
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C128

Discrete Gravitational Swarm Optimization
Algorithm for System Identification

MARGARITA SPITŠAKOVA

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree of Doctor of

Philosophy in Computer Science on August 4, 2017.

Supervisor: Jaan Penjam, PhD

Department of Software Science

School of Information Technologies

Tallinn University of Technology

Tallinn, Estonia

Opponents: Per Kristian Lehre, PhD

School of Computer Science

University of Birmingham

Birmingham, United Kingdom

Daniil Chivilikhin, PhD

Computer Technologies Laboratory

ITMO University

Saint Peterburg, Russia

Defence of the thesis: September 7, 2017, Tallinn

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and

achievement, submitted for the doctoral degree at Tallinn University of

Technology has not been submitted for doctoral or equivalent academic degree.

Copyright: Margarita Spitšakova, 2017

ISSN 1406–4731

ISBN 978–9949–83–143–2 (publication)

ISBN 978–9949–83–144–9 (PDF)

INFORMAATIKA JA S TEHNIKA C128ÜSTEEMI

Diskreetne gravitatsioonilist vastasmõju
arvestav osakeste parvega optimeerimise
meetod süsteemide identifitseerimiseks

MARGARITA SPITÐAKOVA

TABLEOF CONTENTS

LIST OF PUBLICATIONS 11

OTHER PUBLICATIONS 11

AUTHOR’S CONTRIBUTIONS TO THE PUBLICATIONS 12

ACCOMPANYING CODE 12

INTRODUCTION . 13

Motivation and existing solutions 14

Problem statement 18

CONTRIBUTIONS OF THE THESIS 19

OUTLINE OF THE THESIS 22

1. IDENTIFICATION OF STATE MACHINES 23

1.1. Modular System for FSM Identification 23

1.1.1. ’Task’ module. 24

1.1.2. ’Representation+Decoder’ module 25

1.1.3. ’Search algorithm’ module 26

1.2. Modular System Work-flow 27

1.3. Examples of Modular System Applications 27

1.3.1. Grammatical inference 27

1.3.2. Artificial ant problem 28

1.3.3. System identification 28

1.4. Conclusion . 28

2. STRING REPRESENTATION OF

FINITE STATE MACHINES 29

2.1. Preliminaries. Finite State Machines 29

2.1.1. Alphabet, words, language 29

2.1.2. Finite acceptor 32

5

2.1.3. Finite state transducer 35

2.1.4. Package: Finite state machine 38

2.2. String Representation 39

2.2.1. Existing solutions 39

2.2.2. Restrictions of the search space 40

2.2.3. Proposed solutions 40

2.3. Direct Concatenation of a Transition Table 41

2.3.1. SR(FST): String representation of FST 41

2.3.2. SRB(FST): Binary string representation of FST 46

2.4. Separating a FST Structure. Deriving the Output Function from

the Training Set 50

2.4.1. SRS(FST): Separating the structure of the FST from the

output function 51

2.4.2. SRD(FST): Deriving the output function. 53

2.5. Problems with String Representations 58

2.6. Existing Solutions 59

2.7. Canonical String Representation 59

2.7.1. Preliminaries. Normal form strings 59

2.7.2. cSRS(FST): Canonical string representation of FST . . 62

2.7.3. cSRD(FST): Canonical string representation 63

2.8. Space Complexity 65

2.9. Conclusion . 67

3. SEARCH ALGORITHM. 69

3.1. Preliminaries. Stochastic Optimization 69

3.1.1. Particle Swarm Optimization 71

3.1.2. Gravity as inspiration for optimization algorithms . . . 73

3.1.3. Gravitational Search Algorithm 74

3.2. The Search Space 76

3.2.1. Search space structure 77

3.2.2. Size of the multiverse 78

3.2.3. Storing points in universe 82

3.2.4. Initialization 86

6

3.2.5. Generating random FST 87

3.2.6. Generating an initial set of points 88

3.2.7. Visualization 90

3.3. Search Algorithm 92

3.4. Multiverse Meta Search 93

3.5. Universe Local Search 96

3.6. Conclusion . 98

4. APPLICATIONS . 99

4.1. System Identification 99

4.1.1. Description. 99

4.1.2. Examples 103

4.1.3. Package: System Identification 110

4.2. Artificial Ant Problem 111

4.2.1. Description. 111

4.2.2. Simulation results. John Muir Trail 114

4.2.3. Simulation results. Santa Fe Trail 115

4.2.4. Analysis 116

4.2.5. Package: Trail tracker 117

4.3. Binary Sequence Predictor 118

4.3.1. Description. 118

4.3.2. Examples 119

4.4. Conclusion . 120

CONCLUSIONS . 121

REFERENCES. 125

ACKNOWLEDGEMENTS 131

ABSTRACT . 133

KOKKUVÕTE. 135

Publication A . 137

Publication B . 159

Publication C . 175

CURRICULUM VITAE 185

ELULOOKIRJELDUS . 186

7

Glossary

DFA Deterministic FA.
DFA∅ Unlabeled DFA.
DGSO Discrete Gravitational Swarm Optimization.

FA Finite Acceptor.

FA∅ Unlabeled FA.
FSA Finite State Acceptor.

FSM Finite State Machine.

FST Finite State Transducer.

GA Genetic Algorithm.

GSA Gravitational Search Algorithm.

ICDFA Initially connected DFA.
ICFA Initially connected FA.
MeFST Mealy machine.

MoFST Moore machine.

PSO Particle Swarm Optimization.

SR(FST) String representation of FST.
SR(MeFST) String representation of Mealy machine.

SR(MoFST) String representation of Moore machine.

SRB(FST) Binary string representation of FST.
SRB(MeFST) Binary string representation of Mealy machine.

SRB(MoFST) Binary string representation of Moore machine.

SRD(FST) String representation of FST with derived output

function.

SRD(MeFST) String representation of Mealy machine with

derived output function.

SRD(MoFST) String representation of Moore machine with

derived output function.

SRS(FST) String representation of FST with separated

output function.

SRS(MeFST) String representation of Mealy machine with

separated output function.

SRS(MoFST) String representation of Moore machine with

separated output function.

9

cSRD(FST) Canonical string representation of FST with

derived output function.

cSRS(FST) Canonical string representation of FST.
cSRS(MeFST) Canonical string representation of Mealy ma-

chine.

cSRS(MoFST) Canonical string representation of Moore ma-

chine.

10

LIST OF PUBLICATIONS

A Spichakova, Margarita (2017). Gravitationally Inspired Search

Algorithm for Solving Agent Tasks. Baltic Journal of Modern

Computing, 5(1), 87 – 106.

B Spichakova, Margarita (2016). Modified Particle Swarm Opti-

mization Algorithm Based on Gravitational Field Interactions.

Proceedings of the Estonian Academy of Sciences, 65(1), 15 – 27.

C Spichakova, Margarita (2013). An approach to inference of

finite state machines based on a gravitationally-inspired search

algorithm. Proceedings of the Estonian Academy of Sciences,

62(1), 39 – 46.

D Spichakova, Margarita (2011). An approach to inference of

finite state machines based on gravitationally-inspired search

algorithm. 12th Symposium on Programming Languages and

Software Tools, SPLST’11: Tallinn, Estonia, 5–7 October 2011,

Proceedings. Tallinn: TUT Press, 185 – 195.

OTHER PUBLICATIONS

E Ojamaa, Andres; Kotkas, Vahur; Spichakova, Margarita; Penjam,

Jaan (2013). Developing a lean mass customization based

manufacturing. 2013 IEEE 16th International Conference on

Computational Science and Engineering, CSE 2013: Sydney,

Australia, 3–5 December, 2013, Proceedings. Piscataway, NJ:

IEEE, 28 – 33.

11

AUTHOR’SCONTRIBUTIONSTOTHEPUBLICATIONS

The numeration of the list corresponds to the numeration in the list of publications.

The candidate is the only author of all the listed publications. Contribution to

the papers in this thesis are:

A The article covers the application of the method for inference of

Mealy machine, based onGravitationally Inspired Search Algorithm

to artificial ant problem.

B The article describes the variation of a heuristic search algorithm:

Modified Particle Swarm Optimization Algorithm Based on Grav-

itational Field Interactions based on the hybridization of Particle

Swarm Optimization and Gravitational Search Algorithm.

C The article describes the method for inference of Moore machine

based on a binaryGravitational SearchAlgorithmwith an application

for system identification.

D The article is a conference paper, which was published as

Publication C being revised.

ACCOMPANYING CODE

The Java code, which implements the methods proposed in the thesis, is available

at https://github.com/dragazhar/s-ma-u-g.
The source code, which covers the implementation and the experimental part

of Publication B is available at https://github.com/dragazhar/dioGIpso.

12

INTRODUCTION

The identification task (or a similar reverse engineering task) is an issue related

to constructing a model from examples of system behavior or specification or by

simulating the system. For instance, the task of hardware reverse engineering

consists of constructing a model, e.g. a finite state machine that mimics the

behavior of an integral circuit [1]. A model is reconstructed from the observable

data, i.e. inputs and outputs of the integral circuit.

Finite state machines (FSMs) present a class of abstract models, which can be
characterized by a finite number of states and transitions between them, which

are triggered by event. These abstract models are applicable to a wide set of

problems, such as speech recognition, hardware modeling, software modeling,

artificial intelligence, etc. FSM models are very useful for system identification,

as many systems have FSM-like behavior.

Problem-specific deterministic procedure is used for solving several of the

system identification tasks. For example, the problem of grammatical inference

is solvable by a deterministic algorithm that constructs a prefix-tree acceptor and

applies state merging. However, unfortunately in most cases either no solutions

exist for the problem or the existing solutions are too complex. For example, it

is proven that the grammatical inference problem is NP-complete [2]. To solve

the system identification problem in the case of the non-polynomial complexity

another method must be found.

Heuristics is a technique, which sometimes allows to solve problems faster

and more easily than classical methods.

Thus, heuristics can be applied to solve the identification task in the case of

the non-polynomial complexity. There are two approaches – firstly, the direct

one, whereby heuristic optimization is applied directly to the search problem

without any recourse to classical solutions. Secondly, an indirect approach can

be taken whereby a heuristic algorithm is only additional to the classical one. As

we are looking for a general algorithm for constructing FSM which is applicable

to a wide range of problems (there may be no existing deterministic procedures),

we use the direct approach. There are many different heuristic optimization

techniques, but here we propose to apply population-based search algorithms,

such as Particle Swarm Optimization or Genetic Algorithms.

13

Motivation and existing solutions

In this section we describe the set of tasks, that are quite common in the field of

FSM inference and can be used for benchmarking and search algorithm analysis.

Some of the tasks are discussed later in the experimental part (see Chapter 4).

Grammatical inference

The term grammatical inference usually describes the set of problems, which

require inference of one of the structures for recognizing languages, e.g.

automaton, grammar, regular expression (more details in Section 2.1). More

generally, the language recognition task can be seen as building up a classifier

system, which separates all words build over alphabet into two sets – accepted

and rejected strings (see Figure 1). Thus, the classifier returns a classification

for each input string.

� �

����������

	

���������
����
���
��
�
��
���
��
����
��
���

��
���
��
�
��
���
��
����
��
���

����
���
����
�
����
���
����
����
����
�����

��
���
��
�
��
���
��
����
��
��

����� ������

	

���������
��

	

���������
��

	

���������
��

Figure 1 Classifier

The inference problem in this case lies in constructing the model using only

a given set of classified strings (a training set usually consists of positive and

negative examples). In general, the grammatical inference task is an NP- complete

problem [2]. However, there are several deterministic methods (building up a

Prefix-tree acceptor, evidence-driven state merging, etc.). Nevertheless, using

heuristic methods can be very effective for grammatical inference.

The choice of structure, which describes the language that would be inferred,

is based on the language type. Finite acceptors, regular grammar or regular

expressions can be used for regular languages. Other classes of languages (e.g.

context-free languages) require more complex structures, such as context-free

grammars or push-down automata. The heuristic inference method is also

successfully utilized for solving the identification task for non-regular languages.

Existing solutions

Hingston [3] shows how a Genetic Algorithm (GA) can be used for the inference
of a regular language from a set of positive and optionally also negative examples.

That method is based on constructing a prefix-tree acceptor and on state-merging

14

using a GA. The method is benchmarked on a set of Tomita regular languages [4]
and the results are compared to RPNI (Regular Positive Negative Inference).

Kohli [5] proposed a method for finite acceptor (FA) inference from positive

and negative examples (the training set must be structurally complete), based

on a Genetic Algorithm, wherein the FA is represented by a two- dimensional

chromosome and all GA operations are defined in tabular form. The method

was tested on 7 regular languages and compared with GIG, RPNI methods.

Horihan and Lu [6] introduced a method for the optimization of incremental

evolution during the construction of the FA, which recognizes the strings

represented by regular expressions, based on Particle Swarm Optimization,

wherein the FA is presented by a transition graph and a progressive fitness

function.

Lucas and Reynolds [7] proposed an evolutionary method for learning

deterministic FA (DFA) that evolves only in the transition matrix and uses a

simple deterministic procedure to optimally assign state labels. This method was

compared to Evidence Driven State Merging on random data sets.

Bongard and Lipson [8] described an active learning approach to the problem

of grammatical inference (estimation-exploration algorithm) and presented a

comparison with evolutionary methods and Evidence Driven State Merging.

Lankhorst [9] proposed a GA for the inference of context-free grammars,

Lucas [10] presented chromosome design based on normal form for the evolution

of context-free grammars. Zomorodian [11] applied Genetic Programming to

the construction of push-down automata for learning context-free languages.

Lankhorst [12] continued previous work [31] and presented a GA for learning

non-deterministic push-down automata.

System identification

The identification task is more complex than the classification task. The problem

lies in constructing a model that mimics the behavior of a system (i.e. a black

box). The system has more complex behavior – for each input string (sequence

of input signals) it returns the output string (sequence of output signals) (see

Figure 2). Such behavior can be simulated by a finite state transducer (FST)
(see Subsection 2.1.3).

Therefore, the system identification task, i.e. constructing a model based on

behavior can be described as a task of FST inference from the set of input/output

pairs. Such models are useful for representing hardware devices (for example in

reverse engineering task) and for language processing (translating between two

languages). The system identification problem is discussed in more detail in

Section 4.1.

15

� �

������
��	
������

��
�
��
�
��
�
��
���
��
��

��
�
��
�
��
�
��
���
��
��

����
�
����
�
����
�
����
���
����
����

��
�
��
�
��
�
��
���
��
��

��
�
��
�
��
�
��
���
��
��

��
�
��
�
��
�
��
���
��
��

����
�
����
�
����
�
����
���
����
����

��
�
��
�
��
�
��
���
��
��

����� ������

Figure 2 System as a black box

Existing solutions

Manovit, Aporntewan and Chongstitvatana [13] presented the Genetic Algorithm

approach wherein each individual was presented by bit string to synthesize a

synchronous sequential logic circuit, which can be described by FSM, from a

partial input/output sequence (circuit specification). This method was tested on

reconstructing ’Frequency Divider’, ’Odd Parity Detector’, ’Modulo-5 Detector’,

’Serial Adder’.

Chongstitvatana and Aporntewan [14] continued their work and presented the

improvement method, which increases the correctness percentage of the finite

state machine FSM synthesis using multiple partial input/output sequences.

Ngom, Baron and Geffroy [15] presented a new approach based on genetic

simulation for Moore machine identification, where the Moore machine is

presented by a string of integers. Tongchim and Chongstitvatana [16] presented

the parallel implementation of Genetic Algorithm for FSM inference. Niparnan

and Chongstitvatana [17] suggested using the Genetic Algorithm only for

inferring the transition function of a Mealy machine and using the deterministic

procedure for constructing output function. Geng [18] presented the GA method

for the identification of asynchronous FSM. In this method both one-dimensional

and two-dimensional representation are discussed.

Shayani and Bentley [19] presented a very specific biologically inspired

boolean representation of FSM (input, current state, next state) and a GA-based
method for inferring the output function of a Moore machine from I/O pairs.

Naidoo and Pillay [20] presented the method for the inference of Mealy machines

that is based on Genetic Programming (represented by a deterministic graph).

Artificial ant

The artificial ant task was initially proposed by Jefferson [21] in 1991 to

benchmark Evolutionary Algorithms. The task consists of designing a trail

tracker, which acts as an artificial ant and follows the trail that contains food

(see Figure 3). The goal of the ant is to collect the maximum amount of food for

a limited number of steps (traditionally 200 steps).

16

The ant is constructed as a FSM (Mealy type) like agent. The input of such a

machine is only one variable – whether there is food in the next cell, with values

’Food’ and ’Empty’. The outputs are defined as the actions of the ant: ’Wait’,

’Turn left’, ’Turn right’, ’Move’.

����������
���

	

�
����

�
��
�����

���	
�����
�������	�
����������

Figure 3 Artificial ant

Existing solutions

The artificial ant task has been researched by many authors [22], [23], [24], [25]

and is often used for benchmarking the Evolutionary Algorithms. Therefore, we

also use it as the benchmark test for our method (see Section 4.2).

There are several methods for solving the artificial ant task, some authors

use FSM inference [22], [23], [25], others apply Genetic Programming [22].

For example, Chellapilla [26] used the modular Mealy machine as the artificial

ant and the evolutionary programming procedure as the optimization algorithm.

It is also possible to solve the artificial ant task by artificial neural network

learning [21].

Other possible applications

There is a set of other applications that can be solved by FSM identification:

1. prediction of binary sequences [27], [28],

2. game theory (modeling agents and strategies), for example, strategies

for protecting resources [29], prisoner’s dilemma [27], negotiations

strategies [30],

3. image processing tasks [31], such as automatic target detection [32], image

chain code (code-based recognition of binary images) [33], [31],

17

4. modeling controllers [34], e.g. robot controllers [35], pulse generator,

counters, control water pump [34], thermostat [27], etc.

Problem statement

Although there are several tasks from different areas, which can be solved by the

identification of FSM, these have a number of common issues:

• As a result of the modeling/identification process, we want to obtain a

FSM (Mealy machine, Moore machine, FA, etc.).

• The task defines the type of the machine, its alphabets and number of

states. Using task description, we can define the measurement that shows

how a given FSM solves the task.

• The search process requires stochastic optimization algorithms (Evolution-

ary Algorithm, Genetic Algorithm, etc.).

We define our general task as building a problem-independent population-

based heuristic optimization technique, which is applicable to the task of

constructing a finite state machine that models the behavior of the system,

from examples of the behavior of the system or its specification. To reach

that goal we need to answer several questions:

Question I. Which problems can be solved by inference of FSMs?

Question II. What do these problems have in common?

Question III. Is it possible to build up a unified method, which solves several

of these problems?

Question IV. Why do we need to choose stochastic optimization?

Question V. Which stochastic algorithm can we use in this case?

Question VI. How to adapt existing stochastic algorithms for FSM identifi-

cation?

Question VII. Is it possible to minimize search space?

Question VIII. Is our proposed algorithm better than other existing algorithms?

18

CONTRIBUTIONS OF THE THESIS

To answer the questions listed in the introduction, we propose the following

methods for the inference of FSMs.

I. Modular system

We propose the modular system, which helps us to answer Questions I–III.

Although most of the existing algorithms are made for solving an exact problem,

we discover that those problems have several characteristics in common and can

be solved by a unified method. Hence, we propose to separate the problem

statement from the solving algorithm (see Chapter 1). This allows us:

• to use the same search algorithm for different problems or

• to use different search algorithms for one problem.

The proposed approach was applied to several well-known benchmarks, such

as artificial ant, the system identification problem and the binary sequence

predictor (see Chapter 4). The experiments showed that such varied problems

can be solved by one unified method.

� �

������
�������������	�

��������

�	��		�
�
���

	
����	

�	
��	������������

�	�����������
��

���

�	���	�

�
����

����
	�
�
	�������	

Figure 4 The outline of the FST search process

19

The proposed system which implements the ideas of unified methods for

FSM identification consists of three main modules (see Figure 4). Each system

module presents an independent part of the system and can be replaced by

another implementation or definition:

• ’Task’ module includes the implementation of basic concepts and

definitions that are used to describe the problem statement. In order to

describe the problem, we need to define the type of FSM, choose alphabets,

the number of states and construct the FSM evaluation algorithm. These

parameters can be derived from the problem specification.

• ’Search algorithm’ module includes the implementation of different sto-

chastic optimization algorithms, such as the Genetic Algorithm or Particle

Swarm Optimization.

• ’Representation+Decoder’ module contains algorithms for defining FSM
and the string representation of FSM.

II. Search space representation technique

The efficiency of the search method depends not only on the choice of search

algorithm, but also on the structure and size of the search space. There are

several techniques used for the representation of FSM in the context of stochastic

optimization (see Chapter 2).

The most popular heuristic search algorithms, such as Evolutionary Algorithm

or Particle Swarm Optimization, work with string representations, while graph

representation requires a special search algorithm, e.g. Genetic Programming.

Therefore, string representation was chosen for our purposes.

First of all, we propose string representation, which handles theFSM transition

and output functions separately (see Sections 2.3 and 2.4). Secondly, we discuss

some problems common for string representations, namely with isomorphisms

and FSMs with unreachable states. Finally, we adapt the canonical string

representation method (Section 2.7), which is initially used for the enumeration

of finite acceptors.

The new search space representation (Section 2.8)

• helps to reduce the search space size (Question VII),

• divides the search space into non-intersecting parts, which can be handled

separately (Section 3.2),

• introduces one-to-one correspondence between FSM and triple of numbers,

which can be used for hashing (Section 3.2.3).

20

III. Two–stage search algorithm

In the context of FSM identification, we propose a new two-stage search

algorithm (see Chapter 3).

Usually, the search algorithm considers the entire search space, but due to

the specific string representation of FSM, the search space consists of several

non-intersecting subsets. Thus, we propose to subdivide the search algorithm

into two phases:

1. the search space is subdivided to subspaces. A score value is assigned for

each subspace and the subspace with the best score value is returned,

2. a more detailed search in the chosen subspace is carried out, and if a

solution is not found, the next subspace with a higher score is searched.

IV. Discrete gravitational swarm optimization algorithm

Deterministic methods exist for some of the system identification problems,

although they cannot always be applied to systems with complex behavior due to

the growing space and time complexity. Therefore, the stochastic optimization

is very helpful for the identification of such complex systems. The family of

stochastic optimization methods is big and constantly developing. Traditionally,

the different types of the evolutionary computation methods are used for the task

of FSM identification, but there are newer methods based on social behavior

algorithms (Questions IV–VI).

Currently, one of the most popular stochastic optimization methods is Particle

Swarm Optimization (PSO), which is inspired by the social behavior of a set

of objects, e.g. a flock of birds or a school of fish [36]. Initially, a PSO is

designed for the real-valued vector that is uncomfortable for the representation

of FSM, as state machines are traditionally represented by transition graphs, or

a transition table (or their modifications). Representation is further elaborated

upon in Chapter 2.

Consequently, we propose the following modifications:

• Discrete variation of the optimization algorithm. We propose to modify

the PSO search operators to be able to explore the discrete search space.

• Gravitational interactions between particles. Although PSO works well

on smooth search spaces, we need to add more sophisticated behavior to

our search algorithm, because the search space in our case has a more

complex landscape. Thus, we propose to adapt the Gravitational Search

Algorithm (GSA) and present the new modified PSO algorithm based on

gravitational field interactions.

The proposed improvements help to create a new heuristic search algorithm,

which is applicable to a discrete search space and has fewer control parameters,

which makes adjusting the algorithm simpler (see Publication B).

21

OUTLINE OF THE THESIS

This thesis is structured as follows: Chapter 1 describes the set of problems

and general ideas concerning the identification of FSM. The modular system is

introduced. Chapter 2 gives an overview of the existing string representations of

FSM and presents the adaptation of the canonical string representation method

to the problem of search space representation. Chapter 3 contains the basic

definitions of existing stochastic optimization methods and introduces a new

search algorithm. Chapter 4 covers the results of applying the proposed method

to benchmark tasks such as system identification, artificial ant problem and

binary string predictor.

22

1. IDENTIFICATIONOF STATEMACHINES

Identification is an inference process, which deduces an internal representation of

a system (internal model) from samples of its functioning (external model) [37].

Inference of finite state machines (FSMs) is widely applied in different

fields, such as logical design, verification and software systems, for example

grammatical inference, system identification, artificial ant problem, agent and

controllers modeling, image processing, etc. Although these tasks are from

different areas, they have several common issues that can be used to create a

generalized problem solver:

• As a result of the modeling/identification process we want to obtain a

FSM, such as Mealy machine, Moore machine, FA etc.

• The task defines the machine type, its alphabets and number of states. We

can define the measurement that shows how a given FSM solves the task

by defining the evaluation function from task description.

• The search process requires a stochastic optimization algorithm (e.g.

Evolutionary Algorithm, Genetic Algorithm).

Using these common ideas we can construct the system, which helps to

formalize the problem statement and uses search algorithms for solving the FSM
identification problem.

1.1. Modular System for FSM Identification

We propose a modular system (see Figure 1.1), wherein each component is

independent and can be replaced by other implementations. The ’Task’ module

includes definitions and implementation required for defining the problem

statement, such as the FSM type, alphabets, its number of states, and the FSM
evaluation process.The ’Search Algorithm’module contains the implementation

of one of the the stochastic optimization algorithms, for example the Genetic

Algorithm or Particle Swarm Optimization. The ’Representation+Decoder’

module implements the algorithms forFSMdefinition and its string representation.

The proposed system allows to either use the same algorithms for different

problems or to try different algorithms for one problem. On the other hand,

23

������ ���������������	

��������

�������		���

����	���		��
������

��	�����

���	���������������

�����������	��

��������

���

� � �

����	������	

��	��	������	

�������

Figure 1.1 Inference of finite state machines

the problem-specific approach assumes the specialized algorithms and additional

knowledge that can be extracted from the problem statement.

The implementation consists of several packages (Figure 1.2), each of which

includes the implementation of a certain part of the method:

• FSM package presents the basic functionality required for processing the

FSM structure and implements the main definitions (see Section 2.1).

• Representation package contains the implementation of methods

required for constructing, generating and decoding processes for different

string representations of the FSM (see Chapter 2).

• Search Algorithm package contains the functionality, which defines and

implements the whole search process (see Chapter 3).

• Problems package defines the problems and contains implementation for

each test problem used for benchmarking (see Chapters 4).

• Visualization package contains entities required for visualizing the

search process (discussed in Subsection 3.2.7).

These components must be considered in more details. To begin with, there

are three main modules – ’Task’ module, ’Search algorithm’ module and

’Representation+Decoder’ module.

1.1.1. ’Task’ module

Before starting the search process we need to formulate the problem statement.

The ’Task’ module must contain the formalized description of the problem and

describe the behavior of the system to be modeled.

24

Figure 1.2 General structure

This module consists of three parts:

• The environment is a formalization of the system description. In essence,

it is the training data of another system behavior description that can be

used for simulation.

• The agent is a formal description of FSM behavior, which defines the

machine type and corresponding work-flow. The alphabets, required for

FSM work-flow, are observable from the Environment description. The

agent is closer to the idea of the model, which must be learned to act in

the environment.

• The score function assigns the evaluation function value for each FSM. It

must return value in the range [0 . . . 1], with value ’1.0’ being optimal. It
shows how well the agent acts in a given environment, i.e. how well the

model describes the system.

1.1.2. ’Representation+Decoder’ module

There are several traditional representations of FSM – transition table, transition

graph, matrices, etc. The choice of representation type depends on the

search algorithm type. For some algorithms, it is better to choose graph

structures, some of the algorithms work on strings, others only on binary

strings. Each FSM representation must allow for correct transformations of

FSM → Representation(FSM) and vice versa, Representation(FSM) →

25

FSM . Random generation of points in search space and operations on the points

that store their properties and correctness must also be possible.

In our approach, decimal string representation of FSM is used, which

is in fact constructed as a concatenation of transition table rows. The

’Decoder’ module contains the algorithms required for transformation of

Representation(FSM) → FSM . The information necessary for a correct

work process is the type of machine, the number of states n, the input alphabet
Σ and its size k, the output alphabet ∆ and its size m.

This representation was chosen to eliminate the connection between the

FSM type and search algorithm construction. For each FSM type, there is a

transformation algorithm, which is part of the ’Decoder’ module. Thus, the

search algorithm works on the abstract string level. To evaluate the FSM, we

need to transform string to FSM and pass it to the ’Task’ module for evaluation.

1.1.3. ’Search algorithm’ module

According to the problem description, we need to construct the search algorithm,

which works on the abstract string level. The search algorithm knows nothing

about FSMs and problem description except the set of strings that represents

FSM and the evaluation value for a given string, which is computed by the

’Task’ module. The main goal of this algorithm to choose the best string, which

in fact represents the best FSM. In our approach, the stochastic optimization

algorithm is employed.

Population-based meta-heuristic search algorithms, such as Evolutionary

Algorithm, Particle Swarm Optimization, Simulated Annealing, etc., have some

characteristics in common. Those properties allow us to unify the problem

statement in order to apply different optimization techniques and choose the

optimal one:

• The search space is defined as a set of points, where each point represents

one candidate solution. Usually, the solutions are presented not directly, but

by some other structures that are comfortable for modification algorithms.

Initially, a certain fixed amount of points is generated randomly. For

instance, this set of points is known as population in Evolutionary

Algorithms or swarm in Particle Swarm Optimization.

• The function we need to optimize is known as the evaluation function.

Using this function, we can assign the score value for each point in search

space that shows the usefulness of this solution. The optimization task is to

find a minimum or maximum, depending on the definition of the function.

For example, for Evolutionary Algorithms this function is known as the

fitness function.

• The search algorithm contains modification algorithms for constructing

a new solution from existing ones, for example selection, mutation

26

and crossover for Evolutionary Algorithms, move for Particle Swarm

Optimization. Those modification algorithms have two main aims –

exploration (the ability to search the whole search space) and exploitation

(the ability to find a better solution in a local situation).

The population-based meta-heuristic optimization technique can be described

as a consequent application of a modification algorithm to an initial set of

solutions until the optimal solution with the best evaluation function value is

found.

1.2. Modular SystemWork-flow

The FSM identification process (Figure 1.1) can be described as follows:

1. The task must be defined (this is done by defining the Task module). Using

this data we can construct input and output alphabets, choose the machine

type and implement the score function.

2. The parameters and type of search algorithm is chosen. One of the

parameters is the number of states n.

3. The search process consists of four phases. Firstly, the search algorithm

chooses one string which is decoded into FSM. This FSM is then

evaluated and lastly, the string with the score value is returned to the

search algorithm.

1.3. Examples of Modular System Applications

This section highlights several examples of task formalization. The modules

’Representation+Decoder’ and ’Search algorithm’ are the same for all tasks.

However, the ’Task’ module varies depending on the problem at hand.

1.3.1. Grammatical inference

It is useful to examine the problem of grammatical inference in more detail. In

order to formalize this problem, we need to define the following three formalisms:

• the agent is a finite state acceptor (FSA) with the input alphabet observed
from the set of examples,

• the environment is a set of positive (accepted by FSA) and sometimes

negative (rejected) examples, i.e. a set of strings,

• the score functions shows how well the constructed FSA describes a

training set, which is usually constructed on the basis of string difference

functions.

27

1.3.2. Artificial ant problem

In the artificial ant problem, the formalisms are the following:

• the agent is a Mealy machine with the input alphabet Σ = {FOOD, NO−
FOOD} and the output alphabet ∆ = {LEFT, WAIT, RIGHT,
MOV E}, which simulates the behavior of the ant,

• the environment is a grid with pre-given locations for the food, and for

where the ant is moving

• the score function can be defined in several ways. One possible

definition [23] is that the score function shows how many food cells were

visited within 200 steps. To define score function in the range [0 . . . 1]] we
can divide the number of visited food cells by the total number of cells

with food.

1.3.3. System identification

The System identification problem can be deconstructed as follows:

• the agent is a finite state transducer (a Mealy or Moore machine) with

input and output alphabets that can be observed form the training set. The

type of FST is user defined,

• the environment is given by the training set that contains the input and

output pairs, which are observed from the system we need to model,

• the score function shows how the well the constructed FST describes

the given training set (data consistency) and usually the score function is

constructed using the string distance functions.

1.4. Conclusion

The identification of FSMs is a classical task that is encountered in a wide

range of applications. In some situations, there is a deterministic procedure

for solving the task. However, in certain cases, we need to apply other search

algorithms, e.g. stochastic optimization. This chapter gives a brief overview

of the system, which allows to solve the FSM identification task for different

problem statements without significant changes in the search process. The

proposed system consists of modules, each of which presents a subsystem that is

responsible for specific algorithms — one of the modules is for the formalization

of the problem statement, the second one is for the representation of FSM as

string and the third one implements the search algorithm. As a result, there is

no need to alter the entire system, if the problem statement is changed. We

demonstrated how well-known problems can be formalized for such system.

28

2. STRING REPRESENTATIONOF

FINITE STATEMACHINES

The term finite state machine (FSM) describes a class of models that are

characterized by having a finite number of states. The class of FSMs can

be subdivided into several subclasses, the most important of which are finite

acceptor (FA), finite state machine without output, or finite automaton, and the
finite state transducer (FST), a finite state machine with output. The class of

FSTs includes several modifications of FST, but this research focuses on the

Moore and Mealy machine.

2.1. Preliminaries. Finite State Machines

This section provides a brief overview of the FSM theory, including basic

definitions and algorithms.

2.1.1. Alphabet, words, language

A symbol is a basic component of strings and alphabets.

Definition 2.1 (Alphabet) The alphabet Σ is a set of symbols Σ = {a1, . . . , an}.

Definition 2.2 (String(Word)) A sequence of symbols from alphabet Σ is called

string(word). The empty string is denoted as ε.

Definition 2.3 (Length of word) If w is a string then |w| denotes the number of
symbols in w and is called the length of w, |ε| = 0.

Definition 2.4 (Equal words) Two strings w and u are equal if they contain the
same number of symbols |w| == |u| in the same order.

Definition 2.5 (Concatenation) Given two strings w, u ∈ Σ∗, we can form a new

string w · u (w · u = wu), called the concatenation of w and u. Concatenation of
w and u means adjoining the symbols in u to symbols in w. The order in which
strings are concatenated is important. The concatenation with an empty string ε
has the following property:

εw = wε = w

29

Example 2.1 Let’s define x = a1a2 . . . an and y = b1b2 . . . bm, then x · y =
a1a2 . . . anb1b2 . . . bm

Definition 2.6 (Prefix, suffix) Let w,u ∈ Σ∗. If x = wu, then w is called the

prefix of x and u is called suffix of x.

The set of all strings over alphabet Σ is denoted by Σ∗.

Definition 2.7 (Language) For any alphabet Σ, a subset of Σ∗ is called language.

Definition 2.8 (Operations on languages) If L and M are languages over

alphabet Σ, then:

• L ∪M is the union of L and M ,

• L ∩M is the intersection of L and M ,

• L̄ is a complement of L,

• L ·M = {wu : w ∈ L and u ∈ M} is the product of L and M . A string

belongs to LM , if it can be written as a string in L concatenated with a

string in M ,

• L0 = {ε} and Ln+1 = Ln · L. For n > 0, the language Ln consists of all

strings w of form w = u1u . . . un where ui ∈ L,

• L∗ = L0 ∪ L1 ∪ L2 ∪ . . . is the Kleene Star of language L.

Measuring distances between words

We specify several functions for computing the distance between strings. First

of all, we define the distance between symbols.

Definition 2.9 (Distance between symbols∆(a, b)) We specify a function∆(a, b),
where a, b are symbols in a certain alphabet:

∆(a, b) =
{ 0 : a == b

1 : a 6= b
(2.1)

that returns 1 if symbols are not equal.

Based on ∆(a, b) function (Definition 2.9) we can specify several functions
for measuring the distances or similarities between strings.

Definition 2.10 (Strict distance) is defined as:

Dstrict(x, y) =
{ 0 : x == y

1 : x 6= y
(2.2)

The strict distance returns 0, if the strings are equal (see Definition 2.4),
otherwise it returns 1.

30

The computing of strict distance has the worst case time complexity

O(|x|) (when |x| == |y|), otherwise (if |x| 6= |y|, then function returns 1) it is
constant in time .

Definition 2.11 (Hamming distance) is defined as the following:

DHam(x, y) = ΣMin(|x|,|y|)
i=1 ∆(xi, yi) (2.3)

Hamming distance returns the number of differences (different symbols).

Computing Hamming distance has a complexity of O(Min(|x|, |y|)).

Similarly to Definition 2.11 we can define Hamming similarity, which is

sometimes more applicable as the string distance function.

Definition 2.12 (Hamming similarity) is defined as:

SHam(x, y) = Min(|x|, |y|)− ΣMin(|x|,|y|)
i=1 ∆(xi, yi) (2.4)

or

SHam(x, y) = ΣMin(|x|,|y|)
i=1 ∆(xi, yi) (2.5)

Hamming similarity returns the number of equal symbols.

Definition 2.13 (Length of maximal equal prefix) is defined as:

DLP (x, y) = Σx=y
i=1 ∆(xi, yi) (2.6)

The analysis of strings is stopped, when the first difference between symbols

is found.

Example 2.2 The comparison between string distance functions DLP (x, y)
(Definition 2.13), DHam (Definition 2.11), Dstrict (Definition 2.10) is shown

on the string distance between ”qwerty” and the strings in each column (see

Table 2.1).

Table 2.1 String distance functions

Function ”qwerty” ”qeerty” ”qweryt”

Dstrict 0 1 1

DHam 0 1 2

DLP 6 1 4

31

2.1.2. Finite acceptor

In this subsection we introduce the basic knowledge of FA, which is a special

case of FSM. The FSM takes a string in a specific alphabet Σ and outputs the

value ’yes’ if the string is accepted by machine or ’no’ if the string is rejected.

The set of all possible input strings can be divided into two classes: accepted

strings and rejected strings. The FA itself can be viewed as the classifier (see

Figure 2.1).

s(t)...s(i)...s(2)s(1) // Finite
Acceptor

Output signal //

Figure 2.1 Conception of finite acceptor

Definition 2.14 (Finite acceptor (FA)) is a five-tuple (Q, Σ, δ, q0, F), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• δ is a transition function: δ : Q× Σ→ Q.

The work-flow of the model is presented in Algorithm 1.

Definition 2.15 (Deterministic finite acceptor (DFA)) If for each state q ∈ Q
and each symbol a ∈ Σ, there exists at most one transition (i.e., |δ(q, a)| ≤ 1),
the acceptor is a deterministic finite acceptor (DFA), otherwise it is a

non-deterministic finite acceptor (NFA).

Theorem 2.1 Let L be a language accepted by a non-deterministic finite

automaton, then there exists a deterministic finite automaton that accepts L [38].

There are two popular ways to represent FA – a transition diagram (graph)

and a transition table.

Definition 2.16 (FA Transition diagram) A transition graph is a special case of

the directed labeled graph, where vertices are labeled by Q; there is an arrow
labeled ′a′ from vertex labeled ′s′ to vertex labeled ′t′ exactly when t ∈ σ(s, a).
The initial state is marked by an inward-pointing arrow and final state by double

circles.

Definition 2.17 (Yield operator) If M = (Q, Σ, δ, q0, F) is FA, a ∈ Σ ∪ ε, when
we say (q, aw) `M (p, w), iff p ∈ δ(q, a), where `M is called yield operator.

32

Algorithm 1 FA work-flow

1: function runMachine(inputString)
2: qc ← q0
3: for i = 0→ length(inputString)− 1 do

4: makeTransition(inputString[i])
5: end for

6: if qc ∈ F then

7: output← accepted
8: else

9: output← rejected
10: end if

11: end function

12: function makeTransition(ic)
13: transition← TransitionTable[qc.label][Σ.position(ic)]
14: qc ← qtransition.toState

15: end function

Definition 2.18 (FA Transition table) A transition table is a special representation

method for FA, where each row presents states from Q and each column

corresponds to an input symbol from Σ. Each cell contains δ(q, σ) with respect
to column and row numbers.

Example 2.3 An example of a simple FA is represented as the transition diagram

(see Figure 2.2) and as the transition table (see Figure 2.3). The five components

of the FA are:

• the set of states {q0, f1},

• the input alphabet Σ = {a, b},

• the initial state q0,

• the set of final states F = {f1},

• the transition function δ : Q× Σ→ Q is defined as

δ(q0, a) = q0, δ(q0, b) = f1, δ(f1, a) = q0, δ(f1, b) = f1

Definition 2.19 (String accepted by an acceptor) A string ′w′ is said to be

accepted by an acceptor M iff (q0, w) `∗
M (p, ε) for some p ∈ F , i.e. there exists

a finite sequence of transitions, corresponding to the input string w, from the

initial state to a certain final state.

33

?>=<89:;q0a
33 ??

b //GFED@ABC?>=<89:;f1
a

oo bkk

Figure 2.2 Example of a transition diagram for FA.

a b

→ q0 q0 f1
← f1 q0 f1

Figure 2.3 Example of a transition table for FA

Definition 2.20 (Language accepted by an acceptor) The language accepted by

M , is denoted as L(M) and defined as:

L(M) = {w | ∃p ∈ F : (q0, w) `∗
M (p, ε)}.

Definition 2.21 (Accessible state) Let A = (Q, Σ, i, q0, F) be a FA. We say that
state q ∈ Q is accessible if there is a string x ∈ Σ∗ so that q0 · x = q, where
q0 · x = q means that state q can be reached from state q0 by making transitions
according to a corresponding symbol x0 . . . xn.

q0
x0−→ q1

x1−→ . . .
xn−→ q

A state that is not accessible is called inaccessible.

Definition 2.22 (Unlabeled FA (FA∅)) The structure FA∅ =(Q, Σ, δ, q0) denotes
FA without empty states.

Example 2.4 Suppose we haveDFA∅ with 4 states (see Figure 2.4). State labeled

’3’ is unreachable from the initial state, so it is redundant and can be removed

without any damage to the work cycle. This leads us to the FSM with only three

states.

Definition 2.23 (Accessible FA. Initially connected FA (ICFA)) An acceptor
FA is accessible (or initially connected) if its every state is accessible.

Definition 2.24 (FA Isomorphism) Two DFA A1 = (Q1, Σ1, δ1, q1
0, F 1) and

A2 = (Q2, Σ2, δ2, q2
0, F 2) are called isomorphic by states if |Σ1| = |Σ2| = k

and there exist bijections: Π1 : Σ1 → [0, k), Π2 : Σ2 → [0, k) and bijection
β : Q1 → Q2 such that β(q1

0) = q2
0 and, for all σ1 ∈ Σ1 and q1 ∈ Q1,

β(δ(q1, σ1) = δ2(β(q1), Π−1
2 (Π1(σ1)))), and β(F 1) = F 2 [39]

34

� �

�

�
�

�

�

���

�
�

�

Figure 2.4 State ’3’ is unreachable.

2.1.3. Finite state transducer

Generalizing the knowledge about FA (see Section 2.1.2), we can construct a

machine, which produces not only one output value (accepted or rejected), but

the sequence of output values, i.e. an output string (see Figure 2.5). While there

are several types of FST, we consider only two of them – the Moore machine

and the Mealy machine.

Definition 2.25 (Moore machine) is a six-tuple (Q, Σ, ∆, δ, λ, q0), wherein

• Q is a finite set of states and q0 denotes the start state,

• Σ is the input alphabet,

• ∆ is the output alphabet,

• δ : Q× Σ→ Q is the transition function,

• λ : Q× Σ→ ∆ is the output function represented by the output table that

shows what character from ∆ is printed by each state that is entered [38].

s(t)...s(i)...s(2)s(1) //
Finite
State

Transducer

r(n)...r(i)...r(2)r(1)

Output channel
//

Figure 2.5 Conception of FST

The work-flow for the Moore machine is presented in Algorithm 2.

35

Algorithm 2 Moore machine work-flow

1: function runMachine(inputString)
2: outputString ← empty
3: qc ← q0
4: outputString ← outputString + qc.value
5: for i = 0→ length(inputString)− 1 do

6: makeTransition(inputString[i])
7: end for

8: end function

9: function makeTransition(ic)
10: transition← TransitionTable[qc.label][Σ.position(ic)]
11: qc ← qtransition.toState

12: outputString ← outputString + qtransition.toState.value
13: end function

Example 2.5 Figure 2.6 illustrates two Moore machines. We can construct the

function for translating the states of Moore machine Miso1 to the states of Moore
machine Miso2:

Miso1.q0 →Miso2.q0

Miso1.q1 →Miso2.q2

Miso1.q2 →Miso2.q1

Thus, Moore machine Miso1 is isomorphic to Miso2.

��� ���

���

�
�

�

�

���

(a) Moore machine Miso1

��� ���

���

�
�

�

�

���

(b) Moore machine Miso2

Figure 2.6 Two isomorphic Moore machines

36

Definition 2.26 (Mealy machine) is a six-tuple

(Q, Σ, ∆, δ, λ, q0), wherein:

• Q is a set of states, where q0 denotes the start state,

• Σ is the input alphabet,

• ∆ is the output alphabet,

• δ : Q× Σ→ Q is the transition function, and

• λ : Q × Σ → ∆ the output function represented by the output table

that shows what character from ∆ is printed by each transition that is

processed [38].

The work-flow for the Mealy machine is presented in Algorithm 3.

Algorithm 3 Mealy machine work-flow

1: function runMachine(inputString)
2: outputString ← empty
3: qc ← q0
4: for i = 0→ length(inputString)− 1 do

5: makeTransition(inputString[i])
6: end for

7: end function

8: function makeTransition(ic)
9: transition← TransitionTable[qc.label][Σ.position(ic)]
10: qc ← qtransition.toState

11: outputString ← outputString + transition.value
12: end function

Definition 2.27 (Input/output sequence (I/O sequence)) An input-output sequence

S of lengthn is a set of pairs{(i0, o0), (i1, o1), . . . , (in, on)}where (ii, oi) ∈ Σ×∆.
An input/output sequence set ζ is a set of S.

The Moore and Mealy machines behave differently while processing output:

Moore machines print a character when entering the state, while Mealy machines

print a character when traversing an arc. However it is possible to construct

equivalent machines.

Theorem 2.2 If Mo is a Moore machine, then there is a Mealy machine Me that

is equivalent to it. For every Mealy machine Me, there is an equivalent Moore

machine Mo.

37

Definition 2.28 (Equivalence of Mealy and Moore machines) Given a Mealy

machine Me and a Moore machine Mo, which automatically prints the character
′x′ in the start state, we say that these two machines are equivalent, if for every

input string the output string from Mo is exactly
′x′ concatenated with output

from Me.

2.1.4. Package: Finite state machine

This package contains structures and algorithms required for correctly working

with FSMs. The main class of the package is FSM, which represents the structure,
while other classes define the parts of FSM.

• State class implements the attributed states (see Definition 2.35).

• Transition class implements the attributed transition.

• Alphabet class implements the alphabet structure (see Definition 2.1).

• FSM class presents the abstract structure for storing FSM (see Defini-

tions 2.26, 2.25). The FSM class is consists of a set of states, a set of

transitions and a transition table, which defines the relation between states

and transition. FSM class also contains the input and output alphabets.

Figure 2.7 Class diagram: FSM

38

2.2. String Representation

This section discusses the different representations of a FST. The proper

representation of a FST is essential to the optimization of a search algorithm.

Each representation of a FST must allow for:

• correct transformations [FST → Representation(FST)] and vice versa
[Representation(FST)→ FST],

• random generation of points in search space and

• operations on the points that store their properties and correctness.

2.2.1. Existing solutions

There are several FSM representations, which are used for different heuristic

search algorithms. Mainly, they can be divided into two groups:

I FSM is represented by a transition diagram (see Defini-

tion 2.16). For example in [6], [20], [32], [26], [40] The

general idea of this representation method lies in the elimina-

tion of transformations: [FSM → Representation(FSM)] and
[Representation(FSM) → FSM]. The search space is defined

so, that solutions are transition diagrams (graphs) and all movements

in the search space are defined on the graph modification level.

This representation is used together with Genetic Programming.

II FSM is represented by a table (see Definition 2.18). This

representation method is based on tabular FSM representation.

Thus, each point of the search space is a structure, which can be

considered as a transition and output table. There are three main

subgroups:

•2D representation. In [5], [33], [31], [34], [18] a FSM is

represented by a transition and output table. The transition

and output tables are used directly, therefore the solution

transformations during the search algorithm work on the table

modification level.

•1D representation. In [27], [15] a FSM is represented in

tabular form, but transition and output table is transformed

into a linear 1D structure, for example by the concatenation of

rows.

•Bit string representation. In [19], [13] a FSM is represented

by binary string.This way, the transition and output table is

coded by binary numbers.

39

2.2.2. Restrictions of the search space

We are interested only in tabular representation of FSM (in 1D form). In the

following subsection, the basic definitions and algorithms required for FSM
transformation are introduced.

To minimize the size of the search space, we consider only FSTs with the

following properties:

• deterministic, i.e. for each state and input symbol there is only transition

from this state labeled by this symbol. This also requires there to only be

one initial state,

• completeness,i.e. for each state and symbol in the input alphabet there is

a transition from this state labeled by this symbol,

• initial state is labeled by ’0’,

• known number of states |Q| = n,

• ε− transitions are not allowed

• ε− output values are not allowed.

2.2.3. Proposed solutions

We propose to only use string representations of FST. String representation

allows to apply different stochastic optimization methods, which work in

the discrete search space, to the problem of FST inference. Nevertheless,

for correctly working with the corresponding string representation of FSM,

both transformation algorithms are required [FST → Representation(FST)]
and [Representation(FST)→ FST], which requires additional computational
power.

Figure 2.8 shows the relation between different string representations

introduced in the following sections:

• Direct concatenation of a transition table (see Section 2.3): SR(FST)
– string representation of FST (see Subsection 2.3.1), SRB(FST) –

binary string representation of FST (see Subsection 2.3.2). These

string representations were initially proposed in the master thesis of the

author [41]. SRB(FST) is also presented in [42].

• Separating the transition and output functions of FST. Deriving the

output function (see Section 2.4): SRS(FST) – string representation of

FST with a separated output function (see Subsection 2.4.1), SRD(FST)
– string representation of FST with a derived output function (see

Subsection 2.4.2). SRS(FST) is a further development of SR(FST).

40

� �

�������

��
�
�����

��
�
�����

���
�	���

��
�
�����

��
�
�����

��������

Figure 2.8 Different FST representation codes

• Canonical string representation: cSRS(FST) – canonical string repre-

sentation of FST (see Subsection 2.7.2), cSRD(FST) – canonical string

representation ofFSTwith a derived output function (see Subsection 2.7.3).

cSRS(FST) is an improvement of SRS(FST), which applies the normal

form string representation. This approach allows to eliminate isomorphisms

and FSMs with unreachable states, which makes the search space smaller.

2.3. Direct Concatenation of a Transition Table

The general idea behind this type of representation is the transformation of a

transition table into string code, which stores all he information about transitions

and output functions.

2.3.1. SR(FST): String representation of FST

The intuitive way of transforming [Transition table → string] is to present

the transition table as the concatenation of its rows. This subsection covers the

definitions as well as the encoding and decoding transformation algorithms for

Moore and Mealy machines.

Moore machine

Taking a target Moore machine with n states, where:

• the input alphabet is Σ = {i0, . . . , ik−1},

• the output alphabet is ∆ = {o0, . . . , om−1},

• the set of states is Q = {q0, . . . , qn−1 }.

41

The row of the transition table, which contains information about one state qj

can be described by the structure presented in Figure 2.9. This structure contains

oj as a code for the corresponding output symbol at the state and qi... are codes

(labels) for target transition states with respect to the input symbol i0...k−1.

State qj

oj qi0 q... qik−1

Figure 2.9 One row of a Moore machine transition table

In order to transform the entire transition table into the string, we concatenate

the rows of the transition table in the order of state labels. Figure 2.10 shows the

resulting structure of the Moore machine string representation.

State q0 . . . State qn−1

o0 qi0
0 qi...

0 q
ik−1
0 on−1 qi0

n−1 qi...
n−1 q

ik−1
n−1

Figure 2.10 SR(MoFST) as a concatenation of rows of a Moore machine transition
table

Definition 2.29 (String representation of a Moore machine) is a structure in the

form

SR(MoFST) = [o0qi0
0 qi...

0 q
ik−1
0 . . . on−1qi0

n−1qi...
n−1q

ik−1
n−1],

where

• [o0 . . . on−1] ∈ [0 . . . m− 1] present codes for output values and

• [qi0 . . . q
ik−1
n−1] ∈ [0 . . . n− 1] present target states of the transitions.

Theorem 2.3 (The space complexity of SR(MoFST)) The length of SR(MoFST)
for a Moore machine with n states and over the input alphabet k with the output
alphabet with m symbols is

(1 + k)× n

The number of corresponding SR(MoFST) strings is

(m× nk)n

Example 2.6 A Moore machine Mmo1 with a transition diagram represented in

Figure 2.11 is examined more closely.

For example, let the machine Mmo1 have 4 states Q = {0, 1, 2, 3}, the
input alphabet contain 2 symbols Σ = {a, b} and the output alphabet 2

symbols ∆ = {0, 1}. Then the Moore machine Mmo1 can be represented as
SR(Mmo1) = [1, 1, 0, 1, 1, 2, 0, 3, 3, 1, 1, 0] (see Figure 2.12).

42

ONMLHIJK0/1b --

a

��

ONMLHIJK2/0

a,b

��ONMLHIJK1/1a
--

b

==||||||||| ONMLHIJK3/1
a
oo

b

aaBBBBBBBBB

Figure 2.11 Transition diagram for a Moore machine Mmo1

a b a b a b a b

1 1 0 1 1 2 0 3 3 1 1 0

Figure 2.12 String representation SR(Mmo1)

The transformation [Moore machine → SR(MoFST)] is given by

Definition 2.29. The transformation [SR(MoFST) → Moore machine] is
presented by Algorithm 4.

Algorithm 4 SR(MoFST)→Moore machine transformation

Require: Input alphabet Σ with k symbols

Require: Input alphabet ∆ with m symbols

Require: SR(MoFST)
1: for i = 0→ n− 1 do

2: createState(qi)

3: qi.value← ∆position(SR[i×(1+k)])
4: if i == 0 then

5: setInitial(qi)

6: end if

7: end for

8: for i = 0→ n− 1 do

9: fromState← qi

10: for j = 0→ k − 1 do

11: toState← qSR[i×(1+k)+j+1]
12: inSymbol← Σj

13: transition← Transition(fromState, toState, inSymbol)
14: end for

15: end for

16: return Moore machine

The generator of a random Moore machine in the form of SR(MoFST) is
presented in Algorithm 5.

43

Algorithm 5 Random generator of SR(MoFST)
Require: Input alphabet Σ with k symbols

Require: Input alphabet ∆ with m symbols

1: for i = 0→ n− 1 do

2: SR[i× (1 + k)]← randomInteger(0 . . . m− 1)
3: for j = 0→ k − 1 do

4: SR[i× (1 + k) + j + 1]← randomInteger(0 . . . n− 1)
5: end for

6: end for

7: return SR(MoFST)

Mealy machine

Taking a target Mealy machine with n states, where:

• the input alphabet is Σ = {i0, . . . , ik−1},

• the output alphabet is ∆ = {o0, . . . , om−1},

• the set of states is Q = {q0, . . . , qn−1 }.

One row of the transition table for such a Mealy machine can be described

by the structure presented in Figure 2.13. There the information for the

corresponding state qj is stored. For all transitions from this state with respect to

the input symbol i0...k−1 we encode the output value oi... and the label of target

state qi... .

State qj

oi0 qi0 oi... qi... oik−1 qik−1

Figure 2.13 One row of a Mealy machine transition table

The structure, required for coding the entire transition table is constructed as

the concatenation of sections (see Figure 2.13) in the order of state labels (see

Figure 2.14).

State q0 . . . State qn−1

oi0
0 qi0

0 . . . o
ik−1
0 q

ik−1
0 . . . oi0

n−1 qi0
n−1 . . . o

ik−1
n−1 q

ik−1
n−1

Figure 2.14 SR(MeFST) as the concatenation of the Mealy machine transition table
rows

44

Definition 2.30 (String representation of a MeFST) is the structure in the
following form:

SR(MeFST) = [oi0
0 qi0

0 . . . o
ik−1
0 q

ik−1
0 . . . oi0

n−1qi0
n−1 . . . o

ik−1
n−1q

ik−1
n−1],

where

• [oi0
0 . . . o

ik−1
n−1] ∈ [0 . . . m − 1] present codes for the output values of the

transitions and

• [qi0
0 . . . q

ik−1
n−1] ∈ [0 . . . n− 1] present the target states of the transitions.

Theorem2.4 (The space complexity ofSR(MeFST)) The lengthof SR(MeFST),
which represents a Mealy machine with n states and over input alphabet k and
with output alphabet with m symbols is

((1 + 1)× k)× n

The number of corresponding SR(MeFST) strings is

((m× n)k)n.

The transformation [Mealy machine → SR(MeFST)] is given by

Definition 2.30. The transformation [SR(MeFST) → Mealy machine]
is presented by Algorithm 6.

Example 2.7 A Mealy machine Mme1 with the transition diagram represented in
Figure 2.15 is considered further. Q = {0, 1, 2, 3}, Σ = {a, b}, ∆ = {0, 1}. The
string representation for this Mealy machine is

SR(Mme1) = [1, 2, 0, 0, 0, 0, 1, 1, 1, 3, 0, 3, 1, 0, 0, 1] (see Figure 2.16).

?>=<89:;0b/0 66
a/1 //?>=<89:;2

a/1,b/0

��?>=<89:;1b/1 66

a/0

OO

?>=<89:;3
b/0

oo

a/1

__>>>>>>>>>>>>>>>>>

Figure 2.15 Transition diagram of Mealy machine Mme1

State 0 State 1 State 2 State 3

a b a b a b a b

1 2 0 0 0 0 1 1 1 3 0 3 1 0 0 1

Figure 2.16 String representation SR(Mex2)

45

Algorithm 6 SR(MeFST)→Mealy machine transformation

Require: Input alphabet Σ with k symbols

Require: Input alphabet ∆ with m symbols

Require: SR(MeFST)
1: for i = 0→ n− 1 do

2: createState(qi)

3: if i == 0 then

4: end if

5: end for

6: for i = 0→ n− 1 do

7: fromState← qi

8: for j = 0→ k − 1 do

9: toState← qSR[i×2×k+j×2+1]
10: inSymbol← Σj

11: outSymbol← ∆SR[i×2×k+j×2]
12: transition← Transition(fromState,

toState, inSymbol, outSymbol)
13: end for

14: end for

15: return Mealy machine

2.3.2. SRB(FST): Binary string representation of FST

Some of heuristic search algorithms, such as the Genetic Algorithm, only

work with binary multidimensional search spaces. Therefore, if we apply such

heuristic search algorithms to the problem of FSM identification, we need to

construct a method for representing a FSM in the form of binary strings.

The intuitive way of representing FSM as binary string is to apply encoding

methods presented in Subsection 2.3.1: [FST → SR(FST)] and transform each

integer of the code SR(FST) into binary string [SR(FST) → SRB(FST)]
(see Algorithm 7).

Algorithm 7 SR(FST)→ SRB(FST) transformation
Require: SR(FST)
for all integer i ∈ SR(FST) do

b← integerToBinary(i)
SRB(FST)← SRB(FST)+b

end for

return SRB(FST)

46

Definition 2.31 (SRB(FST): Binary string representation) Binary string

representation of FST is a string constructed by consequent transformation of

each integer in SR(FST) to binary string.

Example 2.8 Let us consider a Moore machine Mmo1 (see Example 2.6)

and a Mealy machine Mme1 (see Example 2.7) and transform their

SR(FST) codes into binary strings. The corresponding binary represen-

tation of Mmo1 is SRB(Mmo1) = [10100101100111110100] (see Figure 2.17)
and the corresponding binary representation of Mme1 is SRB(Mme1) =
[110000000101111011100001] (see Figure 2.18)

a b a b a b a b

1 1 0 1 1 2 0 3 3 1 1 0 SR()
1 01 00 1 01 10 0 11 11 1 01 00 SRB()

Figure 2.17 Binary string representation SRB(Mmo1)

State 0 State 1 State 2 State 3

a b a b a b a b

1 2 0 0 0 0 1 1 1 3 0 3 1 0 0 1

1 10 0 00 0 00 1 01 1 11 0 11 1 00 0 01

Figure 2.18 Binary string representation SRB(Mme1)

Theorem 2.5 For the Moore machine with n states, where:

• the input alphabet is Σ = {i0, . . . , ik−1},

• the output alphabet is ∆ = {o0, . . . , om−1},

• the set of states is Q = {q0, . . . , qn−1 }.

In order to present one symbol of ∆ we require dlog2me bits, while for
encoding one state q the dlog2ne bits are required. Thus, the length of

SRB(MoFST) can be computed by:

|SRB(MoFST)| = n× (dlog2me+ k × dlog2ne).

The transformation [SR(MoFST) → SRB(MoFST)] is described by

Definition 2.31, the reverse transformation [SRB(MoFST) → SR(MoFST)]
is described by Algorithm 8.

47

Algorithm 8 SRB(MoFST)→ SR(MoFST) transformation
Require: SRB(MoFST)
1: bO ← dlog2me
2: bN ← dlog2ne
3: for i = 0→ n− 1 do

4: booleanString ← empty
5: for j = 0→ bO − 1 do

6: booleanString ← booleanString + SRB(MoFST)[i× (bO + k×
bN) + j]

7: end for

8: SR(MoFST)[i× (1 + k)]← parse(booleanString)
9: booleanString ← empty
10: for j = 0→ k − 1 do

11: for k = 0→ bN − 1 do

12: booleanString ← booleanString + SRB(MoFST)[i× (bO +
k × bN) + j × bN + k + bO]

13: end for

14: SR(MoFST)[i× (1 + k) + j + 1]← parse(booleanString)
15: booleanString ← empty
16: end for

17: end for

18: return SR(MoFST)

Theorem 2.6 Similar computations can be done for the Mealy machine with n
states, where

• the input alphabet is Σ = {i0, . . . , ik−1},

• the output alphabet is ∆ = {o0, . . . , om−1},

• the set of states is Q = {q0, . . . , qn−1}.

In order to present one symbol of ∆ we require dlog2me bits, while for
encoding one state q the dlog2ne bits are required. Thus, the length of

SRB(MeFST) can be computed by:

|SRB(MeFST)| = n× k × (dlog2me+ dlog2ne)

The transformation [SR(MeFST) → SRB(MeFST)] is described by

Definition 2.31, the reverse transformation [SRB(MeFST) → SR(MeFST)]
is described by Algorithm 9.

Although the encoding process [SR(FST) → SRB(FST)] is correct, the
reverse process [SRB(FST)→ SR(FST)] can be incorrect in situations where
SRB(FST) was generated. For example, for a random binary string with

48

Algorithm 9 SRB(MeFST)→ SR(MeFST) transformation
Require: SRB(MeFST)
1: bO ← dlog2me
2: bN ← dlog2ne
3: for i = 0→ n× k − 1 do

4: booleanString ← empty
5: for j = 0→ bO − 1 do

6: booleanString ← booleanString + SRB(MeFST)[i × (bO +
bN) + j]

7: end for

8: SR(MeFST)[2× i]← parse(booleanString)
9: booleanString ← empty
10: for j = 0→ bN − 1 do

11: booleanString ← booleanString + SRB(MeFST)[i × (bO +
bN) + bO + j]

12: end for

13: SR(MeFST)[2× i + 1]← parse(booleanString)
14: end forreturn SR(MeFST)

dimensionality |SRB(FST)|, not all binary codes have corresponding integers
inside the range (see Example 2.9).

Example 2.9 Let a Moore machine Min have 3 states Q = {0, 1, 2}. Two bits
are required for storing information about states. During the decoding process

a pair of bits is interpreted as shown in Figure 2.19. The Moore machine

represented by such SRB(FST) is invalid.

bits state

00 q0
01 q1
10 q2
11 error

Figure 2.19 SRB(FST). Error in the decoding process

Such invalid SRB(FST) representations (see Example 2.9) can appear during
a random generation of FST in SRB(FST) form or after some transformations

of SRB(FST) due to certain search algorithm operations.

In order to solve the problem of invalid SRB(FST) we need to modify

[SRB(FST) → FST] transformation. For example one of the following

methods can be applied:

49

• Ignore method, where an invalid FSM is marked as an incorrect machine

and no longer considered in a search process.

• Repair method, where a non-existing codes are translated into existing

labels, or replaced by existing codes.

• Generate a new SRB(FST) method, which can be applied only during the
random generation of the machines. If a generated FSM is invalid, then a

new SRB(FST) must be generated, until the generated FSM is correct.

• Restrict method, where the number of states n and the sizes of input and

output alphabets are restricted by the powers of two (see [43]).

Further information about SRB(FST) can be found in [41], where SRB(FST)
was used with combination with a GA and in Publication C [42], where a binary

GSA was used as a search algorithm.

2.4. Separating a FST Structure. Deriving the Output
Function from the Training Set

The SR(FST) coding scheme is very powerful as it contains both transition and
output functions. This allows to control all of the FST properties. Nevertheless,

it should be observed that the search space contains FSTs with the same

transition function, but with different output functions (see Example 2.10). In

the context of search algorithm this means that it is more difficult to find both

the correct transition and the output function. However, if we separate the output

and transition functions into two different structures and apply a search algorithm

only to the transition function part (the output function can be derived from the

training set), we can minimize the space complexity.

Example 2.10 Let us have a Moore machine Maab with 4 states Σ = {b, a} and
∆ = {0, 1}. Our task is to construct Moore machine, which is consistent with
the training set ’aab recognizer’ (Figure 4.8).

Figure 2.20 illustrates certain chosen points of the search space, where

each point is SR(Maab) code. Each point clearly presents Maab with the

same transition function, but with the all possible combinations of output

functions. Maab contains four states, and each state can have output value

from ∆, resulting in 42 possible combinations. Each point was evaluated with
respect to the ’aab recognizer’ training set. Evidently, only one point with

SR(Maab) = [0, 0, 1, 0, 0, 2, 0, 3, 2, 1, 0, 1] is a valuable in the context of this
training set. Other points can be omitted.

Definitions of the coding scheme SRS(FST), where transition and output

functions are considered separately are presented in the Subsection 2.4.1.

Subsection 2.4.2 defines the concepts of attributed state and attributed transition

and provides algorithms for constructing Moore and Mealy machines through

decorating DFA∅, using the training set.

50

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

Figure 2.20 All possible combinations for the output function with a predefined structure

2.4.1. SRS(FST): Separating the structure of the FST from the

output function

SRS(MoFST): a Moore machine

The separation of the transition and output functions can easily be done by

constructing two strings from a SR(FST) string. Figure 2.21 depicts the

separation of the transition and output function transformation for MoFST.

Definition 2.32 (Separated string representation of Moore machine) is a structure

derived from the SR(MoFST):

SRS(MoFST) = {SRS(MoFST.transition), SRS(MoFST.output)},

where

• SRS(MoFST .transition) is a transition function qi0
0 qi...

0 q
ik−1
0 . . . qi0

n−1
qi...

n−1q
ik−1
n−1 , where [qi0 . . . q

ik−1
n−1] ∈ [0 . . . n− 1] presents the target states of

the transitions and

• SR(MoFST .output) is anoutput functiono0 . . . on−1, where [o0 . . . on−1] ∈
[0 . . . m− 1] presents codes for the output values of the Moore machine.

51

State q0 . . . State qn−1

o0 qi0
0 qi...

0 q
ik−1
0 on−1 qi0

n−1 qi...
n−1 q

ik−1
n−1

(a) SRS(MoFST)

State q0 . . . State qn−1

qi0
0 . . . q

ik−1
0 qi0

n−1 . . . q
ik−1
n−1

(b) SRS(MoFST.transition)

State q0 . . . State qn−1
o0 . . . on−1

(c) SRS(MoFST.output)

Figure 2.21 SRS(MoFST): Separating transition and output functions for a Moore
machine

There is a transformation SR(MoFST) → SRS(MoFST) and vice versa,
therefore these coding systems are isomorphic (Theorem 2.7).

Theorem 2.7 The SRS(MoFST) is isomorphic to SR(MoFST).
Proof. There are direct transformations SR(MoFST) → SRS(MoFST)

and SRS(MoFST)→ SR(MoFST)

The structure defined by SRS(MoFST .transition) can be directly trans-

formed into DFA∅. Thus the transition table of a Moore machine can be

processed as DFA∅ (Theorem 2.8).

Theorem 2.8 SRS(MoFST .transition)→ DFA∅.

Example 2.11 Let us consider Mmo1 (see Example 2.6). The original code is
SR(Mmo1) = [1, 1, 0, 1, 1, 2, 0, 3, 3, 1, 1, 0]. Hence, the result of the separated
string representation is: SRS(Mmo1) = {[1, 0, 1, 2, 3, 3, 1, 0], [1, 1, 0, 1]}.

SRS(MeFST): a Mealy machine

Similar transformations can be done for a Mealy machine (see Figure 2.22).

Definition 2.33 (Separated string representation of Mealy machine) is a structure

formed from SR(MeFST):

SRS(MeFST) = {SRS(MeFST.transition), SRS(MeFST.output)},

where:

• SRS(MeFST.transition) is a transition functionqi0
0 . . . q

ik−1
0 . . . qi0

n−1 . . . q
ik−1
n−1 ,

where [qi0 . . . q
ik−1
n−1] ∈ [0 . . . n− 1] presents target states of the transitions

and

52

State q0 . . . State qn−1

oi0
0 qi0

0 . . . o
ik−1
0 q

ik−1
0 . . . oi0

n−1 qi0
n−1 . . . o

ik−1
n−1 q

ik−1
n−1

(a) SR(MeFST)

State q0 . . . State qn−1

qi0
0 . . . q

ik−1
0 . . . qi0

n−1 . . . q
ik−1
n−1

(b) SRS(MeFST .transition)

State q0 . . . State qn−1

oi0
0 . . . o

ik−1
0 . . . oi0

n−1 . . . o
ik−1
n−1

(c) SRS(MeFST .output)

Figure 2.22 SRS(MeFST): Separating transition and output functions for a Mealy

machine

• SRS(MeFST.output) is an output function oi0
0 . . . o

ik−1
0 . . . oi0

n−1 . . . o
ik−1
n−1,

where [o0 . . . on−1] ∈ [0 . . . m − 1] presents codes for output values of
Mealy machine.

Theorem 2.9 The SRS(MeFST) is isomorphic to SR(MeFST).
Proof. There are direct transformations SR(MeFST) → SRS(MeFST)

and SRS(MeFST)→ SR(MeFST)

The structure defined by SRS(MeFST .transition) can be directly trans-

formed into DFA∅. Thus a transition table of a MeFST can be processed as

DFA∅ (Theorem 2.10).

Theorem 2.10 SRS(MeFST .transition)→ DFA∅

Example 2.12 Let us consider Mme1 (see Example 2.7). The original code is
SR(Mme1) = [1, 2, 0, 0, 0, 0, 1, 1, 1, 3, 0, 3, 1, 0, 0, 1]. Hence, the separated string
representation is: SRS(Mme1) = {[2, 0, 0, 1, 3, 0, 3, 0, 0, 1], [1, 0, 0, 1, 1, 0, 1, 0]}

2.4.2. SRD(FST): Deriving the output function

For a given FST structure (transition function) and training data, which consists

of I/O pairs, we can construct a FST output function that processes the training

set in the most correct way. Naturally, this method can only be applied in

situations where the output strings are directly observable.

Existing solutions

There are several methods for deriving output functions for different types of

FSMs based on the statistical analysis of training data. Some examples are:

53

• Deriving the output function for a Moore machine ([19]). The method

is also based on constructing the counting table, where for each state there

is a row with numbers, which corresponds to a certain symbol from the

output alphabet. Thus, the algorithm increases a specific number in this

table, if the Moore machine is required to output a corresponding symbol

(observed from the output of the training set) for a given input string. The

output value at the state is the symbol corresponding to the maximum

number in the row.

• Deriving the output function for a Mealy machine ([17], [43]). The

idea is very similar, but in this case the table contains a number for each

transition/output symbol pair. The update process of the table is also based

on observations from the output string and increasing the corresponding

number.

• Deriving ’final/not final’ labels for FA ([7], [44]). The algorithms

Smart State Labeling and Smart Tuning the Output Labels construct the

table, where there are two numbers for each state. If the finite acceptor in

this state stopped working for certain input from the training set and this

string is marked as positive, then we increase the number in table which

corresponds to ’accepted’. However, if the string is marked as negative,

we increase the number, which denotes the ’negative’ label. The label

’final/not final’ state of the finite acceptor is defined by the maximum

number in the corresponding row of the count table for this state.

We propose the generalization of the idea of deriving the output function from

the training set through integrating ’counting’ tables into the FST structure. This

allows to construct effective algorithms which are similar to the original FST
work-flow.

Deriving the output function of a Moore machine

Subsection presents the methods and definitions for deriving the output function

from the training set in the Moore machine example.

Definition 2.34 (A Moore machine with the derived output function)

SRD(MoFST) = {SRD(MoFST.transition), MoFST.output}

SRD(MoFST) string representation is derived from SRS(MoFST), where

• SRD(MoFST.transition)← SRS(MoFST.transition) and

• MoFST.output is constructed by Algorithm 10.

The behavior of the output function for the Moore machine depends on states.

During the original work-flow (Algorithm 2), the machine produces a symbol

54

when state is entered. The canonical state is constructed to result in the label and

output value oi ∈ ∆.

We propose to assign the attribute vector of integers (with length |∆|) to each
state. The initial values for attributes are equal to 0.

Definition 2.35 (Attributed state) qA consists of three parts:

• the q.label part defines the ID of the state,

• the q.value part describes the symbol that the machine outputs during the
original work-flow,

• the q.attributes : < o1, o2 . . . om−1 > describes the vector of attributes

with the length |∆| = m, wherein each attribute counts the number of
times the corresponding output symbol was used.

We present each Moore machine in the form SRS(MoFST) (see Defi-

nition 2.32). Each SRS(MoFST.transition) corresponds to DFA∅ (The-

orem 2.10). Thus we can replace each state in DFA∅ by attributed state

∀q{q ∈ Q : DFA∅} → qA.
This DFA∅ with attributed states can be transformed into a Moore machine

by means of Algorithm 10, which consists of two parts:

• updating attributes with respect to the training set,

• setting up the output value q.value according to attributes q.attributes.

Decorating DFA∅ as a Moore machine

The decorating process is similar to the original machine run cycle (see

Algorithm 2). The only difference lies in the processing of I/O pairs. During the

original work-cycle, the Moore machine outputs symbols for each input string,

while during the decorating cycle, the machine modifies inner attributes (see

Algorithm 10).

The first part, i.e. updating attributes for each I/O pair in the training set,

is done by the function updateAttributes(input, output). The second part –

translating attributes into output value – is done by the function, which assigns

to the state value the output symbol that obtained the maximum attribute value.

Example 2.13 shows the basic transformations occurring inside the decoration

algorithm.

Example 2.13 Let us consider the Moore machine Maab with 4 states Σ = {b, a}
and ∆ = {0, 1} (see Example 2.10). Our training set is ’aab recognizer’

(Figure 4.8). Figure 2.23 shows the process of decorating the Maab represented

by SRD(Maab) = {[0, 1, 0, 2, 3, 2, 0, 1]}.
Each state q ∈ {q0 . . . qn − 1} has the vector of attributes < a0, a1 >.

Figures 2.23(a), 2.23(b), 2.23(c) show the process of updating the attribute

55

Algorithm 10 Decorating DFA∅ as a Moore machine

1: for all I/O pairs do

2: updateAttributes(input, output)
3: end for

4: for i = 0→ n do

5: qi.value← ∆[qi.findMaxAttribute()]
6: end for

7: return generated Moore machine

8: function updateAttributes(iS, oS)
9: qc ← q0
10: increment(qc.attributes[∆[oS[0]position]])
11: for i = 0→ iS.size− 1 do

12: makeTransition(iS[i], oS[i + 1]))
13: end for

14: end function

15: function makeTransition(ic, oc)
16: transition← TR[qc.label][Σ[icposition]]
17: if ∃ transition then

18: qc ← transition.toState
19: increment(qc.attributes[∆[ocposition]])
20: end if

21: end function

for three first I/O pairs. Each green arrow signifies the execution of

makeTransition(ic, oc) function. Figure 2.23(d) shows the process of assigning
q.value for each state.

Example 2.14 demonstrates how the objective function landscape changes if

the method for deriving the output function is applied.

Example 2.14 Suppose we need to construct aMooremachine, which is consistent

with the training set ’ab Recognizer’ (Figure 4.5). Mab contains 3 states and

the input and output alphabets are defined as Σ = {b, a} and ∆ = {0, 1}.
The objective function shows how accurately the current machine describes the

training set. Figure 2.24(a) demonstrates the landscape of the objective function

for one of the possible output functions (out of 23 possible output functions).
The objective function value of a specific machine is marked on the vertical

axis, while the horizontal axis presents all possible machines with an output

function SRS(Mab.output) = [0, 0, 1]: SRS(Mab) = {∀SRS(Mab.transition),
[0, 0, 1]}. Figure 2.24(b) shows the landscape of the objective function for

SRD(Mab) = {∀SRS(Mab.transition)}.

56

�

�

�

�

�

�

�

�

� �

�

�

�������������
						
		
		

� � � �

� � � �

(a) I/O pair 1

�

�

�

�

�

�

�

�

� �

�

�

�������������
					
					
	

���� ����

��� ����

(b) I/O pair 2

�

�

�

�

�

�

�

�

� �

�

�

�������������
						
				
	

��� ���

���� ����

(c) I/O pair 3

���

���

���

���

�

�

�

�

� �

�

�

�� � � �

�� � � �

(d) Assigning values

Figure 2.23 Decorating SRD(Maab) = [0, 1, 0, 2, 3, 2, 0, 1] as a Moore machine

(a) The output function is given SRS(Mab.output) =
(0, 0, 1)

(b) The output function is derived SRD(Mab)

Figure 2.24 ’ab’ Recognizer. Objective function landscape. Given output function vs.

Derived output function

57

As these figures demonstrate, using the method based on deriving the output

function results in a much flatter and less aggressive objective function landscape.

Deriving output function for other FSMs

As discussed in Subsection 2.4.2, deriving the output function can also be applied

for other types of FSMs, for example a Mealy machine:

Definition 2.36 (Mealy machine with derived output)

SRD(MeFST) = {SRD(MeFST.transition), MeFST.output}

SRD(MeFST) representation is a special case of SRS(MeFST), where

• SRD(MeFST.transition)← SRS(MeFST.transition) and

• MeFST.output is constructed by algorithm.

2.5. Problems with String Representations

The considered coding systems for FST are sensitive to the labeling order of

the states. This leads to the situation, where the search space contains several

machines which are isomorphic (Example 2.5). On the string representation

level, it is not possible to state whether or not two represented FSTs are

isomorphic. As regards the effectiveness of the search space algorithm this

means duplicate points in search space, additional recalculation and complexity

of the evaluation function landscape.

The number of such points (isomorphic FST) grows with the factorial of the
number of states (n − 1)! (label ’0’ always belongs to initial state) due to the

different possibilities of ordering the state labels. This problem is also mentioned

in [31].

The idea is to construct a coding system, which automatically removes all

isomorphic FSTs except one. This reduces the search space complexity.
Another problem with presented coding systems is the issue of unreachable

states (Example 2.4). Although coding systems guarantee that for each string

representation (except binary string representation) there is a corresponding FST,
they do not guarantee that all states of the FST are reachable from the initial

one. In the context of training data processing, this means that such a FST
with unreachable states acts like a machine with fewer states. These unreachable

states are redundant and can be removed. However, this can be problematic,

especially if we define the problem statement as ’find FST with exactly n states’.

The points representing machines with unreachable states must be removed

from the search space in order to reduce the space complexity and to guarantee

that the searched machines have the required number of states.

58

2.6. Existing Solutions

Natalie Hammerman and Robert Goldberg (chapter from book [45]) presented a

method which solves both issues of isomorphic machines as well as machines

with unreachable states. It is based on constructing two algorithms, which

rearrange the string representations of machines in order to ensure the removal

of isomorphisms and machines with unreachable states:

• SFS algorithm (Standardizing the transitions to the Future or next States

according to a mathematical function) – renames and reorders states which

allows to remove isomorphisms;

• MTF algorithm (Moves the reachable states of a finite state machine To

the Front of the genome) – solves the problem of unreachable states.

Both algorithms require a significant amount of computation, due to the

recalculation of the string representations of the machines.

We propose a new coding system for presenting [FST → String], which
solves the problem of unreachable states and isomorphisms on the representation

level. Additional reordering algorithms are not required.

2.7. Canonical String Representation

The SRS(FSM.transition) code depends on the labels of the states and their
ordering, as renaming states leads to isomorphisms. We can solve this problem

by determining the algorithm by which the state labels are named. In order to do

so, a method known as normal form string is adapted.

2.7.1. Preliminaries. Normal form strings

In order to describe our proposed string representation we consider the basic

theory developed by Almeida, Moreira and Reis ([46], [39], [47]) in the context

of enumerating of deterministic finite state acceptors (DFA). We present only

specific definitions and algorithms that are required for our research. More

information, proofs and other algorithms can be found in original sources.

The main idea of the approach by Almeida, Moreira and Reis is to find an

unique string representation of initially connected DFA (ICDFA), i.e. all states
are reachable from the initial one. This is done by constructing an ordering for

state labels.

Suppose we have ICDFA∅ = (Q, Σ, δ, q0), where Q is a set of states

|Q| = n, q0 is initial states, Σ is the input alphabet with k symbols and δ is a

transition function. The set of final states is omitted.

In order to construct the canonical string representation based on canonical

order of the ICDFA states:

59

• the ordering of the input alphabet must be defined for a given

Σ = {i0, i1, . . . , ik−1}, where the order is defined as i0 < i1 < . . . < ik−1.
For example, lexicographical ordering can be used

• the set of states of a given ICDFAmust be explored by using a breadth-first

search by choosing the outgoing edges in the order of symbols in Σ.
Definition 2.37 (Normal form string) For given a ICDFA∅, the representing

string in the form (sj)j∈[0...kn−1]with sj = δ(bj/kc , ij mod k) and sj ∈ [0 . . . n−1]
satisfying rules:

(∀m ∈ [2 . . . n− 1])(∀j ∈ [0 . . . kn− 1])
(sj = m⇒ (∃l ∈ [0 . . . j − 1])sl = m− 1) (2.7)

(∀m ∈ [1 . . . n− 1])
(∃l ∈ [0 . . . km− 1])sl = m (2.8)

is called a normal form string [46].

There is the one-to-one mapping between normal form string (sj)j∈[0...kn−1]
and non-isomorphic ICDFA∅ with n states and input alphabetΣwith k symbols.

Example 2.15 Figure 2.6 shows two Moore machines that are isomorphic. If

we choose ordering for Σ as a < b, the correct state label ordering is shown in
Figure 2.6(b) and the corresponding canonical string for the transition function

in this context is [0, 1, 2, 2, 0, 2]. This string covers two presented machines.
Definition 2.38 (Flag) In the canonical string representation (sj)j∈[0...kn−1],
we can define flags (fj)j∈[1...n−1] that are a sequences of indexes of the first
occurrence of state label j. The initial flag sequence is (ki− 1)i∈[1...n−1].

The rules described before can be reformulated as

(∀j ∈ [2 . . . n− 1])(fj > fj − 1) (2.9)

(∀m ∈ [1 . . . n− 1])(fm < km) (2.10)

For given k and n, the number of sequences (fj)j∈[1,n−1], Fn,k can be

computed by

Fk,n =
(

kn

n

)
1

(k − 1)n + 1 = C(k)
n , (2.11)

where C
(k)
n are the Fuss-Catalan numbers. The proof can be found in [47].

The process of enumerating of all possible ICDFAs presented by the canonical
string representation is presented in Algorithm 11, which consists of two parts:

1. generating flags presented by Algorithm 12 and

2. generating all sequences inside the flag described by Algorithm 13

and where n is defined as the number of states |Q| = n and k is defined as the

size of the alphabet |Σ| = k, in which the symbols are in a lexicographical order
[47].

60

Algorithm 11 Canonical string representations enumerator enumerate()
Require: ICDFA number of states |Q| = n
Require: ICDFA size of input alphabet |Σ| = k
1: Fc ← initF lag()
2: while Fc != lastFlag do

3: Fc ← nextFlag(n− 1)
4: F [] add Fc;

5: end while

6: for all F [] do
7: set Fc

8: SEQc ← initSeq

9: while SEQc != lastSeq do

10: SEQc ← nextICDFA(()n− 1, k − 1)
11: cSR[] add SEQc

12: end while

13: end for

14: return ∀cSR[]

Algorithm 12 nextF lag(i)
1: function nextFlag(i)
2: if i == 1 then

3: Fc[i]← Fc[i]− 1
4: else

5: if Fc[i]− 1 == Fc[i− 1] then
6: Fc[i]← k · i− 1
7: nextFlag(i− 1)
8: else

9: Fc[i]← Fc[i]− 1
10: end if

11: end if

12: end function

61

Algorithm 13 nextICDFA(a, b)
1: function nextICDFA(a, b)
2: i← a · k + b
3: if a < n− 1 then

4: while i ∈ Fc do

5: b← b− 1
6: i← i− 1
7: if b < 0 then

8: b← k − 1
9: a← a− 1
10: end if

11: end while

12: end if

13: Fj ← nearest flag not bigger than i
14: if SEQc[i] == SEQc[Fj] then
15: SEQc[i]← 0
16: if b == 0 then

17: nextICDFA(a− 1, k − 1)
18: else

19: nextICDFA(a, b− 1)
20: end if

21: else

22: SEQc[i]← SEQc[i] + 1
23: end if

24: end function

2.7.2. cSRS(FST): Canonical string representation of FST

We defined the string representation SRS(FST) (Definitions 2.32, 2.33) and

showed that SRS(FST.transition) corresponds to DFA∅ (Theorems 2.8, 2.10).

The SRS(FST.transition) code depends on the labels of the states and their
ordering, because renaming states leads to isomorphisms. We can solve this

problem by determining the way the state labels are named.

There is a method for the enumeration of DFAs, which is based on a

special coding system for representing the DFAs called the canonical string

representation. It ensures that there are no isomorphisms and machines with

unreachable states in the enumeration list (see Subsection 2.7.1).

We adapt this method in order to define the coding system for the FST.
The algorithms and structure used for DFA enumeration can also be applied to

representing the transition function of Moore machine. If we omit the output

values at the states of the Moore machine, the resulting structure which represents

only the transition function can be considered as a structure representing DFA

62

without final states (DFA∅). This allows us to apply methods of normal form

string representation to Moore machine encoding.

The FST can be depicted by two strings, wherein one string stores information

about the transition function, the second one stores the output values of the state.

Thus, in order to apply the canonical string representation method we need to

add ordering into the string that represents the transition function.

We define cSRS(FST) as a special case of SRS(FST) system (see

Subsection 2.4.1), where SRS(FSM.transition) is represented by the canonical
string representation.

Definition 2.39 The separated canonical string representation of a Moore

machine is a structure formed from SRS(MoFST):

cSRS(MoFST) = {cSR(MoFST.transition), SRS(MoFST.output)},

where cSR(MoFST.transition) is a canonical string representation of the
Moore machine transition function.

Definition 2.40 The separated canonical string representation of a Mealy

machine is a structure formed from SRS(MeFST):

cSRS(MeFST) = {cSR(MeFST.transition), SRS(MeFST.output)},

where cSR(MeFST.transition) is a canonical string representation of the
Mealy machine transition function.

Decoding algorithm for FST

In the case of heuristic search algorithms the set of possible solutions is generated

in string form. Subsequently, we decode each string into FST for the evaluation

process. Thus, the encoding process is usually not required.

To reconstruct a Moore machine from its string representation, the input and

output alphabets and a pre-given number of states n must be defined. The

decoding algorithm (Algorithm 14) works as follows:

• step 1 – create n states, label q0 as the initial one and assign output values
according to SRS(MoFST.output),

• step 2 – create a transition for each state, where ’from’ state is the

current state and ’to’ state is the state labeled by an index found from

cSR(MoFST.transition).

2.7.3. cSRD(FST): Canonical string representation
cSRD(FST) is a special case of the SRD(FST) system (see Subsection 2.4.2),

where cSR(FST.transition) is represented by the canonical string representa-
tion and the output function is derived from the training set.

63

Algorithm 14 cSRS(MoFST)→MoFST transformation

Require: Input alphabet Σ with k symbols

Require: Input alphabet ∆ with m symbols

1: for i = 0→ n− 1 do

2: createState(qi)

3: qi.output← ∆[MoFST.output[i]]
4: if i == 0 then

5: setInitial(qi.)
6: end if

7: end for

8: for i = 0→ n− 1 do

9: fromState← qi

10: for j = 0→ k − 1 do

11: toState← qCSR[i]×k+j

12: inSymbol← Σ[j]
13: TR← Transition(fromState, toState, inSymbol)
14: end for

15: end for

16: return Moore machine

Definition 2.41 Canonical representation with a derived output is a structure

formed from cSRS(MoFST):

cSRD(MoFST) = {cSR(MoFST.transition), [derived]},

where cSR(MoFST.transition) is a canonical string representation of the
Moore machine transition function.

Definition 2.42 Canonical representation with a derived output is a structure

formed from cSRS(MeFST):

cSRD(MeFST) = {cSR(MeFST.transition), [derived]},

where cSR(MeFST.transition) is a canonical string representation of the
Mealy machine transition function.

Both transformation algorithms [cSRD(MoFST) → Moore machine] and
[cSRD(MeFST)→Mealy machine], are the same as for [cSRS(MoFST)→
Moore machine] (see Algorithm 14), although preliminary output function

computation is required.

Further analysis of the cSRS(FST) coding system and other algorithms, such

as random generation of cSRS(FST), can be found in Section 3.2.

64

2.8. Space Complexity

Table 2.2 presents formulas for search space complexity in each coding system,

if it’s directly computable. Search space complexity shows the number of points

that can be considered as FST in a search space for a given number of states n,
the size of input alphabet k and the size of the output alphabet m.

Table 2.2 SRS(FST) and SRD(FST). Search space complexity

SRS(FST) SRD(FST)
Moore machine O((m× nk)n) O(nnk)
Mealy machine O((mk × nk)n) O(nnk)

In the SRD(FST) coding system, the search space complexities for both

cases (Moore and Mealy machines) are equal, because each search space only

corresponds to the transition function, as output function is derived. Hence, the

search space complexity is m independent.

(a) Search space complexity Vs. size of input alphabet, for given n=3

(b) Search space complexity Vs. number of states, for given k=2

Figure 2.25 Search space complexity dependency on k and n

For the SRS(FST) coding system, wherein the output function itself is

inside the search space, the search space of SRS(MeFST) is much bigger than

65

SRS(MoFST) for equal n, k and m. This can be explained by FST properties:

the output function of a Moore machine is connected to states and output function

of a Mealy machine is connected to transitions. Therefore, the size of the output

function vector depends on the number of states n for a Moore machine and on

the number of transitions n× k for a Mealy machine .

Figure 2.25 shows how the search space grows in relation to changes in the

corresponding parameter:

• Figure 2.25(a) shows changes in search space size due to the change in k
(the number of states n = 3). The red series is for the SRD(FST) coding
system (grows faster) and the blue series for the cSRD(FST).

• Figure 2.25(b) shows changes in the search space size due to change in n
(the number of symbols in the input alphabet k = 2). The red series is for
the SRD(FST) coding system which grows faster and the blue series is for

cSRD(FST).

Table 2.3 illustrates precomputed search space sizes for a given n, k, m in

the case of a Moore machine.

Table 2.3 Moore machine. Search space complexity. Different coding systems

m k n cSRD(FST) SRD(FST) cSRS(FST) SRS(FST)
2 2 2 12 16 48 64

2 2 3 216 729 1728 5832

2 2 4 5248 65536 83968 1048576

2 2 5 160675 9765625 5141600 312500000

2 2 6 5931540 2176782336 379618560 139314069504

2 2 7 256182290 678223072849 32791333120 86812553324672

2 3 3 7965 19683 63720 157464

2 3 4 2128064 16777216 34049024 268435456

2 3 5 914929500 30517578125 2927774 4000 976562500000

2 4 2 240 256 960 1024

2 4 3 243000 531441 1944000 4251528

2 4 4 642959360 4294967296 10287349760 68719476736

2 5 2 992 1024 3968 4096

2 5 3 6903873 14348907 55230984 114791256

Table 2.4 illustrates precomputed search space sizes for a given n, k, m in

the case of a Mealy machine.

66

Table 2.4 Mealy machine. Search space complexity. Different coding systems

m k n cSRD(FST) SRD(FST) cSRS(FST) SRS(FST)
2 2 2 12 16 192 256

2 2 3 216 729 13824 46656

2 2 4 5248 65536 1343488 16777216

2 2 5 160675 9765625 164531200 10000000000

2 2 6 5931540 2176782336 24295587840 8916100448256

2 2 7 256182290 678223072849 4197290639360 11112006825558000

2 3 3 7965 19683 4078080 10077696

2 3 4 2128064 16777216 8716550144 68719476736

2 3 5 914929500 30517578125 29980409856000 1000000000000000

2 4 2 240 256 61440 65536

2 4 3 243000 531441 995328000 2176782336

2 4 4 642959360 4294967296 42136984616960 281474976710656

2 5 2 992 1024 1015808 1048576

2 5 3 6903873 14348907 226226110464 470184984576

2.9. Conclusion

We discussed several representation of FST that can be used for the stochastic

search algorithm and showed how FST can effectively be encoded into string

of integers. We considered the problem of search space size and introduced

a new system for string representation of FST. The proposed representation

system divides the search space into non-intersecting parts. This allows to

apply a heuristic search algorithm in parallel. The algorithms for random

FSTs generation in string form and FSTs transformation were presented. The
comparison between representation systems demonstrated that the proposed

representation model is effective due to search space minimization.

67

3. SEARCHALGORITHM

The search problem is defined as finding the optimum (minimum or maximum)

of a given function. The set of points, which present the function arguments,

provides the search space. For each point in the search space, there is a function

value. The task is to find the point (argument), which gives the optimal function

value.

If there is no information about the search space, then two main options

remain:

1. either to exhaustively traverse the search space or,

2. to select certain random points and pick the most suitable one.

If the search space is infinite we define a range which restricts the search

space. Traversing the entire search space is time-consuming, but provides exact

results. In the case of infinite search space, the results also depend on how the

search space range is defined. Moreover, the restricted area might not contain

the optimum. Another approach is to generate a small amount of random points

in the search space. This approach provides a fast solution, but its quality

of the solution is questionable. The stochastic optimization method presents a

compromise between an exhaustive search and choosing random points.

3.1. Preliminaries. Stochastic Optimization

Optimization techniques entail several approaches – deterministic procedures and

stochastic procedures that contain randomness and probabilistic computations.

The main advantage of stochastic optimization is that it can be applied to any

search problem without specific knowledge about the structure of the search

space. Stochastic optimization may also be helpful, when the complexity of

deterministic methods grows rapidly in relation to the size of the search space.

There are two main properties that must be implemented in any stochastic

optimization method – exploration and exploitation (see Figure 3.1). Exploration

is an ability of the method to explore the entire search space in a global way and

exploitation is the ability to focus on the local area and search for a more precise

solution.

69

(a) Exploration (b) Exploitation

Figure 3.1 Exploration vs. exploitation

The family of stochastic optimization methods has several principles in

common:

• The search space is defined as a set of points, where each point represents

a candidate solution. Usually, candidate solutions are presented indirectly

by some type of structure, which encodes the candidate solution. Initially,

a certain fixed amount of points is generated randomly.

• The score value, which is assigned by using the evaluation function to

show the quality of a solution.

• The search algorithm contains modification operators that allow to

construct new solutions from existing ones.

Nature has inspired the construction of new stochastic search algorithms.

There is a set of methods, such as Evolutionary Algorithms, Genetic Algorithm,

Evolutionary Programming, which are based on the theory of evolution. Some

methods simulate social behavior, for example Particle Swarm Optimization

(PSO) imitates the social behavior of birds, while Ant Colony Optimization

applies ideas related to the behavior of ants foraging for food. Some stochastic

optimization methods are based on the laws of physics. For instance Simulated

Annealing is based on thermodynamic effect, and Central Force Optimization

and Gravitational Search Algorithm are based on gravitational force.

Central Force Optimization (CFO) is a deterministic gravity based search

algorithm, which simulates a group of probes [48]. Space Gravitational

Optimization (SGO) [49] simulates asteroids flying through a curved search

space. A gravitationally-inspired variation of local search, Gravitational

Emulation Local Search Algorithm (GELS) was proposed by Webster [50], [51].

The newest method, Gravitational Search Algorithm (GSA) was proposed by

Rashedi [52], [53], [54] as a stochastic variation of CFO. A discrete modification

of GSA was proposed by Zibanezhad [55] in the context of Web-Service

composition.

70

3.1.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is inspired by the social behavior

of a specific set of objects, e.g. a flock of birds or school of fish [36]. The

general idea behind this method involves a set of points in the search space,

wherein each point has a value assigned by the evaluation function. The task is

to find the optima of this function. In addition, there is a set of particles, that

are moving in the defined search space. The movement laws can be considered

as interactions between objects. Using movement laws objects can find the

positions with better values or even optima.

Standard PSO algorithm

It is useful to consider the set of particles called a swarm in more detail. Each

of these particles is characterized by a position vector, velocity vector and the

best known position for this object. In addition, there is the global best known

position for the whole swarm.

The position vector pd, d ∈ [0 . . . n] presents a candidate solution. The

dimensionality n of the vector depends on the problem size. We assign a numeric

value for each candidate solution using the evaluation function. According to the

assigned values we can choose the global best known position Gbest, which is
the point with the optimal value found so far by the whole swarm, and the local

best known position Pbest, which is the best position, that was found by this

exact particle.

The velocity vector vd, d ∈ [0 . . . n] represents the movement trend of the

particle. It is computed by using the equation

vd(t) = α·vd(t−1)+β·r1·(Pbestd−pd(t−1))+γ·r2·(Gbestd−pd(t−1)), (3.1)

where:

• α, β, γ are learning coefficients with α representing the inertia, β the

cognitive memory and γ the social memory. Learning coefficients must

be defined by the user.

• r1 and r2 are random values in range [0 . . . 1].

• Pbestd is the local best known position for the particle, Gbestd is the

global best known position of the swarm.

• vd(t) is the new value of the velocity vector at dimension d and vd(t− 1)
is the previous velocity value.

The new position pd(t) is simply defined as the sum of the previous position

pd(t− 1) and the new velocity vd(t):

pd(t) = pd(t− 1) + vd(t). (3.2)

71

The PSO algorithm is presented in Algorithm 15. The initialization part

consists of defining the required learning parameters, establishing the search

space boundaries and generating the swarm with a random position and velocity.

The search process can be described as an iterative updating of the positions

and velocities. The process ends when the ending criteria are met – either the

number of iterations is exceeded or the optimal solution is found. The evaluation

function f and the dimensionality of vectors are problem specific.

Algorithm 15 Standard Particle Swarm Optimization

1: setBounds(Bup, Blow)

2: setLearningCoefficients(α, β, γ)
3: defineSwarmSize(s), setIterations(e)
4: for i = 0→ s− 1 do

5: initParticlePosition(pi, Bup, Blow)

6: Pbesti ← pi

7: initializeParticleVelocity(vi, Bup, Blow)

8: evaluateParticle(f(pi))
9: if f(Gbesti) < f(pi) then
10: Gbesti ← pi

11: end if

12: end for

13: while current iteration < e and optimal solution is not found do
14: for i = 0→ s− 1 do

15: updateVelocity(vi) for each dimension (see Equation 3.1)

16: updatePosition(pi) for each dimension (see Equation 3.2)

17: if f(Pbesti) < f(pi) then
18: Pbesti ← pi

19: if f(Gbesti) < f(pi) then
20: Gbesti ← pi

21: end if

22: end if

23: end for

24: end while

Problems with the standard PSO algorithm

1. In Algorithm 15, there are three learning coefficients α, β, γ for adjusting

the convergence abilities of the algorithm. Learning coefficients must

be defined by the user according to the problem statement. One of the

chief problems with this algorithm is the lack of deterministic methods

for finding values of learning coefficients. However, there are several

non-deterministic methods for solving this problem. For example, in the

case of empirical methods we can try several parameter values and observe

the behavior of the PSO algorithm in order to choose the best ones. In

the case of meta-heuristics, the choice of parameter values can also be

72

considered as a search problem. Hence, heuristic optimization can also be

applied.

2. The second problem lies in defining of Equation 3.1. As is evident, there

is a Gbest position, which is valid for the whole swarm and does not take

into account the distance between the particle and the global best position

Gbest. In some situations, if Gbest itself is in a bad zone, then the whole
swarm falls into a local optima.

There are two main solutions for the second problem:

• either defining the neighborhood of every particle by taking into

account the Gbest for the group of particles, which are close to each
other, rather than the Gbest for the whole swarm, or

• defining parallel swarms, where groups of particles move in the

search space without any interactions between the groups.

3.1.2. Gravity as inspiration for optimization algorithms

There are four main forces acting in our universe, namely – gravitational,

electromagnetic, weak-nuclear and strong nuclear. These main forces define the

way our universe behaves and appears. The weakest force is gravitational, which

defines how objects move depending on their mass.

The gravitational force between two objects i and j is directly proportional

to the product of their masses and inversely proportional to the square distance

between them

Fij = G
Mj ·Mi

R2
ij

. (3.3)

Knowing the force acting on a body, we can compute acceleration as

ai = Fi

Mi
. (3.4)

The search algorithms based on gravity adapt the following ideas:

• Each object in the universe has a mass and position.

• There are interactions between objects, which can be described using the

law of gravity.

• Bigger objects (with a greater mass) create larger gravitational fields and

attract smaller objects.

During the last decade, some researchers have tried to adapt the idea of gravity

to discover optimal search algorithms. Such gravity based search algorithms

have certain general features in common:

73

• The system is modeled on objects with a mass.

• The position of the objects describes the solution and the mass of the

objects depends on the evaluation function.

• Objects interact with each other using the gravitational force.

• Objects with a greater mass present the points in the search space that have

a better solution.

Using these characteristics, it is possible to define the family of optimization

algorithms based on gravitational force. For example,Central Force Optimization

(CFO) is a deterministic gravity based search algorithm proposed and developed

by Formato [48]. It simulates the group of probes which fly into search space

and explore it. Another algorithm, Space Gravitational Optimization (SGO) was

developed by Hsiao and Chuang [49] in 2005. It simulates asteroids flying

through a curved search space. A gravitationally-inspired variation of the local

search algorithm, Gravitational Emulation Local Search Algorithm (GELS) was

proposed by Webster [50], [51]. The newest method, Gravitational Search

Algorithm (GSA) was proposed by Rashedi [53] as a stochastic variation of CFO.
In essence, the gravitationally-inspired algorithms are quite similar to PSO

algorithms. Instead of a particle swarm, there is a set of bodies with masses.

Moreover, the ideas of position and velocity vectors are the same, and the

movement laws are also similar.

Our idea is to combine the PSO algorithm with the gravitationally-inspired

search algorithm in order to produce a superior one.

3.1.3. Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) was proposed by Rashedi as a stochastic
variation of CFO to solve the problem of dependency on the generation of an

initial population. The main difference between the GSA compared to the the

CFO lies in randomness of some movements, which add an exploration factor to

the algorithm.

A system of N objects, each of which is described by a real-valued position

vector:

Xi =
(
x1

i , . . . , xd
i , . . . , xn

i

)
, d = [1 . . . n]; (3.5)

There xd
i represents the position on ith object in dimension d.

At the specific time t we can recompute the forces, which are applied to the
object i with a mass Mi by an agent j with a mass Mj :

F d
ij(t) = G(t)Mpi(t) ·Maj(t)

Rij + ε
(xd

j − xd
i). (3.6)

74

Here

G(t)Mpi(t) ·Maj(t)
Rij + ε

(3.7)

corresponds to (3.3) and ε is a parameter and the part (xd
j − xd

i) is required
for computing the vector of the coordinates, if the coordinates of the beginning

and end points are known.

Rij is the Euclidean distance between two agents

Rij = ‖Xi(t), Xj(t)‖ . (3.8)

The gravitational constant is computed by:

G(t) = G(G0, t). (3.9)

In physics the general force acting on an agent must be computed as the vector

sum of all acting points. The authors of the GSA algorithm proposed to add a

stochastic characteristic to algorithm. Thus the general force is computed as:

F d
i (t) =

N∑
j=1,i 6=j

randjF
d
ij(t), rand ∈ [0 . . . 1]. (3.10)

The acceleration of agent i can be computed based on knowing its inertial

mass Mii and force F d
i (t):

ad
i (t) = F d

i (t)
Mii(t)

; (3.11)

Knowing the current acceleration, velocity and position can be recomputed:

vd
i (t + 1) = randiv

d
i (t) + ad

i (t), rand ∈ [0 . . . 1]. (3.12)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1). (3.13)

The masses of agents are calculated from the calculated quality measure. A

heavier mass means that the quality of that object is better. This agent has a

bigger attraction and inertia, i.e. it moves slowly toward other agents. The

quality measure is calculated using the fitness function fiti. The masses are

calculated as follows:

Mai = Mpi = Mii = Mii, i = [1, 2, . . . N], (3.14)

mi = fiti(t)− worst(t)
best(t)− worst(t) , (3.15)

75

Mi(t) = mi(t)∑N
j=1 mj(t)

, (3.16)

where the worst(t) and the best(t) are defined for the maximization problem
as:

best(t) = min︸︷︷︸
j∈[1...N]

fitj(t); (3.17)

// Generate initial positions

��
Evaluate quality of each agent

��
Update G(t), worst(t), best(t)

��
Calculate masses and accelerations

��
Calculate velocities and positions

��
Ending criterion?

yes

��

no

Return best solution

Figure 3.2 General procedure of GSA

3.2. The Search Space

According to our problem statement, the search space is a set of points

representing a FST (Mealy or Moore machine) with n states, an input alphabet

Σ with k symbols and an output alphabet ∆ with m symbols. For each point,

a score value is computed using one of the objective functions. This chapter

presents the search algorithm, wherein the search space is defined by a set of

FST, which are presented as

• cSRD(FST)s (see Subsection 2.7.3), if the output function can be restored
from training data

• cSRS(FST)s (see Subsection 2.7.2), if the output of the machine cannot

be inferred and must be searched.

76

The search algorithm consists of two stages:

• first: the search space is subdivided to subspaces, a score value is assigned

for each subspace and the subspace with the best score value is returned,

• second: a more detailed search in the chosen subspace is carried out, and if

a solution is not found, the next subspace with a higher score is searched.

There are several string representations of FST (see Chapter 2). However,

according to our analysis of search space complexities (see Section 2.8), it is

more reasonable to use the canonical string representation of FST (cSRD(FST)
or cSRS(FST)).

Two situations are considered. In the first one, the output function of the

FST can be reconstructed from the training set (cSRD(FST)) and the search

algorithm is only required for searching the FST structure. In the second

situation, the structure of the FST and its output function must be searched (FST
is represented by string cSRS(FST)). However, these two cases are similar as
the string representation cSRD(FST) is a special case of the string representation
cSRS(FST).

The different types of FSMs are represented differently. We propose

the following representations for the Moore and Mealy machines (see

Subsections 2.7.2, 2.7.3):

• cSRD(MoFST) = {cSR[MoFST.transition], [derived]},

• cSRS(MoFST) = {cSR[MoFST.transition], SR[MoFST.output]},

• cSRD(MeFST) = {cSR[MeFST.transition], [derived]},

• cSRS(MeFST) = {cSR[MeFST.transition], SR[MoFST.output]}.

3.2.1. Search space structure

In fact, the transition function part of the FST – SR[FST.transition] is a FA∅
(Theorem 2.8 and Theorem 2.10) and can be processed in a similar way as FA∅.

According to the theory of normal form strings (see Subsection 2.7.1), the

canonical string representations of FA have the following properties: each FA∅
is defined only by a single canonical string representation (no isomorphisms) and

the set of all possible FA∅ can be subdivided into subsets identified by flags (see

Definition 2.38).

We adapt the theory of normal form strings to describe the properties of

canonical string representation of FST and the search space.

Algorithm 11, which describes the enumeration of all possible DFA∅ consists

of two parts – the generation of all flags (see Definition 2.38) and the generation

of all possible sequences in a given flag. In our context, this information can

be used for subdividing the whole search space into non-intersecting subspaces,

where each subspace is characterized by a corresponding flag (Figure 3.3).

77

������������

	
��
�����

	
��
���

	
��
�

	
��
���

	
��
��

���
�����

���
���

���
�

���
���

���
�����

���
���

���
�

���
���

���
�����

���
���

���
�

���
���

���
�����

���
���

���
�

���
���

���
�����

���
���

���
�

���
���

��������
�
��������

�
��������

���
��������

��
��������

��

Figure 3.3 Search space structure

Definition 3.1 (Universe) The universe is a set of all possible FSTs, represented
by canonical string representation (cSRD(FST) or cSRS(FST)), where canonical
string representations of transition functions belong to one flag.

Definition 3.2 (Multiverse) The multiverse is a set of all possible universes

defined by flags.

The multiverse defines the set of subspaces described by corresponding flags,

and the universe is a subspace in itself and contains the points representing FSTs.

Example 3.1 This example illustrates the definitions of multiverse and universes

for the search space of cSRD(FST) with 4 states and 2 symbols in its input
alphabet.

According to Equation 2.11, this multiverse has 14 universes. The description

of such a search space is provided in Figure 3.4, where each row presents one

universe and the ’size’ shows the number of possible FSTs in that universe.

3.2.2. Size of the multiverse

In order to optimize the search algorithm we need to know the size of the search

space. For answering the question of ’how big the search space is’, the following

problems must be solved:

1. How many universes are there in the Multiverse, i.e. is how many flags

that define subspaces are there?

2. How big is the universe, i.e. how many corresponding sequences can be

generated for a given flag?

3. How big is a set of possible output functions (in the case of cSRS(FST)
representations) for a Moore machine and for a Mealy machine separately?

78

Size of search space: 5248
0: (1, 3, 5): * 1 * 2 * 3 * * Size: 96 From: 0 to: 95
1: (1, 3, 4): * 1 * 2 3 * * * Size: 128 From: 96 to: 223
2: (1, 2, 5): * 1 2 * * 3 * * Size: 144 From: 224 to: 367
3: (1, 2, 4): * 1 2 * 3 * * * Size: 192 From: 368 to: 559
4: (1, 2, 3): * 1 2 3 * * * * Size: 256 From: 560 to: 815
5: (0, 3, 5): 1 * * 2 * 3 * * Size: 192 From: 816 to: 1007
6: (0, 3, 4): 1 * * 2 3 * * * Size: 256 From: 1008 to: 1263
7: (0, 2, 5): 1 * 2 * * 3 * * Size: 288 From: 1264 to: 1551
8: (0, 2, 4): 1 * 2 * 3 * * * Size: 384 From: 1552 to: 1935
9: (0, 2, 3): 1 * 2 3 * * * * Size: 512 From: 1936 to: 2447
10: (0, 1, 5): 1 2 * * * 3 * * Size: 432 From: 2448 to: 2879
11: (0, 1, 4): 1 2 * * 3 * * * Size: 576 From: 2880 to: 3455
12: (0, 1, 3): 1 2 * 3 * * * * Size: 768 From: 3456 to: 4223
13: (0, 1, 2): 1 2 3 * * * * * Size: 1024 From: 4224 to: 5247

Figure 3.4 All subspaces for the cSRD(FST) search space (4 states and 2 symbols in
input alphabet)

Number of universes

The number of universes, which corresponds to the number of flags, can be

computed by Equation (2.11):

Fk,n =
(

kn

n

)
1

(k − 1)n + 1 = C(k)
n ,

Size of the universe

The size of the universe is the number of sequences, which correspond to a

pattern defined by a flag.

Algorithm 16 Computing universe size

Require: FLAG[] characterizing universe
finalSEQ[]← generateFinalSEQ(FLAG[])
for i = 0→ finalSEQ.size− 1 do

if finalSEQ[i] > 0 then

size← size× (finalSEQ[i] + 1)
end if

end for

for i = 0→ n do

size← size/(i + 1)
end for

return size

79

Themethod for counting the number of sequences is presented inAlgorithm 16.

Example 3.2 demonstrates how to count the size of the universe defined by the

flag (1, 3, 4) using Algorithm 16.

Example 3.2 The flag (1, 3, 4) defines the sequence pattern [∗ 1 ∗ 2 ∗ 3 ∗ ∗]
and the final sequence in this pattern is [0 1 1 2 2 3 3 3]. We can

compute the number of allowed characters in a specific place by incrementing

the numbers corresponding to those places (except flag defining characters):

[1 − 2 − 3 − 4 4]. The size of the subspace is multiplication of those numbers
(see Figure 3.5).

���������������
���������������

������	

�
���
���
����

�������������������

����

��������

Figure 3.5 Counting the size of the universe defined by the flag (1, 3, 4)

Table 3.1 presents the following numerical information, where n is a given

number of states and k number of characters in the input alphabet:

• The size of a flag set is computed by Equation (2.11),

• The biggest universe is the universe defined by the last flag (due to

the specifics of the flag generation order) and its size is computed by

Algorithm 16.

Number of output functions

In the case of cSRD(FST) representation, only the number of possible transition
functions are taken into account. There is only ’one dimension’ – the structure of

the machine presented by the canonical string, because each FST is represented

by one vector.

For the cSRS(FST) representation the search space grows, because we

add ’the second dimension’ – the string representation of the output function.

80

Table 3.1 Number of universes and size of the biggest universe

k n Max subspace size Number of flags

2 2 8 2

2 3 81 5

2 4 1024 14

2 5 15625 42

2 6 279936 132

2 7 5764801 429

3 3 2187 12

3 4 262144 55

3 5 48828125 273

4 2 128 4

4 3 59049 22

4 4 67108864 140

5 2 512 5

5 3 1594323 35

Therefore, each FST structure can have several output functions (Figure 3.6).

Moreover, each FST is represented by two vectors.

���������	�	
��
����	
��

����
����������	
��

������������������
�������	�	
������	
�����
����������	
���

Figure 3.6 Two dimensional representation of FST

The length of the output function representation and the number of output

functions depends on the machine type (n is the number of states, k is the size

of input alphabet, m is the size of output alphabet).

• For aMoore machine the length of the string representation of the output

function is n and the number of possible output functions is mn,

81

• For a Mealy machine the length of the string representation of the output

function is n × k and equals to the length of the transition function

representation. The number of possible output function is mnk.

For the situation with cSRD(FST) representation, the length of the output

function representation is defined as 1, and the number of all possible output

functions is defined by [0]. Thus, the representation cSRD(FST) can also be

presented by cSRS(FST) = {cSR[FST.transition], [0]}.

3.2.3. Storing points in universe

Search space contains points, which represent FSMs with score values. Universe
is defined as a set of such points. It is useful to store point values in the following

cases:

• Visualization. Storing values of points is useful during the search space

exploration process, as it allows to demonstrate the landscape of the search

space (see Section 3.2.7). This helps to illustrate the process of the search

algorithm and to make required adjustments for to the search algorithm.

• Performance improvement. During the search process, the objective

function is frequently recalculated. Sometimes calculating the score value

is expensive, so a better idea is to store points with already calculated

values, which improves the performance of the search algorithm [56], [57].

We propose to store point values in an associative array. The associative array

(dictionary) is an abstract structure, which allows to store the values associated

with the key (see Figure 3.7).

key0 value0
key1 value1
key... value...

keyn valuen

Figure 3.7 Associative array

The main operations allowed with an associated array are: put(key, value),
remove(value), containsKey(key), containsObject(value), get(key).

Although, an associative array is an abstract structure and its effective

implementation is problematic itself, for example Java language contains the

following implementations:

• HashMap – the implementation of an associative array structure using

hash tables,

82

• TreeMap – the implementation of associative array structure using

Red-Black tree.

The key must be unique, so specially constructed key must be introduced for

our purposes.

Definition 3.3 (Key) is a triple key =< key.u, key.t, key.o >, which is unique
and is designed as triple of integers, wherein:

• k.u – unique integer, representing the universe id (see Subsection 3.2.1),

• k.t – unique integer, representing the transition function (see Algorithm 17),

• k.o – unique integer, representing the output function (see Algorithm 18).

cSR(FST.transition) to key.t transformation

For each cSR(FST.transition), we can find an integer which is unique. This
integer corresponds to the number in the generation order. We separate the

process of sequence generation into two phases: the generation of all possible

flags (defining subspaces) and the generation of sequences inside the subspace.

In order to find the integer corresponding to cSR(FST.transition) we first
of all find the local number in the generation order and if we want to obtain the

number in the global ordering subspace.iRange needs to be added.
Example 3.3 shows the process of transforming [CSR(FST.transition)→

key.t].

���������������
���������������

������	

�
���
���
����

�
���
���
����

�
���
���
����

�
���
��������

�
����������
���������������

���������������

���������������������������

����

�����
������

����
��

�������

!��

"��

�#$

����������

Figure 3.8 cSR(FST.transition) to key.t

83

For the transformation [sequence → integer] in a universe we need to

predefine ’mask’ based on the flag, describing the local subspace (function

generatePSeq(flag[])). This pre-computation is only done once, when defining
the universes (see Algorithm 17).

Example 3.3 Transforming cSRD(FST) : [0 1 0 2 1 3 1 1]→ 21:

• sequence [0 1 0 2 1 3 1 1] belongs to subspace defined by flag (1, 3, 4),

• the mask is [− − 48 − 16 − 4 1].

Figure 3.8 depicts the entire computation process.

SR(FST.output) to key.o transformation

For each output function of FST a unique integer number can be constructed that

corresponds with the number in the generation order. This process is easier than

the [CRS(FST.transition)→ key.t] transformation, because no sequences are
omitted here. Algorithm 18 shows the process of the key.o computation.

For each FST, we know the length of the output function: n for a Moore

machine and n × k for a Mealy machine as well as the size of the output

alphabet m. Therefore, we can recompute the number in the generation order.

The enumeration process here is similar to generating all possible numbers

in a m-base numeric system, thus making the coding process similar to the

transformation [m-base number→ decimal number].

Algorithm 18 SR(FST.output)→ key.o transformation

1: code = 0
2: base = m
3: for i = SR(FST.output).length− 1→ 0 do

4: coef = baseSR(F ST.output).length−1−i

5: code+ = SR(FST.output)[i]× coef
6: end for

7: return code

Example 3.4 Suppose we have a Moore machine with n = 4 states, k = 2
symbols in input alphabet Σ = {a, b} and m = 2 symbols in output alphabet
∆ = {0, 1}. The length of SR(FST.output) is 4, the number of all possible
output functions 24 = 16 (e.g. see Figure 2.20). For each output function, we
can find the integer number key.o ∈ [0 . . . 15].
For example, for SR(FST.output) = [0, 1, 1, 0] the key.o = 0 × 23 + 1 ×

22 + 1× 21 + 0× 20 = 6 (according to Algorithm 18).

84

Algorithm 17 FST.transition→ key.t: transform(Seq[])
Require: subspace.flag[]
Require: subspace.iRange
1: function transform(Seq[])
2: subspace.pSeq[]← generatePSeq(subspace.flag[])
3: for i = 0→ subspace.pSeq.size− 1 do

4: code← code + Seq[i]× subspace.pSeq[i]
5: end for

6: code← code + subspace.iRange
7: end function

8: function generatePSeq(flag[])
9: lastSeq ← genLastSeq(flag[])
10: for i = 0→ lastSeq.size− 1 do

11: cSeq[i]← lastSeq[i] + 1
12: end for

13: for i = 0→ flag[1]− 1 do

14: cSeq[i]← 0
15: end for

16: for i = 1→ flag[].length− 1 do

17: cSeq[flag[i]]← 0
18: end for

19: pSeq[lastSeq.size− 1]← 1
20: for i = lastSeq.size− 2→ flag[1] + 1 do

21: c← 1
22: for j = i + 1→ lastSeq.size− 1 do

23: if cSeq[j] > 0 then

24: c← c× cSeq[j]
25: end if

26: end for

27: pSeq[i]← c
28: end for

29: for i = 1→ flag[].length− 1 do

30: pSeq[flag[i]]← 0
31: end for

32: end function

85

3.2.4. Initialization

Before the search process can commence, certain initial computations are

required. First of all, we need to define several preliminary parameters such as:

• FSM type – a problem-specific parameter defined in the task description.

• Number of states n – also problem-specific, but can be modified by the

user and depends on the size and complexity of the problem.

• Size of input alphabet k. The input alphabet itself is not necessary at the
search phase, because the search algorithm works on string representation

level, but it is required on the level of [SR→ FSM] transformation.

• Size of output alphabet m. The output alphabet depends on the search

problem. As with the input alphabet, it is not required during the search

phase, only the size of the alphabet matters.

• getScore function required for evaluating FSM. So that the search

algorithm sends the FSM representation to the environment through the

encoder and as a result a score value in the range [0 . . . 1] is obtained. For
the maximization task, an FSM with value 1 is the best one.

Secondly, basedon the predefinedproblem-specific parameterswe constructed,

the following information is required for search space initialization:

• Number of universes in a multiverse. Based on n and k, the number
of non-intersecting subsets in the search space can be calculated (see

Subsection3.2.2, Equation (2.11).

• Universes are defined by flags. Using Algorithm 12 and parameters n
and k, all possible flags from initial to final ones are generated. Further, a

corresponding universe is created for each flag.

• Length of SR(FST.output). Based on parameter m and machine type,

we can compute the length of SR(FST.output) and the number of all

possible SR(FST.output) (see Subsection 3.2.2). If m = 0, then we

assume that the output function is derived from the training set.

• Size of the universe. For each universe we compute the number of

all possible cSR(FST.transition) with Algorithm 16. If m > 0, then
it is assumed that the number of points in the universe is equal to the

multiplication |cSR(FST.transition)| × |SR(FST.output)|.

• Mask for cSR(FST.transition) → key.t. Based on the flag, which

describes the universe, we generate the mask for the transforma-

tion cSR(FST.transition) → key.t by function generatePSeq (see

Algorithm 17).

86

• The number of first points in the universe. Due to the sequential

initialization of universes we can compute the code of the first point in the

universe, if the size of previous universe is known.

The whole process of multiverse initialization is presented by Algorithm 19.

Algorithm 19 Define Multiverse

1: Multiverse.type← FSM.type
2: Multiverse.n← number of states
3: Multiverse.k ← |Σ|
4: Multiverse.m← |∆|
5: Multiverse.size← number of flags
6: Multiverse.SRoutputLength←length(SR(FST.output))
7: FLAGS[]←generaleAllFlags

8: iRange← 0
9: for all FLAGS[] do
10: createUniverse(FLAG)

11: Universe.flag ← FLAG
12: Universe.iRange← iRange
13: Universe.size←countSize(FLAG)

14: Universe.mask ← createFSTtoIntegerMask(FLAG)

15: iRange← iRange + subspace.size
16: end for

3.2.5. Generating random FST

As described above, a FST can be defined by two dimensions –

cSR(FST.transition) and SR(FST.output), when the FST is encoded

by cSRS(FST). One dimension cSR(FST.transition) is used, when the FST
is presented by cSRD(FST), while the second dimension SR(FST.output) is
fixed to {[0]}). Thus, in order to generate random FST, we need to separately
generate random cSR(FST.transition) and random SR(FST.output) (in the
case of a cSRS(FST) string representation).

Generating random cSR(FST.transition)

The algorithm for the cSR(FST.transition) generation part is similar to the

algorithm for uniform random generation of ICDFA (see [47]). Although we

need to modify this algorithm, because we are only interested in generation of

points in a subspace (universe), rather than entire search space.

87

Algorithm 20 cSR(FST.transition) random generator in a universe

Require: FLAG[] characterizing universe
1: for i = 0→ rndCSR[].size do
2: rndCSR[i]← −1
3: end for

4: for j = 1→ FLAG[].size− 1 do

5: rndCSR[FLAG[j]]← j
6: end for

7: fi← FLAG[].size− 1
8: si← rndCSR[].size− 1
9: while si > −1 do

10: if rndCSR[si]! = fi then
11: rndCSR[si]← random(fi + 1)
12: si−−
13: else

14: fi−−
15: si−−
16: end if

17: end while

18: return rndCSR[]

Taking into account the knowledge that the search space is subdivided into

non-intersecting subspaces (universes) characterized by flags we define the

algorithm for generating a random string representation cSR(FST.transition)
in the local universe (Algorithm 20).

Generating random SR(FST.output)

The algorithm for generating a random SR(FST.output) is simpler than

cSR(FST.transition) because there is need to omit certain points and the

enumeration of all possible combinations is sequential.

The SR(FST.output) is an array of integers (integer string) with a pre-given
length, which was computed during the initiation phase and depends on the

machine type and the number of states, or on the number of transitions. The

values of this array are in the range [0 . . . m − 1], where m is the size of the

output alphabet. Thus, for generating a random string in this form, a random

integer in this range must be generated for each array value (Algorithm 21).

3.2.6. Generating an initial set of points

For our search algorithm, the initial set of randomly generated points in the

search space is required. In Subsection 3.2.5 the algorithms for generating one

random FST were defined.

88

Algorithm 21 SR(FST.output) random generator in a universe

1: SR[]←new(SR[Multiverse.SRoutputLength])
2: if m > 0 then

3: for i = 0→ sr[].size− 1 do

4: SR[i]← randomInteger ∈ [0 . . . m− 1]
5: end for

6: else

7: SR[]← [0]
8: end if

9: return SR[]

The number of randomly generated points, i.e. the size of initial set is

characterized by two parameters – pc1 and pc2:

• pc1 shows the percentage of cSR(FST.transition) generated out of the
Universe.size,

• pc2 shows the percentage of SR(FST.output) generated out of all the

possible output functions for each cSR(FST.transition).

Algorithm 22 Generator of an initial random set of points

Require: pc1
Require: pc2
1: nT ← bUniverse.size× pc1c
2: for i = 0→ nT − 1 do

3: coordT ←generateRandomCSR(FST.transition)
4: nO ← bNumberOfAllPossibleOutputFunctions× pc2c
5: keyU ← Universe.iRange;
6: keyT ← transform(coordT);
7: for i = 0→ nO − 1 do

8: coordO ←generateRandomSR(FST.output)
9: keyO =transform(coordO);

10: key ← [keyU, keyT, keyO]
11: if POINTS.containsKey(key) then
12: point← point(coordT, coordO)

13: point.score←evaluate(point)
14: POINTS.put(key, point)
15: end if

16: end for

17: end for

89

For certain amount of cSR(FST.transition) (defined by pc1), a random

cSR(FST.transition) is generated and for this transition function in turn,

several random output functions SR(FST.output) are generated. The number
of such functions is defined by pc2. We define point cSRS(FST) =
{cSR(FST.transition), SR(FST.output)} and key. If this point in the search
space had not yet been generated, we evaluate it and add to the associative array

with this key (Algorithm 22).

3.2.7. Visualization

The basic methods used for visualizing the search process are presented below.

Due to the search space being multidimensional, techniques that reduce the

dimensionality are required, in order to represent our search space in 2D or 3D

graphs.

Representing function value by color

The motivation behind the colorizing process is to reduce the dimensionality of

the graph by transforming one dimension into color. For example, this allows

to reduce from a 3D graph (point coordinate x, point coordinate y, value at

point) to a 2D graph (point coordinate x, point coordinate y, color of the point)

(Figure 3.9).

This reduction is done by transforming the value of the function, which for

our problem is ∈ [0 . . . 1] into a corresponding color (Figure 3.10).
This transformation is defined by function Color.getHSBColor(), which

constructs a point in the color space represented by Hue, Saturation and

Brightness (HSB color model). For our purposes, the hue value is fixed to 1.0

(red) and only the saturation and brightness values are changed. This allows us

to modify the colors from black to red. We also added a specific color – white –

for the points with the value 1.0 to add more contrast.

Figure 3.9 Reducing 3D graph into 2D

90

Figure 3.10 Function ∈ [0 . . . 1]→ Color.getHSBColor(1.0f, value, value)

Visualizing FSM search space

We can represent each FSM with two vectors of integers (cSRS(FST)
representation) and for each vector we can find a corresponding number. Thus,

each FSM can be represented by two numbers (see Section 2.7). Where

cSRD(FST) is used, there is only one number, which corresponds to transition
function of the FSM. The objective function sets the score value for each

machine in the range [0 . . . 1]. We are interested in a diagram, which demonstrates

the relation of the FSM and its score.

���������	�	
������	
��
��

����
����������	
��
�� ������������������
���
����
�
���

Figure 3.11 2D score graph, where FST is represented by 2D point and its value by color

2D Score graph. For the cSRS(FST) coding system, there are 3 coordinates
for each point. Two numbers are for FSM representation (i.e. the transition

function code and output function code) and one number for its score. In order

to draw a two-dimensional diagram, the dimension reduction method described

in Section 3.2.7 can be used. Figure 3.11 provides an example of this diagram,

where each point corresponds to one FSM, where the number on the horizontal

axis stands for the transition function code and the number on the vertical axis

corresponds to the output function code. The FSM score is illustrated by color

of the point.

91

1D Score graph. For the cSRD(FST) representation, we can omit one

dimension, namely the output function code. Only two dimensions remain – the

transition function code and the FSM score value.

���������	�	
������	
��
��

������
��
����	�������	
� �
���
��
������������������
���
���

Figure 3.12 1D score graph, where FST is represented by point and value

Figure 3.12 demonstrates the visualization example, where the coordinates

on the horizontal axis show the transition function code and the coordinates on

the vertical axis show the FSM score value. The different colors on the chart

demonstrate the different subspaces.

3.3. Search Algorithm

The task of the search algorithm is to find a point in a search space that

corresponds to the FST with the optimal behavior. For each point in a search

space, the evaluation function assigns a score value from [0 . . . 1], which describes
how well the corresponding FST behaves. Thus, the task is to find the point

with the maximal value (1.0) or alternatively, at least the point with the maximal

score value.

The search space (multiverse) consists of several universes, i.e. non-

intersecting subsets, and each universe contains points (see Section 3.2). Some of

the universes have a higher probability of containing the solution than others. The

objective is to subdivide the search algorithm into two phases (Algorithm 23).

The first phase chooses the universe which is ’better’ than others, while the

second phase searches this universe locally in order to find the best point:

1. Phase 1. ’Meta search’. During the meta search, we try to evaluate the

universes (subspaces), in order to subsequently enable us to choose the

universe, which is more likely to include solutions (Section 3.4).

2. Phase 2. ’Universe local search’. The aim of the local search is to find the

maximal point inside a pre-given universe (Section 3.5).

92

Algorithm 23 Searching in cSRS(FST) search space
initiate(Multiverse)

while (solution not found) and(there are not explored subspaces) do

bestSubspace←metaSearch(Space)
search(bestSubspace)

end while

The general objective of entire search process is presented in Figure 3.13. To

begin with we can assign a value, for each universe, which shows the quality of

subspace. After the meta search phase, one subspace that has not been explored

and has the best value, is selected. During the local search phase, the chosen

universe is explored. If the solution is not found in this universe, the algorithm

returns to the meta search phase. This cycle is carried out until the solution with

maximal value is found or all the universes are explored. If all subspaces have

been explored and the solution with the value 1.0 has not been found, then the

algorithm returns the solution with the maximal value (< 1.0).

��������
�	

��������
�	�

��������
���

��������
�

��������

��������

��������
����

�����

�����

�����
�

�����
���

�����
�	�

�����
�	

�����
����

�����
������

�����
������

��������

���������

��

Figure 3.13 General description of the search algorithm

3.4. Multiverse Meta Search

Due to the search space structure, the separate search of the universes can be

executed either in parallel or sequentially. Moreover, the ”meta search” algorithm

can be employed to define which subspaces to search first. In theory, there is

no need to search all the subspaces , but those that are more likely to contain

solutions.

93

The task of meta search algorithm is to assign value to each subspace

(described by flag) and to choose ’the best’ subspace, which contains the solution

with higher probability.

The only useful information known about a subspace is its flag. The flag

provides the pattern for the sequences and ultimately defines how the states are

connected, which represents certain part of transition function.

An ideal meta search algorithm evaluates the subspaces without generating

points in any of them.

However, a realistic meta search algorithm evaluates the subspaces based on

the generated points (Algorithm 24).

Algorithm 24 Meta search. Evaluating subspace by values of its points

1: for all Universe ∈Multiverse do
2: Generate randomly initial set of points initiate(pc1, pc2)
3: for all point ∈ Universe.POINTS do

4: decode(point→ cSRS(FST)→ FST)
5: point.value←getScore(FST)
6: end for

7: Universe.value← evaluateUniverse(Universe.POINTS)
8: end for

9: function bestUniverse

10: return the Universe with maximal score, which is not explored

11: end function

The simplest idea is to evaluate the universe subspace based on the average

value of all of its points. The notion behind this method is to randomly generate

a certain amount of points defined by their percentage of the size of the search

space. Consequently, the subspace score is constructed on the basis of the values

of those points. This method uses the average function for obtaining the score.

Universe.score = ΣP oints.size−1
k=0 point[k].value

Points.size

As with the previous method, we randomly generate a certain amount of

points defined by their percentage of the size of the search space and subspace

score based on the points values. This method uses the maximal function instead

of average value to get the score.

Universe.score = Maximum(Points[k].value)

Example 3.5 Suppose the task is to construct a Moore machine which is

consistent with the ’aab recognizer’ training set (Figure 4.8). After initialization

(see Figure 3.4), there are 14 subspaces. In each subspace 10% of points are

94

randomly generated (see Algorithm 5). Subsequently, the average value over all

in generated points in subspace is computed (see Figure 3.14).

(1, 3, 5): * 1 * 2 * 3 * * av.m.=0.8333333333333333
(1, 3, 4): * 1 * 2 3 * * * av.m.=0.8728632478632479
(1, 2, 5): * 1 2 * * 3 * * av.m.=0.8525641025641028
(1, 2, 4): * 1 2 * 3 * * * av.m.=0.8859649122807018
(1, 2, 3): * 1 2 3 * * * * av.m.=0.8669871794871793
(0, 3, 5): 1 * * 2 * 3 * * av.m.=0.8333333333333336
(0, 3, 4): 1 * * 2 3 * * * av.m.=0.8584401709401708
(0, 2, 5): 1 * 2 * * 3 * * av.m.=0.8434065934065933
(0, 2, 4): 1 * 2 * 3 * * * av.m.=0.8566126855600537
(0, 2, 3): 1 * 2 3 * * * * av.m.=0.84981684981685
(0, 1, 5): 1 2 * * * 3 * * av.m.=0.8388278388278388
(0, 1, 4): 1 2 * * 3 * * * av.m.=0.8582875457875456
(0, 1, 3): 1 2 * 3 * * * * av.m.=0.8408851422550058
(0, 1, 2): 1 2 3 * * * * * av.m.=0.8432757718472003

Figure 3.14 Scores of all subspaces for ’aab recognizer’ task based on average values

of 10% of the points

Now each subspace has a corresponding score that characterizes it. Therefore,

the ’meta search’ algorithm returns the subspace with the maximal value, if

this subspace had not yet been explored. In this example, the first such flag is

(1, 2, 4) with the value 0.88, if during the local search step solution is not found,
the next subspace is (1, 3, 4) with the value 0.87, etc.
Figure 3.15 illustrates the method that uses the maximal function instead of

the average value in order to get score in the ’Up-down counter’ task example.

(1, 3, 5): * 1 * 2 * 3 * * Av. mass: 0.2586 Max mass: 0.4444
(1, 3, 4): * 1 * 2 3 * * * Av. mass: 0.2407 Max mass: 0.4444
(1, 2, 5): * 1 2 * * 3 * * Av. mass: 0.2489 Max mass: 0.4603
(1, 2, 4): * 1 2 * 3 * * * Av. mass: 0.2638 Max mass: 0.5238
(1, 2, 3): * 1 2 3 * * * * Av. mass: 0.2360 Max mass: 0.4126
(0, 3, 5): 1 * * 2 * 3 * * Av. mass: 0.2520 Max mass: 0.4761
(0, 3, 4): 1 * * 2 3 * * * Av. mass: 0.2522 Max mass: 0.5555
(0, 2, 5): 1 * 2 * * 3 * * Av. mass: 0.2639 Max mass: 0.5714
(0, 2, 4): 1 * 2 * 3 * * * Av. mass: 0.2591 Max mass: 0.5396
(0, 2, 3): 1 * 2 3 * * * * Av. mass: 0.2475 Max mass: 0.5238
(0, 1, 5): 1 2 * * * 3 * * Av. mass: 0.2500 Max mass: 0.6349
(0, 1, 4): 1 2 * * 3 * * * Av. mass: 0.2448 Max mass: 0.6349
(0, 1, 3): 1 2 * 3 * * * * Av. mass: 0.2467 Max mass: 0.7142
(0, 1, 2): 1 2 3 * * * * * Av. mass: 0.2495 Max mass: 0.6507

Figure 3.15 Scores of all subspaces for ’Up-down counter’ task based on average

values of (5%,5%) of the points

95

3.5. Universe Local Search

The Discrete Gravitational Swarm Optimization algorithm applies the ideas

of the Particle Swarm Optimization algorithm (Subsection 3.1.1) and of the

Gravitational Search Algorithm (Subsection 3.1.3). Although both these

algorithms are intended for continuous search space, we adapt their main ideas

to the discrete search space.

Each point in a search space is characterized by:

• position[] – the solution,

• velocity[] – the information about the change of the position[] vector,

• mass – the score value of the solution,

• position[]best – the best known position for the object point,

• position[]global – the best known position in the explored search space.

First of all, the distance between the points in the search space is defined.

In our case, each point is the n-dimensional vector of integers. In order to

calculate the distance between the vectors, we use the distance in dimension D
(Algorithm 25), which returns ’1’, if the values in the corresponding dimension

are not equal, otherwise it returns ’0’.

Algorithm 25 distanceInD(valueD1, valueD2)
1: if valueD1 6= valueD2 then
2: distanceD = 1
3: else

4: distanceD = 0
5: end if

6: return distanceD

The distance between the vectors is defined as the sum of distances for all

dimensions (Algorithm 26).

Algorithm 26 distance(position1[], position2[])
1: for dimension = 0→ position.length− 1 do

2: distance ← distance+distanceInD(position1[dimension],
position2[dimension])

3: end for

4: return distance

Subsequently, we need to redefine two operations – movement(Algorithm 27),

i.e change of position and acceleration (Algorithm 28), i.e. change of velocity.

96

In the PSO and GSA algorithms, movement and acceleration are defined as

sums, However, we use algorithms similar to the ’crossover’ operator in the

Evolutionary Algorithm.

Algorithm 27 Move(position[], velocity[], massinertial)
1: for dimension = 0→ position.length− 1 do

2: if Random < 1−massinertial then

3: newPosition[dimension]← velocity[dimension]
4: else

5: newPosition[dimension]← position[dimension]
6: end if

7: end for

8: return newPosition[]

The ’move’ operator (Algorithm 27) changes the current position into a new

one according to the tendency, which is described by the velocity[] vector. The
ability of changing is described by massinertial. A bigger massinertial means

that this point tends to save its current position. The ’move’ operator is similar

to the uniform crossover operator between the position[] and velocity[] vectors.

Algorithm 28 Accelerate

for dimension = 0→ velocity.length− 1 do

if Random() < Forcep then

newV elocity[dimension]← positionpBest[dimension]
else

newV elocity[dimension]← velocity[dimension]
end if

end for

for dimension = 0→ velocity.length− 1 do

if Random() < Forceg then

newV elocity[dimension]← positiongBest[dimension]
else

newV elocity[dimension]← velocity[dimension]
end if

end for

return newV elocity[]

More details on the Modified Particle Swarm Optimization Algorithm Based

on Gravitational Field Interactions can be found in [58]. It is similar to the

method we use for local search and which also adapts the ideas of combining the

PSO and GSA. The Modified Particle Swarm Optimization Algorithm Based on
Gravitational Field Interactions algorithm was benchmarked against stochastic

hill climbing and standard PSO on the Diophantine Equation Solver problem.

97

3.6. Conclusion

This chapter covers the heuristic search algorithm in the context of FSM
induction. We presented methods for search space initialization and visualization,

operators of the new search algorithm and the algorithm itself.

Canonical string representation of FSM allows to divide the search space

into non-intersecting parts. In addition, such representation creates one-to-one

correspondence between FSM and a triple of numbers, which can be used as

’key’ for the hash function. Hashing of point helps to reduce the number of

FSM evaluations.

The specifics of the search space structure provides the opportunity to create

the search algorithm that has two phases – the first one for selecting the subspace

with a higher probability of containing the solution, and the second phase being

the local search inside the selected subspace. The local search algorithm is based

on the new ’Discrete Gravitational Swarm Optimization algorithm’, which was

constructed as a hybrid of GSA and PSO and adapted for the discrete search

space.

98

4. APPLICATIONS

This chapter describes the set of tasks that can be used for benchmarking

a proposed method for FSM identification, e.g. System identification (see

Section 4.1), Artificial ant problem (see Section 4.2) and Binary sequence

predictor (see Section 4.3).

4.1. System Identification

In this section, the application of FSM inference to the system identification

problem is discussed. A brief overview of the system identification problem is

given, along with defining different objective functions and presenting several

experimental results.

4.1.1. Description

The system identification problem is defined as constructing a model of the

system, i.e. internal representation, which simulates its external behavior

(Figure 4.1). The only data that can be used for model inference are the

observable inputs and outputs of the system.

������

������	

����

���� �����

���	�����
������	
�����

Figure 4.1 System identification

In this research the focus is only on models which can be considered as a

finite state machine with an output function. The methods for inferring any

99

structures for language recognition, such as automata or grammars are part of

grammatical inference and thus not discussed in this context.

The inference from the example (I/O pairs) to general (Model) can be

considered as an inductive inference. In addition, as the learner cannot control

the data it receives, this is a passive inference.

Although, only FST is discussed, the two issues relating to classification and

identification are someway similar – the inference of a FA can be considered as

part of the FST inference).

There are two main FSM properties that are important:

• The FSM size: if the size of the inferred FSM, i.e. its number of states

is not limited, then the problem becomes trivial. There are two problem

definitions:

– Finding a minimum size deterministic FSM that is consistent with

the set of given samples.

– Finding a deterministic FSM with n or less states that is consistent

with the set of given samples.

The problem of finding minimal FSM is more complex.

• Generalization. The term ’generalization’ denotes the ability to identify

unseen data, which is not presented in the training set. Here we can

formulate two different goals:

– to find a generalized solution, which performs correctly for all

possible I/O sequences, or

– to find a consistent solution, which performs correctly only for I/O

sequences used in inference process (the training set).

Example 4.1 shows the difference between these two problem statements.

Example 4.1 Figure 4.2 illustrates two solutions that are consistent with the

given training set. The difference lies in the behavior of these models:

• the generalized solution (Figure 4.2(a)) behaves as the correct ’aab’

recognizer for all possible I/O pairs,

• the consistent solution (Figure 4.2(b)) acts as the correct one only for

training data, but makes errors for other I/O pairs. For example for the

input ”aabab” it will output ”000101”, which is incorrect.

100

ONMLHIJK0/0b --

a // ONMLHIJK1/0

a

~~}}
}}
}}
}}
}}
}}
}}
}}
}}

b
oo

ONMLHIJK2/0a
--

b // ONMLHIJK3/1
a

oo

b

OO

(a) Consistent solution

ONMLHIJK0/0b --

a // ONMLHIJK1/0

a

~~}}
}}
}}
}}
}}
}}
}}
}}
}}

b
oo

ONMLHIJK2/0a
--

b // ONMLHIJK3/1

b

`ÀAAAAAAAAAAAAAAAAA

a

OO

(b) Generalized solution

Figure 4.2 Pattern recognizer for ’aab’. Generalized and consistent solution

The problem statement

We formulate our problem as having to find a deterministic FST with n states,

which is consistent with the given training set, where:

• The environment is defined as the set of I/O pairs. The input and output

alphabets can be constructed by parsing the training data.

• The acting agent is defined as a FST. Here we consider on both Mealy

and Moore machine. The number of states is predefined by the user.

• The search algorithm employs the representations we use, namely

cSRD(FST), where the output function can be reconstructed from

observable output, and cSRS(FST).

• The score assigned for each FST shows how accurately this machine

describes the training data. The objective function for this problem is

defined in Subsection 4.1.1.

Complexity

The problem of finding a minimum size deterministic FSM that is consistent

with the given set of given is equivalent to the problem of determining

whether there exists a k-state DFA that is consistent with a set of labeled

101

strings. The identification of minimal consistent automata from the given data is

NP-Complete [2]. The problem can be solved in polynomial time on the input

size if all strings with a length n or less are given, but remains NP-complete

if a small fixed fraction of these strings is missing. In addition, assuming that

P 6= NP , it is shown that for any constant k, no polynomial time algorithm

can be guaranteed for finding a consistent DFA with fewer than optk states,

where opt is the number of states in the minimum state DFA consistent with the

sample [59].

More information about the complexity of FA induction can be found

in [60], [61].

Objective function

The main notion behind of constructing the objective of a function for the

problem of FST inference from the training set lies in measuring the difference

between the expected output of the model known from the output part of the

behavior and the output generated by model which is FSM generated by the

learner (Figure 4.3).

���������
�	�
��

����
����

�	�
�������
 ����������
��

�����
�����
��

�����������
�
��
������
����
�������

����������
	��������

��
��������
���	

Figure 4.3 FSM quality evaluation process

While the system behavior is described by the set of I/O strings, the objective

function (see Figure 4.4) is constructed based on measuring string distances.

We defined two functions – Hamming similarity and Length of maximal

equal prefix (see Subsection 2.1.1). Based on these functions we can construct

objective functions by applying one of the string distance functions for each I/O

pair and summing them up.

Each objective function (Equation 4.2 and 4.1) returns a value ∈ [0..1].

102

Input Expected output Produced output Distance

In0 Outexpected
0 Outproduced

0 distance0
In1 Outexpected

1 Outproduced
1 distance1

In... Outexpected
... Outproduced

... distance...

Inn Outexpected
n Outproduced

n distancen

Figure 4.4 Measuring objective value

Objective function ObjV alueHam based on the Hamming similarity

(Definition 2.12) can be computed by:

ObjV alueHam = Σn
i=1(SHam(Outexpected

i , Outproduced
i))

Σn
i=1Length(Outexpected

i)
. (4.1)

Objective function ObjV alueLP based on length of maximal equal prefix

(Definition 2.13) is defined by

ObjV alueLP = Σn
i=1(DLP (Outexpected

i , Outproduced
i)

Σn
i=1Length(Outexpected

i)
. (4.2)

4.1.2. Examples

This section includes experiments with and examples of applying the FST search

algorithm for solving the system identification problem.

’ab’ Recognizer. Induction by enumeration

The task of the ’ab’ Recognizer is to reconstruct the Moore machine MabRec ’ab

recognizer’ from the training set (Figure 4.5). The MabRec machine must output

’1’ in the output sequence, if the pattern ’ab’ was found in the input string.

Otherwise, the output is ’0’. The FST has 3 states, Σ = {a, b}, ∆ = {0, 1}.

abbbbb, 0010000
aababa, 0001010
babbba, 0001000
abbbbb, 0010000

Figure 4.5 Training set for the ’ab’ recognizer task

For such small search spaces with 216 possible transition functions and

8 possible output functions, it is cheaper to sequentially check all possible

machines and then choose the best one.

103

Figure 4.6 Search space landscape for cSRS(MabRec) representation

Figure 4.6 shows the score graph for all possibleFST described by cSRS(FST)
representation and objective function ObjV alueHam. The white point belongs

to the optimal solution represented by cSRS(MabRec) = [1, 0, 1, 2, 1, 0], [0, 0, 1]
with the score 1.0. Here the algorithm enumerates all 216× 8 points.

Figure 4.7 Search space landscape for cSRd(MabRec) representation

Figure 4.7 demonstrates the score graph for the situation, where the FST
is represented by cSRD(FST) representation. Thus, the output function of the

machine is inferred from I/O pairs, and the point with 100% value (objective

value 1.0) belongs to the solution coded by cSRd(MabRec) = [1, 0, 1, 2, 1, 0].
The algorithm only checks 216 points.

Although such representation is applicable only in situations, where output

function can be recomputed, it is simpler to apply the representation cSRD(FST)
in order to reduce the size of the search space.

’aab’ Recognizer

The ’aab’ Recognizer task is to construct the Moore machine MaabRec from the

training set (Figure 4.8), which will behave as ’aab Recognizer’. The MaabRec

machine must output ’1’ in the output sequence, if pattern ’aab’ was found in

the input string. Otherwise the output is’0’. The FST has 4 states, Σ = {b, a},
∆ = {0, 1}.

Figure 4.9 shows the set of discovered solutions for the ’aab’ recognizer task,

which are presented by cSRd(MaabRec) and were found by enumeration.
Figure 4.10 displays the score graph for all possible machines (5248× 16) for

cSRS(MaabRec) representation. The solutions are located in the areas marked by
a white line.

104

babaabaabaab, 0000001001001
bbaabaaaaaba, 0000010000010
bbbaabbbaabb, 0000001000010
bbaabbaabaaa, 0000010001000
aabbaaaabbbb, 0001000001000
aababaaababb, 0001000001000

Figure 4.8 Training set for the ’aab’ recognizer task

[0, 1, 0, 2, 3, 2, 0, 1]
[0, 1, 0, 2, 3, 2, 1, 1]
[0, 1, 1, 2, 3, 2, 1, 1]
[0, 1, 1, 2, 3, 2, 0, 1]
[1, 2, 1, 0, 3, 2, 0, 0]
[1, 2, 1, 0, 3, 2, 1, 0]
[1, 2, 0, 0, 3, 2, 0, 0]
[1, 2, 0, 0, 3, 2, 1, 0]

Figure 4.9 Discovered solutions for the ’aab’ recognizer task training set

Figure 4.10 Search space landscape for cSRS(MaabRec) representation

Figure 4.11 Explored points in the search space for cSRS(MaabRec) representation

Figure 4.11 shows the points explored during the search process. (0.1, 0.1)

points were randomly generated at the initial stage.

105

The meta search phase found a universe {(1, 3, 4) : ∗ 1 ∗ 2 3 ∗ ∗ ∗}
with average mass=0.6068. The search algorithm checked 26 points. The total

search covered over 530 points out of 83968.

Figure 4.12 Search space landscape for cSRd(MaabRec) representation

Figure 4.12 shows the score graph for all 5248 machines presented by

the cSRd(MaabRec). The solutions are concentrated only in two subspaces,

defined by flags {(1, 3, 4) : ∗ 1 ∗ 2 3 ∗ ∗ ∗} (purple region) and

{(0, 1, 4) : 1 2 ∗ ∗ 3 ∗ ∗ ∗} (light green region).

Figure 4.13 Explored points in the search space for cSRd(MaabRec) representation

Figure 4.13 depicts the points explored by the search process. (0.05, 0.05)

random FST were generated at the initial phase. The meta search phase found a

universe {(1, 3, 4) : ∗ 1 ∗ 2 3 ∗ ∗ ∗} with an average mass=0.876 at the
second step. The total number of points explored was 266 out of 5248.

Division by two

The Division by two task is to construct the Moore machine Mdiv2, which divides
numbers in binary form by 2, usually done by bit right shifting, from the training

set (Figure 4.14). The FST has 4 states, Σ = {1, 0}, ∆ = {0, 1}.

106

101, 0010
11111, 001111
01001, 000100

100, 0010
110, 0011
1, 00
0, 00

Figure 4.14 Training set for the ’Division by two’ task

Figure 4.15 shows the score graph for all possible FST (5248×16). The white
point belongs to the solution cSRS(Mdiv2) = {[1, 0, 2, 3, 2, 3, 1, 0], [0, 0, 1, 1]}
with the score 1.0.

Figure 4.15 Search space landscape for cSRS(Mdiv2) representation

Figure 4.16 demonstrates the set of points explored during the search. The

initial phase generated (0.05, 0.05) of random points, and the meta search found

a universe {(0, 2, 3) : 1 ∗ 2 3 ∗ ∗ ∗ ∗} with an average mass=0.5857 (90
points in this Universe were checked). The total amount of explored points was

320 out of 83968.

Figure 4.16 Explored points in the search space for cSRS(Mdiv2) representation

107

Figure 4.17 demonstrates the score graph for all possible points for the

cSRD(FST) form.

Figure 4.17 Search space landscape for cSRd(Mdiv2) representation

Figure 4.18 shows the set of explored points. During the initiation phase

(0.05, 0.05) of points were randomly generated, and the meta search phase found

a universe {(0, 2, 3) : 1 ∗ 2 3 ∗ ∗ ∗ ∗} with an average mass: 0.835 at the
second step. The search algorithm explored 297 out of 5248 points.

Figure 4.18 Explored points in the search space for cSRd(Mdiv2) representation

Up down counter

The Up down counter task is to construct the Moore machine Mudc from the

training set (Figure 4.19), which analyzes the input sequence in a binary alphabet.

Let w = s1s2 . . . st be an input string, N0(w) = number of 0 in w and N1(w) =
number of 1 inw. Thenwe have the length of the word |w| = N0(w)+N1(w) = t.
The output of the machine should equal: r(t) = [N1(w)−N0(w)] mod 4.

Sample input/output session:

stimulus 11011100

response 012123032

The FST has 4 states, input alphabet Σ = {0, 1} and output alphabet

∆ = {0, 3, 1, 2}.
Figure 4.20 demonstrates the score graph for the set of points explored during

the search process for the cSRD(FST) form (5248 machines). The solution is

cSRd(Mudc) = {[1, 2, 3, 0, 0, 3, 2, 1]}.

108

01010101, 030303030
10101010, 010101010
00110011, 032303230
00111100, 032301210
01001100, 030323032
10011001, 010301030
11001001, 012101030

Figure 4.19 Training set ’Up down counter’

For the cSRS(FST) form the search space is too big for visualization by

enumeration (5248× 256 machines).

Figure 4.20 Search space landscape for cSRd(Mudc) representation

Figure 4.21 shows the points explored during the search. At the initial phase

(0.05, 0.05) of the points were generated randomly, and the meta search phase

found a universe {(0, 1, 2) : 1 2 3 ∗ ∗ ∗ ∗ ∗} with an average mass= 0.5353
at the forth step. The algorithm explored 393 out of 5248 points.

Figure 4.21 Set of points explored in the search space landscape for cSRd(Mudc)
representation

Figure 4.22 shows the set of points explored during the search process. At

the initial phase (0.05, 0.05) of points were randomly generated, and the meta

search phase found the a universe {(0, 1, 2) : 1 2 3 ∗ ∗ ∗ ∗ ∗} with an

average mass=0.255 at the forth step. hence, in total, the algorithm explored

4780 out of 1343488 points.

109

Figure 4.22 Set of points explored in the search space landscape for cSRS(Mudc)
representation

4.1.3. Package: System Identification

Package System identification (Figure 4.23) contains the implementation of
the system identification problem.

Figure 4.23 Class diagram describing the package ’System identification’

The package contains the following classes:

• ModellingBehaviour is the main class that extends the SearchProblem
class and implements the main methods for FSM evaluation of training

data.

• MooreFST class extends the FSM class and implements the method of the

classical Moore machine work-flow (Algorithm 2).

• MooreFSTDecorated class extends the MooreFST class and implements

the algorithm for decorating DFA∅ as a Moore machine.

• MealyFST class extends the FSM class and implements the method of the

classical Mealy machine work-flow.

110

• Behavior implements the algorithms for reading, parsing and storing

information about training data.

4.2. Artificial Ant Problem

This section examines the Artificial ant problem also known as the Trail tracker

problem. This task is often used for benchmarking Evolutionary Algorithms, not

only in a case of FSM inference, but also in the case of Genetic Programming [22]

and artificial neural network learning [21].

4.2.1. Description

The Artificial ant problem was originally proposed by Jefferson et al. [21]. The

goal is to construct an agent, which takes information about a subsequent cell,

i.e. whether there is food or not, and moves along the grid, with aim of finding

the optimal trail for collecting all the food in the grid.

The grid itself is a 32 × 32 toroidal structure. Therefore, if the ant is at the

bottom of such a grid and the next move is ’move down’, the following cell will

be at the top. The food on the grid is located in a special way, constructed to

make the task more complex. The are two well-known trails – the John Muir

Trail (Figure 4.24(a)) developed by Jefferson et al. [21] and the Santa Fe Trail

(Figure 4.24(b)). Both of them contain 89 cells of food.

(a) John Muir Trail (b) Santa Fe Trail

Figure 4.24 Artificial Ant trails

The ant is modeled by a Mealy-type machine with n states. There is only one

input variable with two values (events), because the ant can only see a single cell

directly in front of it. Input alphabet contains only two characters:

• ’F’ (food) – there is food in the next cell,

• ’E’ (empty) – the next cell is empty.

111

�

�

�

� �����	
�	���

�����	
�����

�������

�������

��������

Figure 4.25 Events, actions and orientation

The actions allowed for the ant can be coded by a 4-letter alphabet:

• ’W’ (wait) – the ant will do nothing at this step,

• ’M’ (move) – the ant will move to the next cell and if there is food it will

eat it (the eaten food is removed from the grid),

• ’R’ (turn right) – the ant will stay in the same cell, but turn right,

• ’L’ (turn left) – the ant will stay in the same cell, but turn left.

The ant can only see the cell in the front of it, ant the address of the cell is

defined by the orientation of the ant:

• ’N’ (north) – the ant can see the top cell,

• ’E’ (east) – the ant can see the right cell,

• ’S’ (south) – the ant can see the bottom cell,

• ’W’ (west) – the ant can see the left cell.

The starting position of the ant on the grid is the top left cell (0, 0). The

initial orientation is ’East’. Thus, the input alphabet is Σ = {E, F} and the

output alphabet is ∆ = {W, M, L, R}.
Figure 4.25 demonstrates the defined alphabets, i.e. actions and events, for

the situation, where the ant is oriented ’East’.

Objective function

The score of the ant can be found only by running the simulation. The original

objective function shows how much food was eaten during 200 steps. We modify

112

this function so that it returns a value ∈ [0 . . . 1] (Equation 4.3). Therefore, we
divide the number of eaten food cells by the total number of food cells on grid.

ObjV alue = eaten food

total amount of food on trail
(4.3)

Complexity

The question is how complex must the FSM, i.e. number of states be,in order to

be capable of fulfilling the task.

� �

�

�
�

���
��	

��

��	

��	����	

��	

��
���

Figure 4.26 Original ant for John Muir Trail

Jefferson et al. [21] constructed the FSM with 5 states (Figure 4.26), which

is able to eat 81 pieces of food out of 89 on the John Muir Trail by 200

steps and eat all of the food by 314 steps. This ant can be presented by

cSRS(Mant81t314) = {[1, 0, 2, 0, 3, 0, 4, 0, 0, 0], [3, 1, 2, 1, 2, 1, 3, 1, 1, 1]}.
As is evident, this ant was not able to eat all the food by 200 steps. In the

literature ant with up to 13 states are used.

Comparing the effectiveness of solutions

Due to the various methods and algorithms for artificial ant representation

(grammars [62]), trees, FSMs, neural nets, etc.), the different heuristic search
methods, including Genetic Programming, Genetic Algorithm, Ant Colony

Optimization [63], and the different possible evaluation functions the proposed

method cannot be directly compared to the already existing solutions. In addition,

we minimized and structured the search space, so it is difficult to separate the

effect of the proposed gravitationally-inspired search algorithm from the effect

of search space minimization.

One of the most time-consuming processes in the search algorithm is

evaluating the ant. In order to optimize the search process we need to minimize

the number of evaluations. The number of fitness evaluations (Neval) shows how

113

many times the evaluation function was computed. Neval is also applicable to

different search methods, so it can be used as a metric for algorithm comparison.

4.2.2. Simulation results. John Muir Trail

During this experiment we will try to construct a Mealy machine with 6 states,

which will model our artificial ant. The ant will be simulated on the John

Muir Trail. The input and output alphabets were defined above, and the

objective function counts the number of food cells eaten with 200 steps. The

cSRS(MeFST) representation will be used.

(a) Number of point generated during the search process

(b) Max value of evaluation function at the initial

and final iteration

Figure 4.27 Simulation on John Muir Trail. Artificial ant with 6 states

For an ant with 6 states, the search space contains 3152263549140 points and

they are divided into 132 partitions.

Figure 4.27 covers the simulation results:

• Figure 4.27(a) illustrates the number of points generated during search

process. The blue line depicts the number of points generated during the

initial phase that were used analyzing the partitions, while the red line

114

demonstrates the number of points, that were explored in each universe

during the search.

• Figure 4.27(b) illustrates the objective function values at the initial stage,

i.e. after generation of random points,as well as at the final stage, namely

after the search process for each universe (partition). The partitions

are ordered by the multiverse meta search algorithm with respect to the

maximal value of the objective function at the initial stage.

One possible solution is:

cSRS(MJMT) = {[1, 2, 3, 4, 5, 2, 2, 0, 3, 0, 0, 4],
[1, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 0]},

with the objective function value 0.944, signifies the ant was able to eat 84 pieces

of food out of 89 by 200 steps, while all of the food can be eaten by 236 steps.

4.2.3. Simulation results. Santa Fe Trail

During the experiments we constructed MeFSTs with 5 . . . 7 states, which model
the artificial ant. The ant is simulated on the Santa Fe Trail. The input

and output alphabets are defined as Σ = {E, F} and ∆ = {M, L, R}, the
objective function counts the number of food cells eaten during 400 steps using

Equation (4.3).

The parameters for the proposed DGSO method are the following:

• the number of steps in each local search phase e = 50,

• at the initial stage of the multiverse search , a certain number of points

for the universe must be generated. Coefficients Ct (coefficient for the

transition function) and Co (coefficient for the output function) (Table 4.1)

show how many points are generated:

– |Universe(MeFST.transition)| = |cSRs(MeFST.transition)| ·
Ct

– |Universe(MeFST.output)| = |cSRs(MeFST.output)| · Co

Table 4.1 Initialization parameters

n Ct Co

5 0.002 0.002

6 0.00015 0.00015

7 0.00005 0.00005

115

We use Neval (see Subsection 4.2.1) for measuring the quality of the proposed
DGSO method. Christensen, S. and Oppacher, F. [64] proposed a method

with Neval = 20696 fitness evaluations for the Santa Fe Trail based on Genetic

Programming + small tree analysis. In Table 4.2 the third column contains the

results of the method proposed by Chivilikhin et al. [63] with respect to the

number of states in the FSM.

Table 4.2 Fitness evaluations

Christensen n Chivilikhin DGSO (avg) DGSO (min)

([64]) ([63])

20696 5 10975 114912 4642

20696 6 9313 233508 5205

20696 7 9221 423208 93290

Table 4.2 contains the results of a proposed DGSO method, showing the

mean number of evaluations and the minimal number of evaluations in 100

runs. The arithmetic mean of Neval for the DGSO method is bigger than for the

Chivilikhin [63] and Christensen [64] methods, but the minimal Neval is better
for the case of 5–6 states.

4.2.4. Analysis

Despite the fact that the mean number of evaluations Neval is bigger than for

the other existing methods, the proposed DGSO method has significant potential

and in some cases, was able to find the solution with a smaller Neval. The results
with a smaller Neval were produced when the method found the correct universe
containing the solution during meta-search stage at the first step. The results

with a bigger Neval were produced during runs, where several universes (25 for
the case of 5 states and 34 for the case of 6 states) were searched before the

solution was found.

There are two main problems with the proposed method that lead to such a

big Neval:

• During the initialization process, a certain amount of points in each

universe must be generated (for test cases these parameters are presented

in Table 4.1). At present, this amount is defined with respect to the size of

the universe. If the search space is big, as is the case for n = 7, a large
number of points is already generated and evaluated at the initial stage.

• The worst-case scenario for the DGSO search method is the situation

where all the universes are searched and the last one contains the solution,

116

provided there even is one. The best-case scenario is the situation where

the solution is found in the first universe. Currently, the universes are

evaluated based on the best point found during the initialization phase,

which is not optimal.

A possible solution for these two problems is to change the initialization

process and modify the function for universe evaluation. The ideal situation

would be the possibility for evaluating the universe without having to generate

points. Such optimization can be researched in the future.

4.2.5. Package: Trail tracker

This package contains the implementation of the Trail tracker problem:

• Grid class stores the grid values.

• Trail class implements the functionality required for trail processing, i.e.

reading trail, and uses Grid class for storing trail information.

• TrailTracker class extends the FSM class, which implements the

functionality required for moving the ant on the trail, and uses Grid for

updating the path.

• TrackTheTrail is the main class of the package (extends the

SearchProblem), which creates the trail from the data file and

runs the artificial ant on the grid.

Figure 4.28 Class diagram describing the ’Trail tracker’ package

117

4.3. Binary Sequence Predictor

This section discusses one of the benchmarks, initially used for benchmarking

the Genetic Programming algorithm.

4.3.1. Description

The world can be considered as an environment and one of the main abilities of

living beings is the capacity to adapt their environment, an ability essential for

survival. In the task at hand, we will try to model this situation.

This game was initially introduced by Fogel in 1966 [40] to demonstrate the

evolution of FST thanks to Genetic Programming.

In more detail, the simplest living being is modeled by a Mealy machine and

the environment is a bit string with a certain periodical bit mask. The value of

one bit is passed on to the Mealy machine at particular moment of time. The task

is to predict the next value in the sequence. In addition, this task can be seen as

the prediction of binary sequences. There are several heuristic search algorithms,

that can be used in this context, e.g. generated simulated annealing [28] or

Evolutionary Algorithms [27].

Representation

The agent here is modeled as aMealy machine with the input alphabetΣ = {0, 1}
and the output alphabet ∆ = {0, 1}, therefore cSRS(MeFST) is used here.

Complexity

In the trivial case we can choose a number of states equal to the size of the bit

mask, used to generate bit string. Although this gives a 100% precise prediction,

the objective is to find a Mealy machine with a smaller number of states. Thus,

the task is to find a compromise between the size of the Mealy machine and

prediction precision.

Objective function

For the evaluation we will use the objective function (Equation 4.4), which is

defined as:

ObjV aluepred = correctly predicted bits

length of the sequence
. (4.4)

and returns a value in the range [0 . . . 1].
This objective function can be modified in order to take in to account the

relation of the size of the Mealy machine with respect to the length of the bit

mask.

118

4.3.2. Examples

11100 predictor

In this example, the environment is modeled based on the bit mask ’11100’. The

length of the environment string is double the length of the mask. The number

of states in Mealy machine is equal to 4, it is chosen to be less than the number

of bits in the mask. The input and output alphabets are both {0, 1}.

Figure 4.29 Search space landscape for cSRS(M11100) representation

Figure 4.29 illustrates the landscape of the search space. The best Mealy

machine has the objective function value 1.0.

Figure 4.30 Set of explored points in the search space for cSRS(M11100) representation

The algorithm was able to find cSRS(M11100) = {[0, 1, 1, 2, 2, 3, 0 , 1],
[1, 1, 1, 1, 0, 0, 0, 1]}, with the value 1.0, by only checking 167 points out of
1343488 during this run.

001111 predictor

In this example, the environment is modeled based on the bit mask ’001111’.

The length of the environment string is double the length of the mask. The

number of states in the Mealy machine is 4 states, as it is chosen to be less than

the number of bits in mask. The input and output alphabets are both {0, 1}.
Figure 4.31 illustrates the landscape of the search space. The best Mealy

machine in this context has the objective function value 1.0.

The algorithm was able to find cSRS(M001111) = {[1, 0, 1, 2, 3, 3, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1]}, with the value 1.0 by only checking 3684 points out of
1343488 during this run.

119

Figure 4.31 Search space landscape for cSRS(M001111) representation

Figure 4.32 Set of explored points in the search space for cSRS(M001111) representation

4.4. Conclusion

This chapter includes discussion about certain tasks that can be solved by

FSM identification, such as system identification, artificial ant and binary

sequence predictor. Those examples illustrate how the proposed algorithm can

be applied in situations that require usage of different FSM types (both Mealy

and Moore machine), string representations and objective functions. Thus,

the modular system allows to use similar methods for problems from different

areas. In addition, the string representation unifies the search algorithm that is

problem-independent.

The experimental results demonstrate that the canonical string representation

helps significantly reduce the search space size. On the other hand, in the

worst-case scenario, the two-level search algorithm leads to generating and

evaluating a vast amount of unnecessary points.

120

CONCLUSIONS

FSMs are important class of models that can be utilized in various areas, such
as modeling systems and agents, for representing grammars or hardware, etc. In

general, the identification of FSMs is a problem relating to constructing FSM
model from the examples of the behavior or description of the observed system.

There are several tasks that can be solved by FSM identification including

grammatical inference, reverse engineering, image processing, creating a model

of behavior for agents.

Despite the fact that those tasks originate from different areas, there are

several commonalities, for instance the behavior of the system is modeled by the

FSM. Furthermore, the identification task assumes the use of the heuristic search

due to the complexity of the deterministic procedure or because the behavior of

the system is unknown. We propose to generalize those tasks and to omit the

differences by defying themodular system for FSM identification (Chapter 1).

This allowed us to separately treat the problem statement, search algorithm and

solution evaluation process. Consequently, we can solve the above-mentioned

tasks using the same method. For example this approach was benchmarked on

the system identification, artificial ant and binary sequence predictor tasks (see

Chapter 4). In addition, such modularity allows the use of different heuristic

search methods or types of the FSM without any complex changes in the general

search process, if required by the task.

Due to specifics of the FSM identification task, heuristic search algorithms

are widely used. The most common choice is a variation of the Evolutionary

Algorithm, e.g. GA or Genetic Programming. However, the family of

population-based heuristic search methods is constantly growing. We propose

new Discrete Gravitationally Inspired Search Algorithm (see Publication B

and Section 3.5), which adapts the ideas of PSO and GSA. Both original

algorithms were initially designed to work with a continuous search space, which

is not applicable in our case. Yet, there are also modifications for the discrete

and binary search spaces. For example, we applied a binary GSA for the FSM
inference for system identification (see Publication C) and for some benchmarks

it over-performed the traditional GA. The GSA and PSO algorithms have

several inner mechanisms in common, which allows to create hybrid algorithms

that employ the advantages of both methods. The issue with the traditional PSO
is the complexity of control – there are three learning coefficients that need to be

found before the search process. The proposed Discrete Gravitationally Inspired

121

Search Algorithm replaces those coefficient with computed values similar to the

GSA (see Publication B), which in turn simplifies adjusting the search algorithm

without reducing the exploration and exploitation abilities.

The performance of the heuristic search method strictly depends on the

representation of solutions and the structure of the search space. There are

two possibilities for the FSM representation – graph representation and string

representation (see Chapter 2). In the first case, there is no decoding/encoding

process, but the inner mechanisms of the heuristic search are more complex.

For the string representations, the search algorithm works on discrete or binary

strings (see Publication C and Subsection2.3.2). We focused solely on string

representations, because there are more heuristic search methods that can be

used with such representations. The most resource-consuming part of the

heuristic search problem is not the algorithm itself nor the encoding/decoding

process, but rather the evaluation of the solutions. Therefore, it is important

to minimize the number of evaluations. As a solution we propose canonical

string representation (see Section 2.7), which adapts the existing method for

DFA enumeration developed by Almeida, Moreira and Reis ([46], [39] [47]) in

the context of search space representation. First of all, this approach allows

us to reduce the search space by removing isomorphic FSMs and FSMs with
unreachable states. Secondly, such a canonical string representation helps to

divide the search space into non-intersecting parts (see Section 3.2), which can be

treated in parallel or sequentially. As regards sequential processing, we changed

the search process to first process the parts with a higher probability of containing

the solution. This helped significantly reduce the number of solution evaluations

(see Subsection 4.2.3). However, in the worst-case scenario, if the first phase

fails and all previous parts must be explored before the part containing the

solution is found, the number of evaluations grows drastically. Thirdly, we can

find the one-to-one correspondence between the FSM represented by canonical

string and a triple of numbers, which can be employed as the key for the hash

function which is used to store the already checked points of the search space.

Storing the already checked points reduces the number of solution evaluations.

Also, this ’key’ (the triple of numbers) can be used as the main part of the

visualization process. Visualizing the search space (see Subsection 3.2.7),

naturally one with a reasonable size, helps to demonstrate the its structure and

illustrate the behavior of the search algorithm.

The proposed approach was benchmarked on three well-known tasks (see

Chapter 4): system identification (see Publication C), artificial ant problem (see

Publication A) and binary sequence predictor.

Comparing the effectiveness of the proposed approach. Due to the various

methods and algorithms for representation, the different heuristic search methods

(Genetic Programming, Genetic Algorithm, Particle Swarm Optimization, etc.)

and the different possible evaluation functions, the proposed method cannot be

directly compared to already existing solutions. In addition, we minimized

122

and structured the search space, so it is difficult to separate the effect of the

proposed gravitationally-inspired search algorithm from the effect of search

space minimization. However, as regards existing methods, the general structure

of the solutions can traditionally be formulated as problem statement + search

algorithm + representation of FSM.

The main contributions are:

1. Unification (one algorithm for different problems) – a modular system,

which allows to fix the search algorithm and FSM representation and use

one approach for different problem statements. To illustrate this capacity

of the method, several experiments were conducted (see Chapter 4), which

demonstrated the possibility of using one approach for different problems.

2. The new string representation of FSM, which is problem-independent

and can be used with different search algorithms. Therefore, string

representations can be compared without any knowledge of the problem

and search method (Section 2.8). By presenting the new representation

we removed all FSMs with unreachable states and isomorphic FSMs from
search space, thus significantly reducing the search space .

3. Two-stage algorithm and a new heuristic search algorithm that is used

for searching in search space partitions – the latter is discussed separately

in publication B, where it was benchmarked and compared to traditional

PSO and stochastic hill climbing, which are the closest methods.

The comparison ’GAs vs. binary GSAs’ is made for the problem of system

identification (SRB(FST) is used as representation of FSM) and the results

are presented in Publication C. Those results can-not be directly compared to

results discussed in Section 4.1, because it is impossible to separate the effect of

the new representation from the effect of the new algorithm. Nevertheless, the

number of total checked points can be observed.

Section 4.2 and Publication A also contain the experimental part, in which the

problem statement is fixed. The proposed method is compared to other existing

methods (Table 4.2).

Future work. There are several means of extending current research. First

of all, we can adapt the proposed algorithm in order to solve other similar

problems. For instance, grammatical inference or modeling of agents. Secondly,

we can add a modification to the representation system in order to handle other

types of machines, e.g. FAs or timed automata. Thirdly, the family of heuristic
optimization techniques is constantly growing, so some of them can be modified

to match the search space representation. Fourthly, the first phase of the search

algorithm, namely selecting of the subspace that has a higher probability of

containing the solution, must be improved to minimize the chances of the

worst-case scenario occurring.

123

REFERENCES

[1] M. Brutscheck, B. Schmidt, M. Franke, A. T. Schwarzbacher, and S. Becker,

“Identification of deterministic sequential finite state machines in unknown

CMOS ICs,” in Signals and Systems Conference (ISSC 2009), IET Irish,

2009, pp. 1–6.

[2] E. M. Gold, “Complexity of automaton identification from given data,”

Information and Control, vol. 37, no. 3, pp. 302 – 320, 1978.

[3] P. Hingston, “A Genetic Algorithm for Regular Inference,” in Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-2001),

L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H. M. Voigt, M. Gen,

S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. San

Francisco, California, USA: Morgan Kaufmann, Jul. 2001, pp. 1299–1306.

[4] M. Tomita, “Dynamic construction of finite automata from examples using

hill-climbing,” in Proceedings of the Fourth Annual Conference of the

Cognitive Science Society, Ann Arbor, Michigan, 1982, pp. 105–108.

[5] P. Kohli, “A new genetic algorithm based scheme for inferring finite state

machines from accept/reject data samples.” in IICAI, B. Prasad, Ed. IICAI,

2003, pp. 632–645.

[6] J. W. Horihan and Y.-H. Lu, “Improving FSM evolution with progressive

fitness functions,” in Proceedings of the 14th ACM Great Lakes symposium

on VLSI, ser. GLSVLSI ’04. New York, NY, USA: ACM, 2004, pp.

123–126.

[7] S. Lucas and T. J. Reynolds, “Learning deterministic finite automata with a

smart state labeling evolutionary algorithm,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 27, no. 7, pp. 1063–1074, 2005.

[8] J. Bongard, H. Lipson, and S. Wrobel, “Active coevolutionary learning

of deterministic finite automata,” Journal of Machine Learning Research,

vol. 6, p. 2005, 2005.

[9] M. M. Lankhorst, “A genetic algorithm for the induction of context-free

grammars,” 1993.

125

[10] S. M. Lucas, “Structuring chromosomes for context-free grammar

evolution,” in in Proceedings of IEEE International Conference on

Evolutionary Computation. IEEE, 1994, pp. 130–135.

[11] A. Zomorodian, “Context-free language induction by evolution of

deterministic push-down automata using genetic programming,” inWorking

Notes for the AAAI Symposium on Genetic Programming, E. V. Siegel and

J. R. Koza, Eds. MIT, Cambridge, MA, USA: AAAI, 10–12 Nov. 1995,

pp. 127–133.

[12] M.M. Lankhorst, “A genetic algorithm for the induction of nondeterministic

pushdown automata,” University of Groningen, Tech. Rep., 1995.

[13] C. Manovit, C. Aporntewan, and P. Chongstitvatana, “Synthesis of

synchronous sequential logic circuits from partial input/output sequences,”

in Proceedings of the Second International Conference on Evolvable

Systems: From Biology to Hardware, ser. ICES ’98. London, UK, UK:

Springer-Verlag, 1998, pp. 98–105.

[14] P. Chongstitvatana and C. Aporntewan, “Improving correctness of finite-

state machine synthesis from multiple partial input/output sequences,” in

Evolvable Hardware, 1999. Proceedings of the First NASA/DoD Workshop

on, 1999, pp. 262–266.

[15] L. Ngom, C. Baron, and J.-C. Geffroy, “Genetic simulation for finite state

machine identification,” Simulation Symposium, Annual, vol. 0, p. 118,

1999.

[16] S. Tongchim and P. Chongstitvatana, “Parallel genetic algorithm for

finite-state machine synthesis from input/output sequences,” 2000.

[17] N. Niparnan and P. Chongstitvatana, “An improved genetic algorithm for

the inference of finite state machine,” in Systems, Man and Cybernetics,

2002 IEEE International Conference on, vol. 7, oct. 2002, p. 5 pp. vol.7.

[18] X. Geng, “Solving identification problem for asynchronous finite state

machines using genetic algorithms,” in Proceedings of the 8th annual

conference on Genetic and evolutionary computation, ser. GECCO ’06.

New York, NY, USA: ACM, 2006, pp. 1413–1414.

[19] H. Shayani and P. J. Bentley, “A more bio-plausible approach to the

evolutionary inference of finite state machines,” in Proceedings of the 2007

GECCO conference companion on Genetic and evolutionary computation,

ser. GECCO ’07. New York, NY, USA: ACM, 2007, pp. 2937–2944.

[20] A. Naidoo and N. Pillay, “The induction of finite transducers using genetic

programming,” in Proceedings of the 10th European conference on Genetic

126

programming, ser. EuroGP’07. Berlin, Heidelberg: Springer-Verlag, 2007,

pp. 371–380.

[21] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf,

C. Taylor, and A. Wang, “Evolution as a theme in artificial life: The

genesys/tracker system,” in C. G. Langten, C. Taylor, J. D. Farmer, and

S. Rasmussen (Eds.), Artificial life II. MA: Addison-Wesley, 1991, pp.

549–578.

[22] J. R. Koza, Genetic programming: on the programming of computers by

means of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[23] P. J. Angeline and J. B. Pollack, “Evolutionary module acquisition,”

in Proceedings of the Second Annual Conference on Evolutionary

Programming, D. Fogel and W. Atmar, Eds., La Jolla, CA, USA, 25-26

Feb. 1993, pp. 154–163.

[24] P. J. Angeline and J. B. Pollack, “Coevolving high-level representations,” in

Artificial Life III, C. Langton, Ed. Reading MA: Addison-Wesley, 1994,

pp. 55–71.

[25] I. Kuscu, “Evolving a generalised behavior: Artificial ant problem

revisited,” in Seventh Annual Conference on Evolutionary Programming,

ser. LNCS, V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben,

Eds., vol. 1447. Mission Valley Marriott, San Diego, California, USA:

Springer-Verlag, 25-27 Mar. 1998, pp. 799–.

[26] K. Chellapilla and D. Czarnecki, “A preliminary investigation into evolving

modular finite state machines,” in Evolutionary Computation, 1999. CEC

99. Proceedings of the 1999 Congress on, vol. 2, 1999, pp. –1356 Vol. 2.

[27] D. A. Ashlock, Evolutionary computation for modeling and optimization.

Springer, 2006.

[28] U. Cerruti, M. Giacobini, and P. Liardet, “Prediction of binary sequences by

evolving finite state machines,” in Selected Papers from the 5th European

Conference on Artificial Evolution. London, UK, UK: Springer-Verlag,

2002, pp. 42–53.

[29] W.M. Spears and D. F. Gordon, “Evolving finite-state machine strategies for

protecting resources,” in In Proceedings Of The International Symposium

On Methodologies For Intelligent Systems 2000. 2000, Acm Special Interest

Group On Artificial Intelligence. Springer-Verlag, 2000, pp. 166–175.

[30] M. T. Tu, E. Wolff, and W. Lamersdorf, “Genetic algorithms for automated

negotiations: a fsm-based application approach,” in Database and Expert

Systems Applications, 2000. Proceedings. 11th International Workshop on,

2000, pp. 1029–1033.

127

[31] S. Lucas and T. Reynolds, “Learning finite-state transducers: Evolution ver-

sus heuristic state merging,” Evolutionary Computation, IEEE Transactions

on, vol. 11, no. 3, pp. 308–325, 2007.

[32] K. Benson, “Evolving finite state machines with embedded genetic

programming for automatic target detection,” in Proceedings of the 2000

Congress on Evolutionary Computation, vol. 2, 2000, pp. 1543–1549 vol.2.

[33] S. M. Lucas, “Evolving finite state transducers: Some initial explorations,”

in In European Conference on Genetic Programming, EuroGP 2003.

Springer, 2003, pp. 130–141.

[34] V. Fabera, V. Janes, and M. Janesova, “Automata construct with genetic

algorithm,” in Digital System Design: Architectures, Methods and Tools,

2006. DSD 2006. 9th EUROMICRO Conference on, 2006, pp. 460–463.

[35] P. Petrovic, “Incremental evolutionary methods for automatic programming

of robot controllers,” Ph.D. dissertation, Norwegian University of Science

and Technology, Faculty of Information Technology, Mathematics and

Electrical Engineering, 2007.

[36] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of the IEEE International Conference on Neural Networks, vol. 4, Nov

1995, pp. 1942–1948.

[37] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”

ACM Comput. Surv., vol. 15, pp. 237–269, September 1983.

[38] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages,

and Computation. Reading, Massachusetts: Addison-Wesley, 1979.

[39] M. Almeida, M. Moreira, and R. Reis, “Enumeration and generation with

a string automata representation,” THEORET. COMPUT. SCI., p. 2007,

2007.

[40] L. Fogel, A. Owens, and M. Walsh, Artificial intelligence through simulated

evolution. Wiley, 1966.

[41] M. Spichakova, “Genetic Inference of Finite State Machines,” Master’s

thesis, Tallinn University of Technology, Tallinn, Estonia, 2007.

[42] M. Spichakova, “An approach to inference of finite state machines based on

a gravitationally-inspired search algorithm,” Proceedings of the Estonian

Academy of Sciences, vol. 62, pp. 39–46, 2013.

[43] N. Niparnan, “A genetic algorithm for finite state machine inference,” 2002.

128

[44] S. M. Lucas and T. J. Reynolds, “Learning DFA: evolution versus evidence

driven state merging,” in Evolutionary Computation, 2003. CEC 03. The

2003 Congress on, vol. 1, 2003, pp. 351–358 Vol.1.

[45] L. D. Chambers, Practical Handbook of Genetic Algorithms. Boca Raton,

FL, USA: CRC Press, Inc., 1995.

[46] R. Reis, N. Moreira, and M. Almeida, “On the representation of finite

automata,” in Proc. of DCFS05, 2005, pp. 269–276.

[47] M. Almeida, N. Moreira, and R. Reis, “Aspects of enumeration

and generation with a string automata representation,” CoRR, vol.

abs/0906.3853, 2009.

[48] R. Formato, “Central force optimization: a new metaheuristic with

applications in applied electromagnetics,” Progress in Electromagnetics

Research, vol. PIER 77, pp. 425–491, 2007.

[49] Y.-T. Hsiao, C.-L. Chuang, J. J.-A., and C. C.-C., “A novel optimization

algorithm: space gravitational optimization,” in Systems, Man and

Cybernetics, 2005 IEEE International Conference, vol. 3, 2005, pp.

2323–2328.

[50] B. Webster and P. J. Bernhard, “A local search optimization algorithm

based on natural principles of gravitation,” Florida Institute of Technology,

Tech. Rep. CS-2003-10, 2003.

[51] B. Webster, “Solving combinatorial optimization problems using a new

algorithm based on gravitational attraction,” Ph.D. dissertation, Florida

Institute of Technology, Melbourne, FL, USA, 2004.

[52] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, and M. M. Farsangi,

“Allocation of static var compensator using gravitational search algorithm,”

inFirst Joint Congress on Fuzzy and Intelligent Systems Ferdowsi University

of Mashhad, Iran, August, 29-31 2007, pp. 29–31.

[53] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A gravitational

search algorithm,” Inform. Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

[54] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “Filter modeling using

gravitational search algorithm,” Eng. Appl. Artif. Intell., vol. 24, pp.

117–122, February 2011.

[55] B. Zibanezhad, K. Zamanifar, N. Nematbakhsh, and F. Mardukhi, “An

approach for web services composition based on qos and gravitational

search algorithm,” in Proceedings of the 6th International Conference on

Innovations in Information Technology, ser. IIT’09. Piscataway, NJ, USA:

IEEE Press, 2009, pp. 121–125.

129

[56] R. Povinelli, “Comparing genetic algorithms computational performance

improvement techniques,” in Artificial Neural Networks in Engineering,

2000, pp. 305–310.

[57] R. Povinelli and X. Feng, “Improving genetic algorithms performance by

hashing fitness values,” in Artificial Neural Networks in Engineering, 1999,

pp. 399–404.

[58] M. Spichakova, “Modified particle swarm optimization algorithm based on

gravitational field interactions,” Proceedings of the Estonian Academy of

Sciences, vol. 65, pp. 15–27, 2016.

[59] L. Pitt and M. K. Warmuth, “The minimum consistent dfa problem cannot

be approximated within any polynomial,” J. ACM, vol. 40, no. 1, pp.

95–142, Jan. 1993.

[60] P. Dupont, L. Miclet, and E. Vidal, “What is the search space of the regular

inference?” in Proceedings of the Second International Colloquium on

Grammatical Inference (ICGI’94). Springer Verlag, 1994, pp. 25–37.

[61] A. Oliveira, J. M. Silva, and V. Honavar, “Efficient algorithms for the

inference of minimum size DFAs,” in Machine Learning. Springer, 2000,

p. 2001.

[62] H. Sugiura, T. Mizuno, and E. Kita, “Santa fe trail problem solution using

grammatical evolution,” in 2012 International Conference on Industrial

and Intelligent Information (ICIII 2012), 2012, pp. 36–40.

[63] D. Chivilikhin, V. Ulyantsev, and A. Shalyto, “Solving five instances of

the artificial ant problem with ant colony optimization,” in Proceedings of

the 7th IFAC Conference on Manufacturing Modelling, Management, and

Control, 2013, pp. 1043–1048.

[64] S. Christensen and F. Oppacher, “Solving the artificial ant on the Santa

Fe trail problem in 20,696 fitness evaluations.” in Proceedings of the 9th

annual conference on Genetic and evolutionary computation, GECCO 07,

2007, p. 1574–1579.

130

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Jaan Penjam for

being a real ‘academic father’ to me. He demonstrated endless patience during

all these years and finally motivated me when I was on the verge of giving up.

I am grateful to my colleagues at the Department of Software Science for

their professional help, and personal motivation and support.

Special thanks go to Jelena Sanko for scientific discussions and insightful

comments related to this work.

The work reported in this thesis was supported by the Estonian Ministry

of Research and Education institutional research grant no. IUT33-13, by

the Estonian Doctoral School in Information and Communication Technology

(IKTDK), by the ERDF through the ITC project MBJSDT and Estonian national

CoE project EXCS, and by the Estonian Ministry of Education and Research

target-financed research theme No. 0140007s12.

131

ABSTRACT

Discrete Gravitational Swarm Optimization Algorithm for

System Identification

We presented a method for the identification of FSMs, which is based on a

heuristic optimization algorithm.

The considered method is constructed as themodular system, which separately

theats the problem statement, the representation of the FSM and the search

algorithm. This allows to adapt the proposed search algorithm to different

problems. We discussed ’system identification’, ’artificial ant problem’ and

’binary string predictor’ test scenarios, however the set of the problems is wider.

The special coding system ’Canonical String Representation’ is used to

represent the search space. Proposed string representation of FSMs entails the

adaptation of the existing method for enumeration of FAs (see Section 2.7).

It was updated to take into account the FST output function. Firstly, such

representation allows to minimize the search space. Secondly, the search space

can be partitioned and non-intersecting partitions can be considered either in

parallel or sequentially in time.

The search algorithm is problem-independent and is based on a combination

of PSO and GSA. Moreover, the specifics of the search space representation

provides the possibility of creating two search stages— the search for the ’best’

partition (meta-search) and the search inside the partition.

The partition-local search is based on the ideas of PSO, but it was modified
so as to be able to work in a discrete search space, because our search space is

presented by decimal strings. Thus, all of the operators of the algorithm were

redesigned. In addition, due to the complex structure of the search space, the

standard PSO is not performing well. Hence, we propose adapting the ideas

of the modern gravitational algorithm and presented a new hybrid ’Discrete

Gravitational Swarm Optimization algorithm’.

133

KOKKUVÕTE

Diskreetne gravitatsioonilist vastasmõju arvestav osakeste

parvega optimeerimise meetod süsteemide identifitseeri-

miseks

Mudeli identifitseerimine võimaldab tuletada süsteemi sisemise kirjelduse tema

väliselt jälgitava käitumise põhjal. Süsteemide kirjeldamiseks kasutatakse

tihti lõplikke olekumasinaid. Probleemiks on asjaolu, et lõpliku olekumasina

tuletamine sisend-väljundpaaride näidete alusel on NP-keeruline ülesanne.

Keerukuse vähendamiseks võib kasutada heuristilisi meetodeid.

Käesoleva töö ülesandeks oli välja töötada algoritm lõpliku olekumasina

leidmiseks kasutades stohhastilise optimeerimise meetodeid, keskenduses kahele

lõplikule olekumasina põhitüübile: Moore ja Mealy masinale. Nende jaoks on

töös leitud uus gravitatsiooniseadusest inspireeritud otsimisalgoritm meetodid

etteantud olekute arvuga masinate genereerimiseks sisendi–väljundi kirjeldusest.

Töös antakse lühike ülevaade lõplike olekumasinate teooriast, esitatakse

formaalsete keelte ja lõplike automaatide teoreetilised alused, kirjeldatakse

väljundiga lõplikke olekumasinaid — Mealy ja Moore masinaid. Töös

käsitletakse loodid algoritmi rakendamiseks vajalikku masinate esitust ja sellega

kaasnevaid probleeme (vigased indiviidid, saavutamatud olekud ja vigased

üleminekud). Esitatakse uus kanooniline lõpliku olekumasina kodeerimisviis

numbrijadana, mis lahendab neid probleeme ja võimaldab ka visualiseerida ning

analüüsida otsimisruumi ja algoritmi käitumist kahemõõtmelisel juhul.

Töös kirjeldatakse stohhastilise algoritmide põhiprintsiipe ning esitatakse

osakeste parve optimeerimisalgoritmi modifikatsioonDGSO, kus otsimismeetodi
parameetrid arvutatakse osakestevahelise gravitatsioonilise vastasmõju põhjal.

DGSO algoritmi võib käsitleda kui hübriidi osakeste parve optimeerimise

(PSO, i.k. Particle Swarm Optimization) ja gravitatsioonilise optimeerimise

meetodist, kus osakeste liikumistrajektoorid arvutatakse sarnaselt punktmasside

liikumisvõrranditele gravitatsiooniväljas.

Algoritmi töö demonstreerimiseks kirjeldatakse töös ka lõplike olekumasinate

genereerimise prototüüpi. Testimiseks tehtud eksperimentidest antakse ülevaade:

iga ülesande korral kirjeldatakse selle püstitust ja tulemusi, kirjeldatakse

funktsioone, mis võimaldavad hinnata konkreetse olekumasina sobivust mudeliks

ja algoritmi juhtimiseks kasutatavad parameetrid. Eksperimendid näitavad, et

lähenemisel on arvestatav potentsiaal.

135

Publication A
Spichakova, Margarita (2017). Gravitationally Inspired Search Algorithm for

Solving Agent Tasks. Baltic Journal of Modern Computing, 5(1), 87 – 106.

137

���������	
���	��������	�����������	������������

 ���!""
#�
	��	��"�����$�%"&'��������������

(��)�����	���*+,����
-���� .��	��� �/	�

-	�)��.���0�,1,

���������-2+�3.45�.

+,������	/-	/�6���-�������0����7�)��,��*	/0�� 	�	�*
0�����8,�	��

9:;<:;=>:?@A=>@:BCD:E>>F?GG

HIJKLMNKO.���P��������	&����,
�P�
�,�	,�������� ������ ���	
��,� �&� �)�	�	/
� ���	�����6�� /		
�0 ��	��	/� ����,�	������/		
	�����6�� ������
��&��	/
,���,�0��
���	���*�� ����������������6	�1	�,������� ��,����,�
/	��	
�������

 ����,���	�����Q���	��� 	
,/	��#�����(�����2�	��������,,���� ���	��� ��+� �,
�������6��,�����*��� ��,�,���	
����	�&����	6�� 2�������-6���5�����Q���	
��� 	
�
 ����,������	��� �,�,����
&*���)��*�R���	�	,��6���)�����	���*�,����

,���� ���	��� ��
��,���������	�	����P��������	&����2�	�	,�
,���� ���	��� ���S����,

�,�����,���� ,�����,	� �,����P�,���������,�����		/����*��� ���,���	
���
�0 �
,�������	��,���,�
���*,�,	/� �,���� ,�����	����#��*, 	6� ��� ���	�	,�
��� 	

����
���� �,�Q�	/� �,���� ,�����
�//����)��*,	�)�� ���	&����

TUVWXLYJZ-	/��	�������,6�����������������������P����������)�����	��
,���� �2�������-6���5�����Q���	�

[\KLXY]NK̂X\

.�������,	���
6	��
����,�
�	�
��,��
� �&� �)�	�	/����,��,�������*
� ����	��	����,�����6	��
��,1,�0	&� �)��	������*	� ����
�� ��	��	����
��S����,,	�����	�*�,	�/	��#������_̀abcdbebcfeghàc��&��,�
�	�	
�������
0 �eiba_gaejèb��,1��&�
�,���&�
�,
�,�������������1���6 �� ���,�,

eiba_gaejèb�
/	��	6,,	��������6 �� �	���,/		
�,��k������0 ��	��	/���,
�	�	�������#������	��	//		
/	�������
��&��	/,���,����
���	���*���,���,�
+	����,�����,�	
���
&*_̀abcdbebcfeghàc�����*�*�����1������&�����,
�	,,�&���	�,�	� ���	
��,�/	��#��������������������6	�1,�0 �����	/,��
��� ���,	�*	�)����&��!�,� ���/		
�� ��#������6��)����,lmmn�
opqrs�
� �	�����,���
�P�
�,����	,	/��!tuvr�rwxyzolr�rwxyxv{|r�pm}o�

�� ��������	�

���������
��

����
�����

���������
��!����"#�"�
�$"��%���
�$"��"� ��

�"��%

&'()*)+,-,.�/0�1,/�23456786393:5

;�,.,�<-�1,=,.0�-�<=��<�/>=��-2�.=��<�.�?/,0@<�<=����<=����=�0�A�=��-0,=�B
�1<��-?,><,12�.<�/	�-C3456786393:5�.�?/,0DE-0�<=�2=�,��<,<=�,���>/�=��-
?�<,1�,>.�<=��0,=��1<@<>���<FGH9I56H:34JK9LH465MN<�.<�0>/�=,1�--,�/�-C@�.,
><,1D

E-�=��//O@=��<=�<�P�<�.���<,1?OQ,22,.<�-RSTTSU=�?,-��0�.�FGH9I56H:34J
K9LH465MN<�-1P�<.,<,�.��,1�2=,.P�.1?O0�-O�>=��.<VW�A�RSTTXU@Y-C,/�-,
RSTTZU@RSTT[U@W><�>RSTT�UD\,><,3456786393:5=�<�2�.?,-��0�.��-C�>.�.���<,1
0,=��1?�<,1�-C.�	�=�=��-�//O�-<��.,1<,�.���/C�.�=�0D

;��<=�<��<���/���?/,-�=�-/O�-��<,�2]̂_�-2,.,-�,@?>=�/<��-���<,�2̀ ab
:a568c4HL43NN6:L?OW�A�RSTTXU�-1�.=�d���/-,>.�/-,=P�.�/,�.-�-C?OQ,22,.<�-
RSTTSUDe�,//���//�RSTTTU><,<0�1>/�._a39JN38M6:a�<3456786393:5�-1FGH9I56H:b
34Jc4HL43NN6:L�.��,1>.,2�.=�,��=�0�A�=��-D\,2��><�-/O�-=.�1�=��-�/_a39J
N38M6:a<D

E-=��<�.=��/,P,�.���<,�-,P<=����<=����=�0�A�=��-0,=��1@P������-?,��B
�/�,12�.=�,�.�?/,0�2]̂_�1,-=�d��=��-D;�,�.���<,10,=��1�<�-<��.,1?O��0B
?�-�=��-�2c345689âf34Ngh56N6i356H:RĉgU0,=��1�-1̀ 43G65356H:39̂a348MK9b
LH465MNR̀ K̂UD

;�,�.=��/,�<��-<=.>�=,1�<2�//�P<V�,�=��-S1,<�.�?,<=�,�.�?/,0<=�=,0,-=�-
1,=��/<@�,�=��-Z�.,<,-=<=�,C,-,.�/�1,��2�.���<,1<=����<=����=�0�A�=��-0,=��1@
�,�=��-[��	,.<=�,�.�?/,0�2]̂_.,�.,<,-=�=��-@�,�=��-jC�	,<=�,0��-�1,�<�2
=�,0,=��1P�=����/���=��-=�]̂_�1,-=�d��=��-�-1�,�=��-k�.,<,-=<=�,<�0>/�=��-
.,<>/=<�-1�-�/O<�<D

����������	
��������������	����� ��

� ������������ �!"�#$

�
�%��&�����
��'�����(���)*+,-./-0102,%��&���)��)�����	��3���%��&���)4
�	(�����������5%��%���'&56���������	��478��894�
�������3���	�:3		
�����	;
(
�3
	�����������	����&�:		
����'��	
���<	3�����'������	
����';��	
�	�	
=�'�	
��%	����	����	�3����3	������'��	
����'(�	
%��>�������:�	���	�%�4

�?� @����

�
����'��%�����	�'&5ABCAB	����'���	�:3	:��;��	
�	����	���		
�&�		�����:3

���'��'	
���<	�����DEFGHEIJ;	
���<	3���(���&��		
�	�%4
�
����'��	
����'����3�	�'����%�3���(�5;3���	�:3	�'	�����	
�	�������

3��%��<4�
����	(�(������(�	�����KLM2NO-+P+0-17Q��4R7���	99'����%�'&5
6���������	��478��89��'S02,0TUP+0-17Q��4R7���
	994V�	
��	
��3��	�����3���
�����'4

W�X?Y?KLM2NO-+P+0-17���	9��'S02,0TUP+0-17���
	9

�?Y Z[\[]̂_]̀]̂à bc[\̂�d���$!e#�

�
���	����'���'&5f���5	5%���3
���(�	
g�	�	��4�
���	�������5���3���
'���3	�5������	��
��;��	
��������5�����%:	����&��(�	
	(���:��7���	�94��;
	
���%:	��%
�&�	3��	�������5	(�3
���hijiEEHk l	
��������'��	
���<	3���;
GjGDmnokl	
���<	���'����%	54
�
�����(�'�3	��������	3��&�3�'�'&5p��		����%
�&�	hIjIqrnkl	
���	

(���'���	
����		
���	�%;DjDEFGkl	
���	(������	�	
���<	3���;��	
�����
����'�	(�����	�	7	
���	�����'�������'����	
����'9;sjntsJsruvnkl	
�
��	(����	�5��	
�����3���;&:		:��	
����
	;wjntsJwGinkl	
���	(����	�5��

�� �������	
�

����������������������������������	������	����������������������	����
�����������
�����������	��������������	��	������������	����������� �����

	��������	�	�������!"#"$%�&'(�����		���)����	������*#*�+�'(����
�		���)�����)�������+#+$,�&'(�����		���)����	��	�������#�*+�'(����
�		���)������������
��������	���	�	����-./.0��	��������������������	��������	��*�+���	�1�

�� ��2345/67���8349/:/;/<7�=�)��>����?���	����������� ���
��������>����	�����
���?�	����������	��1��������	�������*�+��

@

A

B

C DEFGHIJFIKLMG

NEFGHIJFOPQG

REFSTUP

VEFQTTW

AEFPSXGY

Z [

\

]
^

_̀a
b̀c

_̀d
b̀c

b̀cbe_̀c

b̀c

̀d̀a

fghijik������	�>����?���lmnopqnrstum�nvwtxrtnonuw>��)��?

���yzl�1����������	��� ���������{�����	����|>1��������	����|���
��������	�����?�}�����	�>~��~?��������	�	�	��)���������	�����������yzl
1��������>=�)��>��)��??�1����1������	����~�����	��		�	��	���	���su
l�tv�vnto������������������		����~�����k�	�������������1���
����1��	������	����������		�����������	�		����������	�����
>���	��?�����)�������������������������1������	~������������

�ij ����������g��

��1�1����	��1�����{����	���	11������)�
�����	�
������	�������1�
�����	�	������	���������mrwt�m��urwt�u�����	��	�������������	���	���
���	�����)������	�������	��	����mrwt�m��urwt�u�	�������	������	�����
�	�����)����	�����������)	������
���������
�����	����������	����������������1�����������	���	���

	�����	���	��		�����1�����������))�
��������	��������	�������
������	�	������������
������.�����>�{����	�~?!1���
������������	������
�		�������	���������	��		�	�)����

 ¡¢£¤¥¦§3
§¤̈§©ª««¬

«̈̈¤¥ª««¬«©̈¤®¥
>~?

k�	���
��	��������������������	��	��	��������	���	������������	�����
	�����	���������������	��������1���{������	����������		���������

����������	
��������������	����� ��

	
���������������	�����
������� !�"#$�� �$%������&�'�&	�������(�	
�
���������	�	��)��	*����	
�������'�&�������

+ ,-./0/-1/2.3-45/6575/87194-/6

��&�'��������������	
�%��	�:	���	�%
��	�%��	���(�	�����	
�&�*����&'��	��
���&�'��������%��%��	��;�
��	
�<=��>�?@�A��?�$�BC'�&	
�D�A>E?A�F $�
*�	
G�	�	��)*
�%
��&���	
�A=� H� A>A$�	
�	��	�������&������	����������
���������	���C�����%	*�
�����@�A=�F@<A��&�'��&����	�������������D�A>E
?A�F $��*�	
G�	�	���I�%
����	����%
���%����A$J JA��@�>#� �$�K����%
�A$J L
JA��@�>#� �$*�%�������������� !�!A>#������	
�����&�'��&������ !�"#$�� �$
MIN��	����O�P�*)*�%����&�'��	
����������3-Q59/17-Q4Q75/62RS542-T459
87U487R2VW/154X/X7RS/)*
�%
���:�%	�Y	
�&�'��	�����	
���	���(�	���	����
��%
	���������������Y������	�������&
�����	�%������	
���

Z Z

[[[[[\
[[[[[\]̂_̀a]bc]d

[[[[[[[[

ecf̀cgc]dhd_a]

gcdijàc

kcgd[fc̀làb_]m[nio

ich̀jp[hqmà_dpb

rhgs

tcjauc̀

id̀_]m

n_]_dc[gdhdc[bhjp_]c

v4wxyx�
���	������	
�z{D����%
���%���

�
��������&�Y�	����������	�	
��&��������'�&��	
�&����z{D�&��	�'%�|
	���%�����	���	
���������&����M���K���}O�I�%
��&�����	
��Y�	��������	�
	
���&����&��	���	��	
��Y�	����&%���������%�&�Y���	
����������	�	�����
&�'��	���~

���A@��?�J#>�%��	����	
���������	�	���������%%��%��	���&&�'��	����	
�	
������&	�&��%����	
��	�	����	��	
�����������&��%����	
��������)*����&
	�&�'��	
�	Y����	
�z{D)%
�������
���	�)���������	�	����&%���	��%		
�
z{D�����	���������	
���
���������	���M���������	�	��)	Y����	
���%
���
��&���
���	�O%����&����&��������������%�'%�	���M�����%	����O�

��{�A=�FA>��= �F?�?�J#>�%��	����	
���������	�	�����&�������	�	�%
��	�%��|
	���(�	���������	
��)��%
�������{�M�����%	����O�

����<=�@�$�A� �$�����J�=�?�J#>���
������Y�	��%��	����������	
�����&�'��|
	�����z{D��&�	������������	�	�����z{DM�����%	���}O�

�� �������	
�

� �������������

�������������������������� ��� !�	��"���#�$%&%'()*+,-.('/0 1$*2	�34.'()+%
564.078'(0(94'(-&13572:�	��	���������� �����;�������#������� � ! ����
�
	#���	�������	��!��� �� 	� 	���#;���
�	�:
<�� ��##!������
� �
���#������� � ���	��	�:=�� �	��##!������# ��	����

)4&>(>4'%?-+@'(-& ���A������������	�#�:B���	������ �
�#�����������?)-.%
C4+@%� � �A���:D ��A��	 �
�#�� 	��	����)4&>(>4'%?-+@'(-& �����	 ���	�
�	��E����	�:�������� �
���#�#A	����� ����E��	��E����	�����	� :D ��A����
F��������	
����)4&>(>4'%?-+@'(-& :G��������	��E����	� �##)4&>(>4'%?-+@'(-&
����
�#������A���:�����	�� �	������ ����#���	�����# 	#���	�� �	���	����
&@0H%.-I,%&%.4'(-&� �������:������	���������� �������	 �	������ �)4&J
>(>4'%?-+@'(-& ���� ��##���� �������������#�!���	����	 	�� ��������K<		#���

���	�!
���	�	�����A��	����#
�#�� :�����	���	�.%8.%?%&'4'(-&��� ������#A	L
������#�� ���	������	#����� 	#
�;�#���	������	;#��:

�MN OPQRSTUQVWXYZR[QXUT\]�

Ĉ-+@'(-&4._*+,-.('/01̂*2� � ������#A	�����;� ��	� ���#���	�	�;�	#	A���#
�
	#���	�:̀�̂ * 	��������� � �� �����;��
	#���	����� ��K����	�����	�!����L
��	�!���	�;�����	�! �#����	�:a4&>(>4'%?-+@'(-&��� ��� �������
����# 	�����
	L
#���	�:
�	������������ �����#��������	�	���	 ��������#� ����������b������ �����

	�̂*1<c���d��e2K

f$%&%'()*+,-.('/0 1	��A���##��� ���;��;�g	##�����d�h�21$*2i��� 	#���	�
����� ������ �������	����;�� 1� ��##�;��������;�� 2:G���	�;�����	�
	�����	�� �# 	� ���	��	������F 	#���	� :
f Ĉ-+@'(-&4._?'.4'%,(%?1��
�#	���;�j�����;��A������F���#��d�hk2i � �
������#���;��
���	� �	������ �����A 	#���	�:l�����	������	 	
������ L
 �����#	�����	� �	� �������A�� ����� ����:
f Ĉ-+@'(-&4._3.-,.400(&, 1��
�#	���;�m�F�����n:=	A�#��d�h�2i����#A	L
�����F� 	��A���##���
�#	����	�
	#
�o5p!;���	 ����#�����	� ����	� �����
 ���� ��
	#
��A���#L
�#���
���	� :q	� �	����	��	����������	�;�����	�	�
����
����# �������� �b� ���������	�:

*̂ ���	����� ���	 	#
�4.'(r)(4+4&'�� �Kn����� 	�1d��d2!s	b�1d���2!G�L
A�#���1d��t2!1d��u2!s� ��1d��v2:

�Mw x��yz��z{WXTU|R}~�WX]��TU]U�WTUQV���������

34.'()+%564.078'(0(94'(-&�#A	������ �� �����;� 	���#;���
�	�	� 	�� ��	�
	;���� !�	��"���#�;����	��	�E � ��		#:̀�����##�!��� �� �A���;�s���������#:
1d��k2�	�������#L
�#���
���	�:
������ ��� ��	����������#� �?64.0:B���	������ ����������b��;�8-?('(-&

C%)'-.!C%+-)('_C%)'-.������;� ���	F��	 ���	��	���� 	;����:G# 	!������ ���
,+-H4+H%?'�&-6&8-?('(-&�	����F�	#�?64.0:

����������	
��������������	����� ��

�
�����������	����� !"#$$$%&'�����	�	
�()�*�*)�+��,-����./�����������	0
%��	
���	��1�'��1���	
�'��2�����3�.
4���������5�������
()�*�*)�+��,-����5����+6),-)����7-�(����.�����1���

	�	
�����5��8�����
����	
����2��2��	���8�'���	���9:;<=>8
��
��	
�'���	
8�	
�'	������5���5�1�����20	
�8
����8���>��1	
������2��	���8�'���	���
?:;<=>8
��
��	
�2��	'���	���	
�	8����5�120	
���@��	'��	����.
�
�6+,�(��A��	��B�� !"#$$$%&��'�����	�	
�	���1��������	��	
�'��	����.

�	�����'5	�1205����CDE>

B�F=GHIJB�F=KLGMNJOPJF?:;<=�K��F=KLGGMQJORJF9:;<=�K��F=KLGGCDE

8
���S

TI�N�Q���������������U����	���1I��'�����	�	
�����	��>NV	
������	��
�����0>QV	
������������0.�
�������U����	��5�	2�1�U��1205���.

TOP��1OR������1����5���������"#$$$L&.
T?:;<=���������2��	���8�'���	������	
��'��	����>9:;<=������2��2��	���8�
'���	�����	
��W)XY.
TB�F=G��	
���8��5���	
������	0��	���	1�������� >B�F=KLG��	
�'����5�
��5���	
������	0.

�
���8'���	�����F=G�����'�01�U��1���5���	
�'����5�'���	�����F=KLG
��1��8�����	0B�F=GC�E.

��F=GH��F=KLGMB�F=G C�E

Z[\[] _̂̀ abcdefghijdeklmdj�
����	����3�	���'��	������	���1�U������n5���1
��������'�����	���>��		���5'2�5�1�������	
������
�'�����1������	���	
��8���
8�	
���1��'���	�����1�����	0.�
������
'���������	���	��5'1�	���	
�'���	����
��1�����	���.�
�'��������1�8
��	
���1������	���������	S��	
��	
��5�2����
�	���	�������@���1�1��	
��'	�������5	�������5�1.

Z[Z oeapfgqarfsrtfeagfdsudedtgfifvagfdsabcdefghir

�
��������5�������������	������5�5������S����	�	�����>����	�������	��>8���V
�5�������1�	�����5�����.�
���������1�U��	
�8�0�5�5������2�
�����1�'V
'����.�
�8�����	�����������	�	�����>�	1�U���
�8�2w��	����1�'��1�����
	
���������.
�
�����	�	����������2�	8���	8��2w��	�x��1y��1����	�0'��'��	�����	�	
�

'��15�	��	
�����������1�������0'��'��	�����	��n5���1��	����2�	8���	
��

z{|H9
}|J}{
~R{|

$ C�E

���8���	
��������	�����2�108�������'5	���������	�����

�{H
z{
}{
$ C�E

������	�5�		
������
������	
�2���1������	0>8�����1�'		
������8���
�1���S

�� �������	
�

�����	������������
���������������	����	��
������������������	��������	��������������������������������	�
���
����

�������	����� ���������������!���������������
�����	���"�����������������#
���	����

$�������������������	���������������
�������	������������	����
����	"��
	��	���������������	��������������	��������
��	�����������������	��	�%

�������������	������	��������������
�����	����	�	���	��	�����������������	����	�����������	����	�����
�������	����&'()*(+,-./*.0+,-.�

����	���������������������	������������
�����	����	����
����	�������������������������������	���������������������������	��#
��	��

1������������������������������	������	��"��������	�	�����2���	����	������
����	����
�����	����	����3	��4������5&.+6()7-60&89+,:,;(+,-.<578=�������#
�����������
����������������	�������	�	��������
��	����3	����	 >??@!�A�
��������������	��	���	�������B����	���������������4��	�����C�	�������	#
������D9(0&E6(',+(+,-.()89+,:,;(+,-.<DE8=�����
��	����F���	���G�����
 >??H!�A���������������	���B�������	������
��������������C���
�����	�����#
��������
������	�	��	������������	������E6(',+(+,-.()I:*)(+,-.J-0()D&(60KL)M
N-6,+K:<EIJD=�����	�	����O����� >??P!� >??�!�C�	����	���E6(',+(+,-.()
D&(60KL)N-6,+K: EDL!�����	�	����Q������ >??�!�����	�������
������	�	�
578�
����������������
�����	����������������	���������R������������	SD8���	#

�������A������	������������������
����	�	��������������������	��	����	�
���
��	����
���	�����������������	
��������������������
�������	�������2���	�	�SD8���	�����������
�����	���������������������#

�	���������	���������������
�����4���������	���������������	������� SD8
���	�����������
���!�	�	�������������������������	�����%SD8EDL#SD8���	�����
���E6(',+(+,-.()D&(60KL)N-6,+K:��
��	����T�������� >?U?!��4������S(6+,0)&
DV(6:89+,:,;(+,-.C��	����������W�����#W�����2���	��	�	�	��$��
����3��#
����#SD8���	��������C���"����X���������������T	����� >?UU!�Y��
�����	���
X���������������	�	�������� >?UP!�����#	�����2���S(6+,0)&DV(6:89+,:,;(+,-.
����	�Y��
�����	�3����T	������������Z������ >??@!�
����������	������	�������2���	�	�SD8���	������������
�����	�����#��������

���������	���������	������
�����	����	��	�����	���
��	�����	�������	�� >!
���������	����	��	�������������	���������������
�����	������������	���1�#
�	�������������������������
�	�	�������������	������
���	���	����4���
�������������C�����	���������������"�����������������������	��	����
�����	���	����	�����2���	�����	��������������
��������������������	�����

	����������������A���4������	���������������"����	�	�	��������������

����������	
��������������	����� ��

� ������������ � !"���������#�$%����

&�	'�
���	����	()*+,-*./01)2�	
3�	�	��4

5��67	��6
�8�	9:;<=>?@@@?=ABCDE
5F7	67	��6
�8�	9G;<H>?@@@?HIBCDE
5��	���	�	��9J;<K>?@@@?KLBCDE

F����2��	
�	�����	���	�8������7M
()*+,-*./01)M��8�N��M��8�N8O�	�7M	7��
6�����	�N��P��4�Q2
���2��	���	
��������	������M�����6��N����	�	�KR9������
	�����	�������	
���	�	�2�	
���6�M		���67	�O�8��=>SSSABC2���M�N��7	67	��7�
HTUUU��N	
���8����	����	�	�	�KTUUU4

�	�	�VW
XYZVYZXYUUUVYUUUXY[\]VY[\]

�̂_̀àF����2��()*+,-*./01)	�����	���	�8��

�
��	�7M	7����b7���N	�M�N�2
���	�����	���	�8����M���	�7M	�N��M��M�	���	���
���7M
��M	������	
���N�����	�	���8���c���P��4de4

�	�	�Vf ggg �	�	�Vhij

XYZf V
YZ
f gggX

Y[\]
f V

Y[\]
f gggXYZhijV

YZ
hijgggX

Y[\]
hij V

Y[\]
hij

�̂_̀k̀lmnopqlrs��M��M�	���	�����	�����	���	�8����2�

t�"���� �uvwxyz{|w}~������_������������ � !�������������̀�
��	����
��6�����	�	�����()*+,-*./01)����	�7M	7��������9

HTZ>K
TZ
>@@@H

T[\]
> K

T[\]
> @@@HTZLBCK

TZ
LBC@@@H

T[\]
LBCK

T[\]
LBCQ2
����H

TZ
>@@@H

T[\]
LBC����@@@����

6�����	���M�N������7	67	��7����	
�	�����	������N�KTZ>@@@K
T[\]
LBC����@@@3���

6�����	���	����	�	�	����	
�	�����	����4

�%� ��#uv�%����$�$ #������� !wxyz{|w}~�̀�/)+)1��/��wxyz{|w}~�)��
�)�)1�01� ���O��M
���¡0�/3��*�)�*1¢�£)�01�¤�*+�/*¥)�¦¡0�/�¤��¤�*+�/*¥)�
¡0�/��,-¥�+�0�

yy�§�~̈ ¦~̈ 3

�/)1¤-¥)���.���)���1¢01�wxyz{|w}~���01��0�

yy�¨3~A~L

�� �������	
�

����������� ��
��� ����������

�������

�
�������!��� ��

���

"#

�������$
���

%&

���

'()))))))))))))))))

*+,-.-/0�12�3�	14��50�6	789:;<=:>?@A9BCD�

EF:=G;9HIJK3L23��K�M		��3�89:;<=:>?@A9NOPQR�3�30�12�3�	14��50�60K�0KS
2K13K4	1T�5UVUWXYZ[\[][̂_̀aXYb[c_̀dXYZ[_U
/�K230�150K�0K2K13�3�	17	02e��6����1KR�MMfK

ghiNOPQjXk\[][Z[Z[Z[Z[\[\[\[̂[Z[̂[\[Z[Z[\lm2KKT�5UnoU

�3�3Kp �3�3Kq �3�3Kr �3�3Ks

� f � f � f � f

q r p p p p q q q s p s q p p q

*+,-t-�30�150K�0K2K13�3�	1uvwBCD�x

/�K2K��0�3�	1	73�K3�K30�12�3�	1�14	e3�e37e1�3�	12��1fKK�2�My4	1Kfy
�	1230e�3�153R	230�15270	6�z{i|}~z�j230�15UT�5U�4K2�0�fK22K��0�3�153�K
30�12�3�	1�14	e3�e37e1�3�	1230�127	06�3�	17	089:;<=:>?@A9U

�3�3K�� ��� �3�3K����

���� �
��
� ����

����
� �

����
� ����������

��
�������

����
��� �

����
���

�3�3K�� ��� �3�3K����

���� ����
����
� �������������

����
���

�3�3K�� ��� �3�3K����

���� ����
����
� �������������

����
���

*+,-�-���w�����x��K��0�3�1530�12�3�	1uv�wB��u������������xm0�5�3o�14	e3�e3
7e1�3�	12uv�wB��u��������xmMK73o7	089:;<=:>?@A9��w�����xm3	�o

��2K4	13��230�127	06�3�	1�0	�K223�Kz{i|}~z�j�24K 1K4m¡K 1�3�	1roU

¢£¤¥+¦+§¥̈ ©z{ªi|}~z�j«¬£®̄®¦£°±¦̄+¥, £̄̄£±£¥¦®¦+§¥§²³ µ́¶·̧ µ¹º»¼́½-
/�K2K��0�3K4230�150K�0K2K13�3�	1	789:;<=:>?@A9�2�230e�3e0K7	06K470	6

����������	
��������������	����� ��

����������

� !�"#$�%�&'� !�"#$�%()*+,-.)./,�0� !�"#$�%(/1)21)�30

4
���

5� !�"#$�%()*+,-.)./,�6�����	�	�����	����7�8	���

9:;<(((9
:=>?
< (((9:;@AB(((9

:=>?
@ABC4�	
D9

:;(((9
:=>?
@ABEFDG(((,HIE6�����	���	����	

�	�	����	
�	�����	������J
5� !�"#$�%(/1)21)�6�����	��7	67	�7�8	���/

:;
<(((/

:=>?
< (((/:;@AB(((/

:=>?
@ABC

4
���D/<(((/@ABEFDG(((KHIE��6�����	���8�J������7	67	��7��L

MNOPQRSTUV�	W���	7��	�"XYBZ[\��6��]̂L�
���������8�J���
� �"XYB�&DI0_0G0G0G0G0I0I0I0̀0G0̀0I0G0G0IEC
����4�	���������		���6���	�J�	������6�����	�	���	
����7�	4���a��
� !�"XYB�&'D_0G0G0I0̀0G0̀0G0G0IE0DI0G0G0I0I0G0I0G0E3

MNOPQRSbU�
���	��c��LdZ���
	̂8��a�6�����	�Jae
f� !�"g@hiBhjBk�&'DI0G0_0G0̀0G0l0G0G0GE0D̀0I0_0I0_0I0̀0I0I0IE3L

�
�� !�$�"()*+,-.)./,�8�J�J�6��J���	
���a�����	
��	�	����J	
���
��J�����C���������	�	�����J�	�������6
����Lm�8������	
��6��a���aeJ�	��n
������	
�4�e	
��	�	���a���4���a�����JL��J���C4��J�6	���	
�J���4���
opqPORrpqPstquovL

wxy z{|}~��{|}��|����

m�J��8��a�	
�a���8	
���e4�7�����7�	
��������	
��L�
�7��J��	
�J�4���6��n
6���Jae�����J�C���������J����Z����̂CZ����̂CZ����̂���8��	�\	����7����	���
��J�	�������	�8���	��	�	��88�6	���Z���̂Lm�6�����	���e����J����	������J��n
����	
��4����7������	
�������8
C�������������	���C6�������J�	
��������	
��
8��a���7�J������������7�8��L
�
�����������	
����66���8
��	���J7���7��	������6�����	�	��������	����e

8����8	�JZ����	�	��������8
�a������	
����	������̂���Z�����̂C	
����J���ae
8���	�78	������	�	���a����J�����L�
����6�����	�	�����7���7�L
�766���4�
�����$��&��0�0�09<�C4
���������	���	�	�����&,C9<

�����	����	�	��C���	
���67	��6
�a�	4�	
��e�a�����J����	�����	����7�8	���L��
e�78����	�8�C	
���	�������	�	�������		�JL
�
��Oopou�ORstquovqSQqSsSotOtupoZa���J��8�����8����J�����	�	����	
�

�����̂��8���	�78	�Jae�\6��������	���	�	�������������7����a���Jn���	����8

ae8
�������7	������J�����	
���J�����e�a������L
��C���	�����C	
���J���������67	��6
�a�	�7�	a�J����JC�������� &

'.<0.B0(((0.�AB3C	
�������J��.<�.B�(((�.�ABC����\��6��	
���\�8����6
�8��
��J�����8��a�7��JL
c���������$��C	
���6�����	����	����4���a��������-��� ¡<¢¢¢�@AB£4�	

-�FDG(((,HIE��J-�&��¤¥¦�§0.�X ©̈��L�
���������n	�n�����66���a�	4���

�� �������	
�

����������������������������� !!!"#$%�����&'���()*�+,	*-*���)���.),*�-�
+/00�1�	�12

�34��5!!!"#$%��36�� !!!7"#$%�

���849�:;�� !!!6#$%��<84#$� +=1

�34��$!!!"#$%��:;�� !!!74#$%��<84 +>1

��-�	�?��	,	����@ABCDE����"����*���-���(��)���F*�G����7�',F)�H

I���*���	����)�����*�*�*�����	������������������*���-*J�*
KLMN�O�������������������))F*�*P(*��*	&��-*Q*�	&J��	��(*��*	&����*)�F*)
6HR�*������)�*P(*��*	&S�����7T#$�U����������HR�*()*�-*���F*-F*&	*���F*
&	,()��-��

�36��5!!!"#$%��O�VO�#$� +�1

�34��$!!!"#$%��OW X74� +�1

Y	��
�7��-"Z���(,F*	&�*P(*��*��O������[����ZC�[����F*�	,�(�*-
F'

C�[�8

\
7"

"

]
$

�7#$�"̂ $
8A_�̀� a +b01

��**A
_�̀
� �*��*Y(��?c���)���(,F*�HR�*�		&���F*&	(�-��.),*�-�+/00�1H

R�*�	�*��	&*�(,*���	�	&�))�	���F)*defgh�*�*��*-F'���	����)�����
��*�����	��	������&	,��	����2�*�*�����S�����-�*�*������))�*P(*��*�
����-*��*S��H

i*-*J�*jklm�nko������*���)���*	&klm�nko��'��*,Z��**
pqr�Cps!tuv"�TtTw"���*�*�*��*-F'xLyzy{xL|N}~{yM~��~�N�y}L}{zyHR�����?
�	���*��(*�������**�*�	��	,	����,���-,�����*�����(�*����F)*����*���
��**�(,*���	�)���H

��� ��������������������

R�*yz~�L|�z~�N}~{yM*�*�*�����	�,*��	-�))	��(��	-*J�*�	�?���*�*������(F?
����*�����*�*�������*+Y��Hb01HR�����
����	���F�)��'�	���-)*��	�*�(F����*�
�*����*)'������*	����,*HR�	�*�(F����*��*������*��*-F'S���H

�����������R�*(��
�����*�	&�))�	���F)*g���Z*�*�*��*-F'���	����)�����
��*�����	�jklm�nko�Z��**���	����)�����*�*�*�����	��	&�������	�&(��?
��	��F*)	���		�*S��H

�����������R�*,()��
�����*�	&�))�	���F)*�y{��~N�N-*J�*-F'S���H

����������	
��������������	����� ��

������������

���
!"!#!��

���
$!"��

���
%

���
&&&

���
"'(

��)
!"!#!��

��)
$!"��

��)
%

��)
&&&

��)
!"!#!��

��)
$!"��

��)
%

��)
&&&

��)
!"!#!��

��)
$!"��

��)
%

��)
&&&

��)
!"!#!��

��)
$!"��

��)
%

��)
&&&

��)
!"!#!��

��)
$!"��

��)
%

��)
&&&

�*+�����
,
�*+�����

%
�*+�����

&&&
�*+�����

"'(
�*+�����

"'%

-./0120����3
�4�3��	�53	5��

6 789:;<9=/>:.?<@

�
�	�����	
�����3
������	
���	�A�B�4���	�������3
�4�3�CD
�3
3�����4��B�
	�	
�EFGD�	
	
��4	����H�
����IJ����3
4���	�������3
�4�3�KLMNOMPQRSTOSUV
PQRS���������3�����5�����WXYYYZ[CD
�3
B��3��H��
�DD���3�����4��B���EFG
H�
���I��C	
�	�����	�A�B	
�4���	D�	
��\������5�]̂I_̀���	����		
�4���	
D�	
��\�����3�����5�I

abcdefgh
ijk

abcdefgh
ijl

abcdefgh
mmm

abcdefgh
l

abcdefgh
k

abcdefgh
n

abcdefgh
chdo

epqio
n

epqio
k

epqio
l

epqio
mmm

epqio
rjl

epqio
rjk

epqio
chdo

shoft
dhfugv

wpgfx
dhfugv

dpxboqpi

apxboqpiy

z{

-./0110����3
������	
�

����3
�4�3�]|5�	�����̀]���}�A��	���~̀3�����	������������SQLK��K�]����
��	����3	����5H��	�̀]���}�A��	����̀��B��3
�SQLK��K3��	����4���	�]����5H��3�
	���~I�̀I������	
��SQLK��K�
��
��
��4��H�H���	�	�3��	���	
����5	���	
��

��� �������	
�

	���������������	�����
��������������	�������	��	�������������	��
��		����������� !�"�������#�����#����	����$������	������������������
����� !��	����%��	�����������	���"&�����$'

��(������#)����
��������#�*����������������%�	�
�������������� !�!
"���������$��	���������	�������	��		���������� !����������������	����	��
����������	�������%�

+�(����+�#����� !��	��������#��������	,����	�����������	��������-����
�	�����������.��
������� !��/,�	����	�����	�,	���������	������������
�	�����������������������%������	��������	����	�"������-����
����$��
,	���	���0��
�������-��	���/,���������������-��	������	����	�����

�����������	�,	�����������	����������������	����	�������-����
����
"1234$�

567 89:;<=>?@>@>A?BC

�������	,������������	�������	������
�����	������������"���������%DEF$
����	��		��#�������#���������������	����������	����	�����������	�������%�

GHIJKLMJNOPQMRNPJSTUVWXTVYWZ
Y[\H]JOMJS _̂̀ à Z̀ WbSc_cdcacUcc GHIJSXYYcZTYUT eOKfSYgKSZTT
_[\H]JOMJS _̂̀ à Z̀ XbSc_cdcaUccc GHIJSWZYcZTYUT eOKfSXYYgKS_aUT
d[\H]JOMJS _̂̀ à Ù WbSc_cdaccUcc GHIJSVYYcZTYUT eOKfS_aZYgKSd_UT
a[\H]JOMJS _̂̀ à Ù XbSc_cdacUccc GHIJS_YYYcZTYUT eOKfSd_ZYgKSa_UT
U[\H]JOMJS _̂̀ à Ù ZbSc_cdaUcccc GHIJS_dZYcZTYUT eOKfSa_ZYgKSUaTT
hhh

aW[\H]JOMJS Ŷ̀ _̀ d̀ WbS_daccccUcc GHIJSXUYYcZTYUT eOKfS_YV_ZYgKS__UZUT
aV[\H]JOMJS Ŷ̀ _̀ d̀ XbS_dacccUccc GHIJSVYYYcZTYUT eOKfS__UZZYgKS_ddZUT
aT[\H]JOMJS Ŷ̀ _̀ d̀ ZbS_daccUcccc GHIJS_YYYYcZTYUT eOKfS_ddZZYgKS_adZUT
UY[\H]JOMJS Ŷ̀ _̀ d̀ UbS_dacUccccc GHIJS_dZYYcZTYUT eOKfS_adZZYgKS_UZYUT
U_[\H]JOMJS Ŷ̀ _̀ d̀ abS_daUcccccc GHIJS_ZXdZcZTYUT eOKfS_UZYZYgKS_XYXWU

i<j67k6����������	,�������������'����������������l���

&����+��������������������	,�������������,	�������	,m�EnopEqr���
����s�������/��	������	,t+����� !�!��������u���%DEF!',	�v2wxwywz{�	
v4w2w|wx{����	��%���,����,	����	�����	���	���������������DEF�}nEF��
��
���������,	��~�����������������%�������	����������	�������"�	�����	,
�������	�,�����	�$��������������������������	�����
��������������������	��
����������	��������%	,����������������������������	�����
����������.
�����������	����������	�����
������������������	�
�������������� !��������������	��
����
����	,

����	������������	,��������	����	����������	��%�	����	���	,�	����
"�������%������,	������u�	,�������������$��������	�
�����	,��	��
�	�����	�������������������	����������	���������
����,�����	��	������
��	�����������	����������-����
����	,����	�����	��������	�,�����	�
��������3����������v���������3�����{,	����� !��

����������	
��������������	����� ���

��� �������� !"# ��#�"$�%�#��&#&�!�# '���(���)��#�"$# *!��&$+

,��	
�-./01231��4������4
5�6��6���	��66�7
�8���	�4����4
��	
�9:;���8��	
�
�9���6�����	�9��<=>������	
�?��4	���@:AB��9������	�	������7���6���9������	
�
?��4	���@:@BC��	
�8�
D�	
��	
��������4��	��8�8�����4
�6�4�5��9�6		
�������
�9���	�9��4��	�����4
�6�4�:�
�6��6���9��	
�9��4����9EF��4��	�����	�	�����
�5���G6	���H�	���E?IJ=>B:
K�4
6���	�������4
�6�4�4
���4	���H�9D7L

MNOPQRQOSTUV5
�4
��6�����	�	
����8	���C
MWXYOZQR[TUV5
�4
�	����	
��������	����D�8		
�4
������	
�NOPQRQOSTU�4	��C
M\]PPV4�����6��9�	��4�����8���	
����8	���C
MNOPQRQOSTÛ_̀aV	
�D��	���5�6���	������	
��6���	C
MNOPQRQOSTUbcd̂ecV	
�D��	���5�6���	������f6����9����4
�6�4�:

,���	�����C5�5���9�g��	
�9��	��4�D�	5���6���	�:K�4
6���	C���8�4���C��
	
��h9�����������4	������	�����:��4��48��	�	
�9��	��4�D�	5����4	���C5�8��
9��	��4������9��������

iQPR]SZXjSklW]YmXknoW]YmXkpqr

s
tuW]YmXknrrW]YmXkp
vuW]YmXknwrW]YmXkp

o ?��B

5
�4
��	8���E�EC����8����4�����6��9���9�������������	�x8����9�	
��5����	
��	8���E�E:
�
�9��	��4�D�	5����4	�����9�g��9���8���9��	��4��������9���������L

iQPR]SZXlNnTUoNpTUqry
z{c_|ba}~n
��� iQPR]SZXjSklNnTiUoNpTiUq ?�AB

��55����9	���9�g��	5��6���	����L������	?4
������	
�6���	���B��9
�44�����	���?4
������	
����4�	7B:��<=>��9J=�������	
��	
����6���	�������
9�g��9���8��C���8�4���5�5���8��������	
���������	�E4�������E�6���	����
��:

� *!��&$+��ZZXYX�]RXl�O�ZXzo�O�ZXboWXYOZQR[TUoNOPQRQOSTUz�_̀aoNOPQRQOSTUb�_̀aq

�!������������� �����������������)!
�� ¡����¢£¤¥�¦��§&$��
��̈©�������ª���������«�¬�������§®̄°ª���������«

� ��
��̈©�������ª���������«���������ª���������«

��)��
��)�!�
�!������������� �����������������)!
�� ¡����¢£¤¥�¦��±&$��
��̈©�������ª���������«�¬�������±®̄°ª���������«

� ��
��̈©�������ª���������«���������ª���������«

��)��
��)�!�
��&²����̈©�������ª«

��� ������	
��

����
��
����
�����
�������������
������������������������
�
����
��
����
����
������
������������������������ !"#$%&'(���
�)
���������
*�������������������+,--./012.34��������+,--./012.34�����
���������
��������
��������������
����
�)����
��
����
�����������

���*
�����
��
���
����
�����5"-$%$"6'(���� !"#$%&'(���
��)

789:;<=>?@A"� B5"-$%$"6'(C� !"#$%&'(C+,--./012.34D

E:;FGHIJKGLJMNO PLKGQGLJRSIJTQUVWX:
<EYZJFLH[\]WVHZKK̂_̀ ab̂cd=>ef
JIghLKGQGLJiFGHIJKGLJjMkISLlGQmiFGHIJKGLJj

e8ne
JIghLKGQGLJiFGHIJKGLJjMPLKGQGLJiFGHIJKGLJj

efX<E
efXE:;
;e=o;fJIghLKGQGLJij

����
�
�����������
��������������������
�������������������
��p�

*q�
�������rs����
��
�����������	
������t������
���

�������)

u v<?o8w=<:fnwfXwfw8xn<n

y*
�������������p�������������
�����**������������������
�z
��p���
*�����������)

u{| v<}e:E=>enew;~>n�w~e

����������
���p�����
���
������
���������������
������������
�����������������*
����������
*�����6����
*������������������
���
*��
������������+�������
�������������
����������
��)��)

�w�8e|{����������
���p���

J l�Y�[�JQ\ �Y�[�JQ\

� ��� ���t
� ����t� ������
� �������� ������t�t
� ����t����� ��tt�����t��
t �����t������� ���t��������t���
� ���������������� �������������������

����������	
��������������	����� ���

�������
���
�������
������������	
�
���������������	�	�����������
� !"#�$%��& !"#�$%�
��	
���'��������
�����(
��������������������
)*+,��	
������		����������&����	������������	�	���-./01"2/3%��&/01"2/3%�
��4��������5�������&./01"2/3%�	������������	�	��������6���	�4��&����	
�
��'���	
������
������

789 :;<=;>;?@ABC=DCCEEC>=FGCHCII;EI;JK=F;HI

L��	�&�������	��	
�&���&������	
�����MNOPQRPMSMTO��������	�	���(��������
(�������U��V,5	����5)*W�5��������	��	��,5&�������	
�����	�������
��	
�&�(XY5
XZ5ZTO[\S\T]̂ _OP̀PaMOP\T(�
�����
���	���U���,,��&&�������	��������bcMSde
MOP\TfdTROP\T	
��������&��	
�&�����	��&����	�4�������&	������&4�g��	���
����	���������5��������'�&��&�	���	���&	
������
�����5���	��
��&	�������	�
	
������	��	
��������&����	�	������4�������&�����
������	
�����	
������	��
	
������
�����������'�	����
h����	
����		�������������������&�����	
������
������	
��������	���

��	
���	�����	���'�	
������
������������&	�������'�	
��������������i
	�����+jbTd̀kbN\fQOTbllbcMSdMOP\Tl(mnopq,�
���
�����4	����	
������	���
����	�����������	�&�mnopq�������������������&�������	�����
��	
�&�5���	���
�����&����	������������	
������������

78r st@CBF?CH=AJBCIKJ=I

L������g�������	���
��	���&	�����	���	Wb)*+��	
uvvvw�	�	��5�
��
��&���
	
�MNOPQRPMSMTO��
���	��������	�&��*MTOM)b+NMPS��
�����	��&��	��	���
���	�
���&�6��&��xyz{|}~��&�yz�|�|!~5	
������	������	�������	�	
�
�����������&��	��&���������	��������((�,,�
�
�������	������	
��������&�X*̂ ��	
�&���	
����������-

����������	��������
����������
�
����yu�5
��		
����	����	�����	
�WdSOPcbNlb�����
���������	������	����TPcbNlb���	
��������	�&�����6����	���(����6����	���	�����	�������	���,��&��(����6i
����	�����	��	����	���,(�����U,�
��
�����4����	����������	�&-
����������"��} �v$�����$���%�y�� !�"��} �v$�����$���%����
����������"��} �v��$��$%�y�� !�"��} �v��$��$%����

�A�JC98���	����'�	���������	���

� �� ��

 ����U ����U
V ������ ������
¡ ������ ������

��� ������	
��

�����������������
������
�������� ��!��"��#
���
�
�$%&'(
���
$�)��������*����$+������*,�����-���
�
�$����
$.��������/���0�
1������"����
���
�'2342567829:���$
�&;<���""�����"#����=�>��"?��
����$�
"����
�����������"��
������
$��
�
�$�#)����"�	�����"�����?�
.���������
�����
����������5'@�

ABCDEFG,�������"����
��

HI89J463J63 K HI9L9:9MI93 NO�+��� � NO�+�����
PQRRST PQRUVT

QRWXW Y URXSZ ���0�� [\[]
QRWXW � XVUV �??Y�̂ _]̀_
QRWXW - XQQU ��?��̂ 0?�0�

>��"?�
�����������"��
����
�
�$%&'(���
$a����������
���"�b
���
����$��������"�����
���"����
������������>�������������
������
�
�%&'(���
$���� ������
���)����"�	�������?���$)������������-�
���
$�*�����������"������������
������
�Yc�������

\G[deBDfghg

N������������������������
���"����
����������� ������
���
���
i����� ���
$�*����
�
�$%&'(���
$���"
�
��
�����"��$�
��
�����
.����"�
1�$���
"���
�.������""�������>����"��.������""������.�
��
$��$*.�������
$.����"�
1�$���
����j39L68J6���j39L68J6*.����
�
���������
"���
��$���� ���b�������� ����1�������>����"��.����� �
�����.���
$��$$���� ����*.������"j39L68J6J��Y�
������
�Y�����
��$?��
������
��������.������$��
����
"���
�.���
��$�
>�����.
������
�"��.�����
�
�$���
$����"�$�
������ �����a

kN���� ��������"�l���
���
����
���
���
��
���������j39L68J6����
� ����$��
������������������������$��>��"���)�����"#����
��
�����$1�$.���������
��l
���j39L68J6�=���������������� *
���
�mno*�� ��
���
��
������ ����$��$��"���$�"��$#��������"
��� �

k>�.
������������
�
�����������
$�����������
�*.�����""j39p
L68J6��������$��$��"���
��
���������
"���
��
�������������
"�b
��
���>�������������
�����������
�*.�����
"���
����
��$����1���
j39L68J6�)�����"#*��j39L68J6�����"���$�#������
����
��$$���� ��
������"�l���
�����*.�������
�
�����"�

+�
����
����"�
"���
���
�����.
��
�"�����
���� ��������"�l���
�
��
�����$�
$��#��������
��
�j39L68J6��"����
��>��$�"�������
�.
�"$�

����������	
��������������	����� ���

	
����������	�	������	�	
������ !�"�	
��	����	������	���#��$
��	���%�	���$��
��������$
�&����	���#

' ()*+,-./)*0*12-3-456)47

8�������	�&���	
�&����&��	�9$�	�����:;<����$��	�=	��> ?�@A�>B>�?�������C
"
�$
������&��
�����	�$��	���%�	���������	
�#
�
����$���$�&������	��DE>�F��A>B;? ��GH�I �!��?>?�F�D�����&	���������	

����$
���$�#J������&�	������������	�	�����:;<����&��	�	������=��	�����	
�&
����������	�����:K�C�	"����&�	�&	�	�����	��$$���	��	��	���$	�����:;L#
M���	�����C��$
��������	�	�������"�	�N���N�O�!�> AP!I>A�C��&C��$��&��C����$

���$�$�������	�	����&��&���Q��	����$	������	�	����$����
��&��&��I> >BB�B��
������	�����	���#
�
����$�9$���	
�����$
���$���������	�	�������	
����������	�	�$���	�?RF

!?>G�!FS?P�!�> APT	
�����$
��U���	U���	�	���V��	�Q����$
W��&����$
����&�	
�
���	�	���#
X��	�$�����=�	��$	���������$
���$�C�	��&��&Y;Z����	"������"���C��"�

�������	�$������Y;Z��&��&�������	�	�����������	
���&������	��"
����&
[�!A �?�\ >��?>?�F�>B;R> NZI?�N�O>?�F���	
�&#����C	
�����$
��	
�&����&�Q
9�&	�������	�"�����&��$��	�����$
���$�C��$�����������$
���$���������	�&
��&�$�����	�����#��C���������	
������	���"�����&������&#
�
��=�������	�������	��
�"	
�	�������&��	
�&����9$���	������$����C��	

	
�U��	�Q����$
�
���U���	��������&	����������	������	����#
�
������������"���	��=	��&$�����	������$
#M���	�����C"�$���&��		
�

�������&��	
�&	��	
���	��$	����C����=�������������	�#��$��&��C"�$��	��	
�
��	
�&	��	
���������	����#�
��&��C	
���������
�����	�$��	���%�	���	�$
��]���
��$���	��	�����"���C��������	
��$������&�9�&	���	$
	
�����$
���$�
��������	�	���#

+̂7*)6,51_̀ 5*3.

�
��������$
"��������	�&��	
�a�	�����b����	����c�����$
��&a&�$�	������	�Q
	�	�����������$
����	��#�d�eeQ�e#

f52545*+5.

�����&�Cb#Cb������Cb#Cc���Cc#Vg��hW#a������	�����&������	���"�	
��	������	���	�
��������	�	���CLP�F �?�A>BEFNIi?� ;A���A�Cjek��g#

�����&�Cb#Cb������Cl#Cc���Cc#Vg��jW#����$	����������	�����&������	���"�	
��	����
��	���	���������	�	���CEFHH#

��������CJ#m#CJ����$�Cm#n#V�jjeW#a���	������b�&����$]����	���CY FA��o��G!FS?P�;�Ap
F�oK��i>BEF�S� ��A�F�q�FBi?�F�> rY FG >NN��GC��sk�te#

��������CJ#m#CJ����$�Cm#n#V�jjsW#u�������v��
Qw���c�������	�	����CKoo�!F�px�!B�r
Eyz>�G?F�{qo!y|}K ?�@A�>Bz�S�~~~C��kh�#

��� ������	
��

���	�����
�������������������������������� !

	
"#�
�$%�
��&'(
)�$%�%�
��*+,
,-./0120345678�

(�����������9��(��&���	�����������:�&���)���&'����;%���%�
���%
��
�����)
 $��&<��%�
;%�%�)������;,=>?@@70341>A62@BCCCD>34=@11>3EF>/-60>3G=HD>IJ-6G60>3KDEDCC�
�LM�N�LO�P
��Q�

(������	�������R�'��%;���P������'%
�:��Q��L���
���������S�;%����;
"%��:&%�<����:�%
T&
!��)��%�:�%(
�
�'U�%�)���%�
�,=>?@@70341>A62@V62*WXDD>3A@=@3?@>3YG3-Z
AG?6-=034Y>7@//034KYG3G4@I@36KG37D>36=>/���MLN��M[�

(�&�;%��;������U������&����Q������
�����%���&%�<������%
�%��;��%�"�%&����&
!��)��
Q�����<%��;;����$�%�
�;�,=>?@@70341>A62@C62G33-G/?>3A@=@3?@>3\@3@60?G37@F>/-Z
60>3G=H?>IJ-6G60>3K\EDD+]V��O�M�O���

�
&)�%
�̂�:��Q�����(��%&��"
&��
�%�)���%�
�_����)�%���$&�;%����%��������%�
�;����̀
���� ����%&
)����%��;�,=>4=@1103E/@?6=>IG43@60?1a@1@G=?2�MQONM���

�;��
�b�̀���(�$����(�̀c��d����d�̀:��(����(�̀(��Q��O��:�
���
�%�)���%�
����
&�%�)_
;�����&���%�%�
���
�%�)���%�
��*EEE*36@=3G60>3G/D>3A@=@3?@>3eH16@I1KYG3G37DHZ
.@=3@60?1�QLQLNQLQ[�P
��L�

d�""�&;
�����(
����;�̂ ��(

��&�(���'�&������
��&;����9
&"�̂ ����'�
&�(��f����:�
�������#�
�$%�
��;�%��)����&%�<������"�_���g���;';h�&��	�&;';%�)�D8\85G346@3K
D8iGH/>=Kj8k8WG=I@=KG37e8aG1I-11@3lE718mKX=60n?0G//0A@**�OM�NO�[�

9���� '�d��#!�&��&%�̂�����O��T�&%����;��&)
�%�)���%�
��*EEE*36@=3G60>3G/D>3A@=@3?@>3
o@-=G/o@6p>=q1���MQN��M[�P
��M�

9
���d�̂�����Q��g���%���&
�&�))���_
�%���&
�&�))���
"�
)�$%�&;!')���;
"��%$&��
;����%�
��Y*i,=@11�

9$;�$�S�����[��#�
������g���&���;� ������
&_:&%�<����:�%T&
!��) �̂��;�%� �,=>?@@7Z
0341>Ae@F@362X33-G/D>3A@=@3?@>3EF>/-60>3G=H,=>4=GII034K5oDe����N[�[�

��&r�����������;��)�������Q�����:����'!&� T�Ug�:���
&�%�)"
&"$��%�
�
�%�)���%�
�
,=>?@@70341>A*36@=3G60>3G/D>3A@=@3?@>3D>IJ-6@=G37*3A>=IG60>3XJJ/0?G60>3l*DD*Xm�
L�MNL���

�
���������d��s$�f��Q�����:�#t%�� � T�&%�������&)U�%�)���%�
�:��
&�%�)��;�
U����"̀U&������%�
��
�
�
�'�&�����'��%��;;�j>-=3G/>AD>IJ-6G60>3G/*3A>=IG60>3
eH16@I1KVuBv�MMM�NMMOM�

w��9��c���f��w� ��f��Q�����:x
������"̀
&��������T�&%�������&)U�%�)���%�
�!�;�
�
g&���%�%�
����� �
 ��XI@=0?G3D>36=>/D>3A@=@3?@Kv]]V8XDDy]V�OQ[NOLL�
�̂;�� ��#��x���)�!� �̀�
$&������&'�� �����Q�����g�:_:g&���%�%�
������&��:��
&�%�)�
*3A>=I8e?0@3?@1Ko=8BzK{>/8BVC�QQLQNQQM[�
�̂�;�̂ ���
&��&��x��:�)�� �����Q��O��U�%��&��&�;��%�%�
�
"<��%��$%
)�%��,=>?8>A
kDWe]|�Q��NQ���

������	
������Q������
 �<� T�&%�������&)U�%�)���%�
�:��
&�%�)��;�
�g&���%�%�
���
���� S�%�&��%�
�;�,=>?@@70341>A62@E16>30G3X?G7@IH>Ae?0@3?@1K{>/8}|K*11-@B��ONQ��

�$��$&��������$�
����9�%��#��Q��Q�����%����&���T&
!��)�
�$%�
�R;���g&�))�%����
#�
�$%�
��v]Bv*36@=3G60>3G/D>3A@=@3?@>3*37-16=0G/G37*36@//04@36*3A>=IG60>3l*D***
v]Bvm�L�NM��

�;�����̀(���'���b�̀b��f$�b�̀f��c���b�̀���Q��L��g&���%�%�
���T�&%�������&)�XJJ/0@7
YG62@IG60?1G37D>IJ-6G60>3K{>/8vBCKo-I8BV�����N�����

f�!;%�&������&���& �T�d��Q��L��:c
���;��&��
�%�)���%�
����
&�%�)!�;�
���%$&��
�&�������;
"�&���%�%�
��DeZv]]zZB]KW/>=07G*31606-6@>Ai@?23>/>4H�

f�!;%�&����Q��M���
������
)!���%
&���
�%�)���%�
��&
!��);$;����������
&�%�)!�;�

��&���%�%�
����%%&��%�
��,28k862@101KW/>=07G*31606-6@>Ai@?23>/>4H�

�̂����� ���%�)!�&��Q����&���;� ����)!�&�Q�Q���������%� ��!&$�&'Q��Q���

Publication B
Spichakova, Margarita (2016). Modified Particle Swarm Optimization

Algorithm Based on Gravitational Field Interactions. Proceedings of the

Estonian Academy of Sciences, 65(1), 15 – 27.

159

Proceedings of the Estonian Academy of Sciences,
2016, 65, 1, 15–27

doi: 10.3176/proc.2016.1.01
Available online at www.eap.ee/proceedings

Modified particle swarm optimization algorithm based on gravitational
field interactions

Margarita Spichakova

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia; margo@cs.ioc.ee

Received 9 February 2015, revised 11 May 2015, accepted 25 May 2015, available online 10 December 2015

Abstract. In this paper we present the modified particle swarm optimization algorithm, where gravitational interactions between
particles are used for computing learning coefficients. The behaviour of the algorithm is demonstrated by solving the two-
dimensional Diophantine equation problem. This allows us to observe the search space and workflow of the algorithm directly
on the two-dimensional plane.

Key words: particle swarm optimization, Diophantine equation solver, gravitationally inspired heuristic search.

1. INTRODUCTION

Define the search problem as finding an optimum (minimum or maximum) of some given function. The set
of points, presenting the function arguments, gives us the search space. For each point in the search space
there is the value of the function. The task is to find the point (argument), which gives the optimal value of
the function.

If no information about the search space is available, two main opportunities exist: (1) to exhaustively
traverse the search space or (2) to choose some random points and pick up the most suitable one. If the
search space is infinite, we define some range. Traversing the whole search space takes time, but gives an
exact result. In the case of an infinite search space, the results also depend on the definition of the range, and
it may happen that the range does not contain the optimum. Randomly generating a small number of points
in the search space gives a solution very fast, but the quality of the solution is questionable. The stochastic
optimization presents the compromise between exhaustive search and choosing random points.

Optimization techniques include several approaches, some of which are deterministic procedures and
others contain randomness and probabilistic computations. The main advantage of stochastic optimization
is that it can be applied to any search problem without specific knowledge about the structure of the search
space. Stochastic optimization may also be helpful when the complexity of deterministic methods grows
rapidly with the search space size.

Two main properties must be implemented in any stochastic optimization method: the exploration and
the exploitation. The exploration is the ability of the method to explore the entire search space in a global
way and the exploitation is its ability to focus in the local area and search for a more exact solution.

Stochastic optimization methods have several ideas in common:
• The search space is defined as a set of points where each point represents a candidate solution.

Usually, candidate solutions are presented indirectly, by some structure, which encodes the candidate
solution. Initially, some fixed number of points are generated randomly.

16 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

• By using the evaluation function we can assign the score value, which shows how good a solution is.
• The search algorithm contains modification operators that allow the construction of new solutions from

the existing ones.
The nature has been the source of inspiration for constructing new stochastic search algorithms. There

is a set of methods, such as evolutionary algorithms, genetic algorithms, evolutionary programming, which
are based on the theory of evolution. Some methods simulate social behaviour, for example, particle swarm
optimization (PSO) imitates the social behaviour of birds, ant colony optimization applies ideas of the
behaviour of ants foraging for food. Some stochastic optimization methods are based on the laws of physics,
for example, simulated annealing is based on the thermodynamic effect. Others are based on gravitational
force. For example, Central Force Optimization is a deterministic gravity-based search algorithm, which
simulates the group of probes [2]. Space Gravitational Optimization [3] simulates asteroids flying through
a curved search space. A gravitationally-inspired variation of local search, the Gravitational Emulation
Local Search Algorithm, was proposed by Webster [14] and Webster and Bernhard [15]. The newest one,
the Gravitational Search Algorithm, was proposed by Rashedi et al. [10–12] as a stochastic variation of
Central Force Optimization. A discrete modification of the Gravitational Search Algorithm was proposed
by Zibanezhad et al. [16] in the context of Web-Service composition.

In this article we discuss the family of PSO algorithms. Standard PSO contains three parameters to
control the algorithm. Traditionally, the values of the parameters are defined by end users. In general, no
exact methods exist for defining the parameters, so, usually, it is done empirically. Also, it is possible to
define a new search problem for finding values of parameters and applying stochastic optimization. This
process is called meta-heuristics.

We present a modification of the PSO algorithm based on gravitational interactions (GI) between
particles (PSO + GI), which automatically adjusts the parameters of the PSO algorithm. The proposed
method solves the parameter adjusting problem by replacing parameters with computed values.

Both methods, the standard PSO algorithm and the proposed modification PSO + GI algorithm, are
tested on the Diophantine equation solver task (see Table 1 in Section 5.1 for test equations). This search
problem is chosen for illustrative purposes.

The paper is organized as follows. Section 2 defines the search problem, Section 3 presents the standard
PSO algorithm, and Section 4 describes the new method PSO + GI. Section 5 covers the behaviour of the
proposed method and Section 6 contains the conclusion and future plans.

2. DIOPHANTINE EQUATION SOLVER

A Diophantine equation (DE) has the form

F(x1,x2, . . . ,xm) = 0, (1)

where coefficients and variables are integers and F can be considered as a polynomial function.
For simple cases there are deterministic methods for solving such equations. For example, in the case of

a linear DE with two variables, the solution can be found by using the Euclidean algorithm for the greatest
common divider.

The problem of finding a general deterministic method for solving any DE is known as ‘Hilbert’s tenth
problem’. It was proven by Y. Matiyasevich in 1970 that there is no such deterministic method. Therefore,
the use of stochastic optimization methods is helpful.

Several stochastic optimization algorithms are used for solving DEs. Abraham [1] applied the standard
PSO algorithm to the DEs of simpler forms (see Eq. 2) and tested it on two sets: the first set – DEs with n
from 2 to 15 (see Eq. 2) and the second one with equations with power 2 with 2 to 12 variables. In all cases
the PSO method was able to find the solutions.

The genetic algorithm can also be used for solving a DE. For example, there is a genetic algorithm
tutorial [4], where the genetic algorithm is demonstrated on solving the equation a+2b+3c+4d = 30.

M. Spichakova: Modified PSO algorithm based on GFIs 17

To use the stochastic optimization method for the DE solver problem, we need to define at least three
things: the search problem, search space, and evaluation function.

The dimensionality of the search space depends on the number of arguments to be found. The restriction
m = 2 gives us only two variables x and y, so the general DE has the form

a · xn +b · yn = d. (2)

The test equations are presented in Table 1 in Section 5.1.
The evaluation function must return the value for each point (candidate solution) in the search space.

In our case, the candidate solution is a pair (xp,yp). In the easiest case, we can try a point of the search
space (xp,yp) as a solution of the DE and get the result true or false. Unfortunately, this gives not much
information about how close this point was to optima.

We can define the evaluation function as a distance between two points:

a · xn +b · yn = d,
a · xn

p +b · yn
p = dd, (3)
f = |dd−d|.

If we apply our candidate solution (xp,yp) to the equation, we can compute dd. In our original Eq. 2,
this value is equal to d. If dd = d, then (xp,yp) is our optimal solution. To measure how far the candidate
solution is from the unknown optimum, we define the distance f , which will be our evaluation function.
So, the search problem is now defined as minimize the evaluation function f . The point (xp,yp) will be
considered as an optimal solution if f = 0.

As we mentioned before, the search space is defined as a set of candidate solutions (xp,yp). We also
restricted the search area by upper and lower bounds, which are defined by the user. The coordinates
(xp,yp) present two dimensions and the evaluation function value gives the third one. To illustrate such
a search space, we will use the diagram where points with coordinates correspond to candidate solutions
and the evaluation function value is coded by colour in such a way that the colour ranges from blue (that
corresponds to long distances) to red (that corresponds to smaller distances), and the optimal values are
presented by white colour. Examples of such diagrams are shown in Fig. 1.

Fig. 1. Examples of the search space.

18 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

3. PARTICLE SWARM OPTIMIZATION

The PSO algorithm is inspired by social behaviour of some set of objects, for example, bird flock or fish
school [5]. The general idea of this method can be described as follows. The search space contains a set
of points and each point has its value, which is assigned by the evaluation function. The task is to find the
optima of this function. There is also a set of particles that are moving on the defined search space. The
movement laws can be considered as interactions between objects. Using those movement laws, the objects
must find the positions with better values or even optima.

3.1. Standard PSO algorithm

Consider a set of particles – a swarm. Each particle is characterized by the position vector, velocity vector,
and the best known position for this object. There exists also the global best known position for the whole
swarm.

The position vector pd , d ∈ [0 . . .n] presents a candidate solution. The dimensionality n of the vector
depends on the problem size. We assign the value for each candidate solution using the evaluation function.
According to those values we can choose the global best known position Gbest, which is the point with the
optimal value found so far by the whole swarm, and the local best known position Pbest, which is the best
position that was found by this exact particle.

The velocity vector vd , d ∈ [0 . . .n] represents the trend of movement of the particle. It is computed by
using the equation

vd(t) = α · vd(t−1)+β · r1 · (Pbestd− pd(t−1))+ γ · r2 · (Gbestd− pd(t−1)), (4)

where
• α, β , γ are learning coefficients with α representing the inertia, β is the cognitive memory, and γ is

the social memory; those coefficients must be defined by the user;
• r1 and r2 are random values in the range [0 . . .1];
• Pbestd is the local best known position for the particle and Gbestd is the global best known position of

the swarm;
• vd(t) is the new value of the velocity vector at dimension d and vd(t− 1) is the previous value of the

velocity.
The new position pd(t) is simply defined as the sum of the previous position pd(t − 1) and the new

velocity vd(t):
pd(t) = pd(t−1)+ vd(t). (5)

The PSO algorithm is presented in Algorithm 1. The initialization part consists of defining the required
learning parameters, setting up boundaries of the search space, and generating the swarm with a random
position and velocity. The search process is an iterative update of the positions and velocities. The process
ends when the ending criteria are met: either the number of iterations is exceeded or the optimal solution is
found. The evaluation function f and the dimensionality of vectors are problem-specific.

3.2. The behaviour of the standard PSO algorithm

Algorithm 1 contains three learning coefficients α,β ,γ for adjusting the convergence abilities of the
algorithm. Learning coefficients must be defined by the user according to the problem statement. No
deterministic methods are available for finding their values. However, there are several non-deterministic
methods for solving this problem. For example, in the case of the empirical methods we can try several
parameter values and observe the behaviour of the PSO algorithm and choose the best ones. In the case
of meta-heuristics, the choice of the parameter values can also be considered as a search problem, so here

M. Spichakova: Modified PSO algorithm based on GFIs 19

Algorithm 1. Standard particle swarm optimization
Set bounds for the search space Bup, Blow
Set learning coefficients α, β , γ
Define the size of the swarm s and the number of iterations e
for i = 0→ s−1 do

Initialize particle position pi taking Bup and Blow into account
Pbest i← pi

Initialize particle velocity vi taking Bup and Blow into account
Evaluate particle f (pi)
if f (Gbest i)< f (pi) then

Gbest i← pi

end if
end for
while current iteration < e and optimal solution is not found do

for i = 0→ s−1 do
Update velocity vi for each dimension by Eq. 4
Update position pi for each dimension by Eq. 5
if f (Pbest i)< f (pi) then

Pbest i← pi

if f (Gbest i)< f (pi) then
Gbest i← pi

end if
end if

end for
end while

Fig. 2. Equation: x2 + y2 = 149. Maximum number of iterations e = 200.

heuristic optimization can also be applied. The unknown values of the learning coefficients constitute one
of the problems with the PSO algorithm.

Example 3.1. Figure 2 shows how different values of a learning coefficient can affect the optimization
process. We use the equation x2 +y2 = 149 and the same initial swarm which was generated randomly. The
maximum number of iterations is 200 for all three cases. The cognitive memory β = 0.5 and social memory
γ = 0.5 stay the same, only inertia α is changing:
• Figure 2a shows the case where α = 0.2. Such a small α value leads to fast convergence of the search

process to the global best value Gbest. The exploration ability of PSO in this case is small.
• Figure 2b shows the case where α = 1.0. The solution was found on 30 iterations. With these parameters

the algorithm was able to find the optimal solution in most cases. The search process is going on inside

20 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

the ‘red zone’. It means that first of all the algorithm was able to define where there is a good zone for
searching (exploration) and then explore this zone closely (convergence).

• Figure 2c shows the case where α = 2.0. In this case the optimal solution was found during 137
iterations. However, the algorithm was exploring the whole search space, so much additional work was
done. We can say that in this case the algorithm does not converge to the optimal solution.

3.3. Problems with the standard PSO algorithm

As we have shown in Example 3.1, the choice of the learning coefficients for the PSO algorithm has a strong
impact on optimization performance. The first problem is that no exact methods exist for defining them.

The second problem lies in the definition of Eq. 4. There is the Gbest position, which is valid for the
whole swarm and does not take the distance between the particle and the global best position Gbest into
account. In some cases, if Gbest itself is in a bad zone, the whole swarm falls into a local optima.

The second problem has two main solutions: (1) to define the neighbourhood of every particle by taking
account of not Gbest for the whole swarm, but of Gbest for the group of ‘connected’ particles, (2) to define
parallel swarms, where groups of particles move in the search space without any interactions between
groups.

4. PROPOSED ALGORITHM: MODIFIED PSO BASED ON GRAVITATIONAL FIELD
INTERACTIONS

To solve the problems described above, we propose not to define learning coefficients by the user, but to
compute them in such a way that they take the distances between particles into account. We employ the
ideas inspired from stochastic search methods based on the gravitational law.

4.1. Gravity as inspiration for optimization algorithms

Four main forces are acting in our universe: gravitational, electromagnetic, weak nuclear, and strong nuclear.
These forces define the way our universe behaves and appears. The weakest force is gravitational; it defines
how objects move depending on their masses.

The gravitational force between two objects i and j is directly proportional to the product of their masses
and inversely proportional to the square distance between them

Fi j = G
M j ·Mi

R2
i j

. (6)

Knowing the force acting on the body, we can compute acceleration as

ai =
Fi

Mi
. (7)

To construct the search algorithm based on gravity, we can use the following ideas:
• each object in the universe has mass and position;
• there are interactions between objects, which can be described by using the law of gravity;
• bigger objects (with greater mass) create a larger gravitational field and attract smaller ones.

During the last decade some researchers have tried to adapt the idea of gravity to find out optimal search
algorithms. Such algorithms have some general ideas in common:
• the system is modelled by objects with mass;

M. Spichakova: Modified PSO algorithm based on GFIs 21

• the position of the objects describes the solution and the mass of the objects depends on the evaluation
function;

• the objects interact with each other using gravitational force;
• the objects with greater mass present the points in the search space with better solution.

Using these characteristics, it is possible to define the family of optimization algorithms based on
gravitational force. For example, Central Force Optimization is a deterministic gravity-based search
algorithm proposed and developed by Formato [2]. It simulates the group of probes which fly into the
search space and explore it. Another algorithm, Space Gravitational Optimization, was developed by
Hsiao et al. [3] in 2005. It simulates asteroids flying through a curved search space. A gravitationally-
inspired variation of the local search algorithm, Gravitational Emulation Local Search Algorithm, was
proposed by Webster [14] and Webster and Bernhard [15]. The newest one, the Gravitational Search
Algorithm, was introduced by Rashedi et al. [11] as a stochastic variation of Central Force Optimization.

Basically, the gravitationally inspired algorithms are quite similar to PSO algorithms. Instead of the
particle swarm we have a set of bodies with masses, ideas of the position and velocity vectors are the same,
and the movement laws are similar. Our idea is to combine the two approaches to get a better one.

4.2. Existing PSO algorithm hybrids

The idea of hybridization of the PSO algorithm and gravitationally inspired search algorithms is not new.
Several algorithms exist that use both ideas (PSO algorithm and gravity) to construct a heuristic search
algorithm:
• PSOGSA – PSO algorithm and Gravitational Search Algorithm [7];
• extended PSO algorithm based on self-organization topology driven by fitness – PSO algorithm and

Artificial Physics [8];
• Gravitational Particle Swarm [13];
• self-organizing PSO based on the Gravitation Field Model [9].

The traditional way of hybridization of the PSO algorithm with gravitationally-inspired search
algorithms is to add the gravitational component to the velocity computation. Equation 4 has an additional
component, which is computed by using gravitational interactions. Unfortunately, this makes the behaviour
of the search algorithm even more complex and unpredictable. Additionally, the user-defined parameters
still need to be found.

We propose not to add the gravitational component, but to replace the existing learning coefficients by
coefficients which are computed by ‘gravitational’ interactions.

4.3. Modified PSO based on gravitational field interactions

Now we want to adapt some ideas we got from the gravitational search to the PSO algorithm. Suppose we
have the current particle P, its position and velocity vectors, and its mass M, which is based on the value of
the evaluation function. The position vector encodes the candidate solution, and the velocity vector presents
the direction of the movement. We know the Gbest position and mass value Mg for this position. As for the
standard PSO algorithm, so far this Gbest position presents the best known solution for the whole swarm.
We also have the local best value for the current particle – the Pbest position and its mass value Mb at this
point.

For now, the algorithm is similar to the standard PSO. The current particle is attracted to both Pbest
and Gbest positions; in the PSO algorithm the power of this attraction and direction of the movement is
controlled by learning coefficients. In our case, we recalculate the force between those three points and
compute the acceleration (Fig. 3).

22 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

Fig. 3. Gravitational interactions between particles.

In the proposed method we replace learning coefficients in the standard velocity computation by
computed values, which are based on the idea of gravitational interactions between particles:

vd(t) = Mi · vd(t−1)+apb · r1 · (Pbestd− pd(t−1))+agb · r1 · (Gbestd− pd(t−1)), (8)

where
• Mi (instead of α) – inertial mass,
• apb (instead of β) – acceleration towards Pbest

apb =
G ·Mb

R2(p(t−1),Pbest)
, (9)

• agb (instead of γ) – acceleration towards Gbest

agb =
G ·Mg

R2(p(t−1),Gbest)
, (10)

• r1,r2, Pbestd , Gbestd , vd(t), d, vd(t−1) have the same meaning as in Eq. 4.
Now we have another movement law. Learning coefficients β and γ are replaced by the corresponding

accelerations, based on gravitational interaction between the corresponding particles. The ability of the
particle to save its current position is now characterized by Mi instead of α .

Contrary to the standard PSO algorithm, where learning coefficients are chosen by the end user, in our
case learning coefficients are computed by using gravitational interactions between particles. Moreover, the
proposed learning coefficients depend on distances between the position of the current particle P and Pbest
position and the position of P and Gbest position. Thus, we have an additional property: if the current
particle is far from Gbest, the tendency to move in that direction is small. Therefore, the behaviour of the
algorithm is more stable than that of the standard PSO.

5. BEHAVIOUR OF THE PROPOSED PSO + GI METHOD

To illustrate the PSO + GI method, we perform several experiments and compare the results with other
similar algorithms, such as PSO and stochastic hill climbing (SHC) [6].

5.1. Experimental setup

To analyse the behaviour of the proposed algorithm, we use several test problems that can be described by
Eq. 2 with powers from 1 to 5. The problems are presented in Table 1. The search space is defined in the

M. Spichakova: Modified PSO algorithm based on GFIs 23

Table 1. Test Diophantine equations

range [−50,50] for each variable. The column ‘Solutions in the range’ shows how many solutions exist in
the search space.

The initial swarm is generated in the range [−50,50] for each variable and its size is defined as 1% of all
possible points in the search space. The exception is the experiment ‘Bad initial set’ (see Subsection 5.3).
For this experiment the inital swarm is generated in the range [−50,−45] for each variable, although the
search space stays the same ([−50,50] for each variable).

The maximum number of iterations is taken 200. So, the algorithm stops running after 200 iterations or
if the solution is found.

Two main characteristics are used for comparison: space and time. In the proposed experiments, the
space is described by the number of points the algorithm checked before finding the solution and time is
described by the number of iterations before the solution was reached. The number of fails (the solution
was not found during 200 iterations) is an important factor as well.

For each experiment we perform 1000 runs and compute average and standard deviation for each
parameter used for describing algorithm performance (see Tables 2–4).

The PSO + GI algorithm is compared to SHC and standard PSO algorithm with α = 1.0, β = 0.5,
γ = 0.5 (Section 3).

5.2. Experiments: normal workflow

Search includes two main mechanisms: global and local. The performance of each search method depends
on those mechanisms. One idea of the experiments was to take a look inside and observe what exactly is
going on during the search process. Usually, the search problems are multidimensional and it is hard to
illustrate the search space. The use of two-dimensional DEs as test problems allows us to illustrate the
behaviour of the search algorithm.

Figure 4 shows one test run of the algorithm: PSO + GI in Fig. 4a,b, SHC in Fig. 4c, and PSO in Fig. 4d
for test equation e1 (Table 1).

Figure 4c illustrates the typical behaviour of SHC. There are several ‘islands’ that are formed by moving
particles. The movements of one particle also exactly represent ‘hill climbing’.

Figure 4d shows the behaviour of PSO. It is hard to define any observable pattern in the behaviour.
For PSO + GI (Fig. 4a,b) we define two main trajectories of the particles: the ‘line’ (Fig. 4b) and the

‘orbit’ (Fig. 4a). The first one appears, when Gbest is far from the current particle position, or constantly
changing. In this case the particle moves directly to better zones. The second one, the ‘orbit’, appears when
the particle is near Gbest. In this case the particle starts to move around Gbest in the good area. These
trajectories can be explained by principles of local and global search.

Table 2 presents the results of the experiment ‘Different initial set’. We performed 1000 runs for each
algorithm and each test equation. A new initial set was used (generated randomly for each run). The standard
PSO showed better results than the others. The PSO + GI algorithm is best for e2 and second-best for e1,
e3, e5, e6, e7, and e8. Though, PSO + GI performed almost on the same level as PSO.

24 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

Fig. 4. Trajectories.

Table 2. Experiment I ‘Different initial set’

The behaviour of the algorithm depends not only on the mechanisms of the search, but also on the initial
set. To eliminate this difference, we performed a second experiment, where we used the same initial set

M. Spichakova: Modified PSO algorithm based on GFIs 25

Table 3. Experiment II ‘Same initial set’

for all 1000 runs and all three algorithms. This allows us to compare pure behaviours: how the different
algorithms perform on the same initial set.

Table 3 shows the results of experiment II ‘Same initial set’. The standard PSO shows the best
performance, except for the problems e4 and e9. The PSO + GI algorithm is on the second place.

5.3. Experiment: bad initial set

The results of the search depend not only on the algorithm, but also on the initial swarm. What will happen
if the initial swarm is generated in the bad zone of the search space? Figure 5 shows this situation for the test
equation e1. The initial swarm was generated in the range [−50,−45] for each variable. For test equations,
this is the area with points that have bigger evaluation function values. The PSO + GI algorithm was able
to move out of the bad zone towards the better one and find the solution. However, this process takes many
iterations.

All the three algorithms were able to leave the bad zone. Table 4 contains the results of the third
experiment ‘Bad initial sets’. As you can see, the standard PSO performs better in most cases (except e4,
e6, e7, e9; for those test problems SHC outperformed the others). The PSO + GI is the second-best algorithm
for the test problem: e3 and e8.

Fig. 5. Bad initial set.

26 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 15–27

Table 4. Experiment III ‘Bad initial sets’

6. CONCLUSION AND FUTURE WORK

We proposed a modified PSO algorithm PSO + GI based on ideas of gravitational interactions between
bodies. This algorithm replaces predefined learning coefficients by new ones that are calculated by means
of the evaluation function and distance between particles. The general idea of the algorithm is to solve the
problem with unknown learning coefficients for the standard PSO. Also, in PSO + GI, the distance factor
helps to resolve the problem of the global behaviour for PSO.

The PSO + GI algorithm was tested on several Diophantine equations and the results were compared
to the standard PSO and SHC. The statistics show that PSO + GI shows the second-best performance after
well-tuned PSO in most cases. So the main goal of PSO + GI (to reduce the number of unknown coefficients
in PSO) was achieved.

In the future, the PSO + GI algorithm should be tested for other problems with more complex search
spaces.

ACKNOWLEDGEMENTS

This research was supported by Estonian Research Council institutional research grant No. IUT33-13,
Estonian Doctoral School in ICT (IKTDK), and by the ERDF through the ITC project MBJSDT and
Estonian national CoE project EXCS. The author is grateful to the anonymous reviewers who made
constructive suggestions and remarks on the draft of this paper.

REFERENCES

1. Abraham, S., Sanya, S., and Sanglikar, M. A. Particle swarm optimization based diophantine equation solver. CoRR,
abs/1003.2724, 2010.

2. Formato, R. A. Central force optimization: a new metaheuristic with applications in applied electromagnetics. PIER, 2007, 77,
425–491.

3. Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., and Chien, C.-C. A novel optimization algorithm: space gravitational optimization.
In Systems, Man and Cybernetics, 2005 IEEE International Conference, Vol. 3. 2005, 2323–2328.

4. Hsiung, S. and Mattews, J. Genetic algorithm example: Diophantine equation, 1999. www.generation5.org [accessed 23 May
2015].

5. Kennedy, J. and Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural
Networks, Vol. 4. 1995, 1942–1948.

6. Luke, S. Essentials of Metaheuristics. Lulu, second edition, 2013. Available at http://cs.gmu.edu/∼sean/book/metaheuristics/
[accessed 23 May 2015].

7. Mirjalili, S. and Hashim, S. Z. M. A new hybrid PSOGSA algorithm for function optimization. In Proceedings of International
Conference on Computer and Information Application (ICCIA). 2010, 374–377.

M. Spichakova: Modified PSO algorithm based on GFIs 27

8. Mo, S., Zeng, J., and Xu, W. An extended particle swarm optimization algorithm based on self-organization topology driven
by fitness. J. Comput. Inform. Syst., 2011, 7(12), 4441–4454.

9. Qi, K., Lei, W., and Qidi, W. A novel self-organizing particle swarm optimization based on gravitation field model. In American
Control Conference, 2007, ACC ’07, 2007, 528–533.

10. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., and Farsangi, M. M. Allocation of static var compensator using gravitational
search algorithm. In First Joint Congress on Fuzzy and Intelligent Systems Ferdowsi University of Mashhad, Iran, August,
29–31. 2007, 29–31.

11. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. GSA: a gravitational search algorithm. Inform. Sci., 2009, 179(13), 2232–
2248.

12. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. Filter modeling using gravitational search algorithm. Eng. Appl. Artif.
Intell., 2011, 24, 117–122.

13. Tsai, H.-C., Tyan, Y.-Y., Wu, Y.-W., and Lin, Y.-H. Gravitational particle swarm. Appl. Math. Comput., 2013, 219(17), 9106–
9117.

14. Webster, B. Solving Combinatorial Optimization Problems Using a New Algorithm Based on Gravitational Attraction. PhD
thesis, Florida Institute of Technology, Melbourne, FL, USA, 2004.

15. Webster, B. and Bernhard, P. J. A Local Search Optimization Algorithm Based on Natural Principles of Gravitation. Technical
Report CS-2003-10, Florida Institute of Technology, 2003.

16. Zibanezhad, B., Zamanifar, K., Nematbakhsh, N., and Mardukhi, F. An approach for web services composition based on QoS
and gravitational search algorithm. In Proceedings of the 6th International Conference on Innovations in Information
Technology, IIT’09. IEEE Press, Piscataway, NJ, USA, 2009, 121–125.

Gravitatsioonilist vastasmõju arvestav osakeste parvega optimeerimise meetod

Margarita Spichakova

On esitatud osakeste parve optimeerimisalgoritmi modifikatsioon PSO + GI, kus otsimismeetodi para-
meetrid arvutatakse osakestevahelise gravitatsioonilise vastasmõju põhjal. PSO + GI algoritmi võib käsit-
leda kui hübriidi osakeste parve optimeerimise (PSO, particle swarm optimization) ja gravitatsioonilise
optimeerimise meetodist, kus osakeste liikumistrajektoorid arvutatakse sarnaselt punktmasside liikumis-
võrranditega gravitatsiooniväljas. Algoritmi tööd näidatakse kahe muutuja diofantilise võrrandi lahen-
damisel. Ühtlasi saab seejuures visualiseerida ja analüüsida otsimisruumi ning algoritmi käitumist kahe-
mõõtmelisel tasandil.

Publication C
Spichakova, Margarita (2013). An approach to inference of finite state

machines based on a gravitationally-inspired search algorithm. Proceedings of

the Estonian Academy of Sciences, 62(1), 39 – 46.

175

Proceedings of the Estonian Academy of Sciences,
2013, 62, 1, 39–46

doi: 10.3176/proc.2013.1.05
Available online at www.eap.ee/proceedings

An approach to the inference of finite state machines based on a
gravitationally-inspired search algorithm

Margarita Spichakova

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia; margo@cs.ioc.ee

Received 31 August 2011, revised 9 April 2012, accepted 21 September 2012, available online 20 February 2013

Abstract. As the inference of a finite state machine from samples of its behaviour is NP-hard, heuristic search algorithms need to
be applied. In this article we propose a methodology based on applying a new gravitationally-inspired heuristic search algorithm for
the inference of Moore machines. Binary representation of a Moore machine, an evaluation function, and the required parameters
of the algorithm are presented. The experimental results show that this method has a lot of potential.

Key words: finite state machine, gravitational search algorithm, system identification.

1. INTRODUCTION

Identification is an inference process, which deduces
an internal representation of a system (named internal
model) from samples of its functioning (named external
model) [1]. The inference of finite state machines (FSMs)
is widely applied in different fields, such as logical
design, verification, and software systems.

The goal of identification is to find the ‘best’ FSM,
which respects the dynamics of the external model. In
practice, the ‘best’ FSM is the one that best describes the
model behaviour given by input–output sequences. We
are interested in finding a minimum size deterministic
FSM consistent with the set of the given samples. This
is an NP-hard problem [2]. Heuristic algorithms are
an alternative that can reduce the complexity of the
identification methods.

The paper is organized as follows. Section 2
provides an overview of the problem of FSM inference.
Section 3 describes gravitationally-inspired search
algorithms. Section 4 introduces our approach, and
Section 5 shows experimental results of the work.

2. INFERENCE OF FINITE STATE MACHINES

2.1. Problem statement

We give a brief overview of our approach to FSM
identification. There are several types of FSMs, but in

this article we will discuss only one well-known repre-
sentation of them, namely the Moore machines.

A Moore machine is a six-tuple Mo =
〈Q,Σ,∆,δ ,λ ,q0〉, where
• Q is a finite set of states, where q0 denotes the initial

state,
• Σ is the input alphabet,
• ∆ is the output alphabet,
• δ : Q×Σ→ Q is the transition function,
• λ : Q → ∆ is the output function represented by the

output table that shows what character from ∆ will be
printed by each state that is entered [3].

The general structure of our approach to the
inference of FSMs is presented in Fig. 1.

Fig. 1. Problem of system identification.

40 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

The outline of our approach is the following:
1. The system to be inferred is tested and samples of

its functioning are generated. Some of the samples
are chosen as training data and some as testing data.

2. The number of states in the FSM is received as an
input.

3. The search algorithm is applied and a FSM M is
outputted.

4. M is evaluated using the given training data and/or
testing data. If M describes the given input–output
data sufficiently well, it is considered as result.
Otherwise the search process with other parameters
or training data will be repeated.

5. If required, post-processing (e.g., minimization,
reduction of unreachable states) is applied.
It is possible to specify several criteria for the

required result. The first criterion is consistency of the
FSM. Using this criterion, we can define two different
types of solutions: the generalized solution (i.e., the
solution that performs correctly for all positive input–
output sequences) and the consistent solution (i.e., the
solution that performs correctly for the input–output
sequences used in the training set). Another criterion is
the FSM size. We can search for the minimal FSM or a
FSM with k or fewer states.

We formulate our goal as the inference of a
deterministic FSM with k or fewer states, consistent with
input–output sequences at hand.

2.2. Background

Heuristic techniques are widely applied to the inference
of different types of FSMs. The most popular are the
various types of Evolutionary Algorithms. In the early
1960s Fogel et al. [4] introduced Evolutionary Pro-
gramming (EP). The simulated evolution was performed
by modifying a population of FSM. Other authors also
used EP for solving the problem of FSM identification.
Chellapilla and Czarnecki [5] proposed the variation of
EP to solve the problem of modular FSM synthesis.
Benson [6] presented a model comprising an FSM with
embedded genetic programs which co-evolve to perform
the task of Automatic Target Detection.

Another approach to solve the problem of FSM
identification is based on the Genetic Algorithm
(GA). This method has been researched by several
authors. Ngom et al. [7] used genetic simulation
for Moore machine identification, Tongchim and
Chongstitvatana [8] investigated parallel implementa-
tion of the GA to solve the problem of FSM synthesis.
Lucas [9] paid more attention to finite state trans-
ducers and he and Reynolds [10] compared this
method to ‘Heuristic State Merging’. Niparnan and
Chongstitvatana [11] improved GA by evolving only
the state transition function. Chongstitvatana and
Aporntewan [12] presented a method of FSM synthesis
from multiple partial input/output sequences. Horihan
and Lu [13] focused on improving the FSM evolution

by using progressive fitness functions. Also Generated
Simulated Annealing was used for the inference of
FSM [14].

We apply a gravitationally-inspired search
algorithm. The next section describes the general ideas
of this new class of algorithms.

3. GRAVITATIONALLY-INSPIRED SEARCH
ALGORITHM

3.1. Gravity as inspiration for heuristic search
algorithms

Four main forces are acting in our universe: gravitational,
electromagnetic, weak nuclear, and strong nuclear.
These forces define the way our universe behaves and
appears. The weakest force is gravitational; it defines
how objects move depending on their mass. In physics
three kinds of masses can be distinguished (active mass
Ma, passive mass Mp, and inertial mass Mi), which have
been shown experimentally to be equivalent (see [15]).

The gravitational force between two objects i and
j is directly proportional to the product of their masses
and inversely proportional to the square distance between
them

Fi j = G
Ma j ·Mpi

R2
i j

. (1)

Knowing the force acting on a body we can compute
acceleration as

ai =
Fi

Mii
. (2)

Our universe is growing, this yields an effect of
decreasing gravity, so the gravitational ‘constant’ can be
described as

G(t) = G(t0) ·
(t0

t

)β
, β < 1. (3)

We can formulate the following basic ideas inspired
by gravity:
• Each object in the universe has mass and position.
• There are some interactions between objects, which can

be described using the law of gravity.
• Bigger objects create larger gravitational fields and

attract smaller ones.
During the last decade some researchers have tried

to adapt the idea of gravity to find out optimal search
algorithms. Such algorithms have some general ideas in
common:
• The system is modelled by objects with mass.
• The position of those objects describes the solution,

and the mass of the objects depends on the objective
function.

• The objects interact with one another using gravita-
tional force.

• The objects with greater mass present the points in the
search space with better solutions.

Using these characteristics, it is possible to define the
family of optimization algorithms based on gravitational

M. Spichakova: An approach to the inference of FSMs based on a GSA 41

force. For example, Central Force Optimization (CFO) is
a deterministic gravity-based search algorithm proposed
and developed by Formato [16]. It simulates the group
of probes that fly into search space and explore it.
Another algorithm, Space Gravitational Optimization
(SGO), was developed by Hsiao et al. [17] in 2005.
It simulates asteroids flying through curved search
space. A gravitationally-inspired variation of local
search, Gravitational Emulation Local Search Algorithm
(GELS), was proposed by Webster and Bernhard [18]
and further elaborated by Webster [19]. The newest one,
Gravitational Search Algorithm (GSA), was described
by Rashedi et al. [20] as a stochastic variation of CFO.

The next subsection will give a more detailed
overview of the GSA, which is used as a basis of our
approach.

3.2. Gravitational search algorithms

The GSA was described by Rashedi et al. [20] as a
stochastic variation of the CFO and used for different
applications. It was successfully applied to optimize
various continuous problems, such as filter model-
ling [21], the set covering problem [22], allocation of
static var compensator [15], and synthesis of thinned
scanned concentric ring array antenna [23].

The algorithm is constructed so that there is a system
of N objects, each of which is described by a real-valued
position vector, and each position vector codes candidate
solution

Xi =
(

x1
i , . . . ,x

d
i , . . . ,x

n
i

)
, d ∈ [1 . . .n], (4)

where xd
i represents the position of the ith object in

dimension d.
Masses of objects are computed based on the quality

measure as follows:

Mai = Mpi = Mii = Mi, i ∈ [1,2, . . .N], (5)

Mi(t) =
mi(t)

∑N
j=1 m j(t)

, mi =
f iti(t)−worst(t)

best(t)−worst(t)
, (6)

where worst(t) and best(t) are defined for maximization
problem as

best(t) = max︸︷︷︸
j∈[1...N]

f it j(t), worst(t) = min︸︷︷︸
j∈[1...N]

f it j(t),

and f iti is the value of the objective function.
In other words, a heavier mass means that the quality

of the object is better and it has greater attraction and
inertia (i.e., moves slowly towards other objects).

At a specific time t we can recompute the force that
is applied to the object i with mass Mi by some object j
with mass M j

Fd
i j (t) = G(t)

Mpi(t) ·Ma j(t)
Ri j + ε

(xd
j − xd

i), (7)

where ε is a free parameter, required to avoid division by
zero, and Ri j is the Euclidean distance between position
vectors:

Ri j =
∥∥Xi(t),X j(t)

∥∥ . (8)

According to Rashedi et al. [15], Ri j gives better
experimental results than R2

i j.
The gravitational constant G (Eq. (3)) is computed

as
G(t) = G(G0, t). (9)

In physics, the general force acting on an object is
computed as a vector sum of all acting forces. In
the GSA, a stochastic characteristic is added to the
algorithm, so the general force is computed as

Fd
i (t) =

N

∑
j=1,i 6= j

rand j ·Fd
i j (t), rand j ∈ [0,1]. (10)

The acceleration of object i can be computed knowing its
inertial mass Mii and force Fd

i (t) as

ad
i (t) =

Fd
i (t)

Mii(t)
. (11)

Knowing current acceleration, we can recompute
velocity and position as follows:

vd
i (t +1) = randivd

i (t)+ad
i (t), randi ∈ [0 . . .1]; (12)

xd
i (t +1) = xd

i (t)+ vd
i (t +1). (13)

The general procedure of the GSA is described
in Algorithm 1. Firstly, the initial set of objects is
generated randomly. Secondly, each object is evaluated.
Based on evaluation results, the required parameters
(G(t), worst(t), best(t)) are updated, and the forces
and accelerations are computed. Thirdly, the agents’
positions are changed according to acting forces and the
updated positions are evaluated. The process continues
until the best solution is found or the number of iterations
is over.

Algorithm 1. General procedure of GSA
Generate initial positions
repeat

Evaluate quality of each object
Update G(t), worst(t), best(t)
Calculate masses and accelerations
Calculate velocities and positions

until meeting ending criterion
Return best solution

In the GSA, the position vector is real-valued. How-
ever, for some applications discrete or binary vectors
are required. A discrete modification of the algorithm
was proposed by Zibanezhad et al. [24] in a context of
Web-Service composition. The binary GSA (BGSA) was
introduced by Rashedi et al. [25] in 2010. In the next
section we will focus on the BGSA.

42 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

3.3. Binary gravitational search algorithm

The key difference between the GSA and the BGSA is
the binary search space, meaning that each dimension
has only two possible values: ‘0’ or ‘1’. The main laws
of the BGSA may be defined as in real-valued case (see
Eqs (7), (11), and (12)). But the positions’ updating law
(see Eq. (13)) must be modified so that each dimension
changes between two values according to the velocity. A
higher velocity gives a greater probability of changing
the value.

To modify Eq. (13), in the BGSA a special prob-
ability function S(vd

i) was introduced, which transfers the
value of vd

i to [0 . . .1]:

S(vd
i) =

∣∣∣tanh(vd
i)

∣∣∣ . (14)

The law for updating the position can be defined as
follows:

xd
i (t +1) =

{
F(xd

i (t)) if rand < S(vd
i (t +1)),

xd
i (t) if rand ≥ S(vd

i (t +1)),
(15)

where F(xd
i (t)) = complement(xd

i (t)). Some other
modifications were made:
• Velocity vd

i is bounded:
∣∣vd

i

∣∣ < vmax.
• Distance R is computed as the Hamming distance.
• Gravitational constant G is considered as a linear

decreasing function

G(t) = G0(1− t/T). (16)

4. GRAVITATIONALLY-INSPIRED SEARCH
ALGORITHM FOR THE INFERENCE OF
FSMs

To apply the BGSA to the inference of FSMs we need
to define an objective function and a process of encoding
FSMs to a binary position vector. Also modifications of
the original BGSA have to be made.

4.1. Representation of an FSM

We discuss only Moore machines with exactly n
states. Consider a target machine Mo with n states,

input alphabet Σ = {i0, . . . , il−1}, output alphabet ∆ =
{o0, . . . ,om−1}, and set of states Q = {q0, . . . ,qn−1 }.

To store the information about state q j, we need to
store the output value o j of the state and corresponding
transitions from the given state q j to get some target
state qik , which are activated by reading symbol ik.
Each section represents one state (Fig. 2), where the
first part is an output value of the state and the other
part stores the corresponding transitions from that state.
Initially, information is presented in a decimal way
(decimal representation). To get binary representation
we transform each integer number to the corresponding
binary number.

The number of bits required for storing the whole
binary position vector can be computed as follows:

Length = n · (dlog2 me+ ldlog2 ne). (17)

Each Mo has a unique binary representation, but not each
binary string has a corresponding Mo.

Let us take a look at a Moore machine with the
transition diagram presented in Fig. 3.

We have four states Q = {0,1,2,3}, the input
alphabet contains two symbols Σ = {a,b}, and the output
alphabet two symbols ∆ = {0,1}.

Thus we need 20 bits to store this FSM (Eq. (17)):
4 · (dlog2 2e+ dlog2 4e ·2) = 20 bits. The general
structure of the position vector required to encode this
FSM is presented in Fig. 4.

State q j
o j qi0 q... qik−1

Fig. 2. A section of the binary position vector for storing the
Moore machine with a fixed number of states.

Fig. 3. A Moore machine represented as a transition diagram.

a b a b a b a b
1 1 0 1 1 2 0 3 3 1 1 0 Dec. representation
1 01 00 1 01 10 0 11 11 1 01 00 Bin. representation

Fig. 4. Example. Binary position vector for storing the Moore machine.

M. Spichakova: An approach to the inference of FSMs based on a GSA 43

4.2. An objective function

We propose an objective function defined on all input–
output sequences (pairs {input, output}). The idea is
to estimate the proximity between the current and the
desired FSMs by finding the distance between strings.

4.2.1. Distance between strings

Consider a function ∆(a,b), where a,b are symbols in
some alphabet, and define

∆(a,b) =
{

0 : a = b,
1 : a 6= b. (18)

That is, if character a is not equal to character b, the
function ∆(a,b) will return 1, otherwise the function will
return 0.

We propose two distance functions between strings x
and y. The first function is the Hamming distance dHam.
To compute it, we need to count the number of different
bits in the same positions

dHam(x,y) = Σmin(|x|,|y|)
i=1 ∆(xi,yi). (19)

The second function evaluates the length of maximal
equal prefix dLP (i.e., the computation will be stopped
at the first difference between strings)

dLP(x,y) = Σx=y
i=1 ∆(xi,yi). (20)

4.2.2. Evaluation of the objective function

We specify several objective functions for evaluating
FSMs based on dHam and dLP. Assume we have our
training data represented as a collection of input–output
sequences (the size of the collection is n). We also have
output strings produced by an FSM (see Table 1).

Our task is to measure how ‘far’ the strings generated
by the FSM are from the expected strings. The objective
function based on the Hamming distance (dHam) defines
the objective function as follows:

OF = Σn
i=1

(
li−dHam

(
Outexpected

i ,Outproduced
i

))
,

(21)
where n is the number of the given data and li is the

length of Outexpected
i .

In the second case we use dLP for measuring the
distance. Thus, the objective function can be defined as
the sum of the lengths of all sequences

OF = Σn
i=1

(
dLP

(
Outexpected

i ,Outproduced
i

))
. (22)

4.3. Algorithm description

In this section we will focus on the properties of our
algorithm. Search space is described by a set of binary
position vectors, where each position vector corresponds
to an FSM as described in Section 4.1.

First, we set
• the free parameter ε ,
• the maximal speed vmax,
• the number of iterations,
• the number of objects,
• the number of states n in the FSM,
• the initial value of gravitational constant G0,
• the mass value minimum Mmin
according to the problem under consideration.

The initial positions are generated randomly from
the feasible region, so that each position corresponds to
an FSM. To do so, the FSM is generated in decimal form,
a number of symbols in input and output alphabet are
restored from the input data. After generating the FSM
in decimal form it is encoded into binary representation
(see Section 4.1).

The objective function of a candidate solution is
computed as described in Subsection 4.2.2. Despite the
fact that in physics the active, passive, and inertial masses
are considered to be equivalent (see 3.1), we modified
mass computation laws to improve the search algorithm.
The active Ma, passive Mp, and inertial Mi masses are
computed as follows

Mp = Mi =
OF

OFmax
, (23)

Ma =

{
Mi if Ma > Mmin,

0 if Ma ≤Mmin.
(24)

If Ma is smaller than the minimum value Mmin of the
defined mass, then Ma = 0 (i.e., an object with a smaller
mass does not create a gravitational field).

Forces acting on the object are computed via Eq. (7).
The distance in one dimension can be computed as
follows:

(xd
j − xd

i) =

{
1 if xd

j 6= xd
i ,

−1 if xd
j = xd

i .
(25)

The acceleration vector is computed via Eq. (11).
The velocity vector is computed by Eq. (12). If the
velocity is higher than vmax, then its value will be set to
vmax.

44 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

The new position is computed using the old position
and the velocity vector (see Eq. (15)). The probability
function (i.e., the threshold function) S(vd

i) is taken as

S(vd
i) =

∣∣∣sin(vd
i)

∣∣∣ , (26)

in this case vmax = π/2.

5. IMPLEMENTATION AND EXPERIMENTS

Our approach was implemented in Java (JDK 1.5) and
tested on random machines and some ‘toy’ examples.
Results are compared to the canonical Genetic Algorithm
(more details about GA can be found in [10,26]).

5.1. Experiments I

Experiments were constructed so that general param-
eters, such as the number of iterations and the number
of objects, the encoding of the Moore machine, and its
initialization algorithm are the same (see Subsection 4.1).
Evaluation of the machine is described in Subsection 4.2;
the objective function is constructed on the Hamming
similarity. The specific parameters of the algorithm are
described for a concrete experiment in the corresponding
table.

During the experiments, each algorithm was run 20
times with a different initial set of objects. Results are
presented in Table 2 and Table 3, where the row ‘Init. %’
shows the mass value of the best solution at the initial

step (randomly generated), the row ‘Sol. %’ shows the
object value of the best found solution, and the row ‘Iter.’
shows how many iterations were required to find this
solution (‘–’ means that the best possible solution was
not found).

5.1.1. Pattern recognizer

The goal of this experiment was to reconstruct a pattern
‘aab’ recognizer (see Table 2) from the given input–
output pairs. As input data we use six pairs with each
input string having a length of 12. The number of states
n is four. The number of iterations is taken 100, and the
number of objects equals 200.

This experiment showed that the BGSA was more
frequently able to find 100% solutions than the GA
(10/20 compared to 7/20 for GA) and fewer iterations
were required to find them.

5.1.2. Parity checker

The goal of this experiment was to reconstruct a parity
checker (see Table 3) from the given input–output pairs.
As input data we use seven pairs with length 8 of each
input string. The number of states n equals two. The
number of iterations is taken 20, and the number of
objects equals five.

This experiment showed that the BGSA was more
frequently able to find 100% solutions than the GA
(14/20 compared to 10/20 for GA) and fewer iterations
were required to find them. In three out of twenty cases
the GA was not able to improve the maximal solution
that was randomly generated in the initial population; for
the GSA this happened only in one case out of twenty.

Table 2. Experiment I.1 ‘Pattern recognizer’

Table 3. Experiment I.2 ‘Parity checker’

M. Spichakova: An approach to the inference of FSMs based on a GSA 45

5.2. Experiments II

The goal of those experiments was to compare the BGSA
and GA for the same random initial set of objects. Tasks
were taken as in the previous experiments (i.e., ‘pattern
recognizer’ and ‘parity checker’). Those experiments
were constructed in such a way that the initial population
was taken the same for both algorithms, the parameters
such as the number of iterations and the number of
objects were also equal for both algorithms, and are
described in Subsection 5.1. Each algorithm (BGSA and
GA) was executed 10 times with the same initial set of
objects as in Experiments I (5.1). The average best-so-far
solutions are presented in Fig. 5. According to the results
of this experiment, in the case of ‘pattern recognizer’ the
BGSA solves the task better than the GA (Fig. 5a). For
the second task, ‘parity checker’ (Fig. 5b), the BGSA
behaves almost like the GA.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for the inference
of Moore machines based on a gravitationally-inspired
search algorithm. Binary representation of FSMs and
different types of objective functions were intro-
duced. Parameters and variations of the proposed
algorithm were discussed. The proposed approach was
implemented and successfully tested using random data
and different examples. During the first experiments, our
approach gave promising results.

Fig. 5. Comparison between the BGSA and GA: (a) pattern
recognizer, (b) parity checker.

To improve the quality of the proposed approach,
parameters of the algorithm and their effect on the
presented methods will be explored. The effect of
using different aspects of laws will be investigated.
During further developments the proposed method will
be adjusted to take into account other types of FSM, for
example the Mealy machines.

ACKNOWLEDGEMENTS

This research was supported by the Estonian Ministry of
Education and Research target-financed research theme
No. 0140007s12.

REFERENCES

1. Angluin, D. and Smith, C. H. Inductive inference: theory
and methods. ACM Comput. Surv., 1983, 15, 237–
269.

2. Gold, E. M. Complexity of automaton identification from
given data. Inform. Control, 1978, 37(3), 302–320.

3. Hopcroft, J. E., Motwani, R., and Ullman, J. D. Intro-
duction to Automata Theory, Languages, and Com-
putation. International Edition (2nd edn). Addison-
Wesley, 2003.

4. Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial
Intelligence Through Simulated Evolution. Wiley,
Chichester, UK, 1966.

5. Chellapilla, K. and Czarnecki, D. A preliminary investiga-
tion into evolving modular finite state machines. In
Proceedings of the 1999 Congress on Evolutionary
Computation. Vol. 2. IEEE Press, 1999, 1349–1356.

6. Benson, K. A. Evolving finite state machines with
embedded genetic programming for automatic target
detection within SAR imagery. In Proceedings of the
2000 Congress on Evolutionary Computation CEC00.
IEEE Press, 2000, 1543–1549.

7. Ngom, L., Baron, C., and Geffroy, J. Genetic simulation
for finite state machine identification. In SS ’99:
Proceedings of the Thirty-Second Annual Simulation
Symposium. IEEE Computer Society, Washington,
DC, USA, 1999, 118.

8. Tongchim, S. and Chongstitvatana, P. Parallel genetic
algorithm for finite state machine synthesis from
input/output sequences. In Evolutionary Computation
and Parallel Processing (Cantu-Paz, E. and Punch, B.,
eds). Las Vegas, Nevada, USA, 2000, 20–25.

9. Lucas, S. M. Evolving finite state transducers: some initial
explorations. In EuroGP. 2003, 130–141.

10. Lucas, S. M. and Reynolds, T. J. Learning finite state
transducers: evolution versus heuristic state merging.
IEEE T. Evolut. Comput., 2007, 7, 308–325.

11. Niparnan, N. and Chongstitvatana, P. An improved
genetic algorithm for the inference of finite state
machine. In GECCO ’02: Proceedings of the Genetic
and Evolutionary Computation Conference. Morgan
Kaufmann Publishers, San Francisco, CA, USA,
2002, 189.

46 Proceedings of the Estonian Academy of Sciences, 2013, 62, 1, 39–46

12. Chongstitvatana, P. and Aporntewan, C. Improv-
ing correctness of finite-state machine synthesis from
multiple partial input/output sequences. In Proceed-
ings of the 1st NASA/DoD Workshop on Evolvable
Hardware. 1999, 262–266.

13. Horihan, J. W. and Lu, Y.-H. Improving fsm evolution
with progressive fitness functions. In GLSVLSI ’04:
Proceedings of the 14th ACM Great Lakes Symposium
on VLSI. ACM Press, New York, NY, USA, 2004,
123–126.

14. Cerruti, U., Giacobini, M., and Liardet, P. Prediction of
binary sequences by evolving finite state machines.
In Selected Papers from the 5th European Conference
on Artificial Evolution. Springer-Verlag, London, UK,
2002, 42–53.

15. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., and
Farsangi, M. M. Allocation of static var compensator
using gravitational search algorithm. In First Joint
Congress on Fuzzy and Intelligent Systems, Ferdowsi
University of Mashhad, Iran, 29–31 August, 2007,
29–31.

16. Formato, R. A. Central force optimization: a new
metaheuristic with applications in applied electro-
magnetics. PIER, 2007, 77, 425–491.

17. Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., and Chien, C.-C.
A novel optimization algorithm: space gravitational
optimization. In IEEE International Conference on
Systems, Man and Cybernetics, 2005, Vol. 3. 2005,
2323–2328.

18. Webster, B. and Bernhard, P. J. A local search optimization
algorithm based on natural principles of gravitation.
Technical Report CS-2003-10, Florida Institute of
Technology, 2003.

19. Webster, B. Solving Combinatorial Optimization Problems

Using a New Algorithm Based on Gravita-
tional Attraction. PhD thesis, Florida Institute of
Technology, Melbourne, FL, USA, 2004.

20. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. GSA:
a gravitational search algorithm. Inform. Sciences,
2009, 179(13), 2232–2248.

21. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S. Filter
modeling using gravitational search algorithm. Eng.
Appl. Artif. Intell., 2011, 24, 117–122.

22. Balachandar, S. R. and Kannan, K. A meta-heuristic
algorithm for set covering problem based on
gravity. International Journal of Computational and
Mathematical Sciences, 2010, 4(5), 223–228.

23. Chatterjee, A., Mahanti, G. K., and Pathak, N.
Comparative performance of gravitational search
algorithm and modified particle swarm optimization
algorithm for synthesis of thinned scanned concentric
ring array antenna. PIER B, 2010, 25, 331–348.

24. Zibanezhad, B., Zamanifar, K., Nematbakhsh, N.,
and Mardukhi, F. An approach for web services
composition based on QoS and gravitational search
algorithm. In Proceedings of the 6th International
Conference on Innovations in Information Technol-
ogy, IIT’09. IEEE Press, Piscataway, NJ, USA, 2009,
121–125.

25. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S.
BGSA: binary gravitational search algorithm. Nat.
Comp., 2010, 9, 727–745.

26. Fabera, V., Janes, V., and Janesova, M. Automata construct
with genetic algorithm. In DSD ’06: Proceedings of
the 9th EUROMICRO Conference on Digital System
Design. IEEE Computer Society, Washington, DC,
USA, 2006, 460–463.

Meetod lõplike automaatide genereerimiseks gravitatsiooniseadusest inspireeritud
otsimisalgoritmi abil

Margarita Spichakova

Kuna lõplike automaatide genereerimine sisend-väljundpaaride näidiste alusel on NP-keerukas ülesanne, tuleb selle
lahendi leidmiseks kasutada heuristilisi algoritme. Artiklis on pakutud metoodika Moore’i masinate genereerimiseks,
kasutades uut, gravitatsiooniseadusest inspireeritud otsimisalgoritmi. On esitatud algoritmi rakendamiseks vajalik
Moore’i masina binaaresitus, sihifunktsioon ja algoritmi juhtimiseks kasutatavad parameetrid. Eksperimendid
näitavad, et lähenemisel on arvestatav potentsiaal.

CURRICULUMVITAE

Personal data

Name: Margarita Spichakova

Date of birth: 10.08.1983

Place of birth: Tallinn, Estonia

Contact data

Phone: +372 504 5503

E-mail: margarita.spitsakova@ttu.ee

Education

2007 – ... : Tallinn University of Technology PhD studies

2005 – 2007: Tallinn University of Technology M.Sc. in Informatics

2001 – 2005: Tallinn University of Technology B.Sc. in Informatics

Language competence

Russian: Native speaker

Estonian: Fluent

English: Fluent

Professional employment

2017 – ... : Tallinn University of Technology,

Department of Software Science

Early-stage researcher

2015 – 2016 : Tallinn University of Technology,

Institute of Cybernetics

Engineer (0.25)

2010 – 2015 : Tallinn University of Technology,

Institute of Cybernetics

Engineer (1.0)

2007 – 2010 : Tallinn University of Technology,

Institute of Cybernetics

Extraordinary Researcher

(1.0)

2005 – 2007 : Tallinn University of Technology,

Institute of Cybernetics

Engineer (1.0)

185

ELULOOKIRJELDUS

Isikuandmed

Nimi: Margarita Spitšakova

Sünniaeg: 10.08.1983

Sünnikoht: Tallinn, Eesti

Kontaktandmed

Telefon: +372 504 5503

E-post: margarita.spitsakova@ttu.ee

Hariduskäik

2007 – ... : Tallinna Tehnikaülikool Doktorantuur

2005 – 2007: Tallinna Tehnikaülikool M.Sc., Informaatika

2001 – 2005: Tallinna Tehnikaülikool B.Sc., Informaatika

Keelteoskus

Vene keel: Emakeel

Eesti keel: Kõrgtase

Inglise keel: Kõrgtase

Teenistuskäik

2017 – ... : Tallinna Tehnikaülikool,

Tarkavarateaduse Instituut

Doktorant-

nooremteadur

2015 – 2016 : Tallinna Tehnikaülikool,

Küberneetika Instituut

Engineer (0.25)

2010 – 2015 : Tallinna Tehnikaülikool,

Küberneetika Instituut

Engineer (1.0)

2007 – 2010 : Tallinna Tehnikaülikool,

Küberneetika Instituut

Erakorraline teadur (1.0)

2005 – 2007 : Tallinna Tehnikaülikool,

Küberneetika Instituut

Engineer (1.0)

186

DISSERTATIONS DEFENDED AT

TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the

Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility

Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.

1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost

Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by

Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for

Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data

Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and

Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.

2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral

Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational

Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented

Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital

Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in

Maintenance-Free Batteries with Fixed Electrolyte. 2004.

187

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor

Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication

Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,

UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based

Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja

elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique

Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы

эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и

изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.

2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems

as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-

impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater

Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and

Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of

Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies

of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State

Model Checking. 2007.

188

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:

A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based

on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information

Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level

Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program

Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –

Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the

Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.

2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like

Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children

Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation

Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis

for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack

Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.

2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and

Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability

Identification Techniques for Synchronous Sequential Circuits. 2010.

189

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated

Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.

2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon

Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile

Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance

Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber

Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,

Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms

Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.

2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip

Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based

Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web

Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level

Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.

2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for

Synchronous Sequential Circuits. 2012.

190

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.

2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.

2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy

of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its

Realization in Power and Battery Management Integrated Circuits for Portable

Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and

Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.

2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL

Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.

2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer

Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and

Algorithms for Terahertz Range Radiation Sources Based on Quantum Well

Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:

Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to

University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in

Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-

Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.

2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical

Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile

Measurement Systems. 2015.

191

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational

Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual

Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured

Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery

and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic

Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic

Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-

Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of

Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-

Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors

of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL

SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed

Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic

Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of

Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astapov. Distributed Signal Processing for Situation Assessment in

Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine

Navigation Light Systems. 2016.

119. Andres Ojamaa. Software Technology for Cyber Security Simulations. 2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.

2016.

192

121. Kadri Umbleja. Competence Based Learning – Framework, Implementation,

Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the Ionic

Polymer Transducers (IPTs). 2017.

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017.

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive

Techniques for Wireless Body Area Networks. 2017.

193

	TABLE OF CONTENTS
	LIST OF PUBLICATIONS
	OTHER PUBLICATIONS
	AUTHOR'S CONTRIBUTIONS TO THE PUBLICATIONS
	ACCOMPANYING CODE
	INTRODUCTION
	Motivation and existing solutions
	Problem statement

	CONTRIBUTIONS OF THE THESIS
	OUTLINE OF THE THESIS
	IDENTIFICATION OF STATE MACHINES
	Modular System for FSM Identification
	'Task' module
	'Representation+Decoder' module
	'Search algorithm' module

	Modular System Work-flow
	Examples of Modular System Applications
	Grammatical inference
	Artificial ant problem
	System identification

	Conclusion

	STRING REPRESENTATION OF FINITE STATE MACHINES
	Preliminaries. Finite State Machines
	Alphabet, words, language
	Finite acceptor
	Finite state transducer
	Package: Finite state machine

	String Representation
	Existing solutions
	Restrictions of the search space
	Proposed solutions

	Direct Concatenation of a Transition Table
	String representation FST
	Binary representation

	Separating a FST Structure. Deriving the Output Function from the Training Set
	Separated structure
	Deriving output

	Problems with String Representations
	Existing Solutions
	Canonical String Representation
	Preliminaries. Normal form strings
	Canonical string representation
	Canonical string representation withe derived output

	Space Complexity
	Conclusion

	SEARCH ALGORITHM
	Preliminaries. Stochastic Optimization
	Particle Swarm Optimization
	Gravity as inspiration for optimization algorithms
	Gravitational Search Algorithm

	The Search Space
	Search space structure
	Size of the multiverse
	Storing points in universe
	Initialization
	Generating random FST
	Generating an initial set of points
	Visualization

	Search Algorithm
	Multiverse Meta Search
	Universe Local Search
	Conclusion

	APPLICATIONS
	System Identification
	Description
	Examples
	Package: System Identification

	Artificial Ant Problem
	Description
	Simulation results. John Muir Trail
	Simulation results. Santa Fe Trail
	Analysis
	Package: Trail tracker

	Binary Sequence Predictor
	Description
	Examples

	Conclusion

	CONCLUSIONS
	REFERENCES
	ACKNOWLEDGEMENTS
	ABSTRACT
	KOKKUVÕTE
	Publication A
	Publication B
	Publication C
	CURRICULUM VITAE
	ELULOOKIRJELDUS

