
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

ITV70LT
Erki Naumanis 121996IVCMM

CENTRALLY MANAGED NETWORK TRAFFIC
GENERATION FOR CYBER SECURITY

EXERCISES

Master’s thesis

Supervisor: Margus Ernits
MSc

Tallinn 2014

Author’s Declaration

I declare that this thesis is the result of my own research except as cited in the references.
e thesis has not been accepted for any degree and is not concurrently submied in can-
didature of any other degree.

June 3, 2014
Erki Naumanis
……………………

(Signature)

Annotatsioon - Keskhallatav võrguliikluse genereerimise

keskkond küber-õppuste tarbeks

Käesolevmagistritöö keskendub küber-õppustel esinevale pakilisele probleemile, piisava
liikluse olemasolule suletud süsteemis. Töö käigus loodud rakendus lahendas probleemi:
suletud keskkonnas on vähe liiklust ning ründav võrguliiklus on kergesti tuvastatav.

Probleemi lahendamiseks analüüsiti olemasolevaid võimalusi liikluse genereerimiseks
vabavaraliste vahenditega. Püstitati nõuded liikluse genereerimiseks, mis oleks koos-
kõlas õppusel oodatud mahtudega. Seejärel pakuti välja lahendus, mida kasutades on
võimalik võrguliiklust tekitada.

Töö tulemusena valmis töövahendi prototüüp, mida on võimalik küber-õppustel kasuta-
da võrguliikluse genereerimiseks. Piisava hulga liikluse korral on kaitsvatel meeskonda-
del keerulisem tuvastada ründava meeskonna poolt algatatud liiklust. Lisaks võimaldab
loodud lahendus liikluse profiile töötamise ajal dünaamiliselt uuendada ja koormust võr-
gule suurendada või vähendada.

Lisaks hinnati prototüübi kasutamisvalmidust küber-õppuse ”Locked Shields 2014”raa-
mes. Hinnati lahenduse töökindlust kui ka pakutavat funktsionaalsust. Testi tulemuste
ja osalenute tagasiside põhjal anti soovitused edasise funktsionaalsuse arendamiseks.

Annotation

is thesis focuses on analysing the issues that Cyber Defence Exercises (CDX) are ex-
periencing in closed environments, Gamenets. e main issue of having insufficient
legitimate traffic is explored. is thesis provided a solution to mitigate the problem of
having insufficient legitimate traffic in the network, thus making aacks more visible.

While solving these issues the requirements for traffic generation in CDX environments
were determined. A feasible proof-of-concept solution was proposed aer the require-
ments were set and the development ideas presented. Furthermore, designing the archi-
tecture and developing the tool has been accomplished.

e completed tool was tested during the annual CDX named ”Locked Shields 2014”.
e results acquired from the test run were analysed and evaluated. ereaer, the
solutions performance was validated according to the requirements. Additional features
to be implemented were suggested based on the validation results and the feedback from
the participants of the exercise.

Contents

List of Figures 6

Glossary 7

1 Introduction 11
1.1 Main Problems . 13
1.2 Main Objectives . 14
1.3 Outline of e esis . 14
1.4 Acknowledgements . 15

2 Current Situation 16
2.1 Related Problems . 18
2.2 State of Art . 18

3 Analysis 22
3.1 Different CDX formats . 22
3.2 Requirements . 23

3.2.1 Requirements for Traffic Simulation 23
3.3 Development Decisions . 25
3.4 Architecture . 27
3.5 Selecting System Components . 29

4 Solution 33
4.1 Traffic Agent Installation . 33
4.2 C&C Infrastructure Installation . 35

5 Evaluation of e Solution 37
5.1 e Test Run . 37
5.2 e Live Event . 39
5.3 Feedback from Participants . 42

4

5.4 Lessons Learned . 43
5.5 Conclusion of Evaluation . 44

6 Future Resear 47

7 Conclusion 48

Bibliography 50

Appendix A Validation Teniques for Traffic Generators 53

Appendix B LS14 Topologies Overview 55

Appendix C Willie Traffic Bot Installation Instructions 59

Appendix D Installation and Re-Deploying Scripts 60
D.1 Linux Installation Script . 60
D.2 Windows Installation and Re-Depoyment Script 61

Appendix E IRC Server Installation Guide 64

Appendix F Logserver Installation Guide 68

Appendix G CDX Timetable 70

Appendix H Feedba estionnaire 71

5

List of Figures

1 Our development cycle. 27
2 Initial planned architecture. 28
3 System architecture. 31

4 Day-1 traffic generation . 39
5 Day-2 traffic generation . 41
6 All event traffic generation . 42

6

Glossary

Blondes A person in each BT, whose task was to simulate the users of Blue systems. 14

Blue Team (BT) e side that is defending their infrastructure and services. 12, 16

bug A fault in the program or system, that caused it to return an incorrect or unexpected
value. 39, 41

Capture e Flag A game based scenario where the teams try to get a token from the
opposing teams systems.. 12

CCD COE NATO CCD COE. 12

CDX Cyber Defence Exercise. 3, 8, 11–16, 18, 20–23, 26, 31, 33, 35, 38, 42–44, 46, 47

CTF Capture e Flag. 12

Cyber In this thesis Cyber used as Cyber-Space Security field. 9, 11, 12, 16, 17, 22, 23

DDoS Distributed Denial of Service. 12

DMZ Demilitarized Zone. 24, 25

DNS Domain Name System. 12, 25, 40, 41, 43–45

DTLS Datagram Transport Layer Security. 25

EITC Estonian Information Technology College. 11, 16, 30, 46

FTP File Transfer Protocol. 25

7

Gamenet A virtual or simulated closed game environment. 3, 13, 14, 18, 21, 23, 36–39,
66

git Git is a free and open source distributed version control system. 30

Green Team (GT) Team responsible for infrastructure and management in Gamenet. 17

HTTP Hypertext Transfer Protocol. 23, 25, 28, 41

HTTPS Hypertext Transfer Protocol Secure. 23, 25, 41

human firewall a situation, where the operator is manually checking every incoming
connection, which is feasible during a CDX but impossible in real-world environ-
ments. 13

ICMP Internet Control Message Protocol. 25, 41

IMAP Internet Message Access Protocol. 25

IMO International Military Organization. 12

IPT Inter Packet Timing. 19

IRC Internet Relay Chat. 9, 25, 28–30, 34, 42, 44

ISP Internet Service Provider. 40

LAB Laboratory, development environment. 24

LDAP Lightweight Directory Access Protocol. 25

LS13 Locked Shields 2013. 13, 14, 16, 23, 25

LS14 Locked Shields 2014. 12, 16, 17, 24, 25, 47

MAPI Messaging Application Program Interface. 25

NATO CCD COE NATO Cooperative Cyber Defence Centre of Excellence. 7, 11, 16

8

NFS Network File System. 25

ngIRCd Next Generation IRC Daemon. 30, 34

NTP Network Time Protocol. 25

P2P Peer to Peer. 28

POP3 Post Office Protocol version 3. 23, 25

PS Packet Size. 19

RDP Remote Desktop Protocol. 25

Red Team (RT) e side that is performing the aacks against other teams infrastruc-
ture and services. 12, 16

RPC Remote Procedure Call. 25

RRT Rapid Response Team. 17

SINET Simulated Internet. 25, 46

SITREP SITuation REPort, a periodic report of the current missions situation. 66

Skype Free voice over internet protocol (VoIP) service that allows users to communicate
across an internet connection. 25

SMTP Simple Mail Transfer Protocol. 23, 25

SNMP Simple Network Management Protocol. 25

SSH Secure Shell. 25, 46

SSL Secure Socket Layer. 30

TCP Transmission Control Protocol. 19

UAV Unmanned Aerial Vehicle. 24

9

VoIP Voice over IP. 9, 23, 25

White Team (WT) Team responsible for the whole game play coordination, rules, legal
play and communications. 12

XMPP Extensible Messaging and Presence Protocol. 25

10

1 Introduction

e aim of this thesis will be to develop a suitable and practical traffic generator that
could be the underlying basis for current and future Cyber Defence exercises (CDX).
e resulting solution will help to effectively conduct testing and execution of various
tasks related to network traffic simulation. e main aim of the solution will be the use
of the tool for Cyber exercises planned by NATO Cooperative Cyber Defence Centre
of Excellence (NATO CCD COE). Furthermore, the tool will be of use in the Estonian
Information Technology College (EITC) while developing new courses and curriculum
modules for Practical Cyber Defence for IT System Administrators.

is thesis will be focusing on analysing and comparing different solutions available for
Cyber Defence Exercises held all over the world. e author will bring out benefits and
limitations of different systems while executing the exercises and creating a solution to
make the experience more realistic for the participants.

”Against organized Cyber aacks there should be organized defense.”

Ü. Jaaksoo1

is was the idea of Ülo Jaaksoo, while proposing to the Minister of Defence his idea
of creating an organization to unite the elite of IT specialist to tackle Cyber aacks
in the future. He proposed to conduct Cyber Defence Exercises to demonstrate how
to deliver an aack and teach participants how to defend their systems against such
aacks. e participants would experience first hand how to secure their systems and
bring the knowledge back to their organizations. Jaaksoo’s idea has since inspired many
organizations to take part of the Cyber Defence Exercises. ese ideas have emerged
aer Estonian government and private sector web sites were under Cyber aacks.

1Free translation of idea: Aaviksood vaimustas mõte küberkaitseliidu loomisest - http:
//epl.delfi.ee/news/eesti/aaviksood-vaimustas-mote-kuberkaitseliidu-loomisest.
d?id=51103195, EPL, 2 Oct 2007

11

http://epl.delfi.ee/news/eesti/aaviksood-vaimustas-mote-kuberkaitseliidu-loomisest.d?id=51103195
http://epl.delfi.ee/news/eesti/aaviksood-vaimustas-mote-kuberkaitseliidu-loomisest.d?id=51103195
http://epl.delfi.ee/news/eesti/aaviksood-vaimustas-mote-kuberkaitseliidu-loomisest.d?id=51103195

”Following the events in 2007, when Estonian government and private sector web sites
were under Cyber aack, Distributed Denial of Service aacks (DDoS), Estonian gov-
ernment adopted the first Cyber security strategy for the period of 2008-2013.” [11, p. 38]

CCD COE (Cooperative Cyber Defence Centre of Excellence) was activated as an In-
ternational Military Organization (IMO) by the decision of the North-Atlantic Council,
making it the first IMO hosted by Estonia [6]. Soon aer, CCD COE was called to exis-
tence, in December 2008 the first joint CDX was held.

”e exercise was a cooperative effort of the scientists from the CCD COE,
Swedbank Estonia, Tallinn Technological University and the Swedish coun-
terparts. During the exercise the students showed their abilities to tackle
with the Cyber Aacks against important websites, e-mail accounts and
DNS.” [7]

And continuous CDX-s followed: Baltic Cyber Shield in 2010, Locked Shields 2012,
Locked Shields 20132.

To be successful the exercises need to have participants who are skilled in both aack
and defence techniques. e aacking side is titled the Red Teams (RT) and defenders
are titled the Blue Teams (BT). e definition for the BT and RT is as follows:

• e BT-s - are the main training audience of LS14. ey are composed of IT spe-
cialists and legal advisers.

• e RT-s - e Red Team’s mission is to reckon, aack, compromise and degrade
the performance of the BT systems. e phases and objectives will be pre-defined.
During the execution of the exercise RT acts closely together with theWhite Team
(WT).3

As Locked Shields is not a Capture e Flag (CTF) event, the focus of the exercises is to
train the BT-s.

2Cyber Defence Exercises - https://www.ccdcoe.org/353.html (06.05.2014)
3Description of teams for LS14 - https://collab.mil.ee/collab/ls14/Teams

12

https://www.ccdcoe.org/353.html
https://collab.mil.ee/collab/ls14/Teams

1.1 Main Problems

e exercises are conducted in a closed environment called Gamenet, where the cur-
rently available solution allows easily to identify aackers networks traffic among other.
ere is not enough traffic masking the RT-s efforts. In real world environment, there
would be a lot of other network traffic originating from several users other than the at-
tackers and masking the aempts. is situation lets the BT-s defend their assets more
easily and does not simulate the real conditions. Currently, there is not a beer solution
to have more diverse and unique traffic in the network. us the BT-s are in advantage
against the RT-s efforts. is exact situation played out during Locked Shields 2013 (LS13)
exercise:

”A very common activity was to block any IP address which seemed to be a
source of suspicious actions. Detecting malicious traffic was relatively easy
as the simulation system generally failed to create the expected amount of
legitimate traffic.” [9, p. 34]

During LS13 execution, a human firewall45 was enforced to check all incoming traffic
during the CDX. In a simulated environment this will help to gather points, but it is
not feasible in real environments and has nothing to do with reality. Furthermore, this
behaviour would not benefit the experience and learning curve of the participants.

BT-s are graded by their performance to uphold their systems against aacks from RT.
e score will be higher if the BT can mitigate aacks, update their systems and repair
any damages done. erefore, if the RT has no chance to perform their objectives infil-
trating Blue systems, the BT would be le without valuable experience. Furthermore,
this could leave them with impression of false security - the Gamenet is not real world
alike and its purpose is to let the teams gather knowledge how to defend their systems
more effectively.

ere are many CDX-s held in many different countries and among many different or-
ganizations. ey all have custom built Gamenets, set of rules and objectives. In current
situation all the different executions employ systems that are not compatible with each

4Scripts from a participant of LS13 - https://github.com/tarko/ls13blue8-scripts
5Comment: ”Used these to monitor all incoming and outgoing traffic and pick out connections that

haven’t been seen before. Outgoing based on src/dst/dstport tuple and incoming based on payload only (to
get rid of all noise and scoring connections). ese enabled us to very quickly spot malicious downloads,
callbacks to red team machines etc. Scripts were fed from SPAN destination that aggregated all ingress
and egress traffic from all our machines.”[18]

13

https://github.com/tarko/ls13blue8-scripts

other - they are custom tailored. Customizing the solutions for different executionwould
be too expensive regarding the manpower and working hours required.

1.2 Main Objectives

To enhance the compatibility of CDX-s and prevent situations like during LS13 from
happening again, there should be a simple but effective way to conjure up some network
traffic to mask the activities of RT actions. In a closed environment this is not the easiest
of tasks. e Gamenet has a predefined amount of traffic that is originating from within
the network. us volunteers are invited to play the role of internal users (Blondes).
Despite the Blondes’ effort to comply with the tasks provided, it is still a hurdle to get
enough unique traffic on the wire. is issue led to the idea of creating one such solution,
that would be capable and able to provide sufficient legitimate traffic to create a ”smoke
screen” to hide RT-s actions.

e thesis is focusing on enhancing CDX-s to make them more realistic. e main prob-
lem with current exercises has been that the aackers traffic can be determined far too
easily. With this thesis the author is building a solution that will help make the identi-
fication of aackers traffic more cumbersome for the defenders. e solution will be a
centrally managed modular framework to make the handling and generating of network
traffic more effective.

e primary outcome of this thesis will be:

Objective 1. List of requirements for traffic generation,

Objective 2. Architecture of the solution,

Objective 3. System that generates network traffic, allows to modify traffic profiles
and rate dynamically during execution,

Objective 4. Evaluation report based on live CDX named ”Locked Shields 2014”.

1.3 Outline of e esis

is thesis is organised into chapters. In Chapter 2 the current situation of conducting
CDX-s is described and what difficulties are related to traffic generation during these

14

events. Moreover the different methods of generated traffic are viewed. e third chap-
ter is the main part of this thesis. Here we are analysing our requirements for a solution.
Requirements for generating traffic during the CDX are described. Selecting tools and
describing a solution is conducted in the end of this chapter. Next in the fourth chapter a
solution is described. Herein the solution has already set up to work. In chapter five the
evaluation of the developed tool is reviewed based on live CDX. We also describe what
complications have risen and what lessons were learned. Chapter 6 is devoted to addi-
tional features that should be implemented in the coming events. And our conclusion
we disclose in Chapter 7.

1.4 Anowledgements

e author would like to show gratitude towards Margus Ernits for his support making
this thesis happen. e ideas and insights provided were inspiring. Author also thanks
Kaur Kasak, Risto Vaarandi, Rain Ois, Artjom Lind for courses in TUT and UT which
helped write this thesis.

15

2 Current Situation

is thesis is aimed on traffic generation for Cyber Defence Exercises (CDX). e main
exercise in focus is Locked Shields organized byNATOCCDCOE.e same functionality
will be used in Estonian Information Technology College’s (EITC) virtual laboratory
system, where the students act as Blue Team (BT) members and protect their systems
against a simulated Red Team (RT).

Locked Shields 2014 (LS14) is the third in series. e previous events have determined
requirements that would help to enhance the exercise. e essence of Locked Shields
CDX is to train BT-s in technical aspects to defend systems that they are given to main-
tain. It is a friendly competition and defence is the focus of the training. e scenario
is predetermined and BT members are playing fictional roles. During the Locked Shields
2013 (LS13) exercise there were 10 BT-s participating. In LS14 already 12 BT-s partic-
ipated. For 2015 it is assumed that 20 BT-s will be participating in the exercise. at
means the scale of the exercise is going to change. It has been brought out that one
of the challenges during the execution is to have enough legitimate user traffic in the
network[9].

Additional high level objectives are set for the execution and evaluating are the BT ready
to face full scale and full-speed Cyber aacks. It is an essential part of the training
while the same experience cannot be gained during every day routine. e work load
on BT-s members is immense as there is massive amount of different events happening
simultaneously and there is a lot of stress present - to keep communications up not only
with other teams but also with the press. Furthermore, leadership skills and teamwork
becomes essential. e teams are provided the opportunity to try out new tools and
technology that is helping to mitigate issues in their everyday work.

In everyday work the Blue team members are specialists, who defend their own net-
works and systems. ese are usually already secured and fall under strict management

16

guidelines. Patching and fixing vulnerabilities is a must and done with care and preci-
sion.

e Cyber Defence Exercise is trying to simulate the real-world situations. Although
during the execution the scenario (the scenario of Locked Shields) puts the experts in a
role of a Rapid Response Team (RRT), which is tasked to take on the challenge to defend a
specific infrastructure and services. ey must fix the vulnerabilities in the systems and
implementations, find and remove malicious code, patch unrestricted network access
issues and many more tasks what is required of them by the scenario.

During the planning phase, the RRT-s are given a few weeks before the real execution to
get to know their future systems. ey can toy around and try to fix all vulnerabilities
and issues they find. ey have no knowledge in what state the systems are running or
whatmalware persists already until the execution. Furthermore the systems are reverted
to their initial state one week before the execution, leaving all fixed issues open again.

e RT members are usually professionals, who do penetration testing, or persons who
usually are performing Red Teaming tasks during different exercises. All of them bring a
valuable set of skills and knowledge to the arena. LS14 RT-s had 556 different objectives
to execute against the blue systems. at means, the BT-s were under constant aack
by RT-s, which in turn made the situation for the defending teams very stressful.

During the preparation phase the RT works closely together with the events organizers,
the Green Team (GT). e idea behind is to build a system that is full of vulnerabilities
and weaknesses the RT-s could exploit while training the BT-s to respond to different
aack vectors. us opposite to BT-s the RT-s have full knowledge about the existing
system and infrastructure beneath. is is described as a ”White box” approach where
all enumeration of targets, systems and weaknesses is already known. is helps to give
momentum to the RT aacks during the exercise execution - the reconnaissance phase
is already done and no time needs to be spent for ”Phase 1” 7.

As the GT is trying to create a network and infrastructure as world alike as possible
(trying to simulate Internet), it still comes down to a situation, where the only traffic
on the wire is generated by the BT-s and scoring agents checking the availability of the
systems. Noticing this network paern lets the BT-s enforce white lists8 and everything
else will be blocked on the perimeters edge. Despite having knowledge about all the

6Red Team Objectives - https://collab.mil.ee/collab/ls14red/Objectives
7Phase 1 - Reconnaissance: Information Gathering before the Aack
8A white list is a list of items that is granted access to resources.

17

https://collab.mil.ee/collab/ls14red/Objectives

Gamenet, the RT-s are prohibited from achieving their objectives.

Now the real problem has been faced: how to hide the traffic, that the RT-s are creat-
ing while performing the aacks on BT-s networks and systems? Solving this problem
allows to conduct more realistic future CDX-s.

2.1 Related Problems

Every CDX is unique. e scenarios vary every year and the organizing team is investing
lot of effort to make the exercises interesting for all the participants.

e hurdle becomes apparent with the tools to be used. As everyone is aiming for geing
beer, the trend for longevity of the tools is decreasing. e tools are being built and
evaluated during the exercises. It happens that the intent of the tool was higher than the
real outcome. is can be accounted for the lack of manpower developing such tools.

e developing teams are oen small - 1-6 people, and the expectations for the developed
systems are set high. More than usual, the developers are volunteers who sacrifice their
personal time to make something that will help conduct the exercise. It is not rare an
exception, when the tool(s) are ready in the development environment, they will not
work out of the box in the Gamenet. is in turn requires endless testing of the soware
and making sure that everything is performing as intended.

ere shouldn’t be a need to develop a new system for every CDX, but the current situa-
tion leaves no other option. Information on the performance of the tools used elsewhere
is lacking and hard to acquire. e tools are a good kept trade secret of the organizers
and developers. ereaer necessity for tools to be used by a wider audience exists.

2.2 State of Art

In this section the author is describing themany differentways traffic could be generated.

Molnar et al. [15] are analysing the way traffic generators are categorized and generated
traffic validated. ey present, that in their sample they are reviewing, the traffic gener-
ators that can be found in their present literature are uniformly difficult to validate. e

18

report dissects all five different categories identified and brings out the strengths and
weaknesses traffic generating profile, measuring characteristics and ways of validation.
ese five categories are: replay engines, maximum throughput generators, model based
generators, high-level and auto-configurable generators, special scenario generators. In
Table 1 we have hand-picked a few of the traffic generators that were also in Molnar’s
samples. e criteria of choosing was:

• Supporting multiple platforms (Window, Linux, OSx, etc). It is crucial for medium-
to-large deployments that there is an unison code-base for all the tools used. ere-
fore some of the tools from Appendix A are not suitable, they are designed for a
specific Operating System.

• eir licensing is adequate and the work can be reused and customized.

• Script based, tools can be deployed separately, but with modified integration they
are interacted with.

Table 1: Table taken from [15, p.1361]

Generator Category Traffic Generator Description

Replay Engines TCPreplay User-level application for replaying libpcap file
Maximum rough-
put Generators

Iperf User-level application for bandwidth, packet loss ra-
tio and jier testing

Model Based
Generators

TG Packet-level generator supporting various distribu-
tions for IPT and PS values

MGEN Packet-level generator supporting various distribu-
tions for IPT and PS values

High-Level and
Auto-Configurable
Generators

TMIX Traffic emulator for ns-2 based on source-level char-
acterization of TCP connections

D-ITG Extensive workload generation framework that can
produce traffic for wide range of network scenarios

e full list of traffic generators sampled can be found in Appendix A. e tools we
selected, are the ones that can be run on several different operating systems. ey have
a suitable licence (eg. GPLv3, New BSD License or similar license approved by Open
Source Initiative (OSI)), and are open source. With these options we are able to build
our own handles to interact with the soware. To be noted is that none of the Special
Scenario Generators made it into our pick. e reason is that they did not satisfy our
criteria or there was not sufficient information available.

19

Vishwanath and Vahdat [20] have built the Swing traffic generator. It is a structural
model that is accounting for interaction across multiple layers of protocol stack. e
model takes into account end users who determine the communication characteristics.
e main characteristics are how active the user has been, what site he/she visits and
when, and the delay between visits. Secondly the model takes into consideration the in-
dividual session information, downloadingmultiple files from the server simultaneously,
geing parts of the same audio file from different servers (the authors have file-sharing
capabilities envisioned). ird, characteristics of single connections within a session is
measured. What is the connection source and destination, the number of request and
response pairs created, size of request and wait time before connection is established.
Finally they convey the underlying network characteristics to their work. ey are ex-
tracting the link loss-rates, capabilities and latencies for interconnected paths from the
original trace file.

”We have found that model parameters that aempt to reproduce human/-
machine think time are the most difficult to accurately extract and repro-
duce.” [20]

In [12], Guerber explains why in recent years virtual environments are more favourable
over physical ones. Despite the costs involved to acquire a simulation environment, this
investment will pay off immensely. Guerber reasons that the existing environment can
be used to run CDX-s and other smaller scale exercises like table-tops. He also stresses
that organizations, having such an environment in place, should conduct possible small-
scale exercises and walk through possible scenarios. It is noted that there might be
some shortcomings in test environments which are used for simulations. Namely they
might lack user and/or traffic simulation equipment. In this Article Guerber also points
to another shortcoming, that in virtual and simulated environments, where low traffic
traverses the network, aacker traffic can easily detected andmitigated. He is suggesting
similar techniques to mitigate this issue as we have laid out in subsection 3.2.1.

To generate legitimate SSH traffic, paper [2], presents us with a solution that is able to
synthesize traffic based on real traffic samples. e process takes action in two phases.
e first phase takes the sample traffic capture and filters the traffic characteristics that
are required for phase two. e second phase is puing the initial information back
together and generating the traffic. is method is also taking into account the diurnal
paerns to get more accurate results.

20

As there are many different tools available for network simulation and network traffic
generation, one could simply ask, why not dowe simulate the internet in our closed envi-
ronment. e answer might lie within the Internet’s wast heterogeneity, many different
devices connected, rapidly changing nature andmany supported protocols involved [16],
[5]. Furthermore, if we would start to simulate on such grand scale, we would have to
take into consideration the longevity of our research. Reason is, if we model something
today, we have to be prepared that it is still in use several years from now. is in turn
means that generating legitimate and reliable traffic is really hard[5].

Considering the fact that a CDX is usually taking place over a few days, is performed in a
closed Gamenet and has many participating teams, then simulating the Internet with all
the diurnal activity paerns does not seem feasible. ese characteristics are limiting the
traffic generation to a certain specific model. ere is need not for all available protocols
and applications, but for a particular few, what the RT is using for their aack vector.

21

3 Analysis

In this chapter we will identify the requirements to be met for traffic generation during
a CDX event. ese requirements are then tied to goals that the author is pursuing
to achieve with this thesis. Having the goals in focus, a system architecture will be
suggested. ereaer the components required to build the system are chosen and their
usage explained.

e Information Warfare exercise ”Eligible Receiver” has been noted to be the first of its
kind. e exercise was played out in U.S. in 1997. e ”RED TEAM” consisted of thirty-
five people and the campaign lasted over 90 days. e team used publicly available tools
and soware to perform the aacks. A pre-set scenario was introduced and the exercise
was spun-off. e findings of the exercise did reveal how vulnerable U.S. information
systems were [13].

Since its execution back in 1997, ”Eligible Receiver” has inspired many other Cyber Se-
curity Exercises.

”Locked Shields” CDX series was inspired by the United States service academies annual
CDX held since 20019, which in turn was inspired by ”Eligible Receiver”.

3.1 Different CDX formats

Many different kinds of exercises exist, each has a different format, different benefits,
challenges and costs.

e format of the exercise will be chosen by the scope what is aimed for. Small scale
9What the CDX Challenge is - http://www.usna.edu/Cyber/_files/documents/CDX/What%

20the%20CDX%20Challenge%20is.pdf

22

http://www.usna.edu/Cyber/_files/documents/CDX/What%20the%20CDX%20Challenge%20is.pdf
http://www.usna.edu/Cyber/_files/documents/CDX/What%20the%20CDX%20Challenge%20is.pdf

exercises like desk check10, comms check11, walk through12, workshop13[14], table-top14

are relatively easy to organize as resources required are also small.

More teamwork and procedural effort is required by larger scope exercises as distributed
table-top15, command post16 and full simulation17[19]. In the ”Methods for Enhances Cy-
ber Exercises” somemore specific exercise formats are noted aside the alreadymentioned
[12].

3.2 Requirements

”One of the challenges we face when conducting the exercises is lack of re-
alistic amount of legitimate traffic. We have used custom solution able to
generate few protocols (HTTP, HTTPS, SMTP, POP3, VoIP). However, dur-
ing LS13 the changes done by the Blue Teams caused majority of the traffic
agents to stop. erefore it was fairly easy for the defenders to differentiate
between malicious and legitimate traffic”[8]

To build a full-scale simulation, all aspects of the real-world likeness should be accounted
for. e virtual network environment (Gamenet) is different for every exercise, although
the building blocks are similar.

3.2.1 Requirements for Traffic Simulation

As previously identified, all the CDX-s are in need of legitimate network traffic and
user emulation, which is not the easiest tasks in planning the exercise. Previous CDX-s

10Desk check - Early stage and validation of new plans. Usually held within a small group, and proce-
dures regarding a simple scenario are discussed.

11Comms check - is organized to validate systems or infrastructure
12Walk through - When a response team is planning to take action and is going over the steps before-

hand.
13Workshop - A previously agreed scenario is being rehearsed. Usually in open forum format to allow

discussion of activities to be performed.
14Table-top - Simulates a situation in an informal and stress free environment.
15Distributed table-top - A scenario-based exercisewhere participants test plans and activities according

to routine.
16Command post - Gives a team the possibility to rehearse action plans using their own facilities. Oen

is played out on the management level.
17Full simulation - Requires a real time environment simulation. All aspects of execution are aimed as

close to reality as possible.

23

have provided some useful insight on how to build systems and networks, soware and
simulation. But we are still lacking solutions that will provide enough traffic to conceal
the RT aack aempts.

is situation was acknowledged also by the organizers of LS14 and they have put to-
gether a list of requirements for networks and simulated/generated traffic. e require-
ments paper actually focuses on a commercial product, is it feasible to purchase it or not.
Despite the intent, the report gives a good overview of what is expected [8].

e LS14 scenario foresaw that the BT systemswere divided into five segments: Internal,
DMZ, LAB, Expo and UAV. e connectivity was designed using best practices in mind.
Although some segments were intentionally interconnected, UAV and LAB to be specific.
is set-up was prepared to make RT aacks more reliable on interconnected segments.
Moreover, the BT should have identified this situation and address it accordingly.

From this thesis perspective, we are addressing the requirements that have been set for
clients (workstations) and services that are available to them. at cover the whole in-
ternal segment of blue systems and services in the DMZ (see Appendix B Figure 7 for
clarification). In addition we had the opportunity to install agents on the LAB worksta-
tions.

e requirements are applied for all BT-s, and are as following:

Requirement 1 Generate traffic from theworkstations in internal segment against other
systems and services available to them,

• the intent is to simulate typical user behaviour,
• if traffic is originating from not within, the BT-s could create white
lists to filter the generated traffic.

Requirement 2 e workstations will be running different versions of Windows and
Linux operating systems (WindowsXP,Windows 7,Windows 8, Ubuntu
Linux etc.)

• the provided solution should beworkingwith all beforementioned
operating systems.

Requirement 3 Central management of the traffic agents,
• should be able to stop/start traffic during the execution,
• ability to change traffic rate and profile on the fly.

Requirement 4 If workstation has access not only to own systems, but other BT-s sys-
tems too, then the agent should be able to generate traffic towards the
other BT systems,

24

Requirement 5 If possible, have background noise generated in the internal network
segment,

• simulating multicast or broadcast traffic from network devices,
• if possible network related L2\L3 background traffic.

Requirement 6 Traffic from real/simulated clients toward the DMZ,
• various application layer protocols - HTTP, HTTPS, DNS, SSH,
SMTP, POP3, IMAP, MAPI/RPC, RDP, FTP, NTP, LDAP, ICMP,
VoIP, Skype, XMPP, IRC, DTLS, NFS, SNMP, etc.

Requirement 7 Typical traffic that an Internet connected system would see for back-
ground noise,

Requirement 8 Traffic content should be customizable,
Requirement 9 Simulate user sending aachments or downloading files from the WEB,
Requirement 10 Possibility to provide credentials for services logins,
Requirement 11 Filling of forms, and defining which fields to fill in,
Requirement 12 Inbound (from SINET to DMZ) traffic should be originating frommany

various legitimate IP addresses from same range that also RT is using.
Requirement 13 Simulate known aack vectors do create a smoke screen and trigger

many false positive alarms.
Requirement 14 Be able to re-play the aacks mentioned previously and integrate that

with grading.

3.3 Development Decisions

e organizes were short on time and gave out the requirements what are the features,
they would like to see done by the solution. Furthermore we were le to decide what
requirements we shall implement in our work. is meant, in the short time-frame
given, implementing all requirements would have turned out to be really hard. us we
had to determine the most important characteristics for the solution we had to develop.
We decided, that we are not going to generate protocols, that were generated during
LS13 by an existing tool that was intended to be used also during LS14. Although the
existing tool was going to be overhauled and improved, it would still lack some key
protocols like DNS, SAMBA, FTP, ICMP. e tool was able to generate network traffic
with HTTP, HTTPS, SMTP, POP3 and IMAP protocols.
us we set out to create a framework, we could use to deliver additional features, as
they ripen. We set goals, what the emerging solution should be able to do:

25

Goal 1 From Requirement 1 and Requirement 2 the most benefiting way to continue
would be to select a cross platform solution. One could select the possibility
to develop a separate package for all the platforms used during the CDX, but
that would require much more time. Moreover maintaining the different code
bases would be overwhelming. erefore cross-platform implementation is our
selected path.

Goal 2 Referring to Requirement 1, Requirement 2 and Goal 1 the system ought to
be open source. Otherwise we would have complications finding supporting
developers in the future. And closed source solutions are prone to be discarded,
if it is not possible to develop additional functionality.

Goal 3 As the solution is required to be managed from a central entity, we have decided
to implement central management. An alternative would be to command all the
agents in single sessions, but the overhead in management would set limitation
on a medium-to-large installation scale. is goal is closely tied to Requirement
3 and Requirement 8.

Goal 4 To be able to satisfy Requirement 4, Requirement 5, Requirement 6, Require-
ment 8 and Requirement 9, we have to develop the system to be modular by
design. Having to implement all the required functionality into a single piece
of soware would be counter productive. Instead we will be implementing a
system where the modules can be loaded dynamically when required.

Goal 5 Requirement 8, Requirement 10, Requirement 11 are describing a tool that is
customizable throughout the execution. If the traffic profiles and behaviours
would be hard-coded18, the soware is required to be restarted aer every mod-
ification.

As a small team and being short on time to deliver our product, we had chosen to go
with a subset of Agile Programming method, which is suitable for projects big and small.
What made the decision easier was, the model uses an iterative approach and it helps
to deliver code that is working. e key deliverable of this concept is a solution that
works. Having such a small team, only two persons, choosing a distinct method for
programming was not feasible. Methods like Scrum and others need more persons in
more roles. We over simplified the process of agile as there was no real need for the
entire model to be applied. e best, the idea, was taken from the model. We present
what was our work flow on Figure 1.

18Hard-coded - program behaviour wrien directly into programs code.

26

Figure 1: Our development cycle.

Having a team of two le the author of this thesis be the major contributor in program-
ming the solution.
As the code-base we were developing was not that large, we were able to ship function-
ality prey fast. us building the ”hello world” sample for every additional feature was
always a good starting point. is gave us the flexibility to get a working sample, and
add additional functionality to it in the next iteration of requested features.

3.4 Aritecture

To be able to satisfy Goal 1, the cross-platform dependency, a programming language
is to be selected that is able to be run on all used operating systems (Windows and
Linux). Programming languages that run onmultiple platforms are Java, Ruby, C, Delphi,
Perl and Python to name a few. Adding Goal 4 to the selection process, then the most
modularity was shown by Python. Python was also used in various other network traffic
generating tools like scapy, Ostinato, and several wireshark tools [22]. Selecting Python
as the programming language of choice would enable the integration of other scripted
tools. It is modular, runs on all the required platforms, updating the python code is easy,
and simple enough to re-deploy. e later two statements are based on the the fact that
python compiles the code previous to run, or uses previously compiled code. is gives
the system the flexibility to update the scripts, stop the process and then start the process
up again and Python is doing the rest.

Our Goal 3 requires a centralized approach, where we could control all traffic agents in
one place and be able to do for all our operating systems. A similar approach has been

27

used for the past decade - botnet19.
Different ways to control a botnet can be identified:

(a) Centralized - the oldest known type of architecture used by botnets.
(b) Decentralized - no single point of failure, C&C server is no longer the single point

of communication.
(c) Hybrid - in article [17] the more advanced characteristic of hybrid botnets are

described (P2P).

In our endeavour we shall not need the malicious approach of the botnet, instead the
central management, ability to be controlled, functionality to be modular and be updated
as required [4]. is further expanded the opportunities to witch route to take, as several
different examples of centralized structures could be found [23]- IRC and HTTP based.

e overall architecture of the slave-master system should be similar to Figure 2.

Figure 2: Initial planned architecture.

From Figure 2 it cannot be determined, but the C&C server and the bot bearing work-
stations are located in a virtual environment. Furthermore, the C&C is located in the
RT_SINET20 (see Appendix B Figure 9) and the workstations in the BT-s local network
segment (see Appendix B Figure 7).

19Compromised or hijacked computers, which are obeying the commands of the owner of the botnet.
20Simulated Internet where also the RT is launching their aacks from, where the scoring and traffic

generation system are located.

28

Satisfying Goal 4 and Goal 5 we must choose the right components and implement
functionality that is allowing us to adjust the traffic profiles for services separately and
be able to provide new target lists and traffic profiles throughout the exercise as the need
arises. And this leads us to comply with Goal 2 being open source as intention is to be
able to pull in additional resources if required.

Leading from here we have to chose the components to be used. What components are
used, and why, is explained in the next section of this thesis.

3.5 Selecting System Components

Initial thoughts were to build up the system from ground up, but eventually that seemed
a task with a larger scope. ereaer it was decided to use already existing components.
is decision led to the next step, find the piece of soware that would be suitable for
the task of creating an IRC botnet. As there are many automated IRC chat bots already
in existence, the choice of picking one had to be made.

Having the goals (see section 3.3) set, finding a suitable solutionwas the next logical step.
During the research it was considered to turn to already existing malicious botnets in
existence, because they have all the required functionality built in. Despite the lucrative
idea, it was decided against such actions. We might have been able to alter some of
the code of the malicious tool, but it still might inhibit functionality which the initial
botmaster was able to activate remotely. Furthermore, if the program seemed to be
clean, files that were required to run the instance might have backdoors21 built in. And
having such malicious tool in our arsenal was not in our intent.

is le the author with looking for a suitable package of components. An incomplete
list of existing IRC based chat bots can be found here [21]. Previous searches did not
turn up anything useful, so the list was re-checked. e selection had to be based on our
earlier selection of goals, cross-platform, modular and easy to update. Own criteria was
that the chat bot should have on-going development, and latest version should be quite
recent. It was decided to go with an IRC chat bot named ”Willie”, authored by Edward
Powell, Dimitri Molenaars, Elad Alfassa, Ari Koivula. In conjunction with willies own
modularity, the additional modules to support functionality to meet Goal 3-Goal 5 had
to be developed.

21backdoor - method for bypassing authentication procedures.

29

Having a herd of chat bots alone was not sufficient for the task at hand. An IRC server
had to be set up additionally. Having the Debian distribution installed, from the default
repository one could download available packages of different suitable IRC servers. e
choice was made easier by the fact that willie chat bot supports SSL, and in anticipation
of the BT-s ingenuity, making sure the information were sending over the network does
not traverse the network in plain-text as it would for the standard IRC protocol. e se-
lection of IRC servers was made in favour ofNext Generation Internet Relay Chat Daemon
(ngIRCd22), a sophisticated enough server to satisfy our requirements. e configura-
tion of the server was documented and based on the procedure an installation guide was
compiled.

Wanting to have additional feedback from the bots, it was decided to use a log-server.
During the course of ”Linux System Administration” at EITC a student had prepared a
good step-by-step guide to deploy a solution that would satisfy the need of a log-server
[3]. Based on his work we put together or own instructions. e building blocs used to
get the log-server running are Apae223, Kibana24, Logstash25 and Elasticsear26. All
of them are open source.

Not being able to build the whole system in one session meant that we need code version
control. Here the distributed version control system named git came very handy. It was
not rational to have the git server run on our own systems. ere were several options
available to host source code on public repositories. One that was selected to be used
is Bitbucket27. Using Bitbucket le us to have more freedom to code andl not hassle
with managing the availability of the server. For initial development purposes a local
installation of ngIRCd was used in virtual environment. Later on it was possible to use
the e-lab environment at EITC.
e first vision of how the outcome of the development should look like is depicted on
Figure 3.

22ngIRCd - http://ngircd.barton.de/documentation.php.en
23Apache HTTP server – http://projects.apache.org/projects/http_server.html
24Kibana - http://www.elasticsearch.org/overview/kibana/installation/
25Logstash - http://logstash.net/docs/1.3.2/tutorials/getting-started-centralized
26Elasticsearch - http://www.elasticsearch.org/guide/
27Bitbucket - https://bitbucket.org/features

30

http://ngircd.barton.de/documentation.php.en
http://projects.apache.org/projects/http_server.html
http://www.elasticsearch.org/overview/kibana/installation/
http://logstash.net/docs/1.3.2/tutorials/getting-started-centralized
http://www.elasticsearch.org/guide/
https://bitbucket.org/features

Figure 3: System architecture.

Using iterations to enhance the functionality of the modules, it was required to verify
and evaluate the performance of the already wrien code. e test-environments were
therefore a good solution. Furthermore the code had to be deployed on several test-
workstations running all the different operating systems that would be present also in
the up-coming event environment. Manually deploying the enhancements turned out to
be too labour extensive, thus it was suited to build an automated deployment. is same
functionality would be required to be available within Goal 4 and Goal 5. Continuing
to satisfy the last mentioned goals, re-deployment of the system would count towards
functional availability and customization readiness. And cross-platform integration in
mind, scripts to do the automatic re-deployment were wrien. is helped to extend the
automated installation scripts given to the organizers prior to the CDX for deployment
onto their systems.

For Windows environments the development encountered an issue. ere was no good
way to manage the services with available tools toWindows. e service controller (sc)
with Windows is unable to restart a service. Starting and stopping a service is in sc’s
capabilities but nothing more. Preventing issues with exceptions and network problems,
it was essential to be able to run the service ”indefinitely”. us an external programwas
introduced which turned out to be very beneficial. e Non-Suing Service Manager
(nssm)28. It did allow to set the service to be restarted. Furthermore, it was watching the

28nssm - http://nssm.cc/

31

http://nssm.cc/

service and if the service failed or was killed, nssm restarted it again. is issue did not
turn up with Linux, as for Ubuntu, upstart29 is initially coming with the installation and
it behaves the exact same way as nssm would.

For time being the source code of the solution is not publicly available. It is currently
shared per-request.

29Upstart - http://upstart.ubuntu.com/

32

http://upstart.ubuntu.com/

4 Solution

is chapter will describe the installation process of components. e solution contains
a component of a many bots and a component of central management infrastructure (see
Figure 3).

A solution satisfying the requirements (Section 3.2) and goals (Section 3.3) set in the
previous sections was built. e development proceeded following the previously de-
termined architectural references (see Section 3.4). Source code of the solution is avail-
able on Bitbucket. And anyone interested to acquire the source code should contact the
author.

In the following sections we will describe the processes required to get the systems
running and operational.

4.1 Traffic Agent Installation

e solution that emerged was a soware package. It was possible to deploy the so-
lution based on simple instructions handed down by the author. e preparations for
the CDX were done by a team, who prepared all the BT workstations and following the
instructions the soware was deployed. e installation instructions can be found in
Appendix C.

e execution path for the solution was different for Windows and Linux operating sys-
tems. In Linux it had to be installed under /root/scoring_traffic/willie, whereas in Win-
dows environment it was installed in C:\Windows\scoring_traffic\willie. is allowed
the program to run in elevated privileges.

To have some persistence and fail-safes in place for sudden exceptions, the program was

33

set to run as service. For Linux distributions this was achieved by invoking the function-
ality of upstart, with Ubuntu it is available out-of-the-box. For Windows environments
nssm was picked. All of the service configuration was done by the installation scripts
(see Appendix D.1 and Appendix D.2).

Aer installation is complete, the service ”willie” should be started. In Linux it can be
done by command-line with:

In Linux
$# start willie

In Windows from command-line
C:\textbackslash > sc start willie

While starting up, willie is generating a suitable name for itself and then it is trying to
connect to the provisioned IRC server. While networks can be unreliable, willie is in an
endless trying-to-connect loop, until a successful connection is made.

Now the user controlling the bots hsould connect to the IRC server and join the pre-
defined command channel. When everything is lined up, and bots are ready, the user
can control the generation of traffic by issuing the following command into the chan-
nel:

.mload all 100

e command seen, will adjust the load of all available network trafficmodules to be 100.
e wait time between generated requests will be ranging from 0.001 to 0.01 seconds.
is translates to a full load. e load can be adjusted to be also 1000, then the delay
between requests goes into milliseconds.

Additional commands to control the bots and traffic profiles exist and are disclosed in
the source-code documentation.

34

4.2 C&C Infrastructure Installation

e previous instructions aimed to install the willie traffic bot. But the solution used
some external server for logging and C&C communications. Geing logs from the traf-
fic bots, a syslog server was installed in virtual environment. On the same host the C&C
channel, IRC server was running. To be able to install and configure both services in an
efficient way, the initial installation was documented and installation instructions com-
piled. A copy-paste approach was chosen, because it leaves less room to make critical
errors. e installation manuals had additional section on what should be replaced if the
system would be deployed elsewhere. e installation manual for the ngIRCd server can
be found in Appendix E, and the installation manual for logging purposes can be found
in Appendix F.

Further automation was implemented on into the build cycle. As it required many man-
ual steps from commiing the changes into git, to be able to deploy a new release (this
was meant for re-deployment of the whole package of willie), the server side work was
scripted. is meant, the job scheduler cron30 was set up to execute re-build cycle every
5 minutes. e line in crontab file:

*/5 * * * * robot cd /home/robot/ls14/willie/utils \
&& git pull && bash makeistallzip.sh > \
/home/robot/ls14/cronjob.txt 2>&1

Now all the components were installed and ready to run. Re-deployments were auto-
mated.

For willie management, the important directories with modules reside in willie home
directory (in Linux and Windows specified earlier). e extra modules, that give willie
the ability to adjust traffic load and use re-deployment functionality are hidden away
in ”willie\modules”. e original modules that came with willie are also located in this
directory. It was not deemed important to remove the original modules.

All automatic build and re-deploy related scripts were re-located to willie’s home under
utils. is directory is referred to all the automation scripts during build and re-deploy
process.

30Crontab - http://manpages.debian.org/cgi-bin/man.cgi?query=crontab&sektion=5

35

http://manpages.debian.org/cgi-bin/man.cgi?query=crontab&sektion=5

Traffic generating modules were designed to reside somewhere more accessible. us
they were located in a willie’s home subdirectory named ”dne” (download-and-execute).
is subdirectory was designed to be more accessible. All the traffic profiles and target-
lists were saved in this directory. While giving command to download a new profile or
target-list, this file was automatically saved into ”dne” directory.

e authors main contribution andmost time consuming task was the programming and
development of the solution. In the next chapter the solution will be tested in a live CDX
named ”Locked Shields 2014”.

36

5 Evaluation of e Solution

e evaluation of the system was done in several steps which included a test run, live
event execution, and questionnaire sent to participants.

5.1 e Test Run

e Test Run was held on March 28, 2014. e Test Run is a limited game-play between
one RT and two BT-s. e BT members participating in the Test Run will not participate
during the main Execution as BT members. e Test Run BT-s are assembled from the
students of Tallinn University of Technology.

Objectives for test run were31 pre set by the organizers. Identify problems in the infras-
tructure and Gamenet systems was the main objective for performing the test run. It
was paying of as many issues were identified and mitigated during the test run. An-
other objective was to test communications means and information flow between all the
teams participating and systems activated. Reporting and automated scoring were next
on the list to be tested and turned out to be working with minor issues, which were fixed
during the run. e rules of the event were presented and reviewed to be certain that
every one has a clear overview and that the rules are being understandable to all.

As the test run was mainly meant to determine the capability of the infrastructure and
fluidity of the underlying processes, the event was just one day long. Also the BT-s
systems were not fully finalized. Only a small set was operational and it was planned
that new functionality would be added aer the test run. Also only part of the scenario
and injects were tested. One aspect of the scenario that was le untested intentionally
was the legal play.

31Test Run Objectives - https://collab.mil.ee/collab/ls14/Test_Run

37

https://collab.mil.ee/collab/ls14/Test_Run

ere was a test run of the whole system one and a half months before the Live event.
It was performed with only two BT-s active. So to say the load on the infrastructure had
to be kept low. In fact, many a problem arose. e underlying Gamenet crumbled. It
broke down and teams were unable to connect.

Problems were detected not only by the infrastructure team. e initial program code
which was expected to run seamlessly, just failed. e underlying infrastructure had
network time-out issues and the clients kept dropping out the command channel. e
test run gave valuable insight on what should be worked on to be able to survive net-
working issues.

During and aer the test run the code was partially rewrien to suit the situations en-
countered. e problems discovered during testing in Gamenet:

• Unreliable network connections killed the bots. A mechanism to prevent a total
blackout had to be implemented.

• Unpredictable behaviour, the script was leaking processes, eventually eating up
all available resources and thus killing the workstations it was running on.

• Fast re-deployment of the full code-set was missing from the arsenal of code.

is valuable information helped to prepare for the real event. While it is not possible
to fix all the issues, mitigation is the next best approach. ickly a roadmap for further
developing was laid down:

1. Creating a reliable re-deployment procedure, rolling out new code needs to be
tested and a lot of manual labour was involved previously. Automating the gen-
eration of deliverable packages reduces the time spent on deployments.

2. Producing an automated installation for all supported systems was the next es-
sential task. Two main approaches were implemented - an installation script for
Debian Linux based systems and the other based on Windows systems. Both ap-
proaches shared a similar execution path but implementation issues were different.

3. Implement fail-safes if there are network issues in the Gamenet or with worksta-
tions. Implementing the program to run as a service wasmitigation enough for the
workstations. If the service failed to start, it was re-scheduled to start indefinitely.
Mitigating network failures was done by creating a connectivity check loop.

38

5.2 e Live Event

e Live event was taking place during 19-23 May 2014. e main timetable is given in
Appendix G. is time frame was further split. e whole first day was dedicated for
briefing the RT members in a workshop.

Day-0 was set to be May 20th. ere were a lot of preparations still to be done in the
facilities where the event was taking place. All network connectivity and access tests
were planned to this day. Furthermore, all communication tests with BT-s had to be
performed from ground up. Aer, testing, briefings and system touch ups were done,
the Gamenet was closed and BT systems reverted back to initial snapshots.

Day-1, May 21st (Phase I and Phase II). We arrived at site early to make sure that all the
expected bots were running. We were prepared to start troubleshooting if there would
have been a requirement for that. For our surprise, we had almost all the clients already
connected to our command channel. e default traffic profile provided to the bots was
set to 0. Meaning they were just idling and waiting for commands to be sent to them.
e initial count of bots in the channel was 176. at was the highest count noted during
the CDX.

Figure 4: Day-1 traffic generation

Graph explained. We did not implement measuring of traffic generated. Instead, if a bot
started a traffic profile or action, an event was logged to the logging server.

Phase I (07:30Z - 11:00Z / 10:30 - 14:00 GMT+3h).
As we arrived earlier, we started testing available bots. It was our aim to test how much
the infrastructure could handle. e load was altered to be half of what we expected to
be the maximum. On the graph that moment in time is marked with the leer A. We
received word from the networking team that the underlying network is having issues.
e load of traffic agents was reduced to 5 (on the figure 4, the low between peaks A and
B). Aer geing confirmation of network being healthy, the load was increased back

39

to our initial test mark. Suddenly bot started to drop out of the command channel (On
the figure 4, dipping of spike B). Further investigation revealed that the issue was again
in networking. And then the network collapsed. is is a distinct low on the figure 4,
marked with the leer C. e interruption lasted for a whole ten minutes (noted to be
from 10:10 - 10:20 GMT+3). Eventually the network got fixed and the Live Event started.
At 10:30 (GMT+3) the STARTEX 32 was given (on the figure 4 marked with D). As the
bots gradually joined, the traffic profiles were modified to reflect the traffic load of 5, as
it was tested initially.

Phase II (11:00Z - 14:00Z / 14:00 - 17:00 GMT+3h).
All together Phase II was uneventful regarding our traffic generating. During this phase
we did troubleshooting of our code and tried to get our heads around why the traffic
generator would kill the network. We were not the only ones having problems. Infras-
tructure team was baling on their own to have the network perform as planned. For
the remainder of Phase II, the traffic generating profile was le to the 5 margin and not a
lot of traffic was sent to the network. e time was used responsibly and we did discover
some minor bugs. Fixing the bugs gave a boost to our traffic generating ability. Unfor-
tunately this could not have been tested until the competition day was over (marked on
the figure 4 with E, 17:00 GMT+3h), and the Gamenet closed for BT-s access.

Aer Gamenet closure, we were able to test our fix to the traffic agents. e results were
satisfying. e results could be noted during Day-2.

Day-2, May 22nd (Phase III and Phase IV).
Phase III (07:15Z - 11:00Z / 10:15 - 14:00 GMT+3h).
Fixing the code the previous night the was promising to be able to generate more traffic
for this day. Aer arriving, we tried to re-deploy the code to as many bots as possible.
An average of 140 bots was available in the command channel. Despite the fact we had
a fixed code, not all bots were able to download the new version. is time the problem
lay with the BT-s who had restricted external Internet access. Till that moment we relied
on our out-of-band test environment to get updates and download to the managed bots.
Despite the fact that not all agents were updated, our initial test was successful (on the
figure 5 between A and B). Phase III started at 10:15 (GMT+3) and we were asked to
increase the traffic even further than we had dared already. On the figure 5, point B is
indicating the start of phase III and also the increase in traffic events generated.

32Start of Exercise

40

Figure 5: Day-2 traffic generation

e decline of traffic, near B on figure 5, represents the gradual decrease of bots on the
command channel. e BT-s were closing required ports on their firewalls and hosts
were rebooting too. e scenario foresaw an ISP incident for phase III. e replacement
of a router was simulated and the connections to the existing connection was cut. On
figure 5, this event can be seen at mark C. Two teams had set up resilience the day before
and their connections failed over to the backup router. e other BT-s were given time
to re-configure their routers to get the connections back up. To be fair, the traffic profile
was downgraded on the active two teams.

Phase IV (11:00Z - 13:30Z / 14:00 - 16:30 GMT+3h).
As phase III came to an end at 14:00 (GMT+3), phase IV had just started. Many BT-s still
had issues with their networking, which eventually got solved. Figure 5, point E marks
the recovery of BT-s connections. e traffic load for all online traffic agents was set
equally. is procedure was repeated several times, because the bots le and joined the
channel and it was hard to track which of them already had the profile set. We had green
light from the organizers to increase the traffic load for all teams. It was set that DNS
traffic to be generated at a load of 100 (translated to requests sent from workstations
every 0.1 - 0.01 seconds, minimal wait time between requests), and SAMBA load to 35-
50 (we monitored our own SAMBA server, and if it started to choke, load was decreased
accordingly). e extra traffic went not unnoticed by the BT-s. ey started to reboot
the workstations and tried to figure out ways to throle the the traffic. Although, we
had about 120-140 bots to command during phase IV, the traffic generated was sufficient.
Varying traffic is represented on the figure 5 between point E and F, where the laer also
represents the ENDEX 33 of the game.
e overall view of traffic events can be seen on figure 6. When we refer to load, we
mean wait time between requests. If the load is 10, then the delay between requests will
vary from 0.01 - 0.1s. If the load is set to 1000, the delay between requests randomly
varies from 100µs - 1ms.

33End of Exercise

41

Figure 6: All event traffic generation

Figure 6 makes it really clear, that during the 1st half of the game, there were lots of
issues present on the infrastructure side as well in the code (mentioned before as bugs).
Aer the stumbling blocs were removed, the entire system started to work as expected.

5.3 Feedba from Participants

e BT-s point of contact persons were sent a short questionnaire regarding the traffic
generator used during the exercise. e same questionnaire was submied to Red team
members. estionnaire is added in Appendix H. And we are summarizing the answers.

Surprisingly few answers came back. But those, who took time and answered, gave valu-
able insight on what to improve in the future. One major goal was highlighted when
RT members answered that generating on additional traffic was helping them to stay
concealed. On the other hand it cannot be confirmed on full scale. Despite being aware
of the traffic generated, they have requested for more DNS and ICMP traffic for the next
execution. It was requested to generate more IPv4 and IPv6 traffic, not being clear what
protocols in general are meant.
An eye opening request was that next execution should be managed to generate traffic
between BT systems. us far the scenario has not seen it to be done. Hence the sug-
gestion to administrative team will be made and the suggestion requested for further
executions.
Other teams, other than red and blue, have answered that specific WEB servers, they
were responsible for or had interactionwith, were totally untouched by any traffic gener-
ation. e logs indicated action only, when the RT was doing its reconnaissance sweeps.
is indicatesmisinformation in providing target lists. In addition, it was alsomentioned
to generate additional HTTP/HTTPS traffic.

e only BT, who answered in time, wrote that they noticed our traffic generator in the
workstations, but did not tie that to the additional traffic coming from workstations.

42

More to our astonishment, the BT contact had wrien that they need to be informed,
if any such agent is installed on the systems by organizers. Actually it was wrien in
black-and-white in the rules that given ports shall be le open to servers named. Further
more it was detailed what the agent was doing and what the aim of it was. is lets us
conclude that the BT-s do not read the rules in depth, or just skim them through. at
will be noted and improved in further preparations.

e fact that the BT-s did not respond back, might have something in common with our
goals. If we are successful in generating lots of legitimate noise in the network, then
they will be having more troubles identifying the real danger - meaning they have to
look harder to score beer. Which would be the case in a real-life situation anyway. e
real-world-experience is not so forgiving as the CDX might make us think.

5.4 Lessons Learned

Despite the lack of a reporting interface, the command channel (IRC) was sufficient.
Every team was assigned a private channel where all the interactions with bots could
be monitored. And what was requested several times from the managerial team was to
tune the load of traffic profiles throughout the exercise.

Phase I of the CDX was promising. 12 BT-s had all their workstations prepared and
online. e highest count of bots concurrently in the command channel was 176. 3
additional users for management tasks are not counted for. e highest density of bots
was observed only during a short period in beginning of the exercise. Aer that the
numbers started to dwindle. e main hurdle for the teams was that they did not read
all the rules presented to them.

e rules stated a few important guidelines:

• specific port towards the traffic servers should be open during the whole execution,
• the tools in a predetermined directory are for grading and traffic simulation only,
and are off limits to the BT-s and RT-s,

• during the execution all pre-planted programs must remain fully functional on the
workstations (exception is malware, which can be removed).

ere were teams who did not follow the given rules. at meant the bots could not
call in to receive new instructions. In terms of fairness, this sort of action gave some
teams minor advantage, as the default traffic generation threshold was set low to begin

43

with. On the contrary, the team managing the bots was able to pursue the teams to
comply with the rules eventually. Despite the fact that the rules were eventually fol-
lowed, some bots stayed missing. at was due to the fact that some workstations were
rendered inoperable - low disk space was the reason that some bots could not download
new modules or edit workloads. Another reason was the RT who was manipulating the
workstations while completing their objectives.

During the 1st Live execution day, aer all bots were active and traffic paern thresholds
set, the node, which was capturing and recording all network traffic, started to show
symptoms of overload. e traffic paern thresholds were adjusted and the capturing
node recovered. is event gave a good indication howmuch traffic the online bots were
able to generate. Main pressure point was DNS traffic, as RT-s was supposed to be using
DNS tunnelling to perform aacks on blue systems34.

e live exercise was interrupted by a network failure during the 1st day, in which the
traffic generating botnet played a minor role. e underlying routing infrastructure
could not handle all the traffic and failed. A quick fix was to lower the traffic thresholds
and increase it in steps.

e Lessons learned from this CDX:

• Improving the communication to BT-s regarding understanding of rules is a must
for future CDX-s. Rules must be crystal-clear to every participant.

• provide liaisons with more authority to give negative scores, if BT-s are not follow-
ing rules,

• the underlying infrastructure, network in particular, is still in need of improve-
ments,

• inter-BT traffic should be generated to have more realistic experience,
• traffic between BT systems and users should be in requirements set by the scenario,
• distribute target list early and as complete as possible.

5.5 Conclusion of Evaluation

e goals set for the system did not come out during the test run held several weeks
before the live event. Instead, during the test run many flaws were discovered in the
solution, and fixing them during the run was in focus. e main culprit was networking,

34Iodine - http://dev.kryo.se/iodine/

44

http://dev.kryo.se/iodine/

which was unreliable during the test run.

It can be said that the goals we set to deliver were met. Herein we provide the necessary
overview of the solution functioning as promised.

• Willie traffic bot was running on the BT workstations, which again were running
different operating systems (Windows XP, Windows 7, Windows 8 and Ubuntu
Linux 12.04). is concludes that the Goal 1 and also Requirement 1 and Require-
ment 2 are met. Our cross-platform developing proved to be also beneficial not
only running on different operating systems, but also in maintaining a single set of
code.

• Willie is able to run on several platform and utilizing several different tools while
doing so. A solution that is based on open-source tools has not to be open source
itself. But it helps along to get new developers to cooperate and introduce new ideas
and functionality. Additionally giving some functionality back to the community
is helping to conduct other CDX-s more reliably.

• Requirement 3 was requesting for centrally managed traffic agents and in addition
to be able to adjust the traffic profiles and rate during the execution. In conjunction
with Requirement 8, asking for customizing support, it can be stated that both
requirements were fulfilled. roughout the exercise it was possible to adjust the
traffic rate of the bots. During day one the high load supported the failure of the
network. erefore traffic load had do be decreased. is could be achieved by
sending commands from the IRC C&C channel to all available bots. e increase
and decrease of traffic can be witnessed from figure 6, which gives an overall view
of traffic generated. Individual figures, showing the daily traffic paern are shown
respectively on figure 4 for day one and on figure 5 for day two. is also means
that our Goal 3 has been met.

• Goal 4 was dependant on Requirement 4, Requirement 5, Requirement 6, Re-
quirement 8 and Requirement 9. e organizers gave the developers free hands
and choice to implement different protocols. Initially the bots did not know of any
other SAMBA servers and no cross-team traffic was generated during day one. Af-
ter fixing minor issues with the traffic script we uploaded the script to all available
bots. One more step prior to make the new code active. e reload command had
to be given. Aer that indication of more generated traffic was noticeable. is is
indicated on the figure 5 with the leer A. As for Requirement 9 we did not imple-
ment the downloading of web-mail aachments, instead the downloading of files
from network shares. From the given set of protocols, only DNS, SAMBA and telnet
were generated. Despite the low variety, it was possible to create and upload new

45

modules and traffic profiles as requested and execute or load them at will. Meeting
the expectations for Goal 4 are satisfied.

• Goal 5 was backed by Requirement 8, Requirement 9 and Requirement 10. e
developed solution provided the functionality to be customizable throughout the
execution. is statement holds ground as the bot was multiple times re-deployed,
the traffic profiles (ex. SAMBA) were updated during execution, DNS and other
traffic rate was adjusted as requested by the organizers and networking team. e
ability to be versatile and adjustable has been met.

46

6 Future Resear

With this thesis the author has built a proof-of-concept framework for use in future
CDX-s. Some requirements were not satisfied, but will be met with future development
of the given solution. In order they appear, they are: first, Requirement 7, which was
addressing the traffic that a system with internet connection would see. is require-
ment could be met in the future development of the tool, as the bots could be installed
on servers that have direct SINET access. Second, Requirement 12 suggesting traffic
to be generated outside of BT networks. Moreover the various legitimate range of ori-
gin address could be developed by a additional module. e module should be able to
assign an IP address to itself and aer task completion the address is released. ird,
Requirement 13 needs some initial traffic capture or further investigation on simulating
the aack vectors. In addition it has to be clarified which exact aacks are required to
be simulated. And once more this request is for traffic originating from SINET. Fourth
and last of the requirements is Requirement 14. Replaying aacks has been out of the
scope of the simulator. To be able to replay the aacks additional functionality to listen
in on a network and capturing the traffic unnoticed would be required to be developed.
Other way around would be to capture and filter the traffic previously during a test run.

In addition to the previouslymentioned enhancements, manymore traffic profiles should
be developed. A good example is SSH traffic. Ways to generate synthetic SSH traffic
is also presented in [2]. Furthermore, there are additional capable tools available to
create load on the network. Integration with such tools is one aspect that needs to
be investigated. If possible creating modules that are running on multiple platforms.
Many good tools are Linux oriented, but as shown in this thesis, achieving cross-platform
ability should be pursued.

Next deployment of the completed solution will be set up in EITC-s virtual environ-
ment to support the security related laboratories such as ”IDS/IPS solutions” and ”WEB
applications and security”.

47

7 Conclusion

is thesis was inspired by an existing problem within Cyber Defence Exercises (CDX).
In closed environments there was not enough traffic to mask the actions of aacking
team conducting their aacks. is was one of themain problemswith current exercises.

e author explained the real hardship behind the main problem and why it had been
an elusive achievement until this time. Furthermore, additional methods for generating
network traffic were explained to present an overview of what tasks lie ahead.

During the analysis phase of the thesis, the author highlighted the requirements iden-
tified for network traffic generation. Derived from the requirements an architectural
concept was proposed based on the requirements. As this solution contained many
different components, a distinctive set was put together. Work towards developing a
proof-of-concept solution was the next step.

Having finished the development, the completed solution was tested in a real CDX en-
vironment (LS14). An evaluative overview of the solution was provided based on the re-
sults derived from the execution and the participants feedback. Additionally, the lessons
learned from the execution provided a way to enhance future events. Additional features
were suggested for implementation in upcoming iterations to improve the solution.

e outcome of this thesis has a practical solution that can be utilized in closed envi-
ronments to conduct competition alike events. e practicality was the ability to dy-
namically adjust the traffic profiles and rates provided. Moreover, the system was flex-
ible enough that updating and re-deploying was possible. Updating the traffic modules
and target-lists were handled by just downloading the new files to the traffic-agent. A
cross-platform solution was developed that was running on several different operating
systems available during the CDX. e Solution was released under Eifel Forum Licence
(EFL) v2 license. e goals for this thesis were, first, assembling a list of requirements for

48

network traffic generation. Second, developing the architecture of the solution. ird,
develop a network traffic generator that allows to adjust the traffic rate and profiles
during execution. Lastly, evaluate the solution in real life exercise.

e author’s contribution was establishing requirements, system architecture, program-
ming most parts of the solution and evaluating the developed solution in a live Cyber
Defence Exercise, ”Locked Shields 2014”. erefore all goals have been achieved.

e developed system was made available on Bitbucket repository. In case there was an
interest to deploy the complete solution in another environment, the instructions were
provided within the appendixes (Appendix C, Appendix D, Appendix E and Appendix F).
For time being, the source code can be distributed only by request.

49

Bibliography

[1] A. Boa, A. Dainoi, and A. Pescapé. Do you trust your soware-based traffic
generator? IEEE Communications Magazine, 48:158–165, 2010. ISSN 01636804. doi:
10.1109/MCOM.2010.5560600.

[2] H. Djidjev. Network Traffic Generator for Cyber Security Testbeds. Los Alamos
National Laboratory Associate Directorate for eory, Simulation, and Computation
(ADTSC) LA-UR 13-20839, 2:78–79, 2013.

[3] T. Esko. Keskse logihalduse loomine. https://wiki.itcollege.ee/index.php/
Keskse_logihalduse_loomine, 2014. [WWW](2014-02-21).

[4] M. Feily, A. Shahrestani, and S. Ramadass. A survey of botnet and botnet detection.
In Emerging Security Information, Systems and Technologies, 2009. SECURWARE’09.
ird International Conference on, pages 268–273. IEEE, 2009.

[5] S. Floyd and V. Paxson. Difficulties in simulating the Internet. IEEE/ACM Transac-
tions on Networking, 9:392–403, 2001. ISSN 10636692. doi: 10.1109/90.944338.

[6] NATOCCDCOE. Press announcement of the CCDCOE - October 28, 2008. https:
//www.ccdcoe.org/21.html, 2008. [WWW](2014-05-02).

[7] NATO CCD COE. Press announcement of the CCD COE - December 9, 2008.
https://www.ccdcoe.org/91.html, 2008. [WWW](2014-05-02).

[8] NATO CCD COE. Traffic generation for CDX requirements. dra, July 2013.

[9] NATO CCD COE. Cyber Defence Exercise Locked Shields 2013 - Aer Action
Report. http://www.ccdcoe.org/publications/LockedShields13_AAR.pdf,
2013. [WWW](2014-05-02).

50

https://wiki.itcollege.ee/index.php/Keskse_logihalduse_loomine
https://wiki.itcollege.ee/index.php/Keskse_logihalduse_loomine
https://www.ccdcoe.org/21.html
https://www.ccdcoe.org/21.html
https://www.ccdcoe.org/91.html
http://www.ccdcoe.org/publications/LockedShields13_AAR.pdf

[10] NATO CCD COE. Cyber Defence Exercise Locked Shields 2014 - Aer Action Re-
port. dra, 2014.

[11] RISO and MKM. Estonian information society yearbook 2011-2012.
http://www.riso.ee/sites/default/files/info%C3%BChiskonna%
20aastaraamat_2011_ENG_FINAL_0.pdf, 2011. [WWW](2014-04.01).

[12] A. Guerber, C. Fogle, C. Roberts, C. Evans, B. MacDougald, and M. Butkovic. Meth-
ods for enhanced cyber exercises. https://www.hsdl.org/?view&did=740209,
2010. [WWW](2014-04-29).

[13] S. A. Hildreth and T. Division. CRS Report for Congress - Cyberwarfare. http:
//www.fas.org/irp/crs/RL30735.pdf, 2001. [WWW](2014-05-01).

[14] D. Jacobson and J. A. Rursch. Workshop-using cyber defense competitions (CDCs)
to engage and recruit students with IT: How to organize and run your own cyber
defense competition. In Proceedings - Frontiers in Education Conference, FIE, 2009.
ISBN 9781424447152. doi: 10.1109/FIE.2009.5350412.

[15] S. Molnar, P. Megyesi, and G. Szabo. How to validate traffic generators? 2013
IEEE International Conference on Communications Workshops (ICC), pages 1340–
1344, June 2013. doi: 10.1109/ICCW.2013.6649445. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649445.

[16] V. Paxson and S. Floyd. Why we don’t know how to simulate the internet. In Pro-
ceedings of the 29th conference on Winter simulation, pages 1037–1044. IEEE Com-
puter Society, 1997.

[17] S. Sparks and C. C. Zou. An Advanced Hybrid Peer-to-Peer Botnet. IEEE Trans-
actions on Dependable and Secure Computing, 7(2):113–127, Apr. 2010. ISSN 1545-
5971. doi: 10.1109/TDSC.2008.35. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4569852.

[18] T. Tikan. My LS13 scripts. https://github.com/tarko/ls13blue8-scripts,
2013. [WWW](2014-05-20).

[19] P. Trimintzios and R. Gavrila. On national and international cyber security
exercises. survey, analysis and recommendations. http://www.enisa.europa.
eu/activities/Resilience-and-CIIP/cyber-crisis-cooperation/cce/

51

http://www.riso.ee/sites/default/files/info%C3%BChiskonna%20aastaraamat_2011_ENG_FINAL_0.pdf
http://www.riso.ee/sites/default/files/info%C3%BChiskonna%20aastaraamat_2011_ENG_FINAL_0.pdf
https://www.hsdl.org/?view&did=740209
http://www.fas.org/irp/crs/RL30735.pdf
http://www.fas.org/irp/crs/RL30735.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649445
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649445
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4569852
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4569852
https://github.com/tarko/ls13blue8-scripts
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cyber-crisis-cooperation/cce/cyber-exercises/exercise-survey2012
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cyber-crisis-cooperation/cce/cyber-exercises/exercise-survey2012
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cyber-crisis-cooperation/cce/cyber-exercises/exercise-survey2012

cyber-exercises/exercise-survey2012, 2012. [WWW](2014-05-22).

[20] K. V. Vishwanath and A. Vahdat. Realistic and responsive network traffic gen-
eration. ACM SIGCOMM Computer Communication Review, 36(4):111, Aug. 2006.
ISSN 01464833. doi: 10.1145/1151659.1159928. URL http://portal.acm.org/
citation.cfm?doid=1151659.1159928.

[21] Wikipedia. Comparison of internet relay chat bots. http://en.wikipedia.
org/wiki/Comparison_of_Internet_Relay_Chat_bots, 2014. [WWW](2014-
02-10).

[22] Wikipedia. Wireshark Tools — Wireshark Wiki. http://wiki.wireshark.org/
Tools, 2014. [WWW](2014-05-10).

[23] H. R. Zeidanloo and A. A. Manaf. Botnet Command and Control Mechanisms. 2009
Second International Conference on Computer and Electrical Engineering, pages 564–
568, 2009. doi: 10.1109/ICCEE.2009.151. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5380180.

52

http://www.enisa.europa.eu/activities/Resilience-and-CIIP/cyber-crisis-cooperation/cce/cyber-exercises/exercise-survey2012
http://portal.acm.org/citation.cfm?doid=1151659.1159928
http://portal.acm.org/citation.cfm?doid=1151659.1159928
http://en.wikipedia.org/wiki/Comparison_of_Internet_Relay_Chat_bots
http://en.wikipedia.org/wiki/Comparison_of_Internet_Relay_Chat_bots
http://wiki.wireshark.org/Tools
http://wiki.wireshark.org/Tools
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380180
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380180

Appendix A — Validation Teniques for
Traffic Generators

Table taken from [15, p.1361]

Generator
Category

Traffic Gener-
ator

Description Validation

Replay
Engines

TCPreplay User-level application for replaying libp-
cap file

No validation since TCPreplay is a user-
level soware

TCPivo High-speed kernel-level replay engine Inter Packet Timing error
Divide and
Conquer

Replay technique for OC-48 traces using
multiple Gigabit Ethernet PCs

Wavelet scaling analysis and IPT error

Maximum
roughput
Generators

Iperf User-level application for bandwidth,
packet loss ratio and jier testing

No validation since Iperf is a user-level
soware

BRUTE Kernel-level packet generator roughput deviation compared to tuned
values

BRUNO Hardware implemented packet generator roughput deviation and IPT error
KUTE Kernel-level packet generator roughput and IPT accuracy
Ostinato User-level packet generator with friendly

GUI
No validation since Ostinato is a user-
level soware

Model Based
Generators

TG Packet-level generator supporting various
distributions for IPT and PS values

IPT and PS values compared to tuned pa-
rameters presented in [1]

MGEN Packet-level generator supporting various
distributions for IPT and PS values

IPT and PS values compared to tuned pa-
rameters presented in [1]

High-Level
and Auto-
Configurable
Generators

HARPOON Flow-based traffic generator that can
mimic net-flow based measurements

IComparison of original and synthetic
traffic by throughput, byte, packet and
flow volumes, PS distribution and wavelet
scaling

SWING Closed-loop, network responsive traffic
generator which is able to extracts distri-
butions for user, application, and network
behaviour of real measurements

Comparison of original and synthetic
traffic by quantitative statistics values,
wavelet scaling of different applications
and distribution of various QoS metrics

TMIX Traffic emulator for ns-2 based on source-
level characterization of TCP connections

IComparison of original and synthetic
traffic by throughput, flow size, RTT and
application data unit distributions and
wavelet scaling.

LiTGen Open-loop, packet-level traffic generator
based on realistic IP traffic modeling Ex-
tensive

Comparison of original and synthetic traf-
fic by QoS parameters based on queuing
models and wavelet scaling

D-ITG Extensive workload generation frame-
work that can produce traffic for wide
range of network scenarios

Comparison of original and synthetic traf-
fic by throughput and distributions of IPT
and PS values

Special
Scenario
Generators

EAR Traffic replay technique for mimic IEEE
802.11 protocol behaviour

Unique metric for measuring wireless
traffic replay called Event Reproduction
Ratio

ParaSynTG Web traffic generator Web specific metrics such as document
size and popularity distributions

53

Table taken from [15, p.1361]

Generator
Category

Traffic Gener-
ator

Description Validation

YouTube
Workload
generator

Workload generation methods for mimic
YouTube video traffic

Online video specific metrics like video
length, size and rating distributions or
cache performance

Graph-Based
Traffic Gener-
ator

Flow trace generator based on Traffic Dis-
persion Graphs templates

Graph related metrics such as distribution
of degrees or connected edges and verti-
cals

54

Appendix B — LS14 Topologies Overview
All the provided Figures in Appendix B are taken from [10]. Permit to use these figures was granted.
e figures are hereby the property of NATO CCD COE until ”Locked Shield 2014 Aer Action
Report” will be published.

Figure 7 - Blue Systems Overview for Blue Teams

Figure 8 - SINET overview for Blue Teams

Figure 9 - LS14 Overall SINET Overview v2.2

55

Fi
gu

re
7:

Bl
ue

Sy
st
em

sO
ve

rv
ie
w

fo
rB

lu
e
Te

am
s[

10
]

56

Fi
gu

re
8:

SI
N
ET

ov
er
vi
ew

fo
rB

lu
e
Te

am
s[

10
]

57

Fi
gu

re
9:

LS
14

O
ve

ra
ll
SI
N
ET

O
ve

rv
ie
w

v2
.2

[1
0]

58

INSTALLATION GUIDE: Willie TrafficBot

Ubuntu GNULinux

Install pre-requirements
python-setuptools, python-yaml

• sudo apt-get install python-setuptools

• sudo apt-get install python-yaml

Installing willie IRC bot
Installation to be run with root privileges! From robot.itcollege.ee/ls14/ download (ask password from
Margus||Erki)

• https://robot.itcollege.ee/ls14/install.sh

Run the shell script: bash install.sh It will ask for password to download further content from
robot.itcollege.ee. After the script finishes, Willie should be installed and running (install dir.
/root/scoring_traffic/willie).

Windows (XP/Vista/7/8)

Install pre-requirements

• Python2.7

Installation to be run under a user having Administrative privileges (installing a service)! From
robot.itcollege.ee/ls14/ download (ask password from Margus||Erki)

• https://robot.itcollege.ee/ls14/PyYAML-3.11.win32-py2.7.exe

Installing willie IRC bot
Download:

• https://robot.itcollege.ee/ls14/willie.zip

Then unzip willie.zip to a temporary catalog. Browse into the catalog willie\utils and execute install.bat
The script should accomplish the installation task on WinXP/7/8. Willie will be installed in
C:\windows\scoring_traffic\willie

For further questions contact:

• Margus Ernits (margus.ernits@gmail.com)

• Erki Naumanis (erki.nuamanis@gmail.com; skype: erkinaumanis)

Appendix C — Willie Traffic Bot Installation
Instructions

59

Appendix D — Installation and Re-Deploying
Scripts

D.1 Linux Installation Script

#!/bin/bash
"""
Willie IRC Bot CDX Installation package creator
Copyright © 2014, Margus Ernits, <margus.ernits@gmail.com>
Copyright © 2014, Erki Naumanis, <erki.naumanis@gmail.com>
Licensed under the Eiffel Forum License 2.
"""
export LC_ALL=C

apt-cache policy grep 'Installed: (none)' \ && apt-get install python-yaml -y
#apt-cache policy python-setuptools | \

grep 'Installed: (none)' && apt-get install python-setuptools -y \
&& easy_install pyasn1

test -d /root/scoring_traffic/willie/ && rm -rf /root/scoring_traffic/willie/
stop willie
mkdir /root/scoring_traffic/willie/ -p
cd /root/scoring_traffic/
echo "Enter password for download willi bot"
read -s PASSWORD
wget --user=ls14 --password=$PASSWORD --no-check-certificate \

https://robot.itcollege.ee/ls14/willie.zip -O willie.zip

unzip willie.zip
cp willie/utils/willie.conf /etc/init/
start willie
rm -f willie.zip

60

D.2 Windows Installation and Re-Depoyment Script

#!/bin/bash
"""
Willie IRC Bot CDX Installation package creator
Copyright © 2014, Margus Ernits, <margus.ernits@gmail.com>
Copyright © 2014, Erki Naumanis, <erki.naumanis@gmail.com>
Licensed under the Eiffel Forum License 2.
"""

echo "Creating installation zip file"

apt-cache policy p7zip-full|grep 'Installed: (none)' \
&& sudo apt-get install p7zip-full -y

test -r nssm.exe || {
echo "Please put nssm.exe to utils directory"
exit 1
}

cat > install.bat <<EOF
@echo off
:begin
set OLDDIR=%CD%

if not exist "c:\python27" goto err
if not exist "c:\windows\scoring_traffic" goto mkscore
if not exist "c:\windows\scoring_traffic\willie" goto mkdir

:copy
cd %OLDDIR%
cd ..
cd ..
xcopy /s /e /q /y /h "willie" "c:\windows\scoring_traffic\willie\"

C:\windows\scoring_traffic\willie\utils\nssm.exe install willie \
c:\python27\python.exe c:\windows\scoring_traffic\willie\willie.py

goto :eof

61

:mkscore
c:
cd \\windows
mkdir scoring_traffic
goto :mkdir

:mkdir
c:
cd \\windows\\scoring_traffic
mkdir willie
goto :copy
goto :eof

:err
echo "Error P****s occurred (no python27)"

EOF

cat > re-deploy.bat <<EOF
@echo off
set OLDDIR=%CD%
rem sc stop willie
PING 1.1.1.1 -n 1 -w 10000 >NUL
goto :copy

:copy
cd %OLDDIR%
cd ..
cd ..

xcopy /s /e /q /y "willie" "C:\windows\scoring_traffic\willie\"
PING 1.1.1.1 -n 1 -w 5000 >NUL

goto :eof

:err
echo "Error P****s occurred (no python27)"

EOF

cat > re-deploy.sh << EOF
#!/bin/bash
export LC_ALL=C

62

cp -r ../../willie/ /root/scoring_traffic/
cp /root/scoring_traffic/willie/utils/willie.conf /etc/init/
EOF

mv ../../willie.zip ../../willie.zip.old
mv ../../willie-redep.zip ../../willie-redep.zip.old

7z -r a ../../willie-redep.zip ../../willie -xr@exlude_reinstall
7z -r a ../../willie.zip ../../willie -xr@exlude

63

NGIRCD INSTALLATION - DEBIAN 7.4

Install the package

apt-get install ngircd

Configuration Files
configuration file: /etc/ngircd/ngircd.conf

mv /etc/ngircd/ngircd.conf /etc/ngircd/ngircd.conf_bak

configuration items to be replaced:

Certificates
Listen = 192.168.56.101
Password = PASSWORD

"/etc/ssl/certs/ls14.herd-server.pem"

cat > /etc/ssl/certs/ls14.herd-server.pem << EOF
-----BEGIN CERTIFICATE-----
MIIDjzCCAnegAwIBAgIJAKq/8EVslbI/MA0GCSqGSIb3DQEBBQUAMF4xCzAJBgNV
BAYTAkVFMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX
aWRnaXRzIFB0eSBMdGQxFzAVBgNVBAMMDjE5Mi4xNjguNTYuMTAxMB4XDTE0MDIw
OTA1MzcxNFoXDTE1MDIwOTA1MzcxNFowXjELMAkGA1UEBhMCRUUxEzARBgNVBAgM
ClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDEX
MBUGA1UEAwwOMTkyLjE2OC41Ni4xMDEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw
ggEKAoIBAQCwPWCBLTRetIURSF7V2MR/O11AemOx+v+e6eR0s1zBLHN4cVonMUUF
GQliQrCLNrkJjSsrlAkQ0/6MPKfIx50+N8qFQXjmKzi8pOJFdven4FxCYU7a+Hjg
Y1p1Z5wAJxttZf3FwXygt3d0Mm0TMfgCmpz2Cg4zSwxkJTA1CYL4/5lJYorcnTBa
9E6j6WJ3ZUwVNZYNnEO7HPX/TWcly/MQFpf38UmE7YCJ7RuPwMPTpQV7mwq/VkOh
oNxunH15l74UAqJE9DbwM2SsPlOG7/vd45rPNf/nBLO9U3RFLRJbEGFagyV1UC7m
nKYx3mdV7S0j0Eb5B6TsWh6wJbWlj96jAgMBAAGjUDBOMB0GA1UdDgQWBBS6ul3M
LxIgnNBrMMB4gNFx/32w4DAfBgNVHSMEGDAWgBS6ul3MLxIgnNBrMMB4gNFx/32w
4DAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBQUAA4IBAQAZFC+NVoCL0Kx01TO8
Ggv+aavI0DYIz5o478IztgCkuwxUx0Sa4eCLVKldvXnopsNbETHJypQYGC55ZEUG
8fPLEB7/WJVXWjAHjZ1VnPtOPK0oaZtQuSmhUppvF0ozL+JJ9S7j8MQttRwUrATe
KSQI5stWQ66rCybf1Dn77SFzeKDhZktDsLPScRjo/iHZWQPdeBSIXwe+QMQhkG20
23A9XejWGXY4QCLGOTuyfxdURAmMLNHLR7Rf6/gh5QAkB7L9s/CGCbvYpylewkwY
y1Vdj1Jesnt2DPCM/z0LWm3MBcw0utd28GF3oLpPbVYuk1lV5pjLTX4bQdK/I0VE
rLyw
-----END CERTIFICATE-----
EOF

"/etc/ngircd/ls14-dhparms.pem"

cat > /etc/ngircd/ls14-dhparms.pem << EOF
-----BEGIN DH PARAMETERS-----
MIICCAKCAgEAoncW1zlJ1VxZFX+25GAjeqTbyvEqUyWnqtwEp+0dgXuaFN7sxaan
nv2gXiP4L/Bs9NDaYZbGCUwgeNynrEV+KH+rPRlvkawu8DTLqMdvkMYXPq+w8Ukw
g7WI5dMVyD5tFVcG3fUAyeolUZzaOE2NyC1DnsZW9Yg6WtKNdHHFNxP4IrizRF0n

Appendix E — IRC Server Installation Guide

64

xwvayUZFpnCwrH87TActdBJUi5zhFsddPs5RnDIbwUGBdek9tXFhDafuRPAAsyZf
ofReMKsGh5IyLJx4mn+0oQnYNEPQqM2Rh2aeEhUGqxsQhL61cFPMB+zPjIiFuy/l
i2FzN8UmDDXnIzSgwpurP35NQoYiaJvAFP+9GcylZQ2tomHcRYgGROGXgNBgUbKX
BkgVm48APtdk2RqowiL+Am0j32tuZ0RKdLNJeAc1DbeM991OACzFl3lmGkKYhtb1
ogmEOppKR44n6Ctyq89rn58Pteqyg5ofx5XwDUuiv2793AYAGXsr91Kmm/jeVq6h
b7v5Cd2FM/PcXr68ZlE/DkAFfZw2S+BXG52bkj5PSP26BMPKRbXFiX4sfD0U4W90
rJQxVv2npKJaOX6fRr15H1TZOG0aP+BwKYogsg05Qr39LSVhd7KOVNsLLPAq/QJh
YVMgQ2KRbm9yk0mKu+g6vPGN4zgXPo0VDb26/gq7VVlDjVJ7aOpu8UMCAQI=
-----END DH PARAMETERS-----
EOF

"/etc/ssl/certs/ls14.herd-server_nopwd.key"

cat > /etc/ssl/certs/ls14.herd-server_nopwd.key << EOF
-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAsD1ggS00XrSFEUhe1djEfztdQHpjsfr/nunkdLNcwSxzeHFa
JzFFBRkJYkKwiza5CY0rK5QJENP+jDynyMedPjfKhUF45is4vKTiRXb3p+BcQmFO
2vh44GNadWecACcbbWX9xcF8oLd3dDJtEzH4Apqc9goOM0sMZCUwNQmC+P+ZSWKK
3J0wWvROo+lid2VMFTWWDZxDuxz1/01nJcvzEBaX9/FJhO2Aie0bj8DD06UFe5sK
v1ZDoaDcbpx9eZe+FAKiRPQ28DNkrD5Thu/73eOazzX/5wSzvVN0RS0SWxBhWoMl
dVAu5pymMd5nVe0tI9BG+Qek7FoesCW1pY/eowIDAQABAoIBAQCRSZfkBesVY8YL
MFkV+8RJixveCsdjMyNF01WFq1N84HM0yGVkx+Y5RKGKwqWdrnguWpVLMJekqs8+
tsYu6/hCEWZAInBTdzAnu9nZIDEb0QbdpjCGra2gdeddwBNHwPWIYzsoqtBeAcFV
JjjrSRdGtkVNQ47fVDAb4thx8KxrLZS6j3TxVWcdQFzLB+zqUrm97TaQi3nd9N+R
wSEQGtJEX5+ULY75hjT5wOv1XKH3KvKfDo9ZHt3Fu6JDKCMf8jFjIPZDYFnchFHe
/mKSFmVmDJn7Hi3wl+zgHrR7iW7sBkp4XWgQrvERhtuPaCaC9EbONkwMvgE+IpZu
TpdU5LCJAoGBANvJm5MVeV/KYrRXgxjWntecnmmJ5mRaNcb0IovfwmGo7+8jOx5f
KlDdNz9xvuRm57LTvpQqzy6WsvtSUeXUT6yWLgi2/2wiWDtCqXLTjrtey4wb+L2B
OsWDlVN261zLYBlzRRAI4oUbVdidKJ+5lbGiKUWbo9fqekR+ffk/gItFAoGBAM1G
+QWLOe5p0iJoAuosH3l1HN6UMyTIva/2VsXLHqz4SHo8FVB3bqHiQSVH9AyjpfCk
eO6Jzva7tNpiDXJ0KXw8bNFyXdOZYyMQ9pvUuoyKXKBSNMcEJ8C6PWXgM4ejueW9
dcugsoNSLHKkDK/ESE+yqS3TI1vpRNQ+OdwLQOzHAoGBANDwQcN7oJzdqyPCJdCR
BwP10eqGu80erQzrvYO3PfTVQvLVTTg8Q+AHzKO1oEFFSnKINR5p6/dgL9oXkd+p
C+0H/88tGHhV1gbQAoI0d/XL0jjpxndwyMxHoMdtv6XBeSP4nuj1aVIcgGmiTaI6
LQJnJFEV+pYiRAWlMmCma675AoGAPizC/CThVQ8EMJukVl0q41TPe7MTko6itYs9
WQdesTE6cpuEMS0bezjWVn5msvVWK38Fiep/n0fXTVXpkMMSVajPpNipBpAs8NAQ
gb57ClpWF9EOX0Eo8Tz3n8W6ldjHU4iBBz4TE6duAwMhPJOM+2a3y0NqMEqFKGv4
hmd6ML0CgYEAggR8GSyqxMrK6FeCOyQBhvSEWUaKLvnvvW+ZC8GMy/7xE8BtPYcP
XZc4vcVemb3ruVSPi9/uaEyHHYQTpRhM2vibZBcnQqn0VTQ7ujlgyUxX/w3xO4KF
MPwu6qzqF9xYLlG98EXvNpsDIZbq+C3zFFMKfsYIp4G/u1+S38uF0Ww=
-----END RSA PRIVATE KEY-----
EOF

"/etc/ngircd/ngircd.conf"

cat > /etc/ngircd/ngircd.conf << EOF
[Global]
 Name = irc.ls14.herd
 AdminInfo1 = Debian User
 AdminInfo2 = Debian City
 AdminEMail = irc@irc.ls14.herd
 Info = We do come in peace!
 Listen = 0.0.0.0
 MotdPhrase = "Welcome!"
 Password = PASSWORD

65

 PidFile = /var/run/ngircd/ngircd.pid
Ports = 2121
 ServerGID = irc
 ServerUID = irc

[Limits]
 ConnectRetry = 60
 MaxConnections = 500
 MaxConnectionsIP = 500
 MaxJoins = 50
 MaxNickLength = 31
 PingTimeout = 60
 PongTimeout = 20

[Options]
 DNS = no
 OperCanUseMode = yes
 RequireAuthPing = no
 SyslogFacility = local1

[SSL]
 # Before REAL RUN generate new certificates!
 CertFile = /etc/ssl/certs/ls14.herd-server.pem
 DHFile = /etc/ngircd/ls14-dhparms.pem
 KeyFile = /etc/ssl/certs/ls14.herd-server_nopwd.key
 Ports = 6669

[Operator]
 Name = operatorName
 Password = PASSWORD

[Operator]
 Name = operatorName2
 Password = PASSWORD

[Channel]
 Name = #ngircd
 Topic = Our ngircd testing channel
 Modes = tnk
 Key = Secret
 MaxUsers = 500

[Channel]
 Name = #reporting
 Topic = No spamming in here
 Modes = tn
 # joining to a pass protected channel is not implemented right now.
 ; Key = SecretPI
 MaxUsers = 500

[Channel]
 Name = #test
 Topic = No spamming in here
 # i - invite-only t - only ope can set title
 # s - secret n - no messages from outside the channel
 # p - provate k - set a channel key

66

 # b - set a ban mask to keep user out
 # http://www.irchelp.org/irchelp/rfc/chapter4.html#c4_4_2
 Modes = tn
 #Key = Secret
 MaxUsers = 500
EOF

service ngircd restart

67

Installing syslog server

Introduction

Syslog service contains syslog server logstash, database elasticsearch and web interface kibana. Tested
on Ubuntu 12.04 64bit and with Debian GNU Linux 7.3|7.4 64bit.

• Elasticsearch

• Kibana

• Logstash

apt-get install default-jre -y
apt-get remove rsyslog

wget https://download.elasticsearch.org/elasticsearch/\
 elasticsearch/elasticsearch-1.0.1.deb

dpkg -i elasticsearch-1.0.1.deb
sudo update-rc.d elasticsearch defaults 95 10

mkdir /usr/share/logstash
wget https://download.elasticsearch.org/logstash/logstash/logstash-1.3.3-flatjar.jar \
 -O /usr/share/logstash/logstash.jar

wget https://raw.github.com/Yuav/logstash-packaging/master/etc/init.d/logstash \
 -O /etc/init.d/logstash
chmod +x /etc/init.d/logstash
update-rc.d logstash defaults

wget --no-check-certificate https://raw.github.com/Yuav/logstash-\
 packaging/master/etc/default/logstash -O /etc/default/logstash

sed -i s@CONF=/etc/logstash@CONF=/etc/logstash/logstash.conf@ /etc/default/logstash

mkdir /etc/logstash

#http://cookbook.logstash.net/recipes/syslog-pri/#parsing bsd syslog format
cat >> /etc/logstash/logstash.conf <<EOF
input {
 tcp {
 type => "syslog-tcp"
 port => 5514
 }

 udp {
 type => "syslog"
 port => 5514
 }
}

filter {
 if [type] == "syslog" {
 grok {
 match => { "message" => "<%{POSINT:syslog_pri}>%{SYSLOGTIMESTAMP:syslog_timestamp} \

 %{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: \
 %{GREEDYDATA:syslog_message}" }
 add_field => ["received_at", "%{@timestamp}"]
 add_field => ["received_from", "%{host}"]
 }

Appendix F — Logserver Installation Guide

68

 syslog_pri { }
 date {
 match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]
 }
 if !("_grokparsefailure" in [tags]) {
 mutate {
 replace => ["@source_host", "%{syslog_hostname}"]
 replace => ["@message", "%{syslog_message}"]
 }
 }
 mutate {
 remove_field => ["syslog_hostname", "syslog_message", "syslog_timestamp"]
 }
 }
}

output {
 elasticsearch_http {
 host => "127.0.0.1"
 }
 file {
 path => "/var/log/%{host}.%{+yyyy.MM.dd}"
 }
}
EOF

useradd -r -M logstash
service elasticsearch start
service logstash start

apt-get install apache2 -y
wget http://download.elasticsearch.org/kibana/kibana/kibana-latest.tar.gz

tar xzfv kibana-latest.tar.gz
mv kibana-latest/* /var/www/
cd /var/www/app/dashboards/
mv default.json default.json.bak
mv logstash.json default.json
chown www-data.www-data /var/www/ -R

#For testing (assume that IP of log server is 192.168.56.10)
logger -d -n 192.168.56.10 -u5514 -P5514 a shock to the system

https://wiki.itcollege.ee/index.php/Keskse_logihalduse_loomine

69

Appendix G — CDX Timetable
e timetable is based on data available in [10]

Day 1, 21 May 2014: Gaming Day 1

Duration: 06:30Z - 15:00Z (09:30 - 18:00 GMT+3h)

Administrative Actions: 06:30Z - 07:15Z (09:30 - 10:15 GMT+3h)
Phase I (07:30Z - 11:00Z / 10:30 - 14:00 GMT+3h)
07:30Z (10:30 GMT+3h): STARTEX. Start of the Game. Gamenet opened.
11:00Z (14:00 GMT+3h): Deadline for the BT-s to provide SITREP I (covering 0730Z - 1100Z)
11:00Z (14:00 GMT+3h): YT to WT leadership: Summary of BT and RT actions

Phase II (11:00Z - 14:00Z / 14:00 - 17:00 GMT+3h)
11:00Z (14:15 GMT+3h): Game continues.
14:00Z (17:00 GMT+3h): Deadline for the BT-s to provide SITREP II (covering 1100Z - 1400Z)
14:00Z (17:00 GMT+3h): Stop of the Game. Scoringbot stopped. Access to Gamenet closed.
Feedba session 14:00 - 15:00Z (17:00 - 18:00 GMT+3h): Feedback session for Day 1.

Day 2, 22 May 2014: Gaming Day 2
Administrative actions: 06:30Z (09:30 GMT+3h)
Phase III (07:15Z - 11:00Z / 10:15 - 14:00 GMT+3h)
07:15Z (10:15 GMT+3h): Game continues. Gamenet opened.
11:00Z (14:00 GMT+3h): Deadline for the BT-s to provide SITREP III (covering 0715Z - 1100Z).
11:00Z (14:00 GMT+3h): YT to WT leadership: Summary of BT and RT actions.

Phase IV (11:00Z - 13:30Z / 14:00 - 16:30 GMT+3h)
11:00Z (14:00 GMT+3h): Game continues.
13:30Z (16:30 GMT+3h): Deadline for the BT-s to provide SITREP IV (covering 1100Z - 1330Z).
13:30Z (16:30 GMT+3h): ENDEX - Scoringbot stopped.
Feedba session 13:30 - 14:30Z (16:30 - 17:30 GMT+3h): Feedback session for Day 2.

Day 3, 23 May 2014:
Duration: 07:30Z - 10:30Z (10:30 - 13:30 GMT+3h)

Announcing the results
Detailed feedback from all teams

70

Appendix H — Feedba estionnaire
LS14 feedba

During the Exercise a new tool was used to generate random noise onto the wire.
Protocols used were: SMB, telnet, DNS.

In whi team were You in during LS14

• Red Team

• Blue Team

• Other

Email (Optional)

Did your team perform any Network Traffic Monitoring?
(is question is aimed at BT-s)

• Yes

• No

Did You notice the traffic generating service named ”willie” in the workstations? (Optional)

Did the additional traffic make it harder to detect attas from Red teams?
(Mainly aimed at Blue teams, regarding aack traffic recognition)

Do You have suggestions, what other traffic should be generated next CDX?
(Aimed for all participants. Improvements are on the way)

Any additional Comments or suggestions? (Optional)

71

	List of Figures
	Glossary
	Introduction
	Main Problems
	Main Objectives
	Outline of The Thesis
	Acknowledgements

	Current Situation
	Related Problems
	State of Art

	Analysis
	Different CDX formats
	Requirements
	Requirements for Traffic Simulation

	Development Decisions
	Architecture
	Selecting System Components

	Solution
	Traffic Agent Installation
	C&C Infrastructure Installation

	Evaluation of The Solution
	The Test Run
	The Live Event
	Feedback from Participants
	Lessons Learned
	Conclusion of Evaluation

	Future Research
	Conclusion
	Bibliography
	Validation Techniques for Traffic Generators
	LS14 Topologies Overview
	Willie Traffic Bot Installation Instructions
	Installation and Re-Deploying Scripts
	Linux Installation Script
	Windows Installation and Re-Depoyment Script

	IRC Server Installation Guide
	Logserver Installation Guide
	CDX Timetable
	Feedback Questionnaire

