
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Giorgi Okroshidze 215125IVCM

Comparison of SOC Workflow Automation
Options for SMEs and Practical Impact Analysis

Master's thesis

Supervisor: Risto Vaarandi

 PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Giorgi Okroshidze 215125IVCM

KÜBERTURBE KESKUSTE TÖÖVOO
AUTOMATISEERIMISE VÕIMALUSTE

VÕRDLUS VÄIKESE JA KESKMISE
SUURUSEGA ETTEVÕTETELE NING

PRAKTILINE MÕJUANALÜÜS
magistritöö

Juhendaja: Risto Vaarandi

 PhD

Tallinn 2023

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Giorgi Okroshidze

09.12.2023

3

Abstract

As the necessity for information security has increased, a Security Operations Center

(SOC) has become a rather common occurrence in organizations of various sizes.

However, many SOCs continue to face challenges: a high number of false-positive

alerts, analyst fatigue, demotivation, etc. To combat these issues various SOC workflow

automation tools have appeared on the market attempting to ease the work of SOC

teams. However, most of these tools are either not advanced enough to deliver on their

promises or are too advanced and out of reach for smaller organizations. This thesis

aims to select and compare the features of available SOC automation options on the

market that are accessible to small and medium-sized enterprises (SMEs). It will

demonstrate the common characteristics of these tools and will illustrate how basic

automation can positively impact the performance of an SOC using practical

performance analysis. The outcome of this thesis will help organizations that are

hesitating to switch to a more automated SOC by providing an understanding of the

selected automation solutions and will encourage them to take the first steps.

This thesis is written in English and is 51 pages long, including 6 chapters, 23 figures

and 0 tables.

4

Annotatsioon

Infoturbe nõudluse kasvu tagajärjel on Küberturbe Keskuse olemasolu erinevates

suurustes organisatsioonides tavaline nähtus. Paljudel Küberturbe Keskustel on

jätkuvalt raskusi suure arvu valepositiivsete hoiatuste, analüütikute kurnatuse,

demotivatsiooni ja muuga. Nende probleemide lahendamiseks on turule jõudnud

mitmeid erinevaid Küberturbe Keskuste töövoogude automatiseerimise tööriistu. Kuigi

paljud tööriistad pole piisavalt arenenud, et tagada lubatud võimekust või on liiga

võimekad ja pole kättesaadavad väiksematele organisatsioonidele. Selle lõputöö

eesmärk on valida ja võrrelda erinevaid Küberturbe Keskuste töö automatiseerimise

võimalusi turul, mis on kättesaadavad väiksematele ja keskmise suurusega ettevõtetele.

Lõputöös demonstreeritakse nende tööriistade tavalisi omadusi ning illustreeritakse,

kuidas lihtpärane automatiseerimine võib positiivselt mõjutada Küberturbe Keskuse

sooritust, kasutades praktilist soorituseanalüüsi. Selle lõputöö lõpptulemus aitab

organisatsioone, kes kõhklevad minna üle rohkem automatiseeritud Küberturbe

Keskusele, tagades arusaama erinevatest automatiseerimislahendustest ja julgustades

neid tegema esimest sammu.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 6 peatükki, 23

joonist, 0 tabelit.

5

List of abbreviations and terms

SOC Security Operations Center

FP False-Positive

SOAR Security Orchestration, Automation and Response

AI Artificial Intelligence

SME Small and Medium-sized Enterprise

SIEM Security Information and Event Management

IDS Intrusion Detection System

IPS Intrusion Prevention System

ML Machine Learning

SANS SysAdmin, Audit, Network and Security

IOC Indicator of Compromise

API Application Programming Interface

UI User Interface

SaaS Software as a Service information

N8n Nodemation

NSA National Security Agency

HTTP Hypertext Transfer Protocol

URI Uniform Resource Identifier

SMS Short Message/Messaging Service

JSON JavaScript Object Notation

IP Internet Protocol

Regex Regular Expression

6

Table of Contents

1 Introduction...10

1.1 Problem Statement..11

1.2 Objectives and Scope of the Research..11

1.3 Novelty..12

1.4 Research Questions...13

2 Literature Review..14

2.1 SOC Components and Architecture..14

2.2 Common Challenges SOC Teams Face..16

2.3 Automation as a Potential Solution..18

2.3.1 SOAR tools..18

2.4 Similar Works and Research Gap...20

3 Selection of Automation Tools..22

3.1 Choosing the Selection and Comparison Criteria...22

3.1.1 Pricing of the Tools...22

3.1.2 Basic Functionality of General Security Automation Tools.........................22

3.2 Tool Exclusions, Choices, and Reasoning..25

4 Detailed Comparison of the Selected Tool Features...28

4.1 Shuffle...28

4.1.1 Data Ingestion..30

4.1.2 Workflow Automation...31

4.1.3 UI...34

4.1.4 Orchestration...36

4.1.5 Version Control...36

4.2 N8n..37

4.2.1 Data Ingestion..39

4.2.2 Workflow Automation...41

4.2.3 UI...43

4.2.4 Orchestration...45

7

4.2.5 Version Control...47

4.3 Summary of Pros and Cons of the Tools..49

5 In-house SOC Automation in Company P and Real-World Impact on Performance. 52

5.1 Why Use an In-house Solution...52

5.2 Implemented Automation Structure..53

5.2.1 Data Ingestion..54

5.2.2 Workflow Automation...54

5.2.3 UI...54

5.2.4 Orchestration and Version Control..55

5.3 Perceived Impact on SOC Performance...55

5.3.1 The total number of generated cases...56

5.3.2 The average time needed for closing cases...57

5.3.3 The average duration of a vulnerability management process......................58

6 Summary..60

 References..61

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..64

8

List of Figures

Figure 1: SANS Survey, Key Challenges, 2023..16

Figure 2: SANS Survey, Key Challenges, 2022 (a) and 2021 (b)...................................17

Figure 3: Shuffle – data ingestion demonstration..31

Figure 4: Shuffle – demonstration of the scripting interface...33

Figure 5: Shuffle – demonstration of a workflow...34

Figure 6: Shuffle – workflow runs (a), run details (b), app result details (c)..................35

Figure 7: Shuffle – formatting of a JSON string in Datastore...36

Figure 8: Shuffle – a screenshot of the Version History tab...37

Figure 9: N8n – data ingestion demonstration...40

Figure 10: N8n – demonstration of Code node interface..42

Figure 11: N8n – demonstration of a workflow..43

Figure 12: N8n – demonstration of node input and output..44

Figure 13: N8n – demonstration of IF condition and Switch nodes................................44

Figure 14: N8n – a syntax error thrown by Code node...46

Figure 15: N8n – a syntax error caught by a workflow with the “Error Trigger”...........46

Figure 16: N8n – a screenshot of the Version History tab..47

Figure 17: N8n – demonstration of Git push workflow..48

Figure 18: N8n – demonstration of Code node script after GitHub push........................49

Figure 19: Total cases per week for July-September (weeks 26-39)..............................56

Figure 20: Total cases per week for October-December (weeks 39-52).........................57

Figure 21: Average hours until case resolution weeks 01-39 (January-September).......57

Figure 22: Average hours until case resolution weeks 39-52 (October-December).......58

Figure 23: Manual vs automated vulnerability management process.............................59

9

1 Introduction

In recent years, the landscape of cyber security has undergone various changes

regarding the prevalence of both increasingly sophisticated cyber threats and defense

solutions. As organizations and individuals have become more reliant on digital

technologies and interconnected systems, the need for robust and responsive security

measures has never been greater. This necessity has led to a more frequent adoption of

Security Operations Centers (SOCs) in organizations.

Modern SOCs have the ability to keep track of logs from multiple sources and generate

alerts according to implemented rulesets. This allows organizations to have a certain

level of visibility over their infrastructure. Analysts working in an SOC team have the

ability to investigate events and carry out incident response by initiating endpoint scans,

wiping and isolating endpoints, and so on.

Although the rising frequency of cyber-attacks, data breaches, and software

vulnerabilities has thrust SOCs into the spotlight, it has also shed light on common

challenges SOC teams are facing in the modern cyber security climate. Analysts are

overwhelmed by the volume of alerts, especially frequent False-Positive (FP)

detections, which leads to burnout and demotivation. On top of this, the growing

number of potential incidents requires a growing number of human resources, which is

an issue because there is a shortage of skilled cybersecurity personnel.

To further evolve SOCs, and to deal with the issues outlined above, automation has

been frequently proposed as a possible solution. In order to add automation to SOC

systems various additional tools and approaches have been explored. One such solution

is workflow automation which can be achieved by the implementation of Security

Orchestration, Automation and Response (SOAR) tools, among other means. Further

approaches have also been proposed involving deep learning and Artificial Intelligence

(AI). That being said, the adoption of automation still remains a challenge for some

organizations.

10

1.1 Problem Statement

As mentioned in the previous section, a common trend on the market regarding SOC

workflow automation solutions is to guide organizations towards using SOAR tools.

However, implementation of SOAR systems, and workflow automation in general, is

not as straightforward for some organizations as it should be. There are multiple causes

for this issue.

Firstly, there is a lack of standardized market definitions regarding SOAR, making it

challenging for organizations to assess and select available SOAR solutions. Moreover,

there is an absence of widely accepted frameworks and guidelines for workflow

automation. For example, the phrase – SOAR – has multiple definitions according to the

specific tool vendor: Some definitions include advanced AI and data visualization

capabilities as an integral part of such systems, others only involve basic automation

options. What should an organization expect from SOAR tools? What features are more

important? Should investment be focused on higher-end options only or perhaps even

simple automation tools are enough for most organizations’ needs? This ambiguity can

cause organizations to hesitate and scare away certain companies from pursuing

investments regarding such automation tools.

Secondly, there has not been enough real-world analysis shared on how current entry-

level SOAR or basic workflow automation implementations have affected the

performance of SOC teams. What aspect of the team’s performance can be improved? Is

the difference worth the investment of time and effort?

All of these problems are even more applicable for small and medium-sized enterprises

(SMEs) whose scope and budget for such a project is more modest compared to the

budget required for some of the more popular, higher-end solutions available on the

market.

1.2 Objectives and Scope of the Research

The goal of this thesis is to analyze the options for entry-level SOC workflow

automation tools available to SMEs – organizations with fewer than 999 employees and

less than $1 billion in annual revenue [1] . The feature requirements and comparison

11

basis will be researched and determined for such tools. On top of that, the goal is to

demonstrate what kind of effects correctly implementing the aforementioned

automation features can have on the efficiency of existing SOC teams in such

companies. This will be done on the basis of analyzing real-world performance data of

the SOC team in company P.

The outcome of this thesis will provide a clearer picture regarding some of the entry-

level automation tools available on the market. It will also demonstrate the benefits of

using an in-house automation solution. Moreover, it will serve as concrete evidence and

present the real-world improvements making a basic investment towards security

operations automation can have on companies falling within the scope.

The scope of this thesis includes analyzing the features of entry-level security tools that

offer workflow automation capabilities and are accessible to SMEs regarding their

pricing and position on the market. The automation options that fall into the scope are

ones that will work with and function in addition to existing SOC tools, such as Security

Information and Event Management (SIEM) and will not act as a full replacement for

them. Also, the scope includes analysis of an in-house scripting/software development

approach that can replicate the automation features of these tools and achieve the same

or even more advanced results regarding automation.

1.3 Novelty

The novelty of this work is that it will select and compare automation tools that have

not been explored as frequently or in as much detail as the other options mentioned in

the Literature Review section. This comparison will demonstrate what features can be

expected from entry-level SOC automation tools, and how they can be implemented for

security automation. On top of that, this thesis will provide performance statistics, since

real-world analysis of SOC performance after applying basic automation in a company

within this scope was not observed when performing the literature review. The thesis

will also demonstrate that existing entry-level SOC automation tools have shared

shortcomings that might prevent their application for advanced automation tasks. For

this reason, developing an in-house automation solution might be beneficial if such

12

functionality is needed, and the thesis describes one such production-grade SOC

automation system.

1.4 Research Questions

The following research questions were identified:

1. What features should be expected from entry-level SOC workflow automation tools

and how should these features be prioritized?

2. What tools can be selected that provide the aforementioned features and also fall

into the scope of this work?

3. How do these tools compare with each other according to the prioritized features?

4. How can a basic utilization of the automation features these tools provide affect an

organization’s SOC team’s performance?

13

2 Literature Review

2.1 SOC Components and Architecture

Regarding the architecture of an SOC [2] , it can be centralized, meaning all the data is

aggregated into one SOC, distributed, where data is not aggregated in one place and is

fetched from multiple locations, or decentralized, which is a combination of the

previous two architectures.

Moving on to the technology stack, it includes an array of different interconnected

security tools and monitoring solutions. These tools may involve an Intrusion Detection

System (IDS), Intrusion Prevention System (IPS), SIEM system, firewalls, antivirus

software, and various other network and endpoint monitoring solutions [3] .

Additionally, threat intelligence providers and vulnerability assessment tools allow

analysts to stay informed regarding newly emerging threat indicators and system/code

vulnerabilities. All these technologies work together to effectively collect and analyze

vast amounts of data and logs, providing an organization’s SOC team much needed

visibility over their company.

Along with basic tools, recently there have been experiments and proposals for SOCs to

utilize more advanced technologies like Machine Learning (ML) to elevate simple tasks.

For example, in a 2019 study by Gupta et al. [4] ML is proposed as an efficient method

for alert classification and prioritization. Another example for using ML is demonstrated

in a study by Van Ede et al. [5] where an algorithm is used to find correlations between

event sequences from a specific device. The system DEEPCASE attempts to find

context between events and decide if they are malicious. Moreover, a 2017 study by

Feng et al. [6] demonstrates how the ML approach can be used to potentially lower the

amount of FP alerts in a system. This would help analysts combat alert fatigue.

On top of the technical tools, personnel also play a pivotal role in a SOC's architecture.

Typically, important SOC roles involve different tiers of analysts and dedicated

14

managers, all bearing distinct responsibilities [7] . Tier 1 analysts are triage specialists,

responsible for investigating, classifying, and prioritizing generated alerts. They decide

whether or not an alert is a FP and are the first line of defense. Tier 2 analysts share

some responsibilities with tier 1; however, they deal with more complicated alerts that

are escalated from Tier 1 and require further investigation, containment, or response.

Tier 3 analysts are the highest level analysts. They deal with the highest priority

incidents and are also responsible for identifying security gaps, tuning existing alerting

rules, and optimizing monitoring solutions. Finally, there is the SOC Manager role,

which is in charge of supervising the team, creating processes, etc.

Along with the technology stack and personnel, pre-defined processes and incident

response playbooks are integral to the correct operation of an SOC [8] . These pre-

defined workflows and steps ensure that security incidents are managed effectively.

Incident response playbooks are a very important part of an SOC, containing detailed

steps for the analyst to follow regarding specific security alerts and how to initiate

correct incident response. A playbook can be more general or more specific depending

on its application. The approach differs according to the type of SOC services being

offered. It is common for SOCs that offer their services to multiple customers to have

separate playbooks to manage each customer’s unique requirements.

The final key element of an SOC is collaboration. Collaboration between the different

tools being used, collaboration between the SOC team, the different analysts tiers [9] ,

and other departments within an organization, (such as the Information Technology

department, legal, etc.) and collaboration between the organization and its various

customers.

To bring the basic process together:

• SOC architecture can be centralized, distributed, or decentralized.

• Various security tools are responsible for generating, receiving, accumulating,

and allowing interaction with company data and logs, providing much needed

visibility. Alerts are generated by these tools.

15

• The SOC team is comprised of various roles and is responsible to deal with the

generated alerts. Most of the alerts are investigated by Tier 1 analysts.

• Alerts are dealt with according to pre-defined incident response playbooks

which detail the steps an analyst must take for a given alert.

• A potential incident is solved once there is regular successful collaboration

between the SOC team, the security tools at their disposal, the documented

processes, and the necessary departments within or even outside of the

organization.

2.2 Common Challenges SOC Teams Face

Having described a typical SOC system, we must also describe the challenges that such

systems typically face. No system is ideal, and SOCs also face issues that are often

multifaceted and can significantly impact their ability to protect against cyber threats.

The annual SOC surveys that are performed by SANS (SysAdmin, Audit, Network and

Security) are reliable sources for observing the challenges SOC systems have been

facing throughout more recent years. Figure 1 demonstrates the greatest SOC challenges

faced by organizations in 2023.

16
Figure 1: SANS Survey, Key Challenges, 2023

According to the 2023 SANS survey [10] , 16% of analysts reported that they did not

have enough context related to the data they received and analyzed. Following this, the

main challenge was lack of skilled staff with about 14.1%. On third place was lack of

enterprise-wide visibility with 13.7%, and on fourth place lack of automation and

orchestration was reported as an issue with 12.8%. In is important to note that the

difference between percentages occupied by these issues is not very high.

Taking a look at previous years’ SANS studies from 2022 [11] (Figure 2 a) and 2021

[12] (Figure 2 b), it is clear that the most important challenges organizations were

facing are similar to the challenges in 2023: high staffing requirements and lack of

skilled staff, along with lack of automation and orchestration. The 2021 survey stated

that a possible solution to these challenges is to be “able to automate the mundane

tasks.”

The same issue was also discussed in a 2020 study by Vielberth et al. [2] in which it is

stated: “Regarding the people working in a SOC, we see a major challenge in recruiting

and retaining staff.” The challenge of retaining staff can in many cases be related to the

many repetitive tasks Tier 1 analysts have to perform regularly and the burnout this kind

of intense routine causes. The study also points out that there is a lack of industry-

specific standards and guidelines which “prevents various SOC components from

advancing since a common baseline of the status-quo has not yet been agreed upon.”

Couple this issue with the fact that most automation tools are not well detailed or

sometimes advanced enough to deliver on their promises and the picture is clear as to

17

(a) (b)

Figure 2: SANS Survey, Key Challenges, 2022 (a) and 2021 (b)

why many companies, especially ones with a tighter budget, have hesitated when it

comes to implementing automation solutions.

A 2022 study by Alahmadi et al. [13] also describes how analysts experience fatigue

because of multiple security systems frequently generating alerts that are not truly

threats or are not malicious. It also states that many alerts from these security tools lack

the context needed for the analyst to decide if the alert is a genuine alarm. Moreover,

many of the analysts that participated in the study revealed that many AI or ML driven

solutions did not perform that well and generated their own FP alerts, adding to the

analysts’ struggle. The issue of frequent FPs by ML solutions in production

environments is one of the reasons the current thesis focuses on the use of basic

automation tools for easing the work of SOC teams.

2.3 Automation as a Potential Solution

According to multiple sources, automation of mundane and repetitive SOC tasks holds

the promise of addressing several of the aforementioned challenges faced by SOC

teams. Some even go so far to say that automation is one of the “key elements to

consider when designing a modern SOC” [14] . Stating that automation tools can help

streamline operations by reducing the workload of security analysts and improving

response times. Other studies have shown that some operators believe even automating

simple investigation steps can have a positive impact [15] . An example of this kind of

basic automation is to simply query VirusTotal and enrich Indicators of Compromise

(IOCs) in a given alert. A combined effort of such steps helps provide more context to

an alert, reduce burnout, and helps organizations retain talent.

2.3.1 SOAR tools

SOC automation cannot be discussed without mentioning SOAR tools. SOAR as a term

was created in 2017 by Gartner [16] . It has become a very popular market term

describing tools that offer varying levels of workflow automation, along with other

features. Regardless of the term’s popularity, most SOAR tools do not follow a single

pre-defined architecture or feature-set. There is little to no uniformity when it comes to

solutions offered by different vendors [17] . Some vendors offer very advanced features

as basic parts of a SOAR platform such as AI, ML, data visualization tools, and so on.

18

Others offer very basic automation options. In many cases these vendors do not live up

to the expectations they create [2] . This makes navigating the market regarding SOAR

tools fairly difficult for some organizations. Why are the solutions so different from one

another?

In a recent study [16] orchestration is defined as follows: “orchestration specifically

refers to the integration of separate tools with different functions into a single platform

to streamline and accelerate the investigation of a threat.” Another survey presents other

definitions of security orchestration [18] , which include connecting existing security

tools together via API (Application Programming Interface) to streamline incident

response. Accordingly, it would seem that orchestration does not involve workflow

automation in itself. Conversely, further definitions in the same survey bundle

automation as part of security orchestration. This is why the term SOAR is so

complicated in today’s market and why vastly different tools still share the same name.

Here is a broad description of SOAR that can cover a bigger range of solutions:

SOAR tools typically combine separate local or remote security systems into one, use a

pre-defined ruleset to enrich and add context to an alert, decide what steps to take for

investigation or escalation, and allow for sufficient automated response when necessary.

In some implementations these steps may be achieved with a visual interface or without.

Solutions described as SOAR tools may include additional AI, Deep Learning,

visualization options, ticketing systems, or may only offer very basic automation

features.

That being said, is SOAR effective? In his master’s thesis [19] Lalos states that

utilizing automation in security investigations and procedures “can drastically reduce

response time from the analysts, making them more effective.” On top of that, in the

work by Brewer [20] it is also stated that SOAR systems can reduce mundane SOC

tasks and high day-to-day workload. Moreover, SOAR tools were proven to make

investigations more efficient in a survey that evaluated operator performance in multiple

test environments [21] .

19

2.4 Similar Works and Research Gap

During the literature review process similar works to this thesis were identified. The

goal of some of these works was to also compare several SOC automation options,

mainly concerning SOAR tools. Some of the following works also demonstrated the

effects these tools could have in use. Both of these objectives are in line with the goals

of this thesis.

In a recent work from 2021 [16] , the authors decided to evaluate 11 SOAR tools since

there was no research that had done so at the time. To achieve this, SOC operators were

asked to complete multiple surveys. The first survey requested that the operators choose

which aspects of SOAR tools are the most important. Following this, the operators were

asked to evaluate SOAR tools after watching demonstration and overview videos.

Finally, the tools were scored. However, the tools that were evaluated were not named

and were left anonymized: “as a prerequisite, SOAR vendors agreed to providing

licenses and support for this study in exchange for anonymity of their results and

participation.“

A 2023 study [21] asked operators from US Navy SOCs and other experienced SOC

teams to evaluate SOAR tools that were set up in a test environment. The study revealed

valuable results regarding SOAR tools and what kind of positive and negative impacts

they can have on investigations. However, as in the previous study, the tools were not

named: “As required by the AI ATAC Challenges, SOAR tool contenders involved in

this evaluation must be held anonymous.”

Having said this, there were also works found that named the SOAR tools that were

analyzed. In 2022, Lalos performed an in-depth comparison of three SOAR tools [19] :

• Cortex XSOAR

• Splunk SOAR

• Siemplify SOAR

Another work that named the SOAR tools that were compared is from 2021 [22] . It

selected and briefly compared the following tools:

20

• IBM Security SOAR

• PaloAlto Cortex XSOAR

• Simply

• Security Vision SOAR

Another work by Kantola [15] demonstrated how SOAR can be used with third-party

sources like VirusTotal to enrich IOCs during investigation and studied how analysts

reacted regarding its implementation in their workflows. This work was successful in

demonstrating this basic automation approach, however, the other capabilities of this

SOAR tool or other real-life improvements were not discussed.

After looking through these studies a clear research gap emerged: entry-level SOAR

tool functionality and features have not been analyzed in detail since most of the studies

dealt with more advanced, more expensive options. Furthermore, the surveys that went

in-depth into evaluating SOAR tools chose to present the results as anonymized data.

Because of this, there is uncertainty regarding available options of competitive entry-

level tools and their feature-sets. On top of that, the actual impact these solutions can

have on real-life SOCs has been rarely discussed.

21

3 Selection of Automation Tools

3.1 Choosing the Selection and Comparison Criteria

Before suitable automation tools can be selected for analysis, this section will delve into

the fundamental considerations by which the efficacy and appropriateness of these tools

will be evaluated.

3.1.1 Pricing of the Tools

Firstly, as this analysis is for entry-level tools that will be accessible to companies on a

tight budget, one of the main considerations for selection is the price of the tools.

Studies show that some small-to-medium size businesses have struggled with IT budget

constraints recently [23] . In an aforementioned survey [10] although statistics are not

divided according to company size, it is shown that the estimated annual budget for

cyber-security related hardware, software, human capital, etc., was unknown for 20% of

the companies that were questioned. Apart from this, about 35% of companies had an

annual budget of less than 500,000 USD for all of their security-related needs. As many

organizations are more willing to try out and take risks with free-to-use open-source

tools, such solutions will naturally have a small edge during this selection process.

3.1.2 Basic Functionality of General Security Automation Tools

Secondly, to be eligible for analysis in the following section, the chosen tools must

provide certain basic functionality that is commonly associated with security automation

tools. To identify the necessary functionality multiple related works were analyzed.

Some of the defining aspects of SOAR tools were detailed in a recent work [21] , the

main aspects being the following:

• Data Ingestion – from a wide variety of internal and external sources.

• Data Correlation and Prioritization – including data enrichment, highlighting in

the tool’s User Interface (UI).

22

• Process Automation – automation of alert triage and incident response processes

via configurable workflows and playbooks.

In a work about SOAR platform analysis for SOCs [19] three SOAR tools were

compared. According to the main comparison categories, it is clear that for a tool to be

considered it must offer at least the following features:

• Data Enrichment

• Data Correlation and Forensic Analysis

• Data Visualization

• Playbooks and Automation

In the work by Norem et al. [16] SOC operators were asked to evaluate SOAR tools.

Firstly, operators prioritized the ability to create playbooks and workflows that are easy

to manage. In second place, was the ability to automate common tasks. Third place was

given to providing tickets with additional context. On fourth place was alert

prioritization. This was followed by the ability to ingest data from various sources.

After the survey, it was decided by the operators that the most important aspects of a

SOAR tool were the functionality of its playbooks and the ability to automate common

tasks. These features were followed by ticketing and alert prioritization.

A very detailed work by Islam from 2020 [17] describes the following as part of high-

level SOAR architecture:

• UI Layer: Provides interactive dashboards for visualization of data, Command

Line, and Visual Interfaces basic interaction with the tool.

• Orchestration Layer: Responsible for allowing coordination and modification of

configurations, monitoring status of processes and executions, triggers,

automating execution of incident response playbooks, etc.

• Semantic Layer: Allows interaction with tool knowledge base according to a

query language.

23

• Data Processing Layer: This layer processes the heterogeneous data from

different sources and allows for data analysis.

• Integration Layer: This layer is designed for seamless management and

integration of different security tools, via API or other means.

• Security Tool Layer: This is the various separate and independent security

products that are connected with each other through SOAR.

The work by Gibadullin and Nikonorov [22] identified three important modules in

SOAR tools:

• Incident module: Has the ability to create incident types, ability to provide a

custom response, ability to assign an incident to an employee, etc.

• Scripting module: Has the ability to create, modify, delete scripts, ability to run

scripts manually or on a schedule.

• Integration module: Has the ability to handle different types of integrations,

likely relating to security tools.

After analyzing the aspects discussed in these works, some focusing on more specific

functionality and others focusing on more unique features, it is clear that there is

overlap between commonly expected and valued aspects of SOAR tools. It was decided

that many of the aforementioned SOAR features will be excluded moving forward. One

of the main reasons for removing these features as selection criteria is the fact that the

scope of this thesis targets automation tools that do not have to necessarily replace basic

parts of existing SOC infrastructure. In the scope of this thesis, automation is an

addition on top of the existing infrastructure. For instance, this means that the querying

and visualization capabilities of a SIEM tool or a ticketing system that are likely already

in-place in typical SOCs do not have to be matched or replicated by the automation tool

that will be selected. In addition to this, some of the outlined features can be considered

already a part of other functionality that was discussed. For example, data enrichment,

prioritization, scripting, incident response can all be considered sub-categories of

playbook and workflow automation capability. Similarly, threat intelligence can be

considered to be a part of data ingestion or data enrichment capability. On top of these

24

aforementioned features, a main aspect that was not discussed as often is version

control. For individuals developing software or generally writing code, version control

is very important for their process [24] . For many advanced SOAR workflows, it is

necessary to write snippets of code, or even complete scripts to correctly parse data,

format output, and so on. Regardless of this, proper version control options seem to be

missing from many SOAR tools [25] , often lacking in the ability to rollback or properly

keep track of changes done to a workflow [26] . This thesis wishes to separately outline

version control as an aspect of the selection criteria. Version control can be with regards

to code snippets in workflows or with regards to general configurations of the

workflows and the tool.

Because of all the reasons mentioned in this section, the aspects that will be focused on

during tool selection and comparison steps are the following:

• Data Ingestion (including the various methods of receiving and fetching data)

• Workflow Automation (including data manipulation, scripting, logic statements,

etc.)

• UI

• Orchestration (including configuration management, status monitoring,

combination of different sources, triggers and schedules, etc.)

• Version Control

3.2 Tool Exclusions, Choices, and Reasoning

Firstly, this section will discuss the SOAR tools that were mentioned during the

Literature Review section. Although these options mainly fulfill all the feature related

aspects mentioned above, and in many cases offer features that go above and beyond the

outlined scope of automation, they also have drawbacks in their pricing.

According to the price calculation feature on IBM’s website, the pricing of IBM

Security SOAR partially depends on the number of authorized users allowed to use the

product [27] . Of course, this is just used for a rough estimation and the actual price also

25

depends on the specific configuration, add-ons, etc. Even so, the estimated cost for a

SaaS (Software as a Service information) solution with 11 authorized users amounts to a

monthly cost of 22K USD, amounting to more than 250K yearly. 11 was selected as the

number of users during the calculation of this price because according to the 2023 SOC

SANS study, the most common SOC team size is between 11-25 [10] . Price estimation

is harder for the following products: Cortex XSOAR, Splunk SOAR, and Siemplify

SOAR (now known as Chronicle SOAR after acquisition by Google). However, sources

indicate that prices are not low [28] [29] . All of these products offer a free tier or

community edition which can be used for longer than the trial period, usually without

time limitations or additional cost [30] . That being said, the functionality of these tools

is limited instead, including restrictions on the number of API calls, playbook

executions, number of integrations, and so on. For example, for Cortex XSOAR

automation commands are limited to 166 command calls daily and incident history is

restricted to the last 30 days. Such limitations indicate that these community editions are

mainly useful for testing and experimentation purposes. Finally, Security Vision SOAR

was also discussed in a few sources, however, this tool has very limited adoption

outside of Russia [31] . Most of the organizations that have implemented and reviewed

the tool are located in Russia, and descriptions of this tool are rarely found outside of

Russian sources.

Moving on to the tools that were chosen for analysis, during research into low-cost,

entry-level automation solutions, the following options were discovered:

• Shuffle

• Nodemation (N8n)

Shuffle is an open-source workflow automation tool that offers both cloud and self-

hosted solutions. The tool has a free option that includes unlimited apps, workflows,

users, with a limit of 10k app runs every month [32] . Apps in Shuffle are the nodes that

run in workflows and perform various functions. For increasing the app run limit, one

can use the Enterprise version of the tool, which starts from 100k app runs each month

for 180 USD. This can also be scaled proportionally with the price according to the

organization’s needs. According to Shuffle’s website, 100k app runs per month can

support around 500 assets.

26

N8n is another almost open-source workflow automation tool that also offers cloud and

self-hosting options [33] . The pricing of the tool is 20 euros per month for Starter

edition, 50 euros per month for Pro, and has a custom price per organization for the

Enterprise version [34] . According to a recent whitepaper from N8n, their pricing is

affordable and competitive compared to other SOAR tools [35] .

Both of these tools fulfill the selection criteria for the basic tool features / aspects

outlined in the previous section. They fit into the scope because of their entry-level

price and because they are made to combine and work alongside existing security tools

instead of replacing them fully. For testing, the free cloud version of Shuffle and the Pro

cloud version of N8n were utilized.

27

4 Detailed Comparison of the Selected Tool Features

This chapter contains a side-by-side comparison of the selected automation tools:

Shuffle and N8n. The features offered by these tools are described in-detail, along with

various advantages and disadvantages of each tool’s approach. This comparison reveals

specific functionality that can be expected from automation tools in the entry-level

category. Moreover, in chapter 4.3 the shared drawbacks of these tools are summarized

which motivates the implementation of similar feature-sets in a custom in-house SOC

automation solution.

4.1 Shuffle

Shuffle is an open-source SOAR project started in mid-2019 as a hobby [36] . It was

based on the structure of National Security Agency’s (NSA) WALKOFF SOAR, which

was discontinued in 2019 [37] . Shuffle is a low-cost product that aims to provide the

basic capability of connecting multiple tools together, allowing easy data ingestion and

flow between processes and allowing automation of basic workflows. Because of its

nature as an entry-level and open-source tool it does not provide complicated AI or ML

features and it does not aim to replace a SIEM or similar security tools. However, this

results in a product that is focused and delivers on the features it promises.

Here are some of the basic components of Shuffle [38] :

• Apps – are basically integrations with other platforms’ APIs. Shuffle uses

OpenAPI for easy app creation. Apps can be imported, exported, or shared.

Many pre-existing apps are available right after creating a Shuffle account.

Moreover, custom apps can be created via the tool’s visual interface with no

need for writing code. Shuffle also has an app that allows the user to run basic

functions like printing a statement, filtering a list, looping, etc.

• Workflows – are what connect different apps/nodes and include automation

logic. For example, a workflow can be created to automate the steps in an

28

incident response playbook. They can be comprised of the following

components:

◦ Apps – can be used in workflows to fetch data via API endpoints or to run

basic functions on data, like parse it, filter it, and so on.

◦ Scripting – scripts written in Python can be injected into a workflow to cover

the cases where pre-defined app functionality will not be enough to cover a

task.

◦ Variables – can be set in a workflow to hold data. There are Execution

Variables that are temporary and set during runtime. There are Workflow

Variables that static and set before execution. There is also the Execution

Argument that is passed into the workflow when it is triggered.

◦ Triggers – allow the user to run a workflow. Here are some of the main

trigger options:

▪ Webhook – runs when an Hypertext Transfer Protocol (HTTP) request is

made on the workflow’s endpoint.

▪ Email – runs when an email is received in a connected Gmail or

Office365 account.

▪ Schedule – a workflow can be set to run on a schedule, similar to a cron

job.

▪ Subflow – a workflow can be inserted into a parent workflow as a

subflow which will run when the parent is triggered.

▪ Etc.

◦ If conditions – determine which app/node will run during a specific

execution of a workflow.

• Storage:

◦ Datastore – Permanent key-value storage for useful data for automations.

29

◦ Files – files can be uploaded to Shuffle and plugged into workflows for

analysis.

◦ Encrypted Authentication – authentication credentials are stored mainly for

apps and are encrypted for safety. Decryption happens automatically during

runtime.

Following this short overview of the tool’s features, this section will transition into in-

depth analysis of each aspect that was outlined.

4.1.1 Data Ingestion

As mentioned above, there are many ways for data to be ingested into Shuffle. Firstly,

data can be ingested into workflows via triggers:

• A workflow can receive data in the form of HTTP POST or GET requests from

outside sources if Webhooks are correctly setup. They will have their own

Webhook Uniform Resource Identifier (URI) which will receive these requests.

Moreover, these endpoints allow the option to set up authentication, only

allowing authorized sources to send data.

• The email trigger also sends data to Shuffle. This can include the email body,

headers, and attachment info.

• Data can also be ingested via the User Input trigger which will run a workflow

when a user manually chooses to via an Email or SMS (Short

Message/Messaging Service).

Apart from triggers, data can be ingested into the tool using the various apps. Since

many apps allow users to call any API endpoint they wish, they allow for virtually

limitless external sources of data.

To demonstrate this capability, in Figure 3, a workflow is visualized that ingests data

from two triggers, a Webhook trigger and an Email trigger, sends the data for

enrichment via two remote sources, and creates a ticket with all the data combined.

30

4.1.2 Workflow Automation

As demonstrated above, triggers can be used in workflows to start workflow execution

and to inject data into the workflow. Once input data is in the workflow, it can be

handled in multiple ways.

Firstly, data will be passed between apps/nodes. Mainly, Shuffle outputs data as a

string, if it is a JSON (JavaScript Object Notation) string, it will be recognized as an

object but still output as a string. The user has the option to pass the whole string to the

next node as the execution argument, or to pass part of the string. If the object is a list,

users can choose to iterate over the list entries – (.#). For this, the user can use $var.#

operator to perform a for-each loop on the string and pass each value separately to the

next node. As an example, if a workflow contains the variable $input, which is a list of

objects with attributes – name, date, and IP (Internet Protocol) address – this variable

can be passed to a VirusTotal app for enrichment as a loop: $input.#.ip; This means a

separate request will be made using the app for each input. The output of this node will

be a list of VirusTotal responses for each IP. This is the main way looping is achieved

in Shuffle outside of scripts. The following are the main options for this loop operator:

31

Figure 3: Shuffle – data ingestion demonstration

• .# – loop through the entire list.

• .#0 and .#1 – run only the first or second element of the list.

• .#0-1 – run the first AND second element of the list.

• .#.data and .#0.data – run the specified list, get value of key “data” for each.

• .#max.data – run only the last element, get value of key “data” for it.

Secondly, once data is passed between the nodes, it will be manipulated and changed.

An option to manipulate data is through the pre-existing “Shuffle Tools” app. This can

be used to parse input data, execute custom Python scripts, filter lists, create files, etc. A

common use-case regarding input data is to handle a list or an array of objects. The

“Shuffle Tools” app offers the following pre-defined actions for handling list data:

• Filter List – filter according to object attributes. If a specific attribute equals an

expected value, keep that list item.

• Parse IOC – filter out IOCs from strings, arrays, dictionaries, etc. The output

will be in the format of a list of objects that contain attributes: item type and

value.

• Parse List – turn a string into a list according to a splitter string.

• Add List to List – add two lists together.

• Merge Lists and Merge JSON objects – merge two dictionaries or JSON objects.

• Diff Lists – return an array of keys that are unique from both lists.

• Set JSON key – add key/value pair or change the value of an existing key in the

dictionary/JSON string.

• Delete JSON key – remove key/value pairs from a dictionary/JSON string.

Building on top of these actions, if the functionality required in a workflow is not

supported by one of the default apps or app actions, a custom Python script can be

injected into the workflow using the “Shuffle Tools” app. This script can perform more

32

advanced data parsing, looping, error handling, etc. For example, this is useful if a

custom API response is difficult to parse with existing app actions. (Figure 4)

Finally, IF conditions can be used to add logic to the workflow and run or skip specific

nodes. An IF condition is added to a connection between workflow components and can

be used to check a value of the available variables and compare it to an expected result.

Multiple conditions can be added to a single connection; however, the connection will

execute the next node if even one of the conditions is true. The following comparison

options, along with their inverses, are available in Shuffle IF condition:

• Equals/does not equal

• Starts with/ends with

• Contains/contains any of

• Matches Regex (Regular Expression)

• Larger than/less than

• Is empty

33

Figure 4: Shuffle – demonstration of the scripting interface

Figure 5 demonstrates a full workflow that starts with input data containing a suspicious

IP address. IOCs are parsed out as a list from the input data using “Parse IOC” action.

Following this, all the IPs are filtered out of the newly made list. The IPs are separately

sent to VirusTotal for enrichment. The results from VirusTotal are handled by a custom

script. Finally, if one of the IPs is determined to be malicious, an alert is created in the

ticketing system.

4.1.3 UI

Although the tool does not provide detailed dashboards for statistics like some of the

higher-end SOARs, its user interface is very powerful.

When working with workflows, the UI allows users to place and connect apps

intuitively. Workflow UI allows users to explore previous workflow executions (Figure

6 a) and to see changes every step of the way chronologically from top to bottom

(Figure 6 b). This can be useful for debugging an execution and seeing the input and

output of each node/app once expanded (Figure 6 c). Users are also able to control the

variables that are passed into the apps. The variable path can be easily copied just by

clicking the JSON representation of the output/variable data.

34

Figure 5: Shuffle – demonstration of a workflow

One negative regarding the workflow UI is that connections between apps cannot be

removed. To remove the connection one of the apps must be deleted.

The UI allows for full creation and configuration of the apps. This means API endpoints

can be added and specific request types, with required variables, can be set up. Each

API endpoint will become a separate app action. Moreover, most of the actions required

in a workflow in Shuffle can be set up using the tool’s UI. There is no necessity to write

code or run commands to achieve most of the functionality. This is a big plus because it

makes the tool more intuitive and accessible to people who do not have software

development skills.

Another negative aspect of the UI is in the admin panel, specifically in the Files and

Datastore sections. These sections can get overwhelming if there are many entries.

Moreover, there is no search functionality to look through the storage via the UI.

Another small issue is the formatting of the entries, as the ones with large data are not

presented in a pleasing way and the time and date are also not formatted correctly

(Figure 7).

35

 (a) (b) (c) .

Figure 6: Shuffle – workflow runs (a), run details (b), app result details (c)

Finally, as seen in figure 4, the UI for entering Python scripts inside of workflows has

limited syntax highlighting. It also does not highlight errors in the syntax. The lack of

syntax highlighting makes the development of larger Python scripts less convenient and

increases the danger of introducing hard-to-spot errors in the code. However, since

workflows are intended to automate critical security procedures, the bugs in relevant

software might introduce additional risks and vulnerabilities into protected systems.

4.1.4 Orchestration

On the orchestration side, it was demonstrated that multiple different tools and data

sources can be connected together seamlessly in a workflow using apps and triggers.

Apart from triggers, workflows can be set on a schedule as well. Moreover, workflows

can be connected with each other seamlessly as well using subflows. This makes data

flow between different security tools easy and removes one of the typical barriers of

automation. Workflow execution status and detailed information is visible via the UI,

and light debugging is also possible through the UI. Custom apps can be used to

manage other security tools. Persistent workflow variables can be used to set specific

configurations for workflows.

4.1.5 Version Control

Unfortunately, options for version control in Shuffle are very limited. Shuffle does have

a Version History feature. This mainly affects workflows and scripts inside of

workflows. However, this is a beta feature and still has a way to go (Figure 8).

36

Figure 7: Shuffle – formatting of a JSON string in Datastore

The older versions of the workflow can be clicked to switch to the previous version.

This can be used for workflow version rollback in cases of emergency. However, the

interface is minimal, and use of this feature has resulted in losing progress in some cases

during testing. On top of that, there is no good way to track exactly what changes have

been made.

Another option for version control is to export workflows as JSON strings and upload

them to a separate version control platform. Exporting workflows is a feature that

Shuffle offers. However, this is not a convenient option and still does not provide an

easily understandable solution for monitoring changes or for performing a rollback

reliably.

4.2 N8n

N8n is node-based workflow automation tool that allows users to connect different APIs

together and manipulate input/output data of different nodes primarily through using a

visual interface. While Shuffle was specifically targeted towards security operations,

N8n offers workflow automation for more general use-cases like automation for finding

leads and CRM (Customer Relationship Management) integrations [35] . On top of this,

N8n can also be used as a SOAR platform to automate more security-oriented

37

Figure 8: Shuffle – a screenshot
of the Version History tab

workflows. The tool is fair-code licensed, meaning it is not fully open-source [39] .

Although its source-code is openly available, it is generally free to use, and it can have

public and private contributors, it is commercially restricted by its authors.

Here are some basic features offered by N8n:

• Nodes – are the key components of workflows. Nodes have two types of

operations: they can act as triggers to start the workflow, and can perform

actions to fetch, send and manipulate data. Many pre-existing nodes are

available that are built-in or are shared by the N8n community. Also, N8n allows

users to build their own nodes. Each node has the following setting toggles:

Execute Once, Retry On Fail, Continue On Fail, Always Output Data – output

an empty item even if there is no data.

• Workflows – are a collection of nodes that are connected and setup in specific

ways to automate a process. Mainly, they can be comprised of the following

components:

◦ Nodes and Connections – Connections establish links between nodes. A

connection between two nodes gives the first node’s output to the second

node as the input. The nodes themselves can be used to make API and app

requests or run local actions to manipulate the data.

◦ The Code node – allows users to write custom JavaScript or Python scripts

and run them inside workflows. The scripts can access all the variables that

the nodes can.

◦ Variables – Users can create variables for specific workflows or can set

general variables shared between workflows.

◦ Triggers – will start executing workflows. There are various trigger options

that can be set up according to specific use-cases. A Notable trigger that is

not mentioned in detail in section 4.2.1 is the “On a schedule” trigger which

can be set to go off in a specified time interval or according to a cron string.

On top of this, multiple interval rules can be added to the same trigger.

38

◦ Flow Logic – N8n allows users to implement advanced logic elements in

workflows. These include:

▪ Nodes for data manipulation and fetching data

▪ Nodes for IF/Switch conditionals

▪ Waiting nodes – allows pausing of workflow execution for a certain

duration, until a specified time, or until a Webhook gets called.

▪ Error handling nodes – allow for a certain action to be taken if an error is

thrown.

• Credential Storage – Authentication credentials can be stored for apps/nodes.

Saved credentials can also be shared with users.

4.2.1 Data Ingestion

Similarly to Shuffle, there are various methods for data ingestion into N8n. Firstly, as

mentioned, data can be ingested into workflows via nodes that can be setup to act as

triggers. Some of the main trigger options that ingest data into a workflow include the

following:

• On an app event – will trigger when a specified action occurs in a connected

app. For example, when a message is received in a Telegram channel. Related

data from the app will be passed into the workflow.

• On a Webhook call – Similarly to Shuffle, HTTP methods can be setup to work

with N8n Webhooks along with header or basic authentication. Differently from

Shuffle’s Webhook integration, in N8n users can also choose when to respond

immediately, when last node finishes, or at a custom time during workflow

execution using the “Respond to Webhook” node.

• On form submission – N8n allows users to create their own web forms and

trigger workflows once these web forms get submitted along with the form data.

39

• When called by parent workflow – A workflow can be set up to allow other

workflows to execute it. In this case the parent can supply data to the sub-

workflow.

• Error Trigger – This trigger executes a workflow when another workflow has an

error. The error data is passed in as a variable. This feature is not available on

Shuffle side.

On top of this, like in Shuffle, data can be ingested into workflows by using the various

nodes to make calls to custom API endpoints or pre-existing app integrations.

To demonstrate the capability of all of the aforementioned triggers in action, in Figure

9, a workflow is visualized that ingests data from: a Webhook trigger waiting for a post

request from a local server, a Telegram app that sends an event once a post is added to

the specified channel, from a custom form submission, and ingests an error item thrown

by a specified workflow. The data is taken from all of these triggers, parsed, and sent to

a sub-workflow for enrichment and ticket creation.

40

Figure 9: N8n – data ingestion demonstration

4.2.2 Workflow Automation

Once data is injected into a workflow, it can be manipulated in multiple ways. Firstly,

data will be passed between nodes. However, this is handled differently in N8n

compared to in Shuffle. In N8n, by default, every output is an item or a list of items, just

a string or a number cannot be outputted. If a node outputs a list of items, the next node

will receive these items separately, which is similar to using $var.# functionality in

Shuffle. Flexibility regarding how these items will be processed consists of configuring

the node to only process the first item with the “Execute Once” setting. This “Execute

Once” setting can be used in combination with inline JavaScript and JSON.stringify()

function to pass input to the next node as a string. Although this string must still be part

of an object, like $output.result, it achieves the default functionality of passing output as

strings in Shuffle. On top of this, the documentation of N8n highlights another method

of performing loops because some nodes, like HTTP request, do not automatically

iterate over items. To create such a loop in N8n one must take the output of a node and

give it as input to one of the previous nodes. There should be an IF node in between

also, which will decide if the loop is complete or not. A use-case for such a loop is to

handle pagination during page load requests. Another example would be to use the loop

as a retry limit during an API request. Example: if the expected result is not received,

retry the request maximum 5 times. A variable $runIndex can also be used to track the

number of times a node has been run and can be used as an index for the loop.

Regarding data manipulation, one way to manipulate list data is through the “Data

transformation” nodes. Some of the main ones when it comes to working with lists

outside of the code node include:

• Item Lists node – a helper node for working with lists (arrays) allowing for list

concatenation, duplicate removal, sorting, limiting, etc.

• Rename Keys and Edit Fields nodes – allowing for modifying object keys and

values.

• Filter node – allows users to perform an IF operation on an object’s key value

and filter out the matching entries.

41

• Merge node – allows for appending one input to another, combining two items

together, etc.

• Compare Datasets node – allows for comparing two items according to a

matching field. It will return what value for which keys overlaps between these

items and what value is different.

On top of pre-defined data manipulation options, there is the Code node, which allows

scripts to be run in JavaScript or Python. This is one of the most important nodes since

it gives the most freedom to the users to deal with workflow data and handle errors. The

script run by this node can perform advanced parsing, looping, error handling, and so

on. For example, this is useful if a custom API response is difficult to parse with

existing node functionality (Figure 10).

N8n supports IF conditions similar to the ones in Shuffle, but on top of that, it also has a

Switch node, which allows the user to account for more outcomes than just true and

false with a single node. These options can be used to add logic to the workflow and run

or skip specific nodes. Both IF and Switch conditions have access to the connected

variables in the workflow. As in Shuffle, the IF node can include multiple sub-

conditions. Unlike Shuffle, the node can be setup to return true once ALL of the

conditions are met, or if ANY of the conditions are met. The comparison options for

these N8n nodes include:

42

Figure 10: N8n – demonstration of Code node interface

• Equal/Not Equal

• Contains/Not Contains

• Starts With/Not Starts With

• Ends With/Not Ends With

• Regex Match/Regex Not Match

• Is Empty/Is Not Empty

Figure 11 demonstrates a full workflow that starts with input data from a Webhook

containing a suspicious IP address. The IPs are parsed out by the Code node. The IPs

are separately sent to VirusTotal for enrichment. The results from VirusTotal are

handled by a custom script in another Code node. Finally, if one of the IPs is

determined to be malicious, a ticket is created by a sub-workflow.

4.2.3 UI

Just like the interface of Shuffle, instead of detailed statistics and dashboards N8n’s user

interface is mainly focused on providing a clean workflow builder experience.

As in Shuffle, the UI allows users to place and connect nodes. Unlike Shuffle, in N8n

the connections between nodes can easily be removed without having to remove the

nodes themselves. Users are also able to explore previous workflow executions and to

see the path of the execution. Users are able to click into each node and see the input

43

Figure 11: N8n – demonstration of a workflow

and output on the left and right side of the node view (Figure 12). Users are also able to

control the variables that are passed into the apps. Adding variables as input is as simple

as dragging and dropping the variable from the left side variable panel into the input

field of a node.

The highlights of N8n’s workflow UI are IF condition and Switch nodes, which allow

users to connect multiple branches to a single condition node (Figure 13).

It is possible to create custom nodes in N8n. This is a multi-step process and includes

running a local N8n instance, Git, writing the node code, building the node, and

deploying the custom node. As this requires interactions outside of the cloud automation

44

Figure 13: N8n – demonstration of IF condition and Switch nodes

Figure 12: N8n – demonstration of node input and output

tool, it is outside of the scope of this thesis. However, it is important to mention that

there is no user interface for creating custom nodes in N8n. This is one of the minuses

regarding N8n’s UI since Shuffle offers app creation options through its UI.

The UI also offers easy ways to store credentials for nodes and to store global variables

that are accessible to workflows.

Also, as seen in figure 10, the UI for entering scripts inside the code node of a

workflows has marginally better syntax highlighting than the Shuffle code editor.

However, like Shuffle, it also does not highlight errors efficiently in the syntax.

4.2.4 Orchestration

According to the previous sections, it was demonstrated N8n is capable of easily

connecting multiple different tools and data sources with each other using its workflow

automation, triggers and data handling nodes/apps. Workflows and apps can be

configured individually allowing for precise control. Detailed information about

workflow executions is visible via the UI, along with inputs and outputs of nodes

allowing for brief debugging options. This is all very similar to what Shuffle offers.

However, N8n offers many more options regarding error handling outside of the Code

node.

An error handler workflow can be created with the “Error Trigger” which can be

connected to typical workflow. With this kind of configuration, once an error is thrown

the error handler workflow will be triggered which will receive the error information.

This workflow can be set up to attempt a rerun or to forward this error towards an

external source, like a ticketing system, for example. This option increases the ability

for users to monitor their integrations, debug errors, and respond to issues on time. On

top of this, the “Stop and Error” node can be used to manually throw errors in a

workflow. Figure 14 is an example of a Code node throwing an error because of a

syntax issue. An error handler workflow with the “Error Trigger” automatically gets

initiated with this error input and can handle the it as needed. Figure 15 shows this error

input caught by the “Error Trigger.”

45

In the Enterprise version of N8n, Log Streaming can be setup which allows the tool to

forward logs towards a selected destination, which can be a Syslog server, a generic

Webhook, and so on. Users can set up which logged events are sent to the destination.

Streamable events include:

• Workflow – started, success, failed

• Node executions – started, finished

46

Figure 14: N8n – a syntax error thrown by Code node

Figure 15: N8n – a syntax error caught by a workflow with the “Error Trigger”

• Audit logs:

◦ User creation, update, deletion, etc.

◦ Package installed, updated, created

◦ Workflow created, deleted, updated

4.2.5 Version Control

The non-enterprise versions of N8n offer the following options regarding version

control of implemented workflows:

• Downloading/exporting implemented workflows as JSON files and importing

saved workflow JSON files into the tool. Just like in Shuffle, one option for

version control would be to keep track of these JSON files in Git. However, as

mentioned in section 4.1.5, manually carrying out this process is not a

convenient method of performing version control.

• A version history of each workflow is kept in N8n, accessible through the

”Version History” tab (Figure 16). This tab allows users to see when each

version was saved, download each version, restore an older version, and so on.

This tab also shows who each version was edited by.

47

Figure 16: N8n – a
screenshot of the Version

History tab

However, non-enterprise versions of N8n are highly limited in terms of the

amount of days workflow history can be stored. For example, the Pro version of

the tool stores workflow history for just 5 days. On top of this, if the workflow

has multiple components, keeping track of what was changed with each version

update is very difficult through the tool’s interface since it simply loads the

previous workflow without highlighting the changes.

The enterprise version of N8n offers options for setting up environments and Git

connectivity. Users can set up development and production instances of N8n. Regarding

Git integration, N8n uses three Git processes: Push, Pull, and Commit. When changes

are committed to Git, the following is included:

• Workflows – including tags, email of the workflow owner

• Credential and Variable stubs – ID, name, type

A way to overcome some of the workflow history and version control issues without

upgrading to the Enterprise version is to have a separate workflow that will push

existing workflows into Git. To achieve this, the “N8n” node can be implemented to get

the workflows and “GitHub” node can be used to push to Git. Figure 17 demonstrates a

pre-existing workflow that was imported from N8n’s website called “Back Up Your

N8n Workflows to Github”:

The outcome of this workflow results in the specified workflow JSON files being

pushed to Git. A negative of this particular approach is that the script code that is

written inside the “Code” node is not as clearly readable as pushing a plain script into

GitHub. As seen in Figure 18, this will make reviewing the changes more cumbersome.

48

Figure 17: N8n – demonstration of Git push workflow

4.3 Summary of Pros and Cons of the Tools

First of all, after analyzing the capabilities offered by these tools it is clear that both of

them are exceptionally good at what they set out to do. They offer a wide range of data

ingestion options and allow users to manipulate data via UI and scripting to a level that

results in workflows that can automate both simple and more advanced steps. This

outcome is highly commendable. Having said this, no tool is perfect in its execution and

feature-set.

Starting with data ingestion, both tools are flexible when it comes to ingesting and

fetching data. N8n has more trigger options that are missing in Shuffle, which include

“on app event”, “error trigger”, a more adjustable “schedule trigger” regarding intervals,

etc. Moreover, N8n can choose when to respond to the “Webhook” trigger during

workflow execution. Shuffle does not offer such flexibility. On the other hand, while

both N8n and Shuffle support custom apps and nodes, no custom node creation UI is

available in N8n, while Shuffle allows users to create custom apps and actions relatively

simply using its UI. This allows users to call specific API endpoints with preset

authentication and variable fields in a convenient and re-useable way. Shuffle also has

more pre-existing security-related apps, like VirusTotal, AlienVault, AbuseIPDB, that

offer more default actions compared to the ones in N8n. This is a substantial advantage

for Shuffle.

Moving on to workflow automation, both tools give users flexibility regarding inputting

and outputting data between nodes. N8n has a small edge regarding the connections

between apps, since its connections can be removed without having to remove the nodes

themselves. On the topic of manipulating data inside workflows, like parsing and list

filtering outside of scripts, both tools offer a wide variety of options. However, in

Shuffle, the data handling actions are all bundled together in the “Shuffle Tools” app, as

49

Figure 18: N8n – demonstration of Code node script after GitHub push

opposed to being scattered in different nodes N8n. Also, Shuffle already has built-in

actions in “Shuffle Tools” for security related filters, like IOC filtering. From the

author’s experience, Shuffle’s UI was more intuitive in this regard.

Another advantage for Shuffle is regarding its file and data storage options, allowing

users to easily save data in the Shuffle tool itself. N8n does not offer a similar feature

outside of its Enterprise version.

N8n has an advantage when it comes to inserting custom scripts since it supports both

JavaScript and Python, while Shuffle only supports Python. The scripting UI is very

basic in both tools. However, syntax highlighting is better in N8n compared to Shuffle.

Also, N8n can recognize code components, like for loops and try-catch statements, and

suggest auto-fill options. N8n allows users to resize the code input window, while

Shuffle is very limited in this case. Error highlighting is also better in N8n’s interface.

However, error highlighting is still limited in both cases, missing to point out basic

syntax errors in Shuffle and arbitrarily missing to highlight syntax errors before

execution in N8n also. Evidently these tools are made to be mainly used with their UI

for creating automations. Even so, it is important to mention that, in terms of writing

code, the experience cannot compare to code editor tools.

Regarding the workflow IF conditions, they are handled by a separate node in N8n

which means only one node is necessary in the UI to account for both true and false

outcomes. The matching options for the rules applied to this node can be set up to match

either all or any of the logic statements. On top of this, the Switch node is not limited to

true and false outcomes, giving users even more outcome options from a single node. In

Shuffle, the IF conditions must be added as part of connections between apps. Because

of this, the condition must be entered twice for two app connections to account for both

true and false outcomes. Moreover, if multiple conditions apply to one connection, by

default Shuffle executes when any of the conditions match. There is no option to change

this default behavior.

Looping in workflows is handled differently by default in these tools, but as mentioned,

the same results are achievable for both tools if the workflow and nodes are configured

properly. Having said this, N8n has more options when it comes to creating a loop

between multiple nodes.

50

Finally, regarding error handling and version control, both tools are limited. (Because of

a higher price, this section does not consider the N8n enterprise features like different

environments, Git integration, and log streaming.) Both tools allow users to view

workflow execution status and failure points in their UIs and can implement error

handling in scripts. N8n has the edge in terms of error handling because of the “Error

Trigger” and “Stop and Error” nodes that can throw and catch errors. It also has the

edge because of the node configuration options like “Retry On Fail”, “on error stop

workflow” and “continue using error output.” Unfortunately, there are no log streaming

options for entry-level versions of these tools to get a more detailed view of the error

logs. Both tools also offer very limited workflow version switching through their UIs.

N8n also has an edge in terms of version control using the “N8n” and “GitHub” nodes

to push workflows. However, this is not an ideal solution to version control since the

workflow scripts are not easily readable in the pushed JSON files, which makes

reviewing changes for more advanced workflows more difficult.

To summarize, both tools share key drawbacks regarding error handling, log sharing,

version control options and custom scripting environments. These shortcomings are

addressed by the in-house solution that is proposed in chapter 5.

51

5 In-house SOC Automation in Company P and Real-World

Impact on Performance

5.1 Why Use an In-house Solution

As discussed in the previous chapter, the existing automation tools have several shared

drawbacks. Therefore, this chapter describes an alternative path for implementing an

SOC automation system which involves the development of an in-house solution. For

the clarity of the discussion, the in-house SOC automation system of company P is

described. The author of this thesis took part in implementation and testing of various

automation scripts contributing to the performance impact described in chapter 5.3.

The in-house automation platform satisfies the selection and comparison criteria

described in section 3.1. This is demonstrated in section 5.2. Moreover, it has multiple

benefits over the tools mentioned in the previous section. The benefits include:

• Freedom of choice regarding the scripting environment and programming

language configuration. Also, plain scripts are easier to integrate with existing

test environments.

• An in-house solution eliminates error handling and syntax highlighting issues, as

was the case in Shuffle. Error handling, in general, is more straightforward to

implement in the chosen solution compared to the larger number of steps needed

to achieve the same in N8n.

• Version control for workflows is not an issue since the in-house solution can

work freely with GitHub. Moreover, any change before deployment can be

reviewed easily in GitHub because of the clearly understandable format of the

scripts, as opposed to the JSON string format of exported N8n workflows.

• The in-house solution has the ability to utilize more advanced scripts and can

achieve a high level of automation without running into the same issues of

52

complexity and version maintenance problems as the aforementioned tools.

Also, there is much less complexity regarding adding custom re-useable objects

compared to the complexity of adding custom nodes in N8n.

• An in-house solution is also completely free, assuming the organization

considering this approach is already employing software developers or security

engineers who have development skills.

That being said, an in-house approach also has its drawbacks, which include:

• Naturally, this tool has to be hosted and maintained by the organization.

• The tool is more limited in terms of existing workflows and plugins, which the

aforementioned options offer to help companies get started.

The unescapable reality of implementing security operations automation is that custom

automation elements, like scripts, custom apps, and so on, will always be necessary.

Moreover, the count and complexity of these custom elements will likely increase over

time. If a tool does not offer a convenient way to implement and manage these custom

attributes, it will be less desirable to some organizations. As demonstrated, the lack of

features and simplicity in terms of error handling, version control, and scripting in

Shuffle and N8n was considered a drawback in this regard.

5.2 Implemented Automation Structure

The in-house automation solution incorporates the key features of Shuffle and N8n

described in chapter 4. The scripts utilized by the in-house solution mainly fall into the

following categories:

• Controllers – are scripts which provide endpoints that can be called to take input

data and trigger predefined playbooks. Expected data is defined in controller

scripts and parsed before handed over to the playbook scripts. Controllers can be

set off by third-party tools or by manual triggers. This functionality is similar to

workflow triggers used in Shuffle and N8n.

53

• Playbooks – are scripts consisting of multiple steps that carry out specific

actions and deal with predefined use-cases. Playbooks can be setup to ingress

and enrich alerts from a remote source, and to forward alerts or manual actions

towards other third-party tools. Playbooks use plugin scripts for communicating

with third-party tools. This functionality is similar to the workflows that users

can create while using tools like Shuffle and N8n.

• Plugins – consist of scripts specifically for communicating with and fetching

data from remote tools. This can include tools for data enrichment, like

VirusTotal, AbuseIPDB, MxToolbox, URLSCAN.io or other tools for

communication and ticketing. Plugins are very similar to apps in Shuffle and

N8n that also allow communication with third-party tools.

• Services – are scripts that can be enabled to run on a schedule, similar to using a

cronjob trigger for a workflow in Shuffle or N8n. Certain playbook or plugin

scripts can be utilized to run as a service on a schedule.

5.2.1 Data Ingestion

In the in-house solution controller and plugin scripts are used for data ingestion. To

achieve that goal, controller scripts take data from remote sources and execute a

playbook. Plugin scripts integrate third-party sources into a playbook and fetch data

from them. As mentioned, this functionality is the same as the functionality of triggers

and apps in Shuffle and N8n.

5.2.2 Workflow Automation

Workflow automation in the in-house solution is handled by playbooks and services.

Playbooks take input from controllers, import plugins that interact with third-party

security tools and pass the input data into the remote tools. Services are similar to

playbooks, however, they are run on a schedule. Playbooks and services offer similar

functionality as workflows in Shuffle and N8n.

5.2.3 UI

The most limited part of the in-house automation solution is its UI. However, the UI

offers important features, including:

54

• Allowing users to view statistics from workflow execution steps and alert

components.

• Allowing users to perform modifications to basic workflow configuration

variables.

• Allowing users to trigger workflow executions and view execution status.

Because of the nature of the tool, the logic of the playbook and plugin scripts cannot be

modified via the UI as in Shuffle and N8n.

5.2.4 Orchestration and Version Control

Regarding orchestration, it is clear that the in-house solution is able to easily combine

data from multiple sources. Moreover, the performance of the in-house tool can easily

be monitored via event monitoring and log aggregation systems since exporting logs

from the tool is not limited, unlike in the case of Shuffle and N8n. This allows for more

straightforward error handling and performance monitoring.

Regarding version control, naturally, there is no limitation affecting integration with Git

or with local testing environments.

5.3 Perceived Impact on SOC Performance

Company P has had various security automation procedures already implemented for

the last 2 years. The statistics shown below focus on specific automation procedures

implemented since the beginning of October of 2023 via the in-house solution. In this

period, no other modifications were made regarding alert sources, alerting rules, or

tuning processes. This has had a positive impact on the following aspects:

• The total number of generated cases

• The average time needed for closing cases

• The average duration of a vulnerability management process

In order to demonstrate the benefits of automation, the aforementioned metrics were

measured in the year 2023 when recent automations were not yet implemented:

55

• From July through September regarding case generation number metric

• From January through September regarding average case close time metric

Afterwards, the same metrics were measured from October through December of 2023

after the deployment of recent automations.

5.3.1 The total number of generated cases

The following graphs show the number of cases created between July and September of

2023 vs the cases created between October and December of the same year. The data

points in the following graphs are visualized per ISO week.

Figure 19: Total cases per week for July-September (weeks 27-39)

In 2023, between the months of July and September, 27th and 39th weeks, the total

amount of created cases was 2384 (Figure 19). Over the same length period between

October and December, 40th and 52nd weeks, the number of generated cases dropped to

1317 (Figure 20). This means that there were approximately 44.76% less cases created

after implementing automation for performing external checks prior to creating cases.

56

Figure 20: Total cases per week for October-December (weeks 40-52)

5.3.2 The average time needed for closing cases

The following graphs demonstrate the average amount of time required, in hours, for

closing cases. The data points in the following graphs are also visualized per ISO week.

The average hours printed in the following graphs were rounded to full numbers for

visual clarity.

Figure 21: Average hours until case resolution weeks 01-39 (January-September)

Between January of 2023 until September of the same year, the average number of

hours until case resolution was approximately 35.93 per week (Figure 21). Specific

57

automated processes were tested during September and were fully put in place since the

beginning of October. This is reflected in the lower average hours during the month of

September. Between October and December of 2023, the average number of hours until

case resolution dropped to approximately 7.78 per week (Figure 22). This is a decrease

of approximately 78.35% after implementing automation procedures like alert

enrichment.

Figure 22: Average hours until case resolution weeks 39-52 (October-December)

5.3.3 The average duration of a vulnerability management process

The following figure demonstrates the impact of an automation that was added to the

process of vulnerability management in the beginning of October. Prior to this

implementation, alert investigation regarding the existence of potential vulnerabilities in

assets was done mainly manually. After the implementation, various potential fixes are

automatically applied to the target asset.

Since there is no data describing the manual procedure duration from the previous

months, duration was recorded in October of 100 alerts being triaged manually and via

the automation procedure. The attempt duration is recorded in seconds. The seconds

printed in the following graph were rounded to full numbers for visual clarity. On

average, the automation process shows a 61.22% improvement in triage time (Figure

23).

58

Figure 23: Manual vs automated vulnerability management process

59

6 Summary

This master's thesis carried out a comprehensive investigation into entry-level SOC

workflow automation tools suitable for SMEs. The research involved identifying and

defining feature requirements and comparison criteria for such automation tools.

Afterwards, two tools that satisfied the selection criteria were chosen and analyzed in

detail. After the pros and cons of the aforementioned tools were described, an

alternative in-house SOC automation solution was proposed. On top of this, impact

assessment was performed by leveraging real-world performance data from the SOC

team of company P. After analyzing the statistics, the study successfully demonstrated

the efficiency gains a basic automation system with the aforementioned features can

have on SOC teams within the context of SMEs. This research contributes valuable

insights to the field of cyber security, aiding SMEs in making informed decisions for

enhancing their security operations.

60

References

[1] Gartner, “Small And Midsize Business (SMB)”, Gartner Glossary, Information
Technology. [Online]. Available:
https://www.gartner.com/en/information-technology/glossary/smbs-small-and-midsize-
businesses. Accessed on: Jan. 02, 2024.

[2] Manfred Vielberth, Fabian Böhm, Ines Fichtinger, and Günther Pernul, “Security
Operations Center: A Systematic Study and Open Challenges,” IEEE Access, vol. 8, 2020, pp.
227756–227779.

[3] J. Muniz, “The Modern Security Operations Center,” 2021.

[4] N. Gupta, I. Traore and P. M. F. de Quinan, "Automated Event Prioritization for Security
Operation Center using Deep Learning," 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, 2019, pp. 5864-5872, doi:
10.1109/BigData47090.2019.9006073.

[5] T. v. Ede et al., "DEEPCASE: Semi-Supervised Contextual Analysis of Security Events,"
2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2022, pp. 522-
539, doi: 10.1109/SP46214.2022.9833671.

[6] C. Feng, S. Wu and N. Liu, "A user-centric machine learning framework for cyber
security operations center," 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI), Beijing, China, 2017, pp. 173-175, doi: 10.1109/ISI.2017.8004902.

[7] O. Cassetto, "Security operations center roles and responsibilities," Exabeam, Foster City,
CA, USA, Tech. Rep., 2019

[8] A. Applebaum, S. Johnson, M. Limiero and M. Smith, "Playbook Oriented Cyber
Response," 2018 National Cyber Summit (NCS), Huntsville, AL, USA, 2018, pp. 8-15, doi:
10.1109/NCS.2018.00007.

[9] D. Crémilleux, C. Bidan, F. Majorczyk, and N. Prigent, “Enhancing collaboration
between security analysts in security operations centers,” in Risks and Security of Internet and
Systems, vol. 11391. Cham, Switzerland: Springer, 2019, pp. 136–142.

[10] C. Crowley, B. Filkins, and J. Pescatore, "SANS 2023 SOC Survey," June 2023.

[11] C. Crowley and B. Filkins, "SANS 2022 SOC Survey," May 2022.

[12] C. Crowley and J. Pescatore, "A SANS 2021 Survey: Security Operations Center (SOC),"
October 2021.

[13] Bushra A. Alahmadi, Louise Axon, and Ivan Martinovic, “99% False Positives: A
Qualitative Study of SOC Analysts’ Perspectives on Security Alarms,” 2022 USENIX Security
Symposium, pp. 2783–2800.

[14] A. A. Mughal, “Building and Securing the Modern Security Operations Center (SOC)”,
IJBIBDA, vol. 5, no. 1, pp. 1–15, Jan. 2022.

61

[15] T. Kantola, "Exploring VirusTotal for security operations alert triage automation,"
Bachelor’s Degree Programme in Information and Communications Technology, February
2022.

[16] S. Norem, A. E. Rice, S. Erwin, R. A. Bridges, S. Oesch, and B. Weber, “A mathematical
framework for evaluation of SOAR tools with limited survey data,” in Computer Security.
ESORICS 2021 International Workshops. Springer, 2022.

[17] C. Islam, "ARCHITECTURE-CENTRIC SUPPORT FOR SECURITY
ORCHESTRATION AND AUTOMATION," The University of Adelaide, School of Computer
Science, 2020.

[18] C. Islam and M. A. Babar, "A Multi-Vocal Review of Security Orchestration," ACM
Computing Surveys, vol. 52, no. 2, p. 45, 2019.

[19] D. Lalos, "Analysis on Security Orchestration Automation and Response (SOAR)
platforms for Security Operation Centers," University of Piraeus, School of Information and
Communication Technologies, 2022.

[20] R. Brewer, "Could SOAR save skills-short SOCs?" Computer Fraud & Security, vol.
2019, no. 10, pp. 8–11, Oct. 2019.

[21] R. Bridges, A. Rice, S. Oesch, J. Nichols, C. Watson, K. Spakes, S. Norem, M. Huettel,
B. Jewell, B. Weber, C. Gannon, O. Bizovi, S. Hollifield, S. Erwin "Testing SOAR tools in
use," Computers & Security, Volume 129, pp. 1-28, 103201, ISSN 0167-4048, 2023.

[22] R. F. Gibadullin and V. V. Nikonorov, "Development of the System for Automated
Incident Management Based on Open-Source Software," 2021 International Russian
Automation Conference (RusAutoCon), Sochi, Russian Federation, 2021, pp. 521-525, doi:
10.1109/RusAutoCon52004.2021.9537385.

[23] A. Chidukwani, S. Zander and P. Koutsakis, "A Survey on the Cyber Security of Small-
to-Medium Businesses: Challenges, Research Focus and Recommendations," in IEEE Access,
vol. 10, pp. 85701-85719, 2022, doi: 10.1109/ACCESS.2022.3197899.

[24] N. Deepa, B. Prabadevi, L. B. Krithika and B. Deepa, "An analysis on Version Control
Systems," 2020 International Conference on Emerging Trends in Information Technology and
Engineering (ic-ETITE), Vellore, India, 2020, pp. 1-9, doi: 10.1109/ic-ETITE47903.2020.39.

[25] A. Anderson, "The State of SOAR: Tines Survey Reveals the Pros and Cons of SOAR
Platforms," November 8, 2022. [Online]. Available: https://www.tines.com/blog/the-state-of-
soar-tines-survey-of-security-professionals-reveals-pros-and-cons. Accessed: Nov. 15, 2023.

[26] R. S., "Caveats when using SOAR and Git," May 22, 2020. [Online]. Available:
https://medium.com/@slick_security/caveats-when-using-soar-and-git-25ee490671f2.
Accessed: Nov. 15, 2023.

[27] IBM. "Pricing." IBM QRadar SOAR. Available: https://www.ibm.com/products/qradar-
soar/pricing. Accessed: Nov. 16, 2023.

[28] J. Miller, "What is your experience regarding pricing and costs for Palo Alto Networks
Cortex XSOAR?" Palo Alto Networks Cortex XSOAR Reviews. [Online]. Available:
https://www.peerspot.com/products/palo-alto-networks-cortex-xsoar-reviews. Accessed on:
Nov. 18, 2023.

[29] PeerSpot, "Splunk SOAR Reviews." [Online]. Available:
https://www.peerspot.com/products/splunk-soar-reviews. Accessed on: Nov. 18, 2023.

62

[30] Palo Alto Networks. "Community Edition FAQ." Cortex XSOAR. [Online]. Available:
https://start.paloaltonetworks.com/rs/531-OCS-018/images/Cortex_XSOAR_Community_Editi
on_FAQ.pdf. Accessed: Nov. 16, 2023.

[31] "They work with us," Security Vision, Available:
https://www.securityvision.ru/work_with/. Accessed: Nov. 16, 2023.

[32] Shuffler. "Pricing." [Online]. Available: https://shuffler.io/pricing. Accessed: Nov. 16,
2023.

[33] n8n. "Self-hosting n8n." [Online]. Available: https://docs.n8n.io/hosting/. Accessed: Nov.
16, 2023.

[34] n8n. "Pricing." [Online]. Available: https://n8n.io/pricing/. Accessed: Nov. 16, 2023.

[35] n8n. (2023). "Streamlining SecOps: Enhancing security and operations with n8n."
[Whitepaper]. Available: https://n8niostorageaccount.blob.core.windows.net/n8nio-strapi-blobs-
stage/assets/n8n_streamlining_secops_2397b62e64.pdf

[36] Frikky, "Introducing Shuffle — an Open Source SOAR platform part 1," Shuffle
Automation, May 20, 2020. [Online]. Available:
https://medium.com/shuffle-automation/introducing-shuffle-an-open-source-soar-platform-part-
1-58a529de7d12. Accessed on: Nov. 17, 2023.

[37] R. Špitsmeister, "Implementing a SOAR Solution in a Security Operations Center on the
Example of Cybers," TalTech, Tallinn, 2023.

[38] Shuffle Features, "Shuffle Features," [Online]. Available: https://shuffler.io/docs/features.
Accessed on: Nov. 18, 2023.

[39] Fair-code. “Fair-code,” [Online] Available: https://faircode.io/ Accessed on: Nov. 18,
2023.

63

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Giorgi Okroshidze

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Comparison of SOC Workflow Automation Options for SMEs and Practical

Impact Analysis,” supervised by Risto Vaarandi

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

09.12.2023

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

64

	1 Introduction 10
	1.1 Problem Statement 11
	1.2 Objectives and Scope of the Research 11
	1.3 Novelty 12
	1.4 Research Questions 13

	2 Literature Review 14
	2.1 SOC Components and Architecture 14
	2.2 Common Challenges SOC Teams Face 16
	2.3 Automation as a Potential Solution 18
	2.4 Similar Works and Research Gap 20

	3 Selection of Automation Tools 22
	3.1 Choosing the Selection and Comparison Criteria 22
	3.2 Tool Exclusions, Choices, and Reasoning 25

	4 Detailed Comparison of the Selected Tool Features 28
	4.1 Shuffle 28
	4.2 N8n 37
	4.3 Summary of Pros and Cons of the Tools 49

	5 In-house SOC Automation in Company P and Real-World Impact on Performance 52
	5.1 Why Use an In-house Solution 52
	5.2 Implemented Automation Structure 53
	5.3 Perceived Impact on SOC Performance 55

	6 Summary 60
	References 61
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 64
	1 Introduction
	1.1 Problem Statement
	1.2 Objectives and Scope of the Research
	1.3 Novelty
	1.4 Research Questions

	2 Literature Review
	2.1 SOC Components and Architecture
	2.2 Common Challenges SOC Teams Face
	2.3 Automation as a Potential Solution
	2.3.1 SOAR tools

	2.4 Similar Works and Research Gap

	3 Selection of Automation Tools
	3.1 Choosing the Selection and Comparison Criteria
	3.1.1 Pricing of the Tools
	3.1.2 Basic Functionality of General Security Automation Tools

	3.2 Tool Exclusions, Choices, and Reasoning

	4 Detailed Comparison of the Selected Tool Features
	4.1 Shuffle
	4.1.1 Data Ingestion
	4.1.2 Workflow Automation
	4.1.3 UI
	4.1.4 Orchestration
	4.1.5 Version Control

	4.2 N8n
	4.2.1 Data Ingestion
	4.2.2 Workflow Automation
	4.2.3 UI
	4.2.4 Orchestration
	4.2.5 Version Control

	4.3 Summary of Pros and Cons of the Tools

	5 In-house SOC Automation in Company P and Real-World Impact on Performance
	5.1 Why Use an In-house Solution
	5.2 Implemented Automation Structure
	5.2.1 Data Ingestion
	5.2.2 Workflow Automation
	5.2.3 UI
	5.2.4 Orchestration and Version Control

	5.3 Perceived Impact on SOC Performance
	5.3.1 The total number of generated cases
	5.3.2 The average time needed for closing cases
	5.3.3 The average duration of a vulnerability management process

	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis

