the one-forms ωi,l, du, . . ., du(s−r) are in Hr, since we have as-

sumed formula (3.49) to hold for r.
Second, we have to prove that the derivatives of the basis one-forms of

(A.32) belong to Hr. By (3.47), we have

ω̇i,l =
[
z · pi·,l(z) z · qi·,l(z)

] [dy
du

]
for l = 1, . . . , ni. Next, using relations (3.48), we get

ω̇i,l =
[
pi·,l−1(z)− ξi·,l qi·,l−1(z)− γi·,l

] [dy
du

]
or after reordering terms

ω̇i,l =
[
pi·,l−1(z) qi·,l−1(z)

] [dy
du

]
−
[
ξi·,l γi·,l

] [dy
du

]
. (A.33)

From (A.33) it follows that the one-form ω̇i,l is represented as a sum
of two terms. For the first term, we consider two separate cases. In case
l = 1 the first term yields pi·,0(z)dy + qi·,0(z)du = pi·(z)dy + qi·(z)du = 0
due to the polynomial system description (3.46). In case l = 2, . . . , ni, the
first term of (A.33) is equal to ωi,l−1 by (3.47) and, therefore, is in Hr.
The second term of (A.33) is a linear combination of dyi,duυ ∈ Hr, since
the elements of ξi·,l and γi·,l are functions from K. Consequently, ω̇i,l ∈ Hr
for l = 1, . . . , ni. Finally, we observe that the derivatives of the rest of the
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basis one-forms in (A.32) are du̇υ, . . . ,du
(s−r+1)
υ , which are also in Hr. It

should be mentioned that the subspace Hs+2 does not contain the elements
du(j), j = 1, . . . , s. Thus, we have shown that Hk, computed according to
(3.49) for k = 1, . . . , s + 1 and (3.50) for k = s + 2, agrees with definition
(3.44). �

Proof of Proposition 4.1

The proof is direct consequence from (4.3) yielding

R(z) = q−1
F (z)pF (z)p−1

G (z)qG(z). (A.34)

Alternatively, R(z) is described by the relationship

pR(z)du(t) = qR(z)dv(t), (A.35)

where pR(z) and qR(z) are defined by Ore condition (2.9), applied to (A.34).
Thus, the i/o equation of the compensator R can be obtained if the one-
form (A.35) is integrable. �

Proof of Proposition 4.2

By differentiating equations (4.4), (4.5) and using relations (2.10) and
zkdv = dv(t+ k), we get (4.1) with

pF (z) = znF −
nF−1∑
i=0

pFi z
i, pFi =

∂f1

∂y(t+ i)
,

qF (z) =

sF∑
j=0

qFj z
j , qFj =

∂f2

∂u(t+ j)

and (4.2) with

pG(z) = znG −
nG−1∑
i=0

pGi z
i, pGi =

∂g1

∂y(t+ i)
,

qG(z) =

sG∑
j=0

qGj z
j , qGj =

∂g2

∂v(t+ j)
,

respectively. Note that now in (A.35), pR(z) = β(z)qF (z) and qR(z) =
α(z)qG(z), where α(z), β(z) are polynomials defined by the left Ore condi-
tion as β(z)pF (z) = α(z)pG(z). According to condition (4.6), the previous
equality can be rewritten as β(z)γF (z)ρ(z) = α(z)γG(z)ρ(z) or β(z)γF (z) =
α(z)γG(z), where γF (z), γG(z) can be represented as γ(z) =

∑τ
i=0 γiz

τ−i,
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γi ∈ R. So, it follows that α(z) and β(z) are also polynomials with real
coefficients.

Next, relationship (A.35) can be rewritten as

β(z)qF (z)du(t) = α(z)qG(z)dv(t). (A.36)

Notice that the coefficients of the polynomials qF (z) and qG(z) do not
dependent on y(t) proving the exactness of the one-form (A.36). �

Proof of Proposition 4.3

Necessity : Assume that the proper transfer function R(z) of the compen-
sator R exists that solves the MMP. According to Definition 2.6, it means
that

deg pR(z) ≥ deg qR(z). (A.37)

Next, using the relation

G(z) = p−1
G (z)qG(z) = p−1

F (z)qF (z)p−1
R (z)qR(z) = F (z)R(z)

and condition (ii) of Proposition 2.3, we get

deg qG(z) = deg qF (z) + deg qR(z),

deg pG(z) = deg pF (z) + deg pR(z).
(A.38)

Substituting (A.38) into (A.37), we obtain

deg pG(z)− deg pF (z) ≥ deg qG(z)− deg qF (z)

or

deg pG(z)− deg qG(z) ≥ deg pF (z)− deg qF (z).

Finally, according to Definition 2.7

rel degG(z) = deg pG(z)− deg qG(z),

rel degF (z) = deg pF (z)− deg qF (z)

that yields (4.7).

Sufficiency : Assume that (4.7) holds. Since all the previous steps can be
done in the reverse order, we get that the transfer function R(z) is proper.
�
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Proof of Theorem 4.1

By (4.16),

G(z) = (1− F (z)Ry(z))
−1F (z)Rv(z).

Next, using (4.11), (4.14) and (4.15), G(z) may be rewritten in the form

G(z) =
(
1− p−1

F (z)qF (z)p−1
R (z)qRy(z)

)−1 (
p−1
F (z)qF (z)p−1

R (z)qRv(z)
)

or after multiplying the numerator and denominator by the expression
pR(z)q−1

F (z)pF (z) from the left

G(z) =
(
pR(z)q−1

F (z)pF (z)− qRy(z)
)−1

qRv(z).

Matching the latter to (4.12) results in

qG(z) = qRv(z), pG(z) = pR(z)q−1
F (z)pF (z)− qRy(z).

One may choose pR(z) to be γ(z)qF (z), yielding

pG(z) = γ(z)pF (z)− qRy(z).

Under Assumption 4.1, γ(z) and −qRy(z) may be interpreted as right
quotient and remainder of skew polynomials pG(z) and pF (z), respectively.
Thus, from given pG(z) and pF (z) one can, by the left division algorithm,
determine the infinitesimal description of the compensator

du(t) = Rv(z)dv(t) +Ry(z)dy(t),

written alternatively as

pR(z)du(t) = qRv(z)dv(t) + qRy(z)dy(t) (A.39)

with pG(z) = γ(z)pF (z)− qRy(z), pR(z) = γ(z)qF (z), qRv(z) = qG(z).

Unlike the case of feedforward solution, now the one-form (A.39) is
always integrable. Really, equation (A.39) can be rewritten as

γ(z)qF (z)du(t) = qG(z)dv(t) + (γ(z)pF (z)− pG(z))dy(t)

or

γ(z)(qF (z)du(t)− pF (z)dy(t)) = qG(z)dv(t)− pG(z)dy(t)

yielding that both one-forms qF (z)du(t) − pF (z)dy(t) and qG(z)dv(t) −
pG(z)dy(t) are exact. Finally, applying γ(z) to an exact one-form results
again in an exact one-form. �
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Proof of Proposition 4.4

Necessity : Assume that the transfer function R(z), representing the feed-
back compensator, is proper. According to Definition 2.6, it means that

deg pR(z) ≥ deg qRv(z).

Next, taking into account that pR(z) = γ(z)qF (z), qG(z) = qRv(z),
and using condition (ii) of Proposition 2.3, the previous equation can be
rewritten as

deg γ(z) + deg qF (z) ≥ deg qG(z).

After adding deg pF (z) to both sides and regrouping the terms we obtain

deg γ(z) + deg pF (z)− deg qG(z) ≥ deg pF (z)− deg qF (z).

Since pG(z) = γ(z)pF (z)− qRy(z) and deg qRy(z) = 0, we get

deg pG(z)− deg qG(z) ≥ deg pF (z)− deg qF (z).

Finally, according to Definition 2.7

rel degG(z) = deg pG(z)− deg qG(z),

rel degF (z) = deg pF (z)− deg qF (z)

that yields (4.17).
Sufficiency : The fact that all the steps in the necessity part of the proof

can be done in the reverse order proves the sufficiency.

Proof of Proposition 5.1

The proof is mainly based on the fact recalled in Theorem 5.1. From
Assumption 5.1 we know that v(t) is bounded, and using relation (5.5) we
can argue that y(t) is bounded too, i.e. y(t) ⊂ [a, b] and v(t) ⊂ [c, d]. Since
H(y(t), v(t)) : R2 → R is a continuous function, it remains to show that
H(·) is defined on a compact set. We know that [a, b] × [c, d] is compact
and the compactness is preserved by continuous function, then it follows
that the image H(y(t), v(t)) ⊆ H([a, b]× [c, d]) must also be compact. �

Proof of Theorem 5.4

Necessity : Suppose that the controlled system is bounded-input bounded-
output stable. Then the boundedness of the output y(t) is guaranteed by
the stable reference model (5.5) under Assumption 5.1. The remaining part
of the proof, i.e. the boundedness of the input u(t), relies on the algorithm
presented in Chapter 5 for the case of systems linearizable by dynamic
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output feedback. According to this algorithm, the latter is possible only
when v(t) ∈ Ω.

Sufficiency : Assume that v(t) 6∈ Ω. The latter means that the func-
tional series (5.11) does not converge, what in turn leads to the fact that
the function (5.7) describing the control signal u(t) becomes unbounded.
As a result, relying on Definition 5.4 we can conclude that the controlled
system is not bounded-input bounded-output stable. �

112



References

[1] S.A. Abramov, H.Q. Le, and Z. Li. Univariate Ore polynomial rings
in computer algebra. Journal of Mathematical Sciences, 131(5):5885–
5903, 2005.

[2] S.R. Anderson and V. Kadirkamanathan. Modelling and identifica-
tion of nonlinear deterministic systems in delta-domain. Automatica,
43:1859–1868, 2007.
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Kokkuvõte

Käesolevas väitekirjas on uuritud mittelineaarseid süsteeme kasutades
polünoommeetodeid. Töö esimeses ja teises peatükis on esitatud polünoom-
meetodite teoreetilised alused. Töö põhitulemused on esitatud peatükkides
3-6.

Peatükis 3 lahendatakse mittelineaarsete sisend-väljund süsteemide
olekuvõrrandite esitamise probleem, kasutades selleks diferentsiaalvormidel
ja mittekommutatiivsetesse ringidesse kuuluvatel polünoomidel baseeru-
vat algebralist formalismi. On tuletatud valemid, mis võimaldavad välja
kirjutada olekuvõrrandite diferentsiaalid otse süsteemi polünoomesitusest.
Probleemi on vaadeldud SISO võrrandite juhul, mis on defineeritud pseu-
dolineaarse operaatori teriminites. Antud lähenemine lubab üldistada ja
laiendada varem eraldi saadud tulemusi pidevaja- ja diskreetaja süsteemidele.
Samuti, on esitatud kolmandat ja neljandat järku bilineaarsete süsteemide
realiseeritavate struktuuride täisloend. Kõrgemat järku mudelite jaoks on
tuletatud uus realiseeritav alamklass. Lisaks on teist ja kolmandat järku
ruutmudelite jaoks leitud realiseeritavuse piisavad timgimused. Polünoom-
valemid on üldistatud MIMO süsteemide jaoks.

Peatükis 4 on uuritud mittelineaarsete SISO diskreetaja süsteemide
etaloonmudeliga juhtimist. On analüüsitud nii avatud kui ka suletud
süsteemide lahendeid. Probleemi uurimisel on kasutatud ülekande-
funktsioonide meetodit.

Peatükk 5 on pühendatud tagasisidega lineariseeritud mittelineaarsete
SISO diskreetaja süsteemide stabiilsuse analüüsile.

Töö viimane osa kirjeldab ülaltoodud teooreetiliste tulemuste rakendamist
tarkvarapaketis NLControl, mis on arendatud Mathematica keskkonna jaoks.
NLControl võimaldab lahendada mittelineaarsete juhtimissüsteemide mod-
ellerimise, analüüsi ja sünteesiga seotud ülesandeid.
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Abstract

The present work can be divided into several independent parts. The main
contributions are presented in Chapters 3-6. While the first three of them
are devoted to the purely theoretical results, the last one is written with a
practical orientation.

The algebraic approach based on the theory of differential one-forms
together with polynomial formalism are applied in Chapter 3 to realization
problem of nonlinear i/o equations in the classical state-space form. The
explicit formulas, which allows to write out the differentials of the state
equations directly from the polynomial description of the system, are pre-
sented. First, the problem is considered for the case of SISO equations,
defined in terms of the pseudo-linear operator, generalizing and extending
results obtained separately for the continuous- and discrete-time systems.
Second, the complete lists of realizable structures for the case of the third-
and fourth-order bilinear systems are given. In addition, the new realizable
subclass is constructed. Moreover, the sufficient realizability conditions
for the second- and third-order quadratic equations are derived. Third,
the applicability of the LPV tools for the realizability of nonlinear system
is analyzed on the basis of the second-order discrete-time bilinear equa-
tions. Finally, in the same manner as in the case of equations defined in
terms of pseudo-linear operator, the corresponding polynomial formulas for
the MIMO continuous-time systems are presented. Next, in Chapter 4 the
model matching problem of nonlinear SISO discrete-time systems is consid-
ered. Both feedforward and feedback solutions are analyzed. The problem
is studied within the transfer function approach. After that Chapter 5 is
devoted to the stability problem of nonlinear SISO discrete-time systems
linearized by output feedback. Both static and dynamic cases are studied.
Finally, Chapter 6 summarizes the results of the previous chapters linking
them together in the form of a practical implementation in the NLControl
package.
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Tallinna Ülikool 2006 matemaatika, B.Sc.,

cum laude
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novel taylor series based approach for control computation in NN-
ANARX structure based control of nonlinear systems. In The 27th
Chinese Control Conference, pages 474–478, Kunming, China,
July 2008.
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