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Abstract 
The developed method for adaptive decomposition of the thoracic electrical bio-
impedance (EBI) into its main components – cardiac and respiratory ones – is 
described in the thesis. The method allows decompose the EBI on-line in non-
stationary conditions.  Delay of the resulting signals with respect to the input is 
only two seconds. Moreover, the proposed method allows decompose the EBI 
signal into its components also in the case when the harmonic spectra of these 
components are partially overlapped. 

The method is based on models of the cardiac and respiratory components of 
the total EBI signal. The model of cardiac component is composed as a parametric 
time domain model, which uses the specially designed set of orthonormal signals, 
called as application specific orthonormal basis (ASOB). The Jacobi weight 
function is applied to the design of ASOB. The cardiac model is characterised first 
by natural parameters – frequency and amplitude. Additionally, other parameters, 
characteristic to the model type and specific to the designed ASOB, are introduced. 
The respiratory signal model is designed in frequency domain. This is just a low-
pass filter, which suppresses the remainder of the cardiac component – the differ-
ence between the cardiac component of EBI and its parametric model. The LPF 
with finite impulse response is used to preserve the waveform of respiratory 
component unchanged. 

The bio-impedance signal decomposer (BISD) as a realization of the proposed 
method is accomplished digitally using PC software. However, the future devel-
opments are oriented towards applications in portable and stationary cardiac 
devices, both in ambulatory and clinical settings, where imbedded solutions are 
required.
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Resümee 
Väitekirjas on esitatud väljatöötatud meetod rindkere elektrilise bioimpedantsi 
lahutamiseks südametegevuse ja hingamise komponentideks. See meetod võimal-
dab eraldada komponendid praktiliselt reaalajas mittestatsionaarses olukorras. 
Väljundsignaalide hilistumine sisendi suhtes on maksimaalselt kaks sekundit. 
Seejuures võimaldab esitatud meetod lahutada bioimpedantsi signaali komponenti-
deks isegi siis, kui nende spektrid osaliselt kattuvad. 

Meetod kasutab torso impedantsi signaali südametegevuse ja hingamise kom-
ponentide mudeleid. Südamekomponendi aeg-esituses parameetrilise mudeli 
matemaatiliseks aluseks on spetsiaalselt koostatud ortonormaalne rakenduspõhine 
signaalibaas, mille juures aproksimeerimise kaalud määrab Jacobi funktsioon. 
Südametegevuse mudelit karakteriseeritakse esmajoones naturaalsete parameetrite-
ga – amplituudi ja sagedusega. Lisaks tuuakse sisse lisaparameetrid, mis on 
iseloomulikud just antud mudelitüübile. Sagedusesituses hingamissignaali mudel 
on madalpääsfilter, mis surub maha jääkkomponendi – südametegevuse signaali ja 
selle parameetrilise mudeli vahelise erinevuse. See on lõpliku impulsskajaga 
madalpääsfilter, mis filtreerimisega toob sisse vaid hilistamise ilma läbiva hinga-
missignaali kuju moonutamiseta. 

Ülalkirjeldatud meetodi alusel on välja töötatud bioimpedantsi signaalikompo-
nentide eraldaja, mis on realiseeritud digitaalselt personaalarvuti tarkvara kujul. 
Siiski, kuna tulevikurakendused on orienteeritud kasutamisele kantavates ja 
implanteeritud seadmetes ning ambulatoorsetes ja kliinilistes tingimustes, siis on 
silmapiiril meetodi rakendused sardsüsteemide koosseisus. 
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Introduction 
The thesis presents the results of author’s research work carried out during his PhD 
study at the Department of Electronics of Tallinn University of Technology on the 
electrical bio-impedance (EBI) subject, and in more particular, on its application in 
cardiology. More precisely, the topic lies in the processing of the raw data of the 
human chest’s EBI by separating its cardiac and respiratory components and in 
selecting them out from the total EBI signal. As a result, the selected and separated 
components – cardiac and respiratory ones – can be further analyzed and processed 
individually. 

 
Below, the introductory first chapter of the thesis continues by presenting the 

overview of the EBI and its applications in general in the section 1.1. The overview 
of the EBI estimation techniques is shown in the section 1.2. Some considerations 
about the bio-impedance signal are discussed in the section 1.3. The impedance 
cardiography (ICG) with related troubles is discussed in more details in the section 
1.4. The impedance respirography (IRG) with related troubles is discussed in the 
section 1.5. 

The second chapter contains the problem statement together with a review about 
known and possible new solutions. The latter review, in addition to its main 
purpose, allows better explaining the problem in general and showing the complex 
nature of the stated problem. 

The third chapter describes the proposed method for adaptive signal decomposi-
tion. In this chapter, the basics of the method are introduced, and the models of the 
cardiac and respiratory bio-impedance components are presented. In the last 
section of the chapter two practical accomplishments are described: 1) the bio-
impedance signal decomposer (BISD) with semi-adaptive cardiac signal model, 
and 2) the BISD with fully adaptable cardiac signal model. 

In the last chapter of the thesis, the author’s standpoints, discussions and con-
clusions are presented. 

Published journal papers and the full texts of the presented conference papers of 
the author are given in appendices A – F. 
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At the end of the thesis the list of references and the list of author’s publications 
are presented. 

1.1 Electrical Bio-Impedance (EBI) – overview 
The conception and the definition of the electrical bio-impedance (EBI) are 
familiar to scientists and researchers since a long time ago. The term electrical 
impedance was introduced by Oliver Heaviside even in 1886 year and was devel-
oped further by Kennely (1893), who introduced complex variables for describing 
of electrical impedance. The bio prefix in the EBI term indicates the biological 
nature of the object, electrical impedance of which is under discussion. Therefore, 
assuming the biological nature of the subject, the EBI can be defined as the 
quantity showing how much the biological tissue resists to the electrical current 
flow, which is injected into the tissue. As an electrical parameter, the EBI reflects 
electrical performances of the tissue under examination (Grimnes and Martinsen 
2008, Chapter 4 and 5). Consequently, an electrical model of the tissue can be 
defined, which in conjunction with others discipline specific models (i.e. chemical, 
mechanical, geometrical etc.) can give more exact and complete understanding of 
the tissue structure and performances. 

In addition, since an estimation of the EBI as a parameter of a living tissue 
gives certain  information about the physiological (electrical) performances of this 
tissue or its state, the variations in the EBI can reflect the changes in the tissue state 
and functioning. For example, in application to the human and other mammal 
organisms, the body motions, the blood flow, the mechanical movements of the 
heart and lungs cause complicated changes in the EBI. Estimating and analyzing 
the EBI of human thorax makes possible to analyze some dynamic processes in 
organs, such as respiration and cardiac activities. 

Such relations between the EBI variations and physiological changes were in-
vestigated already in 1930-40s years by Atzler and Lehmann (1932), who related 
the impedance changes to the mechanical activity of the heart. Later investigations 
followed by Nyboer et al, enabled to declare that changes in the human chest 
impedance are related to a pulsatile blood volume (Nyboer et al 1940). 

But only in the past decades, due to the giant progress in the microelectronic 
and computers fields, an estimation of the EBI and its practical applications began 
to play an important role in medicine. During the past years, the developments in 
EBI estimation techniques and the related signal processing algorithms have 
achieved great results. For example, modern devices cover wider and wider 
frequency range in which the EBI can be estimated and analyzed. More complex 
digital algorithms can be used instead of its analogue approximations. Therefore, 
such devices are more precise and reliable in the EBI estimation task than before, 
which opens more possibilities in studies of small variations of EBI. Variations of 
that kind may have small amplitude, but often they are of the most of importance 
for researchers and medical doctors. For example, in some measurement condi-
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tions, the amplitude of the impedance variation caused by cardiac activity can be 
100 times smaller than the value of basal EBI component. 

Moreover, the great achievements in micro technologies, allow to produce more 
complicated systems on a chip, make possible to integrate the whole (or, at least, 
almost whole) EBI estimating circuitry into the single chip. Such a possibility 
together with non-invasiveness of the EBI techniques gives great opportunity to 
develop the cost-effective widely used medical diagnostic and prognostic devices. 
Devices of that kind can be used for long-term monitoring of patients in clinical 
conditions as well as in ambulatory conditions or even at patient’s home. 

The information collected from the EBI estimation can be used in a wide range 
of the medical and biological applications, i.e. impedance cardiology, impedance 
tomography, body composition estimation, biological cells research or even for 
human disgust indication (Rohrmann and Hopp 2008). However, the cardio-
applications are of greatest importance topics nowadays. 

Numerous diseases related to the heart functioning are known, e.g., heart fail-
ure, congestive heart failure, cardiovascular disease, coronary artery disease, 
ischemia, hypertension and etc. For example, 21% of the adult population in 
Canada are affected by hypertension (McFetridge-Durdle et al 2008). 

Thereupon, the situation requires developing of cheap and widely available, 
non-invasive and reliable monitoring and diagnosing tools capable to recognize a 
heart disease on its early progress stage. Such devices also must to be easy to 
handle for medical staff as well as for personal use at home. 

The present day, in opposite, heart activity monitors and diagnosing tools are 
expensive, cumbersome and time-consuming, also complicated in use. Moreover, 
they are invasive and therefore health risky, as it was reviewed recently by Sodol-
ski and Kutarski (2007). 

In contrast, the EBI based technology offers non-invasive, safe for the person 
health, and easy to use methods and tools for heart activity monitoring and analy-
sis. Despite that the commercially distributable EBI-based cardiac devices are not 
cheap enough and their availability is not enough wide yet, the EBI-based methods 
are very promising not only in its reliability, but also in cost and wider availability 
in the near future. 



1.2 Estimate of the EBI Value 
Since already values of the EBI are used as the input data for the method proposed 
in the thesis, only a short overview of the EBI estimation technique is presented. 
First, to start this subsection the definitions of used terms are given. 

The conception impedance estimate or estimation instead of impedance meas-
ure or measurement is used in the current work. This is since the impedance is 
indirectly measured (thus estimated) through the direct measurement of the voltage 
in the case of the current driven measurement (Grimnes and Martinsen 2008, 
Chapter 7). 

Taking into account an existence of parasitic components1 in the measuring 
stuff and their complexity, such as impedances of electrodes, of the skin and tissue 
regions, which are out of interest, makes an accurate and reliable EBI value 
estimation to the non-trivial task (Grimnes and Martinsen 2008). Moreover, high-
quality current source design is complicated, especially in the frequency range over 
100 kHz (Annus et al 2008a), giving thus an additional error component for the 
EBI estimate. Thus the use of terms estimate and estimation corresponds much 
more to the realistic situation. 

However, for the simplicity of description, the overview of the estimation tech-
niques is done without considering the parasitic effects in the measuring stuff. It is 
possible without any loss of generality, in the context of the thesis topic. 

Thus, in principle, the value of EBI can be estimated by injecting the electrical 
current into the tissue region, which is of interest and measuring the voltage drop 
around this region (Figure 1). 

Using the well known Ohm’s law, a value of the tissue impedance for a selected 
frequency can be expressed as ratio of the measured voltage response over the 
excitation current: 

 res

excI
=
V

Z  (1) 

Here, in eq. (1), and in the following mathematical expressions, the symbols 
describing signals and certain parameters, which are typed in bold, mean the 
vectors. Such vectors have two coordinates – typically, the amplitudes of the 
inphase and quadrature components of the same order of the used orthonormal 
basis (e.g. cosine and sine functions). The components can be represented using the 
complex math notation. 

Moreover, the use of an admittance notation can be more convenient in some 
applications. The admittance of the tissue region of interest at a selected frequency 
is following: 
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1  Such components are parasitic with regard to the tissue region, immittance of which is of 
interest, see i.e. Annus et al 2008a. 



 exc

res

I1
= =Y
Z V

 (2) 

Both the impedance and admittance of the biological tissue are complex values 
in their nature. This is due to the capacitive effect of membranes of the tissue cells 
and their nucleuses (Grimnes and Martinsen 2008, Chapter 3), which is reflected in 
the phase shift of the voltage around the cells with respect to the current flowing 
through the cells. In opposite, electrolytic solution of the cells and surrounding 
space is purely resistive and does not give any phase shift between the voltage in 
the rounding space and the injected current (Grimnes and Martinsen 2008, Chapter 
2). 

Since a lot of cells exist in the tissue region of interest, they all take part in the 
EBI formation. Such the sharing and distribution of factors, including also the 
complicated frequency dependence, is very complicated. This makes difficult to 
analyze and model it (Grimnes and Martinsen 2008, Chapter 8). 

It is clear, that the EBI of living tissue is frequency dependent due to the capaci-
tive effect. And moreover, different cells and different tissue regions have different 
electrical performances, and consequently also their spectral characteristics in 
frequency domain. In this way researchers are interested in obtaining the EBI 
estimates in so wide frequency range as possible and thanks to the great develop-
ment of technology in last decade, it is becoming realizable. 

The first possible solution suitable to obtain EBI values over the selected fre-
quency range is to scan over the frequency range of interest, varying the frequency 
of the excitation current generator in the single frequency EBI estimator. 

The second possibility is to generate the excitation current of a complicated 
waveform (thus of complicated spectral content). In this case the wide frequency 

( ) ( )exc exc excI cos 2t A f tπ=

( )resV t

res

excI
=
V

Z
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Figure 1 Simplified diagram of the EBI value estimating technique 



range can be covered in one-step measurement-estimation procedure (Annus et al 
2008b, Min et al 2008, Paavle et al 2008). It is very important in such applications, 
where the performances of the biological tissue change very fast in time, and the 
response of the EBI in a wide frequency range is of interest. The estimation of EBI 
must be done during a very short time interval. 

1.2.1 Electrode configurations. 

Numerous electrode configurations exist to estimate the EBI of the human thorax. 
Here, in this subsection, some of such configurations are presented for example. 

A. Four band electrode configuration 

For a long period the electrode configuration shown in Figure 2 was widely used in 
the ICG applications.  

B. Hands to feet spot electrode configuration 

This electrode configuration is used in JR Medical Ltd (Estonia) instrumentation. 
The same configuration was applied also for collecting the EBI estimates, which 
were used by the author as input data for making computer experiments with the 
developed decomposer.  

20 
 

( ) ( )exc exc excI cos 2t A f tπ=

( )resV t

res

excI
=
V

Z

Figure 2 The four band electrode configuration typically used for the EBI 
value estimation 



Figure 3 Hands to feet spot electrode configuration (used in JR Medical Ltd 
products) 

1.3 Bio-Impedance Signal Considerations 
For the thesis work, the EBI variations caused by respiration and cardiac activities 
are both of interest. Therefore, the developing of the model-based conceptual 
method of the EBI cardiac and respiratory components for their separation is 
presented in the thesis. First of all, only the single-frequency EBI value estimates 
are used. After that the developed algorithms can be extended and adapted for the 
input data set containing the multi-frequency EBI value estimates. 

The single-frequency measurement configuration used for estimating the EBI 
value is shown in Figure 4, where on the sources of dynamic variations (the heart 
and lungs), are taken into account too as well. 
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( )excI t

( )tZ ( )res tV

( ) ( )exc exc excI cos 2t A f tπ=

excf

Figure 4 The block-diagram of a typical single-frequency measurement 
configuration used for estimating of the EBI value 
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( )arg t⎡ ⎤⎣ ⎦Z
0arg ⎡ ⎤⎣ ⎦Z
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Q
ua

dr
at

ur
e

Figure 5 Phasor diagram of electrical bioimpedance Z(t)                              
and its variation ∆Z(t) 

1.3.1 Bio-Impedance vs. Bio-Admittance 

In this subsection, a comparison between the impedance and admittance use for the 
immitance cardiography and respirography is done. I will show that the time 
varying parts of impedance and admittance are different only in their scales and 
signs, if their values are much smaller than their related basal components. As a 
result, the proposed method can be used with either impedance or admittance 
estimates of the human thorax. 

Despite that the impedance as a parameter of the living tissue region between 
the voltage measuring electrodes is the unified whole, the small variation of it can 
be treated as a separate signal (see ( )t∆Z  in Figure 5) summed up with the basal 
part of the estimated impedance (3), which is constant in time (see  in Figure 5): 0Z

  (3) ( ) ( )0Z t Z Z t= + ∆

And the same for an admittance: 

  (4) ( ) ( )0Y t Y Y t= + ∆

It is clear that electrical performances of the living tissue can be described either 
by the impedance or admittance, which are related as reciprocal ratios: 

 
0

1 1
Y

Z Z Z
= =

+ ∆
 (5) 

 
0

1 1
Z

Y Y Y
= =

+ ∆
 (6) 

And both parameters, in turn, can be presented as a sum of basal and time-
varying parts (3) - (4). The basal component is the constant impedance (admit-
tance) of the living tissue region between the voltage measuring electrodes. The 
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time-varying part reflects small variations of the estimated impedance (admittance) 
value caused mainly by the cardiac and respiratory activities. 

0f

0g

( ) 1g f
f

=

2 g∆ 2 f∆

( )g f

f210

2

3

1

0f f+ ∆0f f−∆

0g g+ ∆

0g g−∆

Figure 6 The graph of the inversion function ( )g 1f f=  and the lineariza-
tion of ( )g ound the point ( )0g 0g f=  f  ar

Since the time varying part of the impedance and admittance are the most of 
interest, it is useful to show the relation between these variations. For this reason 
the reciprocal function ( )g 1f f=  is introduced (plotted in Figure 6) to generalize 
the task. 

Assuming that 0f  and f∆  are known, the variation  of the function value g∆
( )g f  can be found by linearization of this function at the neighbourhood of the 

observation point ( )0 0,f g . After that, the variation  can be evaluated as g∆

  (7) ( )gg f f′∆ = ∆ ⋅

where the derivative of the function ( )g f  is 

 ( )
( )

2

g 1
g

d f g
f

df ff

⎡ ⎤ ∆⎣ ⎦′ = = − ≈
∆

 (8) 

and the variation is consequently 

 
2

f
g

f

∆
∆ = −  (9) 
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Coming back to the impedance and admittance notations, the latter one can be 
approximated by the inverse value of the basal impedance minus the scaled value 
of the impedance variation: 

 0 2
0 0

1 Z
Y Y Y

Z Z

∆
= + ∆ −� , when   (10) 0Z ∆� Z

This is true, if the value of the basal impedance component is much greater than 
the impedance variation. 

Similar expression is valid for the impedance approximated by the admittance: 

 0 2
0 0

1 Y
Z Z Z

Y Y

∆
= + ∆ −� , when   (11) 0Y ∆� Y

As a result, it can be summarized that the variations of the impedance and ad-
mittance, mainly caused by the cardiac and respiratory activities, are related 
directly, if the basal values of the impedance and admittance are much greater than 
the respective variations, which are under discussion. 

To define how accurate such approximations are, the difference of the imped-
ance and admittance product from the unity is examined in eqs. (12) - (13): 

 ( 02
0 0

1 Z
Y Z Z Z

Z Z

⎛ ⎞∆ ⎟⎜ ⎟⎜⋅ = − ⋅ + ∆⎟⎜ ⎟⎜ ⎟⎝ ⎠
)  (12) 

 
2 2

12

0 0

1 1 1
Z Y

Y Z r
Z Y

ε
⎛ ⎞ ⎛ ⎞∆ ∆⎟ ⎟⎜ ⎜⎟ ⎟⋅ = − = − = − = −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 (13) 

As a result if a ratio  then the error  in (13), thus less than 1% . 
By Grimnes and Martinsen (2008, Chapter 9) the typical value for  is  and 
for variation caused by cardiac activity is . 

10r > 0.01ε <

0Z 25Ω
0.2Ω

1.3.2 Considering EBI as a signal   

Assuming that the bio-impedance as a parameter of living tissue is estimated using 
the sine wave electrical current excitation at some predetermined frequency and 
level, the phasor model can be used (Figure 5). Moreover, such an assumption 
makes possible to represent the variations of EBI in time domain as a signal. This 
is more appropriate representation of EBI based information for engineering, 
medical diagnosing, and signal processing. 

Assuming the EBI as a signal, the phasor ( )tZ  can be marked as signal  
and expressed as a sum of basal , cardiac  and respiratory  signals, 

( )tS

0S C( )tS R( )tS
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stochastic disturbance (noise) and unwanted motion artefact , caused 
e.g. by muscular activity: 

S( )tn M( )tn
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t   (14) 0 C R S M( ) ( ) ( ) ( ) ( )t t t t= + + + +S S S S n n

Moreover, taking into account the relation between dynamic parts of the electri-
cal bio-impedance and -admittance, expression (14) can be treated as a general 
case, and it can be used for algorithm description applied to the electrical bio-
admittance (EBA) as well. 

Often the output of EBI estimator is presented by the signal's inphase compo-
nent or its magnitude, sometimes by both – inphase and quadrature components 
(Figure 5). 

Considering that in the whole frequency range up to several MHz the inphase 
and quadrature components have similar spectral contents, the scalar value of EBI, 
either of its inphase or quadrature components or magnitude, can be used for 
conceptual method developing. 

Consequently, the equation (14) can be rewritten in a scalar form: 

  (15) 0 C R S M( ) ( ) ( ) ( ) ( )S t S S t S t n t n t= + + + +

In other words, assuming that the EBI components are obtained from independ-
ent signal sources, the EBI signal  can be expressed as a sum of the independ-
ent components: basal 0S , cardiac C  and respiratory R  components and 
unwanted artefacts, such as stochastic disturbances and motion artefact. 

( )S t
( )S t ( )S t

Thus, expressions (14) and (15) describe the content of the EBI signal. But what 

Figure 7 Two examples of the EBI signal obtained from the human chest 
(two different persons) during 20 seconds, using hands to feet spot 
electrode configuration (see section 1.2.1-B) 



is about amplitudes of the components, which form the EBI? 
Since the heart and lungs are not placed separately in the space, but they are 

parts of the human organism and placed side-by-side and affecting each other 
mechanically. The heart “beats” the lungs on each heart beating cycle and the 
lungs, in opposite, press the heart during the inspiration. Consequently, not only the 
individual mechanical movements are reflected in the EBI variations, but their 
interactions too. Such interaction is not strong, but any way, it exists. Empirically it 
can be described as mutual amplitude modulation of the cardiac and respiratory 
components of the EBI and expressed as 
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M  (16) ( ) ( ) ( )C R R C R C C R S1 1S t a b s s a b s s n n= + + + + +

The expression (16) for the EBI signal can be reordered in such a manner, that 
the cardiac and respiratory components, which are not affected by the modulation, 
will be presented separately from their mutual combination meaning the modulat-
ing part, as it is shown below in the system of equations (17): 

  (17) 
( ) C C R R CR C R S M

CR R C C R

S t a s a s s s n n

a b a b

ξ

ξ

⎧⎪ = + + + +⎪⎪⎪⎨⎪⎪⎪ = +⎪⎩

In the equations (16) and (17), variables Ca  and Ra  are the main amplitudes of 
the cardiac and respiratory components respectively (without the modulation 
effect), variables Cb  and Rb  are the amplitudes of modulating parts of the cardiac 
and respiratory components respectively. The variable CRξ  is the amplitude of the 
mutual component ( )C Rs s  in the equation system (17), taking into account the 
modulation effect. 

To summarize this subsection, examples of the EBI signal obtained from the 
human chest (from two different persons) during 20 seconds using hands to feet 
spot electrode configuration (see section 1.2.1-B), are shown in Figure 7. 

1.4 Impedance Cardiography (ICG) 
Impedance cardiography (ICG) is the EBI-based method of evaluating hemody-
namic parameters (Cotter et al 2006). The time variant part of the EBI, which is 
caused by cardiac activity, is taken as a basis for the ICG. 

The first correlation between the estimated EBI variations and the cardiac activ-
ity was published in early 1930s by Atzler and Lehmann (1932), Nyboer et al 
(1940), and then followed by others. 

By Zlochiver et al (2006), with reference to Newman and Callister (1999),  the 
term impedance cardiography (ICG) was introduced in 1959. 

However, the question about terminology arises, if the first time-derivative of 
the cardiac BI signal is marked in literature as ICG, then how the raw cardiac BI 



signal can be marked? To avoid any questions of such kind, in the following text 
the abbreviation ICG is used for the impedance cardiography. When talking about 
the time diagram of the cardiac BI signal, thus about the impedance cardiogram, 
the abbreviation ICGm is used. When about first time-derivative of the cardiac BI 
signal is talked, the abbreviation DICGm is used. And in addition, the higher order 
time-derivatives of the ICGm are designated by superscript at the letter D, for 
example the second order time-derivative of the ICGm is abbreviated as D2ICGm. 

1.4.1 Hemodynamic parameters 
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Evaluation of hemodynamic parameters2 is possible due to the fact that the blood 
has higher conductivity (lower resistivity) compared with tissues surrounding the 
heart and vessels. For example, the blood has a resistivity about , the lungs 
about , but the bones have much higher resistivity, abou m  (Malmi-
vuo and Plonsey 1995). Consequently, using appropriate measuring configuration 
and signal processing algorithms, it is possible to separate the immitance variations 
in the heart and vessels caused by the cardiac activity, from the immitances 
originated from other tissu

1.6 mΩ
20 mΩ  170

The hemodynamic parameters, which are of the most of interest for cardiolo-
gists, are the heart stroke volume (SV) and the cardiac output (CO). The SV is 
measured in litres [L] and is defined as the volume of blood pumped by the heart 
during the ventricular ejection time interval. The CO [L/min] is the volume of 
blood pumped by the heart in one minute and can be evaluated using the values of 
SV and heart rate (HR [1/min]) as 

  (18) CO SV HR= ⋅

The EBI based evaluating of volumes is known also as impedance plethys-
mography, but this is more general definition, which can be applied to all kinds of 
the volumes, not only to the blood volumes. 

Moreover, the ICG has also other names as impedance plethysmography of the 
chest, electrical impedance of the chest or reocardiography (Sodolski and Kutarski 
2007). 

The hemodynamic parameters evaluation from the ICGm is based on the model 
of the human torso. The cylindrical models are most widely used due to their 
simplicity. For example, in Figure 8, the one cylinder model is shown. By Grimnes 
and Martinsen (2008, Chapter 9) the volume evaluating from immitance estimates 
is based on two effects: 

1. A geometry-dependent effect. 

2. A conductivity-dependent effect. 

 
2  Hemodynamic (lat.) means the blood movement. 



A. The geometrydependent effect 

The geometry-dependent effect can be defined from the cylindrical model (single-
cylinder model in Figure 8), admittance and impedance of which are presented by 
expressions (19) and (20) respectively: 

 A
Y

L
σ=  (19) 

 L
Z

A
ρ=  (20) 

where  is the conductivity and is the resistivity of tissue,  is the cross section 
area of the cylinder, and L  is its length. The resulting geometry-dependent effect 
by Grimnes and Martinsen (2008) will be dependent on the constraints on the 
estimated tissue volume: if the volume increase results in a swelling of length , 
admittance will fall. If the volume increase results in a swelling of cross sectional 
area , the admittance will increase. If the volume increase occurs outside the 
estimated tissue volume, the estimated admittance will not change with the 
geometrical volume increase. 

σ ρ A

L

A

Using eqs. (19) and (20), the volume V  of the cylinder can be found: 

  (21) 2V Y Lρ=

    The volume estimation through impedance can be expressed as 

 
2

2 1 1L
V Z A L

Z Z
σ

σ
= = = 2ρ  (22) 

In practical applications the absolute volume is not available. Therefore the 
relative changes  will be evaluated as /V V∆

 V

V Y

∆ ∆
=

Y , (23) 

Using eq. (21), the volume change can be expressed with respect to the admittance 
change as it is shown in eq. (24): 

 2V
L

Y
ρ

∆
=

∆
 (24) 

Consequently, the volume change can be found when the admittance change is 
known: 

  (25) 2V Y ρ∆ = ∆ L

28 
 



The equations (23) - (25) can be applied if admittance model with presumption 
that  (and known) is valid for the volume evaluation. In this case, 
expressions (26) - (28) will be applied for volume evaluation: 

constL =

 2

0 0

1 1
V

Z Z Z
ρ

⎛ ⎞⎟⎜ ⎟∆ = −⎜ ⎟⎜ ⎟⎜ + ∆⎝ ⎠
L  (26) 

 2

0 0

1Z
V

Z Z Z
ρ

∆
∆ = −

+ ∆
L  (27) 

Equation (27) for the single cylinder model (Figure 8) is exact and non-linear 
with respect to the impedance change. It can be approximated by a linear variant 
(28) only then, when : 0Z Z∆�

 
2

0

L
V Z

Z
ρ
⎛ ⎞⎟⎜ ⎟∆ − ∆⎜ ⎟⎜ ⎟⎜⎝ ⎠

� , when  (28) 0Z ∆� Z

By Grimnes and Martinsen (2008) the single cylindrical model of human torso 
for hemodynamic parameters evaluating was used firstly by Nyboer (1950). 
Nyboer regarded the thorax as a cylindrical volume of length  and used the 
following expression for volume evaluation: 

L
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L
V Z

Z
ρ
⎛ ⎞⎟⎜ m⎡ ⎤⎟∆ = ∆⎜ ⎟ ⎢ ⎥⎜ ⎣ ⎦⎟⎜⎝ ⎠

 (Nyboer) (29) 
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Figure 8 One-cylinder model: L is a length of the cylinder, and a small par-
allel volume change ∆V of the cylinder is shown by dashed region 



Later Kubicek et al (1966), Kubicek (1968) and Patterson (1989) made some 
assumption concerning the relationship between stroke volume and net change in 
the thorax blood volume as evaluated in eq. (28) (Malmivuo and Plonsey 1995). 

Kubicek et al and Patterson had not used directly the cardiac impedance varia-
tion C  in evaluating of the volume of blood in (28). The approximated value 

C  is used, which can be estimated if the slope of the ICGm, reflecting the 
systolic phase of the heart process, is continued (in imagination) until the end of 
the left ventricle ejection time interval, see Figure 9. The height of the continued 
slope is the value of , which can be expressed as 

Z∆
Z∆ �

CZ∆
�

 C LVE
max

dZ
Z T

dt

⎛ ⎞⎟⎜∆ = ⎟⎜ ⎟⎜ ⎟⎝ ⎠
�  (30) 

Consequently substituting C from (30) into (28) instead of , the expres-
sion for the SV evaluating by Kubicek et al and Patterson can be presented: 

Z∆ � Z∆
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Figure 9 Evaluating the stroke volume (SV) by impedance change 
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 (Kubicek and Patterson) (32) 

 

B. The conductivitydependent effect 

It is clear that the equations (19) - (20), and consequently eqs. (21) - (22), show the 
dependency of the volume on the impedance (admittance) and on the geometry as 
well. But the volume estimation depends also on the conductivity of the tissue 
under examination. For example, by Salo (2001, p. 29) the resistivity of blood, like 
most electrolytes, depends on temperature with a resistivity decrease of 2% C ° . 
Moreover, by Grimnes and Martinsen (2008, Chapter 9) the conductivity of blood 
varies with the blood flow variation. The latter dependence is named as Sigman 
effect (Sigman et al 1937). 

The conductivity  (resistivity ρ ) of the tissue (blood), is usually taken as a 
constant value. Thus in the real life observed conductivity variations are not 
reflected in the model (in the equations), they cause errors in the estimated values 
of the blood volume. However, by Salo with references to Geddes (1972) and 
Geddes and Baker (1975), different factors can be measured in situ and used for the 
stroke volume value estimation. 

σ

1.4.2 Difficulties in hemodynamic parameters analysis 

One of the important troubles influencing the accuracy of hemodynamic parame-
ters evaluation is the Sigman effect. The crux of the effect is the admittance of 
blood is flow dependant. Sigman et al (1937) were the first who had reported this. 
Since the “amount” of variation of the blood admittance due to the flow changes is 
not plethysmographic, this variation gives an error in blood volume estimations. 
The “amount” of variation can be several percents of the total blood impedance. 

Another principle trouble, which influences the accuracy of the SV and other 
hemodynamic parameter estimation, is the over simplified model of torso and 
cardiovascular system in particular. Over simplification can be presented by 
ignoring of the tissue structure, thus for the hemodynamic parameter estimation the 
torso is assumed as homogenous and isotropic. The next simplification is geometri-
cal. The torso is assumed to be cylindrical with a changing radius, which is 
surrounded by the air. Though such simplifications are very far from the reality, the 
models can, however, give satisfactory results. But, for example, taking into 
account at least the conductivity of the tissue surrounding the aorta and bolus effect 
in the aorta (see Figure 10), we can significantly increase accuracy of the estimated 
hemodynamic parameters. 

31 
 



Modern cardiac pacemakers are often equipped with EBI measurement tools for 
calculating the SV values from intracardiac impedance data. Using implantable 
catheter with multiple electrodes (more than one voltage sensing pair) gives 
possibility to segment the total volume of the blood inside the heart ventricle to 
several smaller volumes stacked together. For each smaller volume the cylindrical 
model with appropriate parameters should be used. Such a possibility was investi-
gated by Salo (2001) in his PhD thesis. 

L

V∆

Figure 10 The effect of a bolus of blood passing the measured volume 

1.5 Impedance Respirography (IRG) 
Impedance respirography (IRG) is an EBI-based method for evaluating pneumody-
namic parameters. The time variant part of EBI caused by breathing is a basis for 
the IRG (called also as impedance pneumography). 

The IRG can reflect the state of lungs and the respiratory system in general. 
Estimation of pneumodynamic parameters is of great importance. The pneumody-
namic parameters, especially minute ventilation (MV), reflect very closely the 
metabolic demand during physical exercises (Mond et al 1988, West 1988). The 
MV at rest is about 6 L min⎡

⎢⎣
⎤
⎥⎦ , but during an exercise with moderate load the MV 

increases up to 60 L min⎡
⎢⎣

⎤
⎥

                                                     

⎦  (Webster 1995). Moreover, by Webster (1995), the  
heart rate and cardiac output are almost linearly related with MV. This property is 
effectively used in rate adaptive pacemakers (see Min et al (1999), Webster (1995) 
and Dell’Orto et al (2004)), where the pneumodynamic parameters are used to 
estimate the human workload by metabolic demand reflected in impedance 
respirogram (IRGm)3, and consequently, to adapt the heart pacing rate to an 
adequate value. 
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3  Terms, related to the impedance respirography (IRG) are defined using the same 
abbreviating scheme as for ICG, described in the section 1.4 (p. 26). 



1.5.1 Pneumodynamic parameters 

The pneumodynamic parameters, which are the most of interest, are the tidal 
volume (TV) and minute ventilation (MV). The TV is measured in litres [L] and is 
defined as the volume of air inspired into lungs during a single inspiration. The 
MV [L/min] is the average volume of air inspired into lungs in one minute and can 
be evaluated using values of the TV and the ventilation rate (VR [1/min]) as 
 

  (33) MV TV VR= ⋅

 

A. Tidal volume (TV) 

By Webster (1995), the TV value can be estimated by rectifying the IRGm and 
smoothing the result by the low-pass filter (LPF): 
 

 (fLPFTV IRGm= )  (34) 

Despite the fact that this is a value, which is only proportional to, but not even 
close to the TV real value, such an approach is widely used in pacemaker designs 
due to its simplicity. 
 

B. Minute ventilation (MV) 

As it was mentioned above, MV corresponds very well to the metabolic demand 
during exercises, but it does not reflect adequately the static physical efforts 
(Min et al 1999). 

It is needed to be mentioned that for pacemaker designers, the MV sometimes is 
not an adequate data source for pacing control. For example, during heavy physical 
loads the inspiration is deep, but ventilation rate is low, reducing the MV value. 
And even more, breathing can temporarily stop. However during such loads the 
heart rate should be, in opposite, increased (Min et al 1999). 

For the cardiac pacing applications Min et al (1999) have found a solution: to 
use both, the tidal volume and the ventilation rate separately, TV and VR respec-
tively, as two independent input values for the fuzzy logic based pacing control 
unit. In such a way a potentially inadequate influence of the MV is fixed by 
appropriate fuzzy logic. 

1.5.2 Troubles in pneumodynamic parameters analysis 

The ventilation rate, which varies in a wide range, can be named as the main 
trouble in analysis of pneumodynamic parameters. In opposite to the heart rate, 
which is fully autonomous, the ventilation rate can be changed by a person 
consciously. Therefore, the ventilation rate can change rapidly and moreover, can 
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temporarily stop. For the signal processing purposes such variations can be treated 
as non deterministic, tracking of which is very difficult. 

1.6 Uncertainties in the ICG and IRG 
Origin of the uncertainties in the impedance cardiography and respirography can be 
conceptually divided into three classes. 

The first one is the class of common problems characteristic to the EBI meas-
urement in general. These problems are related to the quality of the EBI estimation 
methods and systems, including the quality of the circuitry part – the quality of 
current sources, voltage measurement units, demodulators, analogue-to- digital 
converters (DAC) etc. 

The second one is the conformity of a model of the human organism, or the 
torso in particular, with the real state and the accuracy of such a model. In turn, the 
evaluated model of torso has to be combined from three sublevel models to be 
useful. These are the electrical, mechanical (hydraulic and pneumatic), and 
geometrical models of the torso. In addition, the electrode placement scheme must 
be selected in accordance with the model of the torso. The accuracy of the torso 
model and the electrode placement scheme both influence the reliability, repeat-
ability and accuracy of the evaluated hemodynamic parameters. 

The third class of troubles is related conditioning of the EBI signal for ICG and 
IRG applications. The raw EBI signal can be assumed as a sum of the basal 
component and the cardiac and respiratory components. Often additive stochastic 
disturbances and motion artefacts are presented in the EBI. The EBI signal to be 
useful for monitoring and diagnosing purposes must be decomposed into its 
components simultaneously with separating these components from disturbances 
and motion artefacts. In the ICG applications the basal and cardiac components are 
used directly in the SV and CO evaluation. For the ICG applications, in particular, 
the respiratory component can be used as additional information about the load of 
the human organism (see section 1.5 of the thesis), or can be treated as unwanted 
artefact. The cardiac component for the IRG applications, in turn, is usually treated 
as unwanted artefact. 

The first and the second classes of the described trouble sources are shortly 
overviewed in sections 1.2 and 1.4 respectively. The more deep and detailed 
description goes out of the scope of the present PhD research work. 

The third one, the conditioning of the raw EBI signal, in opposite, will be de-
scribed in detail in the following text of the thesis and the proposed solution of the 
problem will be presented. 



2  
 

Problem statement 
In this section, the problem is stated, which is under discussion in the thesis. 
Assumptions about the EBI are made and complexities, which are characteristic to 
the problem, are described in the first subsection 2.1. In the second subsection 2.2, 
a review of the known solutions, including short descriptions of their advantages 
and disadvantages, is made. In accompaniment with the review of known solutions 
based on the publications, an analysis of a possible solution – the use of the 
independent component analysis (ICA) applied to the EBI decomposition problem, 
is discussed. Combining the formal problem statement and the review of known 
and potential solutions in the same chapter of the thesis allows emphasizing the 
attention on diverse nature of the problem under discussion. 

2.1 The EBI decomposition – problem statement 
To discuss the topic of the current section, let us shortly review the considerations 
about the EBI as a kind of signals, firstly mentioned in the section 1.3 (page 21) of 
the thesis. 

The EBI is assumed to be a sum (35) of the basal 0S , cardiac C  and respira-
tory R  components and unwanted artefacts, such as stochastic disturbances 

( )S t
( )S t

( )Sn t  and motion artefact n : ( )M
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Figure 11 Sketch of a possible frequency domain harmonic spectrum of EBI 
signal, which consists of the cardiac and respiratory components 



  (35) 0 C R S M( ) ( ) ( ) ( ) ( )S t S S t S t n t n t= + + + +

The main task of the EBI signal conditioning is to decompose the total EBI 
signal  into its useful components: basal, cardiac and respiratory ones 
selecting them at the same time from the disturbances and noise, which are often 
presented in the signal. 

( )S t

Since the author’s research work and of the presented thesis is aimed to find a 
solution of the task defined above, let concentrate more attention on this problem.  

Decomposition of the total EBI signal into its components: basal, cardiac and 
respiratory ones accompanied with simultaneous suppression of stochastic distur-
bances and motion artefacts, is not a trivial task. There are several complexities to 
overcome: 

• harmonic frequency domain spectra of the cardiac and respiratory com-
ponents can often be overlapped (Figure 11); 

• the decomposition procedure assumes that the components as the output 
of the method must remain unchanged individually, however separated 
from each other; 

• the EBI signal is non-stationary due to the variations of heart rate and 
lung ventilation rate in time domain, and moreover, due to the motion 
artefacts, if such are presented in the EBI signal; 

• low frequency nature of the cardiac and respiratory signal components. 

The latter makes difficult the real-time presentation of the results (the process-
ing delay must be short). For example, the heart rate (HR) of a healthy person can 
vary from 60 bpm to 240 bpm, which corresponds to cardiac cycles C  to 
1 s (frequencies C  to 4 Hz). Because the respiratory rate is about four times 
lower than HR, several higher harmonics of the respiratory signal lie in the 
frequency range of cardiac signal, i.e. the spectra are overlapping (see Figure 11). 

0.25T =
1F =

Despite that the heart rate and ventilation rate of the estimated EBI on the upper 
plot in Figure 7 are different enough the respiratory component has rapid up- and 
down-fronts, which make the EBI decomposition problem more complex. In 
addition, on the bottom plot of the same figure, the EBI plot from another person 
shows that the ventilation rate changes from slower to faster rate in ten seconds and 
rapid fronts of the respiratory component remain. These two EBI examples give 
very well visual demonstration of the stated problem and show that usual filtering 
in the frequency domain cannot solve this problem. Therefore more application 
specific advanced methods and concepts are needed. 
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2.2 Decomposition the EBI signal – a review about known methods 
and potential solutions 

Many papers and several books are written about EBI in general and about its 
measurement (estimation) techniques. Some of them are devoted to the specific 
topic, e.g., evaluation of hemodynamic or pneumodynamic parameters. However, 
only tens of the papers written over the past decades are discussing the problem of 
EBI conditioning by separating its components, cardiac and respiratory ones, in 
details. More often the cardiology application of the EBI is discussed, and in this 
context, the most of these papers report that the baseline drift caused by respiration 
is the great problem. This is due to the extremely complicated nature of the task. 

In the current subsection, the literature review related with the stated problem, 
is given. Trivial frequency domain filtering cases are not discussed here, because 
they are suitable only for several stationary conditions, i.e. for the healthy human in 
the resting state. These cases are out of scope of the stated problem, in which the 
human is not obligatory resting. Moreover, the pathological cases are taken into 
account and respiratory component is included as an arbitrary function. 

The selected range of papers can be divided into three different approaches: 
ensemble averaging, (classical) adaptive filtering, and several spectral analysis 
methods, which are presented in the following text. In addition, the independent 
component analysis (ICA) method, as a potential solution, is analyzed as well. 

2.2.1 Ensemble averaging 

The ensemble averaging technique uses multiple periods of the DICGm signal to 
suppress the disturbances, which are not correlated with the DICGm signal. Such 
approach is used by Muzi et al (1986), Zhang et al (1986) and Wang et al (1995). 
Woltjer et al (1996) referenced to Kim et al (1992) and declared that averaging has 
been shown to be effective in eliminating the effect of respiration. However, it is 
clear that the disturbing components must have a zero mean value to be effectively 
suppressed by averaging. But it becomes possible only, when averaging is done 
during a long time interval. Such averaging can suffer from the variability of the 
DICGm signal shape and event latencies that can cause less distinct events in the 
signal to disappear in the averaged signal (Hu et al 1997). As a result, this ap-
proach cannot be used in on-line monitoring of the cardiac parameters. 

2.2.2 Adaptive filtering (classical) 

Adaptive filtering is used by Yamamoto et al (1988) for suppression of the 
disturbances in the DICGm signal. This solution is based on the digital infinite 
impulse response (IIR) band-pass filter, which moves around the centre frequency 
(heart rate). Similarly, Min et al (2000) and Min et al (2002) proposed to use 
frequency adaptive finite impulse response (FIR) filters. Unfortunately, these 
solutions suppress also high-frequency components of the DICGm signal and 
introduce non-linear phase distortion. Another application of the adaptive filtering 



for reducing the respiration and motion artefacts in electrogastrogram was de-
scribed by Chen et al (1993). In the latter work, the usage of three types of adaptive 
filters was studied: the time-domain, transform-domain and frequency-domain 
ones. Disadvantage of these filters appears in the need for a reference disturbance 
signal. The same disadvantage appears in a system for adaptive cancellation of the 
respiratory artefact investigated by Pandey and Pandey (2005). The scaled Fourier 
linear combiner (SFLC) by Barros et al (1995), reconstruct the DICGm signal from 
harmonic spectral components found by using an adaptive least mean square 
(LMS) filter, with reference inputs related to the R-R intervals of ECG. 

2.2.3 Spectral methods 

The third approach is based on the spectral analysis methods. In particular, the 
wavelet based time-frequency analysis is used by Ouyang et al (1998) and Pandy 
and Pandy (2007) to select the disturbance free DICGm signal from the noisy 
input. However, the spectral analysis, and using of wavelets in particular, require a 
great number of spectral components (levels in the wavelet case) to represent the 
input signal accurately. Another difficulty can arise in selection of the threshold, at 
which the separation of the useful component from noises is performed. Pandy and 
Pandy (2007) use the hard threshold, which has a similar disadvantage as the 
filtering with a constant cut-off frequency. The method by Ouyang et al (1998) 
uses the soft threshold, but the breath holding during 8 seconds is needed to 
construct the auto-regressive (AR) model of the cardiac BI signal. Moreover, the 
pre-whitening of the input EBI signal and spline based model construction of the 
respiratory component are required. 

2.2.4 Independent component analysis (ICA) methods 

Taking into account the assumption made in the section 1.3.2 (page 24) that the 
EBI signal can be expressed as a sum of the independent components, the follow-
ing question arises: can the signal  be decomposed into its components using 
some well known method of independent components analysis

( )S t
4 (ICA)? An answer 

to this question is presented below with explanations of two cases. 

A. Multiple electrodes based ICA 

Imagine that to separate all the components of EBI signal (35) using the ICA 
method, five voltage measurement electrode pairs are needed. In this case, the 
electrodes are placed separately and thus the EBI values estimated from measured 
voltage are different: these impedances are different. 
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4  An explanations presented in the following text about the use of the ICA for the EBI 

applications are based on the author’s understanding of the ICA method described in 
works of Hyvärinen and Oja (2000) and Hyvärinen et al (2001). 
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It must be remembered that the EBI is only assumed to be a signal, in reality it 
is the parameter of the tissue region (at whole) taken into account, which is placed 
between voltage measuring electrodes. These estimates can be similar in some 
cases in their values, but principally they are different impedances of different 
tissue regions. Moreover, each of such estimates can be described using expression 
(35) with its own content – similar, but different in value. 

In opposite, let compare it with array of antennas. In such arrays, each antenna 
detects the same complicated signal(s), but in different spatial places, forming in 
such a way, different spatial “views” to the same complicated signal (only meas-
urement disturbances are the “position specific”). 

However measuring the voltages for the EBI estimation using multiple elec-
trodes is not just identical to different views to the same signal, because the signals 
are different (different impedances). And it is not possible to define, which of the 
EBI estimates is an “actual value”, and which are just other estimates (if this 
sentence is right, in general). 

Consequently, it is clear that it is conceptually wrong to use multiple electrodes 
based ICA for decomposition of the EBI into its components. 

B. Multifrequency based ICA 

Similar situation exists with multifrequency EBI estimation approach. Despite that 
in this case the EBI values are estimated at one electrode position, the values of this 
estimates at different frequencies are different. 

Again it becomes clear that it is conceptually wrong to use the multi-frequency 
based ICA for decomposition of the EBI into its components. 

However, Rossel et al (1995) have used a two frequency EBI estimator to sup-
press the motion artefacts in EBI to obtain the motion-free signal. The method 
proposed by Rossel et al (1995) is a kind of independent component analysis (ICA) 
method combined with adaptive filtering (AF) methods. Despite that some results 
were obtained by Rossel et al, interpretation of them, I think, is not conceptually 
right. 

2.2.5 Concluding the review 

In regard to the need of on-line monitoring of the hemodynamic and pneumody-
namic parameters during exercises and especially in the ambulatory conditions, the 
ensemble averaging approach is not suitable. The adaptive filtering and spectral 
analysis are more promising approaches despite the fact that some of these require 
a reference disturbance signal. Moreover, all the above described noise cancellation 
methods and systems are based either on the ensemble averaging or adaptive filter 
by Yamamoto et al (1988) and Fourier linear combiner SFLC by Barros et al 
(1995), require the heart rate estimates obtained from the electrocardiogram (ECG). 
The availability and accuracy of the ECG based heart rate estimates are the 
mandatory prerequisites for the reliability of such methods. An exception to this 
rule is the coherent ensemble averaging method investigated by Hurwitz et al 
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(1990). However, as that method do not use the ECG signal, it has a common 
disadvantage of the ensemble averaging - a long time interval is needed for 
collecting a great number of ICG periods sufficient to perform the effective 
suppression of disturbances. 
 



3  
 

Proposed method –  
Model based EBI decomposition 

A fast method for separation of the cardiac and respiration components is pro-
posed, which uses only the initial EBI signal. In addition, the heart rate estimations 
derived from other signals like ECG can be used for supporting the procedure, if 
available, but this is certainly not obligatory. This approach eliminates the direct 
dependence on availability of the ECG signal, but allows using additional data to 
increase the speed and reliability of the separation process. Moreover, the proposed 
method is oriented to applications requiring the on-line monitoring of both, the 
cardiac and respiratory components. At the current stage, this method produces 
only a two-second constant delay of the separated cardiac and respiratory compo-
nents with regard to the initial EBI signal. In opposite to the ensemble averaging 
technique reviewed in the previous section, the proposed method is on-line method 
decomposing the EBI signal into the cardiac and respiratory components in time 
domain using the cardiac EBI signal model and continuous tracking the heart rate 
(in contrast to the spectral analysis approach). No additional reference signal is 
required. 

3.1 The method basics 
The signal model based decomposition of the EBI into its components is proposed 
by the author and explained during the rest of the thesis. 

Since the expression (35) is only the single “view” to the EBI of the tissue re-
gion between the selected electrodes, thus the task can be described as follows: we 
have five unknowns, which are needed to be found (separated), and only one 
known component – the sum of these unknown components, thus their linear 
combination. 

The explanation of the proposed method is done with simplification of the EBI 
signal representation – only cardiac and respiratory components are taken into 
account: 

  (36) ( ) ( ) ( )C RS t S t S t= +
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This allows concentrating an attention on the method conception by excluding 
extra complexities caused by the other EBI components, such as basal component, 
stochastic disturbances and motion artefact. Notes about these, excluded compo-
nents will be given where they are needed in the text. 

After simplification of the EBI signal representation in eq. (36), the main prob-
lem remains – now there are two unknowns and one known components, which are 
interrelated by a single expression. How can the signals be found (separated)? 

Due to the possibility that the spectra of cardiac and respiratory signals are 
overlapping, typical filtering approach in frequency domain and other methods 
reviewed in the section 2.2 are not reasonable. 

Therefore the method based on models of the cardiac and respiratory EBI com-
ponents is proposed as a solution of the defined task. 

The idea of proposed solution is laying in replacing of  and ( )CS t ( )RS t  by 
their models  and  respectively, whereas the EBI signal  can 
be expressed as system of equation (37). The functions CM n  and 

 define the models for construction functions, which are based on the 
current values estimates  and  respectively –  

( )CMS t ( )RMS t ( )S t
i ( )( C )f S t
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Now the estimations of cardiac and respiratory components can be obtained: 
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The model construction is the most significant part of the proposed method. The 
functions i ( )( )CCMf nS t  and i ( )( RRMf nS t )  are more abstract representations, than 
real mathematical functions. The cardiac and respiratory model constructions will 
be described in details in sections 3.2 and 3.3 respectively. 



−
+

+
−

( )S t

( )CS t� ( )CMS t

A practical realization of the equation system (38) should be performed in par-
allel, as shown graphically in Figure 12 – both subtraction operations and signals 
model constructions should be performed simultaneously. Such the configuration 
can be realized as parallel signal processing algorithm, i.e. embedded into the 
FPGA module. However, at the current stage this algorithm is implemented as 
serialized software variant. The sequence of operations, in this realization, during 
single discrete time instance ( nt  - the current discrete time instance) is presented 
below in the sequence of expressions: 

Σ

Σ ( )RMS t( )RS t�

( )( )CM Cf S t�

( )( )RM Rf S t�

Figure 12 The conceptual block-diagram of the bio-impedance signal de-
composer (BISD) into its cardiac and respiratory components 
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It becomes clear, that the models of the EBI components, cardiac and respira-
tory ones, play the most significant role in the decomposition method. They define 
not only the accuracy of the method, but the possibility of this method at all. Any 
error between the real cardiac component and its model will be presented in the 



estimate of the respiratory component. Moreover, if the functions constructing the 
models are not immune enough to the errors between the models and original 
components, both cardiac and respiratory ones, the algorithm will be unstable due 
to the feedback loop (Figure 12), or if even the loop remains stable, the significant 
errors can propagate in the loop. 

3.2 The cardiac EBI signal model 
In this section the cardiac EBI model will be discussed briefly and the detailed 
description can be found in the applied published papers in the appendices A – F of 
the thesis. 

In general, the constructing function of the cardiac signal5 model consists of two 
stages: analysis and synthesis. Parameters of the cardiac signal, which are based on 
the currently available cardiac signal estimate  are detected during the 
analysis stage. As a result, the model which is based on the detected and condi-
tioned parameters can be synthesized.  

( )CS t�

 

( )CS t� ( )CMS t

Figure 13 The block-diagram describing the construction of the cardiac EBI 
signal model 

3.2.1 Cardiac signal parameters – an overview 

Two kinds of signal parameters can be defined. The first kind parameters are based 
on signal nature and they are not model type specific. The second kind parameters 
are characteristic to the user defined model type6, which particularly can take into 
account the signal nature too. 

It should be noted that signal nature based and model type specific parameters 
can be estimated using different model types. However, such approach can 
potentially cause significant errors in the estimation of signal nature based values. 
The reasonable solution is to use the same model type for all kinds of parameter 
detection. 
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5  For the simplicity in the following text the cardiac component of the EBI, viewed as a 

signal, will be called the cardiac signal, if no ambiguity will occur. 
6  In this case it is the model designed (selected) by the author of the thesis. 



A. Signal nature based parameters 

The cardiac signal is cyclic with varying period, thus frequency7 (heart rate). Due 
to the cyclic nature, the cardiac signal can be parameterized using the frequency 
and amplitude notations. 

Usually the frequency value of the cardiac signal can vary from 0.8  to 
 and up to  for sportsmen during exercises. However, in extreme 

cases the cardiac frequency variations may be in a range from  up to 
. 

Hz
2Hz∼ 3Hz∼

0.5Hz∼
4 Hz∼
An amplitude as a parameter can be applied to all kinds of signals, and its value 

depends on the selected basis. Moreover, its value depends on the selected meas-
urement configuration. 

B. Model type based parameters 

In the case of cyclic signals the cyclic model for supporting the frequency and 
amplitude parameters should be used. For example, using the harmonic functions, 
the final model of a signal can be constructed using only the frequency and 
amplitude values defined as a signal nature based parameters, i.e. for a single 
component model . ( ) ( )CM C CsinS t A tω=

The real cardiac signal has a complicated waveform (Figure 14, upper plot) and 
consequently several harmonic spectral components are needed to model this signal 
accurately (Figure 14, bottom plot). 

Despite the fact that orthonormal basis (OB) formed from the harmonic func-
tions, 
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 of cyclic signals ar7  Often such kind e called as pseudo-periodic signals due to non 

constant duration of signal period. 

Figure 14 An averaged through multiples periods and scaled cardiac EBI 
signal CS  (upper plot); for illustration, scaled harmonic power 
spectrum of an averaged through multiples periods cardiac EBI 
signal (bottom plot) 

( )t
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t , (40) ( ){ } ( ) ( ){ }H cos , sink k kt t=

is powerful and widely used versatile signal processing tool, some application-
specific orthonormal basis (ASOB) may give more appropriate and compact 
spectral representation of signals in some practical situations. 

In some cases the one-period signal-shape of a cardiac EBI signal can be ap-
proximated by a non symmetrical triangular shape (Krivoshei 2006). However, the 
computationally effective triangular signal is not suitable for building an accurate 
cardiac EBI signal model in practice. 

It is essential to use application-specific functions representing characteristics of 
the signals to be processed. There are some more conditions to be considered for 
flexibility and computational efficiency: 

• using orthogonal system of functions makes possible independent de-
tection of the components; 

• using functions based on orthogonal polynomials enables simple recur-
sive computational schemes; 

• simple integration formulas can be derived from orthogonal polynomi-
als; 

• as BI signals are varying the weighting function should have one or two 
parameters that could be used for adaptation to waveform. 

From classical othogonal polynomials the proper choice would be Jacobi poly-

Figure 15 The first and the second components of the designed ASOB and an 
averaged through multiples periods and scaled cardiac BI signal 
SC(t), which is synchronous with the odd component Q2(t) of 
ASOB (upper plot): (see eq. (41)) ; scaled harmonic 
power spectra of the same signals (bottom plot) 

5Α = Β =



nomials which are defined on interval [-1,1] with the following weighting function 
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1, 1 ( ) ( ) ( ),W 1 1 ,t t t t
Α ΒΑ Β ⎡ ⎤= − + ∈ −⎢ ⎥⎣ ⎦ . (41) 

The parameters Α  and Β  of the Jacobi weight function (41) are the model type 
based parameters in the context of the task. Use of the Jacobi weight function for 
the cardiac signal modeling allows adapting the model shape to the signal shape by 
changing the values of parameters. Moreover, non equal values of the parameters 
give non symmetrical shape to the model. Such flexibility can be very useful for 
modeling the cardiac signal with a complicated shape. 

The application-specific orthonormal basis (ASOB) has been designed applying 
the Nth order Gram-Schmidt process, called also as standard Nth order Gram-
Schmidt orthogonalization process. 

This process is applied to the matrix: 

 , (42) ( ) ( ) ( ), , 2 ,Α Β Α Β Α Β⎡ ⎤⋅ ⋅⎢ ⎥⎣ ⎦1 W t t W t t W t

each columns of which are mutually independent. In the eq. (42)  is the vector of 
discrete time instances it , the values of which are in the range 

t
1, 1⎡ ⎤−⎢ ⎥⎣ ⎦ , the operator 

( )⋅  means element-wise multiplication of two column-vectors. 
Thus the result of such process is a set of orthogonal vectors ( )kQ t : 
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k
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where 

  (44) 

0,0
0 00

A,B
1 10 0

A,B
2 20 0 21 1

A,B
0 0 1 1 ( 1)

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) · ( )

( ) ( ) ( ) ( ) · ( )N
N N N N N N

r

r

r r t

r r r −

=

= +

= + +
…

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪
= + +…+ +

⎪⎪⎪⎪⎩

q t W t

q t q t W t

q t q t q tW t

q t q t q t q t t W t

In practical realization, the values of  in the time interval , 
km , and the norms  , ,  are stored in a memory 

and used for synthesis of the bases functions  at each time instant during the 
whole processing time interval. 

A,B( )W t [ 1,1]it ∈ −
r ( )kq t‖ ‖ 0 ..k N= 0 .. 1m N=

( )kQ t

The cardiac EBI signal model (45) constructed from the second ( )2Q t  compo-
nent of the proposed ASOB: 

 ( ) ( )
( )C

CM C 2Q
t

S t A t
ϕ

π

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
 (45) 



where C  is the detected amplitude and Cϕ  is the detected phase of the cardiac 
EBI component. It needs to be noted, that detected cardiac signal phase  must 
be wrapped into the range . 

A

Cϕ
,π π⎡ ⎤−⎢ ⎥⎣ ⎦

The first component 1  is used to synchronize the second component 2  
of the ASOB against the input signal C , detecting, in this case, the phase of the 
cardiac component. For the time-frequency synchronization the ‘signal-shape 
locked loop’ (SSLL) is used (Krivoshei et al 2007a). 

( )Q t ( )Q t
S ( )t

In such a manner the model can approximate the most significant features of the 
one-period signal-shape of the cardiac EBI signal. 

The designed Jacobi weight function based ASOB is shown in Figure 15, where 
one can see that the cardiac signal can be modelled much more accurately using 
only the second component of the ASOB synchronous with the cardiac signal, than 
using the harmonic basis. 

In detail the design of the ASOB and its use for cardiac signal modelling are 
described in the author’s papers “Decomposition method of electrical bio-
impedance signal into cardiac and respiratory components” (Krivoshei et al 2008b) 
and “An Adaptively Tunable Model of the Cardiac Signal for the Bio-Impedance 
Signal Decomposer (BISD)” (Krivoshei et al 2008a). 

3.3 The respiratory EBI signal model 
The main problem with modelling the respiratory signal is the significant variation 
of ventilation rate, which can occur unexpectedly and rapidly, whereas breathing 
can even stop for several seconds. 

Therefore, the frequency domain model is used in the proposed method to 
model the respiratory EBI signal. This is a simple and reliable solution for such 
kind of signals. 

After subtracting the cardiac signal model , shown in Figure 12, the 
respiratory estimate is mixed with a remainder of the cardiac signal – the error 
between the cardiac signal  and its model . The cardiac remainder 
part usually does not contain the first harmonic component of the initial cardiac 
signal, but certainly consists the higher frequency harmonic components (Figure 

( )CMS t

( )CS t ( )CMS t
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Figure 16 The sketch of the frequency domain respiratory EBI signal model 
– the low-pass finite impulse response (FIR) filter 



16). Consequently, applying a low-pass filter, which works as a frequency domain 
mask passing the respiratory signal spectral content without changes and suppress-
ing the remainder of cardiac signal. The finite impulse response (FIR) type filter 
with linear phase-frequency response is used to preserve the respiratory signal 
shape without distortions (Krivoshei et al 2007a, Krivoshei et al 2007b, Krivoshei 
et al 2008a, Krivoshei et al 2008b). 

3.4 Practical realization of the electrical BI signal decomposer (BISD) 
In the previous sections of the chapter 3 the introduction into the method and 
cardiac and respiratory signal models are given. The method description given in 
section 3.1 is more general – it is conceptual where the specifics of signal model 
are not taken into account. The main cause of difference between the configura-
tions of conceptual decomposing method and its practical realization is the respira-
tory BI signal model, which is selected to be a low-pass FIR filter. Of course, such 
a filter delays the signal. Consequently, synchronization between the cardiac and 
respiratory components is needed in two subtraction units in Figure 12 (also in 
Figure 17 and Figure 18). 

As a result, two practical realizations of the proposed method, where the signal 
models specifics are taken into account, are presented in the current section. 

The first one is the BI signal decomposer, which is based on the semi-adaptive 
model of the cardiac BI signal. 

The second one is the BI signal decomposer, based on fully adaptable model of 
the cardiac BI signal. 

3.4.1 BISD with a semi-adaptive cardiac model 

In this release of the EBI signal decomposer the semi-adaptive cardiac component 
model is used. The term semi-adaptive cardiac model means that the values of the 
model-type based parameters (see section 3.2.1) are constant for the current 
realization. In the proposed case these are the Jacobi weight function parameters  
and  in the eq. (41). In opposite, values of the signal nature based parameters, 
such as signal frequency and amplitude (signal scale), are tuneable during the 
whole signal processing time interval. 

Α
Β

In the proposed method the module, which constructs the cardiac signal model 
by tracking its parameters synchronously with the estimated cardiac signal, is 
named signal-shape locked loop (SSLL). The proposed SSLL is described in the 
publications of the author: the main description is published by Krivoshei et al 
(2007a) and additions to it by Krivoshei et al (2008a) and (2008b). 

As it was said above, the respiratory BI signal model is realized as a low-pass 
FIR filter with a constant cut-off frequency fcut = 1.6 Hz (LPFR in Figure 17 and 
Figure 18), which suppresses the remainder part of the cardiac signal. As all causal 
filters, the LPFR delays the signal. Consequently, the respiratory signal model 
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( )RMS t  is delayed with respect to the estimated respiratory signal ( )RS . The 
delay time in the current release is 2 seconds. 

t�
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t

( )RS t�

Figure 17 The block-diagram of the proposed BISD with semiadaptive car-
diac BI model 

As a result, the signals must be synchronized in the practical realization of the 
proposed method. Therefore the second low-pass filter LPFC with equal delay time 
is added before the subtraction unit into the upper branch of the proposed BISD, 
which is shown in Figure 17 and Figure 18. Use of this filter allows not only 
synchronize the signals between the upper and bottom branches, but also sup-
presses the stochastic disturbances with frequencies higher than 15 Hz. 

Moreover, an additional time or phase shift ( 0t or , respectively) of the 
cardiac BI signal model CMS  towards the 'future' (Figure 17 and Figure 18) is 
required to compensate the delay of the signal in the filter LPF

( )0ϕ
( )

C and synchronize 
the cardiac signal model S  with the input BI signal S t  in Figure 17. ( )CM ( )

3.4.2 BISD with fully adaptable cardiac model 

Though the proposed method and its practical realization using semi-adaptive 
cardiac signal model separates the cardiac and respiratory components effectively 
in different conditions (Krivoshei et al 2007b and Krivoshei et al 2008b), the use 
of fully adaptable cardiac model (Krivoshei et al 2008a) can significantly increase 
accuracy of the method together with decreasing of its computation load. 

It is clear that, if the shape of the first component of designed ASOB can be 
adapted to the shape of the cardiac signal period by tuning the model type based 
parameters of this signal model, then, in the most cases the cardiac BI signal can be 
modelled by using only the first component of the designed ASOB. As a result, the 
use of more accurate cardiac signal model accompanied by non significant cardiac 
remainder part in the respiratory estimate ( )RS , will allow to use ‘shorter’ FIR 
filters LPF

t�

R and LPFC. This, in turn, enables to lower computational load and gives 
a shorter delay of the signals. 
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( )CM tus 0S t t+

( )RM tusS t

( )tusS t

Such a proposed solution is presented in Figure 18, where the base configura-
tion from Figure 17 is complemented by the tuner of cardiac signal model, which is 
named as ‘period locked signal model tuner’ (PLSMT). The input signals for this 
module are the estimate of the cardiac BI signal and its phase. At the output of this 
module is the vector of parameters of the model, which is adapted to the cardiac BI 
signal at the current time instance. 

+

−
Σ

( )C tusS t�

Σ
+

−

{ }
tus

C 1, nt
S ϕ +→ p

PLSMTC

0t
C CMS S→�
SSLLC

1n+p
4( )tustϕ

cut 1.6Hzf =

LPFR

cut 15Hzf =

LPFC

( )R tusS t�

Figure 18 The block-diagram of the proposed BISD with fully adaptable car-
diac BI model 
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)
)

)

Both inputs of the PLSMTC are sampled uniformly in time domain, which is 
reflected in the time symbol index – t . tus

However, in the PLSMTC the input signal  is resampled uniformly in 
the phase domain

(C tusS t�
8 –  to fix the number of samples per signal period. This 

operation is realized in the sub-module PLS (see Figure 19). After that the resam-
pled signal  is averaged over several periods by the averaging module 
AVG. The ensemble averaged signal 

(C pusS t�

(C pusS t�
s  is used as a cardiac signal template to tune 

the model parameters in the signal model tuner (SMT) module. 
As a result, the model tuner (SMT) itself and the signal model parameters 

(SMP) as parts of the module PLSMTC (see Figure 18 and Figure 19) are realized 

                                                      
site to the abov8  This is in oppo e written part of the thesis, where all signals were 

uniformly sampled in time domain. 

nBLMStus pusf f→ ( )C periods
avg

M
S� 1 2A Aα β⎡ ⎤= ⎢ ⎥⎣ ⎦

p

np

1n+p
s( )C pusS t�( )C tusS t�

L
4

1n+p( )tustϕ

4

Figure 19 The block-diagram of the period locked signal model tuner 
(PLSMT) as a part of the proposed BISD with fully adaptable car-
diac BI model 
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using the MatLAB9 programming environment separately from the main algorithm, 
which is, in turn, developed using C++ programming language. 

The full description of this release can be found in the paper of Krivoshei et al 
(2008a). 

 

 
9  MatLAB® is the product of the MathWorks Inc. 
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4  
 

Discussion 
In this section, certain questions related to the stated problem and the developed 
signal decomposition method will be discussed and perspectives for the future 
development will be presented as well. 

The decomposition of dynamic electrical bioimpedance (EBI) signal into car-
diac and respiratory components in the presence of noise is very complicated, in 
general. In the section 2.2 has been shown that this task cannot be solved effec-
tively when using and developing the known methods as ensemble averaging, 
frequency domain filtering with either constant or moving cut-off frequency, and 
spectrum analysis. New advanced methods are required for obtaining satisfactory 
results. 

On the background of general complexities, an additional complication is origi-
nated from varying conditions (different patients, different kind pathologies, etc.). 
Thus, the method for solving the sophisticated task must be as flexible as possible 
for successful operating in such varying situations. Moreover, the flexibility of the 
method must be achieved without significant losses in accuracy to be usefully 
implemented in clinical and especially in ambulatory conditions. 

In the thesis is presented an adaptive method of the EBI decomposition into its 
components – cardiac and respiratory ones – which is based on the models of these 
components. The cardiac component model is parametric and uses the specially 
designed orthogonal and normalized signals called as application specific or-
thonormal basis (ASOB). The parametric cardiac model has the signal nature based 
parameters – the frequency and the amplitude, plus the specific model type based 
parameters. The respiratory model is designed in the frequency domain. This is just 
a low-pass filter, which suppresses the remainder part of the cardiac component – 
the difference between the EBI cardiac component and its parametric model. The 
LPF with finite impulse response is used to preserve the waveform of the respira-
tory component unchanged. 

Though the proposed method shows acceptable and sometimes even near to 
perfect results, there is still much space for future developments. First, the integra-
tion of the proposed fully adaptive model of cardiac component into the main 
signal decomposition algorithm should find the final solution. 
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Second, the model of respiratory component should be developed also in time 
domain, if possible, instead of the frequency domain model as proposed in the 
thesis. This task is extremely complicated due to the almost arbitrary varying 
ventilation rate, which can be even stopped for a while. However, if such the model 
could be developed, the accuracy of the proposed signal decomposition method 
will be significantly increased at whole, especially in the case of strongly over-
lapped spectra of the cardiac and respiratory components. Moreover, the use of an 
adaptable parametric time domain model of the respiratory component – in 
addition to the cardiac one – makes possible also effective suppression of motion 
and other artefacts. 

Special attention should be paid to the further development of frequency detec-
tion method. Fast detection of such very low frequencies as the cardiac component 
and especially the respiratory one have, is a very complicated task. 

The use of spectral analysis method for frequency detection is almost not suit-
able in the case of cardiac signal, and especially not applicable when analysing the 
respiratory component. There is a fundamental constraint: the better resolution in 
frequency domain takes longer time interval. For the frequency values less than 
one hertz, the process takes several seconds, e.g. about ten and even more. 

The phase-locked loop (PLL) based frequency detector in combination with 
level crossing detector is used in the proposed method and described in detail by 
Krivoshei et al (2007a, 2007b and 2008b). This approach allows continuously track 
the frequency of the signal. The level crossing frequency detector estimates the 
frequency roughly and then the PLL based frequency detector in turn elaborates the 
more exact estimate. 

The frequency estimator, which is described in the papers mentioned in the 
previous paragraph, is designed for estimation of the cardiac signal frequency only 
and is fast and accurate enough for this purpose. However, for developing of the 
respiratory parametric model, the design of above described frequency estimator 
must be revised to be fast and accurate enough in the conditions of rapidly and 
unexpectedly varying ventilation rate. 
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5  
 

Conclusions 
In the beginning of PhD studies became clear that further development of known 
methods was not suitable for solving the task of effective separation the cardiac 
and respiratory components of electrical bioimpedance (EBI) signal. Therefore, 
already in the early stadium of his work the author stated the aim of his research in 
a manner that new advanced methods are required to develop. 

Taking into account the possibility of overlapping the spectra of cardiac and 
respiratory components and non-stationary variations of these components, it 
became clear that time domain parametric models are needed. It became evident 
that at least the parametric time domain model of the cardiac component can be 
developed. The respiratory component is less deterministic due to its arbitrary and 
widely varying ventilation rate and it cannot be modelled exactly in time domain. 

Finally, following author’s viewpoints have been featured and the next results 
achieved: 

• the known methods, such as ensemble averaging, classical adaptive fil-
tering and spectral methods were reviewed and it is shown that these are 
not effective enough for solving the stated decomposition problem; 

• the possible solutions, which are based on the independent component 
analysis (ICA) were analyzed, too, and it is concluded that the ICA is 
conceptually not suitable to solve the stated problem; 

the developed solution for the stated problem – decomposition of tho-
racic EBI variations into its cardiac and respiratory components – over-
comes the known methods in flexibility of applications, shortness of the 
output signal delay, and operation reliability; 

• the developed method allows to decompose the EBI signal on-line in 
non-stationary conditions.  Delay of the resulting decomposed signals 
with respect to the input is only two seconds, which is the shortest 
nowadays; 
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• moreover, the novel method allows decompose the EBI signal into its 
components also in the case when the harmonic spectra of these com-
ponents are partially overlapped; 

• only the proposed method uses solely raw EBI data to solve the stated 
problem without any obligatory reference information, i.e. the electro-
cardiogram (ECG) signal; 

• the distinctive feature of the developed method is that it is based on the 
parametric time domain model of the cardiac EBI component and fre-
quency domain model of the respiratory EBI component; 

• the model of cardiac component is based on the functions of application 
specific orthonormal basis (ASOB). In turn, the ASOB is developed us-
ing the Jacobi weight function. Peculiarity of this function enables to 
get a flexible shape for the time domain model of cardiac signal. There-
fore the model is so well suitable for representation of the cardiac EBI 
component; 

• the model of respiratory component is designed in the frequency do-
main using the finite impulse response filter for the implementation of 
model. The filter suppresses the remainder part of the cardiac signal 
model; 

• the method will be implemented in the combined electrical signal 
(ECG) and impedance signal (ICG) cardiograph (ECG/ICG monitor), 
which enables to widen the established ECG techniques for making 
both cardiac and vascular system diagnosing simultaneously taking into 
account also respiration parameters; 

• the developed novel solution promises significant increase in accuracy  
and diagnosing value of the EBI based cardiologic devices, which in 
turn, enables to enhance the reliability of diagnosing the cardiovascular 
diseases worldwide.  
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