
Model Based Framework for
Distributed Control and Testing of

Cyber-Physical Systems

AIVO ANIER

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C115

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

This dissertation was accepted for the defence of the degree of
Doctor of Philosophy in Computer Science on July 27th, 2016.

Supervisor: Prof. Jüri Vain
Department of Computer Science
Tallinn University of Technology, Estonia

Opponents: Prof. Juha Röning, Ph.D.
Infotech Oulu and Department of Electrical and
Information Engineering
University of Oulu, Finland

Prof. Ivan Porres, Tk.D.
Computer Engineering at the Faculty of Natural Sciences
and Technology
Abo Akademi University, Finland

Defence of the thesis: August 30th, 2016

Declaration: Hereby I declare that this doctoral thesis, my original inves-
tigation and achievement, submitted for the doctoral degree at Tallinn Uni-
versity of Technology has not been submitted for any academic degree.

Aivo Anier

Copyright: Aivo Anier, 2016
ISSN: 1406-4731
ISBN: 978-9949-23-995-5 (publication)
ISBN: 978-9949-23-996-2 (PDF)

INFORMAATIKA JA S TEHNIKA C115ÜSTEEMI

Mudelipõhine raamistik küber-füüsikaliste
süsteemide hajusjuhtimiseks ja -testimiseks

AIVO ANIER

Contents

List of Publications 9

List of Abbreviations 11

List of Figures 13

List of Algorithms 17

1 Introduction 17
1.1 Cyber-physical systems . 17

1.1.1 Design challenges of CPS 18
1.2 Motivation . 20

1.2.1 Application of formal methods in CPS design 20
1.3 Scope of thesis . 21
1.4 Goals . 27
1.5 Methodology . 27
1.6 Contribution . 29
1.7 Thesis Structure . 29

2 Preliminaries 31
2.1 Chapter overview . 31
2.2 Models for time-dependent concurrent systems 31

2.2.1 The taxonomy of models 31
2.2.2 Uppaal timed automata 37
2.2.3 Semantics of the UPPAAL model 40
2.2.4 UPTA property speci�cation language TCTL 41

2.3 Implementation and conformance relations of timed models . . 43
2.3.1 TCTL Model Checking 44
2.3.2 IOCO testing of timed systems 49

2.4 Summary . 57

3 Provably correct development of delta-tests 59
3.1 Chapter overview . 59
3.2 Introduction . 59
3.3 Correctness of IUT Models . 60

3.3.1 Modelling Timing Aspects of IUT 60
3.3.2 Correctness Conditions of IUT Models 63

3.4 Correctness of testers . 66
3.4.1 Functional Correctness of Tests 66
3.4.2 Invariance of Tests with Respect to Changing Time Con-

straints of IUT . 68
3.5 Correctness of test deployment 70

5

3.6 Summary . 71

4 Model learning 73

4.1 Chapter overview . 73
4.2 Background . 73

4.2.1 Human-Robot interaction learning 74
4.2.2 Learning from network tra�c monitoring logs 75

4.3 Timed automata learning: related work 76
4.4 Contribution: Unsupervised learning of Uppaal timed automata 78

4.4.1 Learning with asynchronous communication assumption 78
4.4.2 Learning with synchronous communication assumption . 83
4.4.3 Case-study 1: Learning surgeon and scrub nurse collab-

orative motions . 88
4.4.4 Case study 2: model learning for performance testing of

IEEE1394 protocol . 91
4.5 Summary . 95

5 Model execution environment DTRON 97

5.1 Chapter overview . 97
5.2 General design context . 97
5.3 Functional subsystems: Uppaal TRON 99

5.3.1 Background . 99
5.3.2 Limitations of Uppaal TRON 103

5.4 DTRON design considerations 105
5.4.1 DTRON overview. 105
5.4.2 Project setup with Apache Maven 106
5.4.3 Spread toolkit . 110
5.4.4 Google Protobuf . 113
5.4.5 Architecture . 115
5.4.6 Domain model (API) . 117
5.4.7 Distributed execution 119
5.4.8 Selenium . 120

5.5 Summary . 123

6 Performance evaluation 125

6.1 Chapter overview . 125
6.2 Introduction . 125
6.3 Experimental setup for performance evaluation 125
6.4 The results of evaluation experiments 126
6.5 Summary . 130

6

7 Case studies 133
7.1 Chapter overview . 133
7.2 Scrub Nurse Robot . 133

7.2.1 Robot control software JSNR 134
7.2.2 Model based API . 136
7.2.3 Results and conclusions 137

7.3 Tartu city light controller project 138
7.3.1 Background . 138
7.3.2 Protocol . 139
7.3.3 Adapters . 141
7.3.4 Model . 144

7.4 Summary . 146

8 Conclusions and future work 147
8.1 Main results . 147
8.2 Future work . 149
8.3 Concluding remarks . 149

Abstract 151

Kokkuvõte 153

Acknowledgements 155

Curriculum vitae 156

Appendix I: Timed automata based provably correct robot con-
trol 159

Appendix II: Human-Robot Interaction Learning Using Timed
Automata 165

Appendix III: Supervised Training of Voting Automata for the
Surgeon-s Motion 173

Appendix IV: Model based continual planning and contro for
assistive robots 181

Appendix V: Provably Correct Test Generation for Online Test-
ing of Timed Systems 187

References 203

7

List of Publications

The work of this thesis is based on the following publications included in the
Appendices, with author's contributions:

1. Anier, Aivo; Vain, Jüri (2010). Timed automata based provably
correct robot control. BEC 2010 : 12th Biennial Baltic Electronics
Conference, [Proceedings : Tallinn University of Technology, October 4-
6, 2010, Tallinn, Estonia]. [S. l.]: IEEE, 201=204.

The author designed and implemented the Scrub Nurse Robot control
software. The robot general concept and hardware platform was devel-
oped earlier as a result of cooperation between TTU and Tokyo Denki
University (TDU). The author spent two months in internship at TDU
for better understanding of the project and the hardware used. The au-
thor prepared and presented the paper at 12th Biennial Baltic Electronics
Conference (BEC) summarizing a 3-year work.

2. Vain, J., Miyawaki, F., Nõmm, S., Totskaya, T., & Anier, A. (2009, Au-
gust). Human-robot interaction learning using timed automata.
In ICCAS-SICE, 2009 (pp. 2037-2042). IEEE.

The author participated in the development of the learning algorithm
and laboratory setup for human-robot interaction learning. He designed
and implemented an integration software for automated passive infrared
camera based 3D measurement system (3DMS) to record and replay
the motion capture inputs for the learning algorithm. This resulted in a
uni�ed platform for the TDU capture system, Tallinn University of Tech-
nology 3DMS and o�ine use without the expensive laboratory setup.

3. Vain, J; Miyawaki, F.; Nõmm, S.; Totskaya, T.; Anier, A. (2009). Human-
robot interaction learning using timed automata. ICCAS-SICE
2009 : ICROS-SICE International Joint Conference 2009, Fukuoka City,
Japan, August 18-21, 2009, Proceedings. Tokyo: IEEE/SICE, 2037=2042.

The author participated in the development of voting automata train-
ing by contributing with the upgrading of integration software described
for the previous paper (Human-robot interaction learning using timed
automata).

4. Anier, A.; Vain, J. (2012). Model based continual planning and
control for assistive robots. HEALTHINF 2012 : Proceedings of
the International Conference on Health Informatics, Vilamoura, Algarve,
Portugal, 1 - 4 February, 2012. Ed. Conchon, Emmanuel; Correia, Car-
los Manuel B.A.; Fred, Ana L.N.; Gamboa, Hugo. SciTePress, 382=385.

9

The author re-designed and re-implemented previous work to generalize
the software and apply it for distributed testing (later named DTRON).
The results were a part of Competence Centre in Electronics, Info and
Communication Technologies (ELIKO) sub-project. The author pre-
pared and presented the paper at International Conference on Health
Informatics.

5. Vain, Jüri; Anier, Aivo; Halling, Evelin (2014). Provably correct test
development for timed systems. Databases and Information Systems
VIII : Selected Papers from the Eleventh International Baltic Conference,
Baltic DB&IS 2014. Ed. Haav, Hele-Mai; Kalja, Ahto; Robal, Tarmo.
Amsterdam: IOS Press, 289=302. (Frontiers in Arti�cial Intelligence
and Applications; 270).

The author participated in preparing the paper by adding the test de-
velopment and related to that latency monitoring features to DTRON,
also by deriving the test deployment correctness veri�cation criteria

Publications not included

1. Kirt, T., & Anier, A. (2006, October). Self-organization in Ad Hoc
Wireless Networks. In Electronics Conference, 2006 International
Baltic (pp. 1-4). IEEE.

2. Jüri Vain, Evelin Halling and Gert Kanter, Aivo Anier, Deepak Pal.
Model-based testing of real-time distributed systems. Databases
and Information Systems. International Baltic Conference, Baltic DB&IS
2016, Riga. (pp. 1-14). (accepted for publication)

10

List of Abbreviations

CPS Cyber-Physical Systems

DI Dependency Injection (programming pattern and -frameworks)

DOF Degree Of Freedom

DTRON Distributed Testing Realtime systems Online

EFSM Extended Finite State Machine

ELIKO Competence Centre in Electronics , Info and
Communication Technologies

FIFO First-In-First-Out

HRI Human-Robot Interaction learning

IEEE1394 aka. FireWire interface standard

IOCO Input-Output Conformance relation

IOTS Input-Output Transition System

IUT Implementation Under Test

JSNR Java Scrub Nurse Robot (a predecessor of DTRON, built for SNR)

LTL Linear Temporal Logic

LTS Labelled Transition System

MB Model-Based

MBC Model-Based Control

MBD Model-Based Design

MBT Model-Based Testing

NTA Network of Timed Automata

PCD Provably Correct Development

PCO Point of Control and Observation

PTA Probabilistic Timed Automata

RPT Reactive Planning Tester

11

RPT Reactive Planning Tester

RT-IOCO Real-time Input-Ouput Conformance relation

SCM Source Code Management

SNR Scrub Nurse Robot

SR Strong Responsiveness

SUT System Under Test

TA Timed Automata

TAIO Timed Input-Output Automata

TCTL Timed Computation Tree Logic

TDU Tokyo Denki University

TIOTS Timed Input-Output Transition System

TRON Uppaal TRON (Testing Realtime systems Online)

TS Transition System

TUT Tallinn University of Technology

UPTA Uppaal Timed Automata

12

List of Figures

1.1 Comparison of development processes: a) Model-based robot
control b) Model-based testing. 22

1.2 The process of Model-Based Testing.[1] 23
1.3 Provably correct MBT work�ow. 23
1.4 Conceptual view of the model-based control architecture.[2] . . 26
1.5 Conceptual view of the model-based testing architecture[3]. . . 26
2.1 Complexity of the model-checking algorithms and satis�ability

checking.[4] . 34
2.2 EFSM . 37
2.3 TCTL[5] . 43
2.4 LTS notation. 51
2.5 Nondeterministic automaton. 51
2.6 LTS parallel composition. 52
3.1 Elementary modelling fragment "Action". 61
3.2 An example of well-formed IUT model. 63
3.3 Synchronous parallel composition of IUT and canonical tester

models. 64
3.4 Input-enabled model fragment. 65
3.5 Synchronous parallel composition of IUT and tester automata. 68
4.1 SNR high-level learning architecture. 75
4.2 i/o con�guration of Surgeon-Nurse interaction (self-loops denote

self-dependencies). 89
4.3 Parallel composition of Surgeon's and Nurse's TAIO learned

from event history of Figure 4.1 90
4.4 IEEE1394 test case: data �ow between nodes. 92
4.5 A selection of logs of monitoring network con�guration of Figure

4.4 . 93
4.6 Model of IEEE1394 leader election protocol constructed by Al-

gorithm 4.1. 94
5.1 Uppaal TRON Adapter class. 102
5.2 Uppaal TRON Reporter class extract. 103
5.3 Simple robotic joint movement with Uppaal TRON. 103
5.4 Full list of dependencies generated with mvn dependencies:tree. 107
5.5 Maven pom.xml con�guration to use DTRON. 108
5.6 Serialization benchmark.[6] . 114
5.7 DTRON Protobuf protocol de�nition. 115
5.8 DTRON runtime data �ow. 115
5.9 Pre�xed model. 116
5.10 DtronListener . 117
5.11 Domain model. 118
5.12 Component diagram. 119

13

5.13 Distributed testing data-�ow in DTRON. 119
5.14 Basic �login� test adapter. 122
5.15 Simple model for Selenium testing. 123
6.1 Ticker UPTA model. 126
6.2 Experiment setup data �ow (architecture). 126
6.3 Latency results. 127
6.4 Eager UPTA at 5ms. 128
6.5 Anomaly at 1.02ms. 128
6.6 Aggregated latency results comparing �computation time� against

latency. 130
6.7 Aggregated latency using nanoSleep(). 131
7.1 �MICHAEL� revision of the SNR. 134
7.2 JSNR domain model. 135
7.3 JSNR screenshot. 136
7.4 ShoulderHeight model. 136
7.5 Reaching. 137
7.6 Extended model based control architecture for multi-robot sys-

tems. 138
7.7 Light-controller project deployment model. 139
7.8 Example Base64 encoded state string for controller ID 10002. . 140
7.9 Tartu city light-controller web user interface. 140
7.10 Example adapter class for performing a �login�. 143
7.11 Light-controller UPTA model. 145
7.12 Multi-user deployment model. 145

14

List of Algorithms

2.1 Algorithm (basic idea)[4] . 45
2.2 Main steps of TCTL model checking[4]. 48
3.1 Checking strong responsiveness. 66
4.1 Learning Uppaal TA with asynchronous communication assump-

tion. 81
4.2 Learning Uppaal TA with synchronous communication assump-

tion. 86

15

1 Introduction

This thesis presents results on developing the DTRON framework to automa-
tize model based control and testing of time critical applications. This section
presents the background and motivation of thesis, de�nes the scope of research,
postulates the research goals and �nally presents the main contributions and
the thesis structure.

DTRON relies on Uppaal model checking tool [7] and on-line test execu-
tion tool TRON [3], extending these tools by enabling coordination and syn-
chronization of distributed components and providing a consistent API based
on standard Java technology. The research focus of the thesis is veri�able
modelling, and execution of models to enable provably correct on-line testing,
model-based control and monitoring in robotic applications.

This work was originally motivated by the Scrub Nurse Robot project [8]
where human adaptive control scenarios and on-line safety monitoring were
main design concerns. The same design principles and technical solutions later
appeared to be relevant also for remote and distributed testing of web-based
applications as demonstrated in a street light control software testing case-
study.

The novel ideas of DTRON framework design revealed also extension oppor-
tunities for its application in broader class of Cyber-Physical Systems capitaliz-
ing on dynamic recon�guration, self-calibration depending on the dynamic de-
lay estimates of the deployment con�guration, and on-the-�y feasibility checks
of models used in control and testing applications.

The author of thesis believes that the ideas presented in thesis contribute
also to improve the practical development processes of broader class of indus-
trial scale time critical Cyber-physical systems.

1.1 Cyber-physical systems

A cyber-physical system (CPS) is a system of collaborating computational
elements controlling physical entities [9]. Contemporary CPS integrate com-
putation with physical processes. CPS combines a cyber side (computing and
networking) with a physical side (e.g., mechanical, electrical, and chemical pro-
cesses). Such systems present the biggest challenges and biggest opportunities
in several critical industrial segments such as electronics, energy, automotive,
defence and aerospace, telecommunications, instrumentation, and industrial
automation [10].

Applications of CPS include high con�dence medical devices and systems,
tra�c control and safety, autonomous automotive systems, process control,
environmental control, avionics, (smart energy grids and communications sys-
tems for example), tele-medicine, defence systems, manufacturing, and smart
structures and other. The positive economic impact of any one of these ap-

17

plications areas is hard to overestimate. On the other hand, the development
costs of CPS and the risk of having quality de�ciencies in the software increase
at least proportionally with the complexity growth of CPS software.

1.1.1 Design challenges of CPS

In [11] it is stated that governing the complexity and design correctness is-
sues of large-scale CPS software requires major advancement in algorithmic
techniques. The same applies to methodologies and tools that address the
problems of intrinsic concurrency and timing constraints over large spectrum
of CPS time scale heterogeneous architectures. The most widely used network-
ing techniques today introduce a large extent of variability in timing, safety,
performance, security etc.

The systems will be unable to bene�t from the variety of technology im-
provements without redoing the (extremely expensive) validation and certi�-
cation of the software. Evidently, the CPS design concerns such as design opti-
mality and functional e�ciency are more and more paired with predictability.
Predictability is di�cult to achieve without relevant level of abstraction that
extracts only the features of concern and their interactions and hides irrelevant
details. One of the most radical transformations comes from the networking of
feature-rich system components. Therefore, bench testing and encasing with-
out exhaustive formal veri�cation become inadequate for evolving networked
CPSs.

It becomes impossible to test the software under all possible conditions or
guarantee satisfaction of control goals when the design descriptions lack ade-
quate information about these features. Moreover, general-purpose network-
ing techniques themselves make program behaviour much more unpredictable.
While features of functionality have gained major attention in CPS design,
achieving the predictable timing in the face of such openness remains still se-
rious technical challenge. The authors of [12, 13] have come to the conclusion
that CPS software quality and software process productivity issues can be
addressed properly by model-based techniques and the tools that operate on
relevant level of abstraction. Only this can make the automated analysis and
synthesis of CPS software regarding timing, concurrency and resource sharing
aspects rigorous, tractable and comprehensible. As for the general character-
istics of CPS software frameworks, author of [14] outlines following:

· Modularity that allows complex software to be manageable for the pur-
pose of implementation and maintenance. The logic of partitioning may
be based on related functions, implementation considerations, data links,
or other criteria.

· Distributed Resource Sharing. Failure to properly resolve resource con-
tention problems of distributed services may result in a number of prob-

18

lems, including deadlock, live-lock, and domino e�ect like dropping o�
services.

· Openness with many facets, including among others :

� con�gurability, i.e. making changes to the basic look or feel or
behaviour of the software;

� extendibility, i.e. adding functionality to the software that was not
in the original distribution. This is usually done via the software's
plug-in structure and parametrization of functions;

� interoperability, i.e. the ability to work with other programs over a
network, using, e.g. a robust API, Open Network Protocol or Open
Network Interface.

· Scalability, e.g. a web application that runs in an application server may
have the number of executable lines of code easily thousands - not to
mention concurrency issues; scaling this up to clustered environments
like high availability deployments and clouds, it is likely to grow out of
comprehension.

· Maintainability, that is a measure of the ease and rapidity with which
a system or equipment can be restored to operational status following a
failure.

· Fault Tolerance, distributed CPS must maintain availability even at
low levels of hardware/software/network reliability. Fault tolerance is
achieved by recovery and redundancy.

· Transparency [15], i.e. distributed CPS should be perceived by users
and application programmers as a whole rather than as a collection of
cooperating components.

· Self-monitoring, it is an ability to monitor the correctness of online per-
formance, detect malfunction and faults, recover, etc.

· Model based high level user interfaces and operation control.

Most of these qualities apply to sub-classes of CPS such as multi-robot systems
and networked control systems or industry automation software frameworks,
e.g. UA OPC framework [16], ControlShell, IBM Rhapsody, NEXUS [17],
PTIDES [18], etc. In addition to listed generic properties, the CPS software
frameworks being used in industry must also have strong practical value in
terms of reliability, adequate price, ease of use by software analysts/engineers,
scalability and compatibility with main stream software technologies and stan-
dards.

19

1.2 Motivation

The general goal of thesis is to develop an adequate execution framework and
toolchain for improving the quality of CPS software and related development
processes by relying on state-of-the-art formal methods and software technolo-
gies.

1.2.1 Application of formal methods in CPS design

There is extensive e�ort and long history of applying formal methods for soft-
ware synthesis and correctness veri�cation dating back to 1960s. Deductive
veri�cation [19] presumes that the program is annotated with formalized re-
quirements (pre-, post conditions, invariants, variants) and then using proof-
assistants to (semi-) automatically show the requirements are satis�ed.

Abstract interpretation based static analysis [20] is built on abstract do-
main and �x-point theories. Static analysis, which automatically infers dy-
namic properties of computer systems, has been successful in last years to
automatically verify complex properties of real-time, safety critical, embedded
systems. Typical applications to static analysis are the automatic, compile-
time determination of run-time properties of programs and software veri�ca-
tion(conformance to a speci�cation).

Another group of formal methods that have been taken into practical use
in safety critical systems industry rely on model checking [4] and are often
combining model checking with symbolic constraint solving [21]. Alas, con-
temporary software industry practice shows that the industry still trusts on
testing at most [22]. In case of testing there is the real system in the veri-
�cation loop that provides higher con�dence in veri�cation results than just
formalized assertions about the implementation. Combining the advantages of
testing, planning theory and formal veri�cation led to model based testing -
the core technique the thesis is focusing on.

The other set of motivating factors of thesis has grown out from practical
assistive robotics. Speci�cally, it is the problem in human adaptive robotics
where guaranteeing the timing correctness of coordinated robot actions re-
sponsive to corresponding human action is of utmost importance [23]. This is
where it is not only su�cient for the program to provide functionally correct
behaviour, e.g. spatial trajectory, but equally important is how and when this
behaviour occurs. It cannot be either too early or too late, not to mention that
robotic applications require inherently concurrent movements of many joints
or manipulators.

For instance, consider the task of trajectory planning for a manipulator
arm having joints for 6 degrees-of-freedom. Since the joint motors are usually
activated simultaneously one has to guarantee that the manipulator does not
crash into itself. Alternatively, one could think of a mobile robot platform

20

performing simultaneous localization and mapping (SLAM). How to guarantee
that the robot does not hit an obstacle and decelerate, possibly to an emergency
stop, to avoid it?

If we put these considerations into a safety critical context like robot assisted
brain tumour surgery [24], the problem escalates to life critical one, e.g. robot
manipulator holding a sharp scalpel could easily become a serious threat to
the patient's life. Providing correctness of such human assistive robot designs
is of utmost importance.

1.3 Scope of thesis

The general context of thesis is provably correct development (PCD) of time
critical cyber-physical systems. In particular, it focuses on two types of CPS re-
lated artefacts: model-based supervisory control of assisting robots and model-
based online test of distributed CPS software.

Model based design

The �rst set of issues that de�ne the scope of thesis is related to the provably
correct model-based design (MBD) work�ow [25]. In model-based control de-
sign the development is manifested in four main steps [26] (see Figure 1.1a).
Step 1: "Modelling a plant" means in case of robot control the modelling of
behaviours observable and controllable at robot control interfaces. Step 2:
"Speci�cation of control goal" may apply di�erent forms - a set of control sce-
narios, safety constraints to be followed, the target state of plant to be reached,
etc. All of these goals need to be expressed in terms of the plant model and
its attributes. Step 3: "Controller synthesis" results in a set of control rules
or a controller model that when interfaced with plant model ensures that the
control goal will be achieved. Mapping the abstract control to the real plant
control deployment architecture requires Step 4: "Creating control adapters"
that maps the model inputs/outputs to the ones of real physical plant (in
our case of robot). And �nally, Step 5: "Executing the control con�guration"
means running the implemented control solution on the execution environment.

21

Object of development

Plant

Control

goal

Control

suite

Control

adapters

Control

con guration

Speci cation of the

control goal

Modeling a plant

Synthesizing a

controller

Creating the control

adapters and

deploying them

Executing the

deployed control

con guration

a)

Speci cation of the

testing goal

Modeling a SUT

Synthesizing a test

suite

Creating the test

adapters and

deploying them

Executing the

deployed test

con guration

b)

SUT

Testing

con guration

Testing

adapters

Testing

suite

Testing

goal

Control Testing

Figure 1.1: Comparison of development processes: a) Model-based robot con-
trol b) Model-based testing.

The model-based test development work�ow depicted in Figure 1.1b and
re�ned in Figure 1.2 follows similar steps, only the artefact to be developed is
di�erent. Instead of terms "plant", "control goal", "controller synthesis" there
are terms "System Under Test" (SUT), "test purpose", and "tester synthesis"
respectively. Similarly, both model based control and testing presume the
development of adapters that interface models with real world objects and
when the design product together with adapter is deployed they form the
executable con�guration (see Figure 1.2).

22

Figure 1.2: The process of Model-Based Testing.[1]

Though the processes outlined in 1.1 rely inherently on the notions of model
and speci�cation, in contrast to the provably correct development disciplines
[27], they do not require veri�cation of development results explicitly.

Model based testing

Therefore, the thesis unfolds the development process and considers develop-
ment steps paired with veri�cation and design correctness assurance steps as
depicted in 1.3. In the implementation of this approach the templates of veri-
�cation conditions can be derived for MBT process automatically assuming a
concrete test generation method such as for reactive planning testers [22].

SUT

modelling

Test IO
spec.

Test purpose

speci cation

Test
purpose

Tester

generation

Abstract
test case

Test

deployment

Executable
test case

Test

execution

Test
report

Diagnosis

- Veri cation

Figure 1.3: Provably correct MBT work�ow.

Another general consideration, the thesis is targeting on, is uniformness
of methods and tools needed to implement the provably correct development
processes. It means covering both the plant or SUT model construction, con-
trol/test goal speci�cation, controller/tester synthesis, control/test adapter

23

building and deployed control/test con�guration execution steps by the same
tool set.

Under these general considerations, the thesis focuses on speci�c develop-
ment steps such as modelling, deployment and execution. At �rst, the model
construction (either of a plant or SUT) is considered to be one of the most
laborious step in the MBD work�ows [28]. In the supervisory control [29] it
means the identi�cation of plant behaviour at its input/output ports. Since
the controllers used for robot action planning and control are discrete, the
high-level model of plant behaviour is typically a state machine and the mod-
elling step can be enhanced by means of automated model learning methods.
For instance, the automata learning algorithm in [30] construct the transition
relation of the model incrementally by observing the system control inputs and
the responses on its outputs. In case of Scrub Nurse Robot (SNR) the robot
has to learn the behaviour of interacting humans. It means that the sequences
of interaction learned need to be partitioned by active parties of the interac-
tion, i.e. surgeon and nurse - the surgeon whom to collaborate with later on,
and the nurse who's role has to be taken over by the robot. After learning the
interaction, the SNR responding to the surgeon's action needs to choose the
reaction from those being recorded.

Alternatively, the SUT models for model-based conformance testing are
constructed in the course of formalizing the requirements speci�cation of SUT.
Alas, the model learning can be applied here only as an assistive measure of
model construction because learning the model by observing the i/o behaviour
of SUT introduces same faults and �aws that need to be detected later by
testing. It means that after learning SUT behaviour by i/o monitoring the
model revision is needed to harmonize it with requirements speci�cation, that
can be tedious and time consuming process. Second drawback of applying
the model learning approach for constructing SUT model is that SUT itself
needs to be implemented before getting interaction logs. Therefore, instead
of learning SUT behaviour it is more feasible to learn the SUT environment
behaviour to emulate it in the test suite to achieve close as much as possible
conditions to real operational environment. An example of this application is
learning the load pro�les of requests to system services.

Deployment and execution

Finally, in the centre of gravity of thesis there are deployment and model-based
execution. These are the steps where beside formal semantics of models also
real world constraints come into play, e.g. computational and communication
deployment architecture, scheduling policy, software/ hardware jitter and im-
plementation imperfections. When executing the model-based systems, the
e�ects of such constraints and imperfections have to be addressed explicitly
and their side e�ect minimized in the �nal product.

24

The main goal in designing the deployment architectures and execution en-
vironments is to achieve that the physical execution is following the model
de�ned semantics as much as possible. When comparing the execution archi-
tectures of model-based control (MBC) (Figure 1.4) and MBT (Figure 1.5)
following similarities on the level of components architecture can be outlined:
System Under Control and the System Under Test are manipulated and their
reactions observed either by Hardware adapter and State estimator or a test
adapter ; the State control corresponds to the SUT environment emulator ; the
State knowledge represents estimate of the plant state from mission perspec-
tive whereas the Monitor (test oracle) estimates if the observed state of SUT
conforms with the state predicted by model; Model in MBC comprises the
models of the plant as well as of the controller. Similarly - TestSpec comprises
the model of implementation and its environment; Knowledge goals combined
with control goals state same as coverage criteria state in testing; Mission
Planning & Execution is analogue to test case selection and test execution
guiding functionality in MBT.

Hypothesis

Correspondence between these two development �ows and between the func-
tionality of corresponding components led to the main hypothesis of thesis.

Namely, the model execution environment capable of executing abstract mod-
els that can be re�ned by domain speci�c semantics via adapters can be easily
adapted for both the MBC and MBT.

Main functional adaptation e�ort remains only in the development of either
plant or SUT adapters, that needs to be done with each new testing/control
application per se.

25

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

State
Control

Hardware
Adapter

Mission Planning & Execution

Telemetry

System
Under
Control

Control
Goals

Report

Sense

State
Estimation

Act

Measurements
& Commands

Commands

State
Functions

State
Values

Knowledge
Goals

State
Knowledge

Models

Figure 1.4: Conceptual view of the model-based control architecture.[2]

TestSpec:
MEnv || MImp

Monitor
test oraclecov. into guiding

Selector

System
under testhints

Guiding

facts
Coverage

ad
ap

te
r

env. simulator
Emulator

Diagnostic Data

traces, verdicts

input
output

in

in
out

out

Figure 1.5: Conceptual view of the model-based testing architecture[3].

Thus, the speci�cs of the target application domain and the semantics of
formalism used for modelling set the main requirements to the operational
features of the model execution environment:

· Robot control sets requirements such as fast and deterministic response
time, the need for interfacing with standard robot software platforms
such as ROS (Robot Operating System).

· Distributed testing presumes handling issues that typically accompany
execution in distributed computational environment: true parallelism,
timing imperfections due to hardware/communication/software jitters;
in practical terms it may lead to the need for relaxing the conformance
relation between the model and SUT.

· The semantics of modelling formalism (e.g., Uppaal timed automata)

26

sets the requirements such as parallel mixed synchronous/asynchronous
execution of processes, event timing w.r.t. clock constraints etc.

· The framework implementation technology and platform sets constraints
to the framework software architecture solution.

1.4 Goals

The goal of thesis is to develop a provably correct development work�ow and
execution framework for model-based robot control and testing that addresses
the issues of concurrency, scalability and real-time constraints imposed by CPS
design models. The broader context of this research is model-based develop-
ment (MBD) paradigm and state of the art software technologies of building
MBD automation tools.

Though the results of thesis are theoretically well founded the main inten-
tion is not advancing the underlying theory of provably correct development
methods. Instead, the thesis rather capitalizes on the engineering approach by
choosing the best viable existing theory, programming technology and building
the framework with the perspective of being practically used for research as
well as for industrial software projects.

Speci�cally, the goals of the thesis are following:

1. To analyse and extract the ingredients of model-based control and -
testing theory and existing tools necessary for model-based applications
in the �eld of robot control and distributed testing of CPS.

2. To study and formulate the veri�cation conditions applicable in provably
correct model-based testing development work�ow.

3. To develop an algorithm of incremental learning of UPTA automata and
demonstrate its applicability for model-based control of human assisting
robots and conformance testing.

4. To study the aspects needed for deployment and execution of distributed
control tasks and distributed tests with time constraints in real model
execution environments.

5. To apply these results as system design requirements for developing the
prototype framework for model-based control and model-based testing
execution.

1.5 Methodology

The goals outlined in Section 1.4 presume underlying theoretical framework for
implementing the model based (MB) work�ow related tasks. The requirements

27

speci�cation and subsequent development steps need to be de�ned preferably
within the same formal semantic space. Given the speci�cs of application do-
main and tasks of MBD the Uppaal Timed Automata (UPTA) is selected due
to its expressive power and good tool support. The Uppaal tool set [7] is used
throughout the development process both for MBC and MBT. The standard
Uppaal tool includes a model editor, simulator and model checking engine for
timed computation tree logic (TCTL). For implementing the provably correct
development work�ow the templates of veri�cation conditions for MBT process
are constructed and expressed in TCTL, and thereafter discharged using Up-
paal model checker. Uppaal TRON is a testing tool, based on Uppaal engine,
suited for black-box conformance testing of timed systems, mainly targeted for
embedded software commonly found in various controllers [3].

The �rst step of the MBD work�ow - the model construction for behaviour
planning and control is implemented as an algorithm of unsupervised learning
of human-robot interaction [30]. The algorithm produces a composition of
timed i/o automata (TAIO) [31] where each automaton represents behaviour of
an interaction party. Speci�cally, the class of TAIO used is non-deterministic,
non-blocking input complete TAIO [32].

In MBT, the SUT speci�cation and its environment are also encoded in
UPTA although the model learning technique [30] as discussed above cannot
be applied directly for constructing SUT models. The requirements model for-
malises the set of requirements the system is expected to comply with. These
requirements are therefore subject to (abstract) test generation (and selection)
and checking the conformance relation between the requirements speci�cation
model and SUT, namely, if the exposed i/o behaviour conforms to that of re-
quirements model. This relation is called input-output conformance (IOCO)
relation and the input-output testing is called conformance testing. The sys-
tem under test (SUT) could be any system that is e�ectively controllable and
observable through test adapters. This would include software, but also robotic
platforms and CPS components controlled by software. An adapter is a piece
of code that acts as an interpreter between the i/o events of the model and
the SUT. An abstract event in the model possibly triggers executable code in
the SUT. This is done by transforming the abstract event to SUT executable
form in the adapter.

Though the case studies used in the thesis involve design and implementa-
tion examples of several adapters the theoretical aspects and general methodol-
ogy of building adapters is out of the scope of thesis. Still, some timing aspects
due to the adapters need to be accounted in IOCO testing of distributed CPSs.
For time critical systems the correctness of timing needs to be included in the
conformance relation, thus, applying in thesis RT-IOCO relation[33] instead of
untimed IOCO is necessary. Ideally, the RT-IOCO needs to be supported in
distributed testing but due the communication jitter and many other physical

28

factors in distributed systems the RT-IOCO testing is practically infeasible.
Therefore the thesis focuses on the notion of weaker conformance relation -
delta-testability [34]that is one of the main design consideration for execution
environment DTRON is designed for.

1.6 Contribution

Provably correct model based test development work�ow has been introduced
and veri�cation conditions necessary to assure the correctness of development
increments were outlined in the thesis. Two model learning algorithms were
developed for automatic construction of models of interaction between the sys-
tem (under test/control) and its environment and veri�able correctness criteria
were speci�ed as proof obligations suited for automatic model checking.

Main contributions of the thesis are:

· The design and implementation of distributed model-based control and
test execution framework DTRON that enables model driven execution
of robot control stacks as well as test suites of model based testing.

· �Scrub Nurse Robot� project case study on the applicability of DTRON
framework and model-based techniques and

· a case study on distributed performance testing of Tartu City street light
control system.

1.7 Thesis Structure

Chapter 1 gives the motivation, scope, main goals and the methodology of
thesis by highlighting several practical considerations the results of thesis
have to satisfy. The motivations and the scope of study sections re�ne the
domain and research scope by listing requirements for the tool support
of provably correct work �ow for test and robot control development.

Chapter 2 gives the detailed view of the underlying theory and explains dif-
ferent forms and rationale of conformance relation to be used in model
based testing and robot control.

Chapter 3 introduces provably correct test development work�ow with ver-
i�cation conditions necessary to assure the correctness of development
increments.

Chapter 4 presents two versions of a timed automata model learning algo-
rithm, one relevant for learning from recordings of human motions during
surgical procedures, the other adjusted for learning from network tra�c
monitoring logs.

29

Chapter 5 gives detailed architectural overview of the DTRON framework,
its design principles, implementation considerations.

Chapter 6 evaluates the results with a series of performance and robustness
experiments.

Chapter 7 demonstrates the applicability of the approach by describing two
representative case-studies: SNR model based control and a distributed
performance testing case study for the street light control system.

Conclusion sums up the key results of thesis and provides ideas for future
work.

Finally, the appendix lists the papers being the theoretical foundations, related
work and implementation technologies the results of thesis are built upon.

30

2 Preliminaries

2.1 Chapter overview

In this chapter the theoretical foundations of model-based robot control and
testing of time-dependent distributed systems addressed in the Section 1.3 will
be introduced. At �rst, the formal modelling alternatives are discussed from
pragmatics, taxonomy, and expressiveness point of view and their relevance is
motivated w.r.t. requirements stated in Section 1.5. Section 2.2.3 introduces
the semantics of UPTA as one of the formalisms that meets the requirements
outlined in Section 2.2. Relying on the semantics of UPTA the rigorous def-
inition of notions such as conformance, responsiveness, observability, control-
lability applied later for MBT and MBC are de�ned. Section 2.3.1 outlines
the underlying algorithmic methods for TCTL model checking, model based
conformance testing that both rely on the syntactic and semantic notations of
the UPTA that is used throughout the thesis.

2.2 Models for time-dependent concurrent systems

2.2.1 The taxonomy of models

The modelling languages are often separated into two broad classes: opera-
tional languages and descriptive languages[35]. Operational languages are well-
suited to describe the evolution of a system starting from some initial state.
Common examples of operational languages are the di�erential equations used
to describe dynamic systems in control theory, automata-based formalisms
(extended �nite-state machines, Turing machines, timed automata) and other
discrete event systems. Operational languages are based on the concepts of
state and transition (or event), so that a system is modeled as evolving from a
state to the next one when a certain transition/event occurs[36]. Descriptive
languages (also called declarative languages) are better suited to describing the
properties (static or dynamic) that the system must satisfy. Classic examples
of descriptive languages are logic-based and algebra-based formalisms[36].

For practical purposes it is common to use a combination of operational
and descriptive formalisms to model and analyze systems in a mixed-language
approach. In mixed approach, an operational language is used to represent
the dynamics of the system (i.e., its evolution), while its requirements (i.e.,
the properties that it must satisfy, and which one would like to verify in
a formal manner) are expressed in a declarative language. Model checking
techniques[37] and the combination of Petri nets with the TRIO temporal
logic[38] are examples of the mixed language approach.

Almost all the models of time-dependent systems describe the systems in
terms of behaviours. A behavior of a system is a mapping b : T → S, where T
is a time domain and S is a state space. The behavior represents the system's

31

state (i.e., the value of its elements) in the time instants of T . Thus, one
natural way of building the taxonomy of models can be based on how the
system states, time domains and mapping b are de�ned. To motivate the
selection of modelling formalism for this work we characterize the selection
decisions by using the metrics proposed in [36]. Dealing with timed systems
we examine in the �rst place the dimensions of models that characterize the
way how time is interpreted in the models.

Discrete vs dense time domains. First categorization of the formalisms
dealing with time-dependent systems and related time models is whether such
a model is a discrete or dense set. A time set consists of isolated points,
whereas for every two points t1, t2 of a dense set, with t1 < t2, there is always
another point t3 in between, s.t. t1 < t3 < t2. The discrete time set is modelled
by natural and integer numbers whereas the typical dense models are rational
and real numbers. For instance, di�erential equations are normally stated with
respect to real variable domains, whereas di�erence equations are de�ned on
integers or rationals.

Bounded vs unbounded time domains. Reactive systems generally rep-
resent behaviors that may proceed inde�nitely in time, so that it is natural to
model time as an unbounded set. There are signi�cant cases, however, where
all relevant system behaviors can be a priori enclosed within a bounded �time
horizon�. For instance, starting an engine to its full speed requires at most 15
seconds. Thus, if we want to model and analyze possible phases of its speed
up, without loss of generality we can assume a bounded time domain, say, the
real range [0 . . . 15]. In many cases this restriction highly simpli�es analyses
and/or simulation algorithms. In other cases the system under consideration
is periodic; thus, knowing its behaviors during full period provides enough
information to extrapolate these properties over the whole time axis[38, 36].

Single vs multiple time scales. Another dimension of time domains is
their granularity. The behaviours are said to be on di�erent time scales if they
di�er by orders of magnitude. This is typical when two processes e.g. mechan-
ical deterioration of the cutting edge of a milling machine is modelled together
with exchange of operational modes during processing a work piece. Here the
time scales are hours vs milliseconds. Usually, due to the simpli�cation pur-
poses the behaviours of di�erent time scales are modelled separately. When
studying the �ne-grain dynamics the one of coarser time scale is abstracted
away. To avoid side e�ects caused by this abstraction, the behaviours are rep-
resented case-wise and the parameters of coarser time granularity processes are
assumed to be static for the �ne grain modelling case.

32

Qualitative vs metric time. For modelling real-time systems an essential
issue is the expression of constraints that exploit the metric structure of the
underlying time domain. A time domain is a metric structure when a notion
of distance is de�ned on it. The domains N, Z, Q and R have a �natural�
metric de�ned on them where the distance d between any two points t1 and t2
is d (t1, t2) = |t1 − t2|. When the formalism allows expressing only information
about the relative ordering of events (�q occurs after p�), but not about their
distance (�q occurs 100 time units after p�), we say that the language has qual-
itative notion of time, as opposed to allowing quantitative constraints, which
are expressible with metric time. For the formal description of parallel systems
as de�ned in[39], a purely qualitative language is su�cient. The correctness
of the computation in such a system depends only on the relative ordering of
computational steps, ignoring absolute distance between them. Also reactive
systems[40] belong to this category because they are often modelled as par-
allel systems, where the system evolves concurrently with the environment.
The correctness of real-time systems depends also on the time distance among
events. Hence a complete description of such systems requires a language in
which metric constraints can be expressed.

Linear vs Branching Time. Linear time notion refers to (a set of) behav-
iors, where the evolution from a given state at a given time is always unique.
Conversely, a branching-time interpretation refers to behaviors that are struc-
tured in trees, where each �present state� may evolve into di�erent �possible
futures�. Though a linear behavior is a special case of a tree (a tree might
be thought of also as a set of linear behaviors that share common pre�xes,
i.e., that are pre�x-closed), this notion is captured formally by the notion of
fusion closure[41]. Thus, linear and branching time models can be put on a
common ground in formalisms such as CTL∗ [4] that has two sub-logics LTL
(for linear time) and CTL (for branching time). In practice the choice of lin-
ear or branching time models is mostly based on the pragmatic considerations,
i.e. what properties are more convenient to express and prove in given logic.
For instance, the complexity of model checking often directs what logic and
what underlying time concept to use (see Table 2.1, where TS denotes the
state transition system and Φ the property expressed in the logic shown in the
heading of the column).

33

CTL LTL CTL�

model checking PTIME PSPACE-complete PSPACE-complete

without fairness size(TS) · |�| size(TS) · exp(|�|) size(TS) · exp(|�|)

with fairness size(TS) · |�| · |fair | size(TS) · exp(|�|) · |fair| size(TS) · exp(|�|) · |fair |

for �xed speci�cations size(TS) size(TS) size(TS)

(model complexity)

satis�ability check EXPTIME PSPACE-complete 2EXPTIME

best known technique exp(|�|) exp(|�|) exp(exp(|�|))

Figure 2.1: Complexity of the model-checking algorithms and satis�ability
checking.[4]

Determinism vs non-determinism. The notions of determinism and non-
determinism are attributes of the systems being modelled or analyzed. Non-
determinism is not necessarily only the system property, it may arise also due
to abstraction from the elements of the model that de�ne the constraints on
behaviours. We say that for a given input sequence, the behavior of a deter-
ministic system is uniquely determined by its initial state. Conversely, systems
that can evolve to di�erent future states from the same present state and the
same input by making arbitrary �choices� are called nondeterministic. There
is a natural coupling between deterministic systems and linear models, on one
side, and non-deterministic systems and branching models, on the other side,
where all possible �choices� are mapped to branches in the computation tree.
In CPS where non-determinism is often a natural phenomenon the branch-
ing time and formalisms with non-determinism are natural choice for practical
modelling.

The Time Progress. The problem of time progress arises whenever the
model of a timed system exhibits behaviors that do not progress past some
time instant. Such behaviors may be the consequence of some incompleteness
and inconsistency in the formalization of the system. Although a truly instan-
taneous action is physically infeasible, it is nonetheless a useful abstraction
for events that take an amount of time which is negligible with respect to the
overall dynamics of the system[42]. When instantaneous transitions are al-
lowed, an in�nite number of such transitions may accumulate in an arbitrarily
small interval to the left of a given time instant, thus modeling a computation
where time does not advance at all. Behaviors where time does not advance
are called Zeno behaviors. Some formal systems possess Zeno behaviors, where

34

the distance between consecutive events gets inde�nitely smaller, even if time
progresses. These systems cannot be controlled by digital controllers operating
with a �xed sampling rate, since in this case their behaviors cannot be suitably
discretized[43, 44]. Some well-known problems of concurrent computation such
as termination, deadlocks, and fairness[45] can be considered as dual problems
to time advancement. In fact, they concern situations where some processes
fail to advance their states, while time keeps on �owing.

There are two solutions to the time advancement problem: a priori and a
posteriori methods. In a priori method, the syntax or the semantics of the for-
mal notation is restricted beforehand in order to guarantee that the model of
any system described with it will be exempt from time advancement problems.
A posteriori methods do not pose the restrictions to the model. Instead, they
provide means for checking if the model is free from Zeno computations. A
posteriori method may be particularly useful to spot possible risks in the be-
havior of the real system. For instance, in some cases oscillations exhibited by
the mathematical model with a frequency that goes to in�nity within a �nite
time interval is the symptom of the risk of serious failure in the real system
[36].

Concurrency and Composition. Most real CPS are too complex to model
or analyse them as one whole monolithic system. That suggests their treatment
as the composition of subsystems where each component is simple enough so
that it can be analyzed. From the temporal evolution point of view the com-
positions may be synchronous or asynchronous. Synchronous composition re-
stricts state changes of various units to occur at time instants that are strictly
and rigidly related. Conversely, in an asynchronous composition of parallel
units, each activity can progress at a speed unrelated with other. For instance,
in geographically distributed systems the state of one component may change
in a time that is shorter than the time needed to send information about the
component's state to other components. For asynchronous systems, interac-
tion between di�erent components occurs only due to data dependences and
according to rules of chosen communication mechanism.

Expressiveness and Relevance to Analysis. The fundamental features
of models for time-dependent systems are their expressiveness and amenability
to analysis. The last refers to the capability of probing the model of a system to
be sure that it ensures certain desired features. In a widespread paradigm[35,
46], the model under analysis is called a speci�cation, and the properties that
the speci�cation model must exhibit are called the requirements. The task
of ensuring that a given speci�cation satis�es a set of requirements is called
veri�cation[36].

35

Expressiveness. A fundamental criterion according to which the modelling
formalisms can be classi�ed is their expressiveness, that is, the possibility of
characterizing classes of properties. Informally, a formalism is more expressive
than another if it allows expressing properties that more �nely and accurately
partition the set of behaviors into those that satisfy or not the constraints
expressed. The expressiveness relation between formalisms is a partial order,
as there are pairs of formal languages whose expressive power is incomparable
(recall the example of LTL and CTL). The formalisms are equivalent if they
can express the very same properties. The notion of expressiveness does not
cover features such as conciseness, readability , and ease of use.

Decidability and Complexity. There is a fundamental trade-o� between
expressiveness and decidability. A property is decidable for a formal language
if there exists an algorithmic procedure that is capable of determining, for any
speci�cation written in that language, whether the property holds or not in the
model. The trade-o� between expressiveness and decidability arises because,
when increasing the expressiveness one loses decidability. The complexity anal-
ysis provides, in the case when a given property is decidable, a measure (in
terms of memory or time) of the computational e�ort that is required by an
algorithm to decide whether the property holds or not for a model.

Analysis and Veri�cation Techniques. There exist two large families of
veri�cation techniques: (i) the model checking methods are based on exhaustive
enumeration procedures and (ii) the deductive methods are based on syntactic
transformations like deduction or rewriting, typically in the context of some
axiomatic description[4]. Exhaustive enumeration techniques are mostly auto-
mated, and are based on exploration of graphs or other structures representing
an operational model of the system, or the space of all possible interpretations
for the sentence expressing the required property. Techniques based on syntac-
tic transformations typically address the veri�cation problem by means of logic
deduction[47]. Therefore, usually both the speci�cation and the requirements
are in descriptive form, and the veri�cation consists of successive applications
of some deduction schemes until the requirements are shown to be a logical
consequence of the system speci�cation.

Conclusive remarks on the models taxonomy

The taxonomy of features of timing and concurrency expressing modelling
languages suggests that the formalism to be used for modelling CPS should
preferably be expressive enough to model

· the phenomena that are characteristic to unbounded dense time domain:
Zeno behavior, fairness, explicit reference to metric time constraints;

36

· di�erent time scales by specifying their interrelations;

· timing as well as data dependent non-determinism of behaviours;

· both synchronous and asynchronous concurrency between the parallel
components of the system.

The formal notation should be supported also by the analysis methods where
the properties of practical interest (safety, bounded reachability, etc.) are
decidable and their veri�cation feasible from the complexity point of view.
The last presumes modelling and veri�cation automation tools that meet the
requirements of comfort and ease of use. In Subsections 2.2.2-2.2.4 the theory
of timed automata and their extension to UPTA are outlined and the relevance
w.r.t. criteria shown above explored based on formal notation.

2.2.2 Uppaal timed automata

The Uppaal Timed Automata (UPTA) modelling language is an extended di-
alect of Timed Automata (TA) formalism, maintaining real-time clocks and
�nite control structure. The underlying Timed Automata (TA) theory has
its roots in Extended Finite State Machine (EFSM) theory. Example 2.1 and
Figure 2.2 depicts a simple EFSM model of login action of an hypothetical
system.

Example 2.1. System starts from the state init. The transition from init
state to state OK is labeled with input/output pair denoting that when the
input login is observed then the output success is generated and system moves
to state OK. This automaton is non-deterministic though, because an input
login may cause also executing the other transition that outputs fail instead
and reaches a di�erent after-state NOK.

login/success

OK

NOK

login/fail

init

Figure 2.2: EFSM

De�nition 2.2. An extended �nite state machine (EFSM) is a tuple

M = (S, V, I, O, T, s0) (2.1)

where S is the set of states, V is the set of state variables, I is the input
alphabet, O the output alphabet, T is the transition relation and s0 is the
initial state.

37

In TA the set V is limited with the set of clocks only, denoted by C. Let
B (C) denote the set of conjunctions over atomic propositions of the form x�c
or x − y � c where x, y ∈ C, c ∈ N0 and � ∈ {<,≤,=,≥, >}. The transition
enabling conditions (guards) can be the conditions over subsets of C only and
the variable updates are the resets of subsets of C.

De�nition 2.3. A Timed Automaton is a tuple (L, l0, C,A,E, I) where L is
a set of locations, l0 ∈ L is the initial location, C is the set of clocks, A is a set
of actions, co-actions and the internal τ -action, E ⊆ L× A×B (C)× 2C × L
is a set of edges between locations with an action, a guard and a set of clocks
to be reset, and I : L→ B (C) assigns invariants on clocks to locations.

A clock valuation is the function u : x → R≥0 mapping a clock x from
the set of clocks C to the set of non-negative reals R≥0. Let RCbe the set of
all clock valuations and u0 (x) = 0 for all x ∈ C. Guards and invariants are
considered as clock valuations, and notation u ∈ I (l) means that u satis�es
I (l).

When modelling concurrent components of systems the timed automata are
composed into a network of timed automata (NTA) over a common set of clocks
and actions consisting of n timed automata. Let the tuple

(
Li, l

0
i , C,A,Ei, Ii

)

denote an automaton Ai of the NTA, where, 1 ≤ i ≤ n, a location vector for
the whole network

∏
iAi is l̄ = (l1, . . . , ln) and the invariant of the network is

a conjunction over locations vector I
(
l̄
)

=
∧
i I (li).

UPTA extend the expressiveness of NTA by introducing richer variable
types and set of expressions used in the guards and update functions of edges
and in the invariants. Expressions in UPTA range over clocks, booleans and
integer variables and their arrays. The expressions are used with the following
labels:

Guard is an expression that evaluates to a boolean; it includes terms such
as clocks, integer variables, constants and function symbols (standard
Uppaal functions and those implemented in the given model); clocks and
clock di�erences are compared only to integer expressions; guards over
clocks are essentially conjunctions although expressions over integers can
be in disjunction.

Synchronization label is either of the form Expression! or Expression? or
an empty label. The expression must be side-e�ect free, evaluate to a
channel, and only refer to integers, constants and channels or channel
arrays.

Assignment is a comma-separated list of variable updates where the expres-
sions must only refer to clocks, boolean and integer variables and their
arrays and constants. The clocks can be updated only with integer con-
stants.

38

Invariant is an expression that refers only to clocks, constants and integer
variables; it is a conjunction of conditions of the form x < e or x ≤ e
whenever x is a clock and e evaluates to non-negative integer.

Having described the UPTA requisites �rst informally we can now introduce
the formal de�nition of UPTA as follows:

De�nition 2.4. An Uppaal model M is a tuple
〈−→
A, V ars , Clocks , Chan , Type

〉

where

· −→A is a vector of processes A1, A2, . . . , An (a process Aij is j-th instanti-
ation of an automaton template Ai; for better readability we ignore the
indexes of templates when it is clear from the context and the elements
of a process Aj are referred to by applying the index of the process, e.g.
Lj ,l0j , Tj .

· Vars is a set of variables (except clocks) de�ned in the model. It is a
union over Varsj of processes and global variables of the model.

· Clocks is a set of clocks such that Clocks∩Vars = ∅. Like Vars, Clocks
is the union of all Clocksj in the processes of NTA.

· Type is a type function extending the type of locations to urgent and
committed ones (their semantics will be de�ned in Section 2.2.3).

De�nition 2.5. Con�guration of an Uppaal model

M =
〈−→
A,Vars,Clocks,Chan, T ype

〉

is a triple
(−→
l , e, υ

)
where

−→
l is a vector of locations, e is the valuation

function of discrete variables and υ is a clock valuation:

· −→l = (l1, l2, ..., ln) where li ∈ Li is current location of processAi

· e : Vars →∏
i dom (vi) maps every variable vi ∈ Vars to its value

· υ : Clocks→ R ≥ 0 maps the clocks to non-negative real numbers.

Con�guration of the model corresponds to the state in the de�nition of NTA.
The vector

−→
l is called situation (currently occupied locations in the automata

of the model), pair
(−→
l , e
)
denotes the discrete part and υ the continuous part

of the con�guration.
Before introducing the declarative property description language TCTL for

time-dependent systems we need to de�ne the operational semantics of UPTA
that serves also as a common ground for checking satis�ability of TCTL formuli
on UPTA models.

39

2.2.3 Semantics of the UPPAAL model

Given the fact that Uppaal timed automata are extension of NTA we de�ne the
semantics of NTA at �rst and the semantics of UPTA thereafter via semantics
of NTA.

De�nition 2.6. LetA =
∏
iAi be a network of n timed automata, whereAi =(

Li, l
0
i , C,A,E, Ii

)
. Let l̄0 =

(
l10, . . . , l

n
0

)
be initial value of location vector.

The semantics of NTA A is de�ned as a transition system 〈S, s0,−→〉, where
S = (L1 × L2 × . . .× Ln) × RC is the set of states, s0 =

(
l̄0, u0

)
is the initial

state, and →⊆ S × S the transition relation is de�ned by

·
(
l̄, u
)
→
(
l̄, u+ d

)
if ∀d´ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I

(
l̄
)

·
(
l̄, u
)
�
(
l̄ [l′i/li] , u

′) if there exists li
τ,g,r−→ l′i and

u ∈ g, u´ = [r 7−→ 0]u and u′ ∈ I
(
l̄
)

·
((
l̄, u
)
→
(
l̄
[
l′i/li, l

′
j/lj

]
, u′
)
, u′
)
if there exists li

c?,g,r−→ l′i and

lj
c!,g,r−→ l′j s.t. u´ = [ri ∪ rj 7→ 0]u and u′ ∈ I

(
l̄
)
,

where l̄ [l′i/li] denotes the location vector l̄ with its i-th element li replaced
with l′i.

UPTA state evolves either through enabled actions or delays. These steps

de�ne the behavior of the model. For con�guration
(−→
l , e, υ

)
a local action

is enabled if there is a τ -transition in the underlying NTA. A synchronized
action step is enabled i� for a channel b there exists the binary synchronization
transition in the underlying NTA. A delay step with delay d is enabled i� such
delay step is allowed in the underlying NTA.

De�nition 2.7. Let M =
〈−→
A,Vars,Clocks,Chan,Type

〉
be a UPTA model.

A sequence of con�gurations
〈(−→

l , e, υ
)〉K

=

〈(−→
l , e, υ

)0
,
(−→
l , e, υ

)1
, . . .

〉

of length K ∈ N ∪∞ is called a well-formed sequence for M i�

·
(−→
l , e, υ

)0
=
((
l01, . . . , l

0
n

)
,
[
V ars 7→ (0)|V ars|

]
,
[
Clocks 7→ (0)|Clocks|

])

· if K <∞, then for
〈(−→

l , e, υ
)〉K

no further step is enabled

· if K =∞ and
〈(−→

l , e, υ
)〉K

contains �nitely many k s.t.
(−→
l k, ek

)
6=
(−→
l k+1, ek+1

)
, then eventually every clock exceeds every

bound
(
∀x ∈ Clocks ,∀c ∈ N,∃k : υk (x) > c

)
,

40

De�nition 2.8. A well-formed sequence for M is a timed trace for M if for
every k < K, the two subsequent con�gurations k and k + 1 are connected
via a simple action step, a synchronized action step, or a delay step, i.e.(−→
l k, ek

)
a−→
(−→
l k+1, ek+1

)
or
(−→
l k, ek

)
a−→
(−→
l k+1, ek+1

)
or
(−→
l k, ek

)
τ−→

(−→
l k+1, ek+1

)
.

Let M be a UPTA model, then the trace semantics of M , denoted T (M), is
the set of well-formed traces.

2.2.4 UPTA property speci�cation language TCTL

Timed Computation Tree Logic (TCTL) is su�ciently expressive to allow for
the formulation of an important set of real-time system properties[4]. Formulae
in TCTL are either state or path formulae. TCTL state formulae over the set
AP of atomic propositions and set C of clocks are formed according to the
following grammar:

Φ ::= true |a|g|Φ ∧ Φ|¬Φ|E�ϕ|A�ϕ|E♦ϕ|A♦ϕ

where a ∈ AP , g ∈ B (C) (recall that B (C) means atomic clock conditions
de�ned in 2.2.2) and ϕ is a path formula de�ned by: ϕ ::= ΦUJΦ where UJ

denotes time bounded until operator of CTL, J ⊆ R≥0 is an interval whose
bounds are natural numbers. TCTL extends CTL with atomic clock con-
straints B(C) over the clocks in C, the set of clocks in the timed automaton
under consideration. The propositional logic operators ∨,→, true, etc. are
obtained in the usual way. The until operator is equipped with an interval J
of real numbers. Timed variants of the modal operators ♦ and � are obtained
as follows: ♦JΦ = true UJΦ and E�J

Φ = ¬A♦J¬Φ and A�J
Φ = ¬E♦J¬Φ.

The formula E�J
Φ asserts that there exists a path for which during the

interval J , Φ holds; A�JΦ requires this to hold for all execution paths of M .
Note that the path quanti�ers E and A quantify over time-divergent paths
only, and the interval J ⊆ R≥0 is either of the form [n,m] , (n,m] , [n,m) or
(n,m) for n,m ∈ N and n ≤ m. For right-open intervals, m =∞ is allowed.

Like UPTA proposes richer modeling language than NTA, the version of
TCTL used for stating UPTA properties and their model checking is an ex-
tension of �standard� TCTL which can be summarized as follows:

Given the UPTA model M =
〈−→
A,Vars,Clocks,Chan,Type

〉
, a formula ϕ

is syntactically correct i� it is formed according to the following rules:

41

ϕ ::= deadlock |∇4φ where∇ ∈ {A,E}, 4 ∈ {�,♦} and
φ ::= A.l A ∈ ~A, l ∈ LA
x� c x ∈ Clocks, � ∈ {<,≤,=,≥, >}, c ∈ Z
x=y � c x, y ∈ Clocks, � ∈ {<,≤,=,≥, >}, c ∈ Z
a� b a, b ∈ V ars ∪ Z, � ∈ {<,≤,=,≥, >}
(ϕ1) ϕ1 - a local property
not ϕ1 ϕ1 - a local property
ϕ1 or ϕ2 ϕ1, ϕ2 - local properties
ϕ1 and ϕ2 ϕ1, ϕ2 - local properties
ϕ1 imply ϕ2 ϕ1, ϕ2 - local properties

A local property is a condition that for speci�c con�guration is either true
or false. Condition can involve location names, variables and clocks which are
only compared to integer values.

De�nition 2.9. A local property φ is valid in con�gurations s ∈
(−→
l , e, υ

)
,

denoted s |= φ according to the following conditions:

s |= deadlock iff no delay or action step is enabled in s

s |= A.l i� l = li ∈
−→
l for A = Ai ∈

−→
A ,

s |= x� c i� v (x) � c, � ∈ {<,≤,=,≥, >},
s |= x− y � c i� v (x− y) � c, � ∈ {<,≤,=,≥, >},
s |= a� b i� e (a) � e (b), � ∈ {<,≤,=,≥, >},
s |= (ϕ1) i� s |= ϕ1

s |= not (ϕ1) i� s 2 ϕ1

s |= ϕ1 or ϕ2 i� s |= ϕ1 or s |= ϕ2

s |= ϕ1 and ϕ2 i� s |= ϕ1 and s |= ϕ2

s |= ϕ1 imply ϕ2 i� s 2 ϕ1 or s |= ϕ2

The trace semantics of TCTL temporal operators is given in the following
de�nition.

De�nition 2.10. LetM =
〈−→
A,Vars,Clocks,Chan,Type

〉
be an UPTAmodel.

Let ϕ and ψ be the local properties. The validity of temporal operators A�,
A♦, −→, E�, E♦, is de�ned as follows:

M |= A�ϕ i� ∀
〈(−→

l , e, υ)
)〉K

∈ Traces (M), ∀k ∈ K :
(
l, e, υk

)
|= ϕ

M |= A♦ϕ i� ∀
〈(−→

l , e, υ)
)〉K

∈ Traces(M), ∃k ∈ K :
(
l, e, υk

)
|= ϕ

M |= ϕ −→ ψ i� ∀
〈(−→

l , e, υ)
)

)
〉K
∈ Traces(M),

∀k ∈ K :
(
l, e, υk

)
|= ϕ⇒ ∃k′ ≥ K :

(
l, e, υk

′
)
|= ψ

M |= E�ϕ i� M 2 A♦ not ϕ
M |= E♦ϕ i� M 2 A� not ϕ

Figure 2.3 shows some examples how the TCTL formulas are interpreted

42

on a simple computation tree that represents traces of an hypothetical model
M . Starting from an initial location a:

A♦ϕ (inevitable) true if local condition ϕ (e.g., valid in yellow locations) is
reachable in all execution paths

E♦ϕ (possible) true if local condition ϕ (e.g., valid in a red location) is reach-
able in at least one execution path

A�ϕ (always) is true if local condition ϕ holds in all locations of all execution
paths not valid for given example assuming the initial location is a.

ϕ −→ ψ (leads-to) is true if all paths involving a location where condition ϕ
is valid include thereafter a location where ψ is valid

b

c

d e

f

g

h

i

a

Figure 2.3: TCTL[5]

2.3 Implementation and conformance relations of timed mod-

els

The system correctness is often characterised formally using the notion of re-
�nement relation. The re�nement or implementation relation interrelates two
models at various level of abstraction. For instance, the abstract model may be
the description of system requirements and the less abstract model description
of the system at some of its development phase. Similarly, these abstractions
can originate from di�erent development phases. The lower the abstraction
level, the more implementation details are present. Implementation relations
are used most often for comparing the models of the same system. Given
a model of requirements speci�cation and a more detailed system model the
implementation relation allows checking whether the system correctly imple-
ments the requirements. For instance, given a requirement property ϕ, stated
in TCTL, the correctness of implementation, represented by UPTA model M
can be veri�ed by solving the satis�ability problem M |= ϕ.

When the correctness of an already implemented system needs to be veri�ed
it is often the case that there is not such a model M and the satis�ability of

43

requirements properties can be established only by comparing the externally
observable behaviours of the system itself and those speci�ed in the require-
ments. Such weaker form of behavioral equivalence is characterized by so called
input-output conformance (IOCO) relation and its timed versions. IOCO(I,
S) between implementation I and speci�cation S is generally the subject of
model-based testing. The preliminaries and methods applicable for checking
implementation and IOCO relations are presented and their complexity classes
characterized in the following sub-sections.

2.3.1 TCTL Model Checking

The TCTL model-checking algorithm with UPTA is built upon the method of
model checking TA. The task is to check for a given timed automaton MTA

and TCTL formula Φ whether MTA |= Φ. It is assumed that MTA is non-zeno
because time convergence can be proven independently. Since a TA

MTA =
〈−→
A,Vars,Clocks,Chan,Type

〉

includes real valued clocks (set Clocks) its explicit state model has in�nite set
of states. Therefore, the TCTL formula is checked instead on so called region
transition system RTS (MTA,Φ) that provides a �nite quotient of the set of
states ofMTA still preserving the properties of TCTL to be proved. The states
of RTS (MTA,Φ)represent equivalence classes of states of TA s.t. all states of
TA being in the same class satisfy same atomic clock constraints. So, the the
problem MTA |= Φ? is reduced to checking whether an untimed version Φ̂ of
Φ holds in RTS (MTA,Φ) , i.e.

MTA |=TCTLΦ i� RTS (MTA,Φ) |=CTL Φ̂ , where Φ̂ is a formula obtained
from TCTL formula Φ using the mapping described in Algorithm2.1

44

Algorithm 2.1 Algorithm (basic idea)[4]
Input: Timed automaton MTA and TCTL formula Φ
Output:MTA |= Φ

· Φ̂ := eliminate timing parameters from Φ

· determine the equivalence classes under ∼=
(∼= denotes the equivalence used to obtain the quotient state space of
RTS (MTA,Φ))

· construct the RTS (MTA,Φ)

· apply the standard CTL model checking algorithm[4] to check
RTS (MTA,Φ) |=CTL Φ̂

· MTA |=TCTLΦ i� RTS (MTA,Φ) |=CTL Φ̂

The procedure of eliminating timing parameters uses auxiliary clocks z to
measure the elapse of time until the property Φ holds, i.e. to check some
subformula ΦJ of Φ in state s where clock z is reset in s and ΦJ is checked
when the value of z lies in the interval J .

Using the notion of auxiliary (atomic clock constraint related) clocks the
following theorem shows the idea of mapping of TCTL formula into timing
free TCTL formula.

Theorem 2.11. Let TA be timed automaton MTA = (L, l0, C,A,E, I) and
ϕ ::= ΦUJΨ a TCTL formula over C and set B (C) of atomic propositions
over C. For clock z /∈ C let

M ′TA = (L, l0, C ∪ {z} , A,E, I), for any state s of MTA it holds that

1. s |=TCTL E (Φ ∪Ψ) i� s [0/z] |=TCTL E (Φ ∨Ψ) ∪ ((z ∈ J) ∧Ψ)

2. s |=TCTL A(Φ ∪Ψ) i� s [0/z] |=TCTL A (Φ ∨Ψ) ∪ ((z ∈ J) ∧Ψ)

where s [[0/z]] is a state in M ′TA.
The proof of theorem can be found in [4], (pages 707-708).
The equivalence classes under ∼= determine the quotient states by letting

〈l, η〉 ∼= 〈l′, η′〉 if l = l′ and η ∼= η' such that:

· equivalent clock valuations should satisfy the same clock constraints that
occur inMTA and Φ : η ∼= η′ ⇒ η |= g i� η′ |= g forall g ∈ ACC (MTA)∪
ACC (Φ) where ACC (MTA) and ACC (Φ) denote the set of atomic clock
constraints that occur in MTA and Φ, respectively.

45

· Time-divergent paths starting from equivalent states should be �equiva-
lent�. This property guarantees that equivalent states satisfy the same
path formulae.

· The number of equivalence classes under ∼= is �nite.

De�nition 2.12. Let TA MTA be a timed automaton, Φ a TCTL formula
(both over set C of clocks), and cx the largest constant with which x ∈ C is
compared with in either MTA or Φ. Clock valuations η, η′ ∈ Eval (M) are
clock-equivalent, denoted η ∼= η′ if and only if either

· for any x ∈ C it holds that η (x) > cx and η (x) > cx, or

· for any x, y ∈ C with η (x), η′ (x) ≤ cx and η (y), η′ (y) ≤ cy the following
conditions hold:

� bη(x)c = bη′ (x)c and frac (η (x)) = 0, i� frac (η′ (x)) = 0

� frac (η (x)) ≤ frac (η (y)) i� frac (η (x)) ≤ frac (η (y)).

As stated above the equivalence classes under ∼= are called clock regions.
The number of clock regions is bounded from below and above as follows

[4]:

|C|! ∗
∏

x∈C
cx ≤ |Eval (C) /∼=| ≤ |C|! ∗ 2|C|−1 ∗

∏

x∈C
(2cx + 2)

where for the upper bound it is assumed that cx ≥ 1 for all x ∈ C.
The following de�nition determines the successor region of a region that is

obtained by delaying.

De�nition 2.13. Let r, r′ ∈ Eval (C) /∼=, where r
′ is the successor (clock)

region of r, denoted r = succ (r), if either

1. r = r∞ and r = r′, or

2. r = r∞, r 6= r and
∀η ∈ r:∃d ∈ R>0 : (η + d ∈ r′) and ∀0 ≤ d′ ≤ d : η + d′ ∈ r ∪ r′.

De�nition 2.14. The successor state region is de�ned as

succ (〈l, r〉) = 〈l, succ (r)〉

Having de�ned the successor relation on regions we can generalize the de�nition
of transition systems to Region Transition Systems.

46

De�nition 2.15. (Region Transition System) Let MTA = (L, l0, C,A,E, I)
be a non-Zeno timed automaton and let Φ be a TCTL reachability formula.
Then the region transition system of MTA for Φ is de�ned as follows:
RTS (MTA,Φ) = (S′, l0, C,A ∪ {τ} , E′, I) where

· if S is the set of all states in TS (MTA), then the state space ofRTS (MTA,Φ)
is S′ = S/∼= = {[s] |s ∈ S}, the set of all state regions,

· I ′ = {[s] | s ∈ I},

· AP ′ = ACC (M) ∪ACC (Φ) ∪AP ,

· L′ (〈l, r〉) = L (l) ∪ {g ∈ AP ′ \AP |r � g},

· The transition relation →′ is de�ned by:
l
g:α,D−→ l′∧r�g∧reset D inr�Inv(l′)

<l,r>
α
−→′<l′,reset D in r)

and

r�Inv(l)∧succ(r)�Inv(l)

<l,r>
τ
−→′<l,succ(r)>

where

reset D in r = {reset D in η| η ∈ r},
i.e.

resetting the clocks D in region r can be considered as a transition between
state regions.

The successor region r′ of a clock r, denoted by r′ = succ (r) is de�ned as
for r = r∞ and r = r′, or r 6= r∞, r 6=r′ for all η ∈ r : ∃d ∈ R>0 : (η + d ∈ r′)
and ∀0 ≤ d′ ≤ d : η + d′ ∈ r ∪ r′, and the successor state region succ (〈l, r〉) =
〈l, succ (r)〉.

Following theorem establishes the correctness of the model checking of TA
via RTS.

Theorem 2.16. For non-zeno MTA and TCTL reachability formula Φ

MTA |=TCTL Φ iff RTS (MTA,Φ) |=CTL Φ̂.

The proof of 2.16can be found in [4](pages 729-730).
Having now the correctness result for TCTL model checking we sketch the

basic idea of TCTL model checking algorithm.
Assume the TCTL formula is of the form E

(
Φ ∪J Ψ

)
with J 6= [0,∞). The

algorithm 2.2 summarizes the main steps of TCTL model checking method.

47

Algorithm 2.2 Main steps of TCTL model checking[4].
Input: non-Zeno, timelock-free TA and TCTL formula Φ
Output: �yes� if TA MTA |=TCTL Φ, �no� otherwise.

R := RTS (MTA ⊕ z,Φ) // with state space Srts and labeling Lrts
for all i ≤ |Φ| do
for all Ψ ∈ Sub (Φ) with |Ψ| = i do
switch(Ψ):
true: SatR (Ψ) := Srts;
a: SatR (Ψ) := {s ∈ Srts|a ∈ Lrts (s)} ;

Ψ1 ∧Ψ2: SatR (Ψ) :=
{
s ∈ Srts|

{
aΨ1

, aΨ2

}
⊆ Lrts (s)

}
;

¬Ψ′ : SatR (Ψ) :=
{
s ∈ Srts| aΨ′ /∈ Lrts (s)

}
;

∃
(
Ψ1U

JΨ2

)
:

SatR (Ψ) := Sat
{
s ∈ SCTL

(
∃
((
aΨ1
∨ aΨ2

)
∪ ((z ∈ J) ∧ aΨ2)

))}
;

∀
(
Ψ1U

JΨ2

)
:

SatR(Ψ) := Sat
{
s ∈ SCTL

(
∀
((
aΨ1
∨ aΨ2

)
∪ ((z ∈ J) ∧ aΨ2)

))}
;

end switch
// add aΨ to the labeling of all regions where Ψ holds
for all s ∈ Srts with s {z := 0} ∈ SatR (Ψ) do Lrts (s) := Lrts (s)∪
{aΨ} od
od
od
if Irts ⊆ SatR (Ψ) then
return �yes�
else
return �no�
�

Having a model MTA, by means of a recursive extraction of the subformuli
Ψ in the parse tree of Φ, the set of states Sat (Ψ) = {[s] ∈ SRTS | [s] |= Ψ}
is found where Ψ is satis�ed. Consider the case where Ψ is a path formula
Ψ = E

(
a UJ b

)
. A CTL model checker can be applied on the RTS (MTA,Φ)

and the CTL formula Ψ̂ = E (a ∪ ((z ∈ J) ∧ b)). Recall that Ψ̂ is a CTL
formula over the set of atomic propositions that occur in Φ, clock constraints
in Φ and clock constraints on z (e.g. z ∈ J). Theorems above yield that all
states [s] in RTS (MTA,Φ) are labeled with proposition Ψ where Ψ is satis�ed.
When all subformuli Ψ are checked for satis�ability, MTA |=TCTL Φ if and
only if all initial states on the RTS (MTA,Φ) are labeled with Φ. In case MTA

refutes Φ, the path returned is a counterexample of the satisfaction query.
We conclude the subsection with time complexity result that establishes the

feasibility constraints and gives some guidelines to be taken into account when

48

TCTL model checking is used for practical veri�cation tasks.

Theorem 2.17. Time complexity of TCTL model checking[4]
For timed automaton MTA and TCTL formula Φ, the TCTL model-check-

ing problem MTA |=TCTL Φ can be determined in time O ((N +K) · |Φ|),
whereN andK are the number of states and transitions in the region transition
system RTS (MTA,Φ), respectively.

The worst-case time complexity of TCTL model checking is linear in the
size of Φ due to the recursive descent over the parse tree of Φ and in the
size of the RTS (MTA,Φ). As the state-space size of RTS (MTA,Φ) grows
exponentially in the number of clocks (and maximal constants cx), the time
complexity of TCTL model checking is exponential in the number of clocks.
As proved in [48] for worst case complexity the TCTL model checking problem
is PSPACE-complete.

2.3.2 IOCO testing of timed systems

The model-based testing theory makes an assumption that system under test
(SUT) can be represented by some formal model (implementation model) that
is system representation on appropriate level of abstraction. This assumption
is referred to as a test hypothesis. Given two models - the speci�cation and the
system model, model-based testing theory studies the problem of how these two
are relate to each-other. Speci�cally, the testing methods applied in the thesis
rely on the input-output conformance (IOCO) relation. IOCO theory reasons
about black-box conformance testing[1]. We say that an implementation I
IOCO-conforms a speci�cation S (denoted by I vioco S) when at any point in
execution it can handle at least as many inputs as the speci�cation, and at most
as many outputs. The one exception to this rule is that implementation is not
allowed to be quiescent (i.e., not provide any output) when the speci�cation
prescribes at least one possible output [49]. The semantics of IOCO relation
and related testing theory [50] is originally formulated using labeled transition
systems (LTS) and input/output transition systems (IOTS).

De�nition 2.18. Labelled transition system (LTS) [51, 52].

A labeled transition system is a 4-tuple 〈S,L, T, s0〉 where:

· S is a countable, non-empty set of states,

· L is a countable set of labels,

· T ⊆ {S × (L ∪ τ)× S | τ /∈ L} is the transition relation where
τ is the unobservable internal action and

· s0 ∈ S is the initial state.

49

According to this de�nition the transitions can be labeled either by elements of
L which are called observable actions or by distinguished internal (unobserv-
able) silent actions τ . Given L is the set of all observable actions then the set of
all labelled transition systems that could be constructed on L is denoted LT S
and the set of �nite sequences of actions over L is denoted by L∗[50]. Usually
τ /∈ L but if the label set is expected to contain the τ -transition then it is de-
noted by Lτ where τ ∈ Lτ . LT S are assumed to be strongly converging with
regard to the τ -transition. This means there are no in�nite sequence of internal
τ -actions, i.e. there is possible to perform a concatenation (σ = a1 · ... · an)
of actions and reach some new observable state. In other words there cannot
be in�nite unobservable loops for the model to be stuck in and not proceed
and/or produce any observable output. A computation is a (�nite) sequence

of transitions: s0
a1−→ s1

a2−→ s2
a3−→ · · · an−1−−−→ sn−1

an−→ sn. A trace σ is a
sequence of observable actions of a computation. ε is an empty sequence that
is used to denote the absence of observable actions in the sequence. The �nite
set of all sequences over a set of actions Act denoted by traces (s) captures all
observable traces in L∗ that a LTS could possibly perform.

De�nition 2.19. LT S is strongly converging if there is no in�nite sequence
of internal actions[50].

a ∈ L ∪ τ, σ = a1 · . . . · an s
a1·...·an−−−−−→ s′ ⇔ s

σ−→ s′ (2.2)

As referred above another important notion in the ioco theory is quiescence,
which characterises system states that will not produce any output response
without the provision of a new input stimulus. In the setting of input/out-
put systems one generally assumes the systems to be also input-enabled : all
input actions are always possible in all system states, i.e., input can never be
refused [53]. This means that a system with input/output actions is never
formally deadlocked, since one can always execute further (input) actions. In
this context quiescence becomes the meaningful representation of unproductive
behaviour, comparable to deadlocked behaviour in the case of synchronously
communicating systems. For further formal de�nition of these properties we
sum up the notations describing LTS in 2.4 Let the actions to be noted as
lowercase latin alphabet, e.g. a, a1, . . . , an and sequences of actions in greek
alphabet µ, σ, σ1, . . . , σn.

When describing transition systems in general, the notation s
a−−−−→ s′

states that there exists a state ∃s ∈ S such that by performing an action a ∈ L
we reach s′ ∈ S. By noting s

a1·...·an−−−−−→ we say that the given LTS is able to
perform a concatenation of actions starting from its state s ∈ S. Conversely,
the negated notation s

a1·...·an−−−−−→/ tells that no matter the state, these actions
cannot be performed. s

σ−→ denotes the ability to perform a (legal) sequence
σ and reach some state. s

a−→ s′ denotes the ability to drive the system from

50

whatever state it is currently in, to accept the given action and then drive
the system further to the desired (internal) state s′. s after (σ) denotes the
possible set of states a system could end up in after performing a sequence σ.

s
a−−−−→ s′ ⇔def (s, a, s′) ∈ T

s
a1·...·an−−−−−→ s′ ⇔def ∃s0, ..., sn : s = s0

a1−→ s1
a2−→ ...

an−→ sn = s′

s
a1·...·an−−−−−→ ⇔def ∃s′ : s a1·...·an−−−−−→ s′

s
a1·...·an−−−−−→/ ⇔def ¬∃s′ : s a1·...·an−−−−−→ s′

s
σ

====⇒ ⇔def ∃s′ : s σ
=⇒ s′

s
σ

====⇒/ ⇔def ¬∃s′ : s σ
=⇒ s′

s
ε

====⇒ s′ ⇔def s = s′ or s
τ ·τ ·...·τ−−−−→ s′

s
a

====⇒ s′ ⇔def ∃s1, s2 : s
ε
=⇒ s1

a−→ s2
ε
=⇒ s′, a ∈ L

s
a1·...·an=====⇒ s′ ⇔def ∃s0 . . . sn : s = s0

a1=⇒ s1
a2=⇒ . . .

an=⇒ sn = s′

s
a1·...·an−−−−−→ ⇔def ∃s′ : s a1·...·an−−−−−→ s′

s
a1·...·an=====⇒/ ⇔def ¬∃s′ : s a1·...·an=====⇒ s′

traces (s) ⇔def σ ∈ L∗ : s
σ
=⇒

s after (σ) ⇔def s′ : s
σ
=⇒ s′

Figure 2.4: LTS notation.

De�nition 2.20. Non-determinism
Let action a ∈ T denote a transition label and states s, s′ ∈ S. We write

s
a−→ s′ if there is a state s so that after an action a the state is s′. Non-

determinism is when a LTS being in state s1 can execute an action sequence
a1 · ... · an so that either s1

a1·...·an−−−−−→ s2 or s1
a1·...·an−−−−−→ s3 where s2 6= s3. See

�gure 2.5.

s3s2

s1

an!an!

a1!

Figure 2.5: Nondeterministic automaton.

De�nition 2.21. The parallel composition S1‖S2 of two LTS S1 and S2 is a
tuple 〈S1 × S2, (s01, s02) , L1 ∪ L2, T 〉 where transition relation T of S1‖S2 is
de�ned as:

51

s1
a−→ s′1

(s1, s2)
a−→ (s′1, s2)

s2
a−→ s′2

(s1, s2)
a−→ (s1, s′2)

s1
a−→ s′1 s1

a−→ s′1

(s1, s2)
τ−→ (s′1, s

′
2)

(2.3)

Figure 2.6 illustrates parallel composition as a directed graph.

CD

ADCA

ABA

D

B

C

ba

Figure 2.6: LTS parallel composition.

Based on work by Tretmans[50, 54] DeNicola & Hennessey[55] introduced
the notion of testing preorder ≤te. If S can perform a trace σ then S can also
perform any �initial part� of σ - called the pre�x of σ. This is formalized by
the (pre�x) relation �⊆ L∗ × L∗.
De�nition 2.22. Preorder [50].

1. traces (S) =def

{
a ∈ L∗|S a

====⇒
}

2. A trace a1 is a pre�x of a2, a1 � a2 if ∃a′ : a1 · a′ = a2

Proposition 2.23. Testing preorder.
Let I and S be LTS describing implementation and speci�cation respectively.

I vte S iff ∀σ ∈ L∗,∀A ⊆ L :

I after σ refuses A implies S after σ refuses A

where I after σ refusesA ⇔def ∃p′ : p
σ
=⇒ I ′ and ∀a ∈ A : I ′

a
=⇒/ and

similarly to s.
Testing preorder vte says that whatever observable behaviour the implemen-

tation I can exhibit, the speci�cation S can also exhibit and not vice versa. A
stronger property testing equivalence says the behaviours of I and S match
exactly.

De�nition 2.24. Testing equivalence[55, 56]

S =te I ⇔def I vte S ∧ S vte I (2.4)

According to [55] the implementation relation used in testing should base on
the observations that an external observer can make on both the system and

52

the speci�cation. If the external observer o in some observer class O (e.g. the
classes O can be partitioned by their properties) cannot distinguish between
the systems they are considered equivalent and the implementation correctly
implements the speci�cation.

I vobs S ⇔def ∀o ∈ O : obs (o, I) = obs (o, S) (2.5)

By choosing di�erent observer classes O we can de�ne various interpreta-
tions of the implementation relation v, e.g. in MBT literature one can �nd
relations such as strong/weak bisimulation equivalence, failure equivalence &
preorder, failure trace equivalence, refusal testing, etc. In the rest of thesis we
focus only on IOCO relation and its timed extensions. To meet the realistic
testing conditions we introduce a weaker notion of enabledness and de�ne the
input-output transition systems (IOTS) before returning to the conformance
relation.

Input-output transition systems While IOCO relation between LTS-s
is based on strong input enabledness as in ([57] ∀a ∈ LI : p

a−→), the IOTS
allow input enabling via internal (silent) transitions - weak input enabledness
(∀a ∈ LI : p′

a−→) [54]. Thus, we study input-output testing relation viot⊆
IOT S (LI , LU)× LT S (LI ∪ LU), where LU includes both output and silent
actions.

De�nition 2.25. Input/Output transition system (IOT S) is a LT S where
the label set L (actions) are split into input actions LI and output actions LU
and all input actions are always enabled (weak input enabled). If (process)
p ∈ IOT S then

p
σ
=⇒ p′ implies ∀a ∈ LI : p′

a
=⇒ (2.6)

Quiescent state and trace

· Quiescent state is noted by δ(s), where ∀σ ∈ LU ∪ {τ} : s
σ−→/

· Quiescent trace of s is a trace σ that leads to a quiescent state: ∃s′ ∈
(p after σ) : δ (s′) (where s ∈ LT S (LI ∪ LU))

De�nition 2.26. IOCO is de�ned by

I vioco S ⇔def ∀σ ∈ traces (s) : out (I after σ) ⊆ out (S after σ) (2.7)

where I ∈ IOT S (LI , LU), S ∈ LT S (LI ∪ LU)

The conformance relation in timed systems is de�ned using timed traces of
timed IOTS (TIOTS) and of timed LTS (TLTS).

53

De�nition 2.27. Timed Input Output Transition System (TIOTS)[33] S is
a tuple (S, s0, LI , LU , T), where

· S is a set of states, s0 ∈ S,

· LI is the input and LU the output labels (actions),

· T ⊆ S × (LI ∪ LU ∪ R≥0)× S is a transition relation satisfying the con-
straints of

� time determinism (if s
d−→ s′ and s

d−→ s′′then s′ = s′′)

� time additivity (if s
d1−→ s′ and s′

d2−→ s′′ then s
d1+d2−−−−→ s′′) and

� zero-delay (∀s ∈ S. s 0−→ s)

where d, d1, d2 ∈ R≥0 denote time delays (non-negative real numbers).
Since TLTS di�ers from TIOTS only by the set of action labels (extended

with silent action τ) and τ -labeled transitions we refer back to given TIOTS
de�nition and proceed with the parallel composition of TIOTS and timed con-
formance relation.

De�nition 2.28. TIOTS parallel composition
Given S = (S, s0, LI , LU , T) and E = (E, e0, LU , LI , T) are TIOTS and the

set of input (output) actions in E and output (input) actions in S are with
identical action names but with di�erent su�ces (�?� and �!�) then the parallel
composition is

S‖E = (S × E, (s0, e0) , LI , LU , T) (2.8)

where transition relation T is de�ned as

s
a−→ s′ e

a−→ e′

(s, e)
a−→ (s′, e′)

s
τ−→ s′

(s, e)
τ−→ (s′, e)

e
τ−→ e′

(s, e)
τ−→ (s, e′)

s
d−→ s′ e

d−→ e′

(s, e)
d−→ (s′, e′)

(2.9)

Note that the timed conformance relation extends naturally to cases where
I = I1||I2 ∈ TIOTS (LI , LU) and S = S1||S2 ∈ TLTS (LI , LU) [50, 54].

De�nition 2.29. Timed traces. Let s ∈ S be a state in TLTS, speci�cation

54

De�nition 2.30.

S ∈ TLTS (Lin ∪ Lout ∪ {δ})

where δ ∈ R ≥ 0, and implementation I be an TIOTS (Lin ∪ Lout).
Then,

· ttraces (s) =def σ ∈ (Lin ∪ Lout ∪ {δ})∗ |s σ
====⇒

· out (s) =def

{
a ∈ L| s a

====⇒
}

· out (S) =def
⋃ {out (s) |s ∈ S}

· I vtioco S ⇔def ∀σ ∈ ttraces (spec) : ∀σ ∈ ttraces (s) :
out (I after σ) ⊆ out (S after σ)

Up to now the parallel composition of TIOTSs or TLTSs has been assumed
to be synchronous meaning that the input action has been executed simulta-
neously with respective output action and vice a versa. In remote testing the
synchronous communication between the tester and implementation under test
(IUT) cannot be implemented due to the communication delays. Asynchronous
communication introduces two additional assumptions about the communica-
tion in the TA parallel composition model. The model is centered around a
2FIFO (�,∆) architecture that consists of:

1. One �rst-in-�rst-out (FIFO) bu�er for each direction of the communica-
tion between the communicating automata.

2. A communication latency bounded by ∆. The symbol � stands for either
≤ or =. The IOCO relation for asynchronous parallel composition ||async
is de�ned in terms of asynchronous trace semantics [34].

De�nition 2.31. Asynchronous semantics for TIOA.
Let A =

〈
L, l0, I, O,∅, X,E

〉
be a TIOA (I,O) with no silent action. Let

1∈ { ≤ = } and 4 ∈ N. The asynchronous semantics for A is an IOTTS
(I,O,ΛI∪O),

〈| A |〉1∆ = <
(
L× RX≥0

)
× (R≥0 × (I ∪O))∗

× (R≥0 × (I ∪O))∗ , (l0, O) , (I,O,ΛI∪O) ,M1∆ >

where ΛI∪O = {τa|a ∈ I ∪O} is the set of silent actions. An asynchronous
state is of the form ((l, v) , p, q) where p and q are input and output queues
respectively. The set of asynchronous moves, M1∆ is de�ned by the following

55

�ve rules:

(l, v), p, q)
?a−→((l, v), p.(0· ?a), q (r1)

((l,v),(δ·?a).p,q))
τa−→((l′,v[Y :=0]),p,q

l
g,?a,Y
−−−−→l′∧v|=g∧δ1∆

(r2)

((l, v), p, q))
t−→((l, v + t), p+ t, q + t) (r3)

((l,v),p,(δ·!b).q)) τ !b−−→((l,v,p,q
δ1∆ (r4)

((l,v),p,q))
τb−→((l′,v[Y :=0]),p,q.(0!b)

l
g,!b,Y
−−−−→l′∧v|=g

(r5)

Asynchronous timed traces are remote observations of local timed traces at
communicating automata. The execution order of actions may di�er from the
observation order: this happens when inputs and outputs interleave in the
communication channels. We characterize remote observations that may lead
to action interleaving by introducing the notion of ∆-testability[34].

De�nition 2.32. 4-testability
LetA ∈ TIOA (I,O) and σ ∈ TTraces (A) such that σ = (ti · ai)i=1..n tn+1.

The timed trace σ is 4− testable if,

· either n = 0,

· or (ti · ai)i=1..n−1 is 4-testable and an ∈ O,

· or (ti · ai)i=1..n−1 is 4-testable and if an ∈ I, then for every tb ∈ R≥0,
every b ∈ O, and every k = [1 . . . n− 1] such that
!b ∈ out (JAK after σ [1 . . . k] · tb) it holds that tn − tb > 24.

A is 4-testable if every σ ∈ TTraces (A) is 4-testable.

Proposition 2.33. Let A be a TIOA (I,O). Let s, ρ ∈ Seq
(
〈|A|〉1∆

)
such

that s0
ρ−→ s. A is 4-testable i� p (s) is non empty implies q (s) is empty.

According to Proposition 2.33, ∆-testability implies that at most one queue
is non empty at every reachable state. However, ∆-testability does not guaran-
tee that the sizes of the queues are bounded. A fast environment can increase
the size of the input queue by sending repetitively the inputs faster than the
latency. It is shown in [34] that ∆-testable speci�cations are controllable. In-
deed, having the condition that output response to each input stimulus arrives
before the next input is given the outputs transmitted earlier are received be-
fore the transmission of new inputs. Thus, each observed output depends on
input transmitted earlier and the speci�cation is controllable. Given the maxi-
mum signal propagation delay is ∆ the delay between the two consecutive test

56

inputs must be strictly greater than 2∆. In brief, ∆-testability criterion takes
advantage of the timing information that is not available in untimed models.

Another important corollary of delta-testability criterion is that if if the
speci�cation is ∆-testable then, the asynchronous execution of the synthesized
test cases is as simple as the synchronous execution, the TIOCO conformance
is preserved and the tester can control the test. This result provides one of
main motivations of current thesis to implement the distributed test execution
environment that can implement the criterion of ∆-testability.

2.4 Summary

This chapter presented the theoretical foundations of model-based control and
testing of time constrained CPS described in Chapter 1. The alternatives of
modeling and veri�cation formalisms were discussed from pragmatics, taxon-
omy, and expressiveness point of view and their relevance for model based
control and testing was motivated. The semantics of Uppaal timed automata
as one of the formalisms that meets the requirements outlined in Chapter 1
was introduced and relying on this the rigorous de�nition of control and testing
related notions such as conformance, responsiveness, observability, controlla-
bility were de�ned. Thereafter, the the algorithmic methods for timed CTL
logic model checking and model based timed conformance testing were speci-
�ed based on the syntactic and semantic notations of LTS and Uppaal timed
automata. These notations as well as algorithmic methods will be used further
throughout the thesis.

57

3 Provably correct development of delta-tests

3.1 Chapter overview

The goal of chapter is to elaborate the provably correct work�ow of developing
models for MBT. We study and formulate the veri�cation conditions necessary
to assure the correctness of development increments for all major development
steps. It is shown how veri�cation conditions can be discharged by using
model checking and syntactic analysis techniques. Also model transformations
necessary for simpli�cation of analysis steps are outline. The results introduced
in this chapter are based on the publication:

1. Vain, Jüri; Anier, Aivo; Halling, Evelin (2014). Provably correct test
development for timed systems. Databases and Information Systems
VIII : Selected Papers from the Eleventh International Baltic Conference,
Baltic DB&IS 2014. Ed. Haav, Hele-Mai; Kalja, Ahto; Robal, Tarmo.
Amsterdam: IOS Press, 289=302. (Frontiers in Arti�cial Intelligence
and Applications; 270).

3.2 Introduction

The provably correct MBT process introduced in Section 1.3 (Figure 1.3) com-
prises test development steps (modelling the system under test, specifying the
test purposes, generating the tests and executing them against IUT) that al-
ternate with veri�cation steps. In this chapter, the veri�cation of test develop-
ment steps is described and how the test results are made trustable throughout
the testing process. We focus on model-based online testing of systems with
timing constraints capitalizing on the correctness of the test suite through test
development and execution process.

In conformance testing the IUT is considered as a black-box, i.e., only the
inputs and outputs of the system are externally controllable and observable
respectively. The aim of black-box conformance testing according to [54] is
to check if the behaviour observable on system interface conforms to a given
requirements speci�cation. During testing a tester executes selected test cases
on an IUT and emits a test verdict (pass, fail, inconclusive). The verdict shows
correctness in the sense of input-output conformance relation (IOCO) between
IUT and the speci�cation. The behaviour of a IOCO-correct implementation
should respect after some observations following restrictions:

(i) the outputs produced by IUT should be the same as allowed in the spec-
i�cation;

(ii) if a quiescent state (a situation where the system can not evolve without
an input from the environment [58] is reached in IUT, this should also
be the case in the speci�cation;

59

(iii) any time an input is possible in the speci�cation, this should also be the
case in the implementation.

The set of tests that forms a test suite is structured into test cases, each
addressing some speci�c test purpose. In MBT, the test cases are generated
from formal models that specify the expected behaviour of the IUT and from
the coverage criteria that constrain the behaviour de�ned in IUT model with
only those addressed by the test purpose. In our approach Uppaal Timed
Automata (UPTA) [5] are used as a formalism for modelling IUT behaviour.
This choice is motivated by the need to test the IUT with timing constraints
so that the impact of propagation delays between the IUT and the tester can
be taken into account when the test cases are generated and executed against
realtime systems.

Another important aspect that needs to be addressed in testing CPS is
functional non-determinism of the IUT behaviour with respect to test inputs.
For nondeterministic systems only online testing (generating test stimuli on-
the-�y) is applicable in contrast to that of deterministic systems where test
sequences can be generated o�ine. Second source of non-determinism in re-
mote testing of real-time systems is communication latency between the tester
and the IUT that may lead to interleaving of inputs and outputs. This af-
fects the generation of inputs for the IUT and the observation of outputs that
may trigger a wrong test verdict. This problem has been described in [34],
where the ∆-testability criterion (∆ describes the communication latency) has
been proposed. The ∆ -testability criterion ensures that wrong input/output
interleaving never occurs.

3.3 Correctness of IUT Models

3.3.1 Modelling Timing Aspects of IUT

For automated testing of input-output conformance of systems with time con-
straints we initially restrict ourselves with a subset of UPTA that simpli�es
IUT model construction for timing aspects and will be extended later to cap-
ture full expressive power of UPTA. Namely, we use a subset of UPTA where
the data variables, their updates and transition guards on data variables are
abstracted away. We use the clock variables only and the conditions expressed
by clocks and synchronization labels (channels). An elementary modelling pat-
tern for representing IUT behaviour and timing constraints is Action pattern
(or simply Action) depicted in Figure 3.1.

60

Post_locationAction

clock_ <= u_bound

Pre_location
clock_ >= l_bound

out!in?

clock_=0

Figure 3.1: Elementary modelling fragment "Action".

An Action models a program fragment execution on a given level of abstrac-
tion as one atomic step. The Action is triggered by input event and it responds
with output event within some bounded time interval (response time). The
IUT input events (stimuli in the testing context) are generated by Tester, and
the output events (IUT responses) are to make the reactions of IUT observable
to Tester. In UPTA, the interaction between IUT and Tester is modelled with
channels that link synchronous input/output events.

The major timing constraint we represent in IUT model is duration of the
Action. To make the speci�cation of durations more realistic we represent it
as a closed interval [l_bound, u_bound], where l_bound and u_bound denote
lower and upper bound respectively. The duration interval [l_bound, u_bound]
can be expressed in UPTA as a pair of predicates on clocks as shown in Figure
3.1. The clock reset clock = 0 on the edge (Pre_location→ Action) makes
the time constraint speci�cation local to the Action and independent from the
clock value accumulated during earlier execution steps. The clock invariant
clock_ ≤ u_bound of location Action forces the Action to terminate latest
at time instant u_bound after the clock reset and guard clock_ ≥ l_bound
on the edge Action → Post_location de�nes the earliest time instant (w.r.t.
clock reset) when the outgoing transition of Action can be executed.

From tester's point of view IUT has two types of locations: passive and
active. In passive locations IUT is waiting for test stimuli and in active loca-
tions IUT chooses its next moves, i.e. presumably it can stay in that location
as long as speci�ed by location invariant. The location can be left when the
guard of outgoing transition Action → Post_location evaluates to true. In
Figure 3.1, the locations Pre_location and Post_location are passive while
Action is an active location.

We compose the IUT models from Action pattern using sequential and
alternative composition.

De�nition 3.1. Composition of Action patterns
Let Fi and Fj be UPTA fragments composed of Action patterns including

elementary Action with pre-locations lprei ,lprej and post-locations lposti ,lpostj

respectively, their composition is the union of elements of both fragments sat-
isfying following conditions:

· sequential compositionFi;Fj is UPTA fragment where lposti = lprej ;

61

· alternative composition Fi +Fj is UPTA fragment where lprei = lprej and

lposti = lpostj .

The test generation method of [59] relies on the notion of well-formedness of
the IUT model according to the following inductive de�nition.

De�nition 3.2. Well-formedness of IUT models

· atomic Action pattern is well-formed;

· sequential composition of well-formed patterns is well-formed;

· alternative composition of well-formed patterns is well-formed if the out-
put labels are distinguishable.

Proposition 3.3. Any UPTA model M with non-negative time constraints
and synchronization channels that does not include state variables can be trans-
formed to bi-similar well-formed representation wf (M).

The model transformation to well-formed representation is based on the idea
that for those UPTA elements that do not match with the De�nition 3.2, aux-
iliary pre-, and post-locations and internal ε-transition are added, that do not
alter the i/o behaviour of the original model. The unbounded waiting of pro-
cesses in parallel composition is avoided due to the well-formedness condition.
Namely, by Action pattern construction at least one of the source locations of
synchronized edges has delay upper bound speci�ed in its invariant.

For representing internal actions that are not triggered by external events
(their incoming edge is ε-labelled) we restrict the class of pre-locations with
type committed. In fact, the subclass of models transformable to well-formed
is broader than given by De�nition 3.2, including also UPTA that have data
variable updates, but in general well-formedness does not extend to models
that include guards on data variables.

62

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3
cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6
cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?

cl=0

cl>=lb1

o1!

t[8]=true

i2?

cl=0

cl>=lb2

o2!

t[7]=true

i3?

cl=0

cl>=lb3

o3!

t[6]=true

i7?

cl=0

cl>=lb7

o7!

t[5]=true

i5?

cl=0

cl>=lb5

o5!

t[4]=true

i6?

cl=0

cl>=lb6

o6!

t[1]=true

i4?

cl=0

cl>=lb4

o4!

t[2]=true

i8?

cl=0 cl>=lb8

o8!

t[3]=true

Figure 3.2: An example of well-formed IUT model.

In the rest of this chapter, for test generation we assume thatM IUT is well-
formed and denote these models by wf(M IUT). An example of the well-formed
model we use throughout the chapter is depicted in Figure 3.2.

3.3.2 Correctness Conditions of IUT Models

The test generation method introduced in [59] and developed further for EFSM
models in [60] assumes that the IUT model is connected, input enabled (i.e. also
input complete), output observable and strongly responsive. In the following
we demonstrate how the validity of these properties usually formulated for
IOTS (Input-Output Transition System) models can be veri�ed for well-formed
UPTA models (see De�nition 3.2).

Connected Control Structure and Output Observability We say that
UPTA model is connected in the sense that there is an executable path from
any location to any other location. Since the IUT model represents an open
system that is interacting with its environment we need for veri�cation by
model checking a nonrestrictive environment model. According to [61] such an
environment model has the role of canonical tester. Canonical tester provides
test stimuli and receives test responses in any possible order the IUT model
can interact with its environment. A canonical tester can be easily generated
for well-formed models according to the pattern depicted in Figure 3.3b (this
is canonical tester for the IUT model shown in Figure 3.3a). In fact, the
canonical tester model itself is well-formed because it introduces zero delay
when composed in parallel with Action pattern. Its central location is of type
C that means instant response to IUT outputs.

63

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3

cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6

cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?

cl=0

cl>=lb1

o1!

t[8]=true

i3?

cl=0

cl>=lb2

o3!

t[7]=true

i5?

cl=0

cl>=lb3

o5!

t[6]=true

i7?

cl=0

cl>=lb7

o7!

t[5]=true

i6?

cl=0

cl>=lb5

o6!

t[4]=true

i8?

cl=0

cl>=lb6

o8!

t[1]=true

i4?

cl=0

cl>=lb4

o4!

t[2]=true

i2?

cl=0 cl>=lb8

o2!

t[3]=true

(a) IUT

o8?

i8!

o7?

i7!

o6?

i6!

o5? i5!

o4?

i4!

o3?

i3!

o2?

i2!

o1?i1!

(b) Canonical tester.

Figure 3.3: Synchronous parallel composition of IUT and canonical tester mod-
els.

The canonical tester composed with IUT model does not have guard condi-
tions on edges and it implements the "random walk" test strategy. This strat-
egy is useful in endurance testing but it is very ine�cient when functionally
or structurally constrained test cases need to be generated for large systems.
Having synchronous parallel composition of IUT and the timed canonical tester
(shown in Figure 3.3) the connectedness of IUT can be model checked with
query A[] not deadlock that expresses the absence of deadlocks in interaction
between IUT and canonical tester.

The output observability condition means that all state transitions of the
IUT model are observable and identi�able by the outputs generated by these
transitions. The output observability is ensured by the de�nition of well-
formedness of the IUT model where each input event and Action location
is followed by the edge that generates a local (i.e. unique for outgoing edges
of the location) output event.

Input Enabledness. Input enabledness of IUT models means that block-
ing of IUT due to irrelevant test input never occurs. That implicitly pre-
sumes input completeness. A naive way of implementing input enabledness
in IUT models is introducing self-looping transitions with input labels that
are not represented on other transitions that share the same source state.
That makes IUT modelling tedious and leads to the exponential increase of
its size. Alternatively, when relying on the notion of observational equivalence
one can approximate the input enabledness in UPTA by exploiting the seman-
tics of synchronizing channels and encoding input symbols as boolean variables
I1 . . . In ∈ Σin. Then the pre-location of the Action pattern (see Figure 3.2)
needs to be modi�ed by applying following transformation:

· assume there are k outgoing edges from pre-location lprei of action Ai,
each of these edges ej is labeled with one input symbol Ij , j = 1, k from
the input alphabet Σin(M IUT);

64

· add a self-loop edge (lprei , lprei) that models acceptance of all inputs in
Σin(M IUT) except Ij , j = 1, k. To implement this construct we spec-
ify the guard of the auxiliary edge (lprei , lprei) with boolean expression:

not

(
∨

j=1,k
Ij

)
.

Provided the branching factor B of the edges that are outgoing from lprei is, as
a rule, substantially smaller than the size |Σin

(
M IUT

)
| of input alphabet, we

can save |Σin
(
M IUT

)
| − B (lprei) edges at each pre-location of the Action pat-

terns. Note that due to the wf -construction rules the number of pre-locations
never exceeds the number of actions in the model. That is due to alternative
composition that merges pre-locations of the composition. A fragment of alter-
native composition accepting all inputs in |Σin(M IUT)| is depicted in Figure
3.4 (time constraints are ignored here for clarity). Symbols I1 and I2 in the
�gure denote predicates Input == i1 and Input == i2 respectively.

Post_location2Action2

Post_location1Action1

Pre_location
out!

I2=false,

O2=true
I2

in?

not(I1 or I2)

in?

out!

I1=false,

O1=true

I1

in?

Figure 3.4: Input-enabled model fragment.

Strong Responsiveness Strong responsiveness (SR) means that there is no
reachable livelock (a loop that includes only ε transitions) in the IUT model.
In other words, the model should always enter the quiescent state after �nite
number of steps. Since transforming M IUT to wf

(
M IUT

)
does not eliminate

ε transitions there is no guarantee that wf
(
M IUT

)
is strongly responsive by

construction (it is a built-in feature of the Action pattern). To verify the SR
property of arbitrary M IUT we apply Algorithm 3.1.

65

Algorithm 3.1 Checking strong responsiveness.

(i) According to the Action pattern in Figure 3.4 the M IUT input events
are encoded by means of channel in? and a boolean variable Ii that
represents the condition that input = Ii. Since input occurrence in
Uppaal models can be checked only as a property holding in a location,
we have to keep the input value indicating that the predicate is true
in the destination location of the edge that is labelled with given event
and reset tofalse immediately when leaving this location. For same
reason the ε-transitions need to be labeled with update EPS = true and
following output edge with update EPS = false.

(ii) Reduce the model by removing all the edges and locations that are not
involved in the traces of model checking query: l0 |= E[] EPS , where l0
denotes initial location of M IUT . The query checks if any ε-transition is
reachable from l0 (that is necessary condition for violating SR-property).

(iii) Remove all non ε-transitions and locations that remain isolated there-
after.

(iv) Remove recursively all locations that do not have incoming edges (their
outgoing edges will be deleted with them).

(v) After reaching the �xed point of recursion of step IV, check if the remain-
ing part of model is empty. If yes then conclude that M IUT is strongly
responsive, otherwise it is not.

It is straightforward to infer that all steps except step 2 of Algorithm 3.1
are of linear complexity in the size of the M IUT .

3.4 Correctness of testers

3.4.1 Functional Correctness of Tests

In this work we limit ourselves with considering testers that use structural test
coverage criteria, e.g. test generator of [59] for online testing is aimed to cover
IUT model structural elements such as edges and locations of Uppaal timed
automata. The structural coverage can be expressed by means of boolean
"trap" variables as suggested in [62]. The traps are assignment expressions of
boolean trap variables and the valuation of traps indicates the progress status
of the test run. For instance, one can observe what percentage of edges labeled
with traps is already passed in the course of test run. Thus, the relevant
correctness criterion for the tester in this context is its ability to cover traps.

De�nition 3.4. Coverage correctness of the test

66

We say that the RPT tester is coverage correct if the test run covers all the
transitions that are labelled with traps in the IUT model.

De�nition 3.5. Optimality of the test

We say that the test is length (time) optimal if there is no shorter (resp.
faster) test runs among those being coverage correct.

In the following we provide an ad hoc procedure of verifying the coverage
correctness and optimality in terms of Uppaal model checking queries and
model building constraints.

Direct way of verifying the coverage correctness of the tester is to run the
model checking query:

A♦∀ (i : int [1, n]) t [i]) (3.1)

where t [i] denotes i-th element of the array t of traps. The model is assumed
to be the synchronous parallel composition of IUT and Tester automata. For
instance, the tester automaton generated using RPT generator[59] for IUT
modelled in Figure 3.2 is depicted together with IUT model in Figure 3.5.

67

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3

cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6

cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?

cl=0

cl>=lb1

o1!

t[8]=true

i3?

cl=0

cl>=lb2

o3!

t[7]=true

i5?

cl=0

cl>=lb3

o5!

t[6]=true

i7?

cl=0

cl>=lb7

o7!

t[5]=true

i6?

cl=0

cl>=lb5

o6!

t[4]=true

i8?

cl=0

cl>=lb6

o8!

t[1]=true

i4?

cl=0

cl>=lb4

o4!

t[2]=true

i2?

cl=0 cl>=lb8

o2!

t[3]=true

(a) IUT

‖

Observ1 Observ2

Observ3

Observ7 Observ5

Observ6

Observl4

Observl8

Control3

Control2Control1
o1?

o2?

o3?

o7? o5!

o6?

o4?

o8?

gtrans1(t)
i1!

gtrans2(t)
i2!

gtrans3(t)
i3!

gtrans4(t)

i7!

gtrans5(t)

i5!

gtrans6(t)
i6!

gtrans7(t)

i4!

gtrans8(t)

i8!

(b) Tester

Figure 3.5: Synchronous parallel composition of IUT and tester automata.

3.4.2 Invariance of Tests with Respect to Changing Time Con-
straints of IUT

In previous section the coverage correctness of tests was discussed without
explicit reference to time constraints of the IUT model. The length-optimality
of test sequences can be proven in Uppaal when for each action in well-formed
models both the duration lower and upper bounds lbi and ubi are set to 1,
i.e., lbi = ubi = 1 for all i ∈ 1, . . . , |Action|. Then the length of the test
sequence and its duration in time are numerically equal. For instance, having
some integer valued (time horizon) parameter TH as an upper bound to the
test sequence length the following model checking query proves (or falsi�es)
the coverage of n traps with a test sequence of length at most TH stimuli and
responses:

A♦∀ (i : int [1, n]) t [i]) ∧ TimePass ≤ TH (3.2)

68

where TimePass is the Uppaal clock that represents global time progress
in the model.

Generalizing this approach for IUT models with arbitrary time constraints
we can assume that all edges of IUT model M IUT are attributed with time
constraints as described in Section 2.2. Since not all of M IUT edges need to
be labeled with traps (if their coverage is not requires by test goal) we apply
compaction procedure to M IUT to abstract away from the excess of informa-
tion (for IOCO testing) and derive precise estimates of test duration lower and
upper bounds. With the compaction procedure we aggregate a sequences of
trapless edges and merge the aggregate with only one trap-labelled edge the
trapless ones are neighbours to. As the result, the aggregate action becomes
an atomic Action (see Figure 3.1) that copies the trap of the trap labelled
edge included in the aggregate. The �rst edge of the aggregate contributes
its input event and the last edge to its output event. The other i/o events
of the aggregate will be hidden because all internal edges and locations are
substituted with one aggregate location that represent the composite Action.
Further, we compute the lower and upper bounds for the composite action.
The lower bound is the sum of lower bounds of the shortest path in the aggre-
gate and the upper bound is the sum of upper bounds of the longest path of
the aggregate plus the longest upper bound (the later is needed not to yield
premature test termination condition). After compaction of deterministic and
timed IUT model it can be proved that the durationTH of a coverage correct
tests have length that satis�es bound condition:

∑

i

lbi ≤ TH ≤
∑

i

ubi +max
i

(ubi) (3.3)

where index i ranges from 1 to n (n - number of traps in M IUT). In case of
non-deterministic IUT models, for showing the length- and time-optimality of
generated tests the bounded fairness assumption ofM IUT must hold. A model
M is k−fair i� the di�erence in the number of executions of alternative tran-
sitions of non-deterministic choices (sharing same departure location) never
exceeds the bound k. The bounded fairness property excludes unbounded
"starvation" and "conspiracy" behaviour in non-deterministic models. During
the test run the test execution environment (in thesis it is DTRON[63]) must
be capable of monitoring the k-fairness and reporting about its violations. The
violation of k-fairness condition induces automatic test verdict �inconclusive�.
The safe upper bound estimate of the test length in case of non-deterministic
models can be calculated for the worst case by multiplying the deterministic
upper bound by factor k. The lower bound still remains

∑
i
lbi (this corresponds

to the angelic computation of the test case).

Proposition 3.6. Invariance of Tests with respect to changes ofM IUT timing
[64].

69

Assume a trap labeled well-formed model wf
(
M IUT

)
is compacti�ed, the

tester automatonMRPT being coverage correct is invariant with respect to the
variations of time constraints speci�ed in M IUT .

The proof consists of two steps, showing that

(i) the control �ow of the tester MRPT does not depend on the timing of
M IUT and

(ii) the MRPT behaviour does not in�uence the timing of controllable tran-
sitions of the M IUT .

The practical implication of Proposition 3.6 is that a tester, once generated, can
be used also for syntactic modi�cation of M IUT provided only timing param-
eters and initial values of traps have been changed. Note that the invariance
does not extend to structural modi�cations of M IUT .

3.5 Correctness of test deployment

Practical execution of generated tests presumes test adapters that map sym-
bolic i/o alphabet used in the test modelM IUT ‖MRPT (parallel composition
of the IUT model and tester model) to executable inputs. Similarly, real out-
puts from IUT need to be transformed back to symbolic outputs. This mapping
performed by test adapters may introduce additional delays that are not re-
�ected neither in IUT nor tester models. Also, distributed test con�gurations
may contribute extra delays and propagation time to test execution, that can
alter ordering of test stimuli and responses speci�ed in the model. By applying
network monitors one can measure the latency of form 4 =

[
δl, δu

]
at each

test input and output adapter. To verify the feasibility of the executable test
suite, the latency estimates need to be incorporated also in the tester model
and their impact re-veri�ed against the correctness conditions de�ned in the
earlier development steps.

The key property to be veri�ed when deploying MBT test in distributed
execution environment is ∆-testability introduced in [34]. Parameter 4 shows
the delay between consecutive test stimuli necessary to maintain the order-
ing of input-output events at ports. Thus, when verifying the correctness of
distributed deployment of test one needs to proceed as following:

Step 1: estimate the latency at each input and output adapter/port. For any
input symbol a ∈ Σin

(
M IUT

)
and any output symbol b ∈ Σout

(
M IUT

)

get the interval estimates of its total latency (including delay caused
by adapters and propagation delays): ∆a =

[
δla, δ

u
a

]
and ∆b =

[
δlb, δ

u
b

]

respectively.

Step 2: modify the timed guards Grd and invariants Inv of each action of
wf
(
M IUT

)
to produce the delta-extended well-formed model

70

wf
(
M IUT+4) as follows:

Inv ∼= cl ≤ ub 7−→ Inv′ ∼= cl ≤ ub+ δua + δub
Grd ∼= cl ≥ lb 7−→ Grd′ ∼= cl ≥ lb+ δla + δlb

Step 3: Rerun the veri�cation tasks of earlier veri�cation steps with ∆ −
extended model wf

(
M IUT+4).

The procedure of constructing the test adapters for testing framework DTRON
are described in detail in Chapter 5.

3.6 Summary

This chapter presented the provably correct test development work�ow and de-
scribed how the correctness of MBT test development increments are veri�ed.
It presented the veri�cation conditions by major development steps (model-
ing a system under test, specifying the testing goal Synthesizing a test Suite,
Creating the test adapters and deploying them) and present a constructive
way of discharging the veri�cation obligations as model checking and syntactic
analysis tasks.

71

4 Model learning

4.1 Chapter overview

The goal of Chapter 4 is to develop an algorithm of incremental learning of
UPTA automata and demonstrate its applicability for model-based control of
human assisting robots and for conformance testing of distributed applications.
Two versions of timed automata model learning algorithm are presented, one
relevant for learning from recordings of human motions during surgical pro-
cedures, the other adjusted for learning from network tra�c monitoring logs.
The application of algorithms is demonstrated on a surgical scenario and on
network tra�c monitoring log analysis examples.

The author participated in the development of the learning algorithm and
laboratory setup for human-robot interaction learning. He designed and im-
plemented the integration software for automated near-infrared camera based
3D measurement system (3DMS) to record and playback motion capture in-
puts for the learning algorithm. This resulted in a uni�ed platform for the
TDU capture system, Tallinn University of Technology 3DMS and o�ine use
without multiple expensive laboratory setups.

The results introduced in this chapter are based on the publications:

(i) Vain, J., Miyawaki, F., Nõmm, S., Totskaya, T., & Anier, A. (2009,
August). Human-robot interaction learning using timed automata.
In ICCAS-SICE, 2009 (pp. 2037-2042). IEEE.

(ii) and partially in: Vain, J; Miyawaki, F.; Nõmm, S.; Totskaya, T.;
Anier, A. (2009). Human-robot interaction learning using timed au-
tomata. ICCAS-SICE 2009 : ICROS-SICE International Joint Con-
ference 2009, Fukuoka City, Japan, August 18-21, 2009, Proceedings.
Tokyo: IEEE/SICE, 2037=2042.

4.2 Background

The review by Neto et. al. [65] stated that the most frequent reasons why
model-based methods have not been easily accepted in software industry are:

· considerable modelling e�ort,

· MB approaches have poor integration with software development pro-
cesses,

· they lack empirical evaluation from industrial environments.

In this section we address the problem how models for robot control and for
MBT can be constructed by means of machine learning methods, speci�cally,

73

by applying automata learning technique. We highlight two contexts of model
learning: (i) learning the Human-Robot Interaction (HRI) for robot action
control and (ii) learning interaction between the IUT and its environment for
load generation in MB load testing. Two versions of the learning algorithm will
be presented for the subclasses of Uppaal timed automata. The approaches
will be demonstrated on application scenarios, one based on a fragment of sur-
geon's and nurse's collaborative motions during surgery, and the other, based
on IEEE1394 distributed leader election procedure with 4 networked nodes.
Since all nodes of IEEE1394 leader election procedure follow the same pro-
tocol scaling up the model to n nodes for running di�erent load patterns is
straightforward.

4.2.1 Human-Robot interaction learning

In this work, the Human-Robot Interaction learning problem is studied in the
context of cooperative surgical task accomplishment by Scrub Nurse Robot
(SNR) [8] and a human surgeon. The main challenge in SNR control and its
adaptation to human surgeon is learning the proper reactions of human scrub
nurse who is assisting in surgical procedures. Therefore, imitational learning
has been regarded as more relevant approach in given context than generating
a s et of �synthetic� (e.g. length optimized) robot manipulator trajectories.
Although possibly more e�cient (in terms of time, energy consumption etc.),
the synthetic behavior of the SNRmay feel unnatural and distract the surgeon's
attention during critical phases of surgery.

In our approach SNR is supposed to learn the basic movements by observing
initially the surgical procedure passively and later, when involved in coopera-
tive action training, it improves its interaction model incrementally. The SNR
learning architecture depicted in Figure 4.1 is layered into two levels as de-
scribed in [66]: low-level gesture learning/recognition (not shown in the �gure)
and high-level behavior learning (modules 1 and 3 in the �gure).

The layered leaning architecture provides �exible infrastructure to combine
advantages of short-term gesture learning techniques [67, 66, 68] with a long-
term behavior learning and recording in the form of Uppaal timed automata.
In the supervised-unsupervised learning scale the SNR architecture implements
the hybrid learning method. At �rst, low-level supervised learning is applied
o�-line for recognition of the reference set of primary gesture patterns, creating
the alphabet of these patterns and studying inter-motion transition events that
are used later for de�ning state transitions at high-level behaviour learning.

The high-level behavior learning is unsupervised. It is applied in o�-line
mode (box 1 in the �gure) when constructing the initial model of the partic-
ipants' interaction in the surgical procedure. Later, when the �rst model is
constructed o�-line, it is updated on-line (module 3) whenever the monitored
interactions do not conform with this model (for detection of new cases the

74

counter examples issued by Uppaal TRON in the course of RT-IOCO moni-
toring are used).

For high-level learning algorithm the input is the sequence of time stamped
motion switching events issued by low-level motion recognition subsystem
where each event is speci�ed with motion id, state information at which the
switching occurred and switching detection time stamp. Before reloading the
updated model into robot action planning system (module 5), the model is
checked against the correctness criteria such as non-Zenoness, safety, liveness,
etc. (module 4). If the model checking fails, the updates together with diag-
nostic traces will be passed to the human analyst who decides the relevance
of applied correctness criteria and/or new behaviors to be learned during op-
eration (module 6). The outcomes of the analysis may in�uence the model
correctness criteria in module 4 and possibly trigger completely new learning
cycle in module 1.

Figure 4.1: SNR high-level learning architecture.

4.2.2 Learning from network tra�c monitoring logs

Performance testing presumes generating the test cases that represent di�erent
load patterns. One source of data for extracting workload pro�les is the tra�c
log which shows how real users expectedly would interact with the system to
be tested. [69] states that in performance testing, it is important that the traf-
�c generated from workload models mimic the load generated by real users as
closely as possible. Otherwise it is not possible to draw any reliable conclusions
from the test results. The idea of using probabilistic timed automata (PTA)
for encoding load patterns learned from logs has been proposed already in [70].

75

The probability estimates collected by log analysis give good metrics for devel-
oping the test cases for most typical load situations. On the other hand, when
generating the tests that prefer behaviours of higher probability, the bugs oc-
curring in behaviors of low probability may remain undetected and can cause
considerable damage in rare but critical situations. Therefore, in CPS con-
text we focus on learning the non-deterministic TA instead of PTA assuming
implicitly that all non-determinstic choices encoded in the model are strongly
fair [71]. Thus, fairness is another hypothesis concerning non-deterministic
IUT models. Due to the di�erent learning context the assumptions and the
type of Uppaal automata used for learning load patterns di�er from the ones
used in HRI learning. In HRI learning the synchrony of cooperating actors'
motions observed once cannot be extrapolated to further motions. That is
because in case of unsupervised learning the learner does not have knowledge
if the motions observed simultaneous once are causally related or they just
happened to be simultaneous accidentally. Therefore, the traces used in HRI
learning are not forward stable [72] regarding synchrony assumption. For in-
stance, surgeon's hand stretching for muscle relaxing does not mean waiting
for some instrument. On the other hand, the data communication between
IUT and its environment once observed synchronous remains synchronous in
all further communications as well. Synchronous communication needs to be
represented explicitly by channels because their interaction always presumes
the involvement of both parties. Hence, regarding synchrony, the traces are for-
ward stable and the use of channels in Uppaal TA constructed from such traces
is justi�ed. The traces used for learning are abstract representation of network
monitoring logs that record i/o event history at the network ports that later
become test interfaces with SUT. The technical details of event monitoring
feature developed within this work are highlighted in Chapter 5.

4.3 Timed automata learning: related work

The construction of models from observations of system i/o behavior is re-
garded as an automata learning problem [73]. For �nite-state reactive sys-
tems, the active learning means constructing a (usually deterministic) �nite
automaton from the answers to a �nite set of membership queries, each of
which asks whether a certain sequence of input symbols (observed events) is
accepted by the automaton or not. There are several techniques (see, e.g.,
[74, 75] for overview) which use the same basic principles; they di�er in how
membership queries may be chosen and in how an automaton is constructed
from the answers. The techniques guarantee that a correct automaton will be
constructed if su�cient information is obtained. In order to check the su�-
ciency of learning sets, the equivalence queries are used [74] that ask whether
a hypothesized automaton accepts the correct sequences of symbols. Such a
query is answered either by �yes� or by a counterexample on which the hypoth-

76

esis and the correct language disagree. In [32] one of those learning algorithms,
namely Angluin's [74], is extended to the setting of timed systems and named
to event recording timed automata learning. This automata class is restricted
to be event-deterministic in the sense that each state has at most one outgoing
transition per action (i.e., such an automaton obtained by removing the clock
constraints is deterministic). Under this restriction, timing constraints for the
occurrence of an action depend only on the past sequence of actions, and not
on their relative timing. As an alternative to the active learning method of [32]
we present a passive learning algorithm that has following features (the fea-
tures choice is motivated by the speci�cs of the robot control and load testing
applications):

(i) The algorithm implements online learning strategy, i.e. the learner does
not have a possibility to back-track and ask equivalence or membership
queries about the arbitrary length pre�xes of the learning input trace.
As a result, the learning algorithm constructs relative to input trace
complete non-deterministic timed i/o automaton[31], such that all ob-
servation sequences learned are also reproducible by that automaton.

(ii) Since our aim is learning interactions between multiple automata instead
of learning a single automaton the algorithm constructs the composition
of interacting Uppaal automata. In this work, two communication and
synchronization cases are considered:

· Case 1: the processes are assumed to communicate over i/o vari-
ables and synchronize by means of clock constraints only. That is be-
cause the forward stability of synchronization hypothesis cannot be
guaranteed in the incremental and unsupervised learning of human
interactions. To ensure the incrementally of learning [76] we want
to guarantee that the model built based on past observations will be
updated only when new observation data are processed and there
is no back-tracking during online model construction. Otherwise,
if a new observation would violate the synchrony hypothesis (made
based on past observations) then potentially extensive backtracking
is required in the online learning process to replace the channels
with relevant timing constraints in the component automata.

· Case 2: the processes are assumed to communicate over i/o vari-
ables and synchronize by means of channels. Forward stable syn-
chronization assumption is due to the fact that observable com-
munication actions always incorporate both communication parties
and the learner can use channels according to Uppaal TA semantics
for representing synchronous input-output action pairs.

77

(iii) The algorithm uses predicate abstraction for clustering the events and for
encoding their occurrence conditions on clock and state variables. Non-
deterministic constraints in the transition guards and location invariants
are constructed in the form of linear interval constraints. Incremental
adjustment (without backtracking) of the interval bounds during lean-
ing process helps keeping the balance between the learning algorithm
complexity and the precision of the model constructed by learning.

4.4 Contribution: Unsupervised learning of Uppaal timed au-

tomata

4.4.1 Learning with asynchronous communication assumption

The �rst version of the learning algorithm that addresses the synchronization
assumptions of Case 1 takes the sequence of human motion switching events
and constructs the Uppaal model where processes communicate over shared
variables and synchronize using clock constraints. We assume that

(i) the motions of cooperating humans are observable in 3 dimensional space
coordinates and augmented possibly by using additional sensor data, e.g.
2nd order dynamics from motion capture system;

(ii) the observer has holistic view of the system events (snapshots of system
state and i/o variables) tagged with time stamps of a global clock;

(iii) each participant in the interaction the i/o of which is observable is mod-
elled as separate UPTA process.

(iv) a set of possible motions (motions alphabet) occurring in an observation
log is known from low level learning methods and it maps to the set L
of UPTA locations.

The learning algorithm records the order and timing of motion switchings.
For convenience of de�ning the learning algorithm we partition the transition
relation D by locations of TAIO into n subsets (n is the number of locations in
the model), s.t. D =

⋂
i∈[1,n]

Di and Di corresponds to the location li ∈ L all the

edges of Di are departing from. By de�nition∀i, j ≤ n, i 6= j ∧Di ∩Dj = ∅.
Note also that Di-s are multisets, because there may be more than one edge
between any pair of locations li and lk, but we require that all the edges (li, lj)
are distinguishable. To distinguish the instances of (li, lj) edges we introduce
an index k and refer to an edge using notation t (li, lj , k).

The learning algorithm constructs a symbolic model in the sense that ex-
plicit variable values observed at motion capture are abstracted in the model
using interval constraints. To de�ne the equivalence relation between the event

78

observations we introduce a robustness parameterRi for each i-th state vari-
able and similarly a robustness parameter Rt for observation time instances.
Parameters Ri de�ne the maximum distance between any two points in the
equivalence class on i-th variable domain, i.e. the granularity of the TAIO
factor space.

Before introducing the main steps of the algorithm we de�ne the input,
output and parameters of the algorithm:

Input : The sequence E of parametrised observations represent the ordering
of switching events of one or more interacting parties (hereafter called actors).
An example fragment of E is depicted in Table 1. Each element ei ∈ E (repre-
sented as a row in the Table 1) is described as a triple ei = 〈idi, tsi, Xi〉, where
idi identi�es the motion of an actor beginning with i-th switching event, tsi
is the timestamp of i-th switching event and X̄i is the valuation of observable
state variable vector Xi at time instant tsi. Note that only those variables
being relevant to the actors' interaction model are presented in Xi. The rele-
vance of Xi for model state is de�ned by actors' observable i/o con�guration
model and by feature extraction algorithm to minimize it. For instance, in Fig.
2 both actors have two inputs and two outputs. Inputs model the observables
the actor's behaviour depends on. The outputs model the observable e�ect of
actor's concrete actions.E is implemented as FIFO bu�er where motion detec-
tion system writes new events into bu�er using put -operation in the order of
their occurrence, and the learning algorithm reads events using get -operation
that returns the oldest unread element of E. The emptiness of E is checked
without shifting the read pointer of E.

Output : The model of observed behaviour de�ned as Uppaal TA. An ex-
ample of the automaton learned from observations of Table 1 is represented in
Figure 4.1.

Parameters: To reduce the model state space and to select only the state
variables being important from the SNR control point of view we use the
selector function Pr that �lters out the observable state variables of importance
(feature vector), i.e., Pr de�nes the subset XP ⊆ X the valuations X̄i are
mapped on. For instance, if the valuation of variables Xc is important for
model behaviour we de�ne Pr (X) = {. . . , Xc, . . .}. The observation robustness
R allows de�ning equivalence classes used in atomic propositions in TAIO edge
guards. Parameter RS denotes the rescaling vector that consists of scaling
functions, one for each state variable. Rescaling is necessary for keeping the
model in a compact non-negative integer domain (the restriction comes from
limited set of data structures UPTA is currently supporting).

Algorithm: The algorithm comprises following basic steps:

Step 1: Unless the bu�er of event sequence E is not empty, read the mo-
tion switching event from bu�er E and interpret it as an edge from last
reached location to possibly new target location. The source location is

79

supposed to be known as destination location of the previous event (read
from E) or it is an initial location l0 when the �rst event is taken from
bu�er. If the bu�er E is empty go to Step 3.

Step 2: Check if the edge and location representing the latest event e read
from E is already included in any existing equivalence class of model
edges. If the inclusion is established the algorithm returns to Step 1.
If the model element is not in any existing equivalence class the new
equivalence class is created and the algorithm returns to Step 1 thereafter.

Step 3 (Model post processing: model reduction): Model reduction minimizes
the set of state variables necessary for specifying transition guards of
the TAIO model. Reduction must not increase the non-determinism of
model. It means that for each location li its outgoing edges' guards
should preserve the determinism of choices, that is, there must exists at
least one variable xk for each pair of edges t(li, lj , .) and t(li, lk, .) (j 6= k)
s.t. their guards are mutually exclusive, i.e.,

∀li ∈ Q, ∀t(li, lj , .), t(li, lk, .) ∈ D : ¬(g(t(li, lj , .)) ∧ (g(t(li, lk, .))).

Step 4: Construction of location invariants. For each location li the invariant
I(li) is constructed from the guards of incoming and outgoing edges s.t.

I(li) ≡
∧

k

g(t(lk, li, .)) ∧
∨

j

g(t(li, lj , .)).

Step 5: (Reduction of causal non-determinism). Steps 1 to 4 may introduce
non-deterministic guards if the set of observables is limited, observation
robustness R is chosen too large, or the behavior to be learned is inher-
ently non-deterministic. To reduce non-determinism in the model the
history variable h is introduced that extends the model state space. The
variable h uniquely encodes the sequence of k last steps of the trace pre�x
that lead to the location of non-deterministic branching. The parameter
h allows distinguishing the (bounded) pre�xes of traces and refer to them
in edge guards. But this extension is context sensitive and may increase
the model postprocessing complexity drastically.

Notations used in the algorithm

· g, asg, inv, ch are syntactic variables denoting the model elements such
as guard condition, assignment, invariant and channel respectively;

· Text in Times Italic denotes the value of function or expression;

· x̄ and c̄l denote explicit values of variables cl and x;

80

· h is the stack of location names generated by the algorithm;

· Interval extension operator: [x−, x+]
lR

= [x− − δ, x+ + δ], where δ =
R − (x+ − x−), and x−, x+ are interval lower and upper bound respec-
tively;

· . denotes the concatenation of terms in syntactic expressions (term is
either an atom if within quotes, e.g. 'clock <= ', or the value of an
expression otherwise);

· .. denotes unde�ned value (used when the model terms have not been
fully constructed yet).

· E event bu�er, en event e ∈ E is de�ned as a triple:

〈 target action , switching time , switching state〉

The detailed algorithm in pseudo code is depicted in the following:

Algorithm 4.1 Learning Uppaal TA with asynchronous communication as-
sumption.

Initialization
L← l0 % L - set of locations, l0 - (auxiliary) initial location
T ← ∅ % T - set of edges
k, k'← 0, 0 % k, k' - indexes for distinguishing multiple edges between

same location pairs
h← l0 % h - history variable valuated with the id of currently

processed motion in E
h'← l0 % h' - variable valuated with the id of the motion before

previous
hcl ← 0 % hcl - clock reset history
l← l0 % l - destination location of the current switching event
cl← 0 % cl� local clock variable of the automaton being learned
gcl ← ∅ % gcl - 3D array of clock intervals where resets are enabled
gx ← ∅ % gx- 4D array of state intervals that constitute the state

switching condition
% E event bu�er, consisting of switching triples:
[target_action_ID, switching time, switching state]

Algorithm
1:while E 6= ∅ do % Exit when bu�er empty

2: e← get (E) % Read event e from event bu�er E
3: h′, h← h, l
4: l, cl ,X← e [1] , (e [2]− hcl) , e [3]

81

5: if l /∈ L then % if new type of event

6: L← L ∪ {l} % add new location
7: T ← T ∪ {t (h, l, 1)} % add new edge
8: gcl (h, l, 1)← [cl, cl] % add clock reset point

9: for all xi ∈ X do % for all observable state components
10: gx (h, l, 1, xi)← [xi, xi] % add the state switching point
11: end for

12: else % If the state switching event e is in the existing equivalence class

13: if ∃k ∈ [1, |t (h, l, .)|],
∀xi ∈ X : x̄i ∈ gx (h, l, k, xi)∧c̄l ∈ gcl (h, l, k) then

% x̄i- value of variable xi, gx(.) - interpretation set of gx(.)

14: goto 34

15: else% if switching e extends existing equival. class

16: if ∃k ∈ [1, |t (h, l, .)|] , ∀xi ∈ X : x̄i ∈ gx (h, l, k, xi)
lRi∧c̄l ∈ gcl (h, l, k)lRi

17: then

18: if cl < gcl (h, l, k)− then gcl (h, l, k) ∈
[
cl, gcl (h, l, k)+] end if

19: if cl > gcl (h, l, k)+ then gcl (h, l, k) ∈
[
g (h, l, k)− , cl

]
end if

20: for all ∀xi ∈ X do
21: if x̄i < gx (h, l, k, xi)

− then
gx (h, l, k, xi)←−

[
x̄i, gx (h, l, k, xi)

+] endif

22: if x̄i > gx (h, l, k, xi)
+ then

gx (h, l, k, xi)←−
[
gx (h, l, k, xi)

− , x̄
]

endif
23: end for

24: else % if switching e does not �t into any existing equivalence class

25: k ←− |t (h, l, .)|+ 1 % increment the number of l departing edges
26: T ←− T ∪ {t (h, l, k)} % Add new edge
27: gcl (h, l, k)←− [cl, cl]

28: for all ∀xi ∈ X do
29: gx (h, l, k, xi)←− [xi, xi] % Add new state switching point
30: end for

31: end if

32: endif
33: a (h', h, k')←− a (h', h, k')∪Xc% add assignment to previous transition
34:endwhile

35:for all t (li, lj , k) ∈ T do % compile transition guards and updates
36: g (li, lj , k)←− cl ∈ gcl (li, lj , k) ∧ ∧

s∈[1,|X|]
xi ∈ gx (li, lj , k, xs)

37: a (li, lj , k)←− Xc, cl←− random (g (li, lj , k)) , 0
% assign random value in a

82

38:endfor

39:for all li ∈ L do

40: inv (li)←−
∧
k

g (tki)
∧∨

j
g (tij) % compile location invariants

41:endfor

4.4.2 Learning with synchronous communication assumption

Algorithm 4.2 introduced in this Section is extended version of Algorithm 4.1
(introduced in Section 4.4.1). It takes the log of input-output events recorded
by network monitor at ports of distributed IUT and its environment and con-
structs the Uppaal model where processes communicate over shared variables
and synchronize using both clock constraints and channels. The main di�er-
ence between Algorithm 4.1 and Algorithm 4.2 is that if the former assumes
pre-existing knowledge about the set of model locations (each motion maps to a
location and switching of motions maps to edges that are known from low-level
learning method), in Algorithm 4.2 the set of model locations is not known in
advance. The set of locations is generated in the course of learning process by
identifying the equivalence classes of environment components' outputs. When
the interactions between IUT and its environment are learned we distinguish
the components of environment by ports of the IUT they are directly com-
municating with. The Uppaal automata that model Environment components
are assumed to be output deterministic, i.e. there is one-to-one correspondence
between the locations of environment automata and the equivalence classes of
environment components' outputs. The assumptions for Algorithm 4.2 coming
from this learning context are summarised in the following:

Assumptions of model construction

(i) The model used for testing represents two types of components (or nodes),
the components of IUT and the components of environment Env. The
interactions between the components of IUT and Env are observable as
events that update the values at components' ports. Each port is allo-
cated to only one component either to IUT 's or Env's. Thus, a link
between components is identi�ed by the pair of ports it is connecting.

(ii) The communication between ports is unidirectional. Given a connection
between ports PEi and PSj belonging to environment component PE and
IUT component PS respectively, is modelled in the UPTA as a channel

chij =
〈
PEi , P

S
j

〉
from the i-th output port of PE to the j-th input port

of PS .

83

(iii) The learning objective is to construct a model that represents how En-
vironment chooses inputs of IUT after IUT has responded to the Envi-
ronment's earlier stimuli. Since the model learning algorithm is targeted
to load test generation, the speci�c control structure of IUT model can
be ignored. We simply assume the input enabledness of IUT w.r.t. all
of its ports. Technically, it su�ces introducing an automaton for each
IUT component where the automaton has canonical control structure
like proposed in [61]. The IUT component automaton responds either
by writing data to its output ports or by executing unobservable internal
actions that results in a special timeout event issued by network monitor.

(iv) From Environment perspective the set E of events observable at ports
consists of two subsets E = EIUT ∪ EEnv, where EIUT are the events
produced by IUT (events observable to Env), and the events EEnv pro-
duced by the components of the environment (controllable events). It is
assumed that set EIUT includes also timeouts (TO), i.e. when IUT does
not respond to input within given time period.

(v) The event log Log (E) starts with the Environment event and ends with
the event produced by IUT, i.e. e1 ∈ EEnv and en ∈ EIUT , where
n = |Log(E)|.

(vi) The observations of events ei in the log are recorded as triples 〈P, TS, X〉
, where

(a) the pair of ports (P = 〈Porti, Portj〉) identi�es the channel chij
between send and receive processes (further, for shorthand we use
directly channel label instead of the pair of ports);

(b) TS is a timestamp according to the network monitor's clock;

(c) the vector X of data variables communicated between ports is de-
noted by X = Xi if data propagate from Porti ∈ PE to Portj ∈ PS
and by X = Xo if data propagate from Porti ∈ PS to Portj ∈ PE ;

(d) Timeout as special event is recorded in the form of triple〈., TS, ∗〉,
where for all i, xouti = ∗ (�.� and �*� are wildcard symbol for chan-
nel and for variable xouti value). To treat the symbol * uniformly
with numeric values we extend the semantics of standard functions
min and max as follows: min (∗, x) = min (x, ∗) = max (∗, x) =
max (x, ∗) = x.

Elements of the model constructed

(i) By channel direction we distinguish two types of edges of Environment
automata to be learned: the edges are controllable if they model con-

84

trollable events and observable if they model observable events; no other
types of edges exist.

(ii) The locations with observable incoming edges and controllable outgoing
edges are called active and the locations are passive if they have control-
lable incoming edges and observable outgoing edges. There are no other
sorts of locations.

(iii) Like in Algorithm 4.1 the non-deterministic assignments and guard con-
ditions are speci�ed with closed intervals [lb, ub] with lb being lower and
ub upper bound respectively.

(iv) In the environment automata the outgoing edge updates are identi�ed by
values of Xi sent by the environment components, and by values of Xo

of the observable event, the guard condition of observable edge incoming
to current active location are identi�ed.

Notation

· g,asg,inv,ch are syntactic variables denoting the model elements such
as guard condition, assignment, invariant and channel respectively;

· Text in Times Italic denotes the value of function or expression;

· x̄ and c̄l denote valuation of variables cl and x;

· h is the stack of generated location names;

· . denotes the concatenation of terms in syntactic expressions (term is
either an atom if within quotes, e.g. 'clock <= ', or the value of an
expression otherwise);

· .. denotes arbitrary value (used when the model terms have not been
fully constructed yet).

Implementation of the Algorithm The algorithm comprises two blocks:
BLOCK 1 interprets the controllable events and BLOCK 2 observable events.
Both blocks have two cases. In the Case 1 the event to be learned is within
an already existing equivalence class of active locations and controllable edges
or it can extend the classes within the limits that are de�ned by robustness
parameter R. In the Case 2 the event is out of bounds of existing equivalence
classes and a new class is introduced with the initial FIFO value de�ned by
the value vector X̄ of event observable attributes x∈X.

85

Algorithm 4.2 Learning Uppaal TA with synchronous communication as-
sumption.

1:while E 6= Ø do e ← pop (E) % get the latest event recorded in the
bu�er E

2: if e ∈ EIUT then e−1 ← e % if the event is initiated by IUT, save it
in e−1

3: else
4: BEGIN BLOCK_1: % recording environment

-controllable events e =
〈
chi, TS,Xi

〉

5: ch← e [1] , cl← (e [2]− hcl), xin ← e [3], push (hcl, e [2])

6: if ∃k, la, lp : t (la, lp, k) ∈ T (M env) for some M env such that

7: c̄h = chan (t (la, lp, k)),∀xini ∈ Xin : x̄ini ∈ asg (t (la, lp, k))lRi

∧c̄l ∈
[
glbcl (t (la, lp, k)) , invubcl (la)

]lRcl
8: then % CASE 1: the parameters of event e extend an

existing equivalence class of ei events

9: gcl (t (la, lp, k))←'cl>='.min
(
c̄l, glbcl (t (la, lp, k)) , invubcl (la)

)lRcl
10: invubcl (la)←'cl>='.max

(
cl, invubcl (la)

)

11: for all xini ∈ Xin do % extend the bounds of non-deterministic
assignment

12: asg
(
t (la, lp, k) , xini

)
←

′xini :′ .
[
min

(
x̄ini , asg

lb (t (la, lp, k))
)
,max

(
x̄ini , asg

ub (t (la, lp, k))
)]

13: end for
14: else % CASE 2: if the attributes of event e are

not within existing equivalence classes of events
15: o← |La (M env)|+ 1, % compute indexes for new locations

r ← |Lp (M env)|+ 1

16: La ← La ∪ lao where %create a new active location lao
17: invcl (l

a
o)←'cl>='.c̄l, % add location invariant

18: push (h, lao) % add new active location to the stack
19: Lp ← Lp ∪ lpr where r = |Lp|+ 1, % create new passive location lpr
20: push (h, lpr), % add new passive location to the stack
21: k ← |t (lak, l

p
r , .)|+ 1 % compute the index for new edge t (lak, l

p
r , .)

22: T ← T ∪ {t (lao , l
p
r , k)}, % add new controllable edge

23: gcl (t (lao , l
p
r , k))←'cl>='.c̄l, % add clock guard

24: ch (t (lao , l
p
r , k))← c̄h, % add channel with su�x `?'

25: asg (t (lao , l
p
r , k))←'cl:=0' % add clock reset

26: for all xini ∈ Xin do % create new state equivalence class for
non-deterministic assignments

27: asg (t (lao , l
p
r , k))← asg (t (lao , l

p
r , k)) ∪′ xini :′ .

[
x̄ini , x̄

in
i

]

28: end for

86

29: end if

30: END BLOCK_1

31: BEGIN BLOCK_2:
% recording environment-observable events e = 〈cho, TS,Xo〉

32: e← pop (pop (E)) % get an observable event e
preceding the latest controllable event in the bu�er E

33: h−1 ← pop (h) , h−2 ← pop (pop (h)),
34: c̄h← e−1 [1], c̄l←

(
e−1 [2]− h−1

cl

)
, x̄out ← e−1 [3]

35: if ∃h−2, h−1, k : t
(
h−2, h−1, k

)
∈ T

(
MEnv

)

for some MEnv such that ch = chan
(
t
(
h−2, h−1, k

))
∧

36:
¯∧∀xouti ∈ Xout

(
MEnv

)
: ¯outi ∈ gx

(
t
(
h−2, h−1, k

))lRix∧
c̄l ∈

[
gcl
(
t
(
h−2, h−1, k

))
, Invub

(
h−2

)]lRcl
37: then % CASE 1: the parameters of event e extend

an existing equivalence class of eo events
38: gcl

(
t
(
h−2, h−1, k

))
←′ cl ≥′.min

(
c̄l, glbcl

(
t
(
h−2, h−1, k

)))

39: invcl
(
h−2

)
←′ cl ≥′.max

(
c̄l, invubcl

(
h−2

))
,

40: asg
(
t
(
h−2, h−1, k

))
← % add clock reset

asg
(
t
(
h−2, h−1, k

))
∪′ cl := 0′

41: for all xouti ∈ Xout do % extend the bounds of non-det. assignment
42: gx

(
t(h−2l, xouti

)
←

43: xouti ∈ [min(x̄outi , glbx (t(h−2, h−1, k), xouti),

max(x̄outi , gubx (t(h−2, h−1, k), xouti)]

44: end for

45: else % CASE 2: if the attributes of event e are not
within the existing equivalence classes of eo events

46: invcl
(
h−2

)
←′ cl ≤′.max

(
c̄l, invubcl

(
h−2

))
% add inv to loc h−2

47: k ←
∣∣t
(
h−2, h−1, ..

)∣∣+ 1, % compute the index for new edge
48: T ← T ∪

{
t
(
h−2, h−1, k

)}
, % add new observable edge

49: gcl
(
t
(
h−2, h−1, k

))
←'cl<='.c̄l, % add clock guard

50: ch
(
t
(
h−2, h−1, k

))
← c̄h, % add channel with su�x `?'

51: asg
(
t
(
h−2, h−1, k

))
←'cl:=0' % add clock reset

52: for all xouti ∈ Xout do % add guard on state variables
53: gx

(
t
(
h−2, h−1, k

)
, xouti

)
← xouti ∈

[
x̄outi , x̄outi

]

54: end for

55: end if

56: END BLOCK_2

57: end if

58:end while

87

4.4.3 Case-study 1: Learning surgeon and scrub nurse collaborative
motions

The motion capture system outputs trajectories of moving objects (the hand
points monitored) that are sent to motion recognition system. The motion
recognition system detects motion switching events that are serialized in the
event bu�er E where each event has its spatial parameters and timestamp (a
sample fragment of the sequence E is speci�ed in Figure 4.1). Rescaling of a
parameter xi by operator RSi results in its normalized value denoted by x̃i.
For all state variables xi ∈ X their value domain is normalized within interval
[0, 30]. Robustness Ri = 2, for all xi ∈ X.

Table 4.1: Observation sequence E of selected hand motion parameters.

Some of observables are inputs to other collaborative actors and some of
them are feedback inputs that re�ect internal causality of the agent's motions,
i.e. it is assumed that the actions of agents are triggered when these parameter
values satisfy certain constraints. These parameters are called observable in-
puts/outputs. System con�guration example with inputs and outputs of agents
participating in surgery is depicted in Figure 4.2.

88

Figure 4.2: i/o con�guration of Surgeon-Nurse interaction (self-loops denote
self-dependencies).

The parallel composition of Surgeon's and Nurse's TAIO-s learned from
interaction log recorded in event bu�er E during a laparoscopic surgery (see
table in Figure 4.1) is represented in Figure 4.3. The uniform value for all
i Ri = 2 of robustness parameter is used for all observable state variables
xi ∈ X.

89

cl:= 0,
nY :=11,
sX :=8,
sY :=24

cl:= 0,
nY :=18,
sX :=22,
sY :=0

cl:= 0,
sX :=20

cl:= 0,
sX :=20

cl:= 0,
sX :=19

cl:= 0,
sX :=19

cl:= 0,
nY :=2,
sX :=11,
sY :=20

cl:= 0

cl:= 0,
sX :=30

cl:= 0,
nY :=30,
sX :=11,
sY :=30

cl:= 0,
nY :=30,
sX :=11,
sY :=30

cl:= 0,
nY :=18,
sX :=0,
sY :=22

cl==8

cl==7

cl==3

cl==13

cl==6

cl==69&&
nY==11&&
sX==8 &&
sY==24

cl==12 &&
nY==2 &&
sX==11 &&
sY==20

cl==9 &&
sX==20

cl==8 &&
nY==23 &&
sX==25 &&
sY==6

cl==6 &&
nY==30 &&
sX==11 &&
sY==30

cl==3 &&
nY==17 &&
sX==30 &&
sY==5

cl>=7 &&
cl<=8 &&
sX>=19 &&
sX<=21

cl==17 &&
nY==18 &&
sX==0 &&
sY==22

cl==6 &&
nY==1 &&
sX==27 &&
sY==18

cl>=13 &&
cl<=21 &&
sX>=21 &&
sX<=30

get1get2

insert1

insert2

return1return2

wait

work1

work2

extract1

extract2

idle
initial1 s0

cl<=8cl<=9

cl<=7

cl<=8

cl<=3cl<=6

cl<=12

cl<=13 cl<=21

cl<=6

cl<=17

cl<=69

cl<=1

(a) proc_Surgeon

‖

cl:= 0,
nX :=27

cl:= 0,
nX :=22

cl:= 0,
nX :=23,
nY :=18,
sY :=0

cl:= 0,
nX :=23,
nY :=11,
sY :=24

cl:= 0,
nX :=25,
nY :=23,
sY :=6

cl:= 0,
nX :=21

cl:= 0,
nX :=24 cl:= 0,

nX :=29

cl:= 0,
nX :=27

cl:= 0,
nX :=26

cl:= 0,
nX :=21,
nY :=7,
sY :=21

cl:= 0,
nX :=18,
nY :=6,
sY :=22

cl:= 0,
nX :=26

cl:= 0,
nX :=23,
nY :=27,
sY :=14cl:= 0,

nX :=22,
nY :=2,
sY :=20

cl:= 0

cl:= 0,
nX :=22

cl==5

cl==16

cl==2

cl==3cl==2

cl==22 &&
nX==23 &&
nY==11 &&
sY==24

cl==8 &&
nX==27

cl==6 &&
nX==21

cl==5 &&
nX==22 &&
nY==2 &&
sY==20

cl==25 &&
nX==24

cl==16 &&
nX==26 cl==21 &&

nX==27

cl==10 &&
nX==22

cl==13 &&
nX==29

cl==8 &&
nX==25 &&
nY==23 &&
sY==6

cl>=3 &&
cl<=6 &&
nX>=18 &&
nX<=23 &&
nY>=17 &&
nY<=30 &&
sY>=5 &&
sY<=30

cl>=2 &&
cl<=27 &&
nX>=18 &&
nX<=22 &&
nY>=1 &&
nY<=18 &&
sY>=18 &&
sY<=22

cl==3 &&
nX==22

cl==2 &&
nX==0

cl==4 &&
nX>=21 &&
nX<=30

prepare_instr

pick_instr1

pick_instr2

hold_wait

pass

withraw

idle1

idle2

stretch wait_return1

wait_return2

receive1receive2move_backput_on_tray1
put_on_tray2

initial1
s1

cl<=25

cl<=5

cl<=6

cl<=22

cl<=8

cl<=10

cl<=16

cl<=21 cl<=13
cl<=2

cl<=27

cl<=3cl<=6cl<=4cl<=2
cl<=3

cl<=1

(b) proc_Nurse

Figure 4.3: Parallel composition of Surgeon's and Nurse's TAIO learned from
event history of Figure 4.1

90

4.4.4 Case study 2: model learning for performance testing of
IEEE1394 protocol

IEEE 1394 is an interface standard for a serial bus for high-speed communi-
cations and isochronous real-time data transfer. The tree identify process of
IEEE-1394 is a leader election protocol initiated after a bus reset in the net-
work. Initially all nodes in the network have equal status, and they know only
to which other nodes they are directly connected to. A leader (root of the
tree) needs to be elected as the manager of the bus. The protocol is designed
for use in connected networks and will correctly elect a leader if the network
is acyclic. Speci�cally, each node has two phases based on the number of chil-
dren and the number of neighbours. If there is more than one neighbours, the
node waits for requests from its neighbours to become their parent. If there
is only one neighbour and this neighbour is not a child, then the node sends
a request to the neighbour to become its parent. This implies that leaf nodes
are the �rst to communicate with their neighbours, and that the spanning tree
is built from the leaves. Furthermore, the protocol may not proceed in one
run because the parent requests are not atomic and contention may arise (two
nodes simultaneously send the parent requests to each other). Since only one
node can be the leader, the contention must be resolved. This is achieved by
timing. The IEEE1394 standard speci�es that each node chooses randomly
whether to wait for a long or short time. If, after the wait period is over, there
is a parent request from the other node, then the node becomes the root. If
there is no such request, then the node resends its own parent request and
contention may result again. In Figure 4.4 an example of network consisting
of four nodes is depicted where central node Node #0 is the system under test
and the other nodes Node #1 to Node #3 constitute the Environment the
tester needs to simulate. Thus, the learning goal is to construct the model of
Environment i/o behavior by studying the logs recorded on interfaces between
IUT and Environment nodes.

91

Environment

Node 0

Node 3

Req03

Req30
Ack03

Ack30

Node 1 Node 2
Req10

Ack01
Req02

TO20

Ack20

TO30

TO03

TO01

Req01
Ack10

Req20
Ack02

TO10 TO02

Figure 4.4: IEEE1394 test case: data �ow between nodes.

In this example, Reqij and Ackij denote parent request from node i to node
j and its acknowledgement back from node j to node i; TOij denotes delay
of retrying either Reqij or Reqji after detecting contention between Reqij and
Reqji.

92

T
S

L
o

g
 1

T
S

L
o

g
 2

T
S

L
o

g
 3

T
S

L
o

g
 4

T
S

L
o

g
 5

T
S

L
o

g
 6

T
S

L
o

g
 7

L
e

a
de

r
n

o
d

e
 0

L
e

a
de

r
n

o
d

e
 0

L
e

a
de

r
n

o
d

e
 2

L
e

a
de

r
n

o
d

e
 0

L
e

a
de

r
n

o
d

e
 0

L
e

a
de

r
n

o
d

e
 0

L
e

a
de

r
n

o
d

e
 3

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-
-

-
-

-
-

-
-

Re
q1

0

Ac
k1

0

Re
q3

0

Re
q2

0

Ac
k3

0

Re
q0

2

Re
q2

0

Ac
k2

0

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

Re
q3

0

Re
q1

0

Ac
k1

0

Re
q2

0

Ac
k2

0

Ac
k3

0

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-

-
-

-
-

-

-
-

-

-
-

-
-

-
-

-
-

-
-

-
-

Re
q1

0

Re
q3

0

Ac
k3

0

Ac
k1

0

Re
q2

0

Re
q0

2

Re
q0

2

Ac
k0

2

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-

-
-

-
-

-

-
-

-

-
-

-

-
-

-
-

Re
q1

0

Re
q2

0

Ac
k2

0

Re
q3

0

Ac
k1

0

Ac
k3

0

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-
-

-

-
-

-

-
-

-
-

-

-
-

-
-

Re
q1

0

Ac
k1

0

Re
q2

0

Re
q3

0

Ac
k3

0

Ac
k2

0

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-
-

-
-

Re
q1

0

Re
q2

0

Ac
k1

0

Ac
k2

0

Re
q3

0

Ac
k3

0

no
de

0
no

de
1

no
de

2
no

de
3

-
-

-
-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-
-

-
-

-
-

-
-

Re
q1

0

Re
q2

0

Ac
k1

0

Re
q3

0

Ac
k2

0

Re
q0

3

Re
q0

3

Ac
k0

3

20 3 3 3 4 4 1
4

1
4

20 3 3 3 4 5

20 2 3 3 4 5 1
0

1
2

20 2 3 3 5 5

20 3 3 3 4 4

20 2 3 3 3 4

20 2 3 3 4 4 1
4

1
6

-
co

n
fl
ic

ti
n
g
 r

e
q
u
e
st

s
(t

ri
g
g
e
r

co
n
te

n
ti

o
n
 m

o
d
e
)

-
Ti

m
e
 s

ta
m

p
s

(T
S
)

a
re

 r
e
co

rd
e
d
 w

it
h
 l
o
w

 g
ra

n
u

la
ri

ty
 a

n
d

m
a
p
p
e
d
 t

o
 i
n
te

g
e
r

sc
a
le

 (
0

-1
6

).

Figure 4.5: A selection of logs of monitoring network con�guration of Figure
4.4

93

The learning algorithm introduced in Section 4.4.2 construct from recorded
logs the model depicted in 4.4 that describes interactions of Node #1, Node #2
and Node #3 with Node #2. When browsing the events of each log Algorithm
4.2 simultaneously extends the automata involved in current interaction event.

Ack01?
Req01!

Ack10!

Req10?

Ack02?
Req02!

Ack20!

Req20?

Ack03?

Req03!Ack30!
Req30?

(a) node0

cl<=2cl <= TO100cl<= TO10
cl>=1

cl>=2

cl>=TO10

cl>= TO100
cl=0cl=0cl <=3 cl=0

cl=0

cl=0

cl=0

Ack10?

Req01?

Req10!

Req01? Req01?

Req01?

Ack01!

(b) node1

cl<=2cl <= TO100cl<= TO10
cl>=1

cl>=2

cl>=TO10

cl>= TO100
cl=0cl=0cl <=3 cl=0

cl=0

cl=0

cl=0

Ack20?

Req02?

Req20!

Req02? Req02?

Req02?

Ack02!

(c) node2

cl<=2cl <= TO100cl<= TO10
cl>=1

cl>=2

cl>=TO10

cl>= TO100
cl=0cl=0cl <=3 cl=0

cl=0

cl=0

cl=0

Ack30?

Req03?

Req30!

Req03? Req03?

Req03?

Ack03!

(d) node3

Figure 4.6: Model of IEEE1394 leader election protocol constructed by Algo-
rithm 4.1.

94

4.5 Summary

We have proposed two algorithms of learning di�erent subclasses of Uppaal
timed automata: one with asynchronous parallel composition and the other
with synchronous composition of extended timed i/o automata. The learning
constraints and assumptions are due to the speci�cs of applications: learning
collaborative human motions in the surgical scenario for training a scrub nurse
robot high level action planning, and learning interactions in the distributed
leader election protocol of standard IEEE1394 for synthesis of on-line testers
for load testing. The key features of proposed unsupervised learning algorithms
are following:

(i) learning is incremental, i.e., pre-existing knowledge about human scrub
nurse behaviour can be re-used;

(ii) in the presence of prede�ned scenario models the functional correctness
of learning results and the e�ciency of the robot action can be veri�ed
by model checking before used for actual planning and/or test execution;

(iii) both versions of the learning algorithms can be tuned by choosing values
for parameters such as feature vector, state space granularity, depth of
control state history vector, scaling etc.; this allows generating families
of models with di�erent level of abstraction and of di�erent pro�le tuned
to speci�c control or testing task.

95

5 Model execution environment DTRON

5.1 Chapter overview

This chapter presents the DTRON model execution environment software ar-
chitecture by providing the details of the subsystems, the communication model
and the integration mechanism for re-use in other software. Common (au-
tomata) modelling and runtime limitations and considerations are also dis-
cussed.

The author designed the software architecture, implemented DTRON and
set up the supporting website and repositories for the purpose of documenta-
tion and reuse by other parties (other bachelor/master theses and collaborating
research & development projects).

The results introduced in this chapter are based on the prepared and pre-
sented publications by the author:

(i) �Anier, Aivo, and Jüri Vain. "Model based Continual Planning and Con-
trol for Assistive Robots." HEALTHINF. 2012.� and

(ii) �Anier, A., and J. Vain. "Timed Automata based provably correct
robot control." Electronics Conference (BEC), 2010 12th Biennial Baltic.
IEEE, 2010.�

5.2 General design context

The motivation and the need for a model based robot control and testing tool
such as DTRON originally came from the Scrub Nurse Robot (SNR) project,
a cooperative research project between Tokyo Denki University (TDU) and
Tallinn University of Technology (TUT). The robot mechatronic platform de-
sign proposed by DTU is highly heterogeneous with many subsystems - con-
trollers and algorithms for servo motors, pneumatically actuated manipulator
arms and the base platform, pressure sensors for tactile feedback etc. The
application scenarios for laparoscopic surgeries also require the use of auxiliary
cognitive subsystem for human motion capture and recognition using video
cameras, real-time 3D motion tracking, learning, and online decision making.
The integration of such a versatile mixed software-harware designs presumes
an integration middleware and well-coordinated use of the code base. So the
question is how to preserve or gain con�dence in the overall software quality
including performance aspects. Aside from the software quality issues there
is also the question of how to guarantee the safety of robot action. A robotic
manipulator arm holding a scalpel is a high-risk threat to human in surgical
scene, especially within con�ned spaces like a laparoscopic surgery.

The software development quality issues range from project management
philosophies to deployment protocols. There are methodologies like Ratio-

97

nal Uni�ed Process, Agile software development, extreme programming, test-
driven design and others each with its own strengths. There is no single choice
to make out of the available methodologies, but rather the well-balanced com-
position of each.

In the traditional software development sense - this thesis focuses mainly
on high level control and testing, speci�cally on integration testing, but as will
be shown in Chapter 6- the results can easily be applied for unit, regression
and integration testing scenarios and (model based) supervisory level control
as well.

The thesis aims to develop a model based testing (MBT) and control frame-
work that could be used in such a versatile project as a robotic platform devel-
opment. The tool needs to be able to run on multiple hardware and operating
systems platforms such as Windows, Linux, embedded/controllers, mobile op-
erations systems (Android, iOS and others), but also be able to integrate with
many programming languages. Typically, low level controller algorithms are
programmed with languages like C and possibly run them on ARM architec-
ture. But it would be equally obvious to write learning, planning and cognitive
functions in high-level programming languages such Java, Python or Prolog.

The goal is to construct a model-based control and testing framework that
would be able to interconnect possibly maximum of listed features to enable
sophisticated model driven execution of di�erent robot control stacks as well
as test suites of integration testing. Although the focus is on robot control and
testing applications we keep in mind that the same tool could in principle be
used also for online (safety) monitoring applications. This is essential in large
scale (legacy) projects where low level / unit testing is infeasible or not practical
and is skipped. Then the main design validation e�ort falls into the high-
level functionality monitoring and if necessary integration testing thereafter
to ensure some global (safety) properties hold during runtime. For instance,
consider the SNR project where the robotic platform has many manipulator
arms with n-joints. It does not make much sense to focus testing an algorithm
for single joint control. However, testing n-joints as whole enables to check if
manipulator arms collide with itself or another arm. Such a system composed
of a large number of simplistic components introduces �emergent behavioral
properties� and we want to be able to address them on the level of emergent
behavior.

In the following we consider the kernel component of DTRON tool - Uppaal
TRON at �rst, and discuss the functionalities to be added to meet the goals
of the distributed model-based execution framework discussed above.

98

5.3 Functional subsystems: Uppaal TRON

5.3.1 Background

Uppaal TRON is a model based online testing tool based on Uppaal engine.
Tests are algorithmically generated[33], executed and checked simultaneously
while maintaining connection to the system in real-time[77]. The Uppaal tool
is used for explicit model de�nition and model checking with the integrated
veri�er based on a subset of timed computation tree logic (TCTL) query lan-
guage. Uppaal model �les are used as input to Uppaal tron.

In order to interface with actual systems in model based testing/control an
adapter (see Figure 5.3) needs to be de�ned to interpret the model stimuli to
SUT and transform the observations back to the symbolic form of the model.
Uppaal TRON provides a C and Java application programming interface (API)
for this. In principle, the API consists of two classes: the Reporter and the
Adapter (see Figure 5.1).

We now brie�y describe the usage of the API. The immediate connection
to Uppaal TRON runtime and the underlying UPTA model is handled by a
Reporter. Whenever a Reporter �rst connects to the runtime the settings for
the following session are con�gured. This phase is called �handshake�. This
happens at method void configure(Reporter) that is invoked by the Uppaal

TRON framework giving an access to the actual Reporter object for session
con�guration. There are few things to con�gure within the handshake: the
timeunit, timeout and inputs-outputs for the runtime following the handshake.

Firstly, one needs to de�ne how the model clocks are interpreted against
the actual system clock. The Uppaal automata clocks are real-valued vari-
ables increasing monotonically. The API forces user to de�ne how exactly this
increase is to be translated to the actual system clock. The translation de-
�nes how many microseconds need to pass for every (integral) unit of model
clock increase. This is a required parameter. The mapping is set by invok-
ing the setT imeunit(long) method on the Reporter object reference passed to
void configure(Reporter) when called.

Secondly, one needs to de�ne the timeout that bounds the model execution
time. This value de�nes the amount of logical time units previously described,
that sets the upper bound to the testing session. When timeout is exceeded
the session will be terminated by TRON. An Uppaal model de�nes abstract
test sequences. Test sequence is a succession of i/o actions executed in the
course of model run. Only in minimalistic and rare cases it is feasible to
execute all possible runs. In many large test cases their execution may hit the
timeout limit. Consider a model with a single state and a single transition
that is time constrained to be enabled in a 100 years. It is hardly worth the
wait. So we de�ne a timeout we are willing to wait to cover the behaviours
of interest. When timeout occurs it usually means no conformance violations

99

were found during the execution, but since all the test sequences could not be
executed it could not be said the test was a success. When this happens a
message �test inconclusive (timed out)� is output instead, to denote this. The
timeout mapping is set by invoking the setT imeout(int) method similarly to
setT imeunit(long) on the Reporter just like previously described.

Example 5.1. If the timeunit is set to u = 1000 (microseconds) then an
increase of 1000 units in model time would translate to 1000µs×1000 = 1s time
elapsing during the execution of the model. Setting the corresponding timeout
to o = 2000 would result an interpreted timeout of u× o = 1000× 2000 = 2s

Uppaal automata are constructed using the Uppaal tool graphical user in-
terface (GUI). At �rst, individual automata are constructed each with it's own
initial location, variable set and clocks. The Uppaal tool then implements the
parallel composition resulting in a product automaton that can be loaded into
the veri�er for model checking.

The process of automata construction is split in two: de�ning automata
templates and their instantiating. The automata templates give the control
structure and all main elements of the automaton, it leaves open only param-
eters that need to be instantiated when instances of templates, i.e. model
processes are compiled. The parameters are instantiated in the system de�ni-
tion section of Uppaal API. Also synchronization constraints, channels between
processes are instantiated in the course of compilation.

We now focus on channels since channels are the key constructs needed for
tester and IUT communication, as well as for automata synchronization. A
synchronization channel is de�ned on an edge between locations. When two
transitions are synchronized using a channel they are bound to be taken si-
multaneously. Syntactically the channels are split to initiating and receiving
actions denoted by su�ces ! and ? respectively. A receiving synchronization
(?) also disables an outgoing edge from its destination location until the cor-
responding initiating synchronization occurs.

Example 5.2. Consider a model extract shown in Figure 5.3. The transition
labelled with receiving synchronization move? disables the transition until the
transition labelled with move! is taken in the other automaton.

The channels serve as the basis for input-output alphabet between the
model and the system under test (SUT). Not all the channels belong to the i/o
alphabet, but only the ones explicitly declared to be so upon the �handshake�
phase of the Uppaal TRON session.

So, in the testing context we need to de�ne the input and output alpha-
bet (implemented by channels) with regard to the Environment and SUT au-
tomata. Using the API user can register the adapter to get noti�ed when a
synchronization (denoted by a channel) event occurs in the model and possibly

100

attach global integer variables to this event to get insight of the inner state of
the model.

Since at this point we are de�ning an adapter that is inherently outside
the automata at the SUT side - we refer to this as an �symbolic input�. An
input assignment is declared calling the int addInput(String) method on the
Reporter object reference. The string argument has the value of the corre-
sponding channel name in the model.

Outputs are declared respectively by invoking int addOutput(String). Note
that declaring a synchronization as output changes the semantics of its inter-
pretation in the model. If normally the initiating side of the channel (!) does
not disable the transition then after declaring it as �output� it does. The chan-
nel is not enabled until it has been triggered by the adapter. This is done by
invoking the report(int) method on the Reporter object reference.

The protocol implementing the immediate connection between the model
and the adapter is optimized in a way that it does not transport the synchro-
nizations with the actual channel names. When registering inputs and outputs
each channel is assigned an integer index instead. This index is returned by the
corresponding addInput or addOutput method and used then to encode which
synchronization exactly occurred during the runtime. Keeping track of these
indexes was intended to be the responsibility of the programmer in TRON, but
as will be demonstrated in following sections DTRON hides this complexity
behind a more generic object-oriented API.

Example 5.3. Figure 5.3 denotes a simple composition of two automata to
move a robotic joint, synchronized with channel namedmove. Synchronization
forces automata running concurrently to take the transition simultaneously, i.e.
blocking the transition labelledmove? as long as necessary. Uppaal TRON API
allows the Adapter to subscribe to get a noti�cation whenever this synchro-
nization occurs and given the example - possibly move a robotic joint. If move
was declared an output channel instead the transition labelled with move! will
block until it is �reported� by the adapter. Since move? is semantically bound
to move! - it naturally gets blocked also.

Whenever a subscribed synchronization event occurs - the Adapter method
perform(int,int[]) gets called, providing the related information about the event
in the argument list. The �rst integral value denotes the channel index of the
synchronization that occurred. The second argument of integral array gives
the integral variable values �attached� to the event.

Attaching variables to a channel is done by invoking addVarToInput(int,
String) and addV arToOutput(int, String) on the Reporter object reference
during handshake. The �rst integral parameter denotes the channelId index
bound to have variables attached. The channel needs to be registered �rst
in order to get the index assigned. The second String parameter de�nes the

101

variable name in the model to be attached. This variable has to be strictly of
the integral type.

Coming back to the perform(int, int[]) method - the second argument of
integral array gives the values of the attached variables. Similarly, to optimize
the underlying protocol the variable names are not transported, but only their
values - in the order of declaration when attaching them to a channel.

Example 5.4. Declaring an input addInput(”move”) would return a result
of an index 0. One can now attach a variable to the channel by calling
addV arToInput(0,�i�). Whenever perform(int, int[]) is called - the int[] array
will be of length 1 and the �rst element value will hold the value of i that was
held at the model during the synchronization.

Note that only variables declared in the �global� section of the Uppaal au-
tomata de�nition could be used to be attached to channels. If the access to
local (template) variables is needed one should assign the values to a global
variable just before the synchronization to carry the value.

Figures 5.1 and 5.2 show the relevant extracts of the Uppaal TRON API.

package com . uppaal . t ron ;

public interface Adapter {
void c on f i gu r e (Reporter r epo r t e r) ;
void perform (int chan , int [] params) ;

}

Figure 5.1: Uppaal TRON Adapter class.

102

package com . uppaal . t ron ;

class Reporter extends VirtualThread {
int addInput (S t r ing channel) ;
int addOutput (S t r ing channel) ;

void addVarToInput (int channel , S t r ing va r i ab l e) ;
void addVarToOutput (int channel , S t r ing va r i ab l e) ;

void setTimeUnit (long microsec s) ;
void setTimeout (int timeout_in_units) ;

void r epo r t (int chan , int [] params)
}

Figure 5.2: Uppaal TRON Reporter class extract.

Example 5.5. Figure 5.3 shows a simple automaton extract denoting m ∈
[0, 100] re�ective transition on an initial location wherem is enumerated uniquely
across all the transitions and variable amount is given the corresponding value.
So if a Uppaal TRON session is con�gured to get noti�ed whenever �move�
happens, perform(int, int[]) gets called to return the details about it.

Reporter

Adapter

Robot

amount=m

m:int[0,100]
move!

./tron

move?

Figure 5.3: Simple robotic joint movement with Uppaal TRON.

5.3.2 Limitations of Uppaal TRON

Uppaal TRON was �rst hypothesized to be useful for the SNR project and
turned out to be an excellent tool to do so. But as the project grew bigger
the scalability issues began to uncover. The complexity of both the Adapter
and the Model grew hand in hand. Making changes to parts of the model that
modify the input or output alphabet contract implied immediate changes to
the Adapter code as well. This is because the API did not support easy channel
and variable mappings. It is left to the responsibility of the developer using

103

the API. But this task can be easily underestimated that leads to cluttered
code when managing the mappings. This in turn, leads to many rewrites of the
Adapter code and engages one with developing the Adapter instead of making
use of the advantages of the tool.

These considerations motivated the decision that the API of TRON needs
to be reworked to support arbitrarily large software projects. Hiding away the
low level �book-keeping� and exposing the API in a domain speci�c language
(DSL) -like manner. The inner workings of the API would handle all the
�book-keeping� of channels and variables relieving the programmer of this task.
The API was intended to take advantage of modern industry standard tooling
support and be multi-platform and multi-language compatible. So it would be
easy and declaratively be integrated to software project of �industrial� size.

Second problem looking for a solution, was the applicability of Uppaal
TRON in distributed testing scenarios. This is where system under test has
multiple physical ports, possibly on di�erent machines. This would require a
timing aware messaging medium to coordinate the Adapters.

It was hypothesized that if there was a mechanism that enables messaging
between multiple Uppaal TRON sessions it would enable distributed execution
and allow to break down possibly large single models into many smaller and
simpler ones. By achieving greater spacial modularity would lead to better
scalability and model maintainability by decoupling large monolithic models.
If there are changes made to one model there would not be an inherent need to
change the adapters of model components executed by other TRON instances.
Last but not least, the smaller component model would be easier to construct
and read.

The main hypothesis of this improvement was to come up with a communi-
cation architecture to handle the messaging coordination between the adapters
and the (Uppaal TRON) models. The primary design criterion for introducing
an additional messaging layer was not to break the underlying formal seman-
tics of the Uppaal timed automata. First of all, the messages would need to
preserve their order in distributed execution Secondly, due to realtime con-
straints to model execution the messaging transport overhead needs to be kept
to a minimum and possibly measurable to enable compensation of sporadic
communication delays.

Having a messaging framework like that would enable the use of some con-
venience features as well. It would be possible tomonitor the messages passing
through the medium and use this information for monitoring and debugging
purposes. Interconnected model components would also allow centralized coor-
dination actions like remote model loading or re-loading from a known resetting
state.

104

5.4 DTRON design considerations

5.4.1 DTRON overview.

DTRON is not intended to re-implement existing Uppaal TRON tool or come
up with a new formal testing theory. The goal is rather to bene�t from existing
Uppaal toolset and build on top of it. The solution is intended to be scalable
enough to allow applications in daily unit and regression testing as well as
high-level (e.g. web testing) conformance testing and robot control.

To achieve this we need solid messaging services to coordinate the dis-
tributed execution. This means that the messaging framework needs to preserve
the order of messages arriving to and leaving from each distributed model com-
ponent. Since we have a special focus on real-time systems - the messaging
overhead needs to be kept as low as possible.

The possible execution runtime environments are expected to be highly
heterogeneous. Consider the Scrub Nurse Robot scenario previously covered.
We expect the tool to be deployed on any operating system/platform and to
be interfaced with major popular programming languages. All the possible
runtime con�gurations could be used simultaneously during distributed exe-
cution scenarios. Low level robotic coordination modules will most likely be
ran with drivers written in C, possibly on embedded architectures while high
level machine learning algorithms could run Python scripts on Windows plat-
form. This kind of inter-plaform and -language communication most obviously
implies a network socket based communications. Socket based input-output
capabilities are supported by all major programming languages so we consider
this a realistic expectation.

Network socket based data interchange is quite straightforward - at �rst
glance. Since we are dealing with multi-platform and -language scenarios we
need to consider also the data type di�erences. For instance, C/++ has un-
signed integers, Java does not. Java has UTF-8 strings but C/C++ essentially
has (unencoded) byte-arrays instead of strings. C has struct-s. Java has enum-
s and classes ... etc. To enable proper scaling we would need to support wide
spectrum of data structures and possibly objects. This would contribute to
the runtime coherence and minimize the possibility to accidentally �break the
protocol�. We need a mechanism that eliminates the use of accidentally or
intentionally malformed messages during runtime. That means a more sophis-
ticated framework to meet the requirements and as much as possible avoiding
implementing this from ground up.

Uppaal TRON adapter keeps the connection with the runtime to a mini-
mum. Inputs and outputs are assigned an index and the complemented vari-
ables are positional in the corresponding array. This protocol is exposed by
a minimalistic API that delegates most of the responsibility of keeping track
of all of it to the developer. This approach is straightforward and su�cient

105

in small projects having few classes, but is clearly insu�cient when projects
grow large. The developer is prone to lose track of assigned indexes and needs
complicated supporting code to propagate the values across the code.

We explicitly identify the need for a better API that alleviates the developer
from this �book-keeping� and enables a more �declarative� style programming
where only control/testing-relevant code needs to be written. We also aim
to have syntactic guarantees that malformed messages are not submitted to
the data-interchange framework. This would allow long-running distributed
tests/control routine, possibly having daemon-like agents and testers leaving
and joining a coordinated execution on demand

This development emphasizes that the DTRON development process itself
needs to utilize the modern industry standard software management and build
automation tools (like Maven). The main goal of DTRON design is to enable
declarative style use of distributed MBT and MBC with minimum e�ort on
Adapter building and application sensitive model adjustment.

5.4.2 Project setup with Apache Maven

Apache Maven is a software project management and comprehension tool[78].
DTRON project is based on and makes heavy use of it in various ways.

The most common use of Maven is dependency management. DTRON in-
corporates various supplementary libraries to function. The full list of depen-
dencies is shown in Figure 5.4. �Compile� indicates that the dependency is an
integrated part of the �nal executable and �test� indicates this dependency is
used only during unit testing, before the actual packaging of the �nal binary
(target).

Note that aside from reusing various open-source tools the DTRON project
itself is modular and is dependent of the sub-modules. We brie�y describe the
use of each relevant module:

com.uppaal:tron is so called mavenized (or repackaged) version of Uppaal
TRON API to support its declarative use as set of Maven dependencies.
This includes Reporter and Adapter classes implementing the original
protocol to Uppaal TRON runtime. There are also few supplementary
classes as part of the original API.

ee.ttu.cs.dtron:troninstaller is a module responsible for locating the Up-
paal TRON executables depending on the speci�c platform - �tron.exe�
on Windows or �./tron� on Linux. These executables are invoked in-
ternally from within Java runtime to execute local testing agents , con-
ventionally to the original intention. This location task is modular to

106

ee . t tu . c s : dtron : j a r : 4 . 8
+− com . goog l e . protobuf : protobuf−java : j a r : 2 . 3 . 0 :
+− com . uppaal : t ron : j a r : 1 . 5 . 4 : compi le
+− org . apache . commons : commons−exec : j a r : 1 . 1 :
+− ee . t tu . c s . dtron : t r o n i n s t a l l e r : j a r : 2 . 0 :
| \− org . apache . commons : commons−v f s2 : j a r : 2 . 0 :
| \− . . .
+− commons−c on f i gu r a t i on : j a r : 1 . 8
| \− commons−lang : commons−lang : j a r : 2 . 6 : compi le
+− commons−i o : commons−i o : j a r : 2 . 3 : compi le
+− org . s l f 4 j : j c l−over−s l f 4 j : j a r : 1 . 6 . 6 : compi le
| \− org . s l f 4 j : s l f 4 j −api : j a r : 1 . 6 . 6 : compi le
+− commons−c l i : commons−c l i : j a r : 1 . 2 : compi le
+− org . s l f 4 j : s l f 4 j −s imple : j a r : 1 . 6 . 6 : compi le
+− com . jayway . aw a i t i l i t y : aw a i t i l i t y : j a r : 1 . 3 . 4
+− org . hamcrest : hamcrest−l i b r a r y : j a r : 1 . 2 . 1
+− j u n i t : j u n i t : j a r : 4 . 1 0 : t e s t
+− org . spread : spread : j a r : 4 . 0 . 1 : compi le
+− commons−codec : commons−codec : j a r : 1 . 6 : compi le
\− ee . t tu . c s : an t l r x t a : j a r : 1 . 1 : compi le

+− ee . t tu . c s . dtron : xtaap i : j a r : 1 . 0 : compi le
\− org . an t l r : ant l r−runtime : j a r : 3 . 4 : compi le

\− . . .

Figure 5.4: Full list of dependencies generated with mvn dependencies:tree.

possibly support bundled TRON executables for unpacking on-demand.
Note that the bundling is not allowed due to redistribution restrictions
inherent in Uppaal license. Therefore, this module will seek to locate pre-
installed binaries by parsing the TRON_HOME environment variable on
Linux or %TRON_HOME% on Windows.

org.spread:spread is also a mavenized packaging of the original Spread Java
API to support its use through declarative dependency management by
Maven.

ee.ttu.cs:antlrxta module implements the parsing of Uppaal model
source XML �les using ANTLRv3. Abbreviate from �ANother Tool
for Language Recognition�, is a language tool that provides a frame-
work for constructing recognizers, interpreters, compilers, and trans-
lators from grammatical descriptions containing actions in a variety
of target languages[79]. During the initial releases this module relied

107

on simple string processing though.

ee.ttu.cs.dtron:xtaapi is responsible for the actual loading of model
�les. It keeps an in-memory virtual �le system and allows input
models to be in the form of strings. Its generic mechanism allows
model loading and reloading over network sockets for the purposes
of online model (re-)loading. Naturally it allows model loading from
command line by specifying the model �le in the usual way.

Whenever Maven resolves project dependencies it looks for the binaries and
their speci�c version from a Maven repository. The default built in repository
is the central repository located at http://repo1.maven.org/maven2. When
the artifact is found it is cached locally at user home in .m2 folder. This is
one-to-one copy of the original repository and the layout without the unused
artifacts. The next time a dependency is resolved the cache is consulted �rst.

Maven also supports private Maven repositories. Private repositories do not
necessarily need to have restricted access though. They are just �not� the cen-
tral one. The repository serving DTRON and all relevant artifacts is located
at http://lab.cs.ttu.ee/maven. The most straightforward way to con�gure a
Maven-enabled software project to include DTRON is to �rst declare the loca-
tion of the dedicated repository and then the dependency itself as depicted in
Figure 5.5. Any transitive dependencies DTRON itself is dependent upon are
resolved automatically, resulting in a dependency tree similar to one shows in
Figure 5.4.

<r e p o s i t o r i e s >
<repo s i t o ry>

<url>http : // l a b . cs . t t u . ee/maven</ur l>
</repo s i t o ry>

</r e p o s i t o r i e s >

<dependencies>
<dependency>

<groupId>ee . t tu . cs</groupId>
<a r t i f a c t I d >dtron</a r t i f a c t I d >
<vers ion >4.14</ vers ion>

</dependency>
</dependencies>

Figure 5.5: Maven pom.xml con�guration to use DTRON.

108

Note that pom.xml (Project Object Model) �le is the XML based project
speci�c Maven con�guration �le holding information in a scripted executable.
That is the way to manage most aspects of a software lifecycle - compilation,
pre- and postprocessing, unit- and regression testing, reporting, packaging, and
publishing.

Maven splits the build lifecycle into several phases that are executed in a
succession. Build lifecycles are generic and customizable by nature. We now
list the major build lifecycle phases for packaging the �nal executable and
brie�y describe how DTRON is con�gured to take advantage of each of them:

process-resources phase allows �ltering and processing various resources and
con�guration �les prior the actual compilation. This allows the use of
variable placeholders in resource �les that are propagated based on the
pom.xml con�guration. We use this to bundle the exact compile time
project version number (the versionId) into the target artifact (the ex-
ecutable). This simpli�es troubleshooting when bugs are found. When
releasing the executable to be publicly available during the deploy phase
we also tag the source revision in the source code management (SCM)
tool with this versionId that enables a straightforward association be-
tween di�erent executables to the code base. This makes it easier to
track down possible software bugs.
Process-resource phase is also used to generate Google Protobuf class
de�nitions from .proto �les (exact de�nition is shown in Figure 5.7).
Without the generated classes the classpath would not be complete and
we would be unable to compile. Note that this kind of automated class
generation also serves the purpose of regression testing. This is especially
important when changing the protocol de�nitions or upgrading the class
generator (Protobuf to be exact).

compile phase compiles the source code, including the generated class �les
from process-resources phase.

test-compile compiles the unit tests source �les.

test phase executes the compiled unit tests and also servers regression testing
purposes as the tests are executed each time the build is executed. The
main code base has 3421 lines of code and the unit test suite 1534. The
test suite archives overall average code coverage 71.6% while the core
code coverage is mostly 100%.

package phase assembles the �nal build targets. There are actually two sep-
arate build targets. One is the minimalistic build without the external
library dependencies embedded. This is the natural way of assembling
libraries and convenient way of embedding DTRON into other software

109

projects. The dependencies are resolved based on the descriptors in
pom.xml when the appropriate parent project is built.
The second target is all the dependencies embedded and the resulting
class collection reduced. The reduction removes unused classes from the
�nal build. This build is intended to be executed from the command
line. For example - to spawn multiple local testing agents for distributed
testing. This all-in-one bundle could also be used as a library - similar
to the �rst target with the di�erence that no other library dependencies
are required to be managed.

install phase caches the built artifacts to the local maven repository in the
user home .m2 folder for further use. This is a required complementary
phase for the following deploy we make use of.

deploy phase uploads the assembled artifacts to the Maven repository so they
could be resolved by Maven builds for other developers. The details
of how to con�gure Maven to resolve these dependencies from another
project are given in Figure 5.5.

Maven build automation system is highly extensible and con�gurable. It in-
corporates a plugin-based architecture to enable a natural way to extend build
behavior for various goals. DTRON build makes extensive use of its web
site-generation capabilities. Site generation is used to statically generate the
project website at https://cs.ttu.ee/dtron with all the appropriate documen-
tation, generated directly from source code where appropriate.

5.4.3 Spread toolkit

DTRON utilizes the Spread toolkit for implementing the message interchange.
The messaging pattern is generically named as publish-subscribe. Local testers
subscribe for messages and get noti�ed when new messages are available and
get noti�ed by callback methods.

The Spread toolkit provides a high performance messaging service that is
resilient to faults across local and wide area networks. Spread functions as
a uni�ed message bus for distributed applications, and provides highly tuned
application-level multicast, group communication, and point to point support.
Spread services range from reliable messaging to fully ordered messages with
virtual synchrony delivery guarantees[80].

Spread comes with o�cial support for Java, C++ and Python programming
languages all of which have been used by other case studies not covered in
this thesis. The C++ library could also be used by programming languages
having a �native� bridge to call C++ library functions. This basically restricts
DTRON runtime environments to languages that are able to bridge the Spread
library.

110

During the early stages of the project the Thrift and JGroups messaging
frameworks were also studied. JGroups is extensively used in large Java based
software systems (e.g Liferay portal server), scales well and its highly con�g-
urable. But lacks the support for accessing messages in other programming
languages as Java which does not �t the vision.

Thrift on the other hand was an excellent alternative and very similar to
Spread toolkit. Thrift also comes with its own data (protocol) de�nition lan-
guage that is used to (pre-) generate classes. It was compatible with Java,
C++, Python and has been extended to also support various other languages
by now. Thrift was replaced with Spread during the early phases of DTRON
development only because it turned out the C++ implementation was design
for Linux platform and did not work on Windows. But early case studies in
the Scrub Nurse Robot project involved the use of Windows and Microsoft
Visual C++.

API Spread toolkit API design is conceptually split in two. SpreadGroups
(groups) are used to de�ne publishable SpreadMessages (messages). Each
group has a name and a set of subscribed members. Members subscribe by
joining the group or unsubscribe by leaving it. Note that members do not
necessarily be a member of a group for publishing messages to it.

Commonly to this type of messaging Spread also relies on amessaging broker
(broker) to handle the actual runtime. Broker is a server-like program that
binds to a network socket to accept requests. Members connect to a broker to
subscribe to groups or to publish messages. All the runtime overhead is handled
by the broker. This involves keeping track of the groups and distributing
published messages to subscribers.

The broker is also responsible for the actual message queuing mechanism.
This is to make sure the messages arrive and leave groups in the appropriate
order. The order is de�ned by message publishers and set in each message
attribute. Spread has 6 levels of message delivery guarantees that can be set:

(i) Unreliable messages have no ordering. The message could also be dropped
and will not be attempted for recovery.

(ii) Reliable messages improve unreliable messaging in a way that all mes-
sages will be delivered. Spread will also try to recover from when infor-
mation is lost.

(iii) FIFO (by sender) - all messages sent by the sender (publisher) will be
delivered in FIFO order to each subscriber (group member).

(iv) Casual - all messages sent by all senders are delivered in an order consis-
tent with Lamport's de�nition of �casual� order. This order is consistent
with FIFO.

111

(v) Agreed messaging achieves total order and is inherently consistent with
casual messaging.

(vi) Safe (total order) - all messages sent by all senders are delivered in the
exact same order to all recipients. It is provided by making the partial
order de�ned by casual into total order. The total order uses the id of
the sender to break ties.

Note that whenever a message is published to a group it is transported to all
nodes that have joined the group at that time. After the published message is
delivered to all nodes - it is purged from the queue. So, the messaging queue
is not persistent.

DTRON wraps the Spread API and takes care of con�guring the group
memberships and message con�guration. Note that each message is �agged as
�safe� to gain the guarantee of total order and not possibly break the underlying
Uppaal timed automata semantics.

Con�guration As mentioned in previous section the DTRON is packaged in
two di�erent ways - embeddable and standalone (executable bundle). During
the standalone execution the Uppaal model �le given for input is parsed and
looked for channel variables pre�xed with �i_� (inputs) or �o_� (outputs).
The naming convention is given from the �adapter� perspective - inputs to
the adapter (of the system under test/control) and outputs from the adapter
(inputs to model).

Whenever an input pre�x is found it is registered with Uppaal TRON API
to get noti�ed when it occurred. Also the appropriate SpreadGroup is cre-
ated at the broker or joined if it already exists. Whenever an input channel
is then triggered at the model, its name and the associated variable values
are published to the appropriate group. Integer variables can also be associ-
ated to a publishable channel by pre�xing their names with the corresponding
channel name. For instance, having a channel �i_test� and an integer variable
�i_test_n� then a message to a group �test� is send with attached variable �n�
with its value.

When an output pre�x is found in the model it is registered to be an output
in the adapter API. Whenever a model reaches a state with outgoing transitions
labelled with output channels the channels are bound to be disabled until they
get triggered by adapter and become enabled.

For each output channel a corresponding Spread group is subscribed to.
Whenever a message is then published to this group the adapter triggers the
correspondingly labelled transition to be enabled at the model. Similarly to
incoming channels, outgoing channels could also have associated integer vari-
ables.

112

Data Spread messages encapsulate three types of information: �rstly, the list
of groups the message is intended to be published to; secondly, the attributes
to con�gure the message handling (like order); thirdly, the data.

The data �eld is de�ned in the form of byte[] - a byte array. This makes
it a universal way to transport any type of data in a platform independent
way. The problem is how to construct the byte array in a way it could be
unambiguously reconstructed afterwards. High-level programming languages
provide minimalistic native support for serialization. It allows data structures
and (class) objects to be converted into byte arrays for later de-serialization
back to their original form. Note that each language has its own di�erent
serialization mechanism.

DTRON is intended to be platform- and language independent. But serial-
izing data in one language is rarely de-serializable in another. There are many
ways to approach this problem. Whatever the solution is, it needs to be fast.
So we need a lightweight serialization approach, rather than a full-blown XML
transformation engine.

5.4.4 Google Protobuf

There are many (fast) serialization frameworks available. The main criteria
for choosing the appropriate one was that it needs to be as fast as possible and
support language bindings for at least Java, C/C++ and Python. A free or
academic license is a must.

The initial starting point for choosing the one was the 'jvm-serializers'
project, now moved to GitHub[6]. The project implements repeatable bench-
mark tests between di�erent serialization tools available. Figure 5.6 represents
an extract of their results showing object creation, serialization and deserial-
ization total round-trip time in nanoseconds.

Since we are expecting DTRON runtime to operate with around 1 millisec-
ond granularity which was heuristically a realistic expectation, a microsecond
scale serialization seemed to be enough. Protobuf has o�cial support for Java,
Python and C++ language bindings with third-party developed tools for ad-
ditional languages around 30.

Protobuf relies on an intermediate data de�nition language (a �protocol�)
to de�ne message types and structure used for serialization. This language
uses generic data types and structures not speci�c to any single programming
language. The protocol de�nition .proto �le is used to declare data structure
de�nition. Then a protocol compiler statically compiles it into any supported
programming language binding. These bindings are a set of generated class
�les that can be imported into software projects. Within the DTRON project -
language bindings for Java, Python and C++ (both Gnu and Microsoft based)
have been used and known to work.

Figure 5.7 shows the .proto de�nition �le used in DTRON to transform

113

Figure 5.6: Serialization benchmark.[6]

channel and variable information into a byte array to be published to a Spread
group. There are some special aspects to be emphasized.

Firstly, the data type sint32 represents a 32bit signed integer value. It
is bene�cial when interchanging integer type values between Java and C++
nodes. Java does not have �unsigned� data types, while C does.

The second aspect here is that Protocol Bu�ers (Protobuf) is a �versioning
protocol�. Within each data structure an index is assigned. Whenever a de-
serialization is needed this information is used to extract the individual �elds.
When a new version of this protocol is developed by adding an extra �eld to
a structure it does not �break� the de-serializer receiving data compiled with
the new version having more information in it.

This makes it convenient to preserve any �backwards compatibility�. Note
that this was also a contributing factor when choosing between Thrift and
Protocol Bu�ers.

114

message Var iab le {
r equ i r ed s t r i n g name = 1 ;
r equ i r ed s i n t 32 value = 2 ;

}

message Sync {
r equ i r ed s t r i n g name = 1 ;
repeated Var iab le v a r i a b l e s = 2 ;

}

Figure 5.7: DTRON Protobuf protocol de�nition.

5.4.5 Architecture

Conceptually, DTRON could be thought of as a wrapper around Uppaal TRON
to ease its use and �atten the learning and adaptation curve. The core function-
ality is written in Java, but it incorporates frameworks like Spread and Proto-
col Bu�ers to interface the runtime with other major languages and platforms,
e.g. C/C++ and it's Microsoft variants, Python, etc. The core functionality,
being written in Java, also allows the execution on any platform supporting
Java. This essentially makes DTRON platform and implementation language
independent.

DTRON is written in a way it could easily be embedded to other larger/-
complex systems. On Java based Maven enabled software this is especially
easy as demonstrated in Figure 5.5.

Figure 5.8 gives an overview of the architecture and shows how the data
�ow changes compared to Figure 5.3. The Adapter is automatically generated
and the related information published to Spread multicast network by handling
input and output pre�xes as described in the previous section. The byte-level
data traversing the Spread network is automatically serialized and de-serialized
using Google Protocol Bu�ers.

Reporter

Adapter

amount=m

m:int[0,100]
move!

./tron

move?

Spread
DTRON

Robot

DTRON API

Figure 5.8: DTRON runtime data �ow.

Figure 5.9 shows the pre�xed model suitable for DTRON. Pre�xing scheme
allows automatic adapter generation for interchanging the event information

115

between models. Whenever an input-pre�xed channel �i_move� occurs in the
model it is published to a �move� Spread group. All clients subscribed to this
group will get noti�ed of this event.

Attaching global integer variables to a channel is done by pre�xing a variable
name with channel name. So if we would like to accompany variable amount
with channel �move�, we would de�ne a channel �i_move� instead and the
corresponding variable to �i_move_amount�. The variable name will also be
automatically de-pre�xed and the resulting message in Spread network would
be channel �move� with attached variable �amount�.

Like with input channels (alphabet), output works similarly. Pre�xing a
channel in the model as �o_� will mark this channel as output. Whenever
Uppaal TRON reaches this transition the execution will be blocked until this
event is reported in to the model. Using DTRON this means the appropriate
message would need to be submitted to Spread network. For instance, (re-
turning to the running robot example), to get noti�ed when the robot �move�
operation completes (an asynchronous/blocking action), wildcard a channel
�o_done� and whenever the robot reports the appropriate message to Spread
the model execution will proceed.

o_done!

i_move?

m:int[0,100]

o_done?

i_move!
i_move_amount=m

Figure 5.9: Pre�xed model.

Example 5.6.

It is possible to join two or more models into a �conversation� over DTRON.
If one model would emit and publish an event �move� and will wait for �done�
afterwards, another model might wait for �move� �rst and then emit �done�.

Figure 5.10 shows an API extract for joining a Spread group to get noti�ed
of events. The constructor requires information about the channel to be sub-
scribed to. This includes the channel name and also incorporates the template
for attached variables. The template only de�nes the attached variable names
without the values. Whenever a listener gets noti�ed of event the callback
method messageReceived is invoked by DTRON and the details of the chan-
nel (name) and variables with assigned values passed based on the original
template.

116

package ee . t tu . c s . dtron . api . spread ;

public abstract class DtronLis tener {
public DtronLis tener (IDtronChannel) ;
protected abstract void
messageReceived (IDtronChannelValued) ;

}

Figure 5.10: DtronListener

The details of the API will be covered in the next section.

5.4.6 Domain model (API)

Figure 5.11 shows the API domain model. Class DTRON is responsible for
handling the connection to the Spread broker, i.e. allocation and release of
related resources. This serves as a main entry point for the API since that
follows - requires a connection.

DTRON connection is used to assign DtronListeners. Listeners are built
based on speci�c IDtronChannels that hold the details about the speci�c chan-
nel - the name and possible variable assignments. Whenever a (IDtronChan-
nel) matching synchronization happens and is published to a Spread group,
the listeners get noti�ed by DTRON invoking the callback method messageRe-
ceived(IDtronChannelValued) and passing the speci�c values in the correspond-
ing object as an argument (detailed description is given in Figure 5.10.

Note that when a listener is constructed it needs a �template� of the channel
of interest. This template holds the channel name and the list of variable names
assigned to it. When the callback is invoked this template is used to construct
a �valued� version of this template to hold an immutable map containing the
same variable name, but now with explicit values.

Figure 5.11 illustrates such a domain model.

117

Dtron

addDtronListener()
send(IDtronChannelValued)

DtronListener

messageReceived(IDtronChannelValued)
getDtron() : Dtron

IDtronChannel

<<interface>>

constructValued(data) : IDtronChannelValued

IDtronChannelValued

<<interface>>

getVariables()

IChannelSkeleton

<<interface>>

getChannelName() : String

Figure 5.11: Domain model.

To publish events to a Spread group, the Dtron class provides a method
send(). The required argument object cannot be constructed directly. IDtron-
Channel �template� has to be constructed �rst to declare the channel name
and related variables. The resulting template object holds the appropriate
constructV alued(data) method to assign concrete values to the variables. The
assignment is cross-validated to the variable list declared in the template to
avoid illegal assignments.

This constructV alued method actual has two di�erent signatures. Firstly,
it accepts a map of variable names and associated values that is intended to
be used by users to construct �valued� channels. The second signature accepts
a byte[] array and is mainly used internally to de-serialize the corresponding
byte[] �eld contained in the Spread messages.

While implementing a DtronListener-s as anonymous inner classes or a
subclass, there is a convenience method getDtron() to get a handle to the
send() method for immediate inline reply back to Spread. Otherwise, one
needs to take care of the access to DTRON connection manually and this
would introduce unnecessary overhead and suppress code readability.

The infrastructure code in DtronListener constructs a new object based on
the provided template with immutable map of variable names and values for
intentional use and eliminates direct access to underlying (immutable) pointers.
So accidental variable manipulation would not cause the runtime to crash.

118

Dtron

XtaApi Uppaal TRON Spread

Figure 5.12: Component diagram.

5.4.7 Distributed execution

In distributed testing there are multiple physical ports for interactions between
tester and the SUT (also called points of control and observation or PCO). We
also distinguish that a DTRON instance running/testing on one port serves as
a local tester and the publish-subscribe messaging allows the observation of a
global trace[81].

Figure 5.13 gives an outline of a distributed testing deployment scenario
with DTRON. Where local testers are interfaced to SUT ports via adapters
and subscribed to their corresponding Spread broker. There can be many
brokers while preserving the �safe� total order over all brokers. DTRON binds
its communication socket to a speci�c broker to publish and subscribe for
messages. Spread brokers can have a complex topology for connecting to each-
other. Spread itself takes care of the network route discovery and planning. So
a message published to one broker can be received by a subscriber to another
broker in another network segment.

SUT

Port Port Port Port

DTRON-1 DTRON-2 DTRON DTRON-x

spread s

spread

socket-1 socket-2 socket socket

Figure 5.13: Distributed testing data-�ow in DTRON.

Uppaal TRON has two ways of API integration: a native C library API
and a network socket based connection. DTRON currently uses the socket
based interface since it provides �out-of-the-box� support for Java integration,

119

although technically it is possible to bind Java code directly to C by using a
Java Native Interface (JNI).

There are two bene�ts when using a native C bridge. Firstly, the the speed
is much faster and method invocation in Java takes essential time, whereas
socket messages need to traverse the networking stack in the ISO Open Sys-
tems Interconnection (OSI) sense[82]. Secondly, we need to allocate a network
socket that introduces unnecessary overhead when running multiple instances
of DTRON in the same machine. The same socket cannot be bound to more
than one program so we would need to enumerate the port numbers to be
unique for every instance.The socket-1 and socket-2 shown in Figure 5.13 il-
lustrate this situation when the corresponding DTRON instances are running
on the same machine. The default port number is 666. If another instance
is run this would have to be overridden with command line parameter −p ,
when running in embedded mode using the corresponding API setPort(int)
method.

The downside of the C-bridge is that it does not support virtual clocks which
are only supported by the socket based interface to Java adapter. Virtual clocks
are a mechanism to agree on how time passes. For example, if the tester must
be bound to wait for an hour until next input delivery and doing nothing else,
we could programmatically wind the clock ahead by one hour and go on with
the testing.

Virtual clocks would also allow the use of ∆-testability [34] that will be
discussed in the future works section8 below. This addresses the problem of
non-uniform message transmission delays between distributed DTRON testers.
Consider the Figure 5.13 example. We would normally expect that if DTRON
#1 publishes a message at time point t1 and DTRON #2 after that at t2 then
t1 < t2. But if DTRON#1 exhibits an internal delay longer than DTRON#2
it could happen that t2 is actually published before t1 and therefore t2 < t1
instead, thus leading to a conformance violation with the model. But with
DTRON we could actually measure the delays at the Adapter level and use
virtual time to �agree� that t1 < t2 even if it was actually t2 < t1 instead. We
refer to ∆ as the time interval during which we allow events to be swapped in
this manner.

5.4.8 Selenium

In this section we demonstrate how DTRON interfaced with Selenium can
be applied for (distributed) web application testing. The goals are two-fold.
Firstly, we can use model based testing in a traditional way and check for
functional properties of the system. For example, if we log in to the system
and check if we can perform operation and observe valid outputs we de�ne an
appropriate model and execute it with DTRON.

Secondly, we can use the same model and execute multiple instances concur-

120

rently. Given the model is parametrized by user we can perform load-testing
with arbitrary number of concurrent users. Meanwhile, the non-deterministic
nature of the automata gives us a convenient way to model erratic user be-
havior. Since we use a timed formalism we can also assert for performance
properties, like checking if the system gives an output within the required
time.

Figure 5.14 shows an example test adapter performing a �login� test against
a SUT. The SUT is basically a web application that allows a user to log in. The
adapter utilizes the Selenium browser automation framework to implement the
actual interface. It allows a programmatic access to a web browser (like Mozilla
Firefox and Google Chrome) to execute various operations that a typical user
would do: opening a web page, entering text, clicking on buttons etc. Testing
a web-application through a web-browser is important because it also accounts
for the cascading style-sheets (CSS) and JavaScript execution aspects of the
output. Testing static HTML output or doing class-based unit tests might hide
faults that may occur when the browser renders the �nal output with CSS and
executes the (client side) JavaScript.

Whenever the model publishes a �login� synchronization it will be deliv-
ered to this adapter. Note the AbstractSeleniumAdapter that the adapter
extends. This abstract parent class takes care of setting up the underlying
DTRON. It subscribes to events equal to the implementing subclass, i.e. �lo-
gin� at this case and delivers any corresponding publication in to the exe-
cute(IDtronChannelValued) method just as described in Section 5.4.6.

121

public class Login extends AbstractSeleniumAdapter {
void execute (IDtronChannelValued v) {

// a s s e r t we ' re s e e ing the l o g i n screen
WebElement log inButton = f indInput ("LOG IN") ;
asser tThat (loginButton , notNullValue ()) ;

// f i l l username & password
getWebDriver () . f indElement (By . name("username")) .

sendKeys (" user ") ;
getWebDriver () . f indElement (By . name("password")) .

sendKeys (" pass ") ;

// submit
log inButton . submit () ;

// a s s e r t we ' re l o g ged in and see ing log−out bu t ton
WebElement logoutButton = f indInput ("LOG OUT") ;
asser tThat (logoutButton , notNullValue ()) ;
}

}

Figure 5.14: Basic �login� test adapter.

DTRON emphasizes a clean API where the developer only needs to imple-
ment the adapter to interface the SUT, eliminating the overhead of channel-
variable bookkeeping that clutters code. AbstractSeleniumAdapter serves as a
demonstrator of how DTRON is extendable to include other frameworks like
Selenium.

Figure 5.15 shows a simple model to match the described adapter. The
upper automaton de�nes the test and the lower one the SUT interface. Tester
starts with initiating a synchronization i_login that is published by DTRON
being pre�xed with �i_�. The lower automaton completes the synchronization
to enable this transition and enters a location labelled �wait�. The outgo-
ing transitions are labelled with o_result synchronization that makes them
disabled until the appropriate synchronization is triggered by DTRON when
receiving the corresponding subscribed result signal.

The results synchronization is also decorated by an attached variable to
encode the result code of the operation. The assignment to this result code is
required formally in the model too. When we report a value �1� for a variable
o_result_rescode its value is compared with the value this variable currently
holds in the model. If the values di�er we have non-conformance between the

122

model and the SUT because the (inner) states do not match. So we have to
(formally) assign the reported value in the model, by the time it is actually
sent into the model by the adapter.

In order to make this happen we decorate the SUT model with an assign-
ment. We make use of the select operator to allow non-deterministic assign-
ments. This example assumes the value �0� stands for a successful result code
and any other value to serve as an �error code�.

o_result?

o_result?

i_login!

failsuccess

wait

init

o_result_rescode == 1

o_result_rescode == 0

i:int[0, 1]
i_login?

o_result!
o_result_rescode = i

Figure 5.15: Simple model for Selenium testing.

It would be possible for DTRON to initiate the o_result channel any time,
but if the tester automaton is not in the appropriate state to execute the
enabled synchronization action that would result in conformance violation with
SUT.

The sample adapter code in Figure 5.14 does not reveal what implements
the result code assignment because this is implemented in the AbstractSeleni-
umAdapter provided by DTRON distribution. This abstract adapter invokes
the execute method and if it returns normally, the result code is set to �0�. If
it terminates abnormally (e.g. and exception is thrown) the result code is set
to �1�.

The idea of Selenium integration is elaborated in the Tartu City Lighting
Controller case study project described in Section 7.3.

5.5 Summary

This chapter presented the details of DTRON architecture - a tool based on
Uppaal TRON enabling distributed execution of Uppaal timed automata. It
provided the details of the subsystems and the communication model to present
how it is built.

During the development some modeling, design and runtime limitations and
considerations unrevealed and were listed to serve as a user/developer manual.

123

6 Performance evaluation

6.1 Chapter overview

Since DTRON is intended to be a real-time testing tool it is important to
investigate its performance in real-time applications. Every abstraction layer
added to the architecture to simplify the use or extend functionality is expected
to have a computational impact and therefore introduce latency. This latency
could lead to non-conforming testing results that wouldn't exist if there would
be no latency.

One of the most important DTRON design principles was to have minimal
timing overhead during execution while we allow computationally expensive
setup before the actual execution.

This chapter presents the results of this investigation carried out by the
author.

6.2 Introduction

The goal of this analysis is to determine the latency overhead DTRON has
when introducing an extra layer of messaging abstraction. The focus is on
measuring the e�ect of the Spread toolkit as messaging service with the com-
bination of Google Protocol Bu�ers - a language-neutral, platform-neutral, ex-
tensible mechanism for serializing structured data. The latency benchmarking
is done in three di�erent execution environments to demonstrate the scalabil-
ity with respect to di�erent application constraints. The experimental results
are presented and extreme cases explained. Finally, the conclusions made on
the experimental results have been drawn to clarify the applicability limits of
DTRON tool.

6.3 Experimental setup for performance evaluation

The experiment setup is based on the same latency analysis models that comes
bundled with the Uppaal TRON distribution, speci�cally the Ticker study.
So the experiment would be independently reproducible. A Ticker is an Up-

paal timed automata (UPTA) model (see Figure 6.1) that executes a clock
tick every certain time interval. The time interval is designated with variables
p = 250 and t = 50, a guard condition on a re�ective transition and a loca-
tion invariant that forces a tick on average every 250 UPTA clock units with
deviation within time interval td = [−50, 50].

The experiment measures synchronization channel reports (messages) ar-
riving to the TRON Java API as a baseline and then measures the extra delay

125

x<=(n+1)*p+t

x>=(n+1)*p t

n++
s

i_tick!

Figure 6.1: Ticker UPTA model.

it takes to pass this information through DTRON. Figure 6.2 outlines the data
�ow and timing points. Messages �rst arrive at the Spread-adapter and t1 times
the event. The second timing t2 is taken when the message arrives at DTRON
adapter. The di�erence t∆ = t2− t1 is computed and then analyzed over time.
We execute this sample model with DTRON only in eager mode - producing
maximum stimulation. Then we measure the incoming synchronization times
arriving to TRON Java adapter.

Figure 6.2: Experiment setup data �ow (architecture).

6.4 The results of evaluation experiments

This chapter present the evaluation results with interpretations and possibly
future work.

Figure 6.3 shows the results of latency benchmark results in three di�erent
execution environments:

(i) Messages transmitted over a network loop-back interface. That is the
Spread broker is ran on the same machine as the Adapter.

(ii) Messages transmitted over a switched 1Gbps Ethernet network.

(iii) Messages transmitted over a loaded 1Gbs network with 50% of the band-
width allocated by �Distributed Internet Tra�c Generator�[83].

126

Figure 6.6 shows the same results on a graph where β is the mean, σ is the
standard deviation and t4max is the maximum latency in milliseconds.

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

localhost networked loaded

m
s

latency comparison

1

113 105

β σ t4max
loop-back 1 0.1 2

network 113 64 221

loaded 105 61 220

Figure 6.3: Latency results.

Figure 6.5 shows empirical results of an (Windows) operating system net-
working stack showing some form of caching symptoms where mean latency
drops to a consistent 1ms. Systematic attempts to reproduce this scenario
under controlled environment have failed. Source data have been taken from
a testing session log to give some idea of its nature.

To compensate extreme �uctuations the future plan is to incorporate some
diagnostic loop into DTRON to work around this since this could lead to false
non-conformance errors at the worst case. We will refer to this as a ∆ testability
problem in later studies. This has already been brie�y covered in section 5.4.7
above and will be elaborated in the future work section 8 below.

127

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000

la
te

n
c
y
 (

m
s
)

samples

TRON socket adapter latency

latency
mean 5ms

+sigma
-sigma

Figure 6.4: Eager UPTA at 5ms.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000

la
te

n
c
y
 (

m
s
)

samples

TRON socket adapter latency

latency
mean 1.02ms

+sigma
-sigma

Figure 6.5: Anomaly at 1.02ms.

128

Figure 6.6 shows aggregated latency results showing correlation between
the latency and computation time. Computation time is emulated to 1ms by
utilizing sleep(1) for simplicity.

Instant low computation events overwhelm the networking stack. This in
turn causes packet bu�ers to �ll and maintenance subsystems try to compen-
sate. This changes in network throughput and occasional bursts/peaks are to
occur. Note that �instant computation� (0ms sleep) is for informational pur-
poses only. Stress test results in Figure 6.4 show a mean latency of 5ms while
stimulating events with UPTA at maximum capacity. Even with anomalous
behavior denoted in Figure6.5 the stimulation computation time is known not
to fall below 1ms by experimental results.

Note that minimal 1ms latency lag is caused by the TRON Java adapter
used internally. This Java adapter communicates with TRON executing an
UPTA model over a SocketAdapter. That is because of latency due to the
networking stack. An alternative way of interfacing the adapter is using the C
library level callbacks which comes down to a single function call. This case
has been covered earlier in Section 5.4.7.

Given a computationally non-intensive function the execution can be consid-
ered to be instantaneous. This would result in heavy packet-intensive tra�c of
messages to Spread network. Since the Nagle's algorithm[84] has been turned
o� for lower latencies this would result in huge overhead of decorating the ac-
tual message with TCP/IP packets and in signi�cant loss and �uctuations in
throughput. A sleep interval of 0ms in Figure 6.6 illustrates this scenario.

Figure 6.7 shows sleep-vs.-latency analysis when using nanoSleep() instruc-
tion for computation simulation. It allows a nanosecond scale control over
thread blocking time instead of milliseconds - that is with regular sleep. Al-
though both functions seem to implement the same thing, the nanoSleep is
computationally more intensive. A marginal increase in such computation
time would result in substantial drop in latency and it's �uctuations.

Since this stress test runs fast the experiment is carried out with 10K sam-
ples instead of 1K previously used. This is to demonstrate how it would scale
after 1K.

Note that nanoTime uses processor core ticks to count time instead of re-
altime clock module. Although processor tries to coordinate core times to be
equivalent, it is not always guaranteed to be. It is often the case that processor
cores have minor (nanoscale) di�erences. Given the nature of processor coor-
dination that individual tasks are distributed around cores, it might happen
that the di�erence between consecutive nanoTime() readings turns out to be
negative!

129

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9

la
te

n
c
y
 (

m
s
)

sleep interval (ms)

mean latency 1000 samples

localhost
networked

Figure 6.6: Aggregated latency results comparing �computation time� against
latency.

6.5 Summary

This chapter presented the results of computational (and timing) overhead
analysis of DTRON. The author designed DTRON speci�cally to reduce the
runtime overhead and the practical experiments assure it to have been achieved.
The resulting framework capable of operating in the millisecond scale is of
reasonable precision for most applications - including time-critical robotic ap-
plications this theses was motivated from.

130

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9

la
te

n
c
y
 (

m
s
)

sleep interval (ms)

mean latency 10K samples

localhost
networked

Figure 6.7: Aggregated latency using nanoSleep().

131

7 Case studies

7.1 Chapter overview

In this chapter the applicability of DTRON framework and model-based tech-
niques developed around it is demonstrated by describing two representative
case-studies: Scrub Nurse Robot (SNR) model based control and a distributed
performance testing of Tartu city street light control system. The SNR case
study highlights the features related to handling real-time and safety con-
straints in robot high-level action control. The street light system case-study
focuses on aspects of coordinating distributed systems and on how to generate
test con�gurations for distributed web applications.

The contribution of the author in the Scrub Nurse Robot project is the anal-
ysis and development of JSNR (later DTRON), the corresponding automata
models, the execution and result analysis.

The contribution in the Tartu city street light control was testing the pro-
totype distributed system by automata modelling, the execution with DTRON
and result analysis. The author was not involved in the development of the
system under test, but was introduced to the project in �nal phases with the
goal of testing the system as a �black box�.

7.2 Scrub Nurse Robot

The SNR project was initiated as a sub-project in Human Adaptive Mechatron-
ics (HAM) Center of Excellence at Tokyo Denki University. The overall goal
was to build a robotic assistant to learn the interactions between a surgeon
and a (human) scrub nurse during laparoscopic surgeries and then replace the
nurse with a robot. This meant constructing the suitable robotic platform and
developing the robot learning and control algorithms to go with it. The Denki
University had extensive practice in the construction of robotic platforms, but
was seeking for collaboration in developing the control algorithms. The De-
partment of Computer Science (DoCS) of TUT joined the project to develop
the learning and control algorithms.

The research started as a major case study, but as the project evolved, more
and more shortcomings were discovered in the development tools used in the
project. These shortcomings triggered the development of more generalized
framework to surround the existing tools and make their use as practical as
possible in day-to-day development.

Figure 7.1 shows the SNR physical layout with the reference to robot's
manipulator degrees of freedom (DOF)

The robot was built onto a �stage� that was mounted to a vertical pillar. The
height and rotation of the stage were pneumatically controlled, but initially
without a hardware limiter. So, giving a malformed input to the pneumatic

133

Figure 7.1: �MICHAEL� revision of the SNR.

controller the stage could be blown o� over the top of the pillar. A similar
faulty behavior could happen to the stage rotation also. Without a hardware
limiter and with invalid controller input many rotations could result in that
cables and pneumatic tubes would be forcefully teared broken.

The automata model-based control was introduced to avoid these situations.
Speci�cally, by established invariants that would limit the input domain and
the model of robot possible behaviors, the robot safety margins became for-
mally veri�able before implemented in hardware. Extending the idea, also
higher level surgery scenario models were intended to capture the succession
of the most critical interaction events during the SNR application scenario.
For example, if a robot picks up a scalpel, it would not (accidentally) release
it before someone/something is ready to receive it. Another, safety critical,
aspect would be to show that the robotic manipulator arm holding a scalpel
always executes an �emergency stop� or back away if it was bound to get too
close to surrounding humans.

7.2.1 Robot control software JSNR

The initial software platform for SNR control JSNR (�J� for Java) developed
by the author of the thesis provided the proof-of-concept and motivation for
the DTRON development later. JSNR framework was intended to simplify the
application of the MBT tools for robotic control applications. It also made use
of the Uppaal TRON framework and utilized its original adapter API directly.

JSNR provided the middle-ware to issue high-level controller commands to
the robot directly from an Uppaal model without additional programming. It
utilized the TRON API to prepare the Adapters to interface with the robot
and de�ned a contract to be used when executing actions on the robot. For
example, taking synchronized transitions labelled with channel �closeFingers�

134

in the model would cause the manipulator arm to execute a grasping motion
with the manipulator ��ngerend-tips�.

As shown in Figure 7.1 the robot has the following degrees of freedom
(DOF): stage height and rotation, tool-changer rotation and 10 grasping sock-
ets with sensors and status LED-s, 2-axis shoulder, elbow, wrist, �nger actu-
ators, with a sensor. JSNR implements the adapters for each DOF and maps
the appropriate channel names to corresponding executable actions. Figure
7.2 shows an extract of the resulting domain model.

IFingers

<<interface>>

IWrist

<<interface>>

IHand

<<interface>>

SteppingInterface

<<interface>>

IShoulderDistance

<<interface>>

IShoulderHeight

<<interface>>

IStage

<<interface>>

IToolChanger

<<interface>>

ISensor

<<interface>>

IOpenClose

<<interface>>

TrocarSensor

OpenCloseDevice

<<realize>> <<realize>>

FootSwitch Leds

Figure 7.2: JSNR domain model.

The domain model is syntactically de�ned in terms of interfaces and pro-
vided with two separate implementations. The �rst implementation interfaced
with the actual robot, but the second one with �mocked� robot (robot interface
simulator). The mocked implementation allows o�-site (model) development

135

without the actual robot.
JSNR also provides a diagnostic screen as shown in Figure 7.3 to monitor

the status of the robot during execution. The diagnostic screen allows online
robot DOF status monitoring and also serves as a �virtual� robot for o�-site
use.

Figure 7.3: JSNR screenshot.

7.2.2 Model based API

In addition to the SNR direct control the the JSNR was also bundled with
models de�ning the robotic platform features.

Figure 7.4 shows an extract of the model de�ning an invariant for the stage
height control. Stage height is controlled in terms of �steps�. Steps are actually
instructions to the �stepping controller� driving a pneumatic actuator to raise
or lower the stage pillar.

wait

pos += shoulderHeightSteps

shoulderHeightFinished!

shoulderHeight?

pos > 20000
&& pos < 40000

Figure 7.4: ShoulderHeight model.

If the step amount is signed to negative the platform will be lowered and
vice versa. The early versions of the robot did not implement a hardware
limiter for the maximum height. If the stage is in its maximum height and a
positive number of steps is issued, the stage would be blown o� the platform
by the pneumatic actuator.

136

JSNR pre-modelled the degrees-of-freedom, established invariants and used
model checking to verify that all the invariants would always hold. Figure 7.5
shows a conceptual example of modeling a �reaching� motion for the robot -
manipulator arm extended and �ngers open.

shuolderDistanceSteps = 100

openFingers!

flipFront!

shuolderDistance!

Figure 7.5: Reaching.

Invariants could be de�ned to assert that manipulator arm does not collide
with itself or the surroundings. The SNR prototype set up also a 3D measure-
ment system to track markers placed on humans. Making the marker tracking
information available to the model enables to construct invariants to t avoid
collisions between robot manipulator and human. Considering the inertial mo-
tion implied from the mass of the manipulator, an invariant is established to
execute �emergency stop� protocol.

The other bene�t of using model for robot control is that model control
structure excludes some of con�icting actions. When modeling a manipulator
joint like shown in Figure 7.4 it is implicitly assumed that the shoulder height
manipulator could be started and stopped at the same time.

7.2.3 Results and conclusions

JSNR turned out to be relevant solution for single-developer projects and for
prototyping conceptual designs, but lacked scalability. Modeling only the �?�
side of the channel would require the developer to handle the pairing or the
use of broadcast channels.

The control of robot functions using models and JSNR turned out to be ex-
cessively labour demanding when applied on low-level control due to the large
number of implementation details that need to be addressed when interfacing
directly sensoric and actuation functions. When applied to high level control
functions and related state invariants the approach would allow higher level of
abstraction in the model and better scalability of handling complex behavioral
scenarios. This in turn, brought up the need for a proper messaging model
to coordinate actions between multiple robotic agents and their environment.
Models would serve then as abstract reference behaviors for online safety mon-
itoring.

137

Having high-level coordination of distributed sub-systems like the robots,
3D motion tracking, external robot knowledge bases and other, that brought up
the need for a proper communication mechanism. Every joint on a manipulator
would be considered a self-contained subsystem, exhibiting only i/o behavior
to be observed and controlled by other parties and keeping component local
behavior implicit in the model. For instance, having a local invariant to stage
height controller just rules out the stage �popping o�� while leaving the internal
stage control mechanism hidden. Similarly, when aggregating local components
to coarser design items their models and invariants are derived compositionally
from the ones of their constituent components. For instance, local invariants
of the stage and the �ngers conjoined would assert against possible collisions.

Figure 7.6 shows the execution architecture where the models run with
established invariants and properties to be veri�ed online. ModelsMn hold the
invariants (e.g. platform stage height), online model middleware intermediates
messaging between SUT (components) and controller components Cn.

Online model middleware

M1

Robot

C1M2 M3 Mn

3DMS ...

C2

Cn

SUT

Figure 7.6: Extended model based control architecture for multi-robot systems.

7.3 Tartu city light controller project

7.3.1 Background

Testing the �Tartu city light-controller� (light-controller project) is an indus-
trial size software/hardware development project performed in the Competence
Centre in Electronics , Info and Communication Technologies - ELIKO.

The light-controller project aims to automate turning city lighting on and
o� or dimming in a �smart� way. There are many light-controllers localized to
streets and public areas to keep the light conditions within preset range. Local
light-controllers can be con�gured to turn city lighting - for example based on
the atmospheric illumination threshold. So if it gets dark at one place in the
city, only the lights of that place get turned on and not the other in di�erent
parts of the city. Naturally, the darkness usually arrives with nightfall, but
could also occur with severe rainfall or any other natural phenomena, e.g.
fog. Figure 7.7 shows conceptual deployment model for grouping lights under
controllers where supervisory control of group controllers is implemented in

138

the central server.
Controllers are low-power and -computation embedded systems. The con-

troller communication medium is General Packet Radio Service (GPRS) over
2G Global System for Mobile communications (GSM). This medium intro-
duces computation and communication delays that are hard to handle with
non-distributed MBT methods due to the conformance problems caused by
observation time uncertainties. DTRON and ∆-analysis were used to address
conformance problems with extensive automated testing.

server

c2

c1 cn

Figure 7.7: Light-controller project deployment model.

The controllers hold their status in-memory using a status string that de-
termines the controller mode. The status string is a bit vector where bits
encode the mode parameters the controller is following in given mode. The
status string is encoded in Base64 form and is possibly reset when polling the
coordinating server returns a di�erent setpoint value to given controller.

7.3.2 Protocol

We now explain the communication protocol of polling the server for controller
status update. Controllers poll a server attaching its Base64 encoded current
status to a query. Server responds OK if the controller status matches the state
known by the server and NOK (not OK) with the attached updated state if
the server has any new status information. Successively, the controller polls
the server again with the updated status to receive an OK that denotes that
the states are synchronized. In principal, it is possible the server-side status
gets updated meanwhile. The overall goal of this process is to converge in
synchronized controller status string with the coordinating server side string.

Figure 7.8 shows an example Base64 encoded status string.

139

c=10002&d=FF01602C00000100000
00000000000000000000080010000
000000000001000000000000D4FAF
FFFFFFF0000000000007C004C

Figure 7.8: Example Base64 encoded state string for controller ID 10002.

The intended controller status can be updated in the server-side when a user
manipulates the server-side status using the web interface. For example, the
user manually picks a controller and sets its status to turn on the streetlights.
The status change is propagated to the actual controller upon next poll session
by the controller. That helps avoiding too frequent switching of lamps on and
o� while the light conditions should change or the sensors should emit false
signals too often. The optimal polling period depends on the dynamics of
lighting conditions and the reaction time requirements to the light adaptation.
This possibly varies from controller to controller.

Figure 7.9 shows a screenshot of the controller �command� interface.

Figure 7.9: Tartu city light-controller web user interface.

Suppose a controller Ci polls the server at some arbitrary interval ti and
sends its current status encoded in the modi�ed BASE64 status string si.
Server will send corresponding to Ci response code ri = 1 if there are no
updates available and a modi�ed BASE64 status string denoting the new status
s′i the controller should be switched to.

Let us look a simpli�ed example where the system boots up �rst time. By
system we mean all the controllers with all lights connected to them and the
central server. The server boots up having lights-o� status for all controllers

140

and lights. Controllers now start reporting their status strings to the server at
an interval, e.g. t = 100ms. Note that the local clocks in each controller are
by no means synchronized. Given enough time elapses the polling sessions are
carried out in uniformly randomized manner. Controllers report their status,
e.g. Ci status si telling that lights L1

i to Lmi are o� and since the same status
is initially on server side, the server will respond OK.

Now if some user u would login in to the server and switches controller Ci
lights' L1

i to Lmi state to new value L1
i = 1 toLmi = 1 (where 0 stands for

light o� and 1 for light on) the next time Ci reports its state s′i it will be
given a response code NOK and the corresponding new status string s′i 6= si
denoting that L1 and L2 should be turned on. Controller Ci receives the new
status, turns the lights on and reports it's newly arrived state s′i back to the
server, asserting the changes have come into e�ect. Server will acknowledge
this by responding OK with no state string s attached.

7.3.3 Adapters

The test adapters are needed to interpret (abstract) events arriving from
UPTA model via DTRON and mapping them to SUT input format. DTRON-
Selenium extension was developed by the author to ease the development. The
framework implements dependency injection (DI) paradigm and tooling to au-
tomatic adapter and resource discovery.

The adapter programmer �rst needs to decide the (Java) package to put
the adapters into. The fully quali�ed package name is then passed to the
DI container that takes this to the auto-discovery adapter loader. In or-
der to write an adapter one needs to write a class to this package extending
AbstractCliContextAdapter class to inherit the appropriate framework behav-
ior. It is important to note that the framework expects the adapter classname
to follow the Java naming standard and be written in camel-case format. The
reason for this follows and serves as a contract for mapping the adapters.

The adapter is then picked up by the framework and its classname is
mapped to the set of UPTA channel names. For example, an adapter class
LoginSomething would be mapped to channel i_loginSomething in the UPTA
model. The framework follows the DTRON naming convention and utilizes i_
and o_ pre�xes in channel names.

The adapter execution starts with the execute(...) method where relevant
Selenium code needs to put into. Handle for the browser instance can be
fetched with getWebDriver() method following the Selenium API and getDtron()
fetches the handle to the underlying DTRON session to allow manual synchro-
nization invocation.

If DTRON handle is not used for manual reporting, the framework auto-
matically invokes a result synchronization back to UPTA model attaching a
variable resCode = 0 to denote success. If exceptions are raised from the

141

execute(...) method the resCode would be assigned an �error code� other than
0, i.e. resCode 6= 0. API user can manually assign or overriding this by calling
or override the report(int) method to provide a custom error code. Doing this
will disable the automatic result code reporting discussed before.

UPTA channel synchronization arriving to the execute() method may also
have attached variables. The handles for both the synchronization and the
variables will be passed to the execute() method as an argument using the
same class as underlying DTRON.

Note that getDtron() method handle can be used to manually interface with
the underlying DTRON for implementing additional behavior to execute() a
speci�c adapter. Having this behavior does not intervene with the (automatic)
result code reporting system. That still gets invoked strictly after execute()
has �nished.

Figure 7.10 presents an adapter demonstrator. Note that HTML web ele-
ments required forWebDriver manipulation get automatically injected and are
actually externalized to a .properties con�guration �le to allow runtime con�g-
uration (without re-compilation). The injection system can also be utilized to
obtain handles to other adapters. For example, de�ning an adapter Logout one
could declare @Inject Login login �eld to gain access to login.postCondition()
that would serve as a pre-condition for the Logout adapter.

142

public class Login extends AbstractCl iContextAdapter
implements PostCondit ion {

@Inject @Named("STARTURL") St r ing STARTURL;
@Inject @Named("LOGIN_BUTTON") St r ing LOGIN_BUTTON;
@Inject @Named("LOGIN_USERNAME") St r ing LOGIN_USERNAME;
@Inject @Named("LOGIN_PASSWORD") St r ing LOGIN_PASSWORD;
@Inject @Named("LOGIN_LOGGEDIN") St r ing LOGIN_LOGGEDIN;

@Inject
public Login (C l i context , Se leniumDriverFactory sd f) {
super (context , sd f) ;

}

@Override
protected void execute (IDtronChannelValued v) {
super . execute (v) ;

getWebDriver () . get (STARTURL) ;

WebElement log inButton = f indInput (LOGIN_BUTTON) ;
asser tThat (loginButton , notNullValue ()) ;

f indElement (LOGIN_USERNAME) . sendKeys (// f i l l
getContext () . username) ;

f indElement (LOGIN_PASSWORD) . sendKeys (
getContext () . password) ;

log inButton . submit () ; // submit

postCondit ion () ;
}

@Override
public void postCondit ion () {

// a s s e r t we ' re s e e ing the l o g i n screen
f ina l WebElement logoutButton =

f indInput (LOGIN_LOGGEDIN) ;
asser tThat (logoutButton , notNullValue ()) ;

}

Figure 7.10: Example adapter class for performing a �login�.

143

7.3.4 Model

Figure 7.11 presents an illustrative UPTA model. This is the model of a single
user logging in to the web UI, picking a controller to command the lights to
turn on, checking for success and then logging out. This is modeled with a
succession of the following synchronizations:

(i) Start out with login. Note that the pre-condition to check if we have
the login screen at the �rst place is implemented by the corresponding
adapter in Figure 7.10.

(ii) Navigate to the �commands� sections

(iii) non-deterministically pick and �tick� an adapter that has to be switched
�on�.

(iv) The model itself de�nes a general approach to turn lights both �on� or
�o��, but the additional guard restricts this on �on� only. An extra
variable is attached to the channel with the chosen operation. So �on�
or �o�� states are encoded as integer values that by contract will be
delivered as an argument to the adapter execute(...) method as described
in Section 7.3.3.

(v) Navigate back to the �commands� page, looping this until the light gets
turned on

(vi) close the session with i logout.

Following the UPTA semantics we need to match the initiating synchronization
channels (with symbol ”!”) with corresponding receivers (denoted with symbol
�?�). Figure 7.11 provides this mapping. This model control structure can be
de�ned having only re�exive transitions with source and destination locations
and the initial state, but with this case we also model SUT to be �blocking�.
This means one operation has to be completed with some returning result code
before another can be executed.

Though the model and adapter represent a single user case performing ac-
tions upon the web UI, the same template enables to run parallel instances of
the template to implement a more realistic scenario where many users perform
actions on the SUT simultaneously.

Figure 7.12 shows the deployment model of this case study. We ran two
users in parallel to cover scenarios where poorly implemented SUT would start
interleaving between users and for example allows a situation where one user
starts logging in, but is actually logged in as other user who is performing the
same action simultaneously.

144

i_login!

i_tick!

i_logout!

i_commandList!

i_switch!

i_commandsLights_ctrlId = i_tick_ctrlId

i_commandsLights_ctrlId = i_tick_ctrlId

i_switch_tostate = i

i_tick_ctrlId = i

i_commandsLights_resCode == 0

i_commandsLights_resCode != 0

i == 1

i:int[0, 1]

i:int[0, 1]

i_commandsLights!

i_commandList!

i_commandsLights!

i_commandList?

o_result!

i_tick?

i_switch?

i_logout?

i_login?

i_commandsLights?

Figure 7.11: Light-controller UPTA model.

server

c2c1

adapters adapters

spread spread

DTRON

UTPA

DTRON

UTPA

user-1 user-2

Figure 7.12: Multi-user deployment model.

The light-controllers were virtualized to allow quick and straightforward
control over the whole testing con�guration. Virtual controllers imitate the
same synchronization protocol and are indistinguishable from the server-side.

For more extensive load testing the UPTA model depicted in Figure 7.11
was extended with an additional loop enabling to re-execute the same test
case, i.e. after i_logout, starting again with i_login. Test con�guration was
de�ned to run each test-session for 100s.

The SUT exhibited the expected behavior most of the cases, but for some

145

cases the server showed the lights to be o�, while the controllers had actually
the lights on and the status was expected to be synchronized with the server.
In depth diagnostics and test fail causes have not been carried out yet. An
example test-run was screen-captured and is available for design analysis on
DTRON website[85].

7.4 Summary

This chapter presented the results of two case studies. Firstly the Scrub
Nurse Robot project that served the motivational purpose to later develop
DTRON. Secondly the Tartu city lighting project that applied the later devel-
oped DTRON for distributed black-box testing.

Both case studies were considered a success as a proof of concept. The Scrub
Nurse Robot mechanical design limitation were overcome by automata mod-
elling and enabling the execution with JSNR. This enabled better collaborative
development of the robot as a shared resource with less downtime.

The Tartu city lighting project had two major results. Firstly, that it was
possible to apply model based testing with DTRON to black box distributed
systems with moderate e�ort. Secondly there was a non-deterministic bug
found when executing multiple copies testers in the context of di�erent users
where one or the other user was denied access to the system. The erratic
occurrence of this bug couldn't be made reproducible, but it gave enough
insight to the developer to �x the (session management) problem.

146

8 Conclusions and future work

8.1 Main results

The thesis presents a framework to automatize the model based control and
testing of time critical Cyber-Physical Systems. The research focus is veri�able
modelling and execution of models to enable provably correct on-line testing,
model-based control and monitoring in robotic and web applications.

Firstly, the requirements for selecting an appropriate modelling formalism
for model based control and testing of the target class of Cyber-Physical Sys-
tems are outlined. The formal modelling alternatives are discussed from prag-
matics, taxonomy, and expressiveness point of view, and their relevance is
motivated with respect to the requirements. The analysis of models for timed
systems concludes that one of the most relevant formalisms in given context
are Uppaal Timed Automata which have rich semantic domain and advanced
toolset for modelling, testing and veri�cation.

Secondly, provably correct model based test development work�ow is intro-
duced together with veri�cation conditions necessary to assure the correctness
of development increments. Traditional model based test development process
comprises steps such as modelling the system under test, specifying the test
purposes, generating the tests, deploying test components on the execution
architecture and executing them against system under test. The correct-by-
construction approach advocated in thesis introduces the veri�cation steps
that alternate with development steps. Since the focus of thesis is model-
based online testing of critical systems with timing constraints we capitalize
on the formally provable correctness criteria of the test suite for all its devel-
opment steps. We also de�ne the model transformations needed for creating
well-formed models of system under test as well as of testers. The veri�able
correctness criteria are speci�ed as proof obligations suited for automatic proof
by model checking.

Thirdly, the thesis addresses one of the key issues faced in model-based
techniques - tool supported model construction, particularly, the problem how
models for robot action control and for model based testing can be constructed
by means of machine learning methods. Two contexts of model learning by au-
tomata learning technique have been studied: (i) learning the human-robot
interaction for robot action control and (ii) learning interaction between the
system under test and its environment to generate load patterns for load test-
ing. For these learning cases two versions of the learning algorithm have
been developed. The core algorithm implements online learning strategy, i.e.
the learner does not have a possibility to back-track and ask equivalence or
membership queries about the arbitrary length pre�xes of the learning input
trace. The learning algorithms construct relative to input trace complete non-

147

deterministic automata networks, such that all observation sequences learned
can be reproduced by that network.

The specialized version of the core algorithm rely on di�erent assumptions
on communication and synchronization mechanism applied in the model. In
the �rst learning case the Human-Robot Interaction learning problem is stud-
ied in the context of cooperative surgical task accomplishment by Scrub Nurse
Robot. In this case the interacting processes are assumed to communicate over
i/o variables and synchronize by means of clock constraints only. That is be-
cause the forward stability of synchronization hypothesis cannot be guaranteed
in the incremental and unsupervised learning of human interactions.

In the other learning case, the environment model for a node of IEEE1394
distributed leader election procedure is constructed. The model processes are
assumed to communicate over i/o variables and synchronize by means of chan-
nels. Forward stable synchronization assumption is motivated here due to the
fact that observable communication actions always incorporate both commu-
nication parties and the channels in Uppaal model represent such synchronous
i/o action pairs.

Fourth main contribution of the thesis is the design and implementation of
distributed model-based control and test execution framework DTRON that
enables model driven execution of di�erent robot control stacks as well as test
suites of model based testing. The practical experiments have shown that
DTRON can be extended also for online (safety) monitoring applications and
to serve as a tool integration middleware. DTRON relies on Uppaal model
checker and on-line test execution tool TRON extending these tools by enabling
coordination and synchronization of distributed components and providing a
consistent API based on standard Java technology.

The novel feature of DTRON is its capability of implementing the time keep-
ing mechanism needed for ∆-criterion based remote testing. The maximum al-
lowable delay criterion (∆-criterion) for remote testing was recently proposed
by Uppaal team. The performance evaluation experiments with DTRON were
conducted to determine the latency overhead DTRON has when introducing
an extra layer of messaging abstraction. The focus of measuring experiments
was to study the e�ect of the Spread toolkit as messaging service with the
combination of Google Protocol Bu�ers - a language-neutral, platform-neutral,
extensible mechanism for serializing structured data. The measurement results
allow concluding that DTRON provides performance guarantees su�cient of
applying ∆-criterion also in distributed test architectures with message prop-
agation time in millisecond rage (depending on the networking con�guration).

Finally, the applicability of DTRON framework and model-based techniques
developed around it have been demonstrated in two representative case-studies:
Scrub Nurse Robot model based control and a distributed performance test-
ing of the Tartu City street light control system. The Scrub Nurse Robot

148

case study highlights the features related to handling real-time and safety con-
straints in robot high-level action control. The street light system case-study
focuses on aspects of coordinating distributed systems and on how to generate
test con�gurations for distributed web applications. Due to these practical
results the author has a ground to believe that the ideas presented in thesis
contribute also to improve the practical development processes of broader class
of industrial scale time critical cyber physical systems.

8.2 Future work

The provably correct test development process model, proposed in Chapter 3
of thesis speci�es a tool chain that can be used to automate the development
steps. As stated in thesis this is not a �xed set of tools that can be used.
Currently the test generator involved is reactive planning online black-box
tester generator that synthesises a symbolic tester as UPTA for non-distributed
systems. To apply similar approach for distributed testing means generating
a local tester separately for each system component by counting on the fact
that the local context of testers needs to be speci�ed separately. One way of
overcoming this limitation is extending the current test generation approach for
online distributed testing so that the local testers are generated with locality
speci�c coordination constraints involved already in their models.

The learning algorithms introduced in the Chapter 4 can generate poten-
tially very complex models in terms of the size of model state space, regardless
the interval abstraction and variable domain rescaling operators are imple-
mented in the algorithm. High complexity can prevent model checking of
learned models for their correctness and implementability. Though there is
not general minimization theory for the network of non-deterministic timed
automata the deterministic fragments of the model can still be minimized by
applying bisimulation quotient method [86] and the classical Hopcroft mini-
mization algorithm. This allows merging the non-distinguishable (from trace
semantics point of view) locations and edges in UPTA templates and in the
product automaton of the parallel composition of templates. Further develop-
ment of optimization theory poses interesting challenge for research specially
combined with contract based model development theory assumptions [87] can
be exploited for incremental component-wise learning of timed models.

8.3 Concluding remarks

This thesis was based on an extensive survey on model based testing with the
focus on developing DTRON tool. It is the authors position that the survey
alone gives a solid starting point to base any further development of DTRON
or similar tools and is a result on its own.

DTRON was re-implemented 4 times to reach its generality and maturity it

149

now has. The author is con�dent that the resulting framework is correctly and
e�ectively (in terms of memory and processor resource usage) implemented
and easily reused for its purpose.

Good usability of DTRON is also supported by the fact that several stu-
dent and research projects have been based on the usage DTRON. "Google
Analytics" report on the supporting website stating around 4000 visiting users
(200 revisiting) last year.

DTRON desperately needs good tool support for the runtime visualization/-
diagnostics and the internal messaging protocol needs to be supplemented with
proper support for NTP based timing corrections (∆-criterion).

Some development has been carried out addressing these problems, but have
not been published within DTRON and remain outside the scope of this thesis.

150

Abstract

This thesis presents results on developing DTRON framework to automatize
the model based control and testing of time critical applications. DTRON
relies on Uppaal model checking tool and on-line test execution tool TRON
extending these tools by enabling coordination and synchronization of dis-
tributed components and providing a consistent API based on standard Java
technology.

The research is based on an extensive survey of model based testing with fo-
cus on veri�able modelling, and execution of models to enable provably correct
on-line testing, model-based control and monitoring in robotic applications.

This work was originally motivated by the Scrub Nurse Robot project where
human adaptive control scenarios and on-line safety monitoring were main
design concerns. The author implemented the JSNR framework for the robot
that was later developed to be DTRON.

The same design principles and technical solutions appeared to be relevant
also for remote and distributed testing of web-based applications as demon-
strated in a street light control software testing case-study. The author refac-
tored DTRON to be more generic and support distributed execution of model
based tests in addition to robot control.

The novel ideas of DTRON framework design revealed also extension oppor-
tunities for its application in broader class of Cyber-Physical Systems (CPS)
capitalizing on dynamic recon�guration, self-calibration depending on the dy-
namic delay estimates of the deployment con�guration, and on-the-�y feasibil-
ity checks of models used in control and testing applications.

DTRON was re-implemented 4 times to reach its generality and maturity
it now has. The author is con�dent that the resulting framework is e�ectively
implemented and easily reused.

The author believes that the ideas presented in thesis contribute also to
improve the practical development processes of industrial scale time critical
CPSs.

151

Kokkuvõte

Küberfüüsikalised süsteemid (KFS) pakuvad suuri võimalusi, kuid ka suuri väl-
jakutseid mitmetes valdkondades nagu näiteks elektroonikatööstus, transpor-
disüsteemid ja tööstuse automatiseerimine. Kõrge keerukusega KFS tarkvara
disaini korrektsuse tagamine nõuab uusi arendusmetoodikaid ja vahendeid, mis
peavad olema suunatud laiale arhitektuurilahenduste spektrile. Samuti peavad
KFS arendusvahendid lahendama olulise paralleelsuse ja ajastamiskitsendus-
tega seotud probleeme.

Käesolev artikkel käsitleb mudelipõhise testimise vahendit DTRON, mis on
välja töötatud ajatundlike hajusarhitektuuriga süsteemide testimiseks. DTRON
on loodud mudelkontrolli vahendi Uppaal ja online testimisvahendi TRON
baasil laiendades nende funktsionaalsust online hajustestimiseks vajalike koor-
dineerimis- ja sünkroniseerimisfunktsioonidega.

Et tagada hajustestide juhitavus, on DTRONi projekteerimisel lähtutud
∆-testitavuse nõudest. Artiklis esitatakse DTRONi arhitektuurilahendus ning
analüüsitakse selle jõudlusnäitajaid võttes arvesse võrguühenduse ning tes-
tiadapteritest tingitud hilistumisi. Jõudluseksperimentide abil näidatakse, et
implementeerimiseks kasutatud vahevara SPREAD sõnumite järjestamisteenus
ja võrgu ajakorraldusprotokoll Network Time Protocol võimaldavad kahanda-
da hajustestide juhitavuse tagamiseks vajaliku parameetri ∆ alla 1 ms piiri.
See näitaja on piisav paljude võrkarhitektuuriga küberfüüsikaliste süsteemide
hajustestimiseks.

DTRONi rakendatavust valideerivad kolm rakendusnäidet: tänavavalgus-
tussüsteemi kontrollerite võrgustiku, pankade-vahelise kauplemissüsteemi ja
mobiilse roboti navigatsioonisüsteemi testimine.

153

Acknowledgements

This work was partially supported by:

(i) Nations Support Program for the ICT in Higher Education "Tiger Uni-
versity",

(ii) Estonian Science Foundation grant #7667,

(iii) This research is partially supported by ELIKO and the European Union
through the European Regional Development Fund.

155

Curriculum vitae

Personal data

Name: Aivo ANIER
Date of birth: 14.apr.1983
Place of birth: ESTONIA

Citizenship: ESTONIA

Contact data

Address: Akadeemia tee 15a, 12618 Tallinn
Phone: +372 620 2325
E-mail: aivo.anier@ttu.ee

Education

2004 � . . . Tallinn University of Technology, Ph.D. studies
2001 � 2004 Tallinn University of Technology, B.Sc., M.Sc.
1989 � 2001 Highschool

Professional employment

2014 - . . . Girf OÜ, software architect
2010 - 2014 Tallinn University of Technology, lecturer
2009 - 2013 ELIKO, researcher
2010 - 2010 Tokyo Denki University, researcher
2007 - 2010 Tallinn University of Technology, researcher
2005 - 2007 ELIKO, researcher
2004 - 2005 Department of Defence, security advisor
2002 - 2004 Girf OÜ, system administrator

156

Elulookirjeldus

Isikuandmed

Nimi: Aivo ANIER
Sünniaeg: 14.apr.1983
Sünnikoht: ESTONIA

Kodakondsus: ESTONIA

Kontaktandmed

Address: Akadeemia tee 15a, 12618 Tallinn
Telefon: +372 620 2325
E-post: aivo.anier@ttu.ee

Hariduskäik

2004 � . . . Tallinna Tehnikaülikool, Doktoriõpe
2001 � 2004 Tallinna Tehnikaülikool, B.Sc., M.Sc.
1989 � 2001 Keskkool

Teenistuskäik

2014 - . . . Girf OÜ, tarkvara arhitekt
2010 - 2014 Tallinna Tehnikaülikool, lektor
2009 - 2013 ELIKO, teadur
2007 - 2010 Tallinna Tehnikaülikool, teadur
2010 - 2010 Tokyo Denki Ülikool, researcher
2005 - 2007 ELIKO, teadur
2004 - 2005 Kaitseministeerium, teabeturbe nõunik
2002 - 2004 Girf OÜ, süsteemiadministraator

157

Appendix I: Timed automata based provably correct

robot control

159

1

Timed automata based
provably correct robot control

A.Anier1, J.Vain1

1Department of Computer Science, TUT, Ehitajate tee 5, 19086Tallinn, Estonia,
E-mail: {Aivo.Anier@ttu.ee, vain@ioc.ee}

Abstract—This paper presents a feasibility study on the usage
of Uppaal Timed Automata (UPTA) for deliberative level robotic
control. The study is based on the Scrub Nurse Robot case-study.
Our experience confirms that UPTA model based control enables
the control loop to be defined and maintained during the robot
operation autonomously with minimum human intervention.
Specifically, in our robot architecture the control model is con-
structed automatically using unsupervised learning. Correctness
of the model is verified on-the-fly against safety, reachability, and
performance requirements. Finally, it is demonstrated that UPTA
model based robot control, action planning and model updates
have natural implementation based on existing model execution
and conformance testing tool Uppaal Tron.

I. I NTRODUCTION

Scrub Nurse Robot (SNR) project is a joint research of
Miyawaki Lab at Tokyo Denki University and the Department
of Computer Science at Tallinn University of Technology. The
goal of the project is to develop a human-adaptive Scrub Nurse
Robot (SNR) that can adapt to surgeons with various levels of
skill and experience in order to replace the human scrub nurse
and compensate for the severe shortage of scrub nurses [1].

Surgery sets very high safety, reliability and performance
requirements not only to surgical robots but also to SNR robots
that assist the surgeon, e.g. by handling over and receiving
instruments during surgery. The requirements to SNR can
be met by means of formal methods and provably correct
design only. In addition, the need for adaptability to surgeon’s
behaviour and environment changes induces the need for robot
learning during its interaction with humans. Since SNR must
ensure provably correct behaviour during surgical procedures,
the learning quality is of critical importance. For characterizing
the quality of behaviour learning we propose the real-time
input-output conformance relation (RTIOCO) [2]. The SNR
behaviour is monitored by Uppaal TRON tool [3] throughout
the surgical procedure. While the RTIOCO relation between
the already learned model and currently observed timed traces
gets violated, TRON signals about that and the learning set
will be extended with RTIOCO counter example traces and
new learning (model construction) iteration will be triggered
online (see figure 1).

The result of each learning iteration will be verified against
predefined safety constraints, performance and non-blocking
conditions using Uppaal model checker [4]. In case the newly
learned model extension is correct the SNR behaviour planning
is switched over to the extended model. In case the correctness

conditions are violated, the SNR discards the model exten-
sions, recovery procedure is initiated and diagnostic traces
passed to human expert for offline revision.

Second major issue of model based control in SNR is
action planning in the presence of partial knowledge about the
external situation and potentially non-deterministic (although
with low probability) reactions of human partners in the
surgical scene. To address these issues we have implementedin
SNR reactive planning algorithm developed initially for online
testing of non-deterministic embedded systems [5]. Encoding
of online planning preferences in the robot control model
allows natural implementation of UPTA based action planning
in Uppaal Tron.

The rest of the paper is structured as follows. In Section
II, project background and motivation is presented; Section
III introduces UPTA syntax and semantics and discusses the
usage of Uppaal Tron for SNR robot control. Section IV
outlines model construction related issues and Section V
model correctness verification issues.

II. T IMED AUTOMATA AND UPPAAL

Timed Automata have been extended in Uppaal tool family
[4] (www.uppaal.com) by data types parallel composition and
synchronization primitives. Due to the extended syntax, and
semantics these automata are named Uppaal Timed Automata
(UPTA). The Uppaal tools provide a rather convenient GUI for
UPTA model definition and a verification engine. Modelling
robot control and also planning is an overwhelming task to be
done by hand. It grows large and complex fast. Even if the
Uppaal tool has greatly improved this area it still remains an
issue - an issue that can be addressed with UPTA synthesis
using external tools and languages [5]. High-level model
synthesis has proven to be effective and justified but doing
the same for low-level robot actions mapped onto input-output
(I/O) behaviour is on the other hand redundant. Low-level
I/O operations are, e.g., actual manipulator control, reading
sensor data etc. Defining these operations and related control
actions in terms of abstract models needs further interfacing
with the actual hardware. The Uppaal main tool does not
support interfacing models with real world phenomena. But
there are many sub- and side projects and one of them is
Uppaal for Testing Real-time systems Online – the TRON tool.
Uppaal TRON is a testing tool, based on Uppaal engine, suited
for black-box conformance testing of timed systems, mainly
targeted for embedded software commonly found in various

2

||
(Initial)

interaction learning

Role models of
interacting actors

RTIOCO
monitoring
(with TRON)

Model-based action
planning and

control of SNR

Learning
counter

examplesRTIOCO violation:
counter example

traces

 Correctness
checking of

model
extension

(with Uppaal)

Extended role
model

Switching SNR
planning to extended

role model
Revision of actor

ontology/correctness
criteria

Check positive

 Check negative

Ontology/ correctness criteria
revision request

Recovery request

Update request

1

3
2

45

6

OnlineOffline

Figure 1. Incremental learning cycle for SNR behavior planning

controllers [3]. Although the TRON is not targeted for model
based control, it provides efficient RT-Conformance checking
mechanisms between model and real physical process and can
issue control commands in the same way as it generates stimuli
to the system under test. Thus, TRON could be adapted for
robot control with a little effort.

III. U PPAAL TRON AND TA MODELLING

TRON follows a client-server programming model. It takes
an Uppaal model file as an input and by definition uses this
to conformance test the implementation under test (IUT).
That IUT in our context is the robot. TRON comes with
Adapter classes that are intended for use on the IUT side.
These are there for the developers’ convenience to “talk” the
same protocol as TRON. The Adapters serve the purpose of
“bridging” the UPTA with the underlying hardware. In the
context of conformance testing the modelling means both for-
mal representation of the IUT and its environment. In figure 2
the SNR tool changer is modelled as the environment and
figure 3 shows the controller of the tool changer as IUT. For
synchronizing the execution of models with reality synchro-
nization signal called Channels are used in Uppaal. Channels
are specified as transition labels in UPTA, e.g., in figure 3
there are channels “toolchanger” and “toolchangerFinished”.
Channels have a calling side and a receiving side denoted by
”!” and”?” respectively. These together form synchronization
which by definition makes the bounded transitions to be taken
simultaneously while not allowing time to pass.

By means of channels TRON is able to intercept these syn-
chronizations and initiate function calls on the IUT side, i.e., in
our example controlling the manipulator. If TRON executes the
Toolchanger controller model and initiates a synchronization
“toolchanger!” then the corresponding labelled transition in the
tool changer model also has to be taken. But TRON intercepts
this synchronization and executes also a function call on
robot API and physical movement is achieved. The same

resetToolchanger?

pos+=toolchangerSteps

toolchangerSteps=pos*−1

toolchangerFinished!

toolchanger? moving

Figure 2. Toolchanger model

synchronization mechanism works in reverse direction. The
model execution waits in a state where “toolchangerFinsihed!”
has to be called. This will be executed by IUT whenever
the movement finishes and TRON intermediates this back to
the model enabling it to proceed. While having the ability
to complement transitions with additional variable labelsthis
enables sensory or feedback information to be imported into
the model. There is one consideration though. Variable labels
can only be integers.

cl>1

cl=0, counter−−

counter>1 counter==1

counter==0

toolchangerFinished? toolchanger!
toolchangerSteps=i

resetToolchanger!

toolchanger!

finished

i:int[−20,20]

cl<4

Figure 3. Toolchanger controller

Channels in Uppaal are defined like any other variable
with the limitation that they have to be declared in global
declarations section. Uppaal models are composed of UPTA

3

Templates that are instantiated into Processes. Local variables
are scoped into one Template/Process and Global variables
are shared across them. Since Channels are a mechanism to
bind two (or more) transitions in the corresponding Templates
they have to be in Global scope. Variable declarations while
using TRON on the other hand need special attention. Variable
labels used by TRON have to be declared globally. And
it is important to understand that every time intercepted
synchronization takes place TRON checks the values of all
Global variables registered for. (On the start of every TRON
session you register for variables you want to read/write).If
there is a difference between the variable states of the TRON
and IUT side – session will fail with non-conformed result.
Figure 4 shows a component model of how the architecture fits
together. Note that TRON distribution also provides Adapters
written in C.

IV. M ODEL SYNTHESIS

Model synthesis is an essential part of SNR adaptability
to changing environment. Using the tools discussed makes
this rather convenient. The control model is constructed in
two phases: at first the model skeleton is created by hand
and verified with TCTL (Timed Computation Tree Logic,
[6][7][8]) queries. Then - iteratively evolving while checking if
the TCTL queried properties remain satisfied. If this succeeds
the iteration steps can be programmatically atomized. After the
model has been synthesized and before deployed with TRON
the model is verified for the last time.

Uppaal

model.xml

Uppaal TRON

Wrapper code

JAVA adapter

Robot Object Model

JNI

I/O DLL-s

Figure 4. Architecture overview

V. V ERIFICATION

Uppaal tool comes with a verification engine and therefore
enables proving of the correctness of controller model. The
query language of Uppaal, used to specify properties to be
checked, is a subset of TCTL. For example one could query
the model if there is a way to deadlock:∃♦deadlock. Consider
the model of a robot shoulder joint shown in figure 5. It is
rather simple but denotes a critical part of the system. The
shoulder height h is bounded to0 ≤ h ≤ 50. Given the robot
the join will otherwise break.

The same constraints as in modelling the controller and the
environment (figure 2 and figure 4) apply here. In figure 6

resetHeight?

pos+=shoulderHeightSteps

shoulderHeightSteps=pos*−1

shoulderHeightFinished!

shoulderHeight? moving

pos+shoulderHeightSteps>=0 &&
pos+shoulderHeightSteps<=50

Figure 5. Shoulder joint height invariant

only the model of the joint is depicted not the controller.
Controller model can be generated automatically from the
model of the joint. Furthermore, it could be modified on-the-
fly while the joint model changes. The important part is that
after the integration of both models we could query the model
weather the invariant will always hold:∀�pos ≥ 0∧pos ≤ 50.
Although it is rather obvious given the example at hand it may
grow beyond that easy comprehension fast.

VI. T IME AND REAL -TIME

Uppaal has the notion of clocks and time. Therefore the
name “timed automata”. This means clock constraints can be
assign to transitions as guards and to locations as invariants.
Note that UPTA have special type of locations called “urgent”
and “committed” which both denote a situation where time
(clocks) is not allowed to pass. Dealing with clocks in TRON
introduces nontrivial semantics. Consider the model depicted
in figure 6. If n = 0 then this means the interval is atomic
and the model has to advance exactly atcl = 10. Since
the underlying operating system TRON is running on is
(usually) not a real-time operating system (OS) – this is not
guaranteed to happen. Although TRON handles this internally
to some extent by extending this interval TRON execution will
still terminate resulting with IUT not conforming to model
denoting clock constraint violation.

cl >= 10 − n && cl <= 10

cl = 0

wait

cl <= 10

Figure 6. Interval clock constraint

There are a couple of ways to overcome this. The most
elegant way is to rewrite the underlying TRON algorithm to
better fit real life use, but this option is available to TRON
developers only. An alternative way is consider this while
modelling and using sensible time intervals instead of time
points, e.g., in figure 6 the variable n is incremented to the
appropriate value. Third possibility is tuning the parameter
Timeunit. Uppaal clocks don’t have default real-world inter-
pretation. In order to create the relation between virtual clock
time and real time one can define clock unit to be some
specific value in nanoseconds. This is done in configuration
upon TRON start-up. Using considerably large time intervals
instead of time points and appropriate small timeunits leadto
a solution where the interpretation of time remain the same
but conformance test will not fail.

4

VII. C ONCLUSIONS

This paper presented an approach to implement provably
correct robot control using Uppaal timed automata and the
TRON tool. We briefly presented the framework project where
this is deployed and key architectural components that take
advantage of it. The robot project was designed to heavily de-
pend on timed automata and the approach at hand has proven
to be sufficient to support this demand. During the deployment
we experienced some shortfalls of Uppaal and Tron when it
came to actual implementation. These were presented with
resolutions used to address them. This included TA modelling
guidelines and Tron configuration considerations. Future work
includes the integration of TA based robotic control with
various other architectural components of the SNR project
such as reactive planning [5] and hybrid learning methods.

REFERENCES

[1] F. Miyawaki, K. Masamune, S. Suzuki, K. Yoshimitsu, and J. Vain. Scrub
nurse robot system-intraoperative motion analysis of a scrub nurse and
timed-automata-based model for surgery.Industrial Electronics, IEEE
Transactions on, 52(5):1227 – 1235, October 2005.

[2] Moez Krichen and Stavros Tripakis. Interesting properties of the Real-
Time conformance relation. In Kamel Barkaoui, Ana Cavalcanti, and
Antonio Cerone, editors,ICTAC, volume 4281 of Lecture Notes in
Computer Science, pages 317–331. Springer, 2006.

[3] Anders Hessel, Kim Larsen, Marius Mikucionis, Brian Nielsen, Paul
Pettersson, and Arne Skou. Testing Real-Time systems usingUPPAAL.
In Formal Methods and Testing, page 77–117. 2008.

[4] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[5] J. Vain, F. Miyawaki, S. Nomm, T. Totskaya, and A. Anier. Human-robot
interaction learning using timed automata. InICCAS-SICE, 2009, pages
2037 –2042, August 2009.

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors,Formal
Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004, LNCS, page 200–236. Springer–Verlag,
September 2004.

[7] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. InLogic in Computer Science, 1990. LICS ’90, Proceedings.,
Fifth Annual IEEE Symposium on e, pages 414 –425, June 1990.

[8] T. A Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. InLogic in Computer Science, 1992. LICS
’92., Proceedings of the Seventh Annual IEEE Symposium on, pages 394
–406, June 1992.

Appendix II: Human-Robot Interaction Learning Us-

ing Timed Automata

165

- 2037 -

Human-Robot Interaction Learning Using Timed Automata
J. Vain1, F. Miyawaki2, S. Nõmm3, T. Totskaya1 and A.Anier1

1 Department of Computer Science, Tallinn University of Technology, Tallinn, Estonia
(Tel : +37-2-620-4190; E-mail: vain@ioc.ee)

2 Miyawaki Lab, Tokyo Denki University, Tokyo, Japan
(E-mail: miyawaki@b.dendai.ac.jp)

3 Department of Control Systems, Institute of Cybernetics, Tallinn, Estonia

Abstract: A new unsupervised learning algorithm of human-robot interaction for behavior planning unit of a scrub
nurse robot is proposed in this paper. The algorithm constructs a composition of timed IO automata where each
automaton represents behavior of an interaction party. The learning architecture of the scrub nurse robot and its
incremental learning cycle are discussed. The automatic compilation of the interaction model is guided parametrically in
the learning process that allows generating models of different level of abstraction and profile. The approach is
illustrated with an example of learning a fragment of laparoscopic surgical procedure.

Keywords: unsupervised behavior learning, model construction, timed IO automata, real-time input-output
conformance relation.

1. INTRODUCTION

Studies on human–robot interaction (HRI) are
roughly classified into two categories. The first category
is related to communication with verbal or nonverbal
aids, and the second is related to physical task
accomplishment by cooperation, e.g. for spaceship
inspection and repairing [1]. In this paper, the HRI
learning problems are studied in the context of
cooperative surgical task accomplishment by Scrub
Nurse Robot (SNR) [2] and a human surgeon. The main
challenge in SNR control and its adaptation to human
surgeon is learning proper reactions of human scrub
nurse assisting in surgical procedures. Therefore,
imitational learning seems to be more relevant approach
in given context than “classical” optimal planning of
manipulator trajectory. Although possibly more efficient
(in terms of time, energy consumption etc.) the synthetic
optimized behavior of the SNR may feel unnatural and
distract the surgeon’s attention during critical phases of
surgery.

In our approach SNR is supposed to learn the basic
skills initially by observing the surgical procedure
passively and later, when involved in real surgery, it
improves its world model incrementally.

The SNR learning architecture highlighted in this
paper is layered into low-level gesture learning and
high-level behavior learning as defined in [3]. The
stratified leaning architecture provides a flexible
infrastructure to combine advantages of short-term
gesture learning techniques [4, 5, 6] with a long-term
behavior learning method being the focus of this paper.

In the supervised-unsupervised learning scale the
SNR architecture implements the hybrid learning
method. Low-level supervised learning is applied
off-line for recognition of a reference set of gesture
patterns. The high-level unsupervised behavior learning
is applied in off-line mode when constructing the initial
model of the participants’ interaction in the surgical
procedure, and later, on-line by updating the model

incrementally with new behaviors.
The actors participating in the interactions to be

learned are “black boxes” in the sense that the learning
system does not have a reference on their inner motives
or reasoning. Thus, we can rely on interaction related
observable IO behavior only. The automata class we
use for model learning from IO behavior is
non-deterministic timed automata with inputs and
outputs TAIO [7]. More precisely, since we limit
ourselves with observation sequences of motion
switching events, being produced as symbolic outputs of
the SNR low-level gesture recognition module, the class
of automata constructed by the algorithm is event
recording non-blocking and input complete timed IO
automata [8].

Since SNR must ensure provably correct behavior
during surgical procedures, the learning quality is of
critical importance. For characterizing the quality of
behavior learning we propose the real-time input-output
conformance relation (RTIOCO [9]). The HRI behavior
is monitored by Uppaal TRON tool [10] throughout the
surgical procedure. While the RTIOCO relation between
the already learned model and currently observed timed
traces gets violated, the learning set will be extended
with RTIOCO counter example traces and new learning
(model construction) iteration will be triggered online
(see Fig.1).

The result of each learning iteration will be verified
against a preset safety constraints and non-blocking
conditions using Uppaal model checker [10]. In case the
newly learned model extension is correct the SNR
behavior planning is switched over to the extended
model. In case the correctness conditions are violated,
the SNR discards the model extensions, recovery
procedure is initiated and diagnostic traces passed to
human expert for offline revision. Full learning cycle is
depicted in Fig. 1.

ICROS-SICE International Joint Conference 2009
August 18-21, 2009, Fukuoka International Congress Center, Japan

PR0002/09/0000-2037 ¥400 © 2009 SICE

- 2038 -

The key features of the TAIO automata learning
algorithm proposed in the paper (the algorithm is
applied in steps 1 and 3 of Fig.1) are following:
- The learning is un-supervised. There is no explicit

selection mechanism involved that would put the
preference of some learned behavior over others.

- We assume that the symbolic event sequences being
a learning set for our algorithm are representative,
i.e., they correspond to real motion switching
samples recognized by low-level gesture
recognition module. Filtering and labeling of video
data is done in motion recognition module and
highlighted in [2, 4, 5, 6].

The model constructed by learning is abstract in the
sense that instead of recording each individual motion
switching as a separate model element (state or
transition) we define the equivalence classes of model
elements that provides an abstract and more compact
representation of the observed IO behavior.

The equivalence classes are parameterized using
equivalence class size. Class size determines the
intervals of parameter values considered to be
equivalent. Our current experiments indicate that the
models constructed by learning laparoscopic surgical
procedures are tractable and relevant to SNR action
planning and verification. The approach will be
illustrated with motion samples of laparoscopic surgery
in Section 4.

2. TIMED AUTOMATA LEARNING: THE

STATE OF THE ART

The construction of models from observations of
system behavior can be seen as a learning problem. For
finite-state reactive systems, the active learning means
usually constructing a (deterministic) finite automaton
from the answers to a finite set of membership queries,
each of which asks whether a certain sequence of input
symbols (observed events) is accepted by the automaton

or not. There are several techniques (see, e.g., [11, 12]
for overview) which use the same basic principles; they
differ in how membership queries may be chosen and in
how an automaton is constructed from the answers. The
techniques guarantee that a correct automaton will be
constructed if sufficient information is obtained. In
order to check the sufficiency of learning sets, the
equivalence queries are used [11] that ask whether a
hypothesized automaton accepts the correct sequences
of symbols. Such a query is answered either by yes or
by a counterexample on which the hypothesis and the
correct language disagree.

In [8] the learning algorithm of Angluin [11] is
extended to the setting of timed systems, namely, to
event recording timed automata. This automata class is
restricted to be event-deterministic in the sense that each
state has at most one outgoing transition per action (i.e.,
the automaton obtained by removing the clock
constraints are deterministic). Under this restriction,
timing constraints for the occurrence of an action
depend only on the past sequence of actions, and not on
their relative timing.

As an alternative to the active learning method of [8]
we present a passive learning algorithm that does not
have a possibility to ask equivalence or membership
queries. Instead, relative (to observation history)
completeness of the non-deterministic TAIO [7] learned
is guaranteed by construction. Secondly, instead of a
single automaton our learning algorithm constructs the
composition of interacting TAIO automata that
communicate over IO variables and synchronize by
means of clock guards. Because of the incrementality of
our learning approach we can not assume the
completeness of past observations and therefore we
cannot conclude the synchrony of transitions via
synchronization channels as used in Uppaal automata
[9]. Any observation in the future can violate the
synchrony between component automata regardless the
fact that synchrony would have been observed up to the

|| (Initial)

interaction learning

Role models of
interacting actors

RTIOCO
monitoring

(with Uppaal
TRON)

Model-based
behavior planning

of SNR

Learning
counter

examples RTIOCO violation:
counter example

traces

Correctness
checking of

model
extension

(with Uppaal)

Extended role
model

Switching SNR
planning to extended

role model
Revision of actor

ontology/correctness
criteria

OnlineOffline

Check positive

 Check
negative

Ontology/ correctness criteria
revision request

Recovery request

Update request

1

3
2

4 5

6

Fig. 1 Incremental learning cycle for SNR behavior planning

- 2039 -

given moment of time.
Third extension introduced in our algorithm is the

usage of predicate abstraction in clock and state variable
conditions. Nondeterministic constraints in the TAIO
transition guards and location invariants are constructed
in the form of linear interval constraints. The possibility
to determine the interval size parametrically in the
algorithm keeps the balance between the model
complexity and precision.

3. UNSUPERVISED LEARNING OF TIMED

IO AUTOMATA

3.1 Timed IO Automata

A timed automaton [7] is a state machine whose

states are divided into variables, and that has a set of
discrete actions, some of which may be internal and
some external. The state of a timed automaton may
change in two ways: by discrete transitions, which
change the state atomically, and by trajectories, which
describe the evolution of the state over intervals of time.
The discrete transitions are labeled with actions; this
will allow us to synchronize the transitions of different
timed automata when we compose them in parallel. The
evolution described by a trajectory may be described by
continuous or discontinuous functions.

Definition (timed automaton - TA) A = (X; Q; Θ; ;
H; D; T) consists of: a set X of internal variables; a set
Q ⊆ val(X) of (control) states or locations; a nonempty
set Θ ⊆ Q of start states (locations); a set of external
actions and a set H of internal actions disjoint from
each other; a set D ⊆ Q × A × Q of discrete transitions,
where A E H (we use x →a x’ as shorthand for (x, a,
x’) ∈ D. We say that a is enabled in x if x →a x’ for
some x’. We say that a set A1 ⊆ A of actions is enabled
in a state x if some action in A1 is enabled in x); a set T
of trajectories. Given a trajectory τ ∈ T we denote the
first state of τ by τ.fstate, and, if τ is closed, we denote
the last state of τ by τ.lstate. When τ.fstate = x and
τ.lstate = x’, we write x →τ x’. We require that the
following axioms hold:

T0 (Existence of point trajectories):
x ∈ Q τ(x) ∈ T.

T1 (Prefix closure):
∀τ,τ’. τ ∈ T and τ’ τ τ’ ∈ T.

T2 (Suffix closure):
∀τ ∈ T and ∀t ∈ dom(T), τ t ∈ T.

T3 (Concatenation closure):
Letτ0τ1τ2 … be a sequence of trajectories in T such

that, for each nonfinal index i, τi is closed and τi.lstate
= τi+1.fstate, then τ0;τ1;τ2; …∈ T.

Definition (Timed I/O Automaton)
A timed I/O automaton (TIOA) A is a tuple (B, I, O)

where B = (X; Q; Θ; ; H; D; T) is a TA, I and O
partition E into input and output actions, respectively.
Actions in L H O are called locally controlled; as
before we write A E H.

The following additional axioms are satisfied:
E1 (Input action enabling):

∀x ∈ Q, ∀a ∈ I, ∃x’∈ Q s.t. x →a x’.
E2 (Time-passage enabling):

∀x ∈ Q, ∃τ ∈ T s. t. τ.fstate = x and either
1. τ.ltime = ∞, or
2. τ is closed and some l ∈ L is enabled in τ.lstate.
Input action enabling is the input enabling condition

of ordinary I/O automata [7]; it says that a TIOA is able
to perform an input action at any time. The time-passage
enabling condition says that a TIOA either allows time
to advance forever, or it allows time to advance for a
while, up to a point where it is prepared to react with
some locally controlled action. The condition ensures
that whenever time progress stops there exists at least
one enabled transition.

3.1 The timed automata learning algorithm

In a nutshell, our model learning algorithm consists

of a generation of TAIO locations and transitions that
represent single motions and switchings between those
motions respectively. Full specification of the algorithm
explained in this section is presented in Appendix A.

As pointed above, the TAIO constructed as a result of
learning is abstract, i.e., fine deviations of motion
switching parameter values are abstracted away using
interval representation.

To define the equivalence relation of motions we
introduce the robustness parameter (that defines the
granularity of the state space) Ri for each i-th state
dimension and one for time. Ri defines the maximum
distance any two points in the equivalence class can
differ in ith dimension.

For convenience of defining the learning algorithm
we partition the transition relation D by locations of
TAIO into n subsets (n – number of locations in the
model), i.e., D = i∈[1,n] Di , where Di corresponds to
the location li all the transitions of Di are departing
from. By definition ∀ i,j n, i ≠ j ∧ Di Dj = ∅.

Note that Di are multisets, because there may be
many transitions between locations li and lk but we
require that all the transitions are distinguishable by
their guard conditions and to avoid non-determinism the
interpretation sets of their guards do not intersect. To
distinguish individual transitions between a pair of
locations li, lj we introduce an additional index k as
third parameter in transition notation - t(li, lj, k).

At first, we define the inputs, outputs and parameters
of the algorithm.

Inputs: The sequence E of observed motion switching
events. An example fragment of E is depicted in Table 1.
Each element ei ∈ E (a line in the Table 1) is described
as a triple ei = <idi, tsi, Xi>, where idi identifies the
motion phase of an actor starting with i-th event, tsi is
the timestamp of i-th switching event and Xi is the
valuation of observable state variables at time instant tsi.
Only those variables being relevant to the actors’
interaction model are presented in Xi. The relevance of
Xi is determined by actors’ IO configuration model, e.g.

- 2040 -

in Fig. 2 both actors have two inputs and two outputs. E
is implemented as FIFO buffer where get-operation
returns the oldest unread element of E. The emptiness of
E is checked without shifting the pointer of E.

Output: The model of observed behaviour defined as
TAIO M = < B, I, O>. An example of the automaton
learned from observations of Table 1 is represented in
Fig. 3 (here Uppaal graphical syntax of TAIO is used).

Parameters: To reduce the model state space and to
select only the state variables having importance from
the SNR control point of view we use the vector Pr that
lists the observable states of importance, i.e., Pr defines
the subset XP of state variables X the current valuation Xi
is projected on, e.g., for getting valuation of controllable
variables Xc we define Pr = Xc.

The observation robustness R allows defining
equivalence classes used as atomic propositions in
TAIO conjunctive transition guards.

Parameter RS denotes the rescaling vector that
consists of scaling functions, one for each state variable.
Rescaling is necessary for keeping the model in a
compact non-negative integer domain.

The algorithm comprises following basic steps:
Step 1: Unless the buffer of event sequence E is not

empty read the motion switching event from buffer E
and interpret it as a transition with known source
location and possibly new target location. The source
location is supposed to be known from the previous
event read from E or it is an initial location l0 when the
first event is taken. If the buffer E is empty go to Step 3.

Table 1 Sample of E (motion switching events)

Event TS Surgeon Nurse
Sur Nur Xs X~

s Ys Y~
s Xn X~

n Yn Y~
n

aS
0 aN

0 1 123 22 52 0 214 23 64 11
- aN

1 17 - - 76 - 237 26 34 -
- aN

2 42 - - 93 - 222 24 85 -
- aN

3 48 - - 57 - 191 21 55 -
aS

1 aN
4 70 81 8 123 24 212 23 46 11

- aN
6 78 - - 132 - 245 27 72 -

aS
2 - 79 118 20 85 6 - - 26 23

aS
3 - 86 116 19 73 - - - 85 -

- aN
0 88 - - 73 - 202 22 66 -

aS
5 - 107 121 21 59 - - - 44 -

- aN
7 109 - - 77 - 244 27 88 -

- aN
5 122 - - 86 - 259 29 35 -

aS
6 aN

8 124 59 0 116 22 199 22 63 18
aS

4 aN
9 130 92 11 139 30 211 23 93 30

- aN
10 134 - - 75 - 194 21 55 -

- aN
2 137 - - 104 - 201 22 33 -

aS
1 aN

4 142 92 11 110 20 201 22 26 2
aS

2 aN
5 150 133 25 68 6 230 25 76 23

aS
3 - 158 121 21 76 - - - 55 -

aS
5 - 171 146 30 63 - - - 27 -

aS
6 aN

8 177 138 27 105 18 170 18 22 1
aS

0 aN
6 180 147 30 66 5 169 18 62 17

- aN
10 184 - - 124 - 268 30 90 -

- aN
0 186 - - 73 - 20 0 20 -

Notations of Table 1:
Xs, Xn, Ys, Yn – x- and y-coordinates of surgeon’s
and nurse’s wrists
X~

s, Y~
s, X~

n, Y~
n - normalized in interval [0,30]

coordinates Xs, Ys, Xn, Yn
TS – switching event time stamp

Switching events of Nurse’s Gestures:
aN

0 – idle
aN

1 – prepare instrument
aN

2 – picking up an instrument
aN

3 – holding the instrument & waiting
aN

4 – passing the instrument
aN

5 – wait returning
aN

6 – withdrawing hand
aN

7 – stretching hand
aN

8 – receiving
aN

9 – moving back
aN

10 – putting on the tray.
Switching events of Surgeon’s gestures:

aS
0 – idle,

aS
1 – receiving an instrument;

aS
2 – inserting instrument;

aS
3 – working;

aS
4 – waiting for an instrument;

aS
5 – extracting from trocal cannula;

aS
6 - returning the instrument.

Step 2: Check the inclusion of the transition and

location representing red from E an event e in any
already existing model element equivalence class. If the
inclusion is established the algorithm returns to Step 1.
If the model element is not in any existing equivalence
class the new equivalence class is created and the
algorithm returns to Step 1.

Step 3 (Model reduction): Model reduction minimizes
the set of state variables necessary for specifying
transition guards of the TAIO model. Reduction must
preserve determinism of the model. It means that for
each location li its outgoing transitions’ guards have to
satisfy the condition that there exists at least one state
variable xk for each pair of transitions t(li, lj .), t(li,
lk, .) where j ≠ k s.t. their guards are mutually exclusive,
i.e., ∀li∈Q, ∀t(li,lj.), t(li,lk,.) ∈ D: ¬(g(t(li,lj.)) ∧
(g(t(li,lk,.))).

Step 4: Construction of location invariants. For each
location li the invariant I(li) is constructed from the
guards of incoming and outgoing transitions: I(li) ≡ ∧k
g(t(lk,li.)) ∧ ¬ ∨j g(t(li,lj.)).

4. CASE STUDY: LAPAROSCOPIC
SURGICAL PROCEDURE

Given:

- Observation sequence E (a sample fragment of the
sequence E is specified in Table 1).

- System configuration as depicted in Fig 2.
- Rescaling operator RSi with region [0,30] for all

state variables xi ∈ X.
- Robustness Ri = 2, for all xi ∈ X.

- 2041 -

Fig. 2 IO configuration of Surgeon-Nurse interaction

(self-loops denote self-dependencies)

Result:
The parallel composition of Surgeon’s and Nurse’s

TAIO-s learned by their interaction during a
laparoscopic surgery (IO observation sequence E of
Table 1) is represented in Fig. 3.

||

Fig. 3 Parallel composition of Surgeon’s and Nurse’s

TAIO learned from Table 1.

5. CONCLUSION

We have proposed a timed IO automata model

learning approach that makes the scrub nurse robot high
level action planner synthesis on-line feasible. The
advantages of proposed unsupervised learning approach
are following: (i) learning is incremental, i.e.,
pre-existing knowledge about human scrub nurse
behaviour can be re-used; (ii) in the presence of
predefined scenario models the functional correctness of
learning results and the efficiency of the robot action
can be verified by model checking before used for
actual planning; (iii) the learning algorithm can be
easily tuned by choosing different value sets for its

robustness and projection parameters; the last allows
generating families of models with different level of
abstraction and of different profile.

ACKNOWLEDGEMENTS

The work was financially supported by the Estonian

Science Foundation Grants 6884, 7667, by research
funding BF99 of Tallinn University of Technology, and
also financially supported by a Grant-in-Aid for
Scientific Research (B) (grant number19300186) from
the Ministry of Education, Culture,Sports, Science and
Technology of the Japanese Government.

REFERENCES

[1] M.Ogino, H. Toichi, Y. Yoshikawa, M. Asada.
Interaction rule learning with a human partner based on
an imitation faculty with a simple visuo-motor mapping.
Robotics and Autonomous Systems 54, 2006. 414–418.
[2] F. Miyawaki, K. Masamune, S. Suzuki, K.
Yoshimitsu, J. Vain, Scrub nurse robot system -
intraoperative motion analysis of a scrub nurse and
timed-automata-based model for surgery. IEEE Trans.
on Industrial Electronics, 52(5), 2005, 1227-1235.
[3] M.J. Mataric. Learning in Behavior-Based
Multi-Robot Systems: Policies, Models, and Other
Agents. Cognitive Systems Research, 2(1), Apr 2001,
81-93.
[4] J. Jakubiak, S. Nõmm, J. Vain, F. Miyawaki.
Polynomial based approach in analysis and detection of
surgeon's motions. In: ICARCV 2008 10th international
Conference on Control, Automation, Robotics & Vision:
2008, Hanoi, Vietnam: N.J.: IEEE, 2008, 611 - 616.
[5] S. Nõmm, E. Petlenkov, J. Vain, J. Belikov, F.
Miyawaki, K. Yoshimitsu. Recognition of the surgeon's
motions during endoscopic operation by statistics based
algorithm and neural networks based ANARX models.
IFAC 17th World Congress, Seoul, Korea, 2008, 14773
- 14778.
[6] E. Petlenkov, S. Nõmm, J. Vain, F. Miyawaki.
Application of self organizing Kohonen Map to
detection of surgeon motions during endoscopic surgery.
International Joint Conference on Neural Networks
(IJCNN2008), Hong Kong, 2008, 2807 - 2812.
[7] D. Kaynar, N. A. Lynch. Decomposing verification
of timed I/O automata. In Y. Lakhnech and S. Yovine,
editors, Lecture Notes in Computer Science 3253, 2004,
84-101.
[8] O. Grinchtein, B. Jonsson, M. Leucker. Learning of
Event-Recording Automata. Y.Lakhnech and S.Yovine
(Eds.): FORMATS/ FTRTFT 2004, LNCS 3253,
379–395.
[9] M. Krichen, S. Tripakis. Interesting Properties of the
Real-Time Conformance Relation TIOCO. K. Barkaoui,
et al (Eds.): ICTAC 2006, LNCS 4281, 317–331.
[10] http://www.uppaal.com
[11] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75:87–106, 1987.

- 2042 -

[12] M.Kearns, U.Vazirani. An Introduction to
Computational Learning Theory. MIT Press, 1994.

APPENDIX A

1: while E ≠ ∅ do
2: e ← get(E) % get event e from buffer E
3: h’← h, h ← l
4: l ← e[1], cl ← (e[2] - hcl), X ← e[3]
5: if l ∉ L then % if new event type
6: L ← L ∪ {l},
7: T ← T ∪ {t(h,l,1)} % add transition
8: g_cl(h,l,1) ← [cl, cl] % add cl. reset
9: for all xi ∈ X do
10: g_x(h,l,1,xi) ← [xi, xi] % add grd
11: end for
12: else % if e in existing eqv. class
13: if k∈ [1,|t(h,l,.)|], xi∈ X,: xi ∈
 g_x(h,l,k,xi) ∧ cl ∈ g_cl(h,l,k) then
14: goto 34
15: else % if e extends the eqv. class
16: if k∈ [1,|t(h,l,.)|], xi∈ X: xi ∈
 g_x(h,l,k,xi) Ri ∧ cl ∈ g_cl(h,l,k) Rcl (*)
17: then
18: if cl < g_cl(h,l,k)- then
 g_cl(h,l,k) ← [cl, g_cl(h,l,k)+] end if
19: if cl > g_cl(h,l,k)+ then
 g_cl(h,l,k) ← [g_cl(h,l,k)-, cl] end if
20: for all xi ∈ X do
21: if xi < g_x(h,l,k,xi)- then
 g_x(h,l,k,xi) ← [xi, g_x(h,l,k,xi)+] end if
22: if xi > g_x(h,l,k,xi)+ then
 g_x(h,l,k,xi) ← [g_x(h,l,k,xi)-, xi] end if
23: end for
24: else % if e not in eqv. class
25: k ←|t(h,l,.)| +1
26: T ← T ∪ {t(h,l,k)} % add trn
27: g_cl(h,l,k)←[cl,cl] % cl reset
28: for all xi ∈ X do % add grd
29: g_x(h,l,k,xi) ← [xi, xi]
30: end for
31: end if
32: end if
33: a(h’,h,k’) ← a(h’,h,k’) ∪ Xc % add asg
34: end while

(*) - Interval extension operators R: [x-, x+] R =
[x- - , x+ +], where = R - (x+- x-)

Appendix III: Supervised Training of Voting Automata

for the Surgeon-s Motion

173

Supervised Training of Voting Automata for the Surgeon’s Motion
Recognition During Laparoscope Surgery

Jüri Vain, Sven Nõmm, Aivo Anier, Fujio Miyawaki and Tatiana Totskaya

Abstract— Supervised learning of voting automata for the
surgeon’s right hand motion recognition constitutes the main
result reported in the present paper. Within the framework of
the project, aiming the design of scrub nurse robot a number
of methods for recognizing the current stage of the surgery has
been developed. Obviously no one of the methods separately
can guarantee hundred percent correct recognition. Therefore,
the voting automaton is employed to choose the best result. In
this paper main attention is paid to the design of such voting
automata using supervised learning techniques.

I. INTRODUCTION

Cooperation between human and robotic assistant requires
the robot to model human behavior in order to make a
decision about timing and type of the assisting action. On
one side, recognition of of human behavior relies on the
context, i.e. the world model consisting of behaviour models
of interacting parties and the reference scenario of the
procedure to be accomplished, and on the other side, precise
information about the current state of action. In general, the
online information about the surgery status can be obtained
by means of different communication channels like video,
voice or sensor information. Within the framework of present
contribution we will relay only on the video data transformed
into the stream of coordinates describing position of the
surgeon’s hands in real time.

The results of the present contribution lie in the area
where the robot is designed to replace a human scrub nurse
(specially trained nurse, who assists directly the operat-
ing surgeon) during laparoscope surgery [4]. Laparoscope
surgery was chosen as a starting point due to its relatively
simple operation scenario, which excludes a lot of uncer-
tainties allowing to concentrate efforts on development of
basic solution. Within the framework of the project a num-
ber of recognition techniques has been developed, namely,
Neural Networks based (NN-based) [6], statistic probabilistic
technique [6], self organizing map based technique [8] and

This work was partially supported by Estonian Science Foundation grants
7667 # 6884

J. Vain is with the Institute of Computer Science Tallinn University of
Technology, Raja 1, 12618, Tallinn, Estonia vain@cc.ioc.ee

S. Nõmm is with Institute of Cybernetics, Tallinn University of Technol-
ogy, Akadeemia tee 21, 12618, Tallinn, Estonia sven@cc.ioc.ee

A. Anier is with the Institute of Computer Science Tallinn
University of Technology, Raja 1, 12618, Tallinn, Estonia
aivo.anier@gmail.com

F. Miyawaki is with Grad. School of Advanced Sc. & Tech.
TDU, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama, 350-0394, Japan
miyawaki@b.dendai.ac.jp

T. Totskaya is with the Institute of Computer Science Tallinn
University of Technology, Raja 1, 12618, Tallinn, Estonia
totskaya.tatiana@gmail.com

a technique based on trajectory parametrization [1]. Since
all those methods have their own strength and weaknesses
in [7] a hybrid detection technique was proposed to im-
prove the quality of detection results. The voting automaton
proposed in [7] based its decision (if next stage of the
surgery has begun or not) on the analysis of outputs of
different recognition functions. Such approach allowed to
improve the quality of recognition by choosing the output
of the recognition function which demonstrated the best
performance in detection of expected stage of the surgery.
Since the voting automaton in [7] was designed ”manually”
just to use three detection techniques (NN-based, statistic
and self-organizing maps based), any change in the number
of detection techniques, or their parameters would require
redesign of voting automaton which is time and effort
consuming process. This led to the idea to automatize the
voting automata construction process. In the present paper,
supervised learning techniques for finite state machine would
be employed for this purpose.

The paper is organized as follows. Section 2 provides
general overview of the operating environment and robot
construction from the dataflow point of view. In order to
make this paper self-sufficient overview of the detection tech-
niques (NN-based, statistic-based and self-organizing maps
based) is given in the section 3. Section 4 is devoted to the
presentation of main results. Section 5 contains comparison
results where performance of entire hybrid detection system
is compared to the performance of each technique alone.
Conclusions are drawn in the last section.

II. GENERAL OVERVIEW OF THE PROJECT

Scrub nurse robot (SNR) is a specialized medical robot
which was designed to perform assisting actions of a scrub
nurse (see Figure 1). Detailed description of the SNR design
has been presented in [9].

In order to provide greater vision coverage area and reduce
the possibility of eclipsing the robot video system four
cameras were positioned outside the SNR in fixed positions
of the surgical room. Since SNR is designed to function only
within the surgical room, such design does not limit robot
abilities. Main functional modules are depicted in Figure 2.

From the viewpoint of a human scrub nurse cognition the
surgeon’s hand motions during laparoscope surgery consists
of the six basic gestures or motions. Well trained human
scrub nurse can distinguish those gestures based on the
knowledge of operation scenario and by observing the oper-
ating surgeon’s hand movements.

2009 IEEE International Conference on Control and Automation
Christchurch, New Zealand, December 9-11, 2009

ThMPo6.11

978-1-4244-4707-7/09/$25.00 ©2009 IEEE 1503

Fig. 1. Scrub nurse robot

Fig. 2. Functional model of the scrub nurse robot

1) ’inserting’ is defined as the motion observed from the
moment that instrument is received by surgeon’s hand
up to the moment when the surgeon inserted it into
the abdominal cavity through the cannula (cylindrical
tube);

2) ’working’ is defined as the motion observed while
the surgeon was conducting some kind of surgical
procedure with a surgical instrument;

3) ’extracting’ is defined as the motion which starts from
the moment when the surgeon began to draw the
surgical instrument out of the operative field and which
lasts until the moment the tip of the instrument comes

out of the inlet of a trocar cannula penetrating the
abdominal wall;

4) ’passing’ is defined as the motion which lasts from
the moment that the tip of instrument came out of the
trocar cannula to the moment the surgeon releases the
instrument by passing it to the scrub nurse or returning
it to a surgical tray by himself;

5) ’waiting’ is defined as the motion continuing from
the moment the surgeon releases the instrument to the
moment when he receives the next instrument from the
scrub nurse;

6) ’get’ is defined as the motion observed while surgeon
takes the instrument from the nurse. Compared to other
motions ’get’ takes place during extremely short period
of time. In spite of that, ”get” will be called motion
in the sense that it corresponds to the very important
stage of the surgery);

The necessity of surgeon’s movements segmentation into
six motions is caused by the human cognition, since in
human-human communication those six motions are the basis
for successful cooperation between surgeon and scrub nurse.
The robot replacing a human scrub nurse should closely
follow this behavioral pattern and, therefore, is required to
be able to recognize those six motions.

The video system of the robot is tracking the small
markers attached to the surgeon chest, elbow and wrist. With
interval 1/60 of a second it returns 3D coordinates of each
marker. In other words, video system provides a stream of
coordinates describing position of surgeon’s right hand in
real-time. Observing this stream the SNR motions recognition
unit detects the switching events between motions. Once
the change in surgeon’s right hand motion is detected by
the recognition unit corresponding information is sent to
the SNR actions planning unit which is implemented in the
form of timed automata [4]. Based on the SNR world model
and surgery (operation) scenario it generates orders for the
motion control unit, which controls manipulators directly.

III. MOTION RECOGNITION TECHNIQUES

In [7] the hybrid detection system that combines three
motion recognition techniques and a voting automaton was
presented. In addition to the fact that the mathematical nature
of NN-based, the statistics-based and Kohonen-map based
techniques differs: the statistics-based technique is designed
to detect the points in time when one motion ends and the
next one begins, while NN-based and Kohonen-map tech-
niques detect the type of the motion. Within the framework of
this project such points will be referred as switching points or
simply switchings. First two techniques require supervision,
namely, a set of human made segmentations for training
purposes. Producing such human made segmentation is time
and effort consuming process where human should review
a video recording frame by frame and based on his/her
knowledge place the flag in time-line where switching from
one motion to another took place.

1504

A. Neural Networks based technique

Proposed in [6] technique is based on training a neural
network to recognize the type of the motion which is
taking place at the current moment. The model represents
a restricted connectivity neural network, can be considered
as a generalization of the NN-based ANARX model class
[3] for the MIMO case.
[
m(t)

]T

=
3∑

i=1

C1fi

(
Wi

[
α(t− i), β(t− i), γ(t− i)

]T
)
. (1)

Here α, β and γ are vectors containing coordinates of
the markers attached to the chest, elbow and wrist of the
operating surgeon at time t, m(t) is a vector composed of
six elements. Neural network, corresponding to the model
(1) was trained to return vector m(t) with 1 in the position
corresponding to the number of motion taking place in the
current moment and zeros in all other positions. Of course,
the number of human-made segmentations is required for
training. For example vector {0, 1, 0, 0, 0, 0} would corre-
spond to the motion number 2 or working. Such vectors are
created on the basis of switching flags positioned by human
in time-line. Obviously, the trained network would not return
vector of just zeros and one. The values of the output vector
of trained network would belong to certain neighborhood of
zero and one, which can be rounded to the closest value.

B. Statistic-Probabilistic approach

Positions of the operating surgeon and scrub nurse are
fixed in relation to the operation table and each other
therefore their hands trajectories in each experiment should
follow approximately the same path. This leads to the idea
that switching points of the same type should be somehow
grouped in certain locations (or inside certain convex sets
in the operating room [5]). If the surgeon’s wrist trajectory
passes through such convex set, motion switching can be
declared. On the basis of sufficiently large number of human
made segmentations one can find ”average switching points”
for each pair of consequent motions. Assuming that switch-
ing points are normally distributed around corresponding
average switching points, and taking into account that ellip-
soids represent equidensity contours for three dimensional
normal distribution one can consider those ellipsoids as as
a convex sets containing corresponding switching points.
Obviously the majority of trajectories would not pass through
the average switching point but in certain proximity of it.
For each point of trajectory approaching certain switching
one can find a properly oriented ellipsoid such that this
point would belong to its surface and therefore determine
a probability that by this time switching is already occurred.
On the basis of sufficiently large number of experiments
one can determine liminal probability values for declaring
switching for each pair of consequent motions, in other
words, finding radiuses of ellipsoids which should be crossed
by trajectory. Such setting will lead to the segmentation

of working room or working area by ellipsoids around
switching points, depicted in Figure 3.

Fig. 3. Segmentation of working space induced by average switching points
and liminal switching probabilities

C. Self-Organizing Map-Based Technique
Unlike the two previous techniques the method proposed

in [8] does not require human made segmentation for train-
ing. Kohonen-map [2] based technique classifies data into
given number of classes and calculates so called ”reference
vectors” for each class (denoted as Wclass number). The
only human intervention is required to define which class
corresponds to which motion. Depicted in Figure 4 is

Fig. 4. Schematic diagram of the Kohonen map

the input vector Ξ(t) = {χ(t), χ(t− 1), χ(t− 2)} at each
time step composed of the coordinates of chest, elbow and
wrist collected during last 3 time steps. At each time step
following norm is calculated for each reference vector Wi

‖Ξ(t)−Wi‖ (2)

Vector Ξ(t) is declared to belong to the class which reference
vector will result in minimum value of (2). Once the system
detects that following vectors do not belong to the same class
as previous one, the motion switching is declared.

1505

D. Hybrid Detection Approach

Each of above mentioned techniques has its own advan-
tages and drawbacks. NN-based approach provides accurate
recognition of motions which took place for longer periods
of time. For motions lasting shorter periods of time its
performance less accurate. Statistics-based method demon-
strates quite robust performance but the average error (early
or late detection) is high. Kohonen-map based technique
demonstrates good results dealing with motions lasting for
shorter periods of time while ”longer” motions can pose a
problem. In order to combine the advantages of all techniques
and to improve the detection quality, hybrid detection method
was proposed in [7]. Simulink implementation of the hybrid
detection approach is depicted in Figure 5.

Fig. 5. SIMULINK scheme implementing hybrid motion recognition
system

Implementation of each detection technique sends a signal
to the voting automaton in Figure 6 once it detects a
switching. If no switching is detected recognition functions
are silent, generate no output. Such input signal is considered
by voting automata as an event which will drive it from
state ”idle” to the state where next possible switching event
triggers the following transition.

Fig. 6. Voting automata

Interpretation of the events, and states is described in the
Table I.

IV. CONSTRUCTION OF LEARNING AUTOMATA

When integrating just three techniques introduced above
one can construct the voting automata like one in Figure 6

TABLE I
EVENTS AND STATES OF THE VOTING AUTOMATA

event interpretation

a one of the functions detected switching
b time limit or other detection
c full information obtained
d time-out
e positive feed-back (correct detection)
f failed detection

state interpretation

s0 idle, waiting for the detection flag
s1 collecting information during certain period of time
s2 voting and generating output signal

manually. Obviously, given approach does not allow neither
easy modifications when the recognition method changes nor
adding new methods. In order to overcome this problem an
auction based motion switching detection mechanism is sug-
gested that supports easy reconfigurability and extendability
of the methods pool used in recognition.

A. Auction Based Motion Switching Detection

The auction based motion switching detection system in
Figure 7 consists of detection methods each of which is
interfaced with the Arbiter (an auctioner) through a Proxy
automaton.

Fig. 7. Auction based switching detection system

Fig. 8. Bidding Arbiter automaton

The Arbiter automaton depicted in Figure 8 collects the
bids from Proxies depicted in Figure 9 and chooses the

1506

best bid to be forward to the high-level action planning
subsystem.

Fig. 9. Method Proxy automaton

The bidding mechanism implemented by means of timed
automata composition depicted in Figure 10 performs as
follows. Detection algorithms M1, . . . ,Mn are observing the
stream of coordinates received from video tracking subsys-
tem. When detecting the motion switching events the proxy
automata A1, . . . , An listening to methods M1, . . . ,Mn re-
spectively, communicate the detection event of a method
as a bid to the Arbiter automaton. After receiving the first
bid on some switching ei the Arbiter waits Δ time units
collecting bids from other methods on ei and after Δ closes
the bidding. Note that Δ is determined by the reaction time
requested from the switching detection system. Thereafter,
Arbiter chooses the bid with the highest weight received
during Δ and forwards it to SNR high-level behavior plan-
ning subsystem. To suppress the fault bids arrived after
Δ time Arbiter keeps the auction closed at least ς time
units. To avoid too early bids or false bidding start the
following Δ-window sliding procedure is used. The bidding
is inconclusive if the number of bids is not representative
(less than k) during Δ and in that case the bidding is not
closed after Δ. Instead, the beginning of time window Δ is
shifted from the first triggering bid to the next one received.
Shift of Δ is repeated until at lest critical number k of bids
has been registered within Δ. Parameters Δ and ς strongly
depend on the concrete gesture sequencing pattern to be
detected and detection response time constraints.

B. Learning Configuration and Procedure
The Proxy automata in the auction based decision making

system described in Subsection IV-A are constructed as a re-
sult of supervised learning procedure. The learning configu-
ration shown in Figure 10 includes Supervisor automaton SA,
depicted in Figure 11 that guides the learning process and
proxy automata Ai, depicted in Figure 12 that mediate the
learning dialogue between the detection method Mi and Su-
pervisor. The Supervisor automaton and a number of proxy
automata together constitute the automata composition for
tuning motion switching recognition methods. For evaluating
and adjusting the motion switching recognition capabilities
of methods M1, . . . ,Mn the Supervisor presents to detection
algorithms a test trajectory. We assume that Supervisor has
a priori knowledge about the motions segmentation, i.e.
reference events ei of type Ek and time instances TS(ei)
of their occurrence are defined by human expert.

Fig. 10. Configuration of the learning system

Fig. 11. Supervisor automaton of the learning configuration

Based on the method’s Mj response eij to the segmentation
query (bidding start) on event ei and the type Ek of reference
event ei, the Supervisor orders the bids made by methods
M1, . . . ,Mn by their time error and calculates reward rw to
each Bidding automaton according to the formula (3).

rw =

{
(n− pji + 1)r, if eji = ei

−r, otherwise
(3)

where n-total number of bids in the bidding session on ei,
pji -position of the bid made by Aj on ei, r-unit reward.

Fig. 12. Proxy automaton of the learning configuration

The detection time error δ(eji) = TS(ei)− TS(eji) and a
reward rwj

i for bid eji are returned to the bidding automaton

1507

Fig. 13. Message sequence chart of the learning dialogue on event ei

Aj . The automaton Aj receiving the reward and time error
on bid eji makes the correction of the method’s Mj weight
according to the formula (4)

W j
k := W j

k + rw (4)

and time error correction according to the formula (5).

δ(TS) := i−1 ∗ (TS ∗ (i− 1) + δ(eji)) (5)

Thus, the occurrence of each reference event ei of type Ei

meant to train the proxy automata in the teaching process
triggers the learning dialogue between the Supervisor and
the method’s Proxy automaton as depicted in Figure 13

V. DISCUSSION

Simple example below illustrates simulation of hybrid
detection system, which consists of auction based switching
and three detection techniques. It can be seen in Figure 14
that the hybrid detection system detects switchings between

Fig. 14. Comparison of different detection techniques

motions in much more accurate way than the methods alone,
there is still chance that for certain switching non of the
methods can provide necessary quality. One of the possible

ways to overcome this problem is to select methods in such
a way that they will ”cover” weaknesses of each other.
Obviously more detailed research to answer the question
what causes failure of certain methods is required.

VI. CONCLUSIONS

Main result of present contribution is a way of autom-
atizing the construction of the automata playing a role of
arbiter in the hybrid motion recognition system that is meant
to recognize different stages of the laparoscope surgery
by observing hand movements of the operating surgeon.
Such automatization allows to adjust parameters of hybrid
detection system or even include new detection techniques
in an easy and efficient way. Such automatization ability has
a crucial importance not only in developing system but in
using it, as it will have to adopt its parameters to operating
surgeon. Future research will be pointed towards formaliza-
tion of notion ”motion” and performance improvement of the
existing techniques.

REFERENCES

[1] J. Jakubiak, S. Nõmm, J. Vain, and F. Miyawaki. Polynomial based
approach in analysis and detection of surgeon’s motions. In In: Proc
of the ICARCV 2008 10th IEEE International Conference on Control,
Automation, Robotics & Vision, pages 611–616. N.J.: IEEE, 2008,
Hanoi, Vietnam, 2008.

[2] T. Kohonen. The self-organizing map. Proceedings of the IEEE,
(78):1464–1480, 1990.

[3] Ü. Kotta, F. Chowdhury, and S. Nõmm. On realizability of neural
networks-based input-output models in the classical state space form.
Automatica, 42(6):1211–1216, 2006.

[4] F. Miyawaki, K. Masamune, S. Suzuki, K. Yoshimitsu, and J. Vain.
Scrub nurse robot system - intraoperative motion analysis of a scrub
nurse and timed-automata-based model for surgery. IEEE Industrial
Electronics Transaction on, 5(52):1227–1235, 2005.

[5] S. Nõmm, E. Petlenkov, J. Vain, F. Miyawaki, and K. Yoshimitsu.
Recognition of the surgeon’s motions during endoscopic operation by
statistics based algorithm and neural networks based anarx models. In
Proceedings of the 17th IFAC World Congress, pages 14773–14778.
Elsiver, Soul, Korea, July 2008.

[6] S. Nõmm, E. Petlenkov, J. Vain, K. Yoshimitsu, K. Ohnuma,
T. Sadahiro, and F. Miyawaki. Nn-based anarx model of the surgeon’s
hand for the motion recognition. In Proceedings of the 4th COE
Workshop on Human Adaptive Mechatronics (HAM), pages 19–24.
Tokyo Denki University, Tokyo, Japan, March 2007.

[7] S. Nõmm, J. Vain, E. Petlenkov, F. Miyawaki, and K. Yoshimitsu.
Hybrid approach to detection of the surgeon’s hand motions during
endoscope surgery. In In: Proc of the he 4th IEEE Conference on
Industrial Electronics and Applications (ICIEA 2009), page Accepted.
Xi’an, Peoples Republic of China, 2009.

[8] E. Petlenkov, S. Nõmm, J. Vain, and F. Miyawaki. Application of self
organizing kohonen map to detection of surgeon motions during endo-
scopic surgery. In Proc: 2008 IEEE World Congress on Computational
Intelligence (WCCI 2008), pages 2806–2811. Hong-Kong, 2008.

[9] K. Yoshimitsu, F.Miyawaki, T. Sadahiro, K. Ohnuma, Y. Fukui,
D. Hashimoto, and K. Masamune. Development and evaluation of
the second version of scrub nurse robot (snr) for endoscopic and
laparoscopic surgery. In In Proc: Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on, number
10.1109/IROS.2007.4399359, pages 2288–2294. San-Diego, California,
USA, October 2007.

1508

Appendix IV: Model based continual planning and

contro for assistive robots

181

MODEL BASED CONTINUAL PLANNING AND CONTROL FOR
ASSISTIVE ROBOTS

A. Anier and J. Vain
Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

Keywords: Model based control, Continual planning, Cognitive architecture, Online safety monitoring.

Abstract: The paper presents a model-based robot planning and control framework for human assistive robots - namely
for Scrub Nurse Robots. We focus on endoscopic surgery as one of the most relevant surgery type for applying
robot assistants. We demonstrate that our framework provides means for seamless integration of sensor data
capture, cognitive functions for interpretation of sensor data, model based continual planning and actuation
control. The novel component of the architecture is a distributed continual planning system implemented based
on the Uppaal timed automata model-based verification and control tool suite. The distributed and modular
architecture of the framework enables flexible online reconfiguration and easy adaptability to various appli-
cation contexts. Online learning and safety monitoring functions ensure timely and safe updates of software
components on-the-fly.

1 INTRODUCTION

The assistive robotics sets high standards to cogni-
tive capabilities, autonomy and movement precision
for robots. Functionally, it means understanding hu-
man intention and providing adequate reaction to it.
Technically it means human-in-the-loop collaborative
action control, fusion of various sensor information,
high accuracy actuation and reliable software imple-
mentation. Action and trajectory planning safety is-
sues become critical in the conditions where the robot
shares user’s working envelope to achieve required
physical interaction.

This paper presents a software integration frame-
work for Scrub Nurse Robot(SNR)(Miyawaki et al.,
2005) focusing on distributed model based continual
planning and control issues. The goal of a SNR is to
learn the interactions between a surgeon and a scrub
nurse during a laparoscopic surgery and to replace the
(human) nurse on demand. The key aspect for in-
corporating the SNR in the collaborative action (e.g.
when the human scrub nurse has to deal with unex-
pected emergencies) is to avoid the need for the sur-
geon to re-adapt to the changed partnerwhile still pre-
serving the “original feel” and the accustomed work-
flow. A physical scene of a SNR example deployment
is shown in Fig.1.

A scrub nurse must hand a surgical instrument to
a surgeon as soon as it is requested. If the scrub nurse

Figure 1: SNR intraoperative scene(Miyawaki et al., 2005).

has to spend time searching for the instrument after
the request the procedure is interrupted, valuable time
is lost and an unnecessary burden is placed on the sur-
geon. That possibly reduces the quality and effective-
ness of the operation. The scrub nurse must be fully
attentive to the activity in the operative field and an-
ticipate accurately what a surgeon will need to avoid
delays. For this to be possible the scrub nurse not
only needs to know the surgical procedure as well as
the surgeon does, but must also be highly disciplined.
The “ideal” scrub nurse (if one exists) is able to pass a
surgeon whatever is needed without any verbal order
at the moment that the surgeon’s hand is extended to
receive it.

The goal of the SNR software project is to de-
velop a human-adaptive SNR capable of adapting to

382
Anier A. and Vain J. (2012).
MODEL BASED CONTINUAL PLANNING AND CONTROL FOR ASSISTIVE ROBOTS.
In Proceedings of the International Conference on Health Informatics, pages 382-385
DOI: 10.5220/0003783503820385
Copyright c SciTePress

surgeons with various levels of skill and experience,
also to different personalities and moods . In other
words, the SNR ought to function as an “ideal” scrub
nurse. Highly developed cognitive faculties such as
machine vision and speech recognition as well as
adaptive robotic arm path planning and targeting are
required to attain this ideal.

In conventional surgical operations a scrub nurse
frequently has to handle an array of different instru-
ments. It is difficult to make the SNR adaptive to
such busy operations. Therefore, the SNR prototype
has been designed for endoscopic surgery which only
needs limited types of surgical instruments. The adap-
tivity of the SNR requires unsupervised learning by
observing skilled nurses’ interactions and behavior
during surgical operations.

Online recognition and anticipation of surgeon’s
motions while operating is essential to classify which
motions are common to all surgeons and which are
specific to individuals. This in turn will aid in an-
ticipating a surgeon’s needs and in adapting to the
changes of procedure. On the other hand - the results
of the investigation of intraoperative behavior have to
be abstracted and memorized in the form of mathe-
matical and/or formal models in order to reproduce
the variety of motion trajectories that can be expected
from various combinations of surgical procedures and
varying external factors. The model of a nurse’s be-
haviors as he or she reacts to other surgical staff (sur-
geon, assistant and others) serves as a high-level be-
havior specification for the SNR action planning.

The SNR’s control architecture depicted in Fig.2
comprises of the following components: 3D posi-
tion tracking system that is capable of measuring the
position-tracking marker’s coordinates with precision
more than 1 mm with sampling rate up to 200 fps. The
surgeon’s hand movement sampling data is passed to
gesture recognition module that uses multiple recog-
nition methods in parallel. These methods of detect-
ing operator’s current motions and the voting mecha-
nism(Vain et al., 2009) maximize the confidence of
the recognition. The identified motion and its pa-
rameters are inputs for reactive motion planning that
compares the observed movement of surgeon’s hand
with that of predicted by surgeon’s behavior model
and surgery scenario model.

Such online conformance monitoring allows to
correct the current model state with precision of min-
imum sampling error. By the corrected state infor-
mation and surgery scenario model the next SNR ac-
tion is planned and the resulting control parameters
are transferred to the actuation control unit of SNR.
The information about surgeon’s possible reactions
predicted by the surgeon’s model is returned to the

Computer mouse3DMS cameras

TRC

Socket

EvaComm2 SDK

Mouse Tracker

MotionAnalysis EVaRT

Visualization

Configuration

jEvart Object definition subsystem

Rapid Miner

Uppaal TRON (DTRON)

Voting automata

TA automataTA generator

Spread Proxy

Filtering

Motion rec.

Spread op.

EVaRT op.

Filtering

Motion rec.

Spread op

EVaRT op.

Filtering

Motion rec.

Spread op

EVaRT op.

Spread

SNR

Figure 2: Architecture model.

motion recognition module for discrimination of the
decisions space when new movement is being recog-
nized.

The control architecture described above is imple-
mented based on the open middle-ware platform dis-
cussed more thoroughly in the following sections.

2 SOFTWARE ARCHITECTURE

2.1 Data Acquisition

SNR doesn’t have integrated vision. Instead, the vi-
sual feedback control is implemented by means of
external MotionAnalysis Hawk near-infrared active
3D measurement system (3DMS). 3DMS is not the
only source of information. There are various sen-
sors to monitor the state of the robot and peripheral
interfaces that contribute to the overall situation and
context awareness. For instance, the position data
of surgical instruments is backed by RFID readings
of ceramic RFID tag positions that are attached to
the instruments. Abdominal video imaging from la-
paroscopic camera provides more accurate informa-
tion about the course of surgery.

Middle-warejEvart unifies 3DMS data with other
data acquisition sources and passes to data analy-
sis and cognitive modules implemented by means of
Rapid Miner tool - www.rapid-i.com.

MODEL BASED CONTINUAL PLANNING AND CONTROL FOR ASSISTIVE ROBOTS

383

2.2 Data Analysis and Cognitive
Functions

The robot control framework and middle-ware pro-
vide a common platform for integration of data ac-
quisition and cognitive functions.

Data analysis and cognitive functions are imple-
mented by means of data mining toolkit Rapid Miner.
It includes hundreds of algorithms ranging from filter-
ing and clustering to machine learning packaged into
an integrated development environment. Rapid Miner
is inspired by WEKA machine learning toolkit(Hall
et al., 2009) improved with extensive data visualiza-
tion and analysis automation tools.

To make the Rapid Miner fit the SNR overall
control architecture some custom plug-ins are imple-
mented. Specifically, it concerns the data acquisition
components to capture the data available for analy-
sis and visualization, but also the DTRON plug-in
that bridges cognitive functions to deliberative con-
trol level functions. The deliberative control is based
on provably correct timed automata models executed
symbolically by DTRON tool.

3 DISTRIBUTED TRON

The SNR timed automata based action planning and
control make use of Uppaal tool suite(Behrmann
et al., 2004). Uppaal editor allows manual con-
struction of timed automata in a way of visual pro-
gramming paradigm. Limited functionality of vari-
ous elements of the automata can be encoded using
C-like functions. Although those functions make it
somewhat easy to specify state transitions, their us-
age is prone to state space explosion. The Uppaal
tool-suite includes an extension forTesting Real-time
systems Online(TRON)(Hessel et al., 2008). Al-
though TRON was originally developed for confor-
mance testing, it also supports the functionality rel-
evant to model-based discrete control. To interface
theTRONmodel-based control module with control-
lable object requires “adapters” on the object side.
Adapters intermediate and interpret the signals traf-
ficking between the Uppaal automata and the con-
trol object. TRON was originally designed for single
tester-testeepair and does not scale well withn > 1
testersandm> 1 testees. So it does not easily scale
to distributed control applications. The main limita-
tion of TRON usage is that it requires an extensive
effort for adapter coding between controllers and con-
trol objects. When the adapter-controller pairs are
tightly coupled every change in configuration requires
re-wiring on both adapter ends.

Distributed TRON (DTRON) proposed in this pa-
per is a framework built around the TRON tool to sup-
port multicast messaging between TRON instances
running in parallel. In the ISO OSI networking ar-
chitecture sense it implements thewhiteboard pattern
wherepublisherspublish data andsubscribersget no-
tified about this. On the other hand, it embracesthe
dependency injectionprogramming paradigm to make
the controller-controllable object pairsloosely cou-
pled for much better scaling.

To multicast is to send a message not to one recip-
ient but ton recipients.DTRON is able to intercept
the designated transitions within one control agent
(model) and inform the other control agents of inter-
ests about it. The designation is defined by predicate
on asynchronized transition of thecontrolling agent
model. The synchronization and communication be-
tween agents is implemented by means of multicast
message passing that allows the agents (dynamically)
to join and leave a multicast whenever they want with-
out the need to re-configure existing infrastructure. It
only requires an agreement or protocol how messages
are defined and what data they carry when they tra-
verse the multicast.

4 CONTINUAL PLANNING AND
CONTROL

Continual planning(DesJardins et al., 1999) denotes a
planning strategy where the interactions between the
controller and controllable object cannot be planned
deterministically up front. The control signals have
to be chosen depending on the situation as it emerges.
The controller “knows” the state of the control object
it tries to reach, but has limited control over stimuli
or limited observation power of the control object be-
havior. The continual planning controller stimulates
the object by limited set of stimuli step-by-step driv-
ing it towards the control goal by adjusting the stimuli
to the control object responses.

Timed automata based planning and control suits
for continual control due to its non-deterministic na-
ture. Observations are mapped to automata struc-
ture and transition guards that encode the selection
of stimuli to guide the (possibly) non-deterministic
moves of the controllable object.

Uppaal comes with a formal verification engine
that is used to establish weather a “plan” always
drives the object to a desired state, provided the ob-
ject responses are (at least partially) known. An ex-
treme case would be a fully non-deterministic object
that implies that it cannot be guaranteed or estimated
which conditions should hold in order to reach the

HEALTHINF 2012 - International Conference on Health Informatics

384

target state. This sets practical limits to the control-
lability for the SNR. If major deviations from pre-
specified scenario model occur the SNR would safely
disengage human interaction from the working enve-
lope and switches to manual override.

5 REACTIVE PLANNER

For continual planning and control the SNR actions in
nondeterminstic situations are synthesized on-the-fly.
The synthesis is based on the interaction model the
SNR has learned by observing and recording Scrub
Nurse and Surgeon’s interactive behavior. The timed
automata model learning algorithm used for that has
been introduced in (Vain et al., 2009). The synthesis
of reactive planning controller(Vain et al., 2011), that
guides the SNR action when being active is based on
the interaction model learned. The intended control
goal of the SNR operation is encoded in the scenario
automaton that specifies the sub-goals of the control,
their temporal order and timing constraints. When-
ever one of the sub-goals has been reached it triggers
resets on guard conditions of the interaction model
and activates driving conditions to reach the subse-
quent goal or one of the alternatives if multiple equal
goals are reachable. In case of violating timing con-
straints or blocking an exception handling procedure
or reset is activated and diagnostics recorded. Spe-
cial care has been taken to address the safety precau-
tions in SNR control. An independent safety monitor-
ing process is running to check if all safety invariants
are satisfied. Whenever safety violation is detected
the disengagement procedure from continual planning
unit is activated.

6 CONCLUSIONS

The cognitive robot architecture framework described
in this paper supports several innovative aspects
needed for implementing assisting robots in different
applications. Our experience is based on the Scrub
Nurse robot control architecture and software plat-
form development exercise. We demonstrated that
DTRON model-based distributed control framework
provides flexible infrastructure for interfacing data ac-
quisition and cognitive functions with the ones of de-
liberative control level planning and decision mak-
ing. The architecture also incorporates a module for
learning human interactions and model construction
with reactive planning controller generator and run-
time execution engine. The timed automata based in-
teraction model learning, on-the-fly reactive planning,

controller synthesis and online safety monitoring are
steps towards the concept of provably correct robot
design ofcognitive assisting robots.

ACKNOWLEDGMENTS

This work was partially supported by the Estonian
Science Foundation under grant No. 7667 and by
Centre of Research Excellence in Dependable Em-
bedded Systems - CREDES.

We want to thank Fuji Miyawaki for the produc-
tive discussions and suggestions on this subject.

REFERENCES

Behrmann, G., David, A., and Larsen, K. G. (2004). A tuto-
rial on uppaal. In Bernardo, M. and Corradini, F., edi-
tors,Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Soft-
ware Systems, SFM-RT 2004, LNCS, page 200–236.
Springer–Verlag.

DesJardins, M. E., Durfee, E. H., Ortiz Jr, C. L., and
Wolverton, M. J. (1999). A survey of research in dis-
tributed, continual planning.AI Magazine, 20(4):13.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA data min-
ing software: an update.SIGKDD Explor. Newsl.,
11(1):10–18.

Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Petters-
son, P., and Skou, A. (2008). Testing Real-Time sys-
tems using UPPAAL. InFormal Methods and Testing,
page 77–117.

Miyawaki, F., Masamune, K., Suzuki, S., Yoshimitsu, K.,
and Vain, J. (2005). Scrub nurse robot system-
intraoperative motion analysis of a scrub nurse and
timed-automata-based model for surgery.Indus-
trial Electronics, IEEE Transactions on, 52(5):1227
– 1235.

Vain, J., Kull, A., Kääramees, M., Maili, M., and Raiend, K.
(2011). Reactive testing of nondeterministic systems
by test purpose directed tester. InModel-Based Test-
ing for Embedded Systems., Computational Analysis,
Synthesis, and Design of Dynamic Systems, pages
425–452. CRC Press - Taylor & Francis Group, Mas-
sachusetts, USA.

Vain, J., Miyawaki, F., Nomm, S., Totskaya, T., and Anier,
A. (2009). Human-robot interaction learning using
timed automata. InICCAS-SICE, 2009, pages 2037
–2042.

MODEL BASED CONTINUAL PLANNING AND CONTROL FOR ASSISTIVE ROBOTS

385

Appendix V: Provably Correct Test Generation for

Online Testing of Timed Systems

187

Provably Correct Test Development for
Timed Systems

Jüri VAIN a,1, Aivo ANIER a and Evelin HALLING a

a Department of Computer Science, Tallinn University of Technology, Estonia

Abstract. Automated software testing is an increasing trend for improving the pro-
ductivity and quality of software development processes. That, in turn, rises issues
of trustability and conclusiveness of automatically generated tests and testing pro-
cedures. The main contribution of this paper is the methodology of proving the
correctness of tests for remote testing of systems with time constraints. To demon-
strate the feasibility of the approach we show how the abstract conformance tests
are generated, verified and made practically executable on distributed model-based
testing platform dTron.

Keywords. model-based testing, provably correct test generation, timed automata,
verification by model checking

Introduction

The growing competition in software market forces manufacturers to release new prod-
ucts within shorter time frame and with lower cost. That imposes hard pressure to soft-
ware quality. Extensive use of semi-automated testing approaches is an attempt to im-
prove the quality of software and related development processes in industry. Although a
wide spectrum of commercial and academic tools are available, the testing process still
involves strong human factor and remains prone to human errors. Even fully automated
approaches cannot guarantee trustable and conclusive testing unless the test automation
is correct by construction or exhaustively covered with correctness checks. Test automa-
tion and test correctness are the main subjects of study in model based testing (MBT).
Generally, MBT process comprises following steps: modelling the system under test, re-
ferred as Implementation-Under-Test (IUT), specifying the test purposes, generating the
tests and executing them against IUT.

In this paper we study how the correctness of test derivation steps can be ensured
and how to make the test results trustable throughout the testing process. In particular, we
focus on model-based online testing of software systems with timing constraints capital-
izing on the correctness of the test suite through test development and execution process.
In case of conformance testing the IUT is considered as a black-box, i.e., only the inputs
and outputs of the system are externally controllable and observable respectively. The
aim of black-box conformance testing [1] is to check if the behaviour observable on sys-

1Corresponding Author: Jüri Vain; Department of Computer Science, Tallinn University of Technology,
Akadeemia tee 15A, 12618 Tallinn, Estonia; E-mail: juri.vain@ttu.ee

tem interface conforms to a given requirements specification. During testing a tester exe-
cutes selected test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The
verdict is computed according to the specification and a input-output conformance rela-
tion (IOCO) between IUT and the specification. The behaviour of a IOCO-correct imple-
mentation should respect after some observations following restrictions: (i) the outputs
produced by IUT should be the same as allowed in the specification; (ii) if a quiescent
state (a situation where the system can not evolve without an input from the environment
[2]) is reached in IUT, this should also be the case in the specification; (iii) any time an
input is possible in the specification, this should also be the case in the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behaviour of the IUT and from the coverage criteria that constrain
the behaviour defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UPTA) [3] are used as a formalism for modelling
IUT behaviour. This choice is motivated by the need to test the IUT with timing con-
straints so that the impact of propagation delays between the IUT and the tester can be
taken into account when the test cases are generated and executed against remote real-
time systems. Another important aspect that needs to be addressed in remote testing is
functional non-determinism of the IUT behaviour with respect to test inputs. For non-
deterministic systems only online testing (generating test stimuli on-the fly) is applicable
in contrast to that of deterministic systems where test sequences can be generated off-
line. Second source of non-determinism in remote testing of real-time systems is com-
munication latency between the tester and the IUT that may lead to interleaving of inputs
and outputs. This affects the generation of inputs for the IUT and the observation of out-
puts that may trigger a wrong test verdict. This problem has been described in [4], where
the ∆-testability criterion (∆ describes the communication latency) has been proposed.
The ∆-testability criterion ensures that input/output interleaving never occurs.

1. Preliminaries

1.1. Uppaal Timed Automata

Uppaal Timed Automata (UPTA) [3] are widely used as one of the main modelling for-
malism for representing time constraints of software intensive systems. Before delving
into test construction we shortly introduce the syntax and semantics of UPTA.

A timed automaton is given as a tuple (L;E;V ;Cl; Init; Inv;TL). L is a finite set of
locations, E is the set of edges defined by E ∈ L×G(Cl,V)× Sync×Act × L, where
G(Cl,V) is the set of transition enabling conditions - guards. Sync is a set of synchro-
nization actions over channels. In the graphical notation, the locations are denoted by
circles and transitions by arrows. An action send over a channel h is denoted by h! and
its co-action receive is denoted by h?. Act is a set of sequences of assignment actions
with integer and boolean expressions as well as with clock resets. V denotes the set of
integer and boolean variables. Cl denotes the set of real-valued clocks (Cl∩V = /0).

Init ⊆ Act is a set of assignments that assigns the initial values to variables and
clocks. Inv : L→ I(Cl,V) is a function that assigns an invariant to each location, I(Cl,V)
is the set of invariants over clocks Cl and variables V . TL→{ordinary,urgent,committed}
is the function that assigns the type to each location of the automaton.

We can now define the semantics of UPTA in the way presented in [3]. A clock
valuation is a function valcl : Cl→ R≥0 from the set of clocks to the non-negative reals.
A variable valuation is a function valv : V → Z∪ BOOL from the set of variables to
integers and booleans. Let RCl and (Z∪BOOL)V be the sets of all clock and variable
valuations, respectively. The semantics of an UPTA is defined as a LTS (∑, init,→),
where ∑⊆ L×RCl×(Z∪BOOL)V is the set of states, the initial state init = Init(cl,v) for
all cl ∈Cl and for all v ∈V , with cl = 0, and→⊆ ∑×{R≤0∪Act}×∑ is the transition
relation such that:

(l,valcl ,valv)→ (l,valcl +d,valv) if ∀d′ : 0≤ d′ ≤ d⇒ valcl +d |= Inv(l),
(l,valcl ,valv)→ (l′,val′cl ,val′v) if ∃e = (l,act,G(cl,v),r, l′) ∈ E i.e.
valcl ,valv |= G(cl,v),val′cl = [re→ 0]valcl , and val′cl ,val′v |= Inv(l′),

where for delay d ∈ R≥0,valcl + d maps each clock cl in Cl to the value valcl + d,
and [re→ 0]valcl denotes the clock valuation which maps (resets) each clock in re to 0
and agrees with valcl over Cl\re.

1.2. Test Generation for On-line Testing

Reactive on-line testing means that the tester program has to react to observed outputs
of the IUT and to possible changes in the test goals on-the-fly. The rationale behind the
reactive planning method proposed in [5] lies in combining computationally hard offline
planning with time bounded online planning phases. Off-line phase is meant to shift the
computationally hard planning as much as possible in the test preparation phase. Here
the static analysis results of IUT model and the test goal are recorded in the format of
compact planning rules that are easy to apply later in the on-line phase. The on-line
planning rules synthesized must ensure close to optimal test runs and termination of the
test case when a prescribed test purpose is satisfied.

The RPT synthesis algorithm introduced in [5] assumes that the IUT model is an
output observable non-deterministic state machine ([6]). Test purpose (or goal) is a spe-
cific objective or a property of the IUT that the tester is set out to test. Test purpose is
specified in terms of test coverage items. We focus on test purposes that can be defined as
a set of boolean ”trap” variables associated with the transitions of the IUT model ([7]).
The goal of the tester is to drive the test so that all traps are visited at least once during
the test run.

The tester synthesis method outputs tester model as UPTA where the rules for online
planning are encoded in the transition guards called gain guards. The gain guard evalu-
ates true or false at the time of execution of the tester determining if the transition can be
taken from the current state or not. The value true means that taking the transition with
the highest gain is the best possible choice to reach unvisited traps from current state.
The decision rules for on-the-fly planning are derived by performing reachability anal-
ysis from the current state to all trap-equipped transitions by constructing the shortest
path trees. Since at each test execution step only the guards associated with the outgoing
transitions of the current state are evaluated, the number of guard conditions to be evalu-
ated at one planning step is relatively small (equal to the location-local branching factor
in the worst case). To implement such a gain guided model traversal, the gain guard is
constructed using (model and goal specific) gain functions and the standard function max
that return the maximum of those gain values that characterize alternative test paths.

Technically, the gain function of a transition returns a value that depends on the
distance-weighted reachability of the unvisited traps from the given transition. The gain

guard of the transition is true if and only if that transition is a prefix of the test sequence
with highest gain among those that depart from the current state. If the gain functions
of several enabled transitions evaluate to same maximum value the tester selects one of
these transitions using either random selection or “least visited first” principle. Each tran-
sition in the model is considered to have a weight and the gain of test case is proportional
to the length and the sum of weights of whole test sequence.

The RPT synthesis comprises three main steps (Figure 1):
1. extraction of the RPT control structure,
2. constructing gain guards,
3. reduction of gain guards according to the parameter “planning horizon” that de-

fines the pruning depth of the planning tree.

Figure 1. RPT synthesis workflow

In the first step, the RPT synthesiser analyses the structure of the IUT model and
generates the RPT control structure. In the second step, the synthesizer finds possibly
successful IUT runs for reaching the test goal.

Last step of the synthesis reduces the gain functions pruning the planning tree up
to some predefined depth that is given by parameter “planning horizon”. Since the RPT
planning tree has the longest branch proportional to the length of Euler’s contour in the
IUT model control graph the gain function’s recurrent structure may be very complex
and for practical purposes needs to be bounded by some planning horizon. Traps being
beyond the planning horizon still contribute in the gain function value but their distance
is just ignored. Thus, for deep branches of planning tree the gain function returns an
approximation of the gain value.

2. Correctness of IUT Models

2.1. Modelling Timing Aspects of IUT

For automated testing of input-output conformance of systems with time constraints we
restrict ourselves with a subset of UPTA that simplifies IUT model construction. Namely,
we use a subset where the data variables, their updates and transition guards on data vari-
ables are abstracted away. We use the clock variables only and the conditions expressed

by clocks and synchronization labels. An elementary modelling pattern for representing
IUT behaviour and timing constraints is Action pattern (or simply Action) depicted in
Figure 2.

Post_locationAction

clock_ <= u_bound

Pre_location
clock_ >= l_bound

out!in?
clock_=0

Figure 2. Elementary modelling fragment "Action"

An Action models a program fragment execution on a given level of abstraction
as one atomic step. The Action is triggered by input event and it responds with output
event within some bounded time interval (response time). The IUT input events (stimuli
in testing context) are generated by Tester, and the output events (IUT responses) are
to make the reactions of IUT observable to Tester. In UPTA, the interaction between
IUT and Tester is modelled by synchronous channels that mediate input/output events.
Receiving an input event from channel in is denoted by in? and sending an output event
via channel out is denoted by out!.

The major timing constraint we represent in IUT model is duration of the Action.
To make the specification of durations more realistic we represent it as a closed interval
[l_bound,u_bound], where l_bound denotes a lower bound and u_bound an upper bound
of the interval. Duration interval [l_bound,u_bound] can be expressed in UPTA as shown
in Figure 2. Clock reset ”clock = 0” on the edge ”Pre_location→ Action” makes the
time constraint specification local to the Action and independent from current value at
earlier execution steps. An invariant ”clock ≤ u_bound” of location ”Action” forces the
Action to terminate latest at time instant u_bound after the clock reset and guard ”clock≥
l_bound” of the edge ”Action→ Post_location” defines the earliest time instant w.r.t.
clock reset when the outgoing transition of Action can be executed.

From tester’s point of view IUT has two types of locations: passive and active. In
passive locations IUT is waiting for test stimuli and in active locations IUT chooses
its next moves, i.e. presumably it can stay in that location as long as specified by
location invariant. The location can be left when the guard of outgoing transition
Action→ Post_location evaluates to true. In Figure 2, the locations Pre_location and
Post_location are passive while Action is an active location.

We compose IUT models from Action pattern using two types of composition rules:
sequential and alternative composition.

Definition 1. Composition of Action patterns.
Let Fi and Fj be UPTA fragments composed of Action patterns (incl. elementary

Action) with pre-locations lpre
i ,lpre

j and post-locations lpost
i ,lpost

j respectively, their com-
position is the union of elements of both fragments satisfying following conditions:

• sequential composition F i;Fj is UPTA fragment where lpost
i = lpre

j ;
• alternative composition F i +Fj is UPTA fragment where lpre

i = lpre
j and lpost

i =

lpost
j .

The test generation method we highlighted in Section 1.2 relies on the notion of
well-formedness of the IUT model according to the following inductive definition.

Definition 2. Well-formedness (wf) of IUT models

• atomic Action pattern is well-formed;
• sequential composition of well-formed patterns is well-formed;
• alternative composition of well-formed patterns is well-formed if the output labels

are distinguishable;

Proposition 1. Any UPTA model M with non-negative time constraints and synchro-
nization labels that do not include state variables can be transformed to bi-similar to it
well-formed representation w f (M).

Note without the detailed proof that for those locations and edges of UPTA that do
not match with the Definition 2, the well-formedness needs adding auxiliary pre-, and
post-locations and ε-transition, that do not violate the i/o behaviour of original model.
For representing internal actions that are not triggered by external events (their incoming
edge is ε-labelled) we restrict the class of pre-locations with type "committed". In fact,
the subclass of models transformable to well-formed is broader than given by Definition
2, including also UPTA that have data variable updates, but in general wf -form does not
extend to models that include guards on data variables.

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3
cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6
cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i2?
cl=0

cl>=lb2
o2!

t[7]=true

i3?
cl=0

cl>=lb3
o3!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i5?
cl=0

cl>=lb5
o5!

t[4]=true

i6?
cl=0

cl>=lb6
o6!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i8?
cl=0 cl>=lb8

o8!

t[3]=true

Figure 3. Simple example of well-formed IUT model

In the rest of paper, we assume for test generation that MIUT is well-formed and
denote this fact by w f (MIUT). An example of such an IUT model we use throughout the
paper is depicted in Figure 3.

2.2. Correctness of IUT Models

The test generation method introduced in [5] and developed further for EFSM models
in [8] assumes that the IUT model is connected, input enabled, output observable and
strongly responsive. In the following we demonstrate how the validity of these properties
usually formulated for IOTS (Input-Output Transition System) models can be ensured
for well-formed UPTA models (see Definition 2).

2.2.1. Connected Control Structure and Output Observability

We say that UPTA model is connected in the sense that there is an executable path from
any location to any other location. Since the IUT model represents an open system that
is interacting with its environment we need for verification by model checking a non-
restrictive environment model. According to [9] such an environment model has the role
of canonical tester. Canonical tester provides test stimuli and receives test responses in

any possible order the IUT model can interact with its environment. A canonical tester
can be easily generated for well-formed models according to the pattern depicted in
Figure 4b (this is canonical tester for the model shown in Figure 3).

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3

cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6

cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i3?
cl=0

cl>=lb2
o3!

t[7]=true

i5?
cl=0

cl>=lb3
o5!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i6?
cl=0

cl>=lb5
o6!

t[4]=true

i8?
cl=0

cl>=lb6
o8!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i2?
cl=0 cl>=lb8

o2!

t[3]=true

o8?

i8!

o7?

i7!

o6?

i6!
o5? i5!

o4?

i4!

o3?

i3!

o2?

i2!

o1?i1!

Figure 4. Synchronous parallel composition of a) IUT and b) canonical tester models

The canonical tester implements the "random walk" test strategy that is useful in
endurance testing but it is very inefficient when functionally or structurally constrained
test cases need to be generated for large systems.

Having synchronous parallel composition of IUT and the canonical tester (shown in
Figure 4) the connectedness of IUT can be model checked with query (1) that expresses
the absence of deadlocks in interactions between IUT and canonical tester.

A[]not deadlock (1)

The output observability condition means that all state transitions of the IUT model
are observable and identifiable by the outputs generated by these transitions. Observabil-
ity is ensured by the definition of well-formedness of the IUT model where each input
event and Action location is followed by the edge that generates a locally (w.r.t. source
location) unique output event.

2.2.2. Input Enabledness

Input enabledness assumption means that blocking due to irrelevant test input during
test execution is avoided. Naive way of implementing this assumption in IUT models
presumes introducing self-looping transitions with input labels that are not represented
on other transitions that share the same source state. That makes IUT modelling tedious
and leads to the exponential increase of the MIUT size. Alternatively, when relying on the
notion of observational equivalence one can approximate the input enabledness in UPTA
by exploiting the semantics of synchronizing channels and encoding input symbols as
boolean variables I1...In ∈ Σ. Then the pre-location of the Action pattern (see Figure 2)
needs to be modified by applying the Transformation 1.

2.2.3. Transformation 1

• assume there are k outgoing edges from pre-location lpre
i of Actioni, each of these

transitions is labeled with some input I1...Ik ∈ Σi(Actioni)⊆ Σ;
• we add a self-looping edge lpre

i → lpre
i that models acceptance of all inputs in Σ

except those in Σi. Because of that we specify the guard of edge lpre
i → lpre

i as
boolean expression: not(I1∨ ...∨ Ik).

Provided the outgoing branching factor Bout
i of lpre

i is, as a rule, substantially smaller
than |Σ| we can save |Σ|−Bout

i − 1 edges at each pre-location of Action patterns. Note
that by w f -construction rules the number of pre-locations never exceeds the number of
actions in the model. That is due to alternative composition that merges pre-locations
of the composition. A fragment of alternative composition accepting inputs in Σi with
described additional edge for accepting symbols in Σ\Σi(Actioni) is depicted in Figure
5 (time constraints are ignored here, I1 and I2 in the figure denote predicates Input == i1
and Input == i2 respectively).

Post_location2Action2

Post_location1Action1

Pre_location
out!

I2=false,
O2=trueI2

in?

not(I1 or I2)
in?

out!

I1=false,
O1=true

I1
in?

Figure 5. Input enabled fragment

2.2.4. Strong Responsiveness

Strong responsiveness (SR) means that there is no reachable livelock (a loop that includes
only ε-transitions) in the IUT model MIUT . In other words, MIUT should always enter the
quiescent state after finite number of steps. Since transforming MIUT to w f (MIUT) does
not eliminate ε-transitions there is no guarantee that w f (MIUT) is strongly responsive by
default. To verify the SR propety of MIUT we apply Algorithm 1.

2.2.5. Algorithm 1

1. According to the Action pattern of Figure 5 the information of i/o events is spec-
ified using synchronization channel in and a boolean variable that represents re-
ceiving an input symbol Ii. Since Uppaal model checker is state based we need
recording the occurrence of input events in states. Therefore, the boolean variable
representing an input event is kept true in the destination location of the edge
that is labelled with given event and reset f alse immediately after leaving this
location. For same reason the ε-transitions are labelled with update EPS = true
and following output edge with update EPS = f alse.

2. Next, we reduce the model by removing all the edges and locations that are not
involved in the traces of model checking query: l0 |= E�EPS, where l0 denotes
initial location of MIUT . The query checks if any ε-transition is reachable from
l0 (necessary condition for violating SR-property).

3. Further, we remove all non ε-transitions and locations that remain isolated there-
after.

4. Remove recursively all locations that do not have incoming edges (their outgoing
edges will be deleted with them).

5. After reaching the fixed point of recursion of step 4 we check if the remaining part
of model is empty. If yes then we can conclude that MIUT is strongly responsive,
otherwise it is not.

It is easy to show that all steps except step 2 are of linear complexity in the size of the
MIUT .

3. Correctness of RPT Tests

3.1. Functional Correctness of Generated Tests

The tester program generated based on IUT model can be characterized using some test
coverage criteria it is designed for. As shown in Section 1.2, the RPT generating algo-
rithm is aimed at structural coverage of IUT model elements and can be expressed by
means of boolean "trap" variables. To recall, the traps are assignment expressions of
boolean trap variables and the valuation of traps indicates the status of the test run. For
instance, one can observe if the edges labeled with them are already covered or not in
the course of test run. Thus, the relevant correctness criterion for the tester generated is
its ability to cover traps.

Definition 3. Coverage correctness of the test.
We say that the RPT tester is coverage correct if the test run covers all the transitions

that are labelled with traps in IUT model.
Definition 4. Optimality of the test.
We say that the test is length (time) optimal if there is no shorter (accordingly faster)

test runs among all those being coverage correct.
We can show that the RPT method generates tests that are coverage correct (and

in general, close to optimal) by construction, if the planning horizon of gain function is
greater or equal to the depth of reduced reachability tree of MIUT . Though, the practical
limit of planning depth is set by Uppaal tool where the largest integer value of type ’long’
is 231. That allows distinctive encoding of gain function co-domain for test paths up to
depth 31. It means that if the IUT is fully connected and deterministic RPT provides a
test path that covers all traps length-optimally. In non-deterministic case it provides the
best strategy against any legal strategy the IUT chooses (legal in this context means that
any behaviour of IUT either conforms to its specification or is detectably violating it).

While the reachability tree exceeds given by the horizon depth limit the gain function
becomes stochastic (insensible to reachability tree structure deeper than the horizon). It
is distinctive on the number of deeper traps only, but it is not distinctive on their co-
reachability. Even though, the planning method with cross horizon depth has shown to
be statistically efficient by providing close to optimal test paths in large examples there is
threat of choosing infeasible paths if the model is not well-formed and/or not connected.

Instead of going into details of the proof (by structural induction) of RPT tester
generation correctness and optimality we provide ad-hoc verification procedure in terms
of model checking queries and model construction constraints.

Direct way of verifying the coverage correctness of the tester is to run a model
checking procedure with query:

A�∀(i : int[1,n]) t[i] , (2)

where t[i] denotes i-th element of the array of traps. The model the query is running on
is synchronous parallel composition of IUT and Tester automata. For instance, the RPT
automation for IUT modelled in Figure 3 is depicted in Figure 6.

3.2. Invariance of Tests with Respect to Changing Time Constraints of IUT

In section 2.2 the coverage correctness of RPT tests was discussed without explicit ref-
erence to MIUT time constraints. The length-optimality of test sequences can be proven

S3

S2S1

Action1
cl<=ub1

Action2
cl<=ub2

Action3

cl<=ub3

Action7
cl<=ub7

Action5
cl<=ub5

Action6

cl<=ub6

Action4
cl<=ub4

Action8
cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i3?
cl=0

cl>=lb2
o3!

t[7]=true

i5?
cl=0

cl>=lb3
o5!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i6?
cl=0

cl>=lb5
o6!

t[4]=true

i8?
cl=0

cl>=lb6
o8!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i2?
cl=0 cl>=lb8

o2!

t[3]=true
Observ1 Observ2

Observ3

Observ7 Observ5

Observ6

Observl4

Observl8

Control3

Control2Control1
o1?

o2?

o3?

o7? o5!

o6?

o4?

o8?

gtrans1(t)
i1!

gtrans2(t)
i2!

gtrans3(t)
i3!

gtrans4(t)

i7!

gtrans5(t)

i5!

gtrans6(t)
i6!

gtrans7(t)

i4!

gtrans8(t)

i8!

Figure 6. Synchronous parallel composition of IUT and RPT models

in Uppaal when for each Actioni both the duration lower and upper bounds lbi and ubi
equal to one, i.e., lbi = ubi = 1 for all i ∈ 1, ..., |Action|. Then the length of the test se-
quence and its duration in time are numerically equal. For instance, having some integer
valued (time horizon) parameter T H as an upper bound to the test sequence length the
following model checking query proves the coverage of n traps with a test sequence of
length at most T H stimuli and responses:

A�∀(i : int[1,n]) t[i] ∧ TimePass≤T H (3)

where TimePass is Uppaal clock that represents global time of the model.
Generalizing this result for IUT models with arbitrary time constraints we assume

that all edges of MIUT are attributed with time constraints as described in Section 2.1.
Since not all the transitions of model MIUT need to be labelled with traps (and thus cov-
ered by test) we apply compaction procedure to MIUT to abstract away from the excess of
information and derive precise estimates of test duration lower and upper bounds. With
compaction we aggregate consecutive trapless transitions with one trap-labelled transi-
tion the trapless ones are neighbours to. Now, the aggregate Action becomes like atomic
Action of Figure 2 that copies the trap of the only trap labelled transition included in
the aggregate. The first transition of the aggregate contributes its input event and the last
transition its output event. The other I/O events of the aggregate will be hidden because
all internal transitions and locations are substituted with one aggregate location we call
composite Action. Further, we compute the lower and upper bounds for the composite
action. The lower bound is the sum of lower bounds of the shortest path in the aggregate
and the upper bound is the sum of upper bounds of the longest path of the aggregate
plus the longest upper bound (the later is needed to compute the test termination condi-
tion). After compaction of deterministic and timed IUT model it can be proved that the
duration T H of a coverage correct tests have length that satisfies following condition:

∑
i

lbi ≤ T H ≤ ∑
i

ubi +max
i
(ubi), (4)

where index i ranges from 1 to n (n - number of traps in MIUT).
In case of non-deterministic IUT models, for showing length- and time-optimality

of generated tests the bounded fairness of MIUT needs to be assumed. We say that a
model M is k− f air iff the difference in the number of executions of alternative transi-
tions of non-deterministic choices never exceeds the bound k. This assumption excludes
unbounded "starvation" and "conspiracy" behaviour in non-deterministic models. Dur-
ing the test run our test execution environment dTron [10] is monitoring k-fairness and
reporting error message "violation of IUT k-fairness assumption" when this constraint is

broken. Due to k-fairness monitoring by dTron the safe estimate of the test length upper
bound in case of non-deterministic models can be found for the worst case by multiplying
the deterministic upper bound by factor k. The lower bound still remains ∑i lbi.

Proposition 2. Assuming a trap labelled UPTA model MIUT is well-formed in the
sense of Definition 2 and compactified, the RPT that is generated based on MIUT remains
invariant with respect to variations of the time constraints specified in MIUT .

The practical implication of Proposition 2 is that a RPT once generated for a timed
trap labeled UPTA model MIUT , one can use it for any syntactically and semantically
feasible modification of MIUT where only timing parameters and initial values of traps
have been changed. Invariance does not extend to structural changes of MIUT .

Due to the limited space we sketch the proof in two steps by showing that (i) the con-
trol decisions of MRPT do not depend on the timing of MIUT and (ii) the MRPT behaviour
does not influence the timing on controllable transitions of MIUT .

(i) The behaviour of MRPT depends on the gain guards of its controllable edges and
responses (output events) of MIUT , not on the time instances when these responses are
generated. Same applies to the gain guards. They are boolean functions defined on the
structure of MIUT and the valuation vector of traps. Thus the timing constraints specified
in MIUT do not influence the behaviour of MRPT .

(ii) In the synchronous parallel composition MIUT ||sync MRPT the actions of MIUT

and MRPT take the effect over progress of time alternatively. Though the communication
of input and output events is synchronous, it is due to the semantics of UPTA, that exe-
cution of transitions is instantaneous, and does not pose any constraint on the delay be-
tween earlier or later event. Since the planning time of MRPT is assumed to be negligible
comparing to the response time of MIUT we model the control locations in MRPT always
as committed locations (denoted by "c" in Figure 6) and there is no additional waiting
in obsevation locations of MRPT either. Thus, MRPT does not set any restriction to the
time invariants inv(Actioni)and transition guards grd(Actioni→ PostLocationi) of MIUT

actions.

4. Test Execution Environment dTron

Uppaal TRON is a testing tool, based on Uppaal [3] engine, suited for black-box confor-
mance testing of timed systems [11]. dTron [12] extends this enabling distributed execu-
tion. It incorporates Network Time Protocol (NTP) based real-time clock corrections to
give a global timestamp (t1) to events at IUT adapter(s). These events are then globally
serialized and published for other subscribers with a Spread toolkit [13]. Subscribers can
be other SUT adapters, as well as dTron instances. NTP based global time aware sub-
scribers also timestamp the event received message (t2) to compute and possibly com-
pensate for the overhead time it takes for messaging overhead ∆ = t2− t1.

∆ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order, but
revived by subscribers in another. ∆ can then also be used to re-order the messages in a
given buffered time-window t∆. Due to the online monitoring capability dTron supports
the functionality of evaluating upper and lower bounds of message propagation delays
by allowing the inspection of message timings. While having such a realistic network

latency monitoring capability in dTron our test correctness verification workflow takes
into account theses delays. For verfication of the deployed test configuration we make
corresponding time parameter adjustments in the IUT model. By Proposition 2 the RPT
tester generated is invariant to time parameter variations. Thus final verification against
the query 3 is proving that the test is feasible as well in the presence of realistic configu-
ration constraints of the testing framework dTron.

5. Web Testing Case-study

We describe street light control system (SLCS) to show the applicability of the proposed
testing workflow. The SLCS has a central server and multiple controllers each control-
ling one or more streetlight. The controllers have programmable high-power relays (con-
tactors) to manipulate the actual lights, but also have various sensor and communica-
tion extensions to provide supplementary capabilities like dimming and following more
complex lighting programs.

Figure 7. Street light control system test architecture

Light-controllers have minimal memory and do not persistently store their state in
the memory. They poll the central server to retrieve their designated state information.
This state information is stored in the array of bits, each bit denoting a specific parameter
value for the controller. Controller polls the server and the server responds whether it
has new state info for the controller. If this is the case, the information is provided with
the response. The server holds the state information for each controller. This information
can be manipulated by users via an Internet web user interface (UI). Figure 7 shows an
abstract view of test architecture. The test purpose is to test if when a user has logged
in and tries to turn on a light using the UI, the light will eventually get lit and that is
reported back with message lights on.

Figure 8 shows an extract of IUT model MIUT and generated tester MRPT . The test
adapters shown in Figure 7 interface symbolic interactions specified by channels in the
model with real interface of IUT. These channels are distinguished by name convention.
We use names in and out in the model and they are intercepted by dTron and executed
by adapters. Adapters translate synchronizations in the model in to actions against the
actual system and feed information back to the model.

Light_off
cl<=Ru

Light_on
cl<=Ru

Light_dimmed
cl<=Ru

Qsnt2

Logging_out
cl<=Ru

Select_ctlr
cl<=Ru

Qsnt1
cl <= TO

Logging_in
cl<=Ru

Idle

cl==TO

cl>=Rlout!
o6=T,
cl=0,t[1]

cl>=Rlout!
o5=T,
cl=0

i4in?
cl=0

i3in?
cl=0

cl>=Rlout!
o7=T,
cl=0

i5in?
cl=0

cl>=Rl
out!

o4=T,
i2=F

cl>=Rl
out!

o8=T,
i6=F, t[2]

i6
in?

cl=0

cl>=Rlout!
o3=T,
i2=F, cl=0

i2in?
cl=0

cl>=Rl
out!

o1=T,
i1=F,
cl=0

out!
o2=T,
i1=F

i1in?
cl=0

o3
out?

o3=F

o2
out?

o2=F

o8
out?

o8=F

gg4
in!

i6=T
o6
out?

o6=F

gg3
in!

i4=T

o4
out?

o4=F

gg2
in!

i2=T

o1
out?

o1=F

gg1
in!

i1=T

Figure 8. IUT and RPT models

Table 1. Tester input and output variables.

Input Output
Variable Meaning Variable Meaning

i1 login o1 login sucessful
i2 select controller (for setting) o2 login failed
i3 set light on o3 empty selection of controllers
i4 set light off o4 mode setting menu for chosen controllers
i5 dimming the light o5 status report “light on”
i6 logout o6 status report “light of”

o7 status report “light dimmed”
o8 log out completed

Table 2. Pre-execution correctness checks of tests.

Correctness condition Verification method

Output observability of MIUT Static analysis of test stimulus - response pairs
Connected control structure of MIUT Generating canonical tester and running query 1
Input enabledness of MIUT Transformation 1 (see Section 2.2)
Strong responsivness of MIUT Algorithm 1 (see Section 2.2)
Coverage correctness of MRPT Model checking query 2
Time-bound checks of tests Compaction procedure (Section 3.2), calculate 4

The tester is controlling that the test run will cover traps t[1] and t[2]. The inputs and
outputs of MIUT are explained in the table 1.

The timing constraints of IUT are specified in MIUT as follows:

• TO denotes the time-out to log off after being logged in if there is no activity over
UI during TO time units

• All actions controllable and observable over UI have pre-specified duration inter-
val [Rl,Ru]. If the responses to IUT inputs do not conform with given interval the
timing conformance test fail is reported. Implicitly [Rl,Ru] includes also param-
eter ∆. The estimate ∆̂ of ∆ is generated by dTron as the result of monitoring the
traffic logs at the planned test interface

Before running the executable test dTron performs a sequence of test model verifi-
cations. Table 2 illustrates the verification tasks available with current version of dTron.

6. Conclusion

We have proposed a MBT testing workflow that incorporates steps of IUT modelling, test
specification, generation, and execution that are alternating with their correctness verifi-
cation steps. The online testing approach of timed systems proposed relies on Reactive
Planning Tester (RPT) synthesis algorithm and distributed test execution environment
dTron. As shown in the paper the behaviour of generated RPT tester model does not set
extra timing constraints to controllable input/output of IUT and the on-line decisions of
the tester do not depend on the timing of IUT. dTron provides support to estimate time
delays in real test configuration and allows to take them into account while verifying the
test correctness properties with real environment delay constraints. This is a first prac-
tical step towards provably correct automated test generation for ∆-testing outlined as a
new MBT challenge in [4].

Acknowledgements

This research is partially supported by ELIKO and the European Union through the Eu-
ropean Regional Development Fund and by the Tiger University Program of the Infor-
mation Technology Foundation for Education.

References

[1] Tretmans, Jan. Test Generation with Inputs, Outputs and Repetitive Quiescence In: Software - Concepts
and Tools, 1996, 17 (3), 103 -120.

[2] Roberto Segala. Quiescence, Fairness, Testing, and the Notion of Implementation. In: Inf. Comput.,
1997, 138 (2), 194-210.

[3] Behrmann, G., David, A., Larsen, K. A tutorial on uppaal. In: Bernardo, M., Corradini, F. (ed.) Formal
Methods for the Design of Real-Time Systems. Springer, Berlin Heidelberg, 2004. 200 – 236.

[4] Alexandre David, Kim G. Larsen, Marius Mikucionis, Omer L. Nguena Timo, Antoine Rollet. Remote
Testing of Timed Specifications. Springer, 2013, 65-81. (Lecture Note in Computer Science, 8254).

[5] Vain, J., Raiend, K., Kull, A., and Ernits, J. Synthesis of test purpose directed reactive planning tester for
nondeterministic systems. In: 22nd IEEE/ACM Int. Conf. on Automated Software Engineering. ACM
Press, 2007, 363 – 372.

[6] Luo, G., von Bochmann, G., & Petrenko, A. Test selection based on communicating nondeterministic
finite-state machines using a generalized wp-method. IEEE Transactions in Software Engineering, 1994,
20 (2), 149 – 162.

[7] Hamon, G., de Moura, L., & Rushby, J. Generating efficient test sets with a model checker. In: SEFM
2004: Proceedings of the Software Engineering and Formal Methods, Second International Conference.
IEEE Computer Society, 2004, 261 – 270.

[8] Kääramees, M. A Symbolic Approach to Model-based Online Testing [dissertation]. Tallinn: TUT Press,
2012.

[9] Brinksma, Ed., Alderen, R., Lngerak, R., Lagemaat, J.d.v., Tretmans, J., A Formal approach to confor-
mance testing. 2nd Workshop on Protocol Test Systems. Berlin, October 1989.

[10] A.Anier, J.Vain. Model based continual planning and control for assistive robots. HealthInf 2012. Vil-
amoura, Portugal. 1-4 Feb, 2012.

[11] UPPAAL TRON. [WWW] http://people.cs.aau.dk/˜marius/tron/ (accessed 20.04.2014)
[12] DTRON home page. [WWW] http://dijkstra.cs.ttu.ee/˜aivo/dtron/ (accessed 20.04.2014)
[13] The spread toolkit. [WWW] http://spread.org/ (accessed 20.04.2014)

References

[1] M. Utting, A. Pretschner, and B. Legeard, �A taxonomy of model-based
testing,� 2006.

[2] M. S. Herring, B. D. Owens, N. Leveson, M. Ingham, and K. A. Weiss,
�A Safety-driven, Model-based System Engineering Methodology, Part I,�
tech. rep., MIT Technical Report, December 2007.< http://sunnyday. mit.
edu/papers. html# system-safety, 2007.

[3] M. Mikucionis, �UPPAAL TRON: Testing Real-time systems Online,�
2007.

[4] C. Baier, J.-P. Katoen, and others, Principles of model checking,
vol. 26202649. MIT press Cambridge, 2008.

[5] G. Behrmann, A. David, and K. G. Larsen, �A tutorial on uppaal,� in
Formal methods for the design of real-time systems, pp. 200�236, Springer,
2004.

[6] �Home · eishay/jvm-serializers wiki · GitHub.�

[7] K. Larsen, P. Pettersson, and W. Yi, �UPPAAL in a nutshell,� Interna-
tional Journal on Software Tools for Technology Transfer (STTT), vol. 1,
no. 1, p. 134�152, 1997.

[8] F. Miyawaki, K. Masamune, S. Suzuki, K. Yoshimitsu, and J. Vain, �Scrub
nurse robot system-intraoperative motion analysis of a scrub nurse and
timed-automata-based model for surgery,� Industrial Electronics, IEEE
Transactions on, vol. 52, p. 1227 � 1235, Oct. 2005.

[9] S. Khaitan and J. McCalley, �Design Techniques and Applications of Cy-
berphysical Systems: A Survey,� Systems Journal, IEEE, vol. 9, pp. 350�
365, June 2015.

[10] E. A. Lee, �Cyber-physical systems-are computing foundations adequate,�
in Position Paper for NSF Workshop On Cyber-Physical Systems: Re-
search Motivation, Techniques and Roadmap, vol. 2, 2006.

[11] E. Lee and others, �Cyber physical systems: Design challenges,� in Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE In-
ternational Symposium on, pp. 363�369, IEEE, 2008.

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, �Model-integrated
development of embedded software,� Proceedings of the IEEE, vol. 91,
no. 1, p. 145�164, 2003.

203

[13] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and
K. G. Larsen, �Contracts for system design,� 2012.

[14] A. Schiele, �Towards a uni�ed model-based control framework for rapid
(space) robotics developments,� May 2013.

[15] W. Emmerich, �Distributed system principles,� Course notes, University
College London, 1997.

[16] M. Schleipen, �OPC UA supporting the automated engineering of pro-
duction monitoring and control systems,� in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on, pp. 640�647, IEEE, 2008.

[17] K. Kim, �Real-time software framework for distributed control systems,�
system, vol. 3, no. 6, p. 7�8.

[18] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, �Distributed
real-time software for cyber�physical systems,� Proceedings of the IEEE,
vol. 100, no. 1, pp. 45�59, 2012.

[19] T. Hoare, �The ideal of veri�ed software,� in Computer Aided Veri�cation,
p. 5�16, 2006.

[20] P. Cousot and R. Cousot, �Abstract interpretation: a uni�ed lattice model
for static analysis of programs by construction or approximation of �x-
points,� in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 238�252, ACM, 1977.

[21] �projects/jpf-symbc � Java Path Finder.�

[22] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing for
embedded systems. CRC press, 2011.

[23] P. Lasota, S. Nikolaidis, and J. Shah, �Developing an Adaptive Robotic
Assistant for Close Proximity Human�Robot Collaboration in Space,� _
AIAA Infotech@ Aerospace _, 2013.

[24] W. Hara, S. G. Soltys, and I. C. Gibbs, �CyberKnife® Robotic Radio-
surgery system for tumor treatment,� 2007.

[25] �Model-based design,� July 2015. Page Version ID: 671636882.

[26] G. Nicolescu and P. J. Mosterman, Model-Based Design for Embedded
Systems. CRC Press, 2009.

204

[27] R. Je�ords, C. Heitmeyer, M. Archer, and E. Leonard, �A formal method
for developing provably correct fault-tolerant systems using partial re-
�nement and composition,� in FM 2009: Formal Methods, pp. 173�189,
Springer, 2009.

[28] J.-R. Abrial, �Formal methods in industry: achievements, problems, fu-
ture,� in Proceedings of the 28th international conference on Software en-
gineering, pp. 761�768, ACM, 2006.

[29] T. B. Sheridan, Telerobotics, automation, and human supervisory control.
MIT press, 1992.

[30] J. Vain, F. Miyawaki, S. Nõmm, T. Totskaya, and A. Anier, �Human-
robot interaction learning using timed automata,� in ICCAS-SICE, 2009,
pp. 2037�2042, IEEE, 2009.

[31] D. K. Kaynar and N. Lynch, �Decomposing veri�cation of timed I/O au-
tomata,� in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pp. 84�101, Springer, 2004.

[32] O. Grinchtein, B. Jonsson, and M. Leucker, �Learning of event-recording
automata,� in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pp. 379�395, Springer, 2004.

[33] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and
A. Skou, �Testing real-time systems using UPPAAL,� Formal methods
and testing, p. 77�117, 2008.

[34] A. David, K. G. Larsen, M. Miku£ionis, O. L. N. Timo, and A. Rollet,
�Remote testing of timed speci�cations,� in Testing Software and Systems,
pp. 65�81, Springer, 2013.

[35] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software En-
gineering. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2nd ed.,
2002.

[36] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, �Modeling Time
in Computing: A Taxonomy and a Comparative Survey,� ACM Comput.
Surv., vol. 42, pp. 6:1�6:59, Mar. 2010.

[37] C. Baier, J.-P. Katoen, and others, Principles of model checking,
vol. 26202649. MIT press Cambridge, 2008.

[38] M. Felder and A. Morzenti, �Validating Real-time Systems by History-
checking TRIO Speci�cations,� ACM Trans. Softw. Eng. Methodol., vol. 3,
pp. 308�339, Oct. 1994.

205

[39] N. Wirth, �Toward a Discipline of Real-time Programming,� Commun.
ACM, vol. 20, pp. 577�583, Aug. 1977.

[40] Z. Manna and A. Pnueli, Temporal veri�cation of reactive systems: safety.
Springer Science & Business Media, 2012.

[41] R. Alur and T. Henzinger, �Logics and models of real time: A survey,� in
Real-Time: Theory in Practice (J. de Bakker, C. Huizing, W. de Roever,
and G. Rozenberg, eds.), vol. 600 of Lecture Notes in Computer Science,
pp. 74�106, Springer Berlin Heidelberg, 1992.

[42] A. Burns and G. Baxter, �Time bands in systems structure,� in Struc-
ture for Dependability: Computer-Based Systems from an Interdisciplinary
Perspective (D. Besnard, C. Gacek, and C. Jones, eds.), pp. 74�88,
Springer London, 2006.

[43] C. Furia and M. Rossi, �Integrating Discrete- and Continuous-Time Metric
Temporal Logics Through Sampling,� in Formal Modeling and Analysis of
Timed Systems (E. Asarin and P. Bouyer, eds.), vol. 4202 of Lecture Notes
in Computer Science, pp. 215�229, Springer Berlin Heidelberg, 2006.

[44] C. Furia, M. Pradella, and M. Rossi, �Automated Veri�cation of Dense-
Time MTL Speci�cations Via Discrete-Time Approximation,� in FM
2008: Formal Methods (J. Cuellar, T. Maibaum, and K. Sere, eds.),
vol. 5014 of Lecture Notes in Computer Science, pp. 132�147, Springer
Berlin Heidelberg, 2008.

[45] N. Francez, Fairness. Texts and monographs in computer science.
Springer-Verlag, 1986.

[46] G. Booch, D. L. Bryan, and C. G. Petersen, Software engineering with
Ada. Addison-Wesley Professional, 1994.

[47] E. Mendelson, Introduction to mathematical logic. CRC press, 2009.

[48] R. Alur, C. Courcoubetis, and D. Dill, �Model-checking in dense real-
time,� Information and computation, vol. 104, no. 1, pp. 2�34, 1993.

[49] M. Timmer, H. Brinksma, and M. Stoelinga, �Model-based testing,� 2011.

[50] G. J. Tretmans, �A formal approach to conformance testing,� 1992.

[51] M. Van Der Bijl, A. Rensink, and J. Tretmans, �Compositional test-
ing with ioco,� in Formal Approaches to Software Testing, pp. 86�100,
Springer, 2003.

[52] J. Tretmans, �Model based testing with labelled transition systems,� in
Formal methods and testing, p. 1�38, Springer, 2008.

206

[53] M. Timmer, E. Brinksma, and M. Stoelinga, �Model-Based Testing,� in
Software and Systems Safety - Speci�cation and Veri�cation, pp. 1�32,
2011.

[54] J. Tretmans, �Test generation with inputs, outputs and repetitive quies-
cence,� Software�Concepts and Tools, no. TR-CTIT-96-26, 1996.

[55] R. De Nicola and M. C. Hennessy, �Testing equivalences for processes,�
Theoretical Computer Science, vol. 34, no. 1, p. 83�133, 1984.

[56] E. Brinksma, A theory for the derivation of tests. No. VIII in Protocol
Speci�cation, Testing, and Veri�cation, University of Twente, Department
of Computer Science, 1988.

[57] N. A. Lynch and M. R. Tuttle, �An introduction to input/output au-
tomata,� 1988.

[58] R. Segala, �Quiescence, fairness, testing, and the notion of implementa-
tion,� in CONCUR'93, pp. 324�338, Springer, 1993.

[59] J. Vain, K. Raiend, A. Kull, and J. P. Ernits, �Synthesis of test purpose
directed reactive planning tester for nondeterministic systems,� in Proceed-
ings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering, ASE '07, (New York, NY, USA), p. 363�372,
ACM, 2007.

[60] M. Kääramees, A Symbolic Approach to Model-based Online Testing. PhD
thesis, Tallinn University of Technology, Tallinn, Nov. 2012.

[61] E. Brinksma, �Formal approach to conformance testing,� in Proc. Int.
Workshop on Protocol Test Systems, pp. 311�325, North-Holland, 1989.

[62] G. Hamon, L. De Moura, and J. Rushby, �Generating e�cient test sets
with a model checker,� in Software Engineering and Formal Methods,
2004. SEFM 2004. Proceedings of the Second International Conference
on, pp. 261�270, IEEE, 2004.

[63] A. Anier and J. Vain, �Model based continual planning and control for
assistive robots.,� HealthInf 2012, no. Proceedings of the International
Conference on Health Informatics, pp. 382�385, 2012.

[64] J. Vain, A. Anier, and E. Halling, �Provably Correct Test Development
for Timed Systems,� in Databases and Information Systems VIII: Selected
Papers from the Eleventh International Baltic Conference, DB&IS 2014,
vol. 270, p. 289, IOS Press, 2014.

207

[65] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, �A
survey on model-based testing approaches: a systematic review,� in Pro-
ceedings of the 1st ACM international workshop on Empirical assessment
of software engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) 2007, pp. 31�36, ACM, 2007.

[66] S. Nomm, E. Petlenkov, J. Vain, J. Belikov, F. Miyawaki, and K. Yoshim-
itsu, �Recognition of the Surgeon's Motions During Endoscopic Opera-
tion by Statistics Based Algorithm and N,� in World Congress, vol. 17,
pp. 14773�14778, 2008.

[67] J. Jakubiak, S. Nõmm, J. Vain, and F. Miyawaki, �Polynomial based
approach in analysis and detection of surgeon's motions,� in Control, Au-
tomation, Robotics and Vision, 2008. ICARCV 2008. 10th International
Conference on, pp. 611�616, IEEE, 2008.

[68] E. Petlenkov, S. Nõmm, J. Vain, and F. Miyawaki, �Application of self or-
ganizing Kohonen map to detection of surgeon motions during endoscopic
surgery,� in Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint Conference on,
pp. 2806�2811, IEEE, 2008.

[69] J. Shaw, �Web application performance testing�a case study of an on-line
learning application,� BT Technology Journal, vol. 18, no. 2, pp. 79�86,
2000.

[70] F. Abbors, T. Ahmad, D. Truscan, and I. Porres, �Model-Based Perfor-
mance Testing of Web Services Using Probabilistic Timed Automata,� in
Proceedings of the 9th International Conference on Web Information Sys-
tems and Technologies (K.-H. Krempels and A. Stocker, eds.), pp. 99�104,
Webist, 2013.

[71] N. Francez, C. Hoare, D. J. Lehmann, and W. P. De Roever, �Semantics of
nondeterminism, concurrency, and communication,� Journal of Computer
and System Sciences, vol. 19, no. 3, pp. 290�308, 1979.

[72] R. Morin, �Semantics of deterministic shared-memory systems,� in CON-
CUR 2008-Concurrency Theory, pp. 36�51, Springer, 2008.

[73] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie,
�E�cient Learning of Typical Finite Automata from Random Walks,� in
Proceedings of the Twenty-�fth Annual ACM Symposium on Theory of
Computing, STOC '93, (New York, NY, USA), pp. 315�324, ACM, 1993.

208

[74] D. Angluin, �Learning regular sets from queries and counterexamples,�
Information and computation, vol. 75, no. 2, pp. 87�106, 1987.

[75] M. J. Kearns and U. V. Vazirani, An introduction to computational learn-
ing theory. MIT press, 1994.

[76] M. Ade, P. GHRIET, P. Deshmukh, and A. SCOE&T, �Methods for in-
cremental learning: A survey,� International Journal of Data Mining &
Knowledge Management Process, vol. 3, no. 4, pp. 119�125, 2013.

[77] �UPPAAL TRON.�

[78] �Maven - welcome to apache maven.�

[79] T. Parr, The de�nitive ANTLR reference: Building domain-speci�c lan-
guages. Pragmatic Bookshelf, 2007.

[80] �The spread toolkit.�

[81] R. M. Hierons, �Oracles for distributed testing,� Software Engineering,
IEEE Transactions on, vol. 38, no. 3, p. 629�641, 2012.

[82] H. Zimmermann, �OSI reference model�The ISO model of architecture for
open systems interconnection,� Communications, IEEE Transactions on,
vol. 28, no. 4, p. 425�432, 1980.

[83] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, �D-
ITG distributed internet tra�c generator,� in Quantitative Evaluation of
Systems, 2004. QEST 2004. Proceedings. First International Conference
on the, p. 316�317, 2004.

[84] J. Nagle, �Congestion control in IP/TCP internetworks,� 1984.

[85] A. Anier, �DTRON home - lightcontroller case study,� May 2014.

[86] T. A. Henzinger, R. Majumdar, and J.-F. Raskin, �A classi�cation of
symbolic transition systems,� ACM Transactions on Computational Logic
(TOCL), vol. 6, no. 1, pp. 1�32, 2005.

[87] S. Quinton and S. Graf, �Contract-based veri�cation of hierarchical sys-
tems of components,� in 2008 Sixth IEEE International Conference on
Software Engineering and Formal Methods, pp. 377�381, IEEE, 2008.

209

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in
High-Level Designs. 2015.
107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics.
2016.
114. Georgios Giannoukos. Mathematical and physical modelling of
dynamic electrical impedance. 2016.

	List of Publications
	List of Abbreviations
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Cyber-physical systems
	1.1.1 Design challenges of CPS

	1.2 Motivation
	1.2.1 Application of formal methods in CPS design

	1.3 Scope of thesis
	1.4 Goals
	1.5 Methodology
	1.6 Contribution
	1.7 Thesis Structure

	2 Preliminaries
	2.1 Chapter overview
	2.2 Models for time-dependent concurrent systems
	2.2.1 The taxonomy of models
	2.2.2 Uppaal timed automata
	2.2.3 Semantics of the UPPAAL model
	2.2.4 UPTA property specification language TCTL

	2.3 Implementation and conformance relations of timed models
	2.3.1 TCTL Model Checking
	2.3.2 IOCO testing of timed systems

	2.4 Summary

	3 Provably correct development of delta-tests
	3.1 Chapter overview
	3.2 Introduction
	3.3 Correctness of IUT Models
	3.3.1 Modelling Timing Aspects of IUT
	3.3.2 Correctness Conditions of IUT Models

	3.4 Correctness of testers
	3.4.1 Functional Correctness of Tests` 12`12`$12`&12`#12`1̂2`_12`%12`1̃2`1̈2RPTReactive Planning Tester
	3.4.2 Invariance of Tests with Respect to Changing Time Constraints of IUT

	3.5 Correctness of test deployment
	3.6 Summary

	4 Model learning
	4.1 Chapter overview
	4.2 Background
	4.2.1 Human-Robot interaction learning
	4.2.2 Learning from network traffic monitoring logs

	4.3 Timed automata learning: related work
	4.4 Contribution: Unsupervised learning of Uppaal timed automata
	4.4.1 Learning with asynchronous communication assumption
	4.4.2 Learning with synchronous communication assumption
	4.4.3 Case-study 1: Learning surgeon and scrub nurse collaborative motions
	4.4.4 Case study 2: model learning for performance testing of IEEE1394 protocol

	4.5 Summary

	5 Model execution environment DTRON
	5.1 Chapter overview
	5.2 General design context
	5.3 Functional subsystems: Uppaal TRON
	5.3.1 Background
	5.3.2 Limitations of Uppaal TRON

	5.4 DTRON design considerations
	5.4.1 DTRON overview.
	5.4.2 Project setup with Apache Maven
	5.4.3 Spread toolkit
	5.4.4 Google Protobuf
	5.4.5 Architecture
	5.4.6 Domain model (API)
	5.4.7 Distributed execution
	5.4.8 Selenium

	5.5 Summary

	6 Performance evaluation
	6.1 Chapter overview
	6.2 Introduction
	6.3 Experimental setup for performance evaluation
	6.4 The results of evaluation experiments
	6.5 Summary

	7 Case studies
	7.1 Chapter overview
	7.2 Scrub Nurse Robot
	7.2.1 Robot control software JSNR
	7.2.2 Model based API
	7.2.3 Results and conclusions

	7.3 Tartu city light controller project
	7.3.1 Background
	7.3.2 Protocol
	7.3.3 Adapters
	7.3.4 Model

	7.4 Summary

	8 Conclusions and future work
	8.1 Main results
	8.2 Future work
	8.3 Concluding remarks

	Abstract
	Kokkuvõte
	Acknowledgements
	Curriculum vitae
	Appendix I: Timed automata based provably correct robot control
	Appendix II: Human-Robot Interaction Learning Using Timed Automata
	Appendix III: Supervised Training of Voting Automata for the Surgeon-s Motion
	Appendix IV: Model based continual planning and contro for assistive robots
	Appendix V: Provably Correct Test Generation for Online Testing of Timed Systems
	References

