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Introduction

There is a considerable interest on wave propagation through naturally occurring
media and man-made materials in view of widespread applications in acoustic sig-
nal transmissions, seismically induced motion, non-destructive evaluation, noise
control, subsurface exploration, etc. Due to the complex structure of such media,
wave propagation is accompanied by reflection, refraction, diffraction and scatter-
ing phenomena that are difficult to quantify. As a result, it becomes necessary to
introduce layering as well as position-dependent moduli in the mathematical de-
scription of these problems (Baganas, 2005).

Small-scale changes in a heterogeneous material’s microstructure can have ma-
jor effects in its macro-scale behavior. For example, alloying elements, nano-reinfor-
cements, and the crystalline structures of polymers all have profound effects on the
parental material’s macroscopic response (LaMattina, 2009).

Wave propagation in a homogenous medium is a well described phenomenon,
while the situation is much more complicated if the medium is inhomogeneous.
The effect of inhomogeneity manifest itself in slowing down of the propagation
and in the dispersion of a wave. To describe these effects, several modifications of
the wave equation are proposed for wave propagation in heterogeneous materials,
like the linear version of the Boussinesq equation, the Love-Rayleigh equation, the
Maxwell-Rayleigh model for anomalous dispersion (Maugin, 1995), and dispersive
wave equations following from homogenization or continuation procedure (San-
tosa and Symes, 1991; Maugin, 1999; Wang and Sun, 2002; Fish et al, 2002; Askes
and Metrikine, 2002; Engelbrecht and Pastrone, 2003; Metrikine, 2006; Askes et al.,
2008) and the general one-dimensional model based on the Mindlin theory of mi-
crostructure (Engelbrecht et al., 2005).

Another approach to the description of microstructural effects is provided by
internal variable theory (Berezovski, Engelbrecht and Maugin, 2009). In the frame-
work of the internal variable theory, a fully coupled system of equations for macro-
motion and microstructure evolution is represented in the form of conservation
laws.

However, solution of these equations is a not easy task due to their coupling
and the absence of natural boundary conditions for internal variable. In addition,
parameters of the microstructure model are needed to be determined in each partic-
ular case. The diagnostic numerical experiments are needed to compare results of
direct numerical calculations of wave propagation in a “comparison medium” with
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prescribed properties and corresponding results obtained for an effective medium
with the microstructure modeling.

The aim of the thesis is to construct, validate, and implement an efficient and
accurate computational method for the dynamic response of heterogeneous and
microstructured materials under an impact loading.

The modification of the wave-propagation algorithm (LeVeque, 2002a) is ap-
plied as a basic tool of numerical simulations due to its physical soundness, accu-
racy and thermodynamic consistency (Berezovski, Engelbrecht and Maugin, 2008).

This thesis is organized as follows: Governing equations are formulated in Sec-
tion 1. The numerical method of solution is introduced in Section 2. Periodic lam-
inates represent the simplest example of microstructure. Therefore, a special at-
tention is paid in Section 4 for wave propagation in periodic laminates, which can
be also considered as the “comparison medium” for a more complex microstruc-
ture. The geometry of laminates that comes from real experiments was applied
for the description of linear wave propagation in laminated composites. The in-
troduction of nonlinearity in Section 4 allows to reproduce the shock response in
laminated composites observed experimentally. Linear wave propagation in func-
tionally graded materials is considered in next Section. Final section presents the
implementation of the microstructure model in the wave propagation algorithm
and the comparison of the results of numerical simulations of a pulse propagation
performed by using the microstructure model and the results of the pulse propaga-
tion in a “comparison medium” with known heterogeneity properties.

The present thesis is based on seven academic papers, which are referred to in
the text as ”Publication I”, ”Publication II”, ”Publication III”, ”Publication IV”,
”Publication V” and ”Publication VI”:

Publication I
A.Berezovski, M.Berezovski and J.Engelbrecht
Numerical simulation of nonlinear elastic wave propagation in piecewise ho-
mogeneous media,
Mater. Sci. Eng A 2006, 418, 364-369.

Publication II
A. Berezovski, M. Berezovski, J. Engelbrecht, G.A. Maugin
Numerical simulation of waves and fronts in inhomogeneous solids,
in: Multi-Phase and Multi-Component Materials Under Dynamic Loading,
W.K. Nowacki and Han Zhao (Eds.) Inst. Fund. Technol. Res. Warsaw,
(EMMC-10 Conference proceedings), 2007, pp. 71-80.

Publication III
A. Berezovski, M. Berezovski, J. Engelbrecht
Waves in inhomogeneous solids,
in: Applied Wave Mathematics - Selected Topics in Solids, Fluids and Mathematical
Methods, E.Quak, T. Soomere (Eds.) Springer, 2009, pp. 55-81.

Publication IV
J. Engelbrecht, A. Berezovski, M. Berezovski
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Deformation wave in microstructured materials: theory and numerics,
in: Proceedings of the IUTAM Symposium on Recent advances of Acoustic
Wave in Solids, May 25-28, 2009, Taipei, Taiwan. (accepted)

Publication V
M. Berezovski, A. Berezovski, J. Engelbrecht
Numerical simulations of one-dimensional microstructure dynamics,
in: Proceedings of the 2nd International Symposium on Computational Me-
chanics (ISCM II), November 30 - December 3, 2009, Hong Kong - Macau.
(accepted)

Publication VI
M.Berezovski, A.Berezovski, J.Engelbrecht
Waves in materials with microstructure: numerical simulation,
Proc. Estonian Acad. Sci., 2010. (accepted)
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1. Governing equations
1.1 Elastic waves

Waves correspond to continuous variations of the states of material points repre-
senting a medium. In mechanics, the motion of waves is governed by the conser-
vation law for mass, accompanied by conservation laws for linear momentum and
energy. These conservation laws complemented by constitutive relations are the
basis of the theory of thermoelastic waves in solids (Achenbach, 1973; Graff, 1975;
Bedford and Drumheller, 1994; Billingham and King, 2000).

The law of conservation of mass asserts that the mass of a body is invariant
under motion, that is, it remains constant in every configuration. The equation of
mass conservation, often called the continuity equation in the reference configura-
tion can be written as:

dρ0

dt
= 0, (1.1)

where ρ0 is the density of a material, t is time.
The balance of linear momentum is a statement of Newton’s second law of mo-

tion, which relates the forces acting on a body to its acceleration:

ρ0
dvi

dt
−

∂σij

∂xj
= ρ fi. (1.2)

Here σij is the Cauchy stress tensor, v is the particle velocity, f is external body
force.

Conservation of angular momentum requires that the Cauchy stress is a sym-
metric tensor:

σij = σji. (1.3)

These equations are, however, not sufficient to describe the response of a body to a
given loading.

For a linear elastic solid it is assumed that the Cauchy stress is a linear function
of the infinitesimal strain. A material is said to be isotropic if its mechanical proper-
ties can be described without reference to direction. For an isotropic, linear elastic
material, the stress-strain law can be written as

σij = 2µε ij + λεkkδij. (1.4)

In the preceding equation the two material constants λ and µ are known as Lame’s
constants, δij is the Kronecker symbol, ε ij is the linearized strain tensor in the case
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of small deformation:

ε ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (1.5)

The equation of motion (1.2) in the small strain approximation in the absence of
body forces can be written in terms of displacements as

ρ0
∂2ui

∂t2 =
∂σij

∂xj
. (1.6)

Substitution for σij from Eq. (1.4) in the latter equation yields

ρ0
∂2ui

∂t2 = (λ + µ)
∂2uj

∂xi∂xj
+ µ

∂2ui

∂x2
j

. (1.7)

This equation is the starting point for study of elastic wave motion. However, in
numerical simulations it is more convenient to use the equation of motion in its
original form (1.2).

In one-dimensional case the displacement is a scalar function of coordinate x
and time t:

u = u(x, t). (1.8)

Corresponding strain and particle velocity are determined as partial derivatives of
this displacement:

ε(x, t) =
∂u
∂x

, v(x, t) =
∂u
∂t

. (1.9)

One-dimensional wave propagation in the linear elasticity is governed by the bal-
ance of linear momentum

ρ0(x)
∂v
∂t

− ∂σ

∂x
= 0, (1.10)

and the kinematic compatibility condition following from (1.9)

∂ε

∂t
=

∂v
∂x

. (1.11)

The two equations (1.10) and (1.11) contain three unknowns: v, σ and ε. The closure
of the system of equations (1.10) and (1.11) is achieved by a constitutive relation,
namely, by the stress-strain relation for each material. There are several possibilities
for choosing the stress-strain relation which should reflect the properties of the
material. The simplest way it to use a linear relationship (Hooke’s law)

σ = ρc2 ε, (1.12)

or a weakly nonlinear law (Ostrovsky and Johnson, 2001)

σ = ρc2 ε(1 + Nε), (1.13)
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where c is the longitudinal wave velocity and N is a parameter of nonlinearity.
More complicated cases of constitutive models are described, for example, by En-
gelbrecht (1997).

Up to now, wave propagation in a homogeneous medium was considered, which
is a well known phenomenon. The corresponding wave equation is the classical
example of hyperbolic partial differential equations in textbooks. However, the
situation is much more complicated if the medium is inhomogeneous.

Although materials fabrication has long been known, only in the last century
it was recognized that the properties of a given material might not be primarily
controlled by its chemical composition but rather by its microstructure. Materi-
als microstructures can feature vacancy/solute clusters, dislocations, twins, inter-
faces, precipitates, ferroelastic, electric, or magnetic domains, and grain structures,
characterized by their amount, size, shape, and spatial arrangement. These struc-
tural features usually have an intermediate mesoscopic length scale in the range
from nanometres to micrometres. The main objective of modern materials science
and engineering is to optimize microstructures for desired properties through ad-
vanced processing. However, our ability to characterize and predict quantitatively
microstructural evolution and hence to yield unambiguous processing-property re-
lationships is rather limited because of the extreme complexity of microstructures
and nonlinear interactions of their elements.

Among the other approaches, the material formulation of continuum mechanics
(Maugin, 1993) demonstrates explicitly the appearance of microstructural effects.
In this representation, the governing equation (the balance of material momentum)
can be represented as

∂P
∂t

− ∂b
∂x

= f int + f inh. (1.14)

Here the material momentum P, the material Eshelby stress b, the material inhomogene-
ity force f inh, and the material internal force f int defined by (Berezovski, Engelbrecht
and Maugin, 2009)

P := −ρ0utux, b := −
(
ρ0v2/2 − W + σε

)
, (1.15)

f inh :=
(

1
2

v2
)

∂ρ0

∂x
− ∂W

∂x

∣∣∣∣
expl

, f int := σuxx −
∂W
∂x

∣∣∣∣
impl

, (1.16)

where W is the free energy, the subscript notations expl and impl mean, respectively,
the derivative keeping the fields fixed (and thus extracting the explicit dependence
on x), and taking the derivative only through the fields present in the function.

In order to represent these forces explicitly, the general one-dimensional model
based on the Mindlin theory of microstructure (Engelbrecht et al., 2005) is applied.
This gives us an excellent possibility to describe main effects most transparently.
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1.2 Microstructure modelling

Suppose that the microstructure model is characterized by a quadratic free energy
dependence including two internal variables φ, ψ and their space derivatives (Bere-
zovski, Engelbrecht and Maugin, 2009)

W =
ρ0c2

2
u2

x + Aφux +
1
2

Bφ2 +
1
2

Cφ2
x +

1
2

Dψ2, (1.17)

where c is the elastic wave speed, A, B, C, and D are material parameters.
For simplicity, only the contribution of the second internal variable itself is con-

sidered. In this case, the macrostress σ and microstresses η and ζ are calculated as
follows:

σ =
∂W
∂ux

= ρ0c2ux + Aφ, η = − ∂W
∂φx

= −Cφx, ζ = − ∂W
∂ψx

= 0, (1.18)

and the expression for the interactive internal force τ is

τ = −∂W
∂φ

= −Aux − Bφ. (1.19)

The derivative of the free energy with respect to the dual internal variable ψ gives

ξ = −∂W
∂ψ

= −Dψ. (1.20)

Evolution equations for internal variables can be represented as (Berezovski, En-
gelbrecht and Maugin, 2009)

φ̇ = −RDψ, ψ̇ = −R(τ − ηx), (1.21)

where R is an appropriate constant. Time differentiation of Eq. (1.21)1 and the evo-
lution equation for the dual internal variable (1.21)2 lead to the hyperbolic equation
for the primary internal variable

φ̈ = R2D(τ − ηx). (1.22)

This allows us to represent the equations of motion both for macro- and microstruc-
ture in the form, which includes only primary internal variable

utt = c2uxx +
A
ρ0

φx, (1.23)

Iφtt = Cφxx − Aux − Bφ, (1.24)

where I = 1/(R2D).
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In terms of stresses introduced by Eq.(1.18), the same system of equations is
represented as

ρ0
∂2u
∂t2 =

∂σ

∂x
, (1.25)

I
∂2φ

∂t2 = −∂η

∂x
+ τ. (1.26)

It is worth to note that the same equations are derived in Engelbrecht, Cermelli and
Pastrone (1999) based on different considerations.

The system of equations (1.23) and (1.24) can be also represented in the form of
single wave equation (Berezovski, Engelbrecht and Maugin, 2009)

utt = c2uxx +
C
B
(
utt − c2uxx

)
xx −

I
B
(
utt − c2uxx

)
tt −

A2

ρ0B
uxx. (1.27)

More particular cases of the dispersive wave equation can be found in papers by
Santosa and Symes (1991); Maugin (1995, 1999); Wang and Sun (2002); Fish et al
(2002); Askes and Metrikine (2002); Engelbrecht and Pastrone (2003); Metrikine
(2006); Askes et al. (2008). The problem of wave propagation in heterogeneous and
microstructured media has different aspects. From physical point of view, the prob-
lem consists in the understanding of dispersive wave behavior; from mathematical
point of view, the consistent mathematical model is needed to be developed; nu-
merical aspect concerns to how to solve the equations with necessary efficiency and
accuracy.
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2. Numerical method
2.1 Wave-propagation algorithm

Many numerical methods have been proposed to compute wave propagation in
heterogeneous solids (cf. Kampanis, Ekaterinaris and Dougalis (2008)). Standard
methods cannot give high accuracy near discontinuities in the material parameters
and will often fail completely in problems where the parameters vary drastically on
the grid scale. By contrast, solving the Riemann problem at each cell interface prop-
erly resolves the solution into waves, taking into account of every discontinuity in
parameters, and automatically handling the reflection and transmission of waves at
each interface. This is crucial in representing the correct macroscopic behavior. As
a result, Riemann-solver methods are quite natural for application. Moreover, the
methods are extended easily from linear to nonlinear problems. Exposition of such
methods and pointers to a rich literature can be found in many sources (Godlewski
and Raviart, 1996; Guinot, 2003; LeVeque, 2002a; Toro, 1997, 2001).

The general idea is the following. Division of a body into a finite number of
computational cells requires the description of all fields inside the cells as well
as the interaction between neighboring cells. Approximation of wanted fields in-
side the cells leads to the discontinuities of the fields at the boundaries between
cells. This also leads to the appearance of excess quantities, which represent the
difference between exact and approximate values of the fields. Interaction between
neighboring cells is described by means of fluxes at the boundaries of the cells.
These fluxes can be calculated by means of jump relations at the boundaries be-
tween cells.

The system of equations (1.10) - (1.12) is a particular case of a conservation law

∂

∂t
q(x, t) +

∂

∂x
f (q(x, t)) = 0, (2.28)

where q(x, t) is the vector of variables and f (q(x, t)) is the numerical flux. In the
linear elastic case

q(x, t) =
(

ε
ρv

)
, and f (x, t) =

(
−v

−ρc2ε

)
. (2.29)

2.2 Averaged quantities

A computational grid of cells Cn = [xn, xn+1] with interfaces xn = n∆x and time
levels tk = k∆t can be introduced for the numerical solution. For simplicity, the
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grid size ∆x and time step ∆t are assumed to be constant. Integrating Eq. (2.28)
over Cn × [tk, tk+1] gives∫

∆x
q(x, tk+1)dx =

∫
∆x

q(x, tk)dx− (2.30)

−
(∫ tk+1

tk

f (q(xn+1, t))dt −
∫ tk+1

tk

f (q(xn, t))dt
)

.

Introducing the average q̄n of the exact solution on Cn at time t = tk and the nu-
merical flux f̄n that approximates the time average of the exact flux taken at the
interface between the cells Cn−1 and Cn, i.e.

q̄n ≈ 1
∆x

∫ xn+1

xn

q(x, tk)dx, f̄n ≈ 1
∆t

∫ tk+1

tk

f (q(xn, t))dt, (2.31)

Eq. (2.30) can be rewritten in the form of a numerical method in the flux-differencing
form (LeVeque, 2002a)

q̄k+1
n = q̄k

n −
∆t
∆x

( f̄ k
n+1 − f̄ k

n). (2.32)

In general, however, the time integrals cannot be evaluated in the right-hand side of
Eq. (2.30) exactly since q(xn, t) varies with time along each edge of the cell, and we
do not have the exact solution to work with. For fully-discrete method the average
flux based on the values q̄k should be approximated.

2.3 Excess quantities and numerical fluxes

The splitting of the body into a finite number of computational cells and averaging
all the fields over the cell volumes leads to a situation, which is known in ther-
modynamics as “endoreversible system” (Hoffmann, Burzler and Schubert, 1997).
This means that even if the state of each computational cell can be associated with
a corresponding local equilibrium state (and, therefore, temperature and entropy
can be defined as usual), the state of the whole body is a non-equilibrium one.
The computational cells interact with each other, which leads to the appearance of
excess quantities.

In the admitted non-equilibrium description (Muschik and Berezovski, 2004),
vector of variables is represented as the sum of averaged (local equilibrium) and
excess parts:

q = q̄ + Q (2.33)

Here q̄ is the averaged quantity and Q is the corresponding excess quantity. In the
linear case, we can rewrite Eq.(2.28) in the form:

∂

∂t
q(x, t) + M

∂

∂x
q(x, t) = 0, (2.34)
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where the matrix M represents a linear operator. For hyperbolic equations the ma-
trix M is diagonalizable. Integrating Eq. (2.34) over the computational cell gives:

∂

∂t

∫
∆x

qdx = M(q+ − q−) = M(q̄ + Q+ − q̄ − Q−) = M(Q+ − Q−), (2.35)

where superscripts ”+” and ”-” denote values of the quantities at right and left
boundaries of the cell, respectively. The definition of the averaged quantity

q̄ =
1

∆x

∫
∆x

qdx (2.36)

allow us rewrite the first-order Godunov-type scheme (2.32) in terms of excess
quantities

(q̄)k+1
n − (q̄)k

n =
∆t
∆x

(
MQ+

n − MQ−
n
)

, (2.37)

qn

qn-1

q

Q

Q

Figure 2.1: Continuity at the boundary of computational cells

Though the excess quantities are determined formally everywhere inside com-
putational cells, we need to know their values only at the boundaries of the cells,
where they play the role of numerical fluxes. To determine the values of excess
quantities at the boundaries between computational cells, we apply the jump rela-
tion (Berezovski and Maugin, 2005), which is reduced in the isothermal case to

[[q̄ + Q]] = 0. (2.38)

Here [[A]] = A+ − A−, and A± are the uniform limits of the field A in approaching
the boundary from its positive and negative sides, respectively. It should be noted
that jump conditions (2.38) can be considered as the continuity of genuine unknown
fields at the boundaries between computational cells, which is illustrated in Fig. 2.1.
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The values of excess quantities at the boundaries between computational cells
are not independent (Berezovski and Maugin, 2005). They are connected by Rie-
mann invariants in each particular case.

The representation the wave-propagation algorithm in terms of excess quanti-
ties given here is formally identical to the conservative form of the wave-propagation
algorithm (Bale et al., 2003).

2.4 Excess quantities at the boundaries between cells in lin-
ear elastic case

In the linear elastic case, both stress and velocity are represented as the sum of
averaged (local equilibrium) and excess parts:

σ = σ̄ + Σ, v = v̄ + V . (2.39)

Here σ̄ and v̄ are averaged fields and Σ and V are the corresponding excess quanti-
ties.

Therefore, the first-order Godunov-type scheme (Eq. 2.32) can be rewritten in
terms of excess quantities

(ρv̄)k+1
n − (ρv̄)k

n =
∆t
∆x

(
Σ+

n − Σ−
n
)

, (2.40)

ε̄k+1
n − ε̄k

n =
∆t
∆x

(
V+

n − V−
n
)

. (2.41)

Riemann invariants at the interface between computational cells show that the val-
ues of excess stresses and excess velocities are connected as (Berezovski, Engel-
brecht and Maugin, 2008)

ρncnV−
n + Σ−

n ≡ 0, (2.42)

ρn−1cn−1V+
n−1 − Σ+

n−1 ≡ 0, (2.43)

i.e., the excess quantities depend on each other at the cell boundary.
Rewriting the jump relations (2.39) in the numerical form

(Σ+)n−1 − (Σ−)n = (σ̄)n − (σ̄)n−1, (2.44)

(V+)n−1 − (V−)n = (v̄)n − (v̄)n−1, (2.45)

and using the dependence between excess quantities (Eqs. (2.42) and (2.43)), we
obtain then the system of linear equations for the determination of excess velocities

V+
n−1 − V−

n = v̄n − v̄n−1, (2.46)

V+
n−1ρn−1cn−1 + V−

n ρncn = ρnc2
n ε̄n − ρn−1c2

n−1 ε̄n−1. (2.47)

This system of equation can be solved exactly. Then the solution of the global prob-
lem can be updated on the next time step by means of Eqs. (2.40) and (2.41)

The algorithm is presented in more detail form in Publication III.
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3. Wave propagation in periodic
media
3.1 Linear wave propagation in periodic media

The simplest example of heterogeneous media is a periodic medium composed by
materials with different properties. As the first case, the propagation of a pulse
in a periodic medium composed by alternating layers of dissimilar materials is
considered.

Figure 3.2: Initial pulse shape

The initial pulse shape is presented in Fig. 3.2 where the periodic variation
in density is also schematically shown by dashed lines. The wavelength is equal
200∆x and the periodicity size equals 8∆x.

For the test problem, materials are chosen as polycarbonate (ρ = 1190 kg/m3,
c = 4000 m/s) and Al 6061 (ρ = 2703 kg/m3, c = 6149 m/s). Calculations are
performed with the Courant-Friedrichs-Levy number equal to 1. The typical result
of the simulation for 4000 time steps is shown in Fig. 3.3. A distortion of the pulse
shape and a decrease in the velocity of the pulse propagation in comparison of
the maximal longitudinal wave velocity in the materials is observed. These results
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Figure 3.3: Pulse shape at 4700 time step. Linear case

correspond to the prediction of the effective media theory by Santosa and Symes
(1991) both qualitatively and quantitatively (Fogarthy and LeVeque, 1999).

More detailed information is published in Publications II and III.
Numerical experiments confirm the dispersive behavior of waves in periodic

media with rapidly-varying properties.

3.2 Weakly nonlinear wave propagation in periodic media

In the next example, the influence of materials nonlinearity on the wave propa-
gation is examined. The simple nonlinear stress-strain relation is applied (cf. Os-
trovsky and Johnson (2001); Meurer, Qu and Jacobs (2002)) to close the system of
Eqs.(1.10) and (1.11) in the case of weakly nonlinear media

σ = ρc2 ε(1 + Nε), (3.48)

where N is a parameter of nonlinearity, values and sign of which are supposed to
be different for different material materials.

The solution method is almost the same as previously. The approximate Rie-
mann solver for the nonlinear elastic media (Eq.(3.48)) is similar to that used in
(LeVeque, 2002b; LeVeque and Yong, 2003). This means that a modified longitudi-
nal wave velocity, ĉ, following the nonlinear stress-strain relation (3.48) is applied
at each time step

ĉ = c
√

1 + 2Nε (3.49)

instead of the piece-wise constant one corresponding to the linear case.
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Figure 3.4: Pulse shape at 5200 time step. Nonlinear case

The same pulse shape and the same materials (polycarbonate and Al 6061) as
in the case of the linear periodic medium are considered. However, the nonlinear
effects appear only for a sufficiently high magnitude of loading. The values of the
parameter of nonlinearity N were chosen as 0.24 for Al 6061 and 0.8 for polycar-
bonate. The result of simulation corresponding to 5200 time steps is shown in Fig.
3.4.

One can observe that an initial bell-shaped pulse is transformed in a train of
soliton-like pulses propagating with amplitude-dependent speeds. Such kind of
behavior was first reported by LeVeque (2002b), who called these pulses as ”stego-
tons” because their shape is influenced by the periodicity.

In principle, the soliton-like solution could be expected because if we combine
the weak nonlinearity (3.48) with the dispersive wave equation in terms of the ef-
fective media theory, we arrive at the Boussinesq-type equation

∂2u
∂t2 = (c2 − c2

a)
∂2u
∂x2 + αN

∂u
∂x

∂2u
∂x2 + p2c2

ac2
b

∂4u
∂x4 , (3.50)

which possesses soliton-like solutions. Here u is the displacement, p is the period-
icity parameter, ca and cb are parameters of the effective media.

These results are published in Publication II and a more detailed analysis is
done in Publication III.

Numerical experiments were performed to examine the influence of weak non-
linearity of material on the wave propagation in periodic media and to confirm the
emergence of soliton-like wave propagation.
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4. Wave propagation in laminates
4.1 Linear wave propagation in laminates

There are three basic length scales in wave propagation phenomena:

• The typical wavelength λ;

• The typical size of the inhomogeneities d;

• The typical size of the whole inhomogeneity domain l.

In the case of infinite periodic media considered in Section 3, the third length scale
was absent. Therefore, it may be instructive to consider wave propagation in a
body where the periodic arrangement of layers of different materials is confined
within a finite spatial domain.

Figure 4.5: Length scales in laminate.

To investigate the influence of the size of the inhomogeneity domain, the shape
of the pulse in the homogeneous medium is compared with the corresponding
pulse transmitted through the periodic array with a different number of distinct
layers (Fig. 4.5).

Different materials Ti (ρ = 4510 kg/m3, c = 5020 m/s) and Al (ρ = 2703 kg/m3,
c = 5240 m/s) are used in the distinct layers in the numerical simulations of linear
elastic wave propagation. The stress pulse the width λ of which corresponds to
100△x (△x is the space step) is applied at the left boundary (Fig. 4.5),

ux(0, t) = (1 + cos(π(t − 50∆t)/50). (4.51)

and the resulting pulse is recorded at x = 4600△x. The location is indicated by
dashed line in Fig. 4.5.
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Figure 4.6: Pulse shape at fixed point of 4600 space steps. (d = 8△x, l = 1000△x)
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Figure 4.7: Pulse shape at fixed point of 4600 space steps. (d = 64△x, l = 1000△x)

24



The typical results are presented in Figs. 4.6 - 4.7 (solid lines). The reference
pulse calculated for homogeneous media is drawn by dashed line. We can observe
a strong dispersion of the pulse, i.e., the separation of the wave into components of
various frequencies (Fig. 4.7), if the wavelength is comparable with the size of inho-
mogeneity. This dispersion is not so strong if, vice versa, the size of inhomogeneity
d is less than the wavelength λ (Fig. 4.6).

These results are published in Publications II and III.
Thus, waves in laminates demonstrate dispersive behavior, which is governed

by relations between characteristic length scales. Taking into account nonlinear ef-
fects we have seen the soliton-like wave propagation (Section 3). Both nonlinearity
and dispersion effects are observed experimentally in laminates under shock load-
ing.

4.2 Nonlinear wave propagation in laminates under impact
loading

In heterogeneous media, scattering due to interfaces between dissimilar materials
plays an important role for shock wave dissipation and dispersion (Grady, 1998).

The influence of multiple reflections of internal interfaces on shock wave propa-
gation in the layered composites was clearly illustrated by the shock stress profiles
measured by manganin gages.

The geometry of the problem follows the experimental configuration (Zhuang,
Ravichandran and Grady, 2003) (Fig. 4.8). To analyze the influence of multiple

Figure 4.8: Geometry of the problem.

reflections of internal interfaces on shock wave propagation in the layered com-
posites, the initial-boundary value problem of impact loading of a heterogeneous
medium composed of alternating layers of two different materials is considered
(Berezovski et al., 2006). The impact is provided by a planar flyer of length f which
has an initial velocity v0. A buffer of the same material as the soft component of the
specimen is used to eliminate the effect of wave reflection at the stress-free surface.
Both left and right boundaries are stress-free.
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As previously, a nonlinear stress-strain relation σ(ε, x) for each material (3.48)
is applied (cf. Ostrovsky and Johnson (2001); Meurer, Qu and Jacobs (2002))

σ = ρc2 ε(1 + Nε), (4.52)

where N is a parameter of nonlinearity, values and signs of which are supposed to
be different for hard and soft materials. Results of numerical calculations depend
crucially on the choice of the parameter of nonlinearity N.
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Figure 4.9: Comparison of shock stress time histories corresponding to the experi-
ment 110501

Figure 4.9 shows the stress time histories in the composite, which consists of 16
units of polycarbonate, each 0.37 mm thick, and of 16 units of stainless steel, each
0.19 mm thick. The stress time histories correspond to the distance 3.44 mm from
the impact face. Calculations are performed for the flyer velocity 1043 m/s and the
flyer thickness 2.87 mm.

The nonlinear parameter N is chosen here to be 2.80 for polycarbonate and zero
for stainless steel. Additionally, the stress time history corresponding to the linear
elastic solution (i.e., nonlinear parameter N is zero for both components) is shown.
It can be seen, that the stress time history computed by means of the considered
nonlinear model is very close to the experimental one. It reproduces three main
peaks and decreases with distortion, as it is observed in the experiment by Zhuang,
Ravichandran and Grady (2003). As it can be seen, the agreement between results
of calculations and experiments is achieved by the adjustment of the nonlinear pa-
rameter N.

More detailed information and analysis are presented in Publication I, similar
results are published in Publications II and III.

Numerical simulations combining scattering effects induced by internal inter-
faces and physical nonlinearity reproduce the experimentally observed shock re-
sponse in laminates.
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5. Wave propagation in
functionally graded materials
Functionally graded materials (FGMs) are composed of two or more phases, that
are fabricated so that their compositions vary more or less continuously in some
spatial direction and are characterized by nonlinear gradients that result in graded
properties. Traditional composites are homogeneous mixtures, and therefore, they
involve a compromise between the desirable properties of the component materi-
als.

Studies of the evolution of stresses and displacements in FGMs subjected to a
quasistatic load (Suresh and Mortensen, 1998) show that the utilization of struc-
tures and geometry of a graded interface between two dissimilar layers can reduce
stresses significantly. Such an effect is also important in case of dynamical loading
where energy-absorbing applications are of special interest.

We consider the one-dimensional problem in elastodynamics for an FGM slab
in which material properties vary only in the thickness direction. It is assumed that
the slab is isotropic and inhomogeneous with the following fairly general proper-
ties (Chiu and Erdogan, 1999):

E(x) = E0

(
a

x
l
+ 1

)m
ρ(x) = ρ0

(
a

x
l
+ 1

)n
, (5.53)

where ρ is the mass density, l is the thickness, a, m, and n are arbitrary real constants
with a > −1, E0 and ρ0 are the elastic constant and the density at x = 0. It is
assumed that the slab is at rest for t ≤ 0. Following Chiu and Erdogan (1999), we
consider an FGM slab that consists of nickel and zirconia. The thickness of the slab
is l = 5 mm, on one surface the medium is pure nickel, on the other surface pure
zirconia, and the material properties E0(x) and ρ(x) vary smoothly in thickness
direction. A pressure pulse defined by

σxx(l, t) = σ0(H(t)− H(t − t0) (5.54)

Table 5.1: Properties of materials.
E (GPa) ν ρ (kg/m3)

ZrO 151 0.33 5331
Ni 207 0.31 8900
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is applied to the surface x = l and the boundary x=0 is ”fixed”. Here H is the
Heavyside function. The pulse duration is assumed to be t0 = 0.2 µs. The prop-
erties of the constituent materials used are given in Table 5.1 (Chiu and Erdogan,
1999).

The material parameters defined by equations (1) and (2) for the FGMs used
are Chiu and Erdogan (1999): a = −0.12354, m = −1.8866, and n = −3.8866. The
stress is calculated up to 12 µs (the propagation time of the plane wave through
the thickness l = 5 mm is approximately 0.77 µs in pure ZrO2 and 0.88 µs in Ni).
Comparison of the results of the numerical simulation and the analytical solu-
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Figure 5.10: Variation of stress with time in the middle of the slab.

tion by Chiu and Erdogan (1999) for the time dependence of the normalized stress
σxx/σ0 at the location x/l = 1/2 is shown in Fig. 5.10.

As one can see, it is difficult to make a distinction between analytical and nu-
merical results. This means that the applied algorithm is well suited for the simu-
lation of wave propagation in FGM.

These results are published in Publications II and III.
Functionally graded materials give examples of materials with non-periodic mi-

crostructures. Heterogeneous materials generally exhibit a random distribution of
phases according to specific statistical distributions. Microstructural modelling en-
ables us to extend the limits of continuum mechanics to lower scales where size
effects are expected.
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6. Wave propagation in media with
microstructure
6.1 Microstructure modelling

As mentioned in Section 1, the dispersive wave equation based on the Mindlin
theory of microstructure is presented in one dimension by Engelbrecht et al. (2005)

utt = c2uxx +
C
B
(
utt − c2uxx

)
xx −

I
B
(
utt − c2uxx

)
tt −

A2

ρ0B
uxx, (6.55)

where u is the displacement, c is the elastic wave speed, ρ0 is matter density, A, B, C,
and I are material coefficients; subscripts denote derivatives.

As shown in (Engelbrecht et al., 2005), Eq. (6.55) is equivalent to the system of
two equations of motion (Engelbrecht, Cermelli and Pastrone, 1999)

ρ0
∂2u
∂t2 =

∂σ

∂x
, (6.56)

I
∂2φ

∂t2 = −∂η

∂x
+ τ, (6.57)

where the macrostress σ, the microstress η, and the interactive force τ are defined
as derivatives of the free energy function

σ =
∂W
∂ux

, η = − ∂W
∂φx

, τ = −∂W
∂φ

, (6.58)

and the quadratic free energy dependence holds

W =
ρ0c2

2
u2

x + Aφux +
1
2

Bφ2 +
1
2

Cφ2
x +

1
2

Dψ2. (6.59)

Here c is the elastic wave speed, as before, A, B, C, and D are material parameters,
φ and ψ are dual internal variables (Ván, Berezovski, and Engelbrecht, 2008).

Due to the definitions (6.58) and (6.59), the equations of motion both for macroscale
and for microstructure can be represented in the form, which includes only primary
internal variable φ (Berezovski, Engelbrecht and Maugin, 2009)

utt = c2uxx +
A
ρ0

φx, (6.60)
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Iφtt = Cφxx − Aux − Bφ, (6.61)

where I = 1/(R2D) and R is an appropriate constant.
In terms of strain and particle velocity, Eq. (6.60) can be rewritten as

ρ0vt = ρ0c2εx + Aφx. (6.62)

The particle velocity and the strain are related by the compatibility condition

εt = vx. (6.63)

Similarly, introducing microvelocity w as follows:

φt = wx, (6.64)

which is the compatibility condition at the microlevel, it follows immediately from
Eqs. (6.61) and (6.64) that

Iwtx = Cφxx − Aε − Bφ. (6.65)

Integrating the latter equation over x, we arrive at (with the accuracy up to arbitrary
constant)

Iwt = Cφx −
∫
(Aε + Bφ)dx. (6.66)

Thus, we have two coupled systems of equations (6.62), (6.63) and (6.64), (6.66) for
the determination of four unknowns: ε, v, φ, and w.

To analyze the capabilities of the model and the role of material constants in the
microstructure model, it is needed to solve these systems of equations simultane-
ously. Numerical simulations are performed by means of a finite-volume numerical
scheme modifying the wave-propagation algorithm

(ρv̄)k+1
n − (ρv̄)k

n =
∆t
∆x

(
Σ+

n − Σ−
n
)
+ A

∆t
∆x

(
Φ+

n − Φ−
n
)

, (6.67)

ε̄k+1
n − ε̄k

n =
∆t
∆x

(
V+

n − V−
n
)

, (6.68)

φ̄k+1
n − φ̄k

n =
∆t
∆x

(
Ω+

n − Ω−
n
)

, (6.69)

(Iw̄)k+1
n − (Iw̄)k

n =
C∆t
∆x

(
Φ+

n − Φ−
n
)

, (6.70)

where n and k denote space and time steps, respectively, overbars denote averaged
quantities, which are introduced together with excess quantities both for macro-
and microfields as follows:

σ = σ̄ + Σ v = v̄ + V, φ = φ̄ + Φ, w = w̄ + Ω. (6.71)

Here Σ is the excess stress, V is the excess velocity, Φ is the excess microstress, and
Ω is the excess microvelocity, respectively.
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6.2 Results of numerical simulations

As a test problem, the one-dimensional propagation of a pulse is considered. The
case of “comparison medium” is analyzed first. In this case, the specimen is as-
sumed homogeneous except of a region of length d, where periodically alternating
homogeneous layers of size l are inserted (Fig. 6.11a).

Figure 6.11: Geometry of a test problem.

The density and longitudinal velocity in the specimen are chosen as ρ = 4510
kg/m3 and c = 5240 m/s, respectively. The corresponding parameters for the ma-
terial of the inhomogeneity layers are ρ1 = 2703 kg/m3 and c1 = 5020 m/s, re-
spectively. Initially, the specimen is at the rest. The shape of the pulse before the
crossing of the inhomogeneity region is formed by an excitation of the strain at the
left boundary for a limited time period (0 < t < 100∆t)

ux(0, t) = (1 + cos(π(t − 50∆t)/50). (6.72)

The arrow in Fig. 6.11 shows the direction of the pulse propagation. The pulse
holds its shape up to the entering into the inhomogeneity region. After the in-
teraction with the periodic multilayer, the single pulse is modified because of the
successive reflections at each interface between the alternating layers.

Alternatively, the same pulse propagation was simulated by the microstruc-
tured model (6.62) - (6.66) (Fig. 6.11b) with A = 5ρc2. The value of the internal
length for the microstructure is kept the same as the size l of periodic layer, as well
as density and sound velocity for inhomogeneities: I = ρ1, C = Ic2

1. The ratio of
scales d and λ together with the value of the parameter A determines the contribu-
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Figure 6.12: Leading transmitted pulses at the inhomogeneity size l = 8∆x.

tion of the microstructure to macromotion. For relatively long waves (in compari-
son to the size of inhomogeneity), the shape of the signal is changed slightly, and
results of the direct computations and microstructure modelling are in agreement
as it can be seen in Fig. 6.12.

However, if the length of the pulse (λ = 100∆x) is comparable with the size of
inhomogeneity (d = 128∆x), the obtained comparison is rather disappointing (Fig.
6.13). Moreover, as extensive numerical experiments show, it cannot be improved
by the variation of the values of microstructure parameters.

Therefore, we have to reconsider the microstructure model.

6.2.1 Microstructure model reconstruction

The characteristic property of the microstructure model is the quadratic form of the
free energy function (6.59)

W =
ρ0c2

2
u2

x + Aφux +
1
2

Bφ2 +
1
2

Cφ2
x +

1
2

Dψ2, (6.73)

which is assumed to be convex by default. Convexity requires that the matrix cor-
responding to this quadratic form

M =


ρ0c2 A 0 0

A B 0 0
0 0 C 0
0 0 0 D

 (6.74)
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Figure 6.13: Leading transmitted pulses at the inhomogeneity size l = 128∆x.

must be positive definite. The requirement of positive definiteness results in con-
ditions

ρ0 > 0, ρ0c2B − A2 > 0, C > 0, D > 0. (6.75)

However, the free energy in the laminated composite analyzed for the comparison
with a microstructured medium may be not necessarily convex, while it is convex
in each layer. This may be a source of the discrepancy in the results of numerical
simulations.

In order to study a more general situation, let us assume that the conditions
of convexity (6.75) are not fulfilled completely. Nevertheless, the microstructure
model should produce asymptotically stable solutions. In order to verify the generic
stability (cf. Ván (2009)), we return to the governing equations of the microstruc-
ture model

ρ0utt = ρ0c2uxx + Aφx, (6.76)

Iφtt = Cφxx − Aux − Bφ, (6.77)

and consider exponential plane-wave solutions of the form u = u0eΓt+ikx, φ =
φ0eΓt+ikx, where u0 and φ0 are constants. Introducing the latter into the system
of equations (6.76), (6.77), we get a system of linear equations for u0 and φ0{

ρ0u0Γ2 + ρ0c2u0k2 − Aφ0ik = 0,
Iφ0Γ2 + Cφ0k2 + Au0ik + Bφ0 = 0.

(6.78)
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The condition of existence of a non-trivial solution is the vanishing of the determi-
nant of this system of equations

(ρ0Γ2 + ρ0c2k2)(IΓ2 + Ck2 + B)− A2k2 = 0. (6.79)

The requiring asymptotic stability will be reached if Re Γ is non-positive. This is
equivalent to the non-positivity for Im Γ2.

Let Γ2 = x + iy. Then Eq. (6.79) can be represented in the sum of real and
imaginary parts

(ρ0x + ρ0c2k2)(Ix + Ck2 + B) + iρ0y(Ix + Ck2 + B)+

+ iIy(ρ0x + ρ0c2k2)− ρ0 Iy2 = A2k2.
(6.80)

The imaginary part should be zero yielding

(Ix + Ck2 + B) + I(x + c2k2) = 0. (6.81)

Therefore, the real part of Γ2 satisfies

2Ix = −Ck2 − B − Ic2k2. (6.82)

Inserting the value of the real part of Γ2 into the real part of Eq. (6.80)

(ρ0x + ρ0c2k2)(Ix + Ck2 + B)− ρ0 Iy2 = A2k2, (6.83)

we obtain the equation for determining of the imaginary part of Γ2

y2 = −(Ic2k2 + Ck2 + B)2/4I2 − A2k2/ρ0 I. (6.84)

As it was mentioned, the imaginary part of Γ2 should be negative. This is achieved
by the choice of the negative sign in the square-root of the right-hand side of Eq.
(6.84)

y = −
√
−(Ic2k2 + Ck2 + B)2/4I2 − A2k2/ρ0 I. (6.85)

Moreover, the imaginary part is a real number. Therefore, the right-hand side of
Eq. (6.84) must be non-negative

−(Ic2k2 + Ck2 + B)2/4I2 − A2k2/ρ0 I ≥ 0. (6.86)

Rewriting Eq. (6.86) in the form

−A2k2/ρ0 I ≥ (Ic2k2 + Ck2 + B)2/4I2, (6.87)

we see that the latter condition is satisfied only if I < 0.
The condition I < 0 is inconsistent with the requirements of convexity of the

free energy function and physically questionable. However, the inequality (6.87) is
violated for small wave numbers, where the previous pure convex model is valid.
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Considering the inequality (6.87) as a constrain for the values of microstructure
parameters, we can see that the conservation of hyperbolicity for the equation of
motion for microstructure (6.61) yields in the simultaneous negative sign for the
coefficient C. Summarizing, we conclude that asymptotically stable solutions are
provided for sufficiently large wave numbers by a microstructure model with a
(non-convex) free energy function

W =
ρ0c2

2
u2

x + Aφux +
1
2

Bφ2 − 1
2

Cφ2
x −

1
2

Dψ2, (6.88)

with C > 0 and D > 0.
Keeping the definitions of stresses, we have in this case

σ =
∂W
∂ux

= ρ0c2ux + Aφ, η = − ∂W
∂φx

= Cφx, ζ = − ∂W
∂ψx

= 0. (6.89)

The expression for the interactive internal force τ is not changed

τ = −∂W
∂φ

= −Aux − Bφ. (6.90)

The derivative of the free energy with respect to the dual internal variable gives

ξ = −∂W
∂ψ

= Dψ. (6.91)

Therefore, evolution equations for internal variables φ and ψ (1.21) can be rewritten
as

φ̇ = RDψ, ψ̇ = −R(τ − ηx), (6.92)

which leads to the hyperbolic equation for the primary internal variable

φ̈ = −R2D(τ − ηx). (6.93)

The latter allows us to represent the equations of motion both for macro- and mi-
crostructure in the form

utt = c2uxx +
A
ρ0

φx, (6.94)

Iφtt = Cφxx + Aux + Bφ, (6.95)

where I = 1/(R2D) > 0. Comparing with Eq. (6.77), we see the change of signs of
last two terms in the right-hand side.

In terms of strain and velocity, Eq. (6.94) is rewritten as

ρ0vt = ρ0c2εx + Aφx. (6.96)

The particle velocity and the strain are related by the compatibility condition

εt = vx, (6.97)
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which form the system of equations for these two variables, as before.
Similarly, introducing microvelocity w as follows:

wx := RDψ, (6.98)

and using Eq. (6.92), we have
φt = wx, (6.99)

which is the compatibility condition at micro-level.
It follows immediately from Eqs. (6.95) and (6.99) that

Iẇx = Cφxx + Aε + Bφ. (6.100)

Integrating the latter equation over x, we arrive at

Iwt = Cφx +
∫
(Aε + Bφ)dx. (6.101)

The latter equation differs from Eq. (6.66) only by the sign in the source term in the
right-hand side. Results of computations by using Eq. (6.101) instead of Eq. (6.66)

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000  4200  4400  4600  4800  5000

N
or

m
al

iz
ed

 s
tr

es
s

Space steps

Pulse in periodic medium
Pulse in medium with microstructure

Figure 6.14: Transmitted pulse at the inhomogeneity size l = 128∆x.

are shown in Fig. 6.14. As one can see, the reconstructed microstructure model is
capable of reproducing two leading transmitted pulses in the case of sufficiently
short waves (the length of the pulse and the size of inhomogeneity are compara-
ble). The second pulse is smaller than the reference one because of the absence of a
reflected trail in the case of the microstructure model.
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The coefficient A in the computed microstructure model may be conjectured as
related to the variation of the size of inhomogeneity. The corresponding value of
the coefficient B is determined by means of the shift of the location of the leading
pulse: B = A2/(ρc2(1 − α2)), where α is the value of the Courant number used in
the calculation.

Numerical results for various sizes of inhomogeneity are presented in Publica-
tion VI. The presented microstructure model looks like a promising variant of the
theory, complicated enough to describe various effects of microstructure influence.
However, results of numerical simulations show that model should be improved.
This manifests the role of numerical simulations in the verification of microstruc-
ture models.

First results of model validation are published in Publication IV, results of the
improved model are published in Publication V, a more detailed analysis is pub-
lished in Publication VI.
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7. Conclusions
The behavior of many materials of engineering interest (e.g., metals, alloys, gran-
ular materials, composites, liquid crystals, polycrystals) is often influenced by an
existing or emergent microstructure (e.g., phases in multiphase materials, phase
transitions, voids, microcracks, dislocation substructures, texture). In general, the
components of such a microstructure have different material properties, resulting
in a macroscopic material behavior like in highly anisotropic and inhomogeneous
materials.

In dynamic problems, the role of the scale effects is significant. When the wave-
length of a traveling signal is comparable with the characteristic size of hetero-
geneities, successive reflections and refractions of the local waves at the interfaces
lead to dispersion and attenuation of the global wave field.

The problem of wave propagation in heterogeneous and microstructured media
has different aspects. From the physical point of view, the problem consists in the
understanding of dispersive wave behavior; from the mathematical point of view,
the consistent mathematical model is needed; numerical aspect concerns to how to
solve the equations with necessary efficiency and accuracy.

The aim of the thesis was to construct, validate, and implement an efficient and
accurate computational method for the dynamic response of heterogeneous and
microstructured materials under an impact load. Wave propagation in periodic
media, laminates, functionally graded materials, and media with microstructure
were considered under one umbrella.

A modification of the wave-propagation algorithm is applied as a basic tool of
numerical simulations due to its physical soundness, accuracy and thermodynamic
consistency.

The results of this thesis are:

1. The dispersive behavior of wave propagation in periodic media with rapidly-
varying properties is confirmed by numerical experiments.

2. The influence of weak nonlinearity of material on the wave propagation in
periodic media is examined. The emergence of soliton-like wave propagation
is confirmed.

3. The influence of the size of the inhomogeneity in laminates is investigated.
It is shown that if the size of inhomogeneity is comparable with wavelength,
the dispersive effect is much stronger than in the case when the size of inho-
mogeneity is less than the wavelength.
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4. The experimentally observed shock response in laminates is reproduced in
numerical simulation combining scattering effects induced by internal inter-
faces and physical nonlinearity.

5. Numerical simulation of wave propagation in functionally graded materials
is performed as the example of wave propagation in materials with a non-
periodic microstructure.

6. The wave-propagation algorithm for numerical simulation of wave propaga-
tion in microstructured media is constructed.

7. The Mindlin-type model is applied for numerical simulation of wave propa-
gation in microstructured media. It is shown that this model is valid for long
waves (in comparison to the size of microstructure).

8. The comparison of results for direct numerical simulation in given layered
media with the corresponding results obtained by microstructured model
leads to the model reconstruction in the case of short waves. It is shown
that the reconstructed model is capable of reproducing the wave propagation
in microstructured media in the short wave case (the length of the pulse and
the size of inhomogeneity are comparable).

Two main points must be stressed. First, the interaction forces between macro-
and microstructures are explicitly determined and reflected in the governing equa-
tions by dispersive terms. Second, the wave propagation algorithm, elaborated
and used for simulation, is a powerful tool for solving the complicated behavior
of microstructured solids under dynamical loads. It allows to analyze functionally
graded materials and periodically structured laminates from a unified viewpoint
and to determine the physical effects with suitable accuracy.

Future studies will be focused in the extension of computations on two-dimen-
sional case and the implementation of front tracking procedure.
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Abstract

The aim of the thesis is to construct, validate, and implement an efficient and ac-
curate computational method for the dynamic response of heterogeneous and mi-
crostructured materials under an impact load. A modification of the finite vol-
ume wave propagation algorithm is used for numerical calculations. A selection of
one-dimensional wave propagation problems is presented, the simulation of which
exploits the designed numerical scheme. The selection of exemplary problems in-
cludes (i) wave propagation in periodic linear and weakly nonlinear media, (ii)
linear and nonlinear wave propagation in laminates under an impact load with
the comparison with available experimental data, (iii) wave propagation in func-
tionally graded materials, (iv) the comparison of wave propagation in media with
explicitly prescribed microstructure and in media with microstructure modeled by
internal variables. Main results of the thesis have been presented at seven interna-
tional conferences and published in papers of journals and proceedings indexed by
ISI Web of Science.

Kokkuvõte

Selle töö eesmärk on luua ning rakendada efektiivne ja täpne arvutusmeetod hete-
rogeensete ja mikrostruktuursete materjalide käitumise kirjeldamiseks dünaami-
listel koormustel. Numbriliseks simulatsiooniks on tuletatud modifitseeritud lõp-
like mahtude meetod. On lahendatud hulk lainelevi probleeme ühemõõtmelises
seades. Valitud probleemide hulk sisaldab (i) lainelevi perioodilises keskkonnas,
(ii) lainelevi lineaarses ja mittelineaarses kihilises keskkonnas löökkoormuse all,
(iii) lainelevi funktsionaalselt skaleeritud materjalides, (iv) lainelevi mikrostruk-
tuurses keskkonnas, mida võrreldakse sarnaste tulemustega pidevas keskkonnas
modelleeritud mikrostruktuuriga. Käesoleva töö tulemused on esitatud mitmel
rahvusvahelisel konverentsil ja avaldatud teadusartiklites rahvusvaheliselt tunnus-
tatud erialaajakirjades ja konverentsikogumikes, mis on indekseeritud ISI Web of
Science’i poolt.
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Fig. 5. Comparison of shock stress time histories corresponding to the experi-
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Table 1
Experimental conditions and values of the parameter of nonlinearity

Experiments Specimen soft/hard Units Flyer velocity (m/s) Flyer thickness (PC) (mm) Gage position (mm) A (PC) A (Other)

110501 PC37/SS19 16 1043 2.87 3.44 2.80 0
110502 PC37/SS19 16 1045 5.63 3.44 4.03 0
112301 PC37/GS20 16 1079 2.87 3.41 5.025 0
120201 PC74/GS55 7 563 2.87 3.37 3.04 0
120202 PC74/GS55 7 1056 2.87 3.35 5.53 0

Table 2
Normalized experimental conditions and nonlinearity parameters

Experiments Specimen soft/hard Normalized flyer energy Ě Relative impedance mismatch Ž Geometrical factor Ǧ A (PC) A
√

Ž

ĚǦ

110501 PC37/SS19 1.00 1.00 1.00 2.80 2.80
110502 PC37/SS19 1.97 1.00 1.00 4.03 2.87
112301 PC37/GS20 1.07 0.316 1.02 5.025 2.71
120201 PC74/GS55 0.29 0.316 1.226 3.04 2.87
120202 PC74/GS55 1.025 0.316

component material represents the layer thickness in hundredths
of a millimeter.

It appears that the application of the nonlinear model to only
soft material (polycarbonate) is sufficient to reproduce stress
profiles at the gage position about 3.4 mm; any hard material
can be treated as linear elastic one.

The comparison of the conditions of experiments 110501
and 110502 as well as 120201 and 120202 and the correspond-
ing values of the parameter of nonlinearity A demonstrates the
dependence of the parameter A on the impact energy. The in-
fluence of the impedance mismatch is clearly follows from the
results of simulations corresponding to experiments 110501 and
112301. The dependence on the number of layers is not clear:
the difference between the values of the nonlinear parameter
in the simulations of experiments 112301 and 120202 can be
attributed to the slightly different material properties of float
glass and D-263 glass. The effect of the thickness ratio of the
layers mentioned in [3] cannot be investigated on the basis of
the discussed experimental data, since the thickness ratio was
unchanged in the experiments [5].

Fig. 8. Comparison of shock stress time histories corresponding to the experi-
ment 120202 [5].
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Ǧ
. (6)
ults of calculations are given in Table 2. As one
e modified values of the parameter of nonlinearity



ering

deviate fro
3.5%.

The pos
of nonlinea
under diffe
ometry. Th
can be calc
one set of e

It shoul
for the sim
an approxi
deformatio
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Abstract: Dynamic response of inhomogeneous materials exhibits new
effects, which often do not exist in homogeneous media. It is quite natu-
ral that most of studies of wave and front propagation in inhomogeneous
materials are associated with numerical simulations. To develop a nu-
merical algorithm and to perform the numerical simulations of moving
fronts we need to formulate a kinetic law of progress relating the driving
force and the velocity of the discontinuity. The velocity of discontinuity
is determined by means of the non-equilibrium jump relations at the
front. The obtained numerical method generalizes the wave-propagation
algorithm to the case of moving discontinuities in thermoelastic solids.

Keywords: wave and front propagation, inhomogeneous solids, finite-
volume methods

1. Introduction

The understanding of the behavior of materials under very high strain rate loading
conditions is vital in many areas of civilian and military applications. So far, the
most practical structures/materials to absorb impact energy and resist impact
damage are designed in the form of layered composites. Other possibilities are
provided by functionally graded materials and shape memory alloys. In order to
characterize the dynamic behavior of materials under impact loading, diagnostic
experiments are usually carried out using a plate impact test configuration under
a one-dimensional strain state. The plate impact test serves the exact purpose of
characterizing materials under high-pressure dynamic loading, analogous to that
of uniaxial tensile tests under quasi-static loading conditions.
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Laminated composites

The major past work in studying wave profiles in alternating layered systems
using specifically the plate impact test configuration are summarized recently in
Chen and Chandra (2004); Chen et al. (2004). For almost all the experiments,
stress (or velocity) response have shown an oscillatory behavior in the pulse du-
ration segment. This behavior is conspicuously absent in homogeneous systems.
The oscillatory behavior about a mean value in the periodically layered systems
are consistently exhibited in the systematic experimental work by Zhuang et al.
(2003). As pointed out in Zhuang et al. (2003), stress wave propagation through
layered media made of isotropic materials provides an ideal model to investigate
the effect of heterogeneous materials under shock loading, because the length sca-
les, e.g., thickness of individual layers, and other measures of heterogeneity, e.g.,
impedance mismatch, are well defined. The origin of the observed structure of the
stress waves was attributed to material heterogeneity at the interfaces. For high
velocity impact loading conditions, it was fully realized that material nonlinear
effects may play a key role in altering the basic structure of the shock wave.

Shape memory alloys

A polycrystalline shape memory alloy body subjected to external impact
loading will experience deformations that will propagate along the SMA bo-
dy as stress waves. The experimental investigation concerning impact-induced
austenite-martensite phase transformations was reported by Escobar and Clifton
(1993). In their experiments, Escobar and Clifton used thin plate-like specimens of
Cu-14.44Al-4.19Ni shape-memory alloy single crystal. One face of this austenitic
specimen was subjected to an oblique impact loading, generating both shear and
compression. As Escobar and Clifton noted, measured velocity profiles provide se-
veral indications of the existence of a propagating phase boundary, in particular,
a difference between the measured particle velocity and the transverse component
of the projectile velocity. This velocity difference, in the absence of any eviden-
ce of plastic deformation, is indicative of a stress induced phase transformation
that propagates into the crystals from the impact face. The determination of this
velocity difference is most difficult from the theoretical point of view, because it
depends on the velocity of the moving phase boundary.
In this paper, wave and front propagation is simulated numerically in a one-

dimensional case. The propagation is modeled by the one-dimensional hyperbolic
system of conservation laws

ρ
∂v

∂t
=
∂σ

∂x

∂ε

∂t
=
∂v

∂x
(1.1)

where ρ is the mass density, ε is the strain, and v the particle velocity.
The densities of the materials may be different, and the materials response to

compression is characterized by the distinct stress-strain relations σ(ε). To close
the system of Eqs. (1.1), the stress-strain relation for each material can be chosen
as linear

σ = ρc2ε (1.2)

or weakly nonlinear
σ = ρc2ε(1 +Aε) (1.3)
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where c is the longitudinal wave velocity and A is a parameter of nonlinearity, va-
lues and sign of which are supposed to be different for hard and soft materials. Due
to rapidly varying properties, we apply the finite-volume wave-propagation algo-
rithm in its conservative form (Bale et al., 2003) to solve the system of equations
(1.1)-(1.2) (or (1.3)). At the moving phase boundary the algorithm is extended
as described in Berezovski and Maugin (2005a).

The paper is organized as follows. In the next Section we repeat the classical
results for linear wave propagation in periodic media. Then we examine the effect
of weak nonlinearity on the material response. The introduction of the nonline-
arity allows us to reproduce the shock response in laminated composites observed
experimentally. Linear and nonlinear wave propagation in functionally graded ma-
terials is considered in the Section 5. Another type of nonlinearity affects the front
propagation in shape memory alloys under impact. This nonlinearity is connected
to the motion of the phase front.

2. One-dimensional linear waves in periodic media

As the first example, we consider the propagation of a pulse in a periodic
medium composed by alternating layers of dissimilar materials. The initial
pulse shape is presented in Figure 1 where the periodic variation in densi-
ty (normalized by its maximal value) is also schematically shown by dashed
lines. Clearly, the wavelength is much larger than the periodicity scale. For
the test problem, materials are chosen as polycarbonate (ρ = 1190kg/m3,
c = 4000m/s) and Al 6061 (ρ = 2703kg/m3, c = 6149m/s). Calculations are
performed with Courant-Friedrichs-Levy number equal to 1. The result of simula-
tion for 4000 time steps is shown in Figure 2. We observe a distortion of the pulse
shape and a decrease in the velocity of the pulse propagation in comparison of the
maximal longitudinal wave velocity in the materials. These results correspond to
the prediction of the effective media theory by Santosa and Symes (1991) both
qualitatively and quantitatively (Fogarthy and LeVeque, 1999).

Figure 1. Initial pulse shape
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Figure 2. Pulse shape at 4700 time step. Linear case

3. One-dimensional weakly nonlinear waves in periodic media

In the next example, we will see the influence of material nonlinearity on the wave
propagation. The approximate Riemann solver for the nonlinear elastic media
(Eq. (1.3)) is similar to that used in LeVeque (2002). This means that a modified
longitudinal wave velocity, c1, following the nonlinear stress-strain relation (1.3)
is applied at each time step

c1 = c
√
1 + 2Aε (3.1)

instead of the piece-wise constant one corresponding to the linear case. We consi-
der the same pulse shape and the same materials (polycarbonate and Al 6061) as
in the case of the linear periodic medium. However, the nonlinear effects appear
only for a sufficiently high magnitude of loading. The values of the parameter of
nonlinearity A were chosen as 0.24 for Al 6061 and 0.8 for polycarbonate. The
results of simulations corresponding to 5200 time steps are shown in Figure 3.

Figure 3. Pulse shape at 5200 time step. Nonlinear case

We observe that an initial bell-shaped pulse is transformed in a train of soliton-
like pulses propagating with amplitude-dependent speeds. Such kind of behavior
was first reported in LeVeque (2002), who called these pulses as ”stegotons” be-
cause their shape is influenced by the periodicity.
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4. Nonlinear elastic wave in laminates under impact loading

To analyze the influence of multiple reflections of internal interfaces on shock wave
propagation in the layered composites, we consider the initial-boundary value
problem of impact loading of a heterogeneous medium composed of alternating
layers of two different materials (Berezovski et al., 2006). The impact is provided
by a planar flyer which has an initial velocity v0. A buffer of the same material
as the soft component of the specimen is used to eliminate the effect of wave
reflection at the stress-free surface. Both left and right boundaries are stress-free.
As previously, we apply a nonlinear stress-strain relation σ(ε, x) for each material
(1.3) (cf. Meurer et al., 2002). Results of numerical calculations depend crucially
on the choice of the parameter of nonlinearity A. We choose this parameter from
the conditions to match the numerical simulations to experimental results (see
discussion in Berezovski et al., 2006).

Figure 4. Comparison of shock stress time histories corresponding to the experiment
110501 by Zhuang et al. (2003)

Figure 4 shows the stress time histories in the composite, which consists of
16 units of polycarbonate, each 0.37mm thick, and of 16 units of stainless steel,
each 0.19mm thick. The stress time histories correspond to the distance 3.44mm
from the impact face. Calculations are performed for the flyer velocity 1043m/s
and the flyer thickness 2.87mm.

The nonlinear parameter A is chosen here to be 2.80 for polycarbonate and
zero for stainless steel. Additionally, the stress time history corresponding to the
linear elastic solution (i.e., nonlinear parameter A is zero for both components)
is shown. One can see that the stress time history computed by means of the
considered nonlinear model is very close to the experimental one. It reproduces
three main peaks and decreases with distortion, as it is observed in the expe-
riment by Zhuang et al. (2003). As one can see, the agreement between results
of calculations and experiments is achieved by the adjustment of the nonlinear
parameter A.
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5. Waves in functionally graded materials

Studies of the evolution of stresses and displacements in FGMs subjected to quasi-
static loading (Suresh and Mortensen, 1998) show that the utilization of structures
and geometry of a graded interface between two dissimilar layers can reduce stres-
ses significantly. Such an effect is also important in the case of dynamical loading
where energy-absorbing applications are of special interest. Following Chiu and
Erdogan (1999), we consider the one-dimensional problem in elastodynamics for
an FGM slab in which material properties vary only in the thickness direction.
It is assumed that the slab is isotropic and inhomogeneous with the following

fairly general properties:

E(x) = E0
(
a
x

l
+ 1
)m

ρ(x) = ρ0
(
a
x

l
+ 1
)n

(5.1)

where l is the thickness, a, m, and n are arbitrary real constants with a > −1,
E0 and ρ0 are the elastic constant and density at x = 0. It is assumed that the
slab is at rest for t < 0. Following Chiu and Erdogan (1999), we consider an FGM
slab that consists of nickel and zirconia. The thickness of the slab is l = 5mm,
on one surface the medium is pure nickel, on the other surface pure zirconia, and
the material properties E(x) and ρ(x) vary smoothly in thickness direction. A
pressure pulse defined by

σ(l, t) = σ0(H(t) −H(t− t0)) (5.2)

is applied to the surface x = l and the boundary x = 0 is ”fixed”. Here H is the
Heavyside function. The pulse duration is assumed to be t0 = 0.2μs. The pro-
perties of the constituent materials used are given in Table 1 (Chiu and Erdogan,
1999). The material parameters for the FGMs used are (Chiu and Erdogan, 1999):
a = −0.12354, m = −1.8866, and n = −3.8866. The stress is calculated up to
12μs (the propagation time of the plane wave through the thickness l = 5mm is
approximately 0.77μs in pure ZrO2 and 0.88μs in Ni).

Table 1. Properties of materials

Property Value Unit Material

Density 5331 kg/m3 ZrO2
8900 Ni

Young modulus 151 GPa ZrO2
207 Ni

Poisson’s ratio 0.33 ZrO2
0.31 Ni

Numerical simulations were performed by means of the same algorithm as
above. Comparison of the results of the numerical simulation and the analytical
solution Chiu and Erdogan (1999) for the time dependence of the normalized
stress σ/σ0 at the location x/l = 1/2 is shown in Figure 5. As one can see, it is
difficult to make a distinction between analytical and numerical results.
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Figure 5. Variation of stress with time in the middle of the slab

Variation of stress in nonlinear case for same materials with the nonlinearity
parameter A = 0.19 is shown in Figure 6. The amplitude amplification and pulse
shape distortion in comparison with linear case is clearly observed. In addition,
velocity of a pulse in nonlinear material is increased.

Figure 6. Variation of stress with time in the middle of the slab

6. Phase-transition fronts

In the case of phase-transition front propagation, we consider the boundary value
problem of the tensile loading of a 1-D shape memory alloy bar that has uniform
cross-sectional area and temperature. The bar occupies the interval 0 < x < L
in a reference configuration and the boundary x = 0 is subjected to the tensile
loading. The bar is assumed to be long compared to its diameter so it is under
a uniaxial stress state and the stress σ(x, t) depends only on the axial position
and time. The density of the material ρ is assumed constant. All field variables
are averaged over the cross-section of the bar.
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At each instant t during a process, the strain ε(x, t) varies smoothly within
the bar except at phase boundaries; across a phase boundary, it suffers jump
discontinuity. Away from a phase boundary, balance of linear momentum and
kinematic compatibility require the satisfaction of equations (1.1). Suppose that
at time t there is a moving discontinuity in strain or particle velocity at x = Σ(t).
Then one also has the corresponding jump conditions (cf. Abeyaratne et al., 2001)

ρVΣ[v] + [σ] = 0 VΣ[ε] + [v] = 0 (6.1)

where VΣ is the velocity of the phase-transition front and square brackets denote
jumps.
The entropy inequality and the corresponding jump relation read

θ
∂S

∂t
+
∂q

∂x
� 0 VΣθ[S] = VΣfΣ (6.2)

where the driving traction fΣ(t) at the discontinuity is defined by (cf. Truskino-
vsky, 1987; Abeyaratne and Knowles, 1990)

fΣ = −[W ] + 〈σ〉[ε] (6.3)

W is the free energy per unit volume, θ is temperature, S is entropy, and q is
heat flux. If fΣ is not zero, the sign of VΣ, and hence the direction of motion of
discontinuity, is determined by the sign of fΣ.
Applying the satisfaction of the non-equilibrium jump relation at the phase

boundary we obtain the value of the stress jump at the phase boundary (Berezo-
vski and Maugin, 2005b). Having the value of the stress jump, we can determine
the material velocity at the moving phase boundary by means of the jump relation
for linear momentum (6.1) rewritten in terms of averaged quantities because of the
continuity of excess quantities at the phase boundary (Berezovski and Maugin,
2005a).

Figure 7. Particle velocity versus impact velocity

To compare the results of modeling with experimental data by Escobar and
Clifton (1993), the calculations of the particle velocity were performed for different
impact velocities. The results of the comparison are given in Figure 7. As a result,
we can see that the computed particle velocity is practically independent of the
impact velocity.
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7. Conclusions

As we have seen, linear and non-linear wave propagation in media with rapidly-
varying properties as well as in functionally graded materials can be successful-
ly simulated by means of the modified wave-propagation algorithm (Berezovski
and Maugin, 2001). The applied algorithm is conservative, stable up to Courant
number equal to 1, high-order accurate, and thermodynamically consistent. To
apply the algorithm to moving singularities, we simply should change the non-
equilibrium jump relation for true inhomogeneities to another non-equilibrium
jump relation valid for quasi-inhomogeneities.
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Abstract The paper aims at presenting a numerical technique used in simulating the
propagation of waves in inhomogeneous elastic solids. The basic governing equa-
tions are solved by means of a finite-volume scheme that is faithful, accurate, and
conservative. Furthermore, this scheme is compatible with thermodynamics through
the identification of the notions of numerical fluxes (a notion from numerics) and
of excess quantities (a notion from irreversible thermodynamics). A selection of
one-dimensional wave propagation problems is presented, the simulation of which
exploits the designed numerical scheme. This selection of exemplary problems in-
cludes (i) waves in periodic media for weakly nonlinear waves with a typical forma-
tion of a wave train, (ii) linear waves in laminates with the competition of different
length scales, (iii) nonlinear waves in laminates under an impact loading with a
comparison with available experimental data, and (iv) waves in functionally graded
materials.

1 Introduction

Waves correspond to continuous variations of the states of material points represent-
ing a medium. The characteristic feature of waves is their motion. In mechanics the
motion of waves is governed by the conservation laws for mass, linear momentum,
and energy. These conservation laws, complemented by constitutive relations, are
the basis of the theory of thermoelastic waves in solids [1, 3, 9, 19].

Inhomogeneous solids include layered and randomly reinforced composites,
multiphase and polycrystalline alloys, functionally graded materials, ceramics and
polymers with certain microstructure, etc. Therefore, it is impossible to present a
complete theory of linear and nonlinear wave propagation for the full diversity of
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possible situations, in so far as geometry, contrast of multiphase properties and load-
ing conditions are concerned.

From a practical point of view, we need to perform numerical calculations. Many
numerical methods have been proposed to compute wave propagation in heteroge-
neous solids, among them, the stiffness matrix recursive algorithm [33, 38] and the
spectral layer element method [10, 11] should be mentioned, in addition to more
common finite-element, finite-difference, and finite-volume methods.

Here the general idea is the following: division of a body into a finite number
of computational cells requires the description of all fields inside the cells as well
as the interaction between neighboring cells. Approximation of wanted fields in-
side the cells leads to discontinuities of the fields at the boundaries between cells.
This also leads to the appearance of excess quantities, which represent the differ-
ence between the exact and approximate values of the fields. Interaction between
neighboring cells is described by means of fluxes at the boundaries of the cells.
These fluxes correspond to the excess quantities and, therefore, can be calculated by
means of jump relations at the boundaries between cells.

In this paper, we demonstrate how the finite-volume wave-propagation algorithm
developed in [27] can be reformulated in terms of the excess quantities and then
applied to the wave propagation in inhomogeneous solids. Both original and mod-
ified algorithms are stable, high-order accurate, thermodynamically consistent, and
applicable both to linear and nonlinear waves.

1.1 Governing equations

The simplest example of heterogeneous media is a periodic medium composed by
materials with different properties. One-dimensional wave propagation in the frame-
work of linear elasticity is governed by the conservation of linear momentum [1]

ρ(x)
∂v
∂ t

− ∂σ
∂x

= 0, (1)

and the kinematic compatibility condition

∂ε
∂ t

=
∂v
∂x

. (2)

Here t is time, x is the space variable, the particle velocity v = ut is the time deriva-
tive of the displacement u, the one-dimensional strain ε = ux is the space derivative
of the displacement, σ is the Cauchy stress, and ρ is the material density. The com-
patibility condition (2) follows immediately from the definitions of the strain and
the particle velocity.

The two equations (1) and (2) contain three unknowns: v,σ and ε .
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The closure of the system of equations (1) and (2) is achieved by a constitutive
relation, which in the simplest case is Hooke’s law

σ = ρ(x)c2(x)ε, (3)

where c(x) =
√

(λ (x)+2μ(x))/ρ(x) is the corresponding longitudinal wave ve-
locity, and λ (x) and μ(x) are the so-called Lamé coefficients. The indicated explicit
dependence on the point x means that the medium is materially inhomogeneous.

The system of equations (1)–(3) can be expressed in the form of a conservation
law

∂
∂ t

q(x, t)+
∂
∂x

f (q(x, t)) = 0, (4)

with

q(x, t) =
(

ε
ρv

)
and f (x, t) =

(
−v

−ρc2ε

)
. (5)

In the linear case, equation (4) can be rewritten in the form

∂
∂ t

q(x, t)+A
∂
∂x

q(x, t) = 0, (6)

where the matrix A is given by

A =
(

0 −1/ρ
−ρc2 0

)
. (7)

We will solve the system of equations (1)–(3) numerically. Although a numerical so-
lution can be difficult with standard methods, high-resolution finite volume methods
based on solving Riemann problems have been found to perform very well on linear
hyperbolic systems modeling wave propagation in rapidly-varying heterogeneous
media [16].

2 The wave-propagation algorithm

Standard methods cannot give high accuracy near discontinuities in the material
parameters and will often fail completely in problems where the parameters vary
drastically on the grid scale. By contrast, solving the Riemann problem at each cell
interface properly resolves the solution into waves, taking into account every discon-
tinuity in the parameters, and automatically handling the reflection and transmission
of waves at each interface. This is crucial in developing the correct macroscopic be-
havior. As a result, Riemann-solver methods are quite natural for this application.
Moreover, the methods extend easily from linear to nonlinear problems. Exposi-
tions of such methods and pointers to the rich literature base can be found in many
sources [17, 20, 27, 36, 37].
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2.1 Averaged quantities

Let us introduce a computational grid of cells Cn = [xn−1/2,xn+1/2] with interfaces
xn−1/2 = (n−1)/2Δx and time levels tk = kΔ t. For simplicity, the grid size Δx and
time step Δ t are assumed to be constant. Integrating equation (4) over Cn × [tk, tk+1]
gives ∫ xn+1/2

xn−1/2

q(x, tk+1)dx =
∫ xn+1/2

xn−1/2

q(x, tk)dx− (8)

−
(∫ tk+1

tk
f (q(xn+1/2, t))dt −

∫ tk+1

tk
f (q(xn−1/2, t))dt

)
.

Introducing the average Qn of the exact solution on Cn at time t = tk and the numeri-
cal flux Fn that approximates the time average of the exact flux taken at the interface
between the cells Cn−1 and Cn, i.e.

Qn ≈
1

Δx

∫ xn+1/2

xn−1/2

q(x, tk)dx, Fn ≈
1

Δ t

∫ tk+1

tk
f (q(xn−1/2, t))dt, (9)

we can rewrite equation (8) in the form of a numerical method in the flux-differen-
cing form

Qk+1
n = Qk

n −
Δ t
Δx

(Fk
n+1 −Fk

n ). (10)

In general, however, we cannot evaluate the time integrals on the right-hand side
of equation (8) exactly, since q(xn±1/2, t) varies with time along each edge of the
cell, and we do not have the exact solution to work with. If we can approximate this
average flux based on the values Qk, then we will have a fully-discrete method.

2.2 Numerical fluxes

Numerical fluxes are determined by means of the solution of the Riemann problem
at interfaces between cells. The solution of the Riemann problem (at the interface
between cells n−1 and n) consists of two waves, which we denote, following [27],
WI

n and WII
n . The left-going wave WI

n moves into cell n− 1, and the right-going
wave WII

n moves into cell n. The state between the two waves must be continuous
across the interface (Rankine-Hugoniot condition) [27]:

WI
n +WII

n = Qn −Qn−1. (11)

In the linear case, the considered waves are determined by eigenvectors of the matrix
A [27]:

WI
n = γ I

nrI
n−1, WII

n = γ II
n rII

n . (12)
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This means that equation (11) is represented as

γ I
nrI

n−1 + γ II
n rII

n = Qn −Qn−1. (13)

Considering the definition of eigenvectors Ar = λ r, we see that the eigenvector

rI =
(

1
ρc

)
(14)

corresponds to the eigenvalue λ I =−c (left-going wave). Similarly, the eigenvector

rII =
(

1
−ρc

)
(15)

corresponds to the eigenvalue λ II = c (right-going wave). Substituting the eigenvec-
tors into equation (13), we have

γ I
n

(
1

ρn−1cn−1

)
+ γ II

n

(
1

−ρncn

)
= Qn −Qn−1, (16)

or, more explicitly,(
1 1

ρn−1cn−1 −ρncn

)(
γ I

n
γ II

n

)
=

(
ε̄n − ε̄n−1

ρ v̄n −ρ v̄n−1

)
. (17)

Solving the system of linear equations (17), we obtain the amplitudes of the left-
going and right-going waves. Then the numerical fluxes in the Godunov-type nu-
merical scheme are determined as follows:

Fk
n+1 = −λ I

n+1W
I
n+1 = −cn+1γ I

n+1rI
n, (18)

Fk
n = λ II

n WII
n = −cnγ II

n rII
n . (19)

Finally, the Godunov-type scheme is expressed in the form

Qk+1
n = Qk

n +
Δ t
Δx

(
cn+1γ I

n+1rI
n − cnγ II

n rII
n

)
. (20)

This is the standard form for the wave-propagation algorithm [27].
Within the wave-propagation algorithm, every discontinuity in parameters is

taken into account by solving the Riemann problem at each interface between dis-
crete elements. The reflection and transmission of waves at each interface are han-
dled automatically for the considered inhomogeneous media.
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2.3 Second-order corrections

The scheme considered above is formally first-order accurate only. To increase the
order of accuracy, we rewrite the numerical scheme as

Qk+1
n = Qk

n +Δ up
n − Δ t

Δx
(F̃k

n+1 − F̃k
n ), (21)

where Δ up
n equals the upwind flux (or Godunov flux) obtained from equation (20).

The term F̃n is used to update the solution so that second order accuracy is
achieved. The flux for the second-order Lax-Wendroff scheme may be written as
the Godunov flux plus a correction [27],

Fn =
1
2

A(Qn +Qn−1)−
Δ t

2Δx
A(Qn −Qn+1) = FG

n +
1
2
|A|

(
1− Δ t

Δx
|A|

)
ΔQn, (22)

where |A| = A+ −A−. Hence, a natural choice for F̃ is

F̃n =
1
2
|A|

(
1− Δ t

Δx
|A|

)
ΔQn =

1
2 ∑

p
|λ p|

(
1− Δ t

Δx
|λ p|

)
Wp

n . (23)

The Godunov-type scheme exhibits strong numerical dissipation, and discontinu-
ities in the solution are smeared, causing low accuracy. The Lax-Wendroff scheme,
on the other hand, is more accurate in smooth parts of the solution. However, near
discontinuities, numerical dispersion generates oscillations, also reducing the accu-
racy. A successful approach to suppress these oscillations is to apply flux limiters
[16, 23, 24, 25].

2.4 The conservative wave propagation algorithm

For the conservative wave-propagation algorithm [2], the solution of the generalized
Riemann problem is obtained by using the decomposition of the flux difference
fn(Qn)− fn−1(Qn−1) instead of the decomposition (11):

LI
n +LII

n = fn(Qn)− fn−1(Qn−1). (24)

The waves LI and LII are still proportional to the eigenvectors of the matrix A

LI
n = β I

nrI
n−1, LII

n = β II
n rII

n , (25)

and the corresponding numerical scheme has the form

Ql+1
n −Ql

n = −Δ t
Δx

(
LII

n +LI
n+1

)
. (26)
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The coefficients β I and β II are determined from the solution of the system of linear
equations (

1 1
ρn−1cn−1 −ρncn

)(
β I

n
β II

n

)
=

(
−(v̄n − v̄n−1)

−(ρc2ε̄n −ρc2ε̄n−1)

)
. (27)

As it is shown in [2], the obtained algorithm is conservative and second-order accu-
rate on smooth solutions.

3 Excess quantities and numerical fluxes

We could simply apply the numerical scheme described in the previous sections to
simulate the wave propagation in periodic media. However, the splitting of the body
into a finite number of computational cells and averaging all the fields over the cell
volumes leads to a situation known in thermodynamics as “endoreversible system”
[22]. This means that even if the state of each computational cell can be associated
with a corresponding local equilibrium state (and, therefore, temperature and en-
tropy can be defined as usual), the state of the whole body is a non-equilibrium one.
The computational cells interact with each other, which leads to the appearance of
excess quantities.

In the admitted non-equilibrium description [32], both stress and velocity are
represented as the sum of the averaged (local equilibrium) and excess parts:

σ = σ̄ +Σ , v = v̄+V. (28)

Here σ̄ and v̄ are averaged fields and Σ and V are the corresponding excess quanti-
ties.

Therefore, we rewrite a first-order Godunov-type scheme (10) in terms of the
excess quantities

(ρ v̄)k+1
n − (ρ v̄)k

n =
Δ t
Δx

(
Σ+

n −Σ−
n

)
, (29)

ε̄k+1
n − ε̄k

n =
Δ t
Δx

(
V+

n −V−
n

)
. (30)

Here an overbar denotes averaged quantities, a superscript k denotes a time step, a
subscript n denotes the number of the computational cell, while Δ t and Δx are time
step and space step, respectively.

Though excess quantities are determined formally everywhere inside computa-
tional cells, we need to know only their values at the boundaries of the cells, where
they play the role of numerical fluxes. To determine the values of the excess quan-
tities at the boundaries between computational cells, we apply the jump relation for
the linear momentum [6], which is reduced in the isothermal case to

[σ̄ +Σ ] = 0. (31)
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Similarly, the jump relation following from the kinematic compatibility (2) reads

[v̄+V] = 0. (32)

It should be noted that the two last jump conditions can be considered as the con-
tinuity of genuine unknown fields at the boundaries between computational cells,
which is illustrated in Fig. 1.

Fig. 1 Stresses in the bulk.

The values of the excess stresses and excess velocities at the boundaries between
computational cells are not independent [8]. Considering Riemann invariants at the
interface between computational cells, one can see that

ρncnV
−
n +Σ−

n ≡ 0, (33)

ρn−1cn−1V
+
n−1 −Σ+

n−1 ≡ 0, (34)

i.e., the excess quantities depend on each other at the cell boundary.

3.1 Excess quantities at the boundaries between cells

Rewriting the jump relations (31), (32) in the form

(Σ+)n−1 − (Σ−)n = (σ̄)n − (σ̄)n−1, (35)

(V+)n−1 − (V−)n = (v̄)n − (v̄)n−1, (36)

and using the dependence between excess quantities (equations (33) and (34)),
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we obtain then the system of linear equations for the determination of the excess
velocities

V+
n−1 −V−

n = v̄n − v̄n−1, (37)

V+
n−1ρn−1cn−1 +V−

n ρncn = ρnc2
nε̄n −ρn−1c2

n−1ε̄n−1. (38)

In matrix notation the latter system of equations has the form(
1 1

ρn−1cn−1 −ρncn

)(
−V+

n−1
V−

n

)
=

(
−(v̄n − v̄n−1)

−(ρc2ε̄n −ρc2ε̄n−1)

)
. (39)

Comparing the obtained equation with equation (30), we conclude that

β I
n = −V+

n−1, β II
n = V−

n . (40)

This means that the excess quantities following from non-equilibrium jump relations
at the boundary between computational cells correspond to the numerical fluxes in
the conservative wave-propagation algorithm.

The representation of the wave-propagation algorithm in terms of the excess
quantities given here is formally identical to its conservative form [2]. The advan-
tage of the new representation manifests itself at discontinuities, for which jump
relations cannot be reduced to the continuity of true values, e.g., at phase-transition
fronts or cracks.

4 One-dimensional waves in periodic media

As the first example, we consider the propagation of a pulse in a periodic medium.
The initial form of the pulse is given in Fig. 2, where the periodic variation in density
is also shown by dashed lines. For the test problem, the materials are chosen as
polycarbonate (ρ = 1190 kg/m3, c = 4000 m/s) and Al 6061 (ρ = 2703 kg/m3,
c = 6149 m/s).

We apply the numerical scheme (29) and (30) for the solution of the system of
equations (1)–(3). The corresponding excess quantities are calculated by means of
equations (35)–(38).

As it was noted, we can exploit all the advantages of the wave-propagation al-
gorithm, including second-order corrections and transversal propagation terms [24].
However, no limiters are used in the calculations. Suppressing spurious oscillations
is achieved by means of using a first-order Godunov step after each three second-
order Lax-Wendroff steps. This idea of composition was invented in [29].

Calculations are performed with Courant-Friedrichs-Levy number equal to 1.
The simulation result for 4000 time steps is shown in Fig. 3.

We observe a distortion of the pulse shape and a decrease in the velocity of the
pulse propagation in comparison to the maximal longitudinal wave velocity in the
materials. These results correspond to the prediction of the effective media theory
[34] both qualitatively and quantitatively [16].
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Fig. 2 Initial pulse shape. Reproduced from [5].

Fig. 3 Pulse shape at time step 4000. Reproduced from [5].

It should be noted that the effective media theory [34] leads to the dispersive
wave equation

∂ 2u
∂ t2 = (c2 − c2

a)
∂ 2u
∂x2 + p2c2

ac2
b

∂ 4u
∂x4 , (41)

where u is the displacement, p is the periodicity parameter, and ca and cb are pa-
rameters of the effective media [15], instead of the wave equation following from
equations (1)–(3)
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∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (42)

Equation (41) exhibits both dispersion (fourth-order space derivative) and the alter-
ation in the longitudinal wave speed.

5 One-dimensional weakly nonlinear waves in periodic media

In the next example, we will see the influence of the materials’ nonlinearity on the
wave propagation. To close the system of equations (1) and (2) in the case of weakly
nonlinear media we apply a simple nonlinear stress-strain relation

σ = ρc2 ε(1+Bε), (43)

where B is a parameter of nonlinearity, the values and sign of which are supposed
to be different for hard and soft materials.

Fig. 4 Pulse shape at time step 400. Nonlinear case.

The solution method is almost the same as before. The approximate Riemann
solver for the nonlinear elastic media (equation (43)) is similar to that used in [26,
28]. A modified longitudinal wave velocity ĉ, following the nonlinear stress-strain
relation (43), is applied at each time step in the numerical scheme (29) and (30):

ĉ = c
√

1+2Bε (44)

instead of the piecewise constant one corresponding to the linear case.
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We consider the same pulse shape and the same materials (polycarbonate and Al
6061) as in the case of the linear periodic medium. However, the nonlinear effects
appear only for a sufficiently high magnitude of loading. The values of the parameter
of nonlinearity B were chosen as 0.24 for Al 6061 and 0.8 for polycarbonate.

The results of the simulations corresponding to 400, 1600, and 5200 time steps
are shown in Figs. 4–6.

Fig. 5 Pulse shape at time step 1600. Nonlinear case.

Fig. 6 Pulse shape at time step 5200. Nonlinear case. Reproduced from [5].
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We observe that an initial bell-shaped pulse is transformed into a train of soliton-
like pulses propagating with amplitude-dependent speeds. Such kind of behavior
was first reported in [26], where these pulses were called “stegotons” because their
shape is influenced by the periodicity.

In principle, the soliton-like solution could be expected because if we combine
the weak nonlinearity (43) with the dispersive wave equation in terms of the effec-
tive media theory (41), we arrive at the Boussinesq-type equation

∂ 2u
∂ t2 = (c2 − c2

a)
∂ 2u
∂x2 +αB

∂u
∂x

∂ 2u
∂x2 + p2c2

ac2
b

∂ 4u
∂x4 , (45)

which possesses soliton-like solutions.

6 One-dimensional linear waves in laminates

There are three basic length scales in wave propagation phenomena:

– the typical wavelength λ ;
– the typical size of the inhomogeneities d;
– the typical size of the whole inhomogeneity domain l.

In the case of infinite periodic media considered above the third length scale
was absent. Therefore, it may be instructive to consider wave propagation in a body
where the periodic arrangement of layers of different materials is confined within a
finite spatial domain.

Fig. 7 Length scales in laminate.

To investigate the influence of the size of the inhomogeneity domain, we compare
the shape of the pulse in the homogeneous medium with the corresponding pulse
transmitted through the periodic array with a different number of distinct layers
(Fig. 7).

We use Ti (ρ = 4510 kg/m3, c = 5020 m/s) and Al (ρ = 2703 kg/m3, c = 5240
m/s) as materials in the distinct layers in the numerical simulations of linear elastic
wave propagation.
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Fig. 8 Pulse shape at 4000 time steps (d = 64�x, l = 1000�x).

Fig. 9 Pulse shape at 4000 time steps (d = 32�x, l = 1000�x).

We apply a stress pulse, the width λ of which corresponds to 30�x (�x is the
space step)

σ(t) =
2

cosh2(0.5(t −15�t))
(46)

at the left end of the domain (Fig. 7), and record the resulting pulse at x = 4000�x.
The location is indicated by the dashed line in Fig. 7.

The results are presented in Figs. 8–10 (dashed lines). The reference pulse cal-
culated for homogeneous media is drawn with a solid line. As can be observed, if
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Fig. 10 Pulse shape at 4000 time steps (d = 8�x, l = 1000�x).

the wavelength is less then the size of the inhomogeneity (d ≥ λ ), we have a strong
dispersion of the pulse, i.e., a separation of the wave into components of various
frequencies (Figs. 8 and 9). This dispersion is not so strong if, vice versa, the size
of the inhomogeneity d is less then the wavelength λ (Fig. 10).

Thus, waves in laminates demonstrate dispersive behavior, which is governed by
the relations between the characteristic length scales. Taking into account nonlin-
ear effects, we have seen the soliton-like wave propagation. Both nonlinearity and
dispersion effects are observed experimentally in laminates under shock loading.

7 Nonlinear elastic waves in laminates under impact loading

Though the stress response to an impulsive shock loading has been very well un-
derstood for homogeneous materials, the same cannot be said for heterogeneous
systems. In heterogeneous media, scattering due to interfaces between dissimilar
materials plays an important role for shock wave dissipation and dispersion [18].

Diagnostic experiments for the dynamic behavior of heterogeneous materials un-
der impact loading are usually carried out using a plate impact test configuration
under a one-dimensional strain state. These experiments were recently reviewed in
[12, 13]. For almost all the experiments, the stress response has shown a sloped ris-
ing part followed by an oscillatory behavior with respect to a mean value [12, 13].
Such behavior in the periodically layered systems is consistently exhibited in the
systematic experimental work [39]. The specimens used in the shock compression
experiments [39] were periodically layered two-component composites prepared by
repeating a composite unit as many times as necessary to form a specimen with
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Fig. 11 Experimental setting. Reproduced from [39].

the desired thickness (see Fig. 11). A buffer layer of the same material as the soft
component of the specimen was used at the other side of the specimen. A win-
dow in contact with the buffer layer was used to prevent the free surface from
serious damage due to unloading from shock wave reflection at the free surface.
Shock compression experiments were conducted by employing a powder gun load-
ing system, which could accelerate a flat plate flyer to a velocity in the range of
400 m/s to about 2000 m/s. In order to measure the particle velocity history at the
specimen window surface, a velocity interferometry system was constructed, and to
measure the shock stress history at selected internal interfaces, the manganin stress
technique was adopted. Four different materials, polycarbonate, 6061-T6 aluminum
alloy, 304 stainless steel, and glass, were chosen as components. The selection of
these materials provided a wide range of combinations of shock wave speeds, acous-
tic impedance and strength levels. The influence of multiple reflections of internal
interfaces on shock wave propagation in the layered composites was clearly illus-
trated by the shock stress profiles measured by manganin gages. The origin of the
observed structure of the stress waves was attributed to material heterogeneity at
the interfaces. For high velocity impact loading conditions, it was fully realized that
material nonlinear effects may play a key role in altering the basic structure of the
shock wave.

An approximate solution for layered heterogeneous materials subjected to high
velocity plate impact has been developed in [12, 13]. For laminated systems under
shock loading, shock velocity, density and volume were related to the particle ve-
locity by means of an equation of state. The elastic analysis was extended to shock
response by incorporating the nonlinear effects through computing the shock veloc-
ities of the wave trains and superimposing them.
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As pointed out in [39], stress wave propagation through layered media made of
isotropic materials provides an ideal model to investigate the effect of heterogeneous
materials under shock loading, because the length scales, e.g., the thickness of indi-
vidual layers, and other measures of heterogeneity, e.g., impedance mismatch, are
well defined.

Since the impact velocity in shock experiments is sufficiently high, various non-
linear effects may affect the observed behavior. That is why we apply numerical
simulations of finite-amplitude nonlinear wave propagation to the study of scatter-
ing, dispersion and attenuation of shock waves in layered heterogeneous materials.

The geometry of the problem follows the experimental configuration described
in [39] (Fig. 12).

Fig. 12 Geometry of the problem.

We consider the initial-boundary value problem of impact loading of a heteroge-
neous medium composed of alternating layers of two different materials. The impact
is provided by a planar flyer of length L, which has an initial velocity v0. A buffer
of the same material as the soft component of the specimen is used to eliminate the
effect of wave reflection at the stress-free surface. The densities of the two mate-
rials are different, and the materials’ response to compression is characterized by
the distinct stress-strain relations σ(ε). Compressional waves propagating in the di-
rection of the layering are modeled by the one-dimensional hyperbolic system of
conservation laws (1)–(2).

Initially, stress and strain are zero inside the flyer, the specimen, and the buffer,
but the initial velocity of the flyer is nonzero:

v(x,0) = v0, 0 < x < L, (47)

where L is the size of the flyer. Both left and right boundaries are stress-free.
Instead of an equation of state like the one used in [12, 13], we apply a simpler

nonlinear stress-strain relation σ(ε,x) for each material (43) (cf. [31]):

σ = ρc2 ε(1+Bε), (48)
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where, as previously, ρ is the density, c is the conventional longitudinal wave speed,
and B is a parameter of nonlinearity, the values and signs of which are supposed to
be different for hard and soft materials.

We apply the same numerical scheme as in the previous example. The results of
the numerical simulations compared with experimental data [39] are presented in
the next section.

7.1 Comparison with experimental data

Figure 13 shows the measured and calculated stress time history in the composite,
which consists of 8 units of polycarbonate, each 0.74 mm thick, and of 8 units of
stainless steel, each 0.37 mm thick. The material properties of the components are
extracted from [39]: the density ρ = 1190 kg/cm3 and the sound velocity c = 1957
m/s for the polycarbonate; ρ = 7890 kg/cm3 and c = 5744 m/s for the stainless steel.
The stress time histories correspond to the distance 0.76 mm from the impact face.
Calculations are performed for the flyer velocity 561 m/s and the flyer thickness
2.87 mm.

Fig. 13 Comparison of shock stress time histories corresponding to the experiment 112501 [39].
Reproduced from [4].

The results of the numerical calculations depend crucially on the choice of the
parameter of nonlinearity B. We choose this parameter from the condition to match
the numerical simulations to the experimental results.
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Time histories of particle velocity for the same experiment are shown in Fig. 14.
It should be noted that the particle velocity time histories correspond to the bound-
ary between the specimen and the buffer. As one can see, both stress and particle
velocity time histories are well reproduced by the nonlinear model with the same
values of the nonlinearity parameter B.

Fig. 14 Comparison of particle velocity time histories corresponding to the experiment 112501
[39]. Reproduced from [4].

As it is pointed out in [39], the influence of multiple reflections of internal inter-
faces on shock wave propagation in the layered composites is clearly illustrated by
the shock stress time histories measured by manganin gages. Therefore, we focus
our attention on the comparison of the stress time histories.

Figure 15 shows the stress time histories in the composite, which consists of 16
units of polycarbonate, each 0.37 mm thick, and of 16 units of stainless steel, each
0.19 mm thick. The stress time histories correspond to the distance 3.44 mm from
the impact face. Calculations are performed for the flyer velocity 1043 m/s and the
flyer thickness 2.87 mm.

The nonlinearity parameter B is chosen here to be 2.80 for polycarbonate and
zero for stainless steel. Additionally, the stress time history corresponding to the
linear elastic solution (i.e., the nonlinearity parameter is zero for both components)
is shown. It can be seen that the stress time history computed by means of the con-
sidered nonlinear model is very close to the experimental one. It reproduces three
main peaks and decreases with distortion, as it is observed in the experiment [39].
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Fig. 15 Comparison of shock stress time histories corresponding to the experiment 110501 [39].
Reproduced from [4].

In Fig. 16 the same comparison is presented for the same composite as in Figure
15, only the flyer thickness is different (5.63 mm). This means that the shock energy
is approximately twice as high than that in the previous case. The nonlinearity pa-
rameter B is also increased to 4.03 for polycarbonate and remains zero for stainless
steel. As a result all 6 experimentally observed peaks are reproduced well.

Fig. 16 Comparison of shock stress time histories corresponding to the experiment 110502 [39].
Reproduced from [4].
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In Fig. 17 the comparison of stress time histories is presented for the composite
consisting of 16 0.37 mm thick units of polycarbonate and 16 0.20 mm thick units of
D-263 glass. The material properties of D-263 glass are [39]: the density ρ = 2510
kg/cm3 and the sound velocity c = 5703 m/s. The distance between the measure-
ment point and the impact face is 3.41 mm. Corresponding flyer velocity is 1079
m/s and the flyer thickness is 2.87 mm. The nonlinearity parameter B is chosen to
be equal 5.025 for polycarbonate and zero for D-263 glass. Again, the stress time
history corresponding to the linear elastic solution (i.e., the nonlinearity parameter
is zero for both components) is shown. As one can see, the stress time history cor-
responding to the nonlinear model reproduces all 5 peaks with the same amplitude
as observed experimentally.

Fig. 17 Comparison of shock stress time histories corresponding to the experiment 112301 [39].
Reproduced from [4].

As it can be seen, the agreement between the results of the calculations and the
experiments is achieved by the adjustment of the nonlinearity parameter B.

It follows that the nonlinear behavior of the soft material is affected not only by
the energy of the impact, but also by the scattering induced by internal interfaces.
It should be noted that the influence of the nonlinearity is not necessarily small. In
the numerical simulations, which match with the experiments, the increase of the
actual sound velocity of polycarbonate follows. It may be up to two times higher in
comparison to the linear case. This conclusion is really surprising, but supported by
the stress time histories.

Thus, the application of a nonlinear stress-strain relation for materials in numer-
ical simulations of the plate impact problem of a layered heterogeneous medium
shows that a good agreement between computations and experiments can be ob-
tained by adjusting the values of the parameter of nonlinearity [4]. In the numer-
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ical simulations of the finite-amplitude shock wave propagation in heterogeneous
composites, the flyer size and velocity, the impedance mismatch of hard and soft
materials, as well as the number and size of layers in a specimen were the same as
in the experiments [39]. Moreover, a nonlinear behavior of materials was also taken
into consideration. This means that combining scattering effects induced by internal
interfaces and physical nonlinearity in material behavior into one nonlinear parame-
ter, provides the possibility to reproduce the shock response in heterogeneous media
observed experimentally. In this context, the parameter B is actually influenced by
(i) the physical nonlinearity of the soft material and (ii) the mismatch of the elastic-
ity properties of soft and hard materials. The mismatch effect is similar to the type
of nonlinearity characteristic to materials with different moduli of elasticity for ten-
sion and compression. The mismatch effect manifests itself due to wave scattering
at the internal interfaces, and, therefore, depends on the structure of a specimen.
The variation of the parameter of nonlinearity confirms the statement that the non-
linear wave propagation is highly affected by the interaction of the wave with the
heterogeneous substructure of a solid [39].

It should be noted that layered media do not exhaust all possible substructures
of heterogeneous materials. Another example of a heterogeneous substructure is
provided by functionally graded materials.

8 Waves in functionally graded materials

Functionally graded materials (FGMs) are composed of two or more phases that are
fabricated so that their compositions vary more or less continuously in some spatial
direction and are characterized by nonlinear gradients that result in graded proper-
ties. Traditional composites are homogeneous mixtures, and therefore they involve
a compromise between the desirable properties of the component materials. Since
significant proportions of an FGM contain the pure form of each component, the
need for compromise is eliminated. The properties of both components can be fully
utilized. For example, the toughness of a metal can be mated with the refractori-
ness of a ceramic, without any compromise in the toughness of the metal side or the
refractoriness of the ceramic side.

Comprehensive reviews of current FGM research may be found in the papers
[21] and [30], and in the book [35]. Studies of the evolution of stresses and dis-
placements in FGMs subjected to quasistatic loading [35] show that the utilization
of structures and geometry of a graded interface between two dissimilar layers can
reduce stresses significantly. Such an effect is also important in the case of dynami-
cal loading, where energy-absorbing applications are of special interest.

We consider the one-dimensional problem in elastodynamics for an FGM slab
in which material properties vary only in the thickness direction. It is assumed that
the slab is isotropic and inhomogeneous with the following fairly general proper-
ties [14]:

E ′(x) = E ′
0

(
a

x
l
+1

)m
, ρ(x) = ρ0

(
a

x
l
+1

)n
, (49)
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where ρ is the mass density, l is the thickness, a,m, and n are arbitrary real constants
with a >−1, while E0 and ρ0 are the elastic constant and density at x = 0. The elastic
constant E0 is determined under the assumption that σyy = σzz and the slab is fully
constrained at infinity. It can thus be shown that

E ′ =
E(1−ν)

(1+ν)(1−2ν)
, (50)

with E(x) and ν(x) being the Young modulus and the Poisson ratio of the inhomo-
geneous material.

It is assumed that the slab is at rest for t ≤ 0, therefore, the following initial
conditions are valid:

v(x,0) = 0, σ(x,0) = 0. (51)

The boundary condition at x = 0 is

v(0, t) = 0, t > 0 (“fixed” boundary) (52)

At x = l, the slab is subjected to a stress pulse given by

σxx(l, t) = σ0 f (t), t > 0, (53)

where the constant σ0 is the magnitude of the pulse, the function f describes its time
profile, and without any loss in generality, it is assumed that | f | ≤ 1.

Following [14], we consider an FGM slab that consists of nickel and zirconia.
The thickness of the slab is l = 5 mm. On one surface the medium is pure nickel
and on the other surface pure zirconia, while the material properties E0(x) and ρ(x)
vary smoothly in thickness direction. A pressure pulse defined by

σxx(l, t) = σ0 f (t) = −σ0(H(t)−H(t − t0) (54)

is applied to the surface x = l and the boundary x = 0 is “fixed”. Here H is the
Heaviside function. The pulse duration is assumed to be t0 = 0.2 μs. The properties
of the constituent materials used are given in Table 1 [14].

Material E (GPa) ν ρ (kg/m3)

ZrO 151 0.33 5331
Ni 207 0.31 8900

Table 1 Properties of materials

The material parameters for the FGMs used are [14]: a = −0.12354, m =
−1.8866, and n = −3.8866. The stress is calculated up to 12 μs (the propagation
time of the plane wave through the thickness l = 5 mm is approximately 0.77 μs in
pure ZrO2 and 0.88 μs in Ni).
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Fig. 18 Variation of stress with time in the middle of the slab. Reproduced from [5].

Numerical simulations were performed by means of the same algorithm as above.
The comparison of the results of the numerical simulation and of the analytical
solution [14] for the time dependence of the normalized stress σxx/σ0 at the location
x/l = 1/2 is shown in Fig. 18.

As one can see, it is difficult to make a distinction between analytical and numer-
ical results. This means that the applied algorithm is well suited for the simulation
of wave propagation in FGM.

A nonlinear behavior for the same materials with the nonlinearity parameter A =
0.19 is shown in Figure 19. For the comparison, calculations were performed with
the value 0.9 of the Courant number both in the linear and nonlinear case. The
amplitude amplification and pulse shape distortion in comparison with the linear
case is clearly observed. In addition, the velocity of a pulse in the nonlinear material
is increased.

9 Concluding remarks

As we have seen, linear and non-linear wave propagation in media with rapidly-
varying properties as well as in functionally graded materials can be successfully
simulated by means of the modification of the wave-propagation algorithm based
on the non-equilibrium jump relation for true inhomogeneities. It should be empha-
sized that the used jump relation expresses the continuity of genuine unknown fields
at the boundaries between computational cells. The applied algorithm is conserva-
tive, stable up to Courant number equal to 1, high-order accurate, and thermody-
namically consistent. However, the main advantage of the presented modification of
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Fig. 19 Variation of stress with time in the middle of the slab. Nonlinear case. Reproduced
from [5].

the wave-propagation algorithm is its applicability to the simulation of moving dis-
continuities. This property is related to the formulation of the algorithm in terms of
excess quantities. To apply the algorithm to moving singularities, we simply should
change the non-equilibrium jump relation for true inhomogeneities to another non-
equilibrium jump relation valid for quasi-inhomogeneities.

Acknowledgements Support of the Estonian Science Foundation (Grant 7037) is gratefully ac-
knowledged.
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Abstract. A linear model of the microstructured continuum based on Mindlin 
theory is adopted which can be represented in the framework of the internal 
variable theory. Fully coupled systems of equations for macro-motion and 
microstructure evolution are represented in the form of conservation laws. A 
modification of wave propagation algorithm is used for numerical calculations. 
Results of direct numerical simulations of wave propagation in periodic medium 
are compared with similar results for the continuous media with the modelled 
microstructure. It is shown that the proper choice of material constants should be 
made to match the results obtained by both approaches. 

1. Introduction

The classical theories of continua describe the behaviour of homogeneous 
materials.  In reality, however, materials are always characterized by a certain 
microstructure at various scales. The character of a microstructure can be regular 
(like in laminated composites) or irregular (like in polycrystalline solids or alloys). 
Even more, regularity and irregularity may be combined like for some FGMs. The 
characteristic scale of a microstructure must always be compared with the spatial 
scale of excitation. The choice of proper mathematical models is extremely 
important in order to describe the wave fields with needed accuracy.  

In general terms, the starting point for describing a microstructure could be 
either the discrete or the continuum approach. In the discrete approach the volume 
elements are treated as point masses with interaction [1]. Or, especially for 
laminated composites, the effective stiffness theory has been used [2]. The 
homogenization methods based on properties and geometry of constituents are 
widely used for static and quasi-static problems [3].  From the viewpoint of 
continua, the straight-forward modelling leads to assigning all the physical 
properties to every volume element dV in a solid which means introducing the 
dependence on space coordinates. Thus, the governing equations are so 
complicated that can be solved only by numerical methods.  

Another way is to separate macro- and microstructure in continua. Then the 
conservation laws for both structures should be formulated separately [4, 5] or in a 



2

more sophisticated way the microstructural quantities could be introduced into one 
set of conservation laws for the macrostructure [6]. Quite recently it has been 
shown that the generalization of such theories can be obtained by using the 
concept of dual internal variables [7].   

To check the capabilities of the theory, it is useful to compare the theoretical 
predictions with results of direct numerical simulation of wave propagation 
through a certain known microstructure. In what follows, the derivation of a mi-
crostructure model is presented in the one-dimensional setting. The concept of 
dual internal variables is applied for the physical description of continua with mi-
crostructure. The finite volume wave propagation algorithm is used for both direct 
numerical simulation and the microstructure modeling. Results of direct numerical 
simulations of wave propagation in a periodically layered medium are compared 
with similar results for the homogeneous medium with a modelled microstructure. 

2. Governing Equations 

The governing equations of thermoelasticity are local balance laws for linear mo-
mentum and energy [8]. In the one-dimensional case these governing equations 
are reduced to (no body forces) 
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complemented by the second law of thermodynamics 
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Here t is time, �0 is the matter density, v is the physical velocity, � is the Cauchy 
stress, E is the internal energy per unit volume, S is the entropy per unit volume, �
is temperature, Q is the material heat flux, and  the "extra entropy flux" K  van-
ishes in most cases, but this is not a basic requirement. 
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3. Internal Variables 

Up to now the microstructure was not specified. In the framework of the 
phenomenological continuum theory it is assumed that the influence of the 
microstructure on the overall macroscopic behaviour can be taken into account by 
the introduction of an internal variable �, which we associate with the integral 
distributed effect of the microstructure, and a certain dual internal variable �. We 
suppose that the free energy depends on the internal variables �, � and their space 
derivatives W = W*(ux, �, �x, �, �x). Then the constitutive equations follow 
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We include into consideration the non-zero extra entropy flux [9] 
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It can be checked that the dissipation inequality in the isothermal case reduces to 

     � � .0)( ���� ������ �� xx                (3.3) 

In the non-dissipative case the dissipation inequality can be satisfied by the choice 

     � �,),( xx mm ������ ����� ��              (3.4) 

where m is a coefficient. The latter two evolution equations express the duality be-
tween internal variables: one internal variable is driven by another one and vice 
versa.  

The simplest free energy dependence is a quadratic function [10] 
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where A, B C, D, and c are material constants.  
Here we include only the contribution of the second internal variable itself. In 

this case, the evolution equation for the internal variable � is a hyperbolic equation 
[7] 
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As a result, we can represent the equations of motion in the form 
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where I = 1/(m 2D) is  an internal inertia measure. In terms of stresses introduced 
by Eq. (3.1), the same system of equations is represented as 
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It is worth to note that same equations are derived in [11] but based on different 
considerations. 

3.1 Single Wave Equation 

The governing equations (3.7) and (3.8) can be reduced to one equation. We can 
determine the first space derivative of the internal variable from Eq. (3.8) and its 
third derivatives from Eq. (3.7). Inserting the results into the balance of linear 
momentum (3.7), we obtain a higher order equation [9] with clearly separated 
wave operators which describe the influence of the microstructure 
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3.2 System of Equations 

At the same time, in terms of strain and velocity, Eq. (3.7) is rewritten as 

     .2
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The particle velocity and the strain are related by the compatibility condition 

     ,xt v��                              (3.12) 

which form the system of equations for these two variables. 
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Similarly, introducing a microvelocity w as follows: 

     ,: �Dwx ��                (3.13) 

and using Eq. (3.6) with m =1, we have 

     ,xt w��                         (3.14) 

that is nothing else but the compatibility condition at micro-level. It follows from 
Eqs. (3.14) and (3.8) that 

     .��� BACwI xxx ����                            (3.15) 

Integrating the latter equation over x, we arrive at 

.)( dxBACIw xt � ��� ���                          (3.16) 

Thus, we have two coupled systems of equations (3.11), (3.12) and (3.14), 
(3.16) for the determination of four unknowns: �, v, �, and w. These two systems 
of equations are solved numerically to describe the microstructure dynamics. 

4 Numerical Simulations  

4.1 Algorithm Description 

There are many computational methods used to describe wave propagation 
phenomena (see, e.g. [12]). In our computations we apply a modification of the 
wave propagation algorithm [13] that was successfully applied to the simulation of 
wave propagation in  inhomogeneous media with rapidly-varying properties [14]. 
In simulations of wave propagation in a layered medium with known location of 
inhomogeneities, the numerical scheme is the same as described in [14]. However,  
the wave propagation algorithm is modified in order to solve the coupled systems 
of equations in the modelling of the microstructure. This modification is needed to 
treat the source terms which appeared in equations due to their coupling.  

4.2 Linear Waves 

As an example, the propagation of a pulse in an one-dimensional medium which 
can be represented as an elastic bar is analysed. This bar is assumed homogeneous 
except of a region of length d, where periodically alternating layers of size l are 
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inserted. The density and longitudinal velocity in the bar are chosen as �0 = 4510 
kg/m3 and c = 5240 m/s, respectively. The corresponding parameters for the ma-
terial of the inhomogeneity layers are �1 = 2703 kg/m3 and c1 = 5020 m/s, respec-
tively. The shape of the pulse before the crossing of the inhomogeneity region is 
formed by an excitation of the strain at the boundary for an limited dimensionless 
time period (0< t < 100) 

     .))50/)50(cos((1),0( ��� tt ��               (4.1) 

The time step used in calculations is by definition a unit. The length of the 
pulse L = 100 �x is comparable with the size of inhomogeneity (l = 128 �x).  Us-
ing the notion of the bar, it must be stressed that l and L are much smaller than the 
diameter of the bar [15]. 

Direct numerical simulation of linear elastic wave propagation in the medium 
with variable properties shows that the pulse holds its shape up to the entering into 
the inhomogeneity region. After the interaction with the periodic multilayer, the 
single pulse is separated into many reflected and transmitted parts as it can be seen 
in Fig. 4.1. Normalized time shown in Fig. 4.1 is measured in hundreds of time 
steps. During the propagation in the periodic medium, the amplitude of the pulse 
is diminished due to multiple reflections. 

Fig.4.1 Scattering of a pulse by a periodic multilayer.  

The same pulse propagation was simulated by the microstructured model de-
scribed above with the following choice of material parameters: A = 49 �0c2, I = 
�1, C = Ic1

2, B = 24.6 A2�0c2. In this case, there is no assumption of periodicity of 
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microstructure, however, in calculations of the pulse propagation, the internal 
length l for the microstructure is kept the same as in the case of periodic multilay-
er. The ratio of scales l and L together with the value of the parameter A deter-
mines the contribution of the microstructure to the macromotion.  

Here the coupled systems of equations (3.11), (3.12) and (3.14), (3.16) are 
solved simultaneously. It should be noted that no boundary conditions for the in-
ternal variable are prescribed. A non-zero solution for the microstructure is in-
duced due to the coupling.  

Results of numerical simulation are presented in Fig.4.2, where the correspond-
ing transmitted pulses from the solution of the problem with periodic multilayer 
are also shown. 

Fig.4.2 Transmitted pulses.  

As one can see, the adjustment of material parameters in the microstructure 
model allows us to reproduce the first pulse with perfect accuracy while the 
second one is essentially smaller in amplitude, because of the absence of a reflect-
ed trail in the case of the microstructure model. 

4.3 Weakly Nonlinear Waves 

We consider again the propagation of a pulse in a layered 1D medium (elastic bar) 
where the length of inhomogeneity l = 4 �x is much smaller than the length of the 
pulse L = 100 �x.  The properties of materials are the same as previously with a 
weak nonlinearity for the less stiff material (cf. [16]) 
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where N is a parameter of nonlinearity. 
Direct computations in this weakly nonlinear case (N = 0.04) show that the ini-

tial bell-shaped pulse is transformed in a train of soliton-like pulses propagating 
with amplitude-dependent speeds (Fig. 4.3) like for the celebrated KdV case. 

Fig 4.3. Transformation of a bell-shaped pulse in a weakly nonlinear periodic me-
dium (after 4600 time steps). 

If we return to the microstructure model then the linear governing equations 
(3.7), (3.8) must be modified. Instead of the free energy function (3.5), a cubic 
function is used:    
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where M  and N are new material constants (see [17]). 
Now the governing equations yield (cf. (3.7), (3.8)) 
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Besides dispersive effects (see [10]), the governing equations (4.4) and (4.5) 
include also nonlinear effects in macro- and microscale. The dispersive effects are 
analysed in [10] while the influence of nonlinearities is described in [18]. It is not 
surprising that the balance between the dispersive and nonlinear effects can occur 
resulting in emergence of solitons.  

For numerical simulation, the system of equations (4.4), (4.5) can be repre-
sented in the form of a single (4th order) equation (like Eq. (3.10)). The initial 
value problem for such a model nonlinear equation is solved by the pseudospectral 
method [18]. The initial pulse-type excitation leads to the train of solitons similar 
to that shown in Fig. 4.3. 

5 Conclusions

If we know all the details of a given microstructure, namely, size, shape, composi-
tion, location, and properties of inclusions as well as properties of a carrier me-
dium, the classical wave theory is sufficient for the description of wave propaga-
tion. Usually our knowledge about the microstructure is limited – we know only 
the characteristic scale of microstructure and its physical properties. Then the ac-
curacy of classical theories is not sufficient and the more advanced theories of 
continua should be used.  

In the paper, we have compared results of direct numerical simulations of wave 
propagation in given layered media with the corresponding results obtained by a 
continuous model of the microstructure. The presented model looks like a promis-
ing variant of the theory, complicated enough to describe various effects of the 
microstructure. This model can be naturally extended to include non-linear effects 
and dissipation [19]. However, numerical simulations demonstrate that the 
straight-forward numerics and the modelling on the basis of continuum theories 
need a careful matching of material coefficients. 

Some general remarks should be made in addition. The concept of dual internal 
variables introduced in [7] permits to model consistently microstructure(s) for 
both dissipative (not analysed here) and non-dissipative processes (see above). 
Such an approach gives an excellent basis to clarify the structure of generalised 
continuum theories such like linear Cosserat, micromorphic, and second gradient 
elasticity theories. This will be a subject of our forthcoming publications. 
      Once the wavefields in microstructured materials are described with needed 
accuracy, the respective mathematical models can also be used for solving the in-
verse problems. In linear cases, the dependence of phase velocities on the micro-
structure can be used for determining the material properties. In nonlinear cases, 
when the balance between dispersive and nonlinear effects supports the propaga-
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tion of solitary waves, the algorithms for solving the inverse problems can be 
based on the analysis of shapes of solitary waves. It has been shown namely [17] 
that the nonlinearity of the microstructure leads to asymmetric solitary waves. 
This property can be used for constructing an algorithm which determines the pa-
rameters of the microstructure from measured asymmetry (see [17]). 

Support of the Estonian Science Foundation is gratefully acknowledged. 
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Abstract. Results of numerical simulations of one-dimensional wave propagation in microstructured solids are 
presented and compared with the corresponding results of wave propagation in given layered media. A linear 
microstructure model based on Mindlin theory is adopted and represented in the framework of the internal 
variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are 
rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for 
numerical calculations. It is shown how the initial microstructure model can be improved in order to match 
the results obtained by both approaches.  
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INTRODUCTION 

Wave propagation in the medium with microstructure is dispersive [1], [2]. In order to catch the dispersion 
effects, the classical wave equation for linear elastic wave propagation should be modified. Usually this modification 
is made by homogenization or continualization methods [3, 4, 5]. Alternatively a generalized continuum theory can 
be applied [6]. The resulting microstructure models enhance the classical elastic behavior.  

As it is recently shown, the concept of dual internal variables [7] can be successfully used for the physical 
description of the medium with microstructure [8]. Internal variable is associated with the integral distributed effect 
of the microstructure [9]. In the framework of the internal variable theory, fully coupled systems of equations for 
macro-motion and microstructure evolution are represented in the form of conservation laws.  

However, solution of these equations is not easy task due to their coupling and the absence of natural boundary 
conditions for internal variable. In addition, parameters of the microstructure model are needed to be determined in 
each particular case. This is why we performed numerical experiments to compare results of direct numerical 
calculations of wave propagation in a laminate with prescribed properties and corresponding results obtained for an 
effective medium with the microstructure modeling. These numerical experiments allowed us to analyze advantages 
and weaknesses of the model. As a result, we found that some improvements have to be introduced into the 
microstructure model. 

The numerical simulations are performed by means of a finite-volume numerical scheme modifying the wave-
propagation algorithm [10] by the introduction of excess quantities instead of numerical fluxes, which simplifies the 
solution of Riemann problems at boundaries between computational cells at each time step [11]. Source terms are 
accounted in the jump relations at boundaries between computational cells. The scheme is applied for both macro- 
and micro-motion. The advantage of the wave-propagation algorithm is high-resolution [12] and the possibility for a 
natural extension to higher dimensions. It should be emphasized that there is no need for any artificial boundary 
conditions for the internal variable: the non-trivial solution is provided by the coupling between the macro- and 
micro-motions.  



GOVERNING EQUATIONS 

 
The most general model for the one-dimensional wave propagation in solids with microstructure is presented in 

[2]. This model is derived independently from the Euler-Lagrange equations for a Mindlin-type material model [13] 
and from internal variable theory [8]. In the framework of the internal variable theory it is assumed that the influence 
of the microstructure on the overall macroscopic behavior can be taken into account by the introduction of an internal 
variable which is associated with the integral distributed effect of the microstructure [9]. In the case of quadratic free 
energy dependence, the system of two coupled second-order hyperbolic equations for macro- and micromotion is 
derived as follows [2]: 
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  xxxtt Aucu ϕρρ +=
 ,, ϕϕϕ BAuCI xxxtt −−=  (2) 

 
where u is the macrodisplacement, φ is the internal variable (microdeformation), ρ is the matter density, c is the 
longitudinal wave velocity at the macrolevel, A, B, C and I are material constants for microstructure, subscripts are 
used to denote derivatives. 

The governing equations (1) and (2) can be represented either as a single fourth-order equation [2] or as a system 
of four first-order equations. While the former representation is more convenient for theoretical considerations, the 
latter one is more suitable for numerics. Namely, in terms of strain and velocity, Eq. (1) is rewritten as 
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  xxt Acv ϕερρ +=
 

The particle velocity v = ut  and the strain ε = ux are related by the compatibility condition 
 

 .xt v=ε  (4) 
 

Similarly, introducing microvelocity ω we use the compatibility condition at micro-level as follows: 
 

 .xt ωϕ =  (5) 
 

Accounting for Eq. (5) and integrating Eq. (2) over x, we arrive at 
 

 ( ) . ∫ +−= dxBACI xt ϕεϕω  (6) 

 
Thus, we have two coupled systems of equations (3), (4), (5) and (6) for the determination of four unknowns: ε, v, φ, 
and ω. To analyze the capabilities of the model and the role of material constants in the microstructure model, we 
need to solve these systems of equations simultaneously. It is clear that analytical solutions may be found only in 
highly simplified asymptotic cases. Therefore, we turn to numerical methods. However, even the numerical solution 
is not simple and straightforward because of the absence of natural boundary conditions for the internal variable [14] 
and possible instabilities [15].   

As it is mentioned, numerical simulations are performed by means of a finite-volume numerical scheme 
modifying the wave-propagation algorithm [11]  
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where n and k denote space and time  steps, respectively, overbars denote averaged quantities which are introduced 
together with excess quantities both for macro- and  microfields as follows: 
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The source terms in Eqs. (3) and (6) are accounted by including them into jump conditions at the boundaries between 
computational cells which are used for the solution of Riemann problems at each time step, namely, 
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We do not apply any boundary conditions for the internal variable due to the coupling between micro- and 
macromotions. 

NUMERICAL SIMULATIONS 

To have a reference solution, the propagation of a pulse in a one-dimensional medium which can be represented 
as an elastic bar is considered first. This bar is assumed homogeneous except of a region of length l, where 
periodically alternating layers of size d are inserted (Fig. 1).  

 

 
 

FIGURE 1.  Geometry of the bar. 
 

The density and the longitudinal velocity in the bar are chosen as ρ = 4510 kg/m3 and c = 5240 m/s, respectively. The 
corresponding parameters for the material of the inhomogeneity layers are ρ1 = 2703 kg/m3 and c1 = 5020 m/s, 
respectively. The shape of the pulse before the crossing of the inhomogeneity region is formed by an excitation of the 
strain at the boundary for a limited time period (0 < t < 100Δt) 

 
 ).50/)50(cos(1(),0( tttux Δ−+= π  (14) 

 
The length of the pulse (λ = 100Δx) is comparable with the size of inhomogeneity (d = 128Δx). The pulse holds its 
shape up to the entering into the inhomogeneity region. The problem is solved directly, i.e., without application of 
the microstructure model, since the location and properties of substructure are prescribed. The solution shows that 
after the interaction with the periodic multilayer, the single pulse is separated into many reflected and transmitted 
parts as it can be seen in Fig. 2.  



 
 

FIGURE 2.  Scattering of a pulse by a periodic multilayer. 
 

The dispersion occurs because of the successive reflections at each interface between the alternating layers. 
The same pulse propagation was simulated by the microstructure model (3) - (6) with A = 550ρc2, I = ρ1, C = Ic1

2, 
B = 6.7 A2/ ρc2. In this case, there is no assumption of periodicity, however, in calculations of the pulse propagation, 
the internal length d for the microstructure is kept the same as in the case of periodic multilayer. The ratio of scales d 
and λ together with the value of the parameter A determines the contribution of the microstructure to macromotion. 
The result of the numerical simulation is presented in Fig. 3, where the corresponding transmitted pulses from the 
solution of the problem with periodic multilayer are also shown. 

 

 
 

FIGURE 3.  Leading transmitted pulses.  
 

The obtained result is rather disappointing. Moreover, as numerous numerical experiments show, it cannot be 
improved by the varying of the values of microstructure parameters. Therefore, we have to reconsider the 
microstructure model. It turns out that the change of the sign in source term in Eq. (6) (corresponding to the internal 
interaction force)  
 



 ( ) , ∫ ++= dxBACI xt ϕεϕω  (15) 

 
leads to a more appropriate result. The corresponding results of computations by using Eq. (15) instead of Eq. (6) are 
shown in Fig. 4. 

 

FIGURE 4.  Leading transmitted pulses: improved model. 
 

As one can see, the improved microstructure model is capable to reproduce the two leading transmitted pulses in a 
consistent way. The second pulse is smaller than the reference one because of the absence of a reflected trail in the 
case of the microstructure model.  

The improved model can also reproduce the change in the pulse behavior due to the variation of the size of 
inhomogeneity (d = 64Δx in Fig. 5). The size effect manifests itself in the change of the mutual location of small and 
big pulses.  
 

 
 

FIGURE 5.  Leading transmitted pulses for d = 64Δx.  
 



CONCLUSIONS 

If we know all the details of given microstructure, namely, size, shape, composition, location and properties of 
inclusions as well as properties of carrier medium, the classical wave equation is sufficient for the description of 
wave propagation. The less we know concerning the microstructure, the more complicated equation is needed for the 
equivalent description of waves in the carrier medium which may be considered as simple as possible. In the paper, 
we have compared results of direct numerical calculations of wave propagation in laminates with the corresponding 
numerical simulations by using a microstructure model. As it is shown, numerical experiments demonstrate the need 
for a modification of the applied microstructure model.  Nevertheless, the problem of parameters identification 
remains: some fitting is required to obtain the desirable behavior. At the same time, it is clear that the improved 
microstructure model qualitatively reproduce the microstructure influence on the macroscopic dynamics.   

 

ACKNOWLEDGMENTS 

Support of the Estonian Science Foundation is gratefully acknowledged. 
 

REFERENCES 

1. J.D. Achenbach, C.T. Sun and G. Herrman, J. Appl. Mech. 35, 467–475 (1968). 
2.  J. Engelbrecht, A. Berezovski, F. Pastrone and M. Braun, Phil. Mag. 85, 4127–4141 (2005). 
3. Z. Wang and C.T. Sun, Wave Motion 36, 473–485 (2002). 
4.  J. Fish, W. Chen and G. Nagai, Int. J. Numer. Meth. Engng. 54, 331–346 (2002). 
5. G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Comp. Mater. Sci. 27, 351–374 (2003). 
6. T. Bennett, I.M. Gitman and H. Askes, Int. J. Fract. 148, 185-193 (2007).  
7. P. Van, A. Berezovski and J. Engelbrecht, J. Non-Equilib. Thermodyn. 33 235–254 (2008). 
8. A. Berezovski, J. Engelbrecht and G.A. Maugin, „One-dimensional microstructure dynamics” in Mechanics of micro-

structured solids: cellular materials, fibre reinforced solids and soft tissues, edited by J.-F. Ganghoffer, F. Pastrone, 
Springer, 2009. 

9. G.A. Maugin and W.Muschik, J. Non-Equilib. Thermodyn. 19, 217–249 (1994). 
10. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002. 
11. A. Berezovski, J. Engelbrecht and G.A. Maugin, Numerical simulation of waves and fronts in inhomogeneous solids, 

World Scientific, Singapore, 2008. 
12. D.S. Bale, R.J. LeVeque, S. Mitran and J.A. Rossmanith, SIAM J. Sci. Comp. 24, 955-978 (2003). 
13. J. Engelbrecht and F. Pastrone, Proc. Estonian Acad. Sci. Phys. Math. 52, 12-20 (2003). 
14. J. D. Kaplunov and A. V. Pichugin, „On rational boundary conditions for higher-order long-wave models“ in IUTAM 

Symposium on Scaling in Solid Mechanics, edited by F.M. Borodich, Springer, 2009, pp. 81-90. 
15. H. Askes, B.Wang and T. Bennett, J. Sound Vibr. 314, 650-656 (2008).  

 
 
 
 



Publication VI

M.Berezovski, A.Berezovski, J.Engelbrecht
Waves in materials with microstructure: numerical simulation,
Proc. Estonian Acad. Sci., 2010.(accepted)





Proceedings of the Estonian Academy of Sciences,

doi:

Available online at www.eap.ee/proceedings

Waves in materials with microstructure: numerical simulation

Mihhail Berezovski∗, Arkadi Berezovski, Jüri Engelbrecht
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Abstract. Results of numerical experiments are presented in the paper in order to compare direct numerical calculations of

wave propagation in a laminate with prescribed properties and corresponding results obtained for an effective medium with the

microstructure modeling. These numerical experiments allowed us to analyze advantages and weaknesses of the microstructure

model.
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1. Background: Microstructure modelling

It is well known that the presence of a microstructure leads to the dispersion of waves propagating in

the medium. The most general dispersive wave equation in one dimension is presented by Engelbrecht et al.

(2005) based on the Mindlin theory of microstructure

utt = c2uxx +
C
B

(
utt − c2uxx

)
xx −

I
B

(
utt − c2uxx

)
tt −

A2

ρ0B
uxx, (1)

where u is the displacement, c is the elastic wave speed, ρ0 is matter density, A,B,C, and I are coefficients

defined later; subscripts denote derivatives.

More particular cases of the dispersive wave equation can be found in papers by Santosa and Symes

(1991); Maugin (1995, 1999); Wang and Sun (2002); Fish et al (2002); Engelbrecht and Pastrone (2003);

Metrikine (2006).
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As shown in (Engelbrecht et al., 2005), Eq. (1) is equivalent to the system of two equations of motion

(Engelbrecht, Cermelli and Pastrone, 1999)

ρ0
∂ 2u
∂ t2 =

∂σ
∂x

, (2)

I
∂ 2φ
∂ t2 =−∂η

∂x
+ τ, (3)

where the macrostress σ , the microstress η , and the interactive force τ are defined as derivatives of the free

energy function

σ =
∂W
∂ux

, η =−∂W
∂φx

, τ =−∂W
∂φ

, (4)

and the quadratic free energy dependence holds

W =
ρ0c2

2
u2

x +Aφux +
1
2

Bφ2 +
1
2

Cφ2
x +

1
2

Dψ2. (5)

Here c is the elastic wave speed, as before, A,B,C, and D are material parameters, φ and ψ are dual internal

variables (Ván, Berezovski, and Engelbrecht, 2008).

Due to the definitions (4) and (5), the equations of motion both for macroscale and for microstructure

can be represented in the form, which includes only primary internal variable

utt = c2uxx +
A
ρ0

φx, (6)

Iφtt =Cφxx −Aux −Bφ, (7)

where I = 1/(R2D) and R is an appropriate constant.

In terms of strain and particle velocity, Eq. (6) can be rewritten as

ρ0vt = ρ0c2εx +Aφx. (8)

The particle velocity and the strain are related by the compatibility condition

εt = vx, (9)

which forms the system of equations for these two variables. Similarly, introducing microvelocity w as

follows:

φt = wx, (10)

which is the compatibility condition at the microlevel, we see immediately from Eqs. (7) and (10) that

Iwtx =Cφxx −Aε −Bφ. (11)
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Integrating the latter equation over x, we arrive at (with the accuracy up to arbitrary constant)

Iwt =Cφx −
∫

(Aε +Bφ)dx. (12)

Thus, we have two coupled systems of equations (8), (9) and (10), (12) for the determination of four un-

knowns: ε ,v,φ , and w.

The goal of this paper is to examine the validity of the microstructure model. This is achieved by means

of the comparison of the results of numerical simulations of a pulse propagation performed by using the

microstructure model with the corresponding results of the pulse propagation in a medium with known

heterogeneity properties (here referred to as comparison medium).

Next Section is devoted to the description of the high-resolution wave propagation algorithm for the

solution of the coupled system of equations (8), (9) and (10), (12). Then the results of numerical simulations

for test problems are presented both for microstructured and for comparison media. In last Section, the

conclusions are given.

2. Numerical algorithm

2.1. Local equilibrium approximation

Wave propagation in solids is characterized by the values of velocity of the order of 1000 m/s. The

corresponding characteristic time is of the order of hundreds or even tens of microseconds, especially in the

impact induced events. It is difficult to expect that the corresponding states of material points during such

fast processes are equilibrium ones. The hypothesis of local equilibrium is commonly used to avoid the

troubles with non-equilibrium states.

The splitting of the body into a finite number of computational cells and averaging all the fields over

the cell volumes leads to a situation, which is known in thermodynamics as “endoreversible system” (Hoff-

mann, Burzler and Schubert, 1997). This means that even if the state of each computational cell can be

associated with a corresponding local equilibrium state (and, therefore, temperature and entropy can be de-

fined as usual), the state of the whole body is a non-equilibrium one. The computational cells interact with

each other which leads to the appearance of excess quantities (Muschik and Berezovski, 2004) which are

introduced here both for macro- and microfields

σ = σ̄ +Σ v = v̄+V, φ = φ̄ +Φ, w = w̄+Ω. (13)

Here an overbar denotes averaged quantities, Σ is the excess stress, V is the excess velocity, Φ is the excess

microstress, and Ω is the excess microvelocity, respectively.
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Integrating Eqs. (8) and (9) over a computational cell, we have, respectively,

ρ0
∂
∂ t

∫ xn+1

xn

vdx = σ̄n +Σ+
n +Aφ̄n +AΦ+

n − σ̄n −Σ−
n −Aφ̄n +AΦ−

n

= Σ+
n −Σ−

n +AΦ+
n −AΦ−

n ,

(14)

∂
∂ t

∫ xn+1

xn

εdx = v+n − v−n = v̄n +V+
n − v̄n −V−

n =V+
n −V−

n . (15)

Here σ = ρ0c2ε , and superscripts ”+” and ”-” denote values at right and left boundaries of the cell, respec-

tively.

Determining the average quantities

v̄n =
1

∆x

∫ xn+1

xn

v(x, tk)dx, ε̄n =
1

∆x

∫ xn+1

xn

ε(x, tk)dx, (16)

we can construct a first-order Godunov-type scheme for the system of Eqs. (8) and (9) in terms of excess

quantities

(ρ v̄)k+1
n − (ρ v̄)k

n =
∆t
∆x

(
Σ+

n −Σ−
n
)
+A

∆t
∆x

(
Φ+

n −Φ−
n
)
, (17)

ε̄k+1
n − ε̄k

n =
∆t
∆x

(
V+

n −V−
n
)
, (18)

by the finite difference approximation of time derivatives. Here the superscript k denotes time step, the

subscript n denotes the number of computational cell, ∆t and ∆x are time step and space step, respectively.

2.2. Excess quantities at the boundaries between cells

Though excess quantities are determined formally everywhere inside computational cells, we need to

know their values only at the boundaries of the cells, where they play the role of numerical fluxes.

The values of excess quantities are determined from the jump relations providing the continuity of full

stresses and velocities at boundaries between computational cells (cf. Berezovski and Maugin (2004))

[[σ̄ +Σ+A(φ̄ +Φ)]] = 0, (19)

[[v̄+V ]] = 0. (20)

where [[A]] = A+−A− denotes the jump of the enclosure at the discontinuity, A± are the uniform limits of A

in approaching the discontinuity from the ± side.

The values of excess stresses and excess velocities at the boundaries between computational cells are not

independent. They relate each other at the cell boundary as follows (Berezovski, Engelbrecht and Maugin,

2008):

ρncnV−
n +Σ−

n ≡ 0, (21)
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ρn−1cn−1V+
n−1 −Σ+

n−1 ≡ 0. (22)

As it is shown (Berezovski, Engelbrecht and Maugin, 2008), the excess quantities following from non-

equilibrium jump relations at boundaries between computational cells correspond to the numerical fluxes in

the conservative wave-propagation algorithm (Bale et.al, 2003). Therefore, the numerical scheme (17) - (22)

is the reformulation and generalization of this algorithm in terms of excess quantities. The advantages of

the wave-propagation algorithm are high-resolution (LeVeque, 1997, 2002) and the possibility for a natural

extension to higher dimensions (Langseth and LeVeque, 2000).

2.3. Excess quantities for internal variables

Since the system of equations (8), (9) and (10), (12) are coupled, we need to solve the system of equa-

tions for internal variables (10), (12) simultaneously. Representing the mentioned system of equations in

the form

φt = wx, (23)

Iwt =

(
Cφ −

∫ ∫
(Aε +Bφ)dx2

)
x
, (24)

we can construct the corresponding numerical scheme similarly to the case of macromotion

φ̄k+1
n − φ̄k

n =
∆t
∆x

(
Ω+

n −Ω−
n
)
, (25)

(Iw̄)k+1
n − (Iw̄)k

n =
C∆t
∆x

(
Φ+

n −Φ−
n
)
, (26)

where, in its turn, the values of the corresponding excess quantities are determined from the jump relations

at boundaries between computational cells

[[
C(φ̄ +Φ)− (Aε +Bφ)∆x2]]= 0, (27)

[[w̄+Ω]] = 0, (28)

accompanied with the Riemann invariants conservation

c1 Φ+
n−1 −Ω+

n−1 ≡ 0, (29)

c1 Φ−
n +Ω−

n ≡ 0, (30)

where a characteristic velocity for microstructure, c1, is introduced by C = Ic2
1.
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2.4. Second order corrections

We can improve the accuracy of the algorithm by introducing second-order correction terms (LeVeque,

2002), which also can be represented in terms of excess quantities both for the macromotion

FI
i =

1
2

(
1− ∆t

∆x
ci

)
(V+

i−1 +V−
i ), FII

i =
1
2

(
1− ∆t

∆x
ci

)
(Σ+

i−1 +Σ−
i ), (31)

and for the microstructure

GI
i =

1
2

(
1− ∆t

∆x

√
C/I

)
(Ω+

i−1 +Ω−
i ), GII

i =
1
2

(
1− ∆t

∆x

√
C/I

)
(Φ+

i−1 +Φ−
i ). (32)

The corresponding Lax-Wendroff schemes have the form

(ρ v̄)k+1
n − (ρ v̄)k

n =
∆t
∆x

(
Σ+

n −Σ−
n
)
− ∆t

∆x

(
FII

n+1 −FII
n
)
+A

∆t
∆x

(
Φ+

n −Φ−
n
)
−A

∆t
∆x

(
GII

n+1 −GII
n
)
, (33)

ε̄k+1
n − ε̄k

n =
∆t
∆x

(
V+

n −V−
n
)
− ∆t

∆x

(
FI

n+1 −FI
n
)
, (34)

for the macromotion and

φ̄k+1
n − φ̄k

n =
∆t
∆x

(
Ω+

n −Ω−
n
)
− ∆t

∆x

(
G′I

n+1 −G′I
n

)
, (35)

(w̄)k+1
n − (w̄)k

n =
∆t
∆x

(
Φ+

n −Φ−
n
)
− ∆t

∆x

(
GII

n+1 −GII
n
)
, (36)

for the microstructure.

2.5. Results of numerical simulations

As a test problem, the one-dimensional propagation of a pulse is considered. The case of a comparison

medium is analyzed first. In this case, the specimen is assumed homogeneous except of a region of length

d, where periodically alternating homogeneous layers of size l are inserted (Fig. 1a).

The density and longitudinal velocity of the main specimen material are chosen as ρ = 4510 kg/m3 and

c = 5240 m/s, respectively. The corresponding parameters for the material of the inhomogeneity layers are

ρ1 = 2703 kg/m3 and c1 = 5020 m/s, respectively. Initially, the specimen is at the rest. The shape of the

pulse before the crossing of the inhomogeneity region is formed by an excitation of the strain at the left

boundary for an limited time period (0 < t < 100∆t)

ux(0, t) = (1+ cos(π(t −50∆t)/50). (37)

The length of the pulse is λ = 100∆x. Arrows in Fig. 1 show the direction of the pulse propagation. We

consider different cases of the size of inhomogeneity, namely l = 8∆x,16∆x,32∆x,64∆x,128∆x. The pulse
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Fig. 1. Geometry of a test problem.

holds its shape up to the entering into the inhomogeneity region. After the interaction with the periodic

multilayer, the single pulse is modified because of the successive reflections at each interface between the

alternating layers.

Alternatively, the same pulse propagation was simulated by the microstructured model (8) - (12) (Fig.

1b) with the modified sign of the internal interaction force. This means that the equation (12) is replaced by

Iwt =Cφx +

∫
(Aε +Bφ)dx. (38)

In these calculations of the pulse propagation, the value of the internal length for the microstructure is

kept the same as the size l of periodic layer, as well as density and sound velocity for inhomogeneities:

I = ρ1,C = Ic2
1. The result of the comparison of pulse propagation in laminated and microstructured media

is shown in Fig. 2 for the value of the size of inhomogeneity l = 8∆x. The values of coefficients in the

microstructure model are chosen in such a way that location and amplitude of resulting pulses are as close

as possible, which leads to the value A = 19ρc2 in the considered case. The length of the pulse λ = 100∆x

is much larger than the size of inhomogeneity, and the influence of the microstructure is rather small one.

Continuing the calculations we vary the size of inhomogeneity to l = 16∆x and 32∆x. The corresponding

results are presented in Figs. 3 and 4. Again, the values of the coefficients in the microstructure model were

adjusted to keep the location and amplitude of the leading pulse: A = 97ρc2 and A = 147ρc2 for l = 16∆x

and 32∆x, respectively. As we can see, the model is able to reproduce the leading pulse change, but fails in

the description of the tail.

Up to now, the size of inhomogeneity was less than the length of the initial pulse. We performed also
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Fig. 2. Transmitted pulse at the inhomogeneity size l = 8∆x.

numerical experiments where this size is comparable with the length of the pulse: l = 64∆x and 128∆x.

The corresponding results are presented in Figs. 5 and 6 with the values A = 665ρc2 and A = 2059ρc2,

respectively. As one can see, if the inhomogeneity size is comparable with the initial pulse length, the ability

of the model to reproduce the leading pulse shape is improved. The variation of the coefficient A in the

computed microstructure model may be conjectured as related to the variation of the size of inhomogeneity.

However, no straightforward relation is observed. As known from theoretical considerations (Engelbrecht

et al., 2005), the ratio of the length of the pulse to the scale of the microstructure plays an important role. In

terms of dispersion analysis, the problem is related to the difference of dispersion curves. In our calculations

the inhomogeneity size is varied according to 2n,n = 3, ...,7, while the length of the initial pulse remains

unchanged. This means that we step over from one dispersion curve (for small ratio of the inhomogeneity

size to the length of the pulse) to another one (for the ratio of the order of unity). It seems that for limiting

cases of the ratio, the value of A/ρc2 is approximately proportional to 3n, whereas this is not the case

for intermediate values (the most illustrative case corresponds to the value l = 32∆x). The corresponding

value of the coefficient B is determined by means of the shift of the location of the leading pulse: B =

A2/(ρc2(1−α2)), where α is the value of the Courant number used in the calculation.

3. Conclusions

Numerical simulations of a pulse propagation in a laminated medium and in a medium with microstruc-

ture were performed to compare the results in order to check the validity of the microstructure model. Mate-
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Fig. 3. Transmitted pulse at the inhomogeneity size l = 16∆x.
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Fig. 4. Transmitted pulse at the inhomogeneity size l = 32∆x.
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Fig. 5. Transmitted pulse at the inhomogeneity size l = 64∆x.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4100  4200  4300  4400  4500  4600  4700  4800  4900  5000

N
or

m
al

iz
ed

 s
tr

es
s

Space steps

Pulse in a periodic medium
Pulse in a medium with microstructure

Fig. 6. Transmitted pulse at the inhomogeneity size l = 128∆x.
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rial properties and the characteristic lengths used in calculations were chosen correspondingly to match both

cases. The comparison of the results of numerical simulations shows that the coefficients in the improved

microstructure model can be adjusted to achieve the accordance of the amplitude and location of the leading

transmitted pulses in both cases. This means that the microstructure model is able to describe the wave

propagation in complex media. At the same time, it is clear that the influence of the shape and orientation

of inclusions needs to be investigated in the framework of two-dimensional formulation.
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Deformatsioonilained mikrostruktuuriga materjalides: numbriline analüüs

Mihhail Berezovski, Arkadi Berezovski, Jüri Engelbrecht

Lainelevi modelleerimiseks mikrostruktuuriga materjalides on sobiv kasutada Mindlini mudelit, milles

olulist rolli omab interaktsioon makro- ja mikrostruktuuri vahel. Kui mikrostruktuur on determineeritud

nii nagu kihilistes komposiitmaterjalides, saab lainelevi kirjeldamiseks kasutada klassikalist homogeense

materjali mudelit, kuid arvestada tuleb peegeldustega piirpindadelt. Käesolevas artiklis on kasutatud nimetatud

mudelite analüüsiks lõplike mahtude meetodit ja võrreldud laineprofiile erinevate mudelite ja erinevate mas-

taabitegurite ja kihtide geomeetria puhul. Analüüsist selgub interaktsioonitegur, mis seob Mindlini mudelis

makro- ja mikrostruktuuri. On näidatud, et see tegur sõltub lainepikkuse ja mastaabiteguri (determineeritud

mudelis kihi paksuse) suhtest.
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