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INTRODUCTION

The amount of sewage sludge generated by mankind is increasing rapidly all over
the world (White et al., 2011). Intelligent disposal of this matter is one of the
major environmental tasks that needs to be solved (Nafez et al., 2015), strictly
keeping safety in mind. In spite of the fact that sewage sludge and sewage sludge
compost both contain a large number of different pollutants, involving residues of
pharmaceuticals (Lillenberg et al., 2009; Lillenberg et al., 2010a; Haiba et al.,
2013a, b), their usage is increasingly popular in agriculture (Noirot-Cosson et al.,
2016), forestry (Jarvis et al., 2016), horticulture (De Lucia et al., 2013), and in
restoration of abandoned mining areas (Varnik et al., 2006).

Crop production in post-soviet countries like Estonia largely takes place at the
expense of soil phosphorous resources (Astover and Rossner, 2013; Haiba et al.,
2016). Sewage sludge compost is without a doubt an important source of
nutrients, but at the same time it may perform in the role of hazardous waste,
associated with several severe phenomena such as soil and plant pollution or
microbial resistance.

Pharmaceutical products are being increasingly detected in the environment
(Amouzgar and Salamatinia, 2015). The presence of pharmaceutical residues (and
even in very low concentrations) in sewage sludge compost is of great concern
(Haiba et al., 2017). The widespread use of antibiotics is the most important
factor for the emergence, selection, and dissemination of antibiotic-resistant
bacteria (Baquero et al., 2008; Roasto et al., 2009; Munir et al., 2011; Naquin et
al., 2015, Méesaar et al., 2016). Due to the occurrence of antibiotic resistance
genes in the wastewater treatment systems, an impact of the antibiotic
combinations is greater than the sum of their independent activities (Aydin et al.,
2015). As a result the bacteria may develop several resistance mechanisms; this
will ultimately result in multidrug resistance (Baharoglu and Mazel, 2011).

Recent decades have shown intensive work in studying the fate of
pharmaceuticals in the environment originating from sewage treatment plants
(STPs). These studies involve the development of analytical tools (Lillenberg et
al., 2009; Kipper et al., 2011; Haiba et al., 2017), determination of
pharmaceuticals in different compartments (Lillenberg et al., 2010a), composting
technologies (Haiba et al., 2013b) and plant uptake of pharmaceuticals
(Lillenberg et al., 2010b; Eggen et al., 2011; Colon and Toor, 2016).
Pharmaceuticals entering into the soil may affect microbial activity, plant growth
and development, and may have adverse effects on living organisms (Haiba et al.,
2017). A number of pharmaceuticals, known to be persistent in soil, are able to
accumulate into food plants (Jjemba, 2002; Migliore et al., 2003; Boxall et al.,
2006; Dolliver et al., 2007; Haiba et al., 2013a). The fate of human
pharmaceuticals in the environment is presented in figure 1.1.
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Figure 1. Fate of human pharmaceuticals in the environment

It would be impossible to determine the presence and content of all possible
pharmaceuticals in compost and to study their uptake by different food crops.
This leads to the understanding that compost must be made safe using reliable
sewage sludge treatment technologies, based on research. The safety of using
compost should be ensured using universal testing methodologies developed for
this purpose. Recent research shows that pharmaceuticals and household products
can be degraded during composting (Patureau et al., 2008; Poulsen and Bester,
2010; Zhang et al., 2011). However, the literature data on this topic are scarce and
more knowledge is required in this field (Butovskyi et al., 2016). It has been
shown that by using different amendments, the effectiveness of the degradation of
pharmaceuticals may increase during composting (Qiu et al., 2012).

The current thesis is to summarise the work published in the papers listed
under the heading "List of original publications that constitute the thesis".
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1. LITERATURE REVIEW

1.1 Sewage-derived pharmaceuticals in the environment (I, II, III,
IV, V, VI, VII)

Pharmaceuticals have been used for decades to prevent and treat human and
animal diseases (Zhang et al., 2008; Li et al., 2014; Haiba et al., 2016). Over the
past 15 years, the adverse effects (including endocrine disruption and antibiotic
resistance) of some compounds, called “emerging”, have been observed in
animals, humans and other organisms (Peysson and Vulliet, 2013). Several
studies have demonstrated that the two most important sources through which
pharmaceuticals reach the environment are sewage sludge and its compost (Kim
et al., 2012; Rodriguez-Rodriguez et al.,2012; Reichel et al., 2013, Jelic et al.,
2011, Borgman and Chefetz, 2013; Haiba et al., 2016; Kipper et al., 2017).

The problems of handling sewage sludge and the reduction of its
environmental impacts has become important in the whole world. The most
common and cost-effective use of sludge, compared to the other methods such as
incineration, has become agricultural application (Zuloaga et al., 2012; Li et al.,
2013a; Chen et al., 2014; Haiba et al.,, 2016). The use of sewage sludge in
agriculture is one of the major causes of environmental pollution (Nouri et al.,
2008). Though sewage sludge and its compost offers an opportunity to recycle
plant nutrients and organic matter to soil for crop production stimulating
biological activity (Rodriguez et al., 2012; Zuloaga et al., 2012; Li et al., 2013a;
Haiba et al., 2014), its usage as a fertilizer is limited due to a large number of
toxic pollutants found in this matter (Lillenberg et al., 2010a; Lillenberg, 2011;
Haiba et al., 2016).

Medications used for human medical care, such as analgesics, antibiotics, anti-
inflammatories, antidepressants and antiepileptic drugs do not decompose
completely in the human body (Bergersen et al., 2012, Zhang et al., 2008;
Vasskog et al., 2009). The major route by which pharmaceuticals enter sewage is
commonly accepted to be via urine and faces, with each contributing different
relative amounts depending on the pharmacokinetics and structure of the
individual compound (Winkler et al., 2008; Haiba and Nei 2017). A range of
studies has shown that some pharmaceuticals and personal care products (PPCPs)
are neither completely removed by sewage treatment, nor completely degraded in
the environment (Redshaw et al., 2008; Lillenberg et al., 2009; Lillenberg et al.,
2010a; Jelic et al., 2011; Rodriguez-Rodriguez et al., 2012; Borgman and Chefetz,
2013; Haiba et al., 2013b; Narumiya et al., 2013; Reichel et al., 2013; Haiba et al.,
2016). Large amounts of PPCP residues have been found in terrestrial
environments where soil has been fertilized with sewage sludge compost (Ho et
al., 2013; Peysson and Vulliet, 2013; McClellan and Halden, 2010).

Antibiotics are designed to be subject to biodegradation and "work" effectively
even at small doses (Girardi et al., 2011). Pharmaceuticals can affect the
efficiency of microbial-mediated processes (the regeneration of nutrients, carbon
and nitrogen circulation and digestion of pollutants) in the environment (Girardi

15



etal.,, 2011; Jelic et al., 2011; Bergersen et al., 2012; Martin et al., 2012a; Chen et
al., 2013; Li et al., 2014; Haiba et al., 2016).

As a result of regular industrial, agricultural and household activities, a variety
of compounds enter into the environment, of which only a small percentage are
studied for their toxicological effects on humans and the environment (Peysson
and Vulliet, 2013). Approximately 4000 drug substances are used in Europe
(human and veterinary) and they are susceptible to reach the environment
(Mompelat et al., 2009; Rodriguez-Rodriguez et al., 2011). Scientists have studied
about 150 medical compounds that have been found in the environment, mostly in
water samples (Rivera-Utrilla et al., 2013; Li et al., 2014). When drugs are
detected in the environment, their concentrations are generally in the ng/L-pg/L
(ppt-ppb) range (Moldovan et al, 2009; Haiba and Nei, 2017). Individual
concentrations of any drug might be very low, but the combined concentrations
from drugs sharing a common mechanism of action could be substantial
(Daughton and Ternes, 1999; Haiba and Nei, 2017).

There are increasing concerns about the undesired impacts that may result
from continuous contamination of the environment with pharmaceutically-active
substances (Barbosa et al., 2016; Verlicchi and Zambello, 2016). One of the
possible fates of pharmaceuticals is to accumulate in organisms. Bioaccumulation
may have different effects, from increased internal loads in a given organism
potentially reaching toxic concentrations to biomagnification through up-
concentration along a food chain (Straub, 2016; Haiba and Nei, 2017).

Antibiotics present in soil contaminated with pharmaceutical residues may be
taken up by plants from arable land or pasture, and thus involuntarily end up in
human or animal food, destroy soil microorganisms or develop drug resistance.
Genes determining drug resistance can be transferred from harmless soil microbes
to pathogenic microbes (Davies, 1994; Haiba and Nei 2017). It is assumed that
using sewage sludge or manure containing drug residues for fertilizing is one of
the main reasons of increasing drug resistance (Knapp et al., 2010; Haiba and Nei
2017).

Medical substances have many necessary properties to bio-accumulate and
provoke change in ecosystems (Kipper et al., 2010; Baran et al., 2011). The
regulatory acts lack the trigger values for pharmaceuticals in sewage sludge
(Decree of Estonian Minister of the Environment; EU Council Directive
86/278/EEC; Lillenberg et al., 2009). The most closely related act is the European
Union (EU) directive EMEA/CVMP/055/96 defining the quality of manure. The
concentrations of pharmaceuticals must be under 100 pg kg™' in manure and
below 10 pg kg™ in soil. Montforts (2005) suggests that these figures should be
remarkably lower. Soil organisms, microflora and plants are directly exposed to
contaminants in sludge-amended soils (Haiba et al., 2016). There have been many
studies reflecting the occurrence and degradation of different pharmaceuticals in
sewage sludge and its compost (Jelic et al., 2011; Nei et al, 2014; Lillenberg et
al., 2010 a, b; Haiba et al., 2013 a, b; Kipper et al., 2010), but currently the
knowledge of PPCPs ecotoxicology and their potential risks to the environment is
weak and needs to be analysed (Li et al., 2014).
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Recent years have shown intensive work directed to the development of
reliable methods for the determination of pharmaceutical residues in the
environment (Lillenberg et al., 2009; Kipper et al., 2011; Garcia-Rodriguez et al.,
2014; Casado et al., 2015; Morales-Toledo et al., 2016), showing the increasing
importance of this phenomenon (Haiba et al., 2017). The development of new
analytical methodologies is time-consuming and requires sufficient level of
resources.

Numerous attempts have been made to create models directed to the estimation
of potential concentrations of trace organic compounds in sewage sludge and
biosolids (Gielen, 2007; Bock et al., 2010; Cunningham et al., 2011; Zhang et al.
2016). Unfortunately no unified approach is still available due to the complexity
of interactions involving these compounds and sewage sludge.

1.2 Sewage sludge treatment and degradation of pharmaceuticals
@ 1L IV, V)

Unprecedented growth in urban population has resulted in the generation of huge
quantities of wastewater worldwide (Singh and Agrawal, 2010). Wastewater
treatment facilities are responsible for treating large volumes of domestic and
industrial sewage containing human waste. The goal of this activity is to produce
effluents of high enough quality for discharge back into the environment. Sewage
sludge is a byproduct of this process and necessitates proper disposal (Walters et
al., 2010; Zuloaga et al., 2012; Haiba et al., 2016).

Historically, sewage sludge has been disposed of by landfilling, incineration or
sea disposal (Hara and Mino, 2008; Bridle and Skrypski-Mantele, 2000).
Nowadays, the most widespread method for sewage sludge disposal has become
agricultural application, since it is the most economical outlet for sludge
compared to landfilling and incineration (Zuloaga et al., 2012; Li et al., 2013a;
Chen et al., 2014; Haiba et al., 2016). Sewage sludge compost is rich in nutrients
and trace elements and could be re-used in agriculture as soil fertilizer stimulating
its biological activity (Margesin et al., 2006). Nowadays more than 60% of the
sewage sludge produced in the United States and 40% generated in Europe are
applied to the land (Harrison et al., 2006; Zuloaga et al., 2012; Nei et al., 2014).

Sewage sludge may be regarded as hazardous waste, but it can also be used as
a fertilizer. Its safety with respect to pharmaceutical residues must be assessed
before use (Kipper et al., 2011). According to Nayak and Kalamdhad (2015)
composting is one of the sustainable practices to convert sewage sludge into
useful agricultural product. Alternatively, it has been stated that sewage compost
cannot be used for agricultural purposes: it may contain an excess amount of
chemical contaminants that can be assimilated by food crops (Lillenberg et al.,
2010a). However, sewage compost is rich in minerals, enabling long-lasting
supply for the fast growth of plants (Jarvis et al., 2016; Haiba and Nei, 2017).

Sewage sludge is an inevitable by-product of wastewater treatment. For
example, in Estonia about 360,000 — 500,000 tons of it is created annually.
Sewage sludge, which is difficult to market, piles up at wastewater treatment
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plants. Many pollutants are not efficiently removed during sewage and sewage
sludge treatment (Martin et al., 2015; Haiba and Nei, 2017). The re-use of sewage
sludge should be encouraged since it represents a long-term solution, provided
that the quality of the sludge re-used is compatible with public health and
environmental protection requirements. Therefore, it is necessary to stabilize the
organic residues in sewage sludge by composting (Knepper and Barcel6, 2003;
Oleszczuk, 2009; Zuloaga et al., 2012). Figure 1.1. is to present the compost piles
at Tallinn WWTP.

Pharmaceuticals can be degraded during composting (Poulsen and Bester,
2010; Kim et al., 2012). Among the factors which possibly promote
micropollutants degradation during composting is the presence of fungi in the
composted matter (Zhang et al., 2011). However, the literature data on this topic
are scarce and more research is required in this area (Butkovskyi et al., 2016;
Haiba et al., 2017).

Figure 1.1. Compost piles at Tallinn WWTP

Since sewage sludge has high moisture content it cannot be composted
alone — in order to absorb moisture it should be mixed with dry materials, which
act as bulking agents thereby improving the aeration and the compost quality
(Nayak and Kalamdhad, 2015; Zhou et al., 2014; Haiba et al., 2016). Sludge and
bulking agent proportions in compost influence the composting reaction rate and
the final compost quality. Onwosi et al. (2017) reported that C and N are the most
crucial nutrients needed by the microorganisms involved in composting: C is used
as energy source while N is used for building cell structure (Chen et al., 2011a;
Igbal et al., 2015). Therefore, the C/N ratio is an indicator of the degree of
decomposition of an organic matter, as C is lost as CO, during bio-oxidation
(Lazcano et al., 2008; Onwosi et al., 2017). Sludge can be mixed with different
bulking agents, sources of carbon, such as peat, straw, wood chips, leaves, peat,
rice husk, peanut shells and sawdust (Komilis et al., 2011; Cukjati et al., 2012;
Maulini-Duran et al., 2013; Malinska et al., 2014; Haiba et al., 2016; Onwosi et
al., 2017).

18



The degradation rate of pharmaceutical residues is dependent on the initial
components of the compost. Only very few o publications are dealing with the
impact of the composition of compost on the degradation of pharmaceuticals.
Hardwood sawdust appears to be an excellent sewage sludge amendment: from
the agricultural point of view, sludge co-composted with particularly fine-textured
sawdust is claimed to be an excellent compost material to be applied to soils
(Ammari et al., 2012; Nei et al., 2015, Haiba et al., 2016). Kim et al. (2012) have
shown that sawdust is able to initiate efficient composting, leading to elevated
composting temperatures, and consequently resulting in the reduction of residual
concentrations of pharmaceuticals to reasonable levels in a relatively short
composting period (Haiba et al., 2016). The degradation of salinomycin was
observed by Ramaswamy et al. (2010) under open and composting conditions.

Butkovskyi et al. (2016) studied the degradation of pharmaceuticals during
composting of the excess sludge from UASB (Upflow Anaerobic Sludge Bed)
with waste wood under controlled conditions. The results showed that the
degradation ranged from 87.8% for carbamazepine to 99.9% for estrone,
diclofenac and ibuprofen. According to Lillenberg (2011) the degradation of
pharmaceutical residues was more efficient in compost when anaerobically
digested sludge was mixed with peat, compared to the results when raw sewage
sludge was mixed with tree bark (Haiba et al., 2016).

Co-composting manure with sawdust or rice straw has shown more effective
degradation rates for sulfonamides (SAs) than treatments using manure alone
(Qiu et al., 2012). Kim et al. (2012) indicated that well organised composting
process resulting in an efficient decline of residual veterinary antibiotics (VAs)
originating from livestock manures will require some source of organic matter, as
the organic matter can elevate temperatures and provide a wide range of
additional binding sites during composting. Moreover this study recommended
that application of livestock manure as raw material and/or as liquid fertilizer
after only a short storage period to stabilize the manure should be avoided as this
may result in the potential release of VAs to the environment (Kim et al., 2012).

The results involving the evaluation of the biological degradation and sorption
of carbamazepine (CBZ), diclofenac (DCF) and some other pharmaceuticals
during the secondary treatment in WWTPs activated sludge were published by
Martinez-Alcala et al. in 2017. The biological degradation rate constant (Kp;or) 1S
estimated to follow a pseudo first-order equation (Joss et al., 2006a):

2 = Kpior X MLSS X S, (1)
where S, is the soluble compound concentration at time ¢ (ng L"), ¢ is hydraulic
retention time (h), Ky is the intrinsic biological rate constant (L g ' h™"), MLSS
is the suspended solids average concentration (g L™").

The equation allows predicting the elimination rate of pharmaceuticals. In
WWTPs with conventional activated sludge systems, the value of Kyio allows the
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formation of three groups of substances (Martinez-Alcala et al., 2017; Joss et al.,
2006a):

a) Substances with Ky, < 0.1 do not degrade in a significant grade (<20%);

b) Substances with 0.1 < Kj;,; < 10 show a partial degradation (between 20%
and 90%);

c) Substances with Kj;; > 10 perform a high degradation (>90%).

The sorption coefficient (K;) of the pharmaceutically active compounds
(PhACs) is defined for equilibrium conditions (Martinez-Alcald et al., 2017;
Nielsen and Bandosz, 2016; Joss et al., 2006a). The following equation is used to
express the extent of sorption:

X

K;y=——
d ™ MLSSXS’

()
where K, is the sorption coefficient of activated sludge (L g's), X is the sorbed
compound concentration in ng L™', MLSS is the suspended solids concentration
(kg L") and S is the soluble compound concentration (ng L™").

The study conducted by Martinez-Alcala et al. (2017) showed that in removing
CBZ and DCF from wastewater in WWTP, the sorption of these compounds
clearly dominated over microorganism degradation. According to the
classification given by Joss et al. (2006a), the removal of CBZ does not take place
by biodegradation (K= —0.87 L g ' h™"), whereas in the case of DCF partial
biodegradation can be followed (Kyioy = 1.31 L g ' h™!). At the same time, the
elimination of CBZ via sorption is higher (K; = 0.47 L g '). Although the
sorption coefficient for DCF is lower (0.11 L g'), it is still high enough if
compared to other pharmaceuticals studied by Martinez-Alcala et al.

For triclosan (TCS), Kpior = (0.05...0.15) L g ' h ™' and K, =2.5L g'', and
for metformin (MET) the relevant values are (0.30...0.54) L g's h™' and
0.03 L g'';, showing that the removal of TCS mainly takes place via sorption,
whereas the removal of MET realises through biodegradation (Blair et al., 2015).

The removal of the target pharmaceuticals during composting can be
expressed as first-order kinetics (Ho et al., 2013):

C=Cpe ™™, 3)
where C is the analyte concentration (mg/kg) at time ¢ (day), Co is the initial
analyte concentration (mg/kg) and k is the antibiotic removal rate constant

(day™"). The half-life (¢;2) of the analytes can be calculated as follows:

tip=—In2/k (4)
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With the aim of calculating the expected levels of pharmaceuticals in WWTP,
the drugs consumption data together with reporter values for the percentage of
pharmaceuticals excreted, removal in WWTP and partitioning into sludge can be
applied in relevance to the methodology described by Gielen (2007), Khan and
Ongerth (2004) and Castiglioni et al. (2004). The concentrations of
pharmaceuticals in sewage influent (Ciy [ng/L]) were calculated using the
following equation:

_ M X Pgrpx10°

Cins = 5)

Fr X Psurvey ’

where M is the mass of excreted pharmaceutical (kg), Psrp the population served
by the sewage treatment plant, Py, the population contributing to consumption
survey, Fr the annual sewage influent flow rate (m®).

The expected concentrations of pharmaceuticals in sewage effluent C.y (ng/L)
can be calculated using equation 5, where Msr is the mass of pharmaceutical in
effluent after sewage treatment in WWTP:

_ Mgr X PSTPX109

Ceff © Frx Psyrvey (6)

The concentrations of pharmaceuticals in sewage sludge Css [ng/g]can be

calculated using the partitioning percentages (Gielen, 2007; Khan and Ongerth,
2004) and modification to equation 5.

My x Pgrpx10°
S8 X (1-mc)X Psyrpey ~

CS S

(7

where M, is the amount of pharmaceutical partitioned into the sewage sludge
phase (kg), P, the population served by the sewage treatment plant, SS is the
annual production of sewage sludge (kg), mc the moisture content of the sewage
sludge and Py.vey the population contributing to consumption survey.

1.3 Pharmaceuticals used in the current study

Several experiments were conducted with fluoroquinolones and sulphonamides
with the aim of selecting the most appropriate composting technology that would
be available under real conditions in the countries with similar climate to Estonia.
The usage and properties of these pharmaceuticals are described in the
dissertations of Merike Lillenberg (Lillenberg, 2011) and Karin Kipper (Kipper,
2012). The current work also involves the studies with diclofenac, carbamazepine,
metformin and triclosan. The first of them confirmed the occurrence of
considerable concentrations of pharmaceuticals in sewage sludge, and the work
completed by Karin Kipper concentrated on the development of novel reliable
methodologies for the determination of pharmaceuticals in different media.
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1.3.1 Fluoroquinolones

The fluoroquinolones (FQs) used in the current study were ciprofloxacin (CIP),
norfloxacin (NOR) and ofloxacin (OFL). The information concerning their
structure, properties and usage can be found from the following sources:
Schaumann and Rodloff, 2007; Lillenberg, 2011; Doorslaer et al., 2014; Merck
Manuals'; RxList'; RxList?; RxList’.

1.3.2 Sulfonamides

The following sulphonamides (SAs) were used in the current study:
sulfamethoxazole (SMX) and sulfadimethoxine (SDM). The information
concerning their structure, properties and usage can be found from the following
sources: Drugbank; Merck Manuals*; Merck Manuals®; Richardson and Bowron,
1985; Carballa et al., 2004; Ingerslev and Halling-Segrensen, 2000; Pérez et al.,
2005; Hamscher, 2002; Batt et al., 2007; Avisar et al., 2010; Li and Zhang, 2010;
Lillenberg, 2011.

1.3.3 Diclofenac

Diclofenac (DCF) is one of the most popular non-prescription medicals (Haiba et
al., 2017). It is non-steroidal anti-inflammatory drug (NSAID) and widely used
for relieving pain (Chen et al., 2015). DCF together with its human metabolites
enter WWTPs through sewers (Zhang et al., 2008; Sagrista et al., 2010). This is
one of the most frequently detected drugs in WWTPs, having low removal
efficiency and often found in high concentrations in effluent water (Stiilten et al.,
2008; Al-Rajab et al., 2010; Bartha et al., 2014; Osorio et al., 2014). DCF
residues have been detected in sewage sludge with concentrations reported from
2ng g to 140 ng g respectively (Jeli¢ et al., 2009; Dobor et al., 2010; Jeli¢ et
al.,, 2011; Loos et al., 2013). DCF residues have been detected in aqueous
environments (Al-Rajab et al., 2010) where they can cause deoxyribonucleic acid
(DNA) damage with induced immunosuppression and genotoxicity in fish (Ribas
etal., 2014).

Chemical structure of DCF involves a chlorine atom and therefore its residues
are not readily biodegradable in the environment. Metabolism of DCF has been
studied and described in mammals, fungi and microorganisms (Huber et al., 2012;
Bartha et al., 2014). DCF is acutely toxic to birds and presumably could leach into
soil beneath the corpses of livestock containing diclofenac residues (Oaks et al.,
2004; Stiilten et al., 2008; Al-Rajab et al., 2010; Haiba et al., 2017).

1.3.4  Carbamazepine
Carbamazepine (CBZ), an antiepileptic drug, is one of the most frequently

detected pharmaceuticals in soil and aquatic environments (Zhang et al., 2008;
Oosterhuis et al., 2013). CBZ is used for the treatment of seizure disorders, for
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relief of neuralgia, and for a wide variety of mental disorders. Approximately
72% of orally administered CBZ is absorbed, while 28% is unchanged and
subsequently discharged through the faeces (RxList*; Zhang et al., 2008). Nieto et
al. (2010) determined concentrations between 11 and 42 mg/kg (dry weight - dw)
for CBZ in samples from two STPs. However Miao et al. (2005) detected CBZ at
concentration 69.6 pg/kg (dry weight) in untreated biosolids and at concentration
258.1 pg/kg (dry weight) in treated biosolids. It has been indicated that CBZ
exhibits the persistence characteristic of organic contaminants, potentially leading
to long-term environmental risks (Chefetz et al., 2008). It is known that CBZ is
toxic for some algae, bacteria, invertebrates and fish (Camacho-Munoz et al.,
2010). There are no conclusive results confirming the effects (or their lack) of
prolonged exposure of organisms to low concentrations of CBZ (Rezka et al.,
2015).

Antiepileptic drug CBZ is highly persistent and frequently found in sewage,
surface waters and managed aquifer recharge systems (Leclercq et al., 2009;
Nieto et al. 2010), and once it is discharged into the environment it causes toxicity
(Joss et al., 2006b; Verlicchi et al., 2012). Removal of CBZ and its metabolites
from municipal sewage treatment plant is very low (~8%). In some cases CBZ
exhibits even negative removal efficiency (Collado et al., 2014) with no seasonal
variation (Golovko et al., 2014). CBZ is persistent in soils (Paltiel et al., 2016; Li
et al., 2013b; Grossberger et al., 2014) and has been shown to be taken up and
accumulate in a variety of crops (Malchi et al., 2014, Goldstein et al., 2014;
Holling et al., 2012; Winker et al., 2010; Shenker et al., 2011).

CBZ is recalcitrant both in biodegradation and photolysis experiments. CBZ is
retained by the soil where it is accumulated due to its low degradation rate. Slow
degradation rate coupled with plant uptake phenomenon indicates that CBZ
present in biosolids amended soils is a significant concern and potential risk
(Duran-Alvareza et al., 2015). Researchers have quantified acute toxicity of CBZ
<100 mg/L (Malarvizhi et al., 2012).

Compounds with log Kow < 2.5 (Ko is octanol-water partition coefficient) are
assumed to have a low potential for adsorption onto particulates (Hawker and
Connell 1988). The metabolites of CBZ have logK,, values between 0.13 and
2.41, in comparison to the log K, for CBZ of 2.67. The concentrations of CBZ
and metabolites increased on a dry weight (dw) basis between untreated and
treated biosolids (Miao et al., 2005).

1.3.5 Metformin

Metformin (MET) is the first-line medication for the treatment of type 2 diabetes
(Maruthur et al., 2016), particularly in people who are overweight (Tsigos et al.,
2008). This disease affects more than 200 million people worldwide (Reitman and
Schadt, 2007; Trautwein and Kiimmerer, 2011). The results published in 2015 by
Niemuth and Klaper demonstrated that MET acts as an endocrine disruptor at
environmentally relevant concentrations.
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MET was present in every water sample tested by Kiimmerer's team, including
even tap water. Kiimmerer and his co-authors concluded that the drug is likely
"distributed over a large fraction of the world's potable water sources and ocean"
(Trautwein et al., 2014). Unlike many pharmaceutical drugs, MET is not
metabolized by humans but passes unchanged through the body. Entering aquatic
compartments, such as in sewage, it can be transformed bacterially to the ultimate
transformation product Guanylurea (GUA). With no natural degradation
processes, both these compounds can be easily reintroduced to humans as they
enter the food chain (Trautwein et al., 2014). Detection of MET and GUA in
seawater and tap water proved the absence of an efficient degradation process in
ocean environments or drinking water preparation which suggests a high
persistence and the potential for ubiquitous distribution (Trautwein et al., 2014).

During sewage treatment a significant reduction of MET concentrations is
observed which seems to be mainly due to microbial degradation. Despite the
high removal efficiency of STPs, MET is still released in significant amounts into
the aquatic environment (Scheurer et al., 2009).

MET is a mobile compound with low affinity to soils (Mrozik and Stefanska,
2014). This indicates that this drug (or its metabolite — GUA) may be a potential
threat to ground and surface water (Benotti and Brownawell, 2005, 2008). Half-
life values (#12) for aerobic conditions were from 1 to 5 days depending on soil

type.

1.3.6 Triclosan

Triclosan (TCS) is a broad-spectrum antimicrobial compound, commonly used in
personal care products such as soaps, creams, toothpastes and detergents, and in
housewares (cutting boards, even textiles and toys). TCS has been used for over
40 years. The use of antimicrobials (AM) and antibacterial products is increasing
all over the world (Haiba et al., 2017; Lozano et al., 2010). Today, TCS
compounds are consumed in Europe at approximately 350 tons per year (Pintado-
Herrera et al., 2014). TCS residues have been detected in wastewater (in
concentrations ranging from 1-10 pgL”') as well as in sewage sludge
(concentration range 2-8 mg kg dry matter) (Chen et al., 2011b; Loos et al.,
2013). TCS residues have been found in soils fertilized with sewage sludge
compost up to a concentration of 4 pg kg'. Various studies have shown that
already at relatively low concentrations TSC may have adverse effects to the
environment — preventing bacterial metabolism, affecting microbial respiratory
activity and populations (Lozano et al., 2010; Chen, et al., 2011b; Pintado-Herrera
et al., 2014; Haiba et al., 2017).
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2. AIMS OF THE STUDY

Composting sewage sludge is a good way to recycle this nutrient-rich material.
On the one hand, the amount of generated waste would be reduced and, on the
other hand, cheap fertilizers used in agriculture would be produced. Untreated
sewage sludge may contain heavy metals, pathogens and PPCPs that may not be
destroyed during wastewater treatment processes. Therefore it is important to find
ways to make the degradation on PPCPs more efficient in sewage sludge
composting process. At the moment, there is little information how long-term use
of sewage sludge and contaminants present therein affects the environment,
humans and animals, and this area should definitely be explored.

The aim of this work was to study the impact of sewage sludge composting on the
degradation of some widely used pharmaceuticals and to add a piece of
knowledge applicable in the development of composting technologies leading to
the increase of the safety of using sewage sludge compost in fertilization of soils
with poor nutrient content. Plant uptake experiments of pharmaceuticals were to
confirm the importance of the present study. The body of the current thesis is
summarising the work published in the papers listed under the heading "List of
publications".

The main directions of the research presented in this thesis were:
» To study the possibility of reducing the impact of some widely used
pharmaceuticals on the environment and people through increasing the

efficiency of sewage sludge composting technologies.

» To develop efficient sewage sludge composting conditions with the aim
of achieving more complete degradation of FQ and SA residues.

» To determine the impact of bulking agent on the degradation of DCF,
MET, CBZ and TCS residues in sewage sludge compost.

» To give recommendations concerning sewage sludge treatment.
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3. MATERIALS AND METHODS (I, 11, 111, V, VI, VII)

The methodologies of chemical analysis presented below were developed and the
determinations of the concentrations of pharmaceuticals were carried out at the
University of Tartu, Institute of Chemistry. The experimental details with
fluoroquinolones and sulphonamides are presented in detail in Lillenberg, 2011;
Kipper, 2012; Haiba et al., 2013a; Haiba et al., 2013b and Kipper et al, 2017. The
selection of AM was made according to preliminary pilot study on antimicrobials
usage and presence in the sewage sludge samples (Lillenberg et al., 2009;
Lillenberg, 2011), their stability in the soil and potential degradation during the
composting procedure (Lillenberg et al., 2010a) and their uptake from the soil by
plants (Eggen et al., 2011; Michelini et al., 2012). The experimental details with
diclofenac, metformin, carbamazepine and triclosan are partly presented in detail
in Haiba et al., 2017 and in Haiba and Nei, 2017.

3.1 Composting experiments with  fluoroquinolones and
sulphonamides

3.1.1  Experiments with sewage sludge and compost

The collection and treatment of sewage sludge and compost samples, the
methodology used for the determination of AM from sewage sludge and compost
together with method validation are described in detail in Kipper, 2012;
Lillenberg, 2011; and in Lillenberg et al., 2009. Pressurized liquid extraction
(PLE) followed by solid phase extraction (SPE) and liquid chromatography
electrospray ionization — mass spectrometry (LC-ESI-MS) were used for analysis.
Relative standard deviation (RSD) of the determinations was within 2%.

Model experiments with different compost mixtures were performed with the
aim of establishing the impact of the compost composition on the degradation of
some pharmaceuticals of FQs and SAs. Method for simultaneous determination of
CIP, NOR, OFL, SDM and SMX from sewage sludge compost consisted of 3
parts: pressurized liquid extraction (PLE), solid phase extraction (SPE), and
liquid-chromatography - mass spectrometry (LC-MS). The methodology used for
the determination of antimicrobials from sewage sludge compost was based on
the methodology described in Lillenberg et al. (2009).

3.1.2 Plant uptake experiments

Plant uptake experiments were aimed to show the importance of keeping the
content of pharmaceutical residues in sewage sludge compost under control.
These experiments are presented in detail in the following publications:
Lillenberg, 2011; Kipper, 2012; Haiba et al., 2013a and Kipper et al., 2017. Plant
uptake experiments were carried out with potatoes (Solanum tuberosum L),
carrots (Daucus carota L), lettuce (Lactuca sativa L) and wheat (Triticum vulgare
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L). The pharmaceuticals used were CIP, NOR, OFL, SDM, and SMX. Three
parallel experiments were conducted for each concentration of antimicrobials. In
reference experiments, plants were cultivated in antimicrobial-free soils. The
plants were collected and washed carefully. Potatoes and carrots were chopped
into ca 1 cm® pieces. Then the plants were dried at room temperature in the
darkness and after that milled for analyses, using Knifetec 1095 Sample Mill
(Foss) and a common coffee mill. The size of the particles of the powder was < 1
mm®. The milled samples were dewatered in a thermostat at 45°C for 24 hours
using thermostat Binder KB 115 and stored in hermetic plastic bags for three
weeks at —80 °C (using refrigerator Sanyo MDF-U54V) before analysis.

3.1.3  Determination of antimicrobials from plants

The details of the methodology used for the determination of antimicrobials from
plants are described in detail in the following publications: Lillenberg, 2011;
Kipper, 2012; Haiba et al., 2013a and Kipper et al., 2017.

Chemicals. Pharmaceuticals were purchased from Riedel-de-Haén (Seelze,
Germany) — three FQ-s: CIP (purity 99.8%), NOR (purity 99.9%) and OFL
(purity 99.3%); and two SA-s: SDM (purity 99.4%) and SMX (purity 99.9%).
Acetonitrile and methanol were obtained from J.T. Baker (Deventer, The
Netherlands), HPLC grade formic acid and ammonia from Riedel-de-Haén. HFIP
was purchased from Sigma (St. Louis, MO, USA). All solvents were of reagent
grade or higher quality. Water was purified (18.2 MQxcm at 25 °C and a TOC
value below 3 ppb) in-house using a Milli-Q Plus system from Millipore
(Bedford, USA). Hydrophilic-lipophilic balanced (HLB) solid phase extraction
(SPE) cartridges (Oasis HLB (60 um), 500 mg/6 mL) were purchased from
Waters (Milford, MA, USA).

Analytical work involved liquid extraction, solid phase extraction, liquid
chromatography electrospray ionization — mass spectrometry (LC-ESI-MS) and
method validation. Determination of antibiotic residues in plant material has been
demonstrated in Kipper et al., (2011).

3.2 Sewage sludge composting experiments with diclofenac,
triclosan, carbamazepine and metformin

This section was conducted according to Haiba et al., 2017. DCF was added to the
study given its widespread use in medicine and the detection in the environment,
including sewage sludge and sewage, which may be used as a fertilizer or for
irrigation of crops. CBZ was added to the study for its increasing use in medicine.
MET was added to the study for its increased usage in Estonian medicine and the
lack of general data on the possible occurrence and effects in environment. TCS
was included in the study due to its expanding use in personal care products and
household supplies. Selected PPCP residues have been found in treated sewage
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sludge, compost, surface and ground water (Walter et al., 2010; Rivera-Utrilla et
al., 2013; Luo et al., 2014; Rodriguez-Rodriguez et al., 2011).

3.2.1 Chemicals and materials

Standard substances of pharmaceuticals were obtained from Sigma-Aldrich: DFC
sodium salt (99.9%), TCS (99.7%), CBZ (99.9%) and MET hydroxide (99.8%).
As LC-MS cluent components methanol (> 99.9%; LC-MS Ultra
CHROMASOLYV; Fluka), water purified in-house using Millipore Milli-Q
Advantage A10 system, 1,1,1,3,3,3-hexafluoroisopropanol (HFIP, Sigma-
Aldrich), NH4OH (25%; eluent additive for LC-MS; Fluka) and formic acid (>
98%; Sigma-Aldrich) were utilized. For sample preparation vortex mixer VWR
International, shaker Elpan 3588, centrifuge Eppendorf 5430R and ultrasonic bath
Bandelin Sonorex were used. Sample extracts were filtered through Sartorius
Minisart RC4 (regenerated cellulose, pore size 0.2 pm, membrane diameter 4
mm) syringe filters using disposable 2 ml syringes (Brand) (Haiba et al., 2017).

3.2.2  Sample collection

Sewage sludge samples were collected from municipal wastewater treatment plant
(Figure 3.1). The sludge was anaerobically digested and dewatered by
centrifugation. The sewage sludge was mixed with sawdust at two different ratios
(1:2 and 1:3 sludge: sawdust, v:v) and submitted to a process of aerobic
composting. These ratios were chosen on the basis of literature (Banegas et al.,
2007; Kim et al.,, 2012; Mollazadeh, 2014) and previous studies on sludge
composting with different bulking agents (straw, sawdust, oil-shale ash, wood
chips) (Haiba et al., 2013; Nei et al., 2014). The initial concentration of every
pharmaceutical was 2 mg kg™ in relation to dw. In addition to this, two reference
piles (without additions of pharmaceuticals) were prepared (Haiba et al., 2017).

Figure 3.1. Tallinn WWTP
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3.2.3 Sample preparation

Samples were thawed at room temperature and mixed by vigorous shaking. For
extraction, about 5 g of sample was precisely weighted into 50 ml polypropylene
centrifuge tube. The following extraction procedure was used:
1. 15 ml of extraction solvent (1% v/v formic acid in ethanol) was added to
sample tube.
2. Vortex mixed for 30 s.
3. Sample tube was tightly capped and placed horizontally on a shaker
(200 rpm) for 10 min.
4. Tube was turned into vertical position and shaken by hand to ensure that
the solid contents are in contact with extraction solvent.
5. Extraction was continued by sonicating for 10 min.
6. Samples were centrifuged at 7830 rpm for 5 min.
7. Extract was removed from the tube using pipette.

Extraction steps 1-7 were repeated five times with each sample. Extracts were
combined in 100 ml polypropylene bottles, mixed and weighed. From each
extract 15 ml was taken into 15 ml polypropylene centrifuge tube for further
treatment.

Prior to LC-MS analysis sample extracts were diluted: to 100 pul extract 1400
ul of MilliQ water were added in 1.5 ml Eppendorf tube. Automatic pipette was
used for dosing, but all the solutions were weighed. The solutions were vortex-
mixed and filtered through syringe filter. The first five drops of filtrate were
discarded and the remaining (ca 1 ml) was collected into auto-sampler vial (2 ml
glass vial) (Haiba et al., 2017).

3.2.4  Calibration and quality control samples

Calibration and quality control samples were prepared by diluting stock solutions
of analytes. Stock solutions were prepared by dissolving appropriate amount of
analytes in methanol. Working standards were prepared in 1.5 ml Eppendorf tubes
by diluting 600 pl of stock solution with 400 pl MilliQ water. Similarly to
preparation of sample solutions, all solutions were prepared by weight, vortex-
mixed and filtered through syringe filters. Concentration of calibration and quality
control solutions were chosen according to the linear range for each analyte
(Haiba et al., 2017).

3.25 LC-MS/MS analysis

Sample extracts were analysed using LC-MS/MS system consisting of ultra-high
performance liquid chromatograph UHPLC Agilent 1290 Infinity and mass
spectrometer Agilent 6495 Triple Quad. The liquid chromatograph consisted of
the following modules: binary high-pressure gradient pump with built-in
degasser, autosampler with sample compartment cooling and column thermostat.
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Waters XBridge C18 (150 mm x 3 mm, 3.5 pm) analytical column and Waters
Guard Cartridge (20 mm x 4.6 mm) (Waters) precolumn were used for sample
analysis.

For analyte detection triple quadrupole mass spectrometer equipped with
heated electrospray interface (HESI) Agilent JetStream was used.
Chromatographic separation was carried out using gradient elution. As the weak
component of eluent (A) 5 mM HFIP buffer solution (pH adjusted to 9 using
NH4OH) was used. The strong component of the eluent (B) was methanol. The
gradient program started from 10% B and content of B was increased to 100%
during 33 minutes. For the following 3 minutes isocratic (100% B) elution was
used, followed by 3 min gradient to 10% B. For equilibration the column was
eluted with 10% B for 4 minutes. Eluent flow rate was 0.3 ml min™, column
temperature maintained at 30 °C and injection volume 10 pl. Multiple reaction
monitoring (MRM) mode was used for analyte detection. MRM transitions used
are presented in table 3.1. (partly taken from Haiba et al., 2017).

Table 3.1. MRM transitions, collision energies (CE) and ionization polarities used for
analysis.

Analyte Precursor ion, m/z Product ion, m/z CE | Polarity mode
Diclofenac 296 250 10 positive
296 214* 40 positive
Triclosan 289 37* 20 negative
289 35 10 negative
287 35 15 negative
Carbamazepine 237 194 20 positive
237 179* 40 positive
Metformin 130 71 25 positive
130 60 10 positive

* - quantitative transition.

The following ion source and MS parameters were used for analysis: drying gas
temperature 250°C and flow rate 14 1 min™', nebulizing gas pressure 20 psi (138
kPa), heating gas temperature 350 °C and flow rate 11 1 min™, capillary voltage
3000 V. As drying, nebulizing, heating and collision gas nitrogen was used. The
instrument was controlled using Agilent MassHunter Workstation ver B.07.00
software. For quantitative analysis Agilent MassHunter Workstation Quantitative
analysis ver B.07.01 software was used (Haiba et al., 2017).

3.2.6  Composting

Experiments were performed in non-transparent plastic containers. With the aim
of preventing heat loss from the sides and bottom of the containers a 5 cm thick
insulation (glass wool) was used. Compost samples of about 30 L were prepared
with each mixture. Samples with added pharmaceuticals were prepared in
duplicates and each mixture had reference sample without pharmaceuticals. The
room temperature was 23-26 °C. Compost samples were mixed periodically (5—6
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times per week) to provide sufficient aeration and homogenization. The moisture
content of the mixtures was maintained at 60—70% of their water holding capacity
throughout the composting period. The temperature of each mixture was
monitored daily at 3-4 different points in each sample with a digital temperature
probe and mercury thermometer. The duration of experiment was 30 days. The
samples were homogenized before analysing — taken randomly from different
parts of the sample (Haiba et al., 2017).

3.2.7 Microbial indices of sewage sludge compost

Microbial Substrate Induced Respiration (SIR) was determined via the Oxitop®
manometric system (Platen and Wirtz, 1999). 50 gram of compost mixture was
amended with glucose and incubated in a closed vessel at 22 °C in the dark for 24
hours. After the incubation the microbial biomass C was calculated. To determine
the microbial to fungal ratio the selective inhibition technique was used. In order
to assess the fungal biomass the samples were treated with cyxloheximide (12 mg
g and glucose (5 mg g), and for the determination of bacterial biomass the
samples were treated with streptomycin (6 mg g') and glucose (5 mg g™'). The
controls were treated with both inhibitors cyxloheximide (12 mg/g) and
streptomycin (6 mg g™'). All the samples were incubated in closed vessels at 22 °C
in the dark for 24 hours, after which the biomass C was calculated. All the
microbiological analyses were conducted in Tartu College, Tallinn University of
Technology (Nei et al., 2014; Haiba et al., 2017).
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4. RESULTS AND DISCUSSION

4.1 Fluoroquinolones and sulfonamides in sewage sludge compost
and their plant uptake (VII)

This paragraph reflecting the pilot studies of the presence of fluoroquinolones and
sulfonamides in sewage sludge compost and their plant uptake is based on the
following publications (tables, figures and data used and reprinted with the kind
permission granted by African Journal of Agricultural Research):

Haiba, E., Lillenberg, M., Kipper, K., Astover, A., Herodes, K., Ivask, M., Kuu,
A., Litvin, S.V., Nei, L. (2013a). Fluoroquinolones and sulfonamides in sewage
sludge compost and their uptake from soil into food plants. African Journal of
Agricultural Research, 8, 3000—3006.

This pilot study was to show that pharmaceuticals are commonly present in
sewage sludge and in its compost and plant uptake of pharmaceuticals from the
soil fertilised with compost cannot be ignored in the view of food safety. The
concentrations of FQs (CIP, NOR and OFL) and SAs (SDM and SMX) in sewage
sludge samples from two WWTPs (located in the cities of Tartu and Tallinn) were
determined (table 4.1).

Table 4.1. The maximum concentrations of FQs and SAs found from two WWTPs sludge
samples

Sample Sewage sludge treatmet Pharmaceutical concentration pg/kg (dw)
technology CIP NOR OFL SDM | SMX

Tallinn anaerobically digested 1520 580 134 73 22

Tartu compressed by filtration 442 439 157 27 8

According to European Union Directive (EMEA/CVMP/055/96, 1998) the
sum concentration of pharmaceuticals should not exceed 100 pg/kg in manure and
10 pg/kg in soil fertilized with manure (Lillenberg, 2011). For the prevention of
the development of microbial resistance of humans and animals the concentration
of pharmaceuticals should be clearly under 0.1 pg/kg in agricultural soil
(Lillenberg, 2011). The limited selection of results given above clearly shows that
raw sewage sludge is not suitable for fertilising agricultural soils (Haiba and Nei,
2017). In Tartu WWTP the studied pharmaceuticals were not completely
degraded even during twelve months in the compost mixture. In some Tartu
compost samples the concentrations of CIP, OFL and NOR sufficiently exceeded
the threshold concentration — 1 pg/kg — for pharmaceuticals in soil, although the
WWTP considered the compost being ready for commercialization. The values of
the highest detected concentrations of these pharmaceuticals in compost were
respectively 70, 64 and 8 pg/kg. The concentrations of OFL and SMX were
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lower, but still exceeded 1 ug/kg. SDM was absent after the twelve—months
composing period.

The results given in Haiba et al. (2013a) show, that the degradation of FQs and
SAs takes place during composting. After twelve months from the starting point
of the preparation of the compost mixture in Tallinn the concentrations of FQs
and SAs were in most cases below the limit of detection. As a rule, due to climate
conditions in Estonia (cold winters and freezing), the twelve—months composting
period does not correspond to the desire of WWTPs to finalise the process faster.
Unfortunately, the six—months composting period is not sufficient when current
composting technologies are used (Lillenberg, 2011 and Haiba et al., 2013).

Despite mixing the compost mixtures are still heterogeneous. The
concentrations of pharmaceuticals varied remarkably within the same compost
stack. For example, the concentrations of FQs differed up to 1.8 times within the
same stack in Tartu. This phenomenon can be explained by uneven distribution of
pharmaceuticals as a result of adsorption to solid sludge and bulking agent
particles (Carmosini and Lee, 2008).

Presumably the main reason for the decrease in pharmaceutical concentrations
during composting is the applied sludge treatment technology. The decomposition
of pharmaceuticals was faster in Tallinn. In Tartu the sewage sludge compost was
prepared by mixing the raw sludge with tree bark; in Tallinn the methane
fermentation and mixing with peat were applied. The compost stacks were mixed
regularly in both cities for promoting the growth of aerobic bacteria.
Mixing/turning exposes different parts of the stack to the light. As
photodegradation is considered to be one of the reasons for decomposition of FQs
(Hooper and Wolfson, 1991), the intensity of compost stack turning might also
have an impact on the decomposition of FQs in compost.

Application of sewage sludge and its compost to soils can lead to the
contamination of food plants by pharmaceutical products. The uptake of the
studied FQs and SAs was demonstrated from two different soil types (sandy and
loamy) into food plants such as potato (Solanum tuberosum L), carrot (Daucus
Carlota L) and wheat (Triticum vulgare L). The concentrations of the studied
pharmaceuticals were relatively low in most of the plant samples, if compared to
soil concentrations, but in some samples their concentrations were still of
considerable magnitude, especially in plants grown in sandy soil. The uptake of
FQs and SAs by potato might pose health risk, as the detected levels of the
studied pharmaceuticals in potato tubers were remarkably high, exceeding in
some samples the maximum residue levels (MRL) allowed for food of animal
origin. Detectable amounts of CIP, OFL and SDM were also present in wheat
seeds, but their concentrations were below MRL. These results raise human health
concerns of consuming plants grown on compost-amended soils.

Plants accumulated pharmaceuticals from soil even at soil concentration
10 pg/kg (CIP and OFL). The residues of pharmaceuticals were detected in carrot
roots and potato tubers. CIP, OFL and SDM were detected also in wheat seeds.
The level of accumulation depended on chemical properties of the compound, soil
type, plant species and part (above the ground or underground). As a rule, the
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higher concentrations of pharmaceuticals were followed in the case of sandy soil
experiments. In loamy soil the molecules of SAs and FQs attach to clay particles,
reducing their uptake by plants.

SAs are both fairly water-soluble and polar (Thiele-Bruhn et al., 2004; Haiba
et al., 2013a). The low adsorption of SAs on soil particles is known (Beausse,
2004) and due to this phenomenon they are "ready" to migrate into plants.
Different behaviour is characteristic of FQs. It has been shown that more than
90% of applied CIP and OFL are adsorbed on different soils (Beausse, 2004). For
this reason no significant migration of FQs from soil into plants takes place. In
loamy soil the molecules of SAs attach to clay particles (Thiele-Bruhn, 2003),
reducing their uptake by plants (Haiba et al., 2013a).

The uptake of the studied pharmaceuticals by the selected food crops was
apparent. Due to the low adsorption of SAs on soil particles they are “free” to
migrate into plants. An opposite behaviour is characteristic of FQs. Therefore the
content of SAs in the plants was usually higher. Interestingly, the amounts of FQs
going into potato do not depend much on soil type.

The application of sewage sludge compost as a fertilizer and the following
uptake of pharmaceuticals by food plants may cause contamination of these
plants. The uptake of FQs and especially SAs by plants might pose risk to human
health, as the concentrations of the studied pharmaceuticals were of considerable
level, if compared to their soil concentrations. Due to this it would be an
important task to exclude the exposure of plants to pharmaceuticals. This can be
achieved through their complete degradation before sewage sludge compost is
applied onto the agricultural land.

4.2 Bulking agent selection and degradation of fluoroquinolones and
sulfonamides (VI)

This paragraph is an overview of the pilot study involving the selection of an
amendment to sewage sludge when making compost. The texts, tables and data
presented here are taken/reprinted from the paper Haiba et al., 2013b with the
kind permission obtained from the journal AWERProcedia Advances in Applied
Sciences.

Small quantities of the studied pharmaceuticals were present in sewage sludge
that was used for preparing the compost mixtures (table 4.2) used in our
experiments. “Blind” determinations of pharmaceuticals from the studied
mixtures showed that the background concentrations of fluoroquinolones were
never equal to zero (Table 4.3). This is in agreement with the results of the pilot
study concerning the presence of pharmaceuticals in Tallinn and Tartu sewage
sludge (section 4.1.).
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Table 4.2. The composition of compost mixtures

Pile | Sewage sludge treatment Bulking agent (% from dry Dry
No | technology matter) matter, %
1 methane fermentation peat (50) 23.1
2 methane fermentation +

vermicomposting® sawdust (33) 24.7
3 methane fermentation sawdust + oil-shale ash (29+14) | 32.3
4 compressed by centrifugation sawdust + wood chips (total 43) | 25.8
S compressed by filtration straw (50) 13.9
6 compressed by filtration +

vermicomposting™® sawdust (33) 214
7 compressed by filtration sawdust + oil-shale ash (29+14) | 35.5

*Dendrobaena veneta were added

The composting piles were turned periodically every 5-7 days for 4 months to
maintain adequate oxygen levels and to homogenize the compost mixtures. After
adding the pharmaceuticals to the sewage sludge and bulking agent mixtures their
initial concentrations in dry matter were determined again. The results are
presented in table 4.3. In most cases the concentration of each pharmaceutical was
below 2 mg/kg. This was probably due to the phenomenon that the degradation of
pharmaceuticals starts immediately after adding them to the compost mixture.
Still, some of the concentrations (in table 4.3) are above this value probably due
to the rapid sorption of pharmaceuticals (from liquid phase) to solid particles of
sewage sludge or bulking agent. This is in agreement with the data presented in
earlier studies (Golet et al., 2003; Gobel et al., 2005; Yang et al., 2011). After 4
months of composting, the concentrations of the formerly added pharmaceuticals
were analytically determined again.

According to the data presented in table 4.4 it is evident that the degradation of
pharmaceuticals was more complete when sawdust was used as a bulking agent
(the degree of degradation of the total amount of pharmaceuticals was 94-98%),
if compared to the sewage sludge mixtures with peat and straw (with 88%
indicating the extent of degradation). There is no clear evidence that the addition
of oil-shale ash influenced the degradation rate of the studied pharmaceuticals. As
huge amounts of coal and oil-shale ash are produced every year and these wastes
perform several good qualities as co-composting materials with sewage sludge, it
would be reasonable to direct further studies on the establishment of the optimum
composition of the sewage sludge compost with sawdust and oil-shale ash as co-
composting agents.
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Table 4.3. Degradation of pharmaceuticals in different compost samples

Pile No | Sample Pharmaceuticals in dry weight, mg/kg

SMX SDM NOR CIP OFL

1 fresh 0.00 0.00 0.04 0.03 | 0.01
fresh, with pharmaceuticals | 2.23 1.78 1.52 0.98 1.68

after 4-months composting 0.38 0.42 0.16 0.08 0.01

2 fresh 0.00 0.00 0.03 0.00 | 0.00
fresh, with pharmaceuticals | 2.04 2.22 2.00 1.35 1.89

after 4-months composting 0.01 0.02 0.09 0.06 0.01

3 fresh 0.00 0.00 0.03 0.03 | 0.03
fresh, with pharmaceuticals | 1.74 1.78 1.72 1.11 1.54

after 4-months composting 0.00 0.07 0.32 0.07 | 0.02

4 fresh 0.00 0.00 0.15 0.17 | 0.05
fresh, with pharmaceuticals | 2.11 1.37 2.33 231 3.12

after 4-months composting 0.01 0.02 0.21 0.04 | 043

5 fresh 0.00 0.03 0.29 0.09 |0.12
fresh, with pharmaceuticals | 1.85 1.91 1.56 1.56 1.46

after 4-months composting 0.02 0.06 0.38 0.16 0.41

6 fresh 0.00 0.00 0.07 0.04 | 0.02
fresh, with pharmaceuticals | 2.50 2.09 1.58 144 | 0.74

after 4-months composting 0.02 0.04 0.15 0.05 | 0.02

7 fresh 0.00 0.00 0.02 0.01 0.00
fresh, with pharmaceuticals | 1.88 1.38 1.61 1.34 1.67

after 4-months composting 0.01 0.02 0.02 0.01 0.00

Table 4.4. The extent of degradation of pharmaceuticals in compost mixtures during 4-
months composting period

Degradation after 4 months of composting, %

Pile No SMX SDM NOR CIP OFL
1 83 76 90 92 100
2 100 99 96 95 100
3 100 96 82 94 99

4 100 99 91 98 86

5 99 97 79 90 74

6 99 98 91 97 98

7 99 98 99 100 100

The degradation of FQs and SAs takes place during sewage sludge co-
composting with sawdust, peat and straw. Additions of sawdust clearly speed up
this process, whereas the mixtures with peat and straw perform lower abilities to
decompose pharmaceutical residues. No clear evidence was received concerning
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the impact of vermicomposting and oil-shale amendments on the speed of
degradation of the studied pharmaceuticals. Further studies were composed with
the aim of defining the optimum proportions of bulking agents applicable in
sewage sludge composting.

4.3 Degradation of some widely used pharmaceuticals during
composting (I)

This section is partly taken from the paper Haiba et al., (2017) with the kind
permission of Journal of Agronomy Research.

43.1 Diclofenac

The results of the analyses indicated that none of the compost samples was
originally free of DCF residues (Table 4.5). DCF concentrations were found in
relatively low amounts.

After adding the pharmaceuticals to the compost mixtures their initial
concentrations in dry matter were determined again. All of the concentrations
were above the expected values (Table 4.5) probably due to the rapid adsorption
of pharmaceuticals (from liquid phase) to solid particles of sewage sludge or
bulking agent. This is in agreement with published data (Golet et al., 2003; Gobel
et al.,, 2005; Yang et al. 2011; Nei et al.,, 2014). After one week, the
concentrations of the studied pharmaceuticals were determined again. The
concentration of DCF residue had decreased by 51% in compost mixture (No 1)
with sludge-sawdust ratios 1:2 (v:v). In the case of compost mixtures (No 2) with
the ratios of 1:3 (v:v) the relevant concentration drop was 42%.

Table 4.5. Concentrations of diclofenac in sewage sludge — sawdust compost samples (mg
kg, dw)

Compound Il;d;xture Before spiking | 1 day 1 week 1 month
1 | 0.086£0.004 | 2.646£0319 | 1.30740.035 | 0.209+0.010
DCF 2 | 0.064£0.005 | 2.38140212 | 1.36940.044 | 0.036:0.002

Sewage sludge — sawdust ratio in sample 1 was 1:2 and dry matter content — 35.3%, and
in sample 2 accordingly 1:3 and 40.8%

According to the data presented in table 4.6 it is evident that the degradation of
DCF was more complete when higher ratio of sawdust was used in preparing
compost mixtures.

Table 4.6. Extent of degradation (%) for diclofenac during one month composting

Mixture No DCF
1 92

2 98
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These results show clearly that the degradation of DCF almost fully takes
place already during one-month composting period in the case of compost
samples with the ratios of 1:3 (v:v). Still, the results indicate that longer periods,
especially in the case of compost mixtures with sludge-sawdust ratios 1:2 (v:v),
are needed for the more complete removal of pharmaceutical residues from
sewage sludge based compost.

A well-managed composting process resulting in an efficient decline of
residual pharmaceuticals, as shown in Kim et al. (2012), requires some extra
source of organic matter, as the organic matter can elevate temperatures and
provide a wide range of additional binding sites during composting. Sawdust is an
organic source able to initiate efficient composting, as exhibited by elevated
composting temperatures. According to Kim et al. (2012), this consequently
resulted in the reduction of residual concentrations of pharmaceuticals to
acceptable levels in a relatively short composting period. The selection of
appropriate composting technologies is clearly important in the view of
decreasing the levels of pollutants in compost to acceptable levels. Higher ratios
of sawdust in the mixture with sewage sludge clearly speeded up the degradation
of both DCF.

According to Martinez-Alcald et al. (2017) DCF undergoes "partial
biodegradation", as its biodegradation rate constant Kpy = 1.31 L gis ' h™" (in the
case of 0.1 <Ky < 10 L g ' h™! the expected biological transformation rate in a
WWTP is between 20 and 90%). The value of K, obtained for DCF was 0.11
L g '. In WWTPs the elimination of DCF fully takes place through sorption in
WWTPs.

The fast removal of DCF during composting, observed by Butkovskyi et al.
(2016), is not in agreement with the published results on the aerobic degradability
of this pollutant (Joss et al., 2006a: Kpios < 0.1 L g ' h™"). Transformation of
DCD, which is stable towards acrobic and anaerobic biodegradation, is possibly
attributed to the activity of fungal biomass (Butkovskyi et al., 2016). The DFC
removal efficiencies in WWTPs are in the range from 0% to 80% (Zhang et al.,
2008). The rapidness of the removal of DCF in compost mixture could be
explained by the differences in microbial composition of compost in comparison
to activated sludge at the WWTPs (Langenhoff et al., 2013).The study carried out
by Rodarte-Morales et al. (2012) reveals white rot fungus Phanerochaete
chrysosporium capability of complete degradation of DCF in an aerobic
environment (Butkovskyi et al., 2016). The fungal biomass formed 1.25% or
more of the total dry matter of compost at the end of the study. Thus, rapid
degradation of DCF during the composting process was presumably elaborated by
fungi (Butkovskyi et al., 2016).

4.3.2 Carbamazepine
As it can be seen from table 4.7, none of the compost mixtures was free of CBZ.

Its concentrations were from 41 to 62 pg kg™'. This data for CBZ is in reasonable
agreement with the results published by Miao et al. in 2005. The results clearly
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show that no degradation of CBZ took place during composting experiments (see
Tables 4.7 and 4.8).

Table 4.7. Concentrations of carbamazepine (CBZ) in sewage sludge — sawdust compost
mixtures (mg kg, dw)

Compound Ilil/l;xture Before spiking | 1 day 1 week 1 month
CBZ 1 0.062+0.002 3.106+£0.383 | 2.585+0.053 | 3.201+0.098
2 0.046+0.003 2.685+0.260 | 2.314+0.077 | 2.318+0.079

Sewage sludge — sawdust ratio in sample 1 was 1:2 and dry matter content — 35.3%, and
in sample 2 accordingly 1:3 and 40.8%

After preparing compost mixtures unexpectedly high concentrations of CBZ
were detected. This phenomenon can be explained with the rapid loss of organic
matter during the initial stage of composting and is in agreement with the results
obtained by Blair et al. (2015), which showed that the concentrations of CBZ and
its metabolites increased on a dry weight basis between untreated and treated
biosolids. It has been also established that in WWTPs CBZ sometimes exhibits
negative removal efficiency (Collado et al., 2014).

Table 4.8. Extent of degradation (%) for carbamazepine

Mixture No CBZ
1 -11
2 13

CBZ readily adsorbs on sludge particles (Blair et al., 2015; Nielsen and
Bandosz, 2016). The solid-water distribution coefficient has also been obtained
for CAR in mesophilic (35.4 L kg") (Carballa et al., 2008), thermophilic (20.2 L
kg™") (Carballa et al., 2008), and secondary (1.2 L kg™') (Ternes et al., 2004)
sludge.

The concentrations of CBZ and metabolites increase on a dry weight basis
between untreated and treated biosolids (Miao et al., 2005). Butkovskyi et al.
(2016) have shown that under specific conditions the partial degradation of CBZ
takes place. CBZ is not mineralized in soil but is transformed to a range of
transformation products, especially to the recalcitrant acridone-N-carbaldehyde
(Li et al., 2013b). The degradation products of CBZ are more toxic than CBZ
(Donner et al., 2013). The formation of these products might also take place
during sewage sludge composting (Butkovskyi et al., 2016). The work carried out
by Koba et al. (2016) showed that CBZ and its metabolites are persistent under
the studied conditions in soils. According to Li et al. (2013b) the values of ti,» for
CBZ in soils were between 46 and 173 days. The calculated by Martinez-Alcala
etal. (2017) Kpioy=—0.87 L g h' and K, = 0.47 L g™
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4.3.3 Metformin

The concentrations of MET in the mixtures were very low before spiking: 1 to 2
ng kg!' (Table 4.9). The same cannot be said about the other studied pollutants.
The results given in tables 4.9 and 4.10 show that more than 90% of MET
degrades during a 1-month composting period.

Table 4.9. Concentrations of metformin (MET) in sewage sludge — sawdust mixtures (mg
kg, dw)

Compound Il:I/Iéxture Before spiking | 1 day 1 week 1 month
MET 1 0.002+0.000 2.137+0.250 | 0.442+0.015 | 0.181+£0.010
2 0.001+0.000 1.952+0.152 | 0.299+0.015 | 0.140+0.016

Sewage sludge — sawdust ratio in sample 1 was 1:2 and dry matter content — 35.3%, and
in sample 2 accordingly 1:3 and 40.8%

Table 4.10. Extent of degradation (%) for MET during one month composting

Mixture No MET
1 91
2 93

According to Mrozik and Stefanska (2014) MET appears to be a highly mobile
compound with a low affinity to soils (K; = 1.4-0.5 mL g ' for MET in different
soils). This compound is polar and very soluble in water; thus it interacts more
strongly with water than with the soil surface. Although its half-lives were 1-5
days in different soils, due to its weak sorption MET may be a potential threat to
ground and surface water (Benotti and Brownawell, 2005; 2008). For MET the
role of biodegradation and sorption can be expressed with the values of Ky, and
Ki Kpor=0.54 L g' h' and K; = 3 L g (Blair et al., 2015). Interestingly,
MET stopped being degraded at notable levels within an activated sludge
wastewater treatment process (Blair et al., 2015).

4.3.4 Triclosan

The initial concentrations of TCS in compost were up to 2 mg kg' (dw)
(Table 4.11). After adding TCS to the compost samples its concentrations were
determined again, and they were clearly above the expected values (Table 4.11)
probably due to the rapid adsorption of pharmaceuticals (from liquid phase) to
solid particles of sewage sludge or bulking agent. This is in agreement with the
data presented in previous publications (Golet et al., 2003; Gobel et al., 2005;
Yang et al., 2011; Nei et al., 2014). After one week, the concentrations of the
studied pharmaceuticals were determined again. The concentration of TCS had
decreased by 29% in compost mixtures with sludge-sawdust ratios 1:2 (v:v). In
the case of compost samples with the ratios of 1:3 (v:v) the relevant concentration
drop was only 28% (Table 4.11).
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Table 4.11. Concentrations of triclosan (TCS) in sewage sludge — sawdust compost
mixtures (mg kg, dw)

Compound Ilil/[(l)xture Before spiking | 1 day 1 week 1 month
TCS 1 1.768+0.062 4.541+0.378 | 3.241+0.202 | 2.068+0.138
2 1.232+0.070 3.528+0.143 | 2.538+0.089 | 0.682+0.019

Sewage sludge — sawdust ratio in sample 1 was 1:2 and dry matter content — 35.3%, and
in sample 2 accordingly 1:3 and 40.8%

According to the data presented in table 4.12 it is evident that the degradation
of TCS was more complete when higher ratio of sawdust was used in preparing
compost mixtures. Still the level of degradation was clearly insufficient. These
results show clearly, that the degradation of TCS takes place only partly during
one-month composting period, indicating that longer periods are needed for the
more complete removal of pharmaceutical residues from sewage sludge based
compost.

Table 4.12. Extent of degradation (%) triclosan during one month composting

Mixture No TCS
1 55
2 81

Recent studies show that TCS is not fully degraded in WWTPs (Olaniyan et
al., 2016; Tohidi and Cai, 2017). The same is valid in the case of composting with
waste wood (Butkovskyi et al., 2016). Adsorption to sludge and biodegradation
are considered as two main processes for TCS elimination in WWTPs (Tohidi and
Cai, 2017). According to Sadef et al. (2014) the optimal TCS conversion seems to
take place at temperatures of 30-50 °C. It was suggested that for TCS, different
microorganisms were responsible for removal of TCS. The results obtained by
Sadef et al. confirmed that removal of organic pollutants during composting does
occur but the processes may have different temperature dependencies.

TCS showed a strong affiliation to all the sediments with linear adsorption
coefficients (Ky) that varied from 220 to 1092 L ¢!, and the adsorption capacity
was related to the total organic carbon (TOC) contents of the sediments. The half-
lives of TCS varied from 55 to 239 days, and were longer in sediment with higher
K4 (Huang et al., 2015). Both the dependence on temperature and variations in
adsorption make the degradation process of TCS strongly dependent on the
conditions under which the composting of sewage sludge takes place.

The work carried out by Carr et al. (2011) showed that TCS degraded by
microbial populations in soils under both aerobic and reduced oxygen conditions.
The corresponding half-lives were 5.9 vs. 8.9 days. The half-life reported by Ying
and Kookana (2007) was 18 days. According to Ying et al. (2003) no degradation
of TCS takes place under anaerobic conditions. In contrast, Carr et al. observed
reasonable rates of microbial degradation with half-lives between 15.3 and
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28.8 days under anaerobic conditions. Over the 14-day study, between 27% and
40% of the added TCS was lost due to microbial degradation (Carr et al., 2011).

4.4 Composting and microbiological indices (I)

In the beginning of the experiment the growth of microbial population caused the
rise of temperature drastically in compost samples with pharmaceuticals (samples
1 and 3), if compared to reference samples (2 and 4) (Fig. 4.1). Although SIR
profiles looked similar in the case of all four compost samples (described in detail
in Haiba et al., 2017), the highest temperatures in compost samples 1 (57.5 °C)
and 3 (52.5 °C) differed from the temperature peaks in samples 2 (42.2 °C) and 4
(41.4 °C), more than 10 °C. The reason for that might have been the difference in
the ratios between fungi and bacteria (table 3 in Haiba et al., 2017). Compost
samples with pharmaceuticals (samples 1 and 3) had a lower ratio of fungi and
bacteria (0.974 and 0.909) compared to the reference compost samples (sample 2
— 0.980 and sample 4 — 0.965). The formation time of bacteria is much shorter
than that of fungi. They are smaller and therefore abundant in compost (Chroni et
al., 2009). Bacteria have a more active metabolism and due to this it was essential
that in the beginning of the experiment the temperature rose faster in compost
samples 1 and 3 (Haiba et al., 2017).
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Composting duration, day

Figure 4.1. Temperature profiles during one month composting for 1:2 (v:v) sewage
sludge — sawdust mixtures: 1 — containing PPCPs; 2 — without PPCPs and for 1:3 (v:v)
sewage sludge — sawdust mixtures: 3 — containing PPCPs; 4 — without PPCPs.

After one week the ratio of fungi and bacteria was reduced in compost samples
with added pharmaceuticals, but biomass of microorganisms had increased in the
case of samples 2 and 4. It could be the reason for higher temperatures in samples
2 and 4 (Fig. 4.1) (Haiba et al., 2017).
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The results of the experiment showed that the PPCP residues in the compost
mixtures did not have an acute toxic effect on microorganisms. The PPCPs with
the solution added to the compost mixtures (samples 1 and 3) made the
composting processes more unstable, which made the microbiological parameters
fluctuate at much higher amplitude than the reference composts (samples 2 and
4). The added contaminants were not permanently harmful to microorganisms,
causing only temporary stress, and therefore the rates of microbial biomass and
respiration activity began to increase rapidly at the end of the first week.
However, constant exposure with various compounds and their residues in small
doses may result in resistance of microorganisms (Clarke and Smith, 2011;
Kinney et al., 2008; Lee et al., 2012). Microorganisms are at the base of the soil
food web and effects on microbial communities translate to higher trophic levels
represented by soil fauna organisms (Coors et al., 2016). A large part of the
antibiotic resistance genes adsorbes during sewage treatment processes on sewage
sludge particles (Bondarczuk et al., 2016) and then to soil (Kim and Aga, 2007).
It is important to reduce the amount of contaminating resistance genes in sewage
sludge and its compost before reuse (Chen et al., 2016).

4.5 On the degradation of selected pharmaceuticals

For degradation experiments, data were fitted to the exponential decay model:
C=Coe " to obtain the degradation rate constant k. Half-lives (¢1,2) were calculated
by the equation: #,,=0.693/k (Xu et al., 2009).

The degradation of MET takes place rapidly and fully both in soils (from
Mrozik and Stefanska, 2014: k=0.12 ... 0.26 d'; #;,=1 ... 5 d) and compost
mixtures (k= 0.22 ... 0.27 d'; #,,=2 ... 3 d). According to Markiewicz et al.
(2017) in most cases MET follows a dead-end pathway with formation of
guanylurea. The formed guanylurea does not degrade any further and also does
not show toxic properties. Further work on toxicity assessments for guanylurea is
needed (Trautwein and Kiimmerer, 2011). In the case of different soils there is a
99 ... 100% degradation of MET during a 30-day perios, whereas in the studied
compost mixture degradation is lower at 92 ... 93%.

Previous research has shown that DCF is not persistent and is readily
biodegradable in soil; its degradation follows the first-order exponential decay
model and half-life (¢;,) is ranging from 0.4 to less than 5 days (Xu et al., 2009;
Al-Rajab et al., 2010; Dalkmann et al., 2012; Carter et al., 2014; Grossberger et
al., 2014). The bioconcentration factors found for DCF are high in the case of
long-term irrigation with sewage (Christou et al., 2017). In agricultural soils (Xu
etal., 2009) k=023 ... 0.16 d'and #;,=3 ... 4 d. In the case of sterile soil k =
0.010 d' and #;, = 70 d, and for compost mixtures (current study) £ = 0.09 ...
0.1d" and #;,=7 ... 8 d. In sterile soil only 26% of DCF degrades during a 30-
day period, whereas in compost mixtures the level of degradation was 92 ... 98%.

TCS gives the following k and 7, values in the case of agricultural soils (Xu et
al., 2009): k=0.05...0.04 d"'; t;, =13 ... 20 d. In sterile soil k= 0.02 d"' and #,»
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=35 d; 45% of TCS degrades during 30 days. In the case of compost mixtures k =

0.03 ... 0.05d" and 1, = 13 ... 26 d. The level of degradation was 55 ... 81%.

TCS readily adsorbs on soil particles and due to this its mobility in soils is low

(Xu et al., 2009). Bioavailability of TCS greatly decreases in biosolids-amended

soils. Biosolids decrease plant uptake primarily by increasing soil organic carbon

content and subsequently sorption (Fu et al., 2016).

The degradation studies clearly show that the persistence of pharmaceuticals in
the studied compost mixtures increases in the row MET—DFC—-TCS—CBZ.
Interestingly, the degradation of TCS in sterile soil is faster than the degradation
of DCF. In compost mixtures DCF degrades almost fully during a 30-day
composting period. In compost mixtures, as compared to sterile soil, the rate of
degradation of DCF is much higher durng the 30-day period compared to the rate
of degradation of TCS. This suggests that the main route of the TCS degradation
does not go through microbial processes. Slight increase in the degradation rate of
TCS in compost mixtures, if compared to the degradation in sterile soil, can be
explained by elevated temperatures that occur during the formation of compost.
The results obtained in the case of agricultural soils support this conclusion (Xu et
al., 2009).

CBZ was an exception among the studied pharmaceuticals: this compound was
persistent under all studied conditions. This leads to the conclusion that
composting is not an appropriate mean for degrading this compound.

Analysis of results on the degradation of pharmaceuticals available in the
relevant papers or obtained as a result of the current study led to some general
considerations:

» As a rule, the degradation rate of pharmaceuticals depends on the media
consistency. In agricultural soils biodegradation of pharmaceuticals is faster
than in freshly made compost mixtures probably due to the fact that the
formation of microbial communities in the latter takes time.

» The optimization of composting technologies resulted in the efficient
degradation of DCF, MET and TCS, while for the elimination of CBZ from
sewage sludge different measures should be undertaken.

» In sterile soils the degradation of pharmaceuticals is commonly slow, leading
to the conclusion that the main pathway of their degradation goes through
microbial processes.

» Strong adsorption of pharmaceuticals to soil or sludge particles inhibits the
degradation of pharmaceuticals. At the same time, this also slaps down the
plant uptake of these pharmaceuticals, which is important in the view of food
safety.

» Although the plant uptake of highly soluble compounds (as MET and SAs)
readily takes place, their concentrations in soil or sewage sludge compost are
low, and consequently, they commonly do not generate severe problems
associated with food toxicity.

» In many cases, the degradation of pharmaceuticals in soil and compost
follows the first-order exponential decay model. Still, not all of the widely
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used medical compounds (as for example CBZ) follow this rule. Some of
them are relatively persistent.

No comprehensive approaches exist for calculating the reliable concentrations
of pharmaceuticals that have been a subject of biodegradation, but the
ongoing work is bringing closer the creation of more appropriate models.
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CONCLUSIONS

This study was to find reliable ways of optimizing sewage sludge treatment
technologies aimed to the need of increasing the environmental safety of the
resulting compost. The main focus of this thesis is on the treatment of sewage
sludge via composting and the degradation of pharmaceuticals during this
process. Means of reducing the impact of some widely used pharmaceuticals on
the environment and people are proposed.

The main results of the study can be summarized as follows:

e In the case of several pharmaceuticals it is possible to enhance their
degradation rate through the intelligent selection of sewage sludge
composting conditions.

e The degradation of FQs and SAs takes place during sewage sludge co-
composting with sawdust, peat and straw. Additions of sawdust clearly sped
up this process, whereas the mixtures with peat and straw perform lower
abilities to decompose pharmaceutical residues.

o The degradation of DCF is almost complete during one-month composting
period in the case of compost samples with the ratios of 1:3 (v:v). Longer
periods, especially in the case of compost mixtures with sludge-sawdust ratios
1:2 (v:v), are needed for the more complete removal of pharmaceutical
residues from sewage sludge based compost.

e No degradation of CBZ takes place during composting experiments.

e In the case of MET, compost samples with the sludge-sawdust ratios of 1:3
and 1:2 (v:v) yielded similar degradation of more than 90% during a 1-month
composting period.

e The degradation of TCS was more complete when higher ratio of sawdust
was used in compost mixtures. During a 1-month composting period 55% of
TCS was degraded in the "1:2" mixture and 81% in the "1:3" mixture. For
TCS the half-life had double difference depending on the ratio of sewage
sludge and bulking agent (sawdust). Half-life was 13 days for the compost
mixture with ratio of 1:3 (v:v) and 26 days for the compost mixture with ratio
of 1:2 (viv).

e The results of this study show that the optimization of composting
technologies allows for the efficient degradation of DCF, MET and TCS,
whereas for the elimination of CBZ from sewage sludge different means
should be used. The composting period should last at least six months.

Overall, the results obtained in this study provide information for choosing
intelligent approaches to sewage sludge composting with the aim of degrading
pharmaceutical residues present in this media. Although sewage sludge
composting is an efficient way for degrading several widely used
pharmaceuticals, some of these compounds are highly persistent towards
bioprocesses and their elimination needs the application of different measures.
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ABSTRACT

Optimization of sewage sludge composting: problems and solutions

Composting is one of the sustainable practices to convert sewage sludge into
useful agricultural product. Before the compost can be used for agricultural
purposes, international and existing regulations in Estonia foresee its analysis for
heavy metals, coliform-like bacteria and helminth eggs; however, there is no
requirement for the determination of the content of organic toxic compounds in it.
During the last decade, scientists have become keenly aware that toxic
compounds present in sewage sludge are dangerous to the environment. Sewage
sludge may contain many pharmaceutical residues and other toxic compounds,
some of which are not biodegradable. So with sewage sludge compost, they may
get into the field, where they can change the biological balance of soil and
accumulate in food plants. Even extra-low concentrations of pharmaceutical
residues and toxic compounds can endanger ecological balance and human health.
Although, it is known that sewage sludge composting can induce the degradation
of toxic compounds in it, the effect of sewage sludge composting technologies on
the degradation of pharmaceutical residues has not been systematically studied.

The aim of this work was to study the impact of sewage sludge composting on
the degradation of some widely used pharmaceuticals and to add a piece of
knowledge applicable in the development of composting technologies leading to
the increase of the safety of using sewage sludge compost in the fertilization of
soils with poor nutrient content. The main directions of the research presented in
this thesis were:

» The pilot studies and literature analysis showed that sewage sludge contains a
high variety of pharmaceutical residues that are hazardous to the environment
and that some of these residues can be transported to food plants via the usage
of sewage sludge or its compost as fertilizers.

» The possibilities of reducing the impact of pharmaceuticals on the
environment and people through increasing the efficiency of sewage sludge
composting technologies were studied.

» Efficient sewage sludge composting conditions with the aim of achieving
more complete degradation of FQ and SA residues were developed.

» The impact of bulking agent on the degradation of DCF, MET, CBZ and TCS
residues in sewage sludge compost were determined and an optimal compost
mixture composition was proposed.

» Recommendations directed to reducing environmental pollution resulting
from pharmaceutical residues present in sewage sludge.

The results of this study showed that in the case of several pharmaceuticals it
is possible to enhance their degradation rate through the intelligent selection of
sewage sludge composting conditions. Additions of sawdust clearly speeded up
this process, whereas the mixtures with peat and straw perform lower abilities to
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decompose pharmaceutical residues. The results of this study showed that the
optimization of composting technologies (higher C-content as a bulking agent)
allowed to carry out the efficient degradation of DCF, MET and TCS, while for
the elimination of CBZ from sewage sludge different means should be used. The
composting period should last for at least six months.

Although sewage sludge composting is an efficient way for degrading several
widely used pharmaceuticals, some of these compounds are highly persistent
towards bioprocesses and their elimination needs the application of different
measures. At the moment, little is known about the long-term use of sewage
sludge and its compost and how the presence of contaminants and in particular
their mixtures affect soil micro-organisms, and therefore work in this area should
continue.
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KOKKUVOTE

Reoveesette kompostimistehnoloogiate optimeerimine keskkonnaohutuse
nouetest lihtuvalt

Reoveesete on toitaineterikas substraat, kuid tema kasutamine mullaviljakuse
tostjana on piiratud seetOttu, et ta sisaldab paljusid keskkonda reostavaid
ithendeid, sealhulgas ravimite jadke. Kuigi reoveesette kompostimisel paljud
orgaanilised iithendid lagunevad, siis osade laialdast kasutamist leidvate
ravimijadkide lagunemise kiirus ei ole kiillaldane. Murettekitavaks on muutunud
ravimijadkide potentsiaalne migreerumine toidutaimedesse. Erinevate saasteainete
jaédkide sattumine pinnasesse voib mdjutada taimede kasvu ja arengut ning samuti
komposti bakterite ja seente elutegevust ning aktiivsust. Eesti suuremates
veepuhastusjaamades kasutatavad kompostimistehnoloogiad vajavad
optimeerimist, et tagada toiduohutuse seisukohalt hidavajalik saasteainete
voimalikult madal sisaldus véetamiseks kasutatavas kompostis. Kéesoleva
viitekirja tulemused vdimaldavadki selles suunas edasi liikuda.

Kéesoleva t60 eesmirgiks oli uurida reoveesette kompostimistehnoloogiate
mdju monede laialdaselt kasutatavate farmaatsiatoodete jadkide lagunemisele,
mille tulemusena oleks vd&imalik laiendada reoveesette komposti ohutut
kasutamist toitainetevaeste muldade vdetamisel. Piistitatud iilesande lahendamisel
labiti jargmised etapid:

» Eelkatsete ja kirjanduse analiiiisi tulemusena néidati, et reoveesete sisaldab
keskkonnaohtlikkuse seisukohalt olulistes kogustes laialdast kasutust
leidvate ravimite jadke ning et osad nendest ravimitest vdivad reoveesette
vOi tema komposti kasutamisel liikkuda toidutaimedesse.

» Uuriti voimalusi moningate laialdaselt kasutatavate farmaatsiatoodete
moju  vdhendamiseks  keskkonnale ja  inimestele reoveesette
kompostimistehnoloogiate tShustamise abil.

» Tootati vilja fluorokinoloonide (FQ) ja sulfoonamiidide (SA) jadkide
kiiremat ja tdielikumat lagunemist soodustavad kompostimistingimused.

» Madrati sette ja tugimaterjali koostise moju diklofenaki, metformiini,
karbamasepiini ja triklosaani lagunemisele reoveesette kompostis ning
pakuti vilja Eesti tingimustele vastav optimaalne kompostisegu koostis.

» Esitati reoveesettes sisalduvatest ravimijadkidest tuleneva
keskkonnaohtlikkuse kahandamisele suunatud soovitused.

Labiviidud uurimuse tulemused nditasid, et optimaalsete kompostimis-
tehnoloogiate teel on vodimalik paljude saasteainete sisaldust reoveesette
kompostis olulisel mééral vihendada. Hetkel on véihe teada selle kohta, kuidas
reoveesette ja komposti pikaajaline kasutamine ja seal leiduvad saasteained ning
eriti nende segud modjutavad mulla mikroorganisme, mistdttu t66 selles
valdkonnas peaks jatkuma.
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Abstract. Land application of sewage sludge compost is an important and efficient tool in the
remediation of industrial landscapes and agricultural soils in Estonia. A number of studies have
shown that, as a rule, pharmaceuticals and personal care products (PPCPs) are neither completely
removed by sewage treatment, nor completely degraded in the environment. In this study,
degradation rates of diclofenac sodium (DFC) and triclosan (TCS) were determined during
sewage sludge composting. Anaerobically digested and dewatered sewage sludge was mixed with
sawdust at two different ratios (1:2 and 1:3 sludge/sawdust, v:v). Then aerobic composting was
carried out. These ratios were chosen on the basis of previous studies on sewage sludge
composting with different bulking agents. The initial concentration of DFC and TCS was
2 mg kg in relation to dry weight (dw). Low quantities of the studied pharmaceuticals were
present in sewage sludge that was used for preparing the compost mixtures used in our
experiments. The background concentrations of DFC and TCS were never equal to zero. The
results showed that the difference between sewage sludge and bulking agent ratios (1:2 vs 1:3) in
compost samples did not significantly affect temperature profiles during the experiment. The
degradation of pharmaceuticals was more complete in the compost samples where the ratio of
bulking agent was higher (1:3 by volume). The average degradation level (in all compost
mixtures) was 95% for DFC and 68% for TCS. Pharmaceuticals entering into the soil may affect
microbial activity, plant growth and development, and may have adverse effects on living
organisms.

Key words: sewage sludge compost, sawdust, fertilizers, diclofenac, triclosan.
INTRODUCTION

Compost has proven to be a valuable matter in land recultivation and forestry
(Haiba et al., 2016; Jarvis et al., 2016). Estonia has the world's largest exploited oil-shale
basin covering about 4% of its territory. In 2001-2013 the number of active landfills in
Estonia decreased from 159 to 13. Recultivation of the landscapes covered by semi-coke,
oil-shale ash mountains, abandoned opencast mines and closed landfills appears to be
one of the major environmental tasks in Estonia (Haiba et al., 2016). The formation of
soil with its typical biota is crucial for the restoration of former mining areas and
remediation of waste heaps (Kalda et al., 2015). Compost based on sewage sludge could
be a useful tool in overcoming the problems associated with land recultivation. Sewage
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sludge contains useful organic matter and nutrients for plants (Kaonga et al., 2010). The
contents of nitrogen, phosphorus and organic matter are up to 10 times higher in sewage
sludge and its compost, if compared to common Estonian agricultural soils.

Composting is the major way of making the soil application of sewage sludge safer.
Still, its usage as a fertilizer is limited due to a large number of toxic pollutants found in
this matter (Lillenberg et al., 2010). In particular, the presence of pharmaceutical
residues, even in very low concentrations. in sewage sludge compost is of great concern.
The widespread use of antibiotics is the most important factor for the emergence,
selection, and dissemination of antibiotic-resistant bacteria (Baquero et al., 2008; Roasto
et al., 2009; Munir et al., 2011; Naquin et al., 2015; Méesaar et al., 2016). Due to the
occurrence of antibiotic resistance genes in the wastewater treatment systems, the impact
of the antibiotic combinations is greater than the sum of their independent activities
(Aydin et al., 2015). As a result the bacteria may develop several resistance mechanisms;
this will ultimately result in multidrug resistance (Baharoglu & Mazel, 2011).

Recent years have shown intensive work directed to the development of reliable
methods for the determination of pharmaceutical residues in the environment (Lillenberg
et al., 2009; Kipper et al., 2011; Garcia-Rodriguez et al., 2014; Casado et al., 2015;
Morales-Toledo et al., 2016), showing the increasing importance of this phenomenon.
Pharmaceuticals can be degraded during composting (Poulsen & Bester, 2010; Kim et
al., 2012). Among the factors which possibly promote micropollutants degradation
during composting is the presence of fungi in the composted matter (Zhang et al., 2011).
However, the literature data on this topic are scarce and more research is required in this
area (Butkovskyi et al., 2016).

Diclofenac (DFC) is one of the most popular non-prescription medications. It is
non-steroidal anti-inflammatory drug and widely used for relieving pain (Chen et al.,
2015). DCF together with its human metabolites enter wastewater treatment plants
(WWTPs) through sewers (Zhang et al., 2008; Sagrista et al., 2010). This is one of the
most frequently detected drugs in WWTPs, having low removal efficiency and often
found in high concentrations in effluent water (Stiilten et al., 2008; Al-Rajab et al., 2010;
Bartha et al., 2014; Osorio et al., 2014). DFC residues have been detected in sewage
sludge with concentrations reported from 2 ng g'! to 140 ng g™! (Jeli¢ et al., 2009; Dobor
et al., 2010; Jeli¢ et al., 2011; Loos et al., 2013). DCF residues have been detected in
aqueous environment (Al-Rajab et al., 2010) where they can cause DNA damage with
induced immunosuppression and genotoxicity in fish (Ribas et al., 2014). Chemical
structure of DCF involves a chlorine atom and therefore its residues are not readily
biodegradable in the environment. Metabolism of DFC has been studied and described
in mammals, fungi and microorganisms (Huber et al., 2012; Bartha et al., 2014). DFC is
acutely toxic to birds and presumably could leach into soil beneath the corpses of
livestock containing DFC residues (Stiilten et el., 2008; Al-Rajab et al., 2010).

Triclosan (TSC) is a broad-spectrum antimicrobial compound, commonly used in
personal care products (soaps, creams, toothpastes, detergents) and housewares (cutting
boards, even textiles and toys). This compound has been used for over 40 years. The use
of antimicrobials and -bacterial products is increasing all over the world (Lozano et al.,
2010). Today, TSC compounds are consumed in Europe at approximately 350 tons per
year (Pintado-Herrera et al., 2014). TSC residues have been detected in wastewater (in
concentrations ranging from 1-10 ugL!) as well as in sewage sludge (concentration
range 2-8 mg kg'! dry matter) (Chen et al., 2011; Loos et al., 2013). TCS residues have
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been found in soil fertilized with sewage sludge compost up to a concentration of
4 ug kg'!. Various studies have shown that already at relatively low concentration TSC
may have adverse effects to the environment — prevents bacterial metabolism, affects
microbial respiratory activity and populations (Lozano et al., 2010; Chen, et al., 2011;
Pintado-Herrera et al., 2014).

Though a variety of compounds and their metabolites are present in the
environment, their biodegradation and ecotoxicological effects are not well known (Li
et al., 2014). Toxic compounds and pharmaceutical residues in soil can affect microbial
activity, plant growth and development and may have adverse effects on living
organisms (Lillenberg et al., 2010). Accumulation of antimicrobials from soil into
foodplants may pose a danger, as very small amounts of these drugs in everyday food
may generate the strains of resistant bacteria in humans (Kipper et al., 2010).

Sawdust has proven to be an efficient bulking agent for sewage sludge composting
(Banegas et al., 2007). The purpose of this pilot study was to determine the impact of
different proportions of bulking agent (sawdust) on the degradation of DFC and TCS
residues in sewage sludge compost.

MATERIALS AND METHODS

Chemicals and materials

Standard substances of pharmaceuticals were obtained from Sigma-Aldrich:
diclofenac sodium salt (99.9%) and triclosan (99.7%). As liquid chromatography — mass
spectrometry (LC-MS) eluent components, methanol (>99.9%; LC-MS Ultra
CHROMASOLYV; Fluka), water purified in-house using Millipore Milli-Q Advantage
A10 system, 1,1,1,3,3,3-hexafluoroisopropanol (HFIP, Sigma-Aldrich), NH4OH (25%;
eluent additive for LC-MS; Fluka) and formic acid (> 98%; puriss p.a., Sigma-Aldrich)
were utilized. For sample preparation, vortex mixer VWR International, shaker Elpan
3588, centrifuge Eppendorf 5430R and ultrasonic bath Bandelin Sonorex were used.
Sample extracts were filtered through Sartorius Minisart RC4 (regenerated cellulose,
pore size 0.2 pm, membrane diameter 4 mm) syringe filters using disposable 2 ml
syringes (Brand).

Sample collection

The anaerobically digested and dewatered by centrifugation sewage sludge samples
were collected from municipal wastewater treatment plant in Tallinn (440,000
inhabitants), Estonia. The sewage sludge was mixed with sawdust at two different ratios
(1:2 and 1:3 sludge: sawdust, v:v) and submitted to a process of aerobic composting.
These ratios were chosen on the basis of literature (Banegas et al., 2007) and our previous
studies on sludge composting with different bulking agents (straw, sawdust, oil-shale
ash, wood chips) (Haiba et al., 2013; Nei et al., 2014; Nei et al., 2015). The initial
concentration of every pharmaceutical was 2 mg kg™! in relation to dry weight (dw). In
addition to this, two reference piles (without additions of pharmaceuticals) were
prepared. The content of compost samples is presented in Table 1.
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Table 1. Compost samples

Sample No . Mixture ratio  Dry matter*, ~ Added pharmaceuticals
Compost mixture . .
(viv) % in compost sample
Kl Sewage sludge: sawdust 1:2 353 2 mg kg (dw)
K2 Sewage sludge: sawdust 1:2 35.2 Not added
K3 Sewage sludge: sawdust ~ 1:3 40.3 2 mg kg! (dw)
K4 Sewage sludge: sawdust 1:3 40.8 Not added

* — dry matter in the beginning of experiment.

Sample preparation

Samples were thawed at room temperature and mixed by vigorous shaking. For
extraction, about 5 g of sample was precisely weighted into 50 ml polypropylene
centrifuge tube. The following extraction procedure was used:

1. 15 ml of extraction solvent (1% v/v formic acid in ethanol) was added to a
sample tube.

2. The mixture was Vortex-mixed for 30 s.

3. The sample tube was tightly capped and placed horizontally on a shaker (200
rpm) for 10 min.

4. The tube was turned into vertical position and shaken by hand to ensure that the
solid contents are in contact with extraction solvent.

5. Extraction was continued by sonicating for 10 min.

6. Samples were centrifuged at 7,830 rpm for 5 min.

7. The extract was removed from the tube using pipette.

Extraction steps 1-7 were repeated five times with each sample. Extracts were
combined in 100 ml polypropylene bottles, mixed and weighted. From each extract
15 ml was taken into 15 ml polypropylene centrifuge tube for further treatment.

Prior to LC-MS/MS analysis, sample extracts were diluted: to 100 pl extract
1,400 pl of MilliQ water were added in 1.5 ml Eppendorf tube. Automatic pipette was
used for dosing, but all the solutions were weighted. The solutions were vortex-mixed
and filtered through syringe filter. First five drops of filtrate were discarded and the
remaining (ca 1 ml) was collected into auto-sampler vial (2 ml glass vial).

Calibration and quality control samples

Calibration and quality control samples were prepared by diluting stock solutions
of analytes. Stock solutions were prepared by dissolving appropriate amount of analytes
in methanol. Working standards were prepared in 1.5 ml Eppendorf tubes by diluting
600 pl of stock solution with 400 ul MilliQ water. Similarly to preparation of sample
solutions, all solutions were prepared by weight, vortex-mixed and filtered through
syringe filters. Concentration of calibration and quality control solutions were chosen
according to the linear range for each analyte.

LC-MS/MS analysis

Sample extracts were analyzed using LC-MS/MS system consisting of ultra-high
performance liquid chromatograph UHPLC Agilent 1290 Infinity and mass spectrometer
Agilent 6495 Triple Quad. The liquid chromatograph consisted of the following
modules: binary high-pressure gradient pump with built-in degasser, autosampler with
sample compartment cooling and column thermostat. Waters XBridge C18 (150 mm x
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3 mm, 3.5 pm) analytical column and Waters Guard Cartridge (20 mm x 4.6 mm)
(Waters) precolumn were used for sample analysis.

For analyte detection triple quadrupole mass spectrometer equipped with heated
electrospray interface (HESI) Agilent JetStream was used. Chromatographic separation
was carried out using gradient elution. As the weak component of eluent (A), 5 mM
HFIP buffer solution (pH adjusted to 9 using NH4OH) was used. The strong component
of the eluent (B) was methanol. The gradient program started from 10% B and content
of B was increased to 100% during 33 minutes. For the following 3 minutes isocratic
(100% B) elution was used, followed by 3 min gradient to 10% B. For equilibration the
column was eluted with 10% B for 4 minutes. Eluent flow rate was 0.3 ml min™', column
temperature maintained at 30 °C and injection volume 10 pl. Multiple reaction
monitoring (MRM) mode was used for analyte detection. MRM transitions used are
presented in Table 2.

Table 2. MRM transitions, collision energies (CE) and ionization polarities used for analysis

Analyte Precursor ion, m/z Product ion, m/z CE Polarity mode
Diclofenac 296 250 10 Positive

296 214%* 40 Positive
Triclosan 289 37* 20 Negative

289 35 10 Negative

287 35 15 Negative

* — quantitative transition.

The following ion source and MS parameters were used for analysis: drying gas
temperature 250°C and flow rate 14 1 min', nebulizing gas pressure 20 psi (138 kPa),
heating gas temperature 350 °C and flow rate 11 I min™', capillary voltage 3,000 V. As
drying, nebulizing, heating and collision gas nitrogen was used. The instrument was
controlled using Agilent MassHunter Workstation ver B.07.00 software. For quantitative
analysis Agilent MassHunter Workstation Quantitative analysis ver B.07.01 software
was used.

Composting

Experiments were performed in non-transparent plastic containers. With the aim of
preventing heat loss from the sides and bottom of the containers, a 5 cm thick insulation
(glass wool) was used. Compost samples of about 30 L were prepared with each mixture.
The solutions of pharmaceuticals were prepared as follows: 2 mg of each pharmaceutical
was dissolved in 100 ml ethanol and after that 400 ml distilled water was added to the
solution. Then the solutions of the studied pharmaceuticals (DCF and TSC) were mixed
with compost samples. The room temperature was 23-26 °C. Compost samples were
turned periodically (5-6 times per week) to provide sufficient aeration and
homogenization. The moisture content of the mixtures was maintained at 60—70% of
their water holding capacity throughout the composting period. The temperature of each
mixture was monitored daily at 3—4 different points in each sample with a digital
temperature probe and mercury thermometer. The duration of experiment was 30 days.
The samples were homogenized before analysing — taken randomly from different parts
of the sample.
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Determination of the microbial characteristics of sewage sludge compost

The methodology used for the determination of microbial characteristics of sewage
sludge compost is presented in Nei et al. (2014). Soil microbial Substrate Induced
Respiration rates (SIR) were measured using manometric respirometers (Oxitop®,
WTW) (Platen & Wirtz, 1999). 50 g of fieldmoist compost was amended with glycose
and incubated in a closed vessel at 22 °C in the dark for 24 hours. After incubation the
microbial biomass C was calculated.

To determine the microbial to fungal ratio, selective inhibition technique was used.
In order to assess the fungal biomass, samples were treated with streptomycin (12 g kg™)
and glucose (5 g kg™"); for the determination of bacterial biomass, samples were treated
with cyxloheximide (6 g kg!) and glucose (5 g kg!). Reference samples were treated
with cyxloheximide (12 gkg') and streptomycin (6 gkg'). All the samples were
incubated in closed vessels at 22 °C in the darkness for 24 hours and then the biomass C
was calculated (Nei et al., 2014).

RESULTS AND DISCUSSION

In the beginning of the experiment the growth of microbial population caused the
rise of temperature drastically in compost samples with pharmaceuticals (samples K1
and K3), if compared to reference samples (K2 and K4) (Fig. 1). Although SIR profiles
seemed similar in the case of all four compost samples (Table 3), the highest
temperatures in compost samples K1 (57.5 °C) and K3 (52.5 °C) differed from the
temperature peaks in samples K2 (42.2 °C) and K4 (41.4 °C) more than 10 °C. The
reason for that might have been the difference in the ratios between fungi and bacteria
(Table 3). Compost samples with pharmaceuticals (K1 and K3) had a lower ratio of fungi
and bacteria. The formation time of bacteria is much shorter than that of fungi. They are
smaller and therefore abundant in compost (Chroni et al., 2009). Bacteria have a more
active metabolism and due to this it was natural that in the beginning of the experiment
the temperature rose faster in compost samples K1 and K3.
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Figure 1. Temperature profiles during one month composting for 1:2 (viv) sewage
sludge — sawdust mixtures: K1 — containing pharmaceuticals; K2 — without pharmaceuticals and
for 1:3 (v:v) sewage sludge — sawdust mixtures: K3 — containing pharmaceuticals; K4 — without
pharmaceuticals.
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After one week the ratio of fungi and bacteria was reduced in compost samples with
additional pharmaceuticals, but biomass of microorganisms had increased in the case of
samples K2 and K4. It could be the reason for higher temperatures in samples K2 and
K4 (Fig. 1).

Table 3. The average bacterial-to-fungal ratio, substrate induced respiration (SIR) profiles and
moisture content during 30 days

Sample No Ratio of fungal to bacteria SIR, mg biomass C g dw Moisture, %
K1 0.974 +0.072 13.8+3.5 62.6+0.4
K2 0.980 + 0.075 19.9+1.2 62.6+0.3
K3 0.909 + 0.062 17.3+3.2 61.6+0.4
K4 0.965 + 0.065 162+ 1.1 62.2+0.4

The results of the analyses indicated that none of the compost samples was
originally free of DCF and TSC residues (see Table 4). Although DFC concentrations
were found in relatively low amounts, the concentrations of triclosan were up to
2 mg kg (dw). A well-managed composting process resulting in an efficient decline of
residual pharmaceuticals, as shown in Kim et al. (2012), requires some extra source of
organic matter, as the organic matter can elevate temperatures and provide a wide range
of additional binding sites during composting. Sawdust is an organic source able to
initiate efficient composting, as exhibited by elevated composting temperatures.
According to Kim et al. (2012), this consequently resulted in the reduction of residual
concentrations of pharmaceuticals to acceptable levels in a relatively short composting
period.

After adding the pharmaceuticals to the compost mixtures their initial
concentrations in dry matter were determined again. All of the concentrations were
above the expected values (see Table 4) probably due to the rapid adsorption of
pharmaceuticals (from liquid phase) to solid particles of sewage sludge or bulking agent.
This is in agreement with the data presented in previous publications (Golet et al., 2003;
Gobel et al., 2005; Yang et al. 2011; Nei et al., 2014). After one week, the concentrations
of the studied pharmaceuticals were determined again. The concentrations of DFC and
TCS residues had decreased by 51% and 29% in compost mixtures with sludge-sawdust
ratios 1:2 (v:v). In the case of compost samples with the ratios of 1:3 (v:v) the relevant
concentration drops were 42% (DFC) and 28% (TCS).

Table 4. Concentrations of diclofenac and triclosan in sewage sludge — sawdust compost samples
(mgkg', dw)

Compound  Sample No  Before spiking 1 day 1 week 1 month

Diclofenac K1 0.086 + 0.004 2.646+0.319 1.307+0.035 0.209+0.010
K3 0.064 + 0.005 2.381+0.212 1.369+0.044 0.036 +0.002

Triclosan K1 1.768 + 0.062 4541 +£0.378 3.241+£0.202 2.068 + 0.138
K3 1.232 £ 0.070 3.528+£0.143 2.538 £0.089 0.682 +0.019

According to the data presented in Table 5 it is evident that the degradation of
pharmaceuticals was more complete when higher ratio of sawdust was used in preparing
compost mixtures.
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Table 5. Extent of degradation (%) for These results show clearly, that the

diclofenac and triclosan during one month degradation of TCS takes place only
composting partly during one-month composting
Sample No Diclofenac  Triclosan period, indicating that longer periods are
K1 92 55 needed for the more complete removal of
K3 98 81 pharmaceutical residues from sewage
Average 95 68 sludge based compost.

CONCLUSIONS

The study was carried out to demonstrate the degradation of DCF and TCS in
composting processes using different ratios of sewage sludge and bulking agent
(sawdust). There is strong evidence that biotic and abiotic factors contributed to the
decomposition of pharmaceuticals during composting. The selection of appropriate
composting technologies is clearly important in the view of decreasing the levels of
pollutants in compost to acceptable levels. Higher ratios of sawdust in the mixture with
sewage sludge clearly speeded up the degradation of both DCF and TCS. The results
showed that the difference between sewage sludge and bulking agent ratios (1:2 vs 1:3)
in composts did not significantly affect temperature profiles during the experiment. The
degradation of pharmaceuticals was more complete in the compost samples where the
ratio of bulking agent was higher (1:3 by volume). 30-days composting period was not
sufficient for degrading TCS residues present in sludge-sawdust mixtures, whereas
almost full degradation (98%) of DCF took place in the case of 1:3 sludge-sawdust
sample. It is an extremely complicated task to secure the removal of organic pollutants
from sewage sludge compost. More research is needed to clarify the factors speeding up
the degradation of different pharmaceuticals during composting. Special attention should
be payed to the intelligent and safe application of such composts.
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A simultaneous method for quantitative determination of traces of fluoroquinolones (FQs) and sulfonamides (SAs) in edible
plants fertilized with sewage sludge was developed. The compounds were extracted from the plants by rapid and simple liquid
extraction followed by extracts clean-up using solid phase extraction. The eluent additive 1,1,1,3,3,3-hexafluoro-2-propanol was
used for liquid chromatographic detection to achieve separation of structurally similar antimicrobials like ciprofloxacin and
norfloxacin. Identification and quantification of the compounds were performed using high-performance liquid chromatography
with electrospray ionization mass spectrometry in selected reaction monitoring mode. Method was validated and extraction
recoveries of FQs and SAs ranged from 66% to 93%. The limit of quantifications was from 5 ng/g in the case of ofloxacin to 40 ng/g
for norfloxacin. The method precision ranged from 1.43% to 2.61%. The developed novel method was used to evaluate the plats
antimicrobial uptake (potato (Solanum tuberosum L.), carrot (Daucus carota L.), lettuce (Lactuca sativa L.), and wheat (Triticum
vulgare L.)) from soil and migration of the analytes inside the plants.

1. Introduction

The increase of the yearly production of sewage sludge
compost containing human and veterinary antimicrobials
has led to antimicrobial resistance being one of the top health
challenges in the 21st century [1]. One of the largest and most
diverse microbial habitats on Earth is soil, a vast repository of
the antimicrobial resistance genes between soil bacteria and
clinical pathogens [2].

When antimicrobials are eliminated from the human
body, they can be excreted in their native form or as
metabolites [3]. Since antimicrobials are developed to have
a specific mode of action, even low levels of these drugs in
edible plants can cause effects in organisms [4].

Several studies have demonstrated that the two most
important sources through which toxic compounds reach the
environment are sewage sludge and compost, which are often
used in agriculture [5-9]. More generally, pharmaceuticals
move into the sewage system and to waste water treatment
plants [10]. The nutrition-rich sewage sludge and compost

can be used as fertilizers for plants. The increasing propor-
tions of administered drugs and personal care products are
alarming because the compound releases into the environ-
ment are not controlled [11, 12] and this is a potential threat to
the environment [13-15]. It is worrisome that pharmaceutical
compounds may potentially enter edible food plants that have
been fertilized with sewage sludge compost [9, 16-18].

The risks from the fertilizer should be evaluated carefully.
Exposure to pharmaceuticals via plant-derived foodstuffs is
usually low and effects on human health are in most cases
unlikely. This route of exposure may, however, be more
significant for a small number of highly toxic medicines or
in situations where long-term low-level exposure could elicit
subtler effects (e.g., promotion of antibacterial resistance or
endocrine disruption) [19]. A chemical can undergo various
structural changes by a multitude of biotic and nonbiotic pro-
cesses after its introduction into the environment. Structural
transformations may also be a result of effluent treatment
[4, 20-26]. The maximum residue levels (MRL) are set only
for food of animal origin, milk and meat [27, 28].



Analytical methods have been developed and applied
for the determination of different antimicrobials in sewage
sludge and its compost, biosolids, and sludge-treated soil [29—-
38]. Many antimicrobials, known to be persistent in soils
fertilized with sewage sludge compost, can accumulate into
food plants [39-46]. The pharmaceuticals accumulated in
the food plants may generate resistant bacteria in human
and animal organisms. The groups of antimicrobials of
interest are well-known, but it is a complicated task to
separate structurally similar compounds in a reversed-phase
LC (liquid chromatography) system. On the other hand, the
concentrations in residue levels are very low and therefore
improved MS (mass spectrometry) sensitivity is more than
welcome. The aim of the present study was to use an
eluent additive 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) to
improve LC separation significantly with alternative selec-
tivity in CI8 stationary phase and enhance MS detection
of fluoroquinolones (FQs) and sulfonamides (SAs) in small
concentration levels to quantify them in food plant samples.
These drugs were selected according to three criteria: (1) their
stability in soil [47], (2) their potential to accumulate into
plants [39, 46], and (3) their presence in sewage sludge and
its compost [48].

For the prevention of the development of microbial resis-
tance of humans and animals, the concentration of antimicro-
bials in compost must be significantly below 1 ug/kg, securing
the relevant soil concentrations at 0.01-0.1pug/kg [49]. In
our previous work [16], the highest detected concentra-
tions of the antimicrobial norfloxacin (NOR), ciprofloxacin
(CIP), ofloxacin (OFL), sulfamethoxazole (SMX), and sul-
fadimethoxine (SDM) in sewage sludge and its compost were
as shown in Table 1.

2. Materials and Methods

2.1. Chemicals. Pharmaceuticals were purchased from Riedel-
de-Haén (Seelze, Germany): three FQs, CIP (purity 99.8%),
NOR (purity 99.9%), and OFL (purity 99.3%); two SAs,
SDM (purity 99.4%) and SMX (purity 99.9%). Acetonitrile
and methanol were obtained from J.T. Baker (Deventer,
Netherlands), HPLC grade formic acid, and ammonia from
Riedel-de-Haén. HFIP was purchased from Sigma (St. Louis,
MO, USA). All solvents were of reagent grade or higher
quality. Water was purified (18.2 MQ x cmat25°Cand a TOC
value below 3 ppb) in-house using a Milli-Q Plus system from
Millipore (Bedford, USA). Hydrophilic-lipophilic balanced
(HLB) solid phase extraction (SPE) cartridges (Oasis HLB
(60 um), 500 mg/6 mL) were purchased from Waters (Mil-
ford, MA, USA).

The selection of antimicrobials was made according to
preliminary pilot study on antimicrobials usage and presence
in the sewage sludge samples [48], their stability in the soil
and potential degradation during the composting procedure
[16], and their uptake from the soil by plants [46].

2.2. Plant Samples. For the experiments with plants, the
antimicrobials were spiked into the soil in which the plants
were grown [49]. Aqueous solutions of the studied pharma-
ceuticals were mixed with soil. The final concentration of each
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TaBLE 1: Occurrence of antimicrobials (ug/kg) in sewage sludge and
its compost (illustrative data).

Antimicrobial media NOR  CIP OFL SMX SDM
Sewage sludge 162 426 39 6 20
Compost 22 20 3 1 4

pharmaceutical was 10 mg per kg of dry soil. To ensure better
dissolution of the studied pharmaceuticals, fluoroquinolones
were dissolved in 2ml of 0.1 mM ammonium acetate buffer
solution with pH 2.8 and sulfonamides were dissolved in 2 ml
of 0.3 M NaOH. Potatoes (Solanum tuberosum L.), carrots
(Daucus carota L.), lettuce (Lactuca sativa L.), and wheat
(Triticum vulgare L.) were grown in the presence of five
antimicrobials commonly present in sewage sludge (CIP,
NOR, OFL, SDM, and SMX). The potato tubers and plant
seeds were planted into the pots, with one tuber or 35 seeds
in each pot. The plants were cultivated in a greenhouse under
natural light conditions for 120 days after planting (lettuce,
70 days). The soil was weighed, and aqueous solutions of the
studied pharmaceuticals were mixed with the soil. The final
concentration of each pharmaceutical was 0.01, 0.1, 0.5, 1,
and 10 mg/kg (dry weight). Three parallel experiments were
conducted for each concentration of antimicrobials. In ref-
erence experiments, plants were cultivated in antimicrobial-
free soils. The plants were collected and washed carefully.
Potatoes and carrots were chopped into ca 1cm® pieces.
Then the plants were dried at room temperature in the
darkness and after that milled for analyses, using Knifetec
1095 Sample Mill (Foss) and a common coffee mill. The size of
the particles of the powder was <1 mm®. The milled samples
were dewatered in a thermostat at 45°C for 24 hours using
thermostat Binder KB 115 and stored in hermetic plastic bags
for three weeks at —80°C (using refrigerator Sanyo MDEF-
U54V) before analysis.

2.3. Sample Preparation. 250mg of dried plants (grains,
roots, or leaves) was extracted with 10 mL of a 1:1 (v/v) mix-
ture of acetonitrile and 1% acetic acid, then homogenized with
laboratory homogenizer DIAX 900 (Heidolph Instruments,
Germany) at 25,000 rpm, sonicated (5"), vortexed (1'), and
centrifuged at 8000 rpm. The supernatant was then separated
and dried by nitrogen stream to remove acetonitrile. Approx-
imately 15mL of 1% acetic acid was added to the ImL of
evaporation residue [49].

The extract collected with liquid extraction was cleaned
up with solid phase extraction (SPE). Antimicrobials, CIP,
NOR, OFL, SDM, and SMX, were extracted using HLB car-
tridges. For the SPE procedure, the vacuum manifold (Agilent
Technologies) was used. HLB cartridges were preconditioned
with 20 mL of methanol and 10 mL of Milli-Q water. The
sample was loaded at a rate of 6 mL/min. After extraction,
the compounds were eluted from the cartridges using 12 mL
of methanol. The SPE extracts were evaporated to dryness in
polypropylene vials in an N2 stream. Residue was dissolved in
1mL of 20% methanol with buffer solution (5 mM 1,1,1,3,3,3-
hexafluoro-2-propanol, pH adjusted to 9.0 with NH,OH).
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2.4. Liquid Chromatography-Mass Spectrometry. Chromato-
graphic separation of the analytes was carried out on the
Agilent Series 1100 LC-MSD Trap XCT (Agilent Tech-
nologies, Santa-Clara, CA, USA) equipped with a binary
pump, a degasser, an autosampler, and a column thermostat.
Five antimicrobials were chromatographed using a Waters
XBridge CI8 column (150 mm X 3mm, 3.5um) equipped
with a Waters Guard Cartridge (20 mm X 4.6 mm) (Waters,
Milford, USA). For detection, a diode array detector and ESI-
MS were used in series. ESI-MS detection was carried out
in positive ion detection mode. Selected reaction monitoring
was used. Full MS? spectra were recorded and the follow-
ing transitions were applied for quantification: OFL m/z
362—261, 318; NOR m/z 320—302, 276; CIP m/z 332—288,
314; SMX m/z 254—108, 188; SDM m/z 311—108, 156, 218,
245. Default parameters for ESI and MS were used for all
the experiments (nebulizer gas pressure was 40 psi, dry gas
flow was 10 L/min, dry gas temperature was 350°C, capillary
voltage was 5000 V, detected mass range was from m1/z 100 to
1000, and target mass for compounds was 11/z 350). The LC-
MS instrument was controlled by Agilent Chemstation for
LC 3D rev. A.10.02 (Agilent Technologies) and LC/MSD Trap
Control ver. 5.2 (Bruker Daltonik GmbH, Germany). Data
analysis was carried out using Chemstation software (Agilent
Technologies) and Data Analysis for LC/MSD Trap Version
3.2 (Bruker Daltonik GmbH).

2.5. Chromatographic Conditions. 5mM HFIP buffer (pH
adjusted with NH,OH to 9.0) and methanol were used for
elution. Gradient elution at flow rate 0.3 mL/min started at
10% methanol and was raised to 55% within 25 min, after
which methanol concentration was raised to 100% within
5min. Methanol concentration was kept at 100% for 5 min,
then lowered to 10% in 5min, and equilibrated at 10% for
5 min. Column temperature was set to 30°C and the injection
volume was 10 uL.

2.6. Standard and Buffer Solutions. Stock solutions of the
analytes at 1 mg/mL in the appropriate solvent (mixture of
MeOH and 1 mM ammonium acetate buffer with 0.1% formic
acid, 20/80) were prepared. The stock solution for SDM was
0.5 mg/mL due to its poor solubility. The working standard
solution contained 5 antimicrobials at 0.1 mg/mL. From this
solution dilution (10 ug/mL and 1ug/mL) was made. The
stock solution was stored at —20°C. Fresh working standard
solutions were prepared daily.

2.7. Method Validation. The developed method was validated
following Eurachem guidelines [50] and the linearity, limit
of quantification, and process efficiency (recovery and matrix
effect) were evaluated.

3. Results and Discussion

3.1. Liquid Extraction. The developed method is based on
the combination of liquid extraction, SPE, and LC-MS anal-
ysis of a total of five antimicrobials. Antimicrobials from
two classes, FQs and SAs, are structurally and chemically

diverse. The variables optimized were extraction solvent, pH,
and homogenization. Hexane, chloroform, methanol, and
acetonitrile were tested as extraction solvents. The organic
solvent content in an extraction solvent was varied from 20
to 100%. Extraction with chloroform and hexane gave the
lowest overall antibiotic recoveries (1-2%) for CIP and NOR.
The extraction mixture’s aqueous solution’s pH varied from
acidic (1% acetic acid, pH 2.0) to basic (5 mM ammonium
acetate, pH 9.0 (using NH,OH)) conditions. Extraction with
acetonitrile was more efficient compared with methanol. The
mixture of acetonitrile and 1% acetic acid (1/1) was finally
chosen as an extraction solvent for simultaneous extraction of
all the analytes of interest. During the optimization of liquid
extraction, it was found that extraction efficiency increased
when homogenization was used along with sonication and
mixing. The increase of the time of liquid extraction stages
did not increase extraction recoveries. In total, the time for a
LE procedure was 17 minutes.

3.2. Solid Phase Extraction (SPE). After liquid extraction and
centrifugation, the supernatant was separated and dried by
nitrogen stream to remove acetonitrile. Remaining extracts
were cleaned up with HLB SPE cartridges. The HLB car-
tridges enable retaining both hydrophilic and hydrophobic
compounds [51] and give the highest recoveries for all of
the analytes studied. The sample pH was adjusted by adding
approximately 15 mL of 1% acetic acid. For elution, methanol
was used.

3.3. LC-MS. Previously several buffer solutions and pH
values were tested thoroughly for the reverse phase (RP)
LC separation of named antibiotics [31]. Although the MS
signal of analytes was higher using an eluent with a lower
pH (ammonium acetate, formic acid with pH 2.8), the
separation of the compound was not followed. At higher
pH values, the fluoroalcohol HFIP gave significantly better
ionization efficiencies and better peak shapes, compared
to acidic conditions and known buffer additives [47], and
all 5 compounds had baseline separation for an antibiotic
standard solution using RP column. For the LC analysis, the
5mM HFIP and gradient elution with methanol was used.
The application demonstrates the successful separation of
chosen compounds from the potato tubers extract (Figure 1).

HFIP as an eluent additive is predominantly protonated
at pH 9.0. Therefore, the interaction with the nonpolar
stationary phase is relatively strong [31, 52]. HFIP covers the
CI8 stationary phase with a fluorous layer [52], shifting the
stationary phase properties nearer to a fluorinated stationary
phase. Acting as a weak ion-pairing agent, HFIP allows the
alternative interaction with structurally similar FQs [52].
Using HFIP as an eluent additive decreases the retention of
SAs more than FQs. At pH 9.0, the FQs exist mostly in the
zwitterionic forms. Therefore, the retention pattern of FQs is
influenced both by the fluorous layer of the stationary phase
and by the acid-base equilibrium. At the same time, the SAs
pKa values are much lower than 9 and the mobile phase pH
does not affect the retention changes strongly.

In order to attain higher selectivity for FQs, the separation
of five antimicrobials was studied in the alkyl perfluorinated
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FIGURE I: The chromatographic separation of antibiotic residues in potato tuber. Antimicrobials spiked in the LoQ level ((1) SMX 32.7 ng/g;
(2) SDM 17.8 ng/g; (3) NOR 40.0 ng/g; (4) CIP 27.2 ng/g; (5) OFL 5.0 ng/g). Eluent: 5mM HFIP (pH 9) and MeOH. Analytical column: Waters

XBridge C18 column (150 mm X 3 mm, 3.5 um).

stationary phase Epic FO-LB C8. However, the SMX and
SDM showed well-expressed peak shapes and had different
retention; the FQs peaks were wide and shallow, having simi-
lar retention in the perfluorinated stationary phase (Figure 2).
Fluorinated analytes retention on the fluorinated stationary
phase is mainly influenced by the number of fluorine atoms
in the analyte molecule [53]. The number of fluorine atoms
in the three FQs studied is one and the structures of the
molecules are similar. Therefore, the retention of the analytes
on the fluorinated stationary phase is also similar. On the
other hand, the ESI signal of the analytes should be enhanced
under acidic conditions. The MS chromatogram of the FQs
and SAs separation had a high noise level in the extracted
ion chromatograms for FQs; the peaks were broad and
partly overlapping (Figure 2). Neither better separation nor

enhanced signal was obtained by optimization of the elution
gradient or the buffer composition or pH.

3.4. Method Validation. The described method was validated
for the simultaneous determination of CIP, NOR, OFL,
SDM, and SMX in plants. For calibration, antimicrobials and
standard solutions were prepared in 10% methanol and water.
The calibration graphs with peak area versus concentration
were composed in concentration range 5-10,000 ng/g and
were linear with r* > 0.9998. Extraction recovery was
calculated from standard addition experiments. Extraction
recoveries for all detected pharmaceuticals in all matrices
varied from 54 to 98%; the average recoveries are shown in
Figure 3. Method validation was performed in the matrix
which showed the lowest recovery: carrot roots in loamy
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FIGURE 3: Average sample preparation (LE and SPE) recoveries (n =
2) of 5 antimicrobials (CIP, ciprofloxacin; NOR, norfloxacin; OFL,
ofloxacin; SDM, sulfadimethoxine; SMX, sulfamethoxazole) from
different parts of food plants grown in loamy soil using LE and SPE.
Error bars show the recovery ranges.

soil (recovery ranges 54-78%, average recovery 66%). A
postextraction spike in three different concentrations over the
calibration range (low, 5ng/g; medium, 250 ng/g; and high,

5,000 ng/g) to the different plants did not show a significant
matrix interference. The process efficiency was primarily
influenced by the extraction recovery in the two steps (LLE
and SPE) of the sample preparation.

The average recoveries of antimicrobials from carrot
roots, as shown in Figure 4, were 73% (CIP), 69% (NOR), 76%
(OFL), 55% (SDM), and 70% (SMX). Standard deviations
for the recoveries were 1% (CIP), 2% (NOR), 2% (OFL), 1%
(SDM), and 1% (SMX). The limits of quantifications (LoQs)
were estimated as ten times the standard deviation from five
replicate analyses of unspiked and spiked plant samples using
HLB cartridges. LoQs were as follows: CIP 27.2; NOR 40.0;
OFL 5.0; SDM 17.8; and SMX 32.7 ng/g. The relative standard
deviations (RSD) were, respectively, 0.27, 0.40, 0.05, 0.18, and
0.32 percent.

4, Conclusion

Plant uptake of pharmaceutical residues, present (even in
very small amounts) in soils fertilized with sewage sludge
compost, is an obvious reality. As antimicrobials consumed
in very small amounts with everyday food can initiate strains
of resistant bacteria in human and animal organisms, the
high sensitivity of their detection methodology is of utmost
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FIGURE 4: Average sample preparation recoveries for 5 antimicro-
bials from carrot roots using LE and SPE. Matrix: carrot roots.
Error bars are 2 times standard deviation. CIP, ciprofloxacin;
NOR, norfloxacin; OFL, ofloxacin; SDM, sulfadimethoxine; SMX,
sulfamethoxazole.

importance. Improved separation of the groups of struc-
turally similar antimicrobials, fluoroquinolones (FQs) and
sulfonamides (SAs), and enhanced MS signal intensities were
achieved as a result of this work, by using an eluent additive
HFIP in regular C18 stationary phase. The developed and
validated method described in the current paper has turned
out to be an efficient tool for detecting the concentrations
of antimicrobials in food plants fertilized with sewage sludge
compost.
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Abstract

Drug residues end up in the environment when sewage sludge or its
compost is used as a fertilizer and they cause adverse effects there. Both, the
producers and consumers seem to believe that drug residues decompose
during sewage sludge treatment or in soil and do not affect the environment
or humans. The acceptable level of drugs in different compartments of the
environment is still disputable.

Keywords: Pharmaceuticals, Sewage sludge, Compost

Pharmaceuticals in the environment

Intensive use of pharmaceuticals in modern medicine and agriculture
is the main reason for global environment pollution by these contaminants
(Radovi¢ et al., 2016). Widespread occurrence of pharmaceuticals in the
environment is well established (Daughton & Ruhoy, 2009). It has now been
almost two decades since the defining papers by Halling-Serensen (1998)
and Daughton & Ternes (1999) identified pharmaceuticals in the
environment as an important phenomenon. Medical substances have been
measured in the effluent of medical care units, sewage and the effluent of
sewage treatment plants, in surface water, ground water, and in drinking
water (Heberer, 2002). Uncontrolled discharging of these organic
compounds into the environmental media has led to their accumulation into
soil and sediments (Radovi¢ et al., 2016).

Some pharmaceuticals are extremely persistent and introduced to the
environment in very high quantities and perhaps have already gained
ubiquity worldwide, others could act as if they were persistent, simply
because their continual infusion into the aquatic environment serves to
sustain perpetual life-cycle exposures for aquatic organisms (Daughton &
Ternes, 1999). When drugs are detected in the environment, their
concentrations are generally in the ng/L-pg/L (ppt-ppb) range (Moldovan et
al., 2009). Even though individual concentrations of any drug might be low,
the combined concentrations from drugs sharing a common mechanism of
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action could be substantial (Daughton & Ternes, 1999). In 2013 Hughes et
al. have published a global-scale analysis of the presence of 203
pharmaceuticals across 41 countries and showed that contamination is
extensive due to widespread consumption and subsequent disposal to rivers.
According to this overview, painkillers were globally the most frequently
detected compounds accounting for 31% of records with a median
concentration of 230 ng/L followed by antibiotics (21%, 8128 ng/ L).

There are increasing concerns about the undesired impacts that may
result from continuous contamination of the environment with
pharmaceutically-active substances (Barbosa et al., 2016 and Verlicchi &
Zambello, 2016). One of the possible fates of pharmaceuticals is to
accumulate in organisms. Bioaccumulation may have different effects from
increased internal loads in a given organism potentially reaching toxic
concentrations to biomagnification through up-concentration along a food
chain (Straub, 2015).

Antibiotics present in soil contaminated with pharmaceutical residues
may be taken up by plants from arable land or pasture, and thus involuntarily
end up in human or animal food, destroy soil microorganisms or develop
drug resistance. Genes determining drug resistance can be transferred from
harmless soil microbes to pathogenic microbes (Davies, 1994). It is assumed
that using sewage sludge or manure containing drug residues for fertilizing is
one of the main reasons of increasing drug resistance (Knapp et al., 2010).

Since 1940 the production and use of antibacterial drugs has
multiplied while the antibiotic resistance of bacteria has also increased
noticeably. It has been shown that the occurrence of tetracycline resistant
gene among soil bacteria increased 15 times between 1970—2008 in the
Netherlands, which was caused by using sewage sludge or compost as a
fertilizer (Knapp et al., 2010). Probably, the long-term influence of
antibiotics on soil microbes has brought about the same effect also in other
countries.

Pharmaceuticals in sewage sludge

The environmental presence of pharmaceuticals is attributed
primarily to raw or treated sewage (for human drugs) and to manure and
lagoons (for veterinary drugs); additional, less obvious sources also exist,
which sometimes can play important localized roles (Daughton, 2007). The
major route by which pharmaceuticals enter sewage is commonly accepted to
be via urine and feces, with each contributing different relative amounts
depending on the pharmacokinetics and structure of the individual compound
(Winkler et al., 2008). Urban wastewater seems to be the dominant emission
pathway for pharmaceuticals globally, although emissions from industrial
production, hospitals, agriculture, and aquaculture are important locally
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(Beek et al., 2016). Sewage sludge is an inevitable by-product of wastewater
treatment. In Estonia about 360,000 — 500,000 tons of it is created annually.
Sewage sludge, which is difficult to market, piles up at wastewater treatment
plants. Many pollutants are not efficiently removed during sewage and
sewage sludge treatment (Martin et al., 2015).

In Lillenberg et al. (2010) the reported highest concentrations (pug/kg)
of the antimicrobials norfloxacin (NOR), ciprofloxacin (CIP), ofloxacin
(OFL), sulfamethoxazole (SMX) and sulfadimethoxine (SDM) were in
sewage sludge as follows: NOR — 162; CIP — 426; OFL — 39; SMX - 6;
SDM — 20. In the study carried out by Motoyama et al. (2011), the highest
concentrations of the studied pharmaceuticals in sewage sludge were: CIP —
130; SMX — 8; SDM - 3; carbamazepine CBZ — 46. In Martin et al. (2015)
the relevant values were: NOR — 258; SMX — 20; OFL — 432; CBZ — 106;
and in our recent study (unpublished results): CBZ — 66; diclofenac — 92;
triclosan — 1800 (all in pg/kg).

For the prevention of the development of microbial resistance of
humans and animals the concentration of antimicrobials in agricultural soil
must be clearly under 0.1pg/kg (Lillenberg, 2011). The limited selection of
results given above clearly shows that raw sewage sludge in not suitable for
improving the quality of agricultural soils.

Fate of pharmaceuticals during sewage sludge composting

Sewage sludge may be regarded as hazardous waste but it can also be
used as a fertilizer. Its safety with respect to pharmaceutical residues must be
assessed before use (Kipper et al., 2011). Antibiotics are present in Estonian
sewage sludge (as elsewhere) and their content may exceed the relevant
trigger values for manure (Lillenberg et al., 2011). According to Nayak &
Kalamdhad (2015) composting is one of the sustainable practices to convert
sewage sludge into useful agricultural product because it is rich in organic
matter, micro- and macronutrients, which are essential for plants growth and
soil fauna to live. Alternatively, it has been stated that sewage compost
cannot be used for agricultural purposes: it may contain an excess amount of
chemical contaminants that can be assimilated by food crops (Lillenberg et
al., 2010). However, sewage compost is rich in minerals, enabling long-
lasting supply for the fast growth of plants (Jarvis et al., 2016).

Since the 1960s, Estonia has been the major oil shale producer
and consumer in the world (Kalda et al., 2015). Estonia has the world's
largest exploited oil-shale basin covering about 4% of its territory. In
2001-2013 the number of active landfills in Estonia decreased from 159 to
13. Recultivation of the landscapes covered by semi-coke, oil-shale ash-
mountains, abandoned opencast mines and closed landfills appears to be one
of the major environmental tasks in Estonia (Haiba et al., 2016). Since mid—
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1990s the national average soil P balance has been negative in Estonia due to
a sharp decrease in fertilizer use and availability of manure. The national
average soil P balance varied in 2004-2009 from -10 to -5 kg P/ha. Currently
crop production in Estonia largely takes place at the expense of soil P
resources (Astover & Rossner, 2013). One of the most efficient ways to
eliminate these problems is an intelligent preparation of solid waste
composts (Haiba et al., 2016).

Sawdust has been proven to be a good bulking agent for sludge
composting (Banegas et al., 2007). In the study carried out by Qiu et al.
(2012) the degradation of 4 sulfonamides using manure + sawdust or manure
+ rice straw was more effective than in the case of using manure alone
(presumably due to the higher microorganism activities in the former). It has
been shown by Kim et al., 2012, that sawdust could be a potential organic
source able to initiate efficient composting, as exhibited by elevated
composting temperatures, and consequently resulted in the reduction of
residual concentrations of tetracyclines, sulfonamides and macrolides to
reasonable levels in a relatively short composting period. Thus
manure—based composts manufactured through the proper composting
process can be acceptable for application to agricultural areas. However,
application of livestock manure as raw manure and/or as liquid fertilizer after
only a short storage period to stabilize the manure should be avoided as this
may result in the potential release of veterinary antibiotics to the
environment (Kim et al., 2012).

The degradation rate of pharmaceuticals in sewage sludge compost
depends on the applied composting technology. The degradation of
salinomycin was observed by Ramaswamyunder et al. (2015) under open
and composting conditions. Composting with hay significantly reduced the
concentration of salinomycin in the manure, making application of the post-
compost manure safer for field application.

It has been shown, that the degradation of fluroquinolones
(ciprofloxacin CIP, norfloxacin NOR and ofloxacin OFL) and sulfonamides
(sulfadimethoxine SMX and sulfamethoxazole SDM) takes place during
sewage sludge co-composting with sawdust, peat and straw (Haiba et al.,
2013). Additions of sawdust clearly speeded up the decomposition of the
studied pharmaceuticals, whereas the mixtures with peat and straw showed
lower abilities to decompose pharmaceutical residues.

In compost mixtures with sawdust the concentrations of the studied
pharmaceuticals decreased as much as 95% to 100% during 4-months
composting period. The mixtures with straw and peat where less efficient in
decomposing these pollutants: in the mixture with peat the degradation level
for SMX was 83% and for SDM 76%; in the mixture with straw the
degradation level for NOR was 79% and for OFL 74%. At the same time, the
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concentrations of the other studied pharmaceuticals decreased more than
90% during the 4-month period.

The temperature profiles of the sewage sludge—sawdust mixture
samples during composting are demonstrated in figure 1. Initially the
temperature of the composting samples ranged from 20 to 38 °C (mesophilic
stage), then rose to 42 °C in 8 days (start of thermophilic stage).
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Figure 1. Temperature profiles during sewage sludge composting: sewage sludge mixed
with sawdust ----E1 1:2 (v:v) and E2 1:3 (viv)

In small volumes of sawdust-sludge samples, where the sample
temperature remained unchanged, the degradation of pharmaceuticals was
very slow. During 1-month period only 37% of the initial amount of SMX
degraded (the lowest value); the highest level of degradation was apparent in
the case of OFL - 82%. This clearly shows that composting may sufficiently
speed up the degradation of pharmaceuticals originating from sewage sludge.

Although the results obtained in the case of composting sewage
sludge with sawdust seem to be very promising, the experiments show very
slow rate of carbamazepine degradation, not exceeding 20% during the 1-
month period. According to this fact, the problems associated with the usage
of sewage sludge compost as an agricultural fertilizer are far from reaching a
final solution.
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Abstract. This review is to reflect the work addressed to the application of biosolids and
especially sewage sludge as a resource in composting. A considerable drop in the use of P
fertilisers can be followed since early 1990s. Due to this fact crop production in Estonia takes
place at the expense of soil phosphorous (P) resources. One of the ways of increasing the fertility
of agricultural lands is to use nutrient-rich sewage sludge. Unfortunately, this may cause several
undesired consequences due to biological and chemical contaminants. The presence of some
widely used pharmaceuticals, as ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OFL),
sulfadimethoxine (SDM) and sulfamethoxazole (SMX), was evident in sewage sludge of the two
Estonian largest cities, Tartu and Tallinn. The concentrations of pharmaceuticals decreased after
sewage sludge digestion and composting, but they were still present in detectable amounts.
Sewage sludge co-composting experiments with sawdust, peat and straw showed the degradation
of fluoroquinolones (FQ) and sulfonamides (SA). Additions of sawdust clearly speeded up this
process, whereas the mixtures with peat and straw performed lower abilities to decompose
pharmaceutical residues. Novel methodologies were developed and experiments conducted to
study the potential accumulation of fluoroquinolones FQs and SAs by food plants. Due to the low
adsorption of SAs on soil particles they are ‘free’ to migrate into plants. Different behaviour is
characteristic to FQs as they are accumulated in sludge. Recent years have also shown progress
in vermicomposting work and in using compost in afforestation.

Key words: composting technologies, fertilizers, pharmaceuticals, plant uptake, sewage sludge,
vermicomposting.

INTRODUCTION

Land application of biosolids is generally considered to be the best option of
disposal because it offers the possibility of recycling nutrients, provides organic
material, improves soil properties, and enhances crop yields (White et al., 2011). Higher
soil quality is generally associated with higher concentrations of soil organic matter and
a plentiful supply of essential elements. Thus, the recycling of organic matter from
anthropogenic residues to soil often benefits agricultural sustainability (White et al.,
2013). However, this benefit has to be weighed against potential deleterious effects
(White et al., 2011). Whilst recognising its significant value as a resource, recycling
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sewage sludge to agricultural land requires a careful management to avoid potential
negative impacts on the environment from chemical contaminants (Torri et al., 2012).

Organic residues recycling via composting appears to be an ancient activity. The
practice of converting animal manure and other biodegradable wastes to compost is
believed to have originated as early as agriculture (Fitzpatrick et al., 2005). The earliest
known written reference to composting is found in clay tablets dated to the Akkadian
empire, about 4,300 years ago (Rodale, 1960), but it is believed that the fertilizer value
of aerobically degraded organic matter, which we now call compost, was recognized
much earlier. There is evidence that the Romans, Greeks, and the Bani Israel knew about
compost. The Bible and Talmud both contain numerous references to the use of rotted
manure straw, and mention of compost occurs in 10th and 12th century Arab writings,
in medieval Church texts, and in Renaissance literature (Smith et al., 2007).

A worldwide massive use of biosolids as soil conditioners and fertilizers arose in
the early 1900s (Frank, 1998). Increasing urbanization and industrialization have
resulted in a dramatic growth in the amount of wastes generated globally, particularly of
sewage sludge as a byproduct from sewage treatment (White etal., 2011). Land
application of treated sewage sludge and other biosolids improves soil fertility and has
an important role in closing nutrient cycles (Torri etal., 2012). Among the
macronutrients contained in sludge, phosphorus is an essential element for plant
metabolism, often considered one of the most limiting nutrients for plant productivity
(Shaheen et al., 2012).

A large variety of plant, animal and synthetic wastes can be gainfully composted at
scales varying from a household bin to a large industry (Gajalakshmi & Abbasi, 2008).
In the composting process, aerobic microorganisms use organic matter as a substrate
(Gajalakshmi & Abbasi, 2008). The microorganisms decompose the substrate, breaking
it down to more simple compounds (Epstein, 1997; Ipek etal., 2002). During
composting, carbon- and nitrogen-containing compounds are transformed through
successive activities of different microbes to more stable organic matter, which
resembles humic substances (Pare etal., 1998). The rate and extent of these
transformations depend on available substrates and the process variables used to control
composting (Marche et al., 2003; Gajalakshmi & Abbasi, 2008).

Inventories of soil productive capacity indicate human-induced soil degradation on
nearly 40% of the world’s arable land (Doran & Zeiss, 2000); this warns us of the
ecological collapse of the world’s productive soils (Pankhurst et al., 1997). In Estonia
the highly industrialised and centralised agricultural production system collapsed in the
late 1980s and early 1990s. The area of arable land (crop fields and cultural grasslands)
decreased from about one million ha in the early 1990s to less than 0.6 million ha by
2003 (Statistics Estonia, 2006; Iital et al., 2014). Also, a considerable drop in the use of
N and P fertilisers took place in the early 1990s when it constituted only about 13% of
the peak in 1987-1988. Based on the data from Statistics Estonia in 1994-2001 the
average annual consumption of commercial fertilisers was only 85 kg ha™! and in 2009—
2011 it reached the level of 120 kg ha™! (Statistics Estonia, 2012; Iital et al., 2014). Since
mid—-1990s the national average soil P balance has been negative in Estonia due to a
sharp decrease in fertilizer use and availability of manure. The national average soil P
balance varied in 2004-2009 from -10 to -5 kg P ha™!. Currently crop production in
Estonia largely takes place at the expense of soil P resources (Astover & Rossner, 2013).
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One of the most efficient ways to eliminate this problem is an intelligent usage of solid
waste composts.

This overview is to reflect recent research performed mainly in Estonia in the area
of composting. These studies involved different aspects of sewage sludge composting
and compost usage; vermicomposting of different waste materials; possible undesired
consequences associated with the application of composts in agriculture.

NECESSITY FOR COMPOSTING AND RESOURCES (BACKGROUND)

The soil cover of Estonia is relatively varied due to the alternation of carbonate and
humus-rich soils with acid soils which are relatively poor in nutrients and organic matter
(Koster & Kolli, 2013). The lack of nutrients is especially obvious in the case of
peatlands which cover 22.3% (10,091 km?) of Estonia's territory, so restricting the usage
of these lands for agricultural purposes. The awareness of the composition and properties
of soil cover and its relationship with plant cover in different land use conditions is the
basis of ecologically proper and sustainable management of land and soil resource
(Koster & Kolli, 2013).

Estonia has the world's largest exploited oil-shale basin covering about 4% of its
territory. In 2001-2013 the number of active landfills in Estonia decreased from 159 to
13. Recultivation of the landscapes covered by semi-coke, oil-shale ash mountains,
abandoned opencast mines and closed landfills appears to be one of the major
environmental tasks in Estonia.

Biosolids can be used in biofuel production (Raud et al., 2014), leading to the
incineration of organic matter. Perceived as a green energy source, the combustion of
biosolids has received renewed interest. Still, anaerobic digestion is generally a more
effective method than incineration for energy recovery, and digested biosolids are
suitable for further beneficial use through land application (Wang et al., 2008). The use
of biosolids as a source of organic matter may improve the physical and chemical
properties of agricultural soils resulting in an increase in crop yields (Torri et al., 2014).
The major potential source for making compost in Estonia is sewage sludge. The yearly
generation of sewage sludge by Estonian sewage treatment plants is 30,000 tonnes dw.

Semi-coke is the waste product of oil shale industry and presents the hazard to the
environment, due to its phenol and PAH content. One of the main problems of oil shale
industry is how to treat semi-coke effectively (Wang et al., 2009). In 1993—2003 the
volume of semi-coke formed in Estonian shale oil enterprises varied within 0.6 and 1.4
million tonnes annually (Pae et al., 2005). It has been established that the compost made
from semicoke and sewage sludge increases the yield of the crops (Varnik et al., 2006).

The average quantity of biodegradable waste generation in Estonia from grocery
stores during 2004-2010 was 9 thousand tonnes year '. The results of SWOT analysis
published by Blonskaja et al. in 2014 showed that composting process is the best solution
for kitchen wastes. It has been demonstrated that one of the ecologically and
environmentally friendly alternatives to traditional technologies in organic wastes
management is vermicomposting, especially in kitchen wastes treatment (Ivask et al.,
2013; Peda & Kutti, 2013; Haiba et al., 2014; Sinha et al., 2014).
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SEWAGE SLUDGE COMPOSTING AND ENVIRONMENTAL CONCERNS

Unprecedented growth in urban population has resulted in the generation of huge
quantities of wastewater worldwide (Singh & Agrawal, 2010). Wastewater treatment
facilities are responsible for treating large volumes of domestic and industrial sewage
containing human waste. The treatment goal is to produce effluents of high enough
quality for discharge back into the environment. Sewage sludge is a byproduct of this
process and necessitates proper disposal (Walters et al., 2010; Zuloaga et al., 2012). Safe
disposal of sewage sludge is one of the major environmental concerns (Singh &
Agrawal, 2010).

Historically, sewage sludge has been disposed of by incineration, landfilling or
ocean disposal (Bridle & Skrypski-Mantele, 2000). Nowadays, the most widespread
method for sewage sludge disposal has become agricultural application, since it is the
most economical outlet for sludge compared to incineration and landfilling (Zuloaga et
al., 2012; Li et al., 2013; Chen et al., 2014). The use of sewage sludge in agriculture is
one of the major causes of environmental pollution (Nouri et al., 2008). Although,
sewage sludge and its compost offers an opportunity to recycle plant nutrients and
organic matter to soil for crop production stimulating biological activity (Rodriguez et
al., 2012; Zuloaga et al., 2012; Li et al., 2013; Haiba et al., 2014), its usage as a fertilizer
is limited due to a large number of toxic pollutants found in this matter (Lillenberg et al.,
2010a; Lillenberg, 2011).

Composting is recognized as one of the most important recycling options for
sewage sludge (Hara & Mino, 2008; Dorival-Garcia et al., 2015). Since sewage sludge
is mainly composted in Estonia and often re-used in agriculture as a fertilizer, several
composting methods are applicable, but the selection of the method is dependent on the
investment and operation cost, time required to reach compost stability and maturity, the
availability of land, origin of raw materials and bulking agents (Ruggieri et al., 2008;
Mollazadeh, 2014; Nei et al., 2014).

Several sludge composting experiences have been shared in Estonia (Kanal &
Kuldkepp, 1993; Varnik et al., 2006; Kriipsalu et al., 2008; Kriipsalu & Nammari, 2010;
Lillenberg et al., 2010a; Holm & Heinsoo, 2013; Kuusik et al., 2014; Menert et al.,
2014). The most common sewage sludge composting methods are: static piles, aerated
static piles, windrow and in-vessel systems (Yue et al., 2008). There are many factors
that affect the composting process, such as the proportions of the mixture, temperature,
rate of aeration, oxygen consumption rates, compost pile size, moisture content, pH and
carbon-to-nitrogen ratio (Luo et al., 2008; Chen et al., 2014; Malinska et al., 2014; Nayak
& Kalamdhad, 2014). Also, microorganisms play a key role in composting processes
and nutrient turnover, and even slight changes in microbial activity and community
composition due to antimicrobial agents may result in poor compost quality and
prolonged time needed for compost stability (Nei et al., 2014). Respiration is a global
measure of the total microbial activity that can provide a reliable, repeatable and
scientifically sound assessment of microbial activity, respirometry (CO; evolution rate
and/or O, uptake rate) has been widely used to evaluate microbial activity and
composting efficiency (Liang et al., 2003; Barrena Gomez et al., 2006). The second
widely used parameter for the evaluation of microbial activity is microbial biomass-C,
measured by the substrate induced respiration based on Platen & Wirtz, 1999. Also, one
of the methods of obtaining information about the dynamics of composting processes is

1586



the bacterial-to-fungal ratio (Joergensen & Wichern, 2008). The microbial community
may reflect the evolution and performance of the composting process thus acting as an
indicator of compost maturity (Nei et al., 2014; Wang et al., 2015).

Since sewage sludge has high moisture content it cannot be composted alone — in
order to absorb moisture it should be mixed with dry materials, which act as bulking
agent thereby improving the aeration and the compost quality (Nayak & Kalamdhad,
2014; Zhou et al., 2014). Sludge and bulking agent proportions in compost influence the
composting reaction rate and the final compost quality. Sludge can be mixed with
different bulking agents, sources of carbon, such as peat, straw, wood chips, leaves, ash,
peat, sawdust (Komilis et al., 2011; Cukjati et al., 2012; Maulini-Duran et al., 2013;
Malinska et al., 2014).

A range of studies has shown that some pharmaceuticals and personal care products
(PPCPs) are neither completely removed by sewage treatment, nor completely degraded
in the environment (Redshaw et al., 2008; Lillenberg et al., 2009; Lillenberg et al.,
2010a; Jelic et al., 2011; Rodriguez-Rodriguez et al., 2012; Borgman & Chefetz, 2013;
Haiba et al., 2013b; Narumiya et al., 2013; Reichel et al., 2013). Although, their
concentrations are much lower than the levels of traditionally known organic pollutants,
the potential long-term effects of these compounds to humans, plants and animals cannot
be ignored (Lillenberg et al., 2009; Nei et al., 2014; Van Doorslaer et al., 2014; Prosser
& Sibley, 2015; Bartikova et al., 2016).

FATE OF PHARMACEUTICAL RESIDUES DURING SEWAGE
SLUDGE COMPOSTING

Pharmaceuticals have been used for decades to prevent and treat human and animal
diseases (Zhang et al., 2008; Li et al., 2014). Recently, there has been increasing concern
about the effects of pharmaceuticals in aquatic and terrestrial ecosystems, as they can
affect the efficiency of microbial-mediated processes (the regeneration of nutrients,
carbon and nitrogen circulation and digestion of pollutants) in the environment (Girardi
et al., 2011; Jelic et al., 2011; Bergersen et al., 2012; Martin et al., 2012; Chen et al.,
2013; Liet al., 2014).

As a result of regular industrial, agricultural and household activities, a variety of
compounds enter into the environment, of which only a small percentage are studied for
their toxicological effects on humans and the environment (Peysson & Vulliet, 2013).
Approximately 4,000 drug substance is used in Europe (human and veterinary), of which
may have responsive impact to the environment (Rodriguez-Rodriguez et al., 2011).
About 150 medical compounds are studied that have been found in the environment, but
mostly in water samples (Rivera-Utrilla et al., 2013; Li et al., 2014). For example, the
Estonian Statistics on Medicines data show that over the years the proportion of
consumption of different drugs has increased, both over-the-counter as well as
prescription drugs (State Agency of Medicines, 2011; 2013). There is no reliable
information of how many people actually do or do not consume their drugs, how many
medicines are not administered and how many different compounds are thrown into the
sewage system or to the garbage. The increasing proportions of administered drugs and
personal care products is alarming because of the compound releases to the environment
are not controlled (Motoyama et al., 2011; Gonzalez-Martinez et al., 2014), which
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involves a potential threat to the environment (Vasskog et al., 2009; Rodriguez-
Rodriguez et al., 2011; Peysson & Vulliet, 2013).

A wide variety of pharmaceutically active compounds are present in wastewater
effluents, surface waters, and ground waters (GWRC, 2008), and the sewage treatment
plants are unable to remove all these substances. The removal rates of individual drugs
during passage through a sewage treatment plant have varied from 12 to 90% (Stumpf
et al., 1999; Butkovskyi et al., 2016). The fate of pharmaceuticals may be divided into
three principal routes (Richardson & Bowron, 1985):

1. The substance is ultimately mineralized to carbon dioxide and water;

2. The substance is lipophilic and not readily degradable, so part of the substance
will be retained in the sludge. These substances are able to contaminate soil if the sludge
is dispersed onto fields;

3. The substance is metabolised to a more hydrophilic form of the parent lipophilic
substance, but is still persistent and therefore will pass the sewage treatment plant, ends
up in the receiving waters (rivers, seas) and may therefore affect the aquatic organisms,
if the metabolites are biologically active.

Presence of different pharmaceuticals in sewage sludge is apparent, but there is still
a lack of information concerning the fate of pharmaceutical residues in the environment
(Ktimmerer, 2008; Lillenberg, 2011). Pharmaceuticals are often not readily degradable
(Richardson & Bowron, 1985; Gavalchin & Katz, 1994; Marengo et al., 1997; Halling-
Serensen et al., 2002; Hamscher et al., 2002; Carballa et al., 2004). Still, remarkable
amounts of pharmaceuticals enter the soil via fertilizing with sewage sludge (Golet et
al., 2002; Haiba et al., 2013a).

Medical substances have many necessary properties to bio-accumulate and provoke
change in ecosystems (Kipper et al., 2010; Baran et al., 2011). No trigger values exist
for drug residues in sewage sludge neither in Estonia (Decree of Estonian Minister of
the Environment) nor in the European Union (EU Council Directive 86/278/EEC;
Lillenberg et al., 2009). The most closely related act is the EU directive
EMEA/CVMP/055 establishing trigger values for drug residues in manure
(EMEA/CVMP/055/96). The content of drug residues should not exceed 100 pg kg™! in
manure and 10 pg kg ! in the soil fertilized with manure. Montforts (2005) suggests that
these figures should be remarkably lower. Soil organisms, microflora and plants are
directly exposed to contaminants in sludge-amended soils.

The presence and content of some widely used pharmaceuticals was determined in
sewage sludge and in its compost in the two Estonian largest cities, Tartu and Tallinn
(Lillenberg, 2011). The sewage sludge in Tartu was treated by composting — mixing with
tree bark (volume ratio 1:1). The methane fermentation and mixing with peat (volume
ratio 1:0.75) were used in Tallinn. The samples were taken from anaerobically digested
sludge (before mixing with peat) in Tallinn and from untreated sludge (before
composting) in Tartu. The concentrations of most of the pharmaceuticals (ciprofloxacin-
CIP, norfloxacin-NOR, ofloxacin-OFL, sulfadimethoxine-SDM and sulfamethoxazole-
SMX) decreased significantly after sewage sludge digestion and compost processes, but
many of them were still present in compost. The degradation of pharmaceutical residues
was more efficient in Tallinn probably due to anaerobic sludge digestion (compost was
made by mixing the treated sewage sludge with peat) compared to the results obtained
in Tartu (raw sewage sludge was mixed with tree bark). The results of the relevant pilot
studies are described in detail in Lillenberg et al. (2010a) and Lillenberg (2011).
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Interestingly, SDM was present in most sludge and in some compost samples, although
this antimicrobial was not marketed any more during the years of 2007 and 2008 in
Estonia. It is possible that ‘old’ supplies were put to use or small amounts of this
chemical were imported from other countries (Lillenberg et al., 2010a; Nei et al., 2010).

According to Lillenberg (2011) the highest concentrations of pharmaceuticals were
found in Tallinn sewage sludge: CIP 1,520 pg kg and NOR 580 pg kg™! (dm). The
highest detected concentration of CIP exceeded the trigger value for manure
(100 pgkg™") over four times. The concentrations of OFL (134 pgkg™'), SDM
(73 ngkg) and SMX (22 pgkg!') were lower (Table 1). The average contents of
antibiotics were: CIP 737 pg kg™!, NOR 279 ug kg ™!, OFL 80 pg kg, SDM 2 pug kg™
and SMX 18 pgkg! (dm). As a rule, the concentrations of pharmaceuticals in Tallinn
sewage sludge from were relatively low. Still, in some cases the concentrations of CIP,
NOR and OFL were over the trigger value (Table 1).

Table 1. The highest concentrations of pharmaceuticals detected from Tallinn sewage sludge,
pg kg ! (dm) (reproduced from Lillenberg, 2011)

Month CIP NOR OFL SDM SMX
January 1,520 580 134 3 22
February 67 67 17 73 5
March 58 31 8 3 1
April 58 33 3 n.d. 2
May 150 215 7 0.4 n.d.
June 206 163 17 n.d. 4
July 39 37 4 n.d. n.d.
August 11 26 5 n.d. 4
September 0.4 0.4 n.d. n.d. n.d.
November 42 16 9 3 3
December 53 85 37 4 7

CIP — ciprofloxacin; ~ NOR —norfloxacin; ~ OFL — ofloxacin; ~ SDM - sulfadimethoxine; ~ SMX —
sulfamethoxazole; n.d. — not detected.

In Tartu, contrarily, the concentrations of CIP and NOR were in most cases over
the trigger value, the high content of OFL was detected only in August, September and
October (Lillenberg, 2011). The content of sulfonamides (SAs — SDM and SMX) was
quite low in both cities, under the trigger value set for drug residues in manure
(100 pg kg!) (Tables 1, 2). In Tartu at least one of SAs was present in every sludge
sample (Table 2). The contents of SMX were in the range of 0.0-22 pug kg'!, and SDM
0.00-73 pgkg! (dm) in Tallinn. In Tartu contents of SMX were between
0.0-11 pgkg™!, and SDM 0.0-32 ugkg'(dm). The highest concentrations of
antimicrobials in sewage sludge from Tartu were: NOR —439 ugkg' and CIP —
442 png kg™' (dm). OFL was present in every sludge sample from Tartu and the highest
concentration was 157 pg kg ™! (dm) (Table 2).
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Table 2. The highest concentrations of pharmaceuticals determined from Tartu sewage sludge,
g kg ! (dm) (reproduced from Lillenberg, 2011)

Month CIP NOR OFL SDM SMX
January 315 82 86 8 6
February 423 263 68 32 7
March 89 60 26 0.4 1
May 174 264 22 1 n.d.
June 265 264 47 n.d. 16
July 67 104 19 n.d. 6
August 442 439 111 24 n.d.
September 231 188 157 22 9
October 259 126 149 4 n.d.
November 134 105 33 6 11
December 71 40 32 9 6

CIP — ciprofloxacin; ~ NOR —norfloxacin; ~ OFL — ofloxacin; ~ SDM - sulfadimethoxine; ~ SMX —
sulfamethoxazole; n.d. — not detected.

The degradation of pharmaceuticals was more efficient in the case of composting
in Tallinn. During 12 months composting period the concentrations of all the studied
pharmaceuticals diminished for 99.9%, whereas in Tartu this indicator showed the value
on average 90 + 4%. The only exception was SDM, which ‘disappeared’ fully in both
cases. In Tallinn the anaerobically digested sludge was mixed with peat and composted.
In Tartu raw sewage sludge was mixed with tree bark (1:1) and settled in piles. The
media vas mixed at least twice per month during eight-months period. It has been shown,
that a higher decrease of pharmaceuticals is observed after anaerobic digestion than after
aerobic digestion, which can be explained by a higher degradation under anaerobic
conditions (Martin et al., 2015).

The degradation rate of pharmaceutical residues is dependent on the initial
components of the compost. Fine sawdust appears to be an excellent sewage sludge
amendment: from the agricultural point of view, sludge co-composted with particularly
fine-textured sawdust is claimed to be an excellent compost material to be applied to
soils (Ammari et al., 2012; Nei et al., 2015). Kim et al. (2012) have shown that sawdust
is able to initiate efficient composting, leading to elevated composting temperatures, and
consequently resulting in the reduction of residual concentrations of pharmaceuticals to
reasonable levels in a relatively short composting period.

According to Haibaetal. (2013b), composting remarkably reduces the
concentrations of these pharmaceuticals. In most experiments their concentrations
decreased by 95% or more during 4 months of composting (Table 3). The best results
were obtained when the sludge was mixed with sawdust. In the case of using straw or
peat instead the decomposition rates were lower. Additions of sawdust clearly speeded
up this process, whereas the mixtures with peat and straw performed lower abilities to
decompose pharmaceutical residues. No clear evidence was received concerning the
impact of oil shale amendments on the degradation speed of the studied pharmaceuticals.
Many studies have shown that sawdust has been proven to be a good bulking agent for
sewage sludge composting (Banegas et al., 2007; Zorpas & Loizidou, 2008; Haiba et al.,
2013a & 2013 b). The decline of tetracycline and sulfonamide concentrations was highly
dependent on the presence of sawdust while there was no influence of sawdust on tylosin
decline (Kim et al., 2012).
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Table 3. Degradation of pharmaceuticals in sewage sludge compost mixtures during 4-months
composting period, %

Bulking agent (% from dry matter) SMX SDM NOR CIP OFL
1. peat (50) 83 77 90 92 100
2. sawdust (33) 100 99 96 95 100
3. sawdust + oil shale ash (29+14) 100 96 82 94 99

4. sawdust + wood chips (total 43) 100 99 91 98 86

5. straw (50) 99 98 79 90 74

CIP — ciprofloxacin;  NOR —norfloxacin;  OFL — ofloxacin; SDM - sulfadimethoxine; SMX —
sulfamethoxazole.

PHARMACEUTICALS AND PLANT UPTAKE

The significance of the route involving the uptake of several medicines from soil
by plants in terms of risk to human health is evident (Lillenberg et al., 2010b; Prosser &
Sibley, 2015; Wu et al., 2015). As the compost made from sewage sludge contains
detectable amounts of pharmaceutical residues, experiments were conducted to study the
significance of their uptake into plants from soil under ‘real’ conditions. Therefore,
experiments were performed to investigate the potential accumulation of the studied
pharmaceuticals — fluoroquinolones (FQs) and sulfonamides (SAs) — taken up by food
plants (namely — carrot, potato, lettuce, wheat) from the soil fertilized with sewage
sludge or its compost. The results of these experiments are shown in Lillenberg et al.
(2010a; 2010b), Kipper et al. (2010) and Nei et al. (2010).

The uptake of pharmaceuticals by the studied food plants was noticeable. It has
been shown that due to the low adsorption of SAs on soil particles they readily migrate
into plants (Haiba et al., 2013a). Different behaviour is characteristic to FQs due to their
sorption to sewage sludge and soil particles (Golet et al., 2003). Therefore, as a rule, the
content of SAs in the plants was higher. The content of the studied pharmaceuticals was
higher in plats cultivated in sandy soil (Lillenberg, 2011). In loamy soil the molecules
of both SAs and FQs attach to clay particles reducing their uptake by plants. Fig. 1 is to
illustrate the said. The amounts of FQs going into potato do not depend much on soil
type. The application of sewage sludge compost as a fertilizer and the following uptake
of pharmaceuticals by food plants may cause contamination of these plants (Haiba et al.,
2013a).

4,000
3,000

2,000

Content pg kg™

1,000

CIP NOR SMX SDM  SMX

Figure 1. Average concentrations of pharmaceuticals in carrot roots grown in different soils at
drug concentration of 10 mg kg': CIP — ciprofloxacin; NOR — norfloxacin; OFL — ofloxacin;
SDM - sulfadimethoxine; SMX — sulfamethoxazole.
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Toxic compounds entering into the soil may affect microbial activity, plant growth
and development and may have adverse effects on living organisms (Lillenberg et al.,
2010b; Michelini et al., 2012; Haiba et al., 2013a; Nei et al., 2014). Further studies
concerning the plant uptake of a wide spectrum of commonly used pharmaceuticals from
soils fertilized with sewage sludge or its compost are needed to ensure food safety.

Lillenberg concludes in her PhD thesis (Lillenberg, 2011) that the residues of
pharmaceuticals readily accumulate in several food plants. This phenomenon
remarkably depends on the nature and concentration of a pharmaceutical and soil type.
When using the sewage sludge compost as a fertilizer, it should be carefully tested for
the safety. The content of pharmaceuticals in the compost made from sewage sludge may
easily lead to the elevated concentrations in food plants if the compost is used as a
fertilizer. Still, wheat grains had low or zero concentrations of the analysed
pharmaceuticals. This confirmed the potential applicability of sewage sludge compost
for fertilization of the crops of this type (Haiba et al., 2013a). Further work should be
conducted to determine different types of pharmaceuticals and other organic pollutants
by food plants (Lillenberg, 2011). It is evident that the development of novel sewage
sludge treatment technologies are needed to solve environmental problems related to
sewage sludge exploitation.

PUBLICATIONS AND THESES

Vermicomposting

Vermicomposting technology is a simple and environmentally friendly biological
treatment of wastes. As a result of the work published in Ivask et al. (2013) and Haiba
et al. (2014) the applicability and efficiency of using earthworms Eisenia fetida and
Dendrobaena veneta in vermicomposting of sewage sludge and household organic
residues in the countries with the climate comparable to Estonia was demonstrated.

Compost in afforestation

In Estonia the reforestation of depleted peat and sand mining areas is often
complicated due to the unfavourable physical, chemical and biological properties of
soils. The impact of artificial roots and soil amelioration with green waste compost in
the afforestation of depleted peat fields and sand pits was studied. The results of this
work is presented in Jarvis et al. (2012) and Jarvis et al. (2016). Added compost caused
significantly improved height growth of the studies tree species seedlings, hence
enhanced the growth conditions locally.

Development of novel methodologies for the determination of pharmaceutical
residues

Novel approaches for the quantitative determination of traces of commonly used
pharmaceuticals in sewage sludge and plants were developed (Lillenberg et al., 2009;
Kipper et al., 2011; Kipper, 2012). The compounds were simultaneously extracted from
sewage sludge by pressurized liquid extraction (PLE). A novel and effective method for
PLE was developed. Solid-phase extraction was used for cleaning up the extracts.
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Dissertations defended

PhD thesis: Karin Kipper, Fluoroalcohols as Components of LC-ESI-MS Eluents:
Usage and Applications, 2012. A novel and efficient methodology for pharmaceutical
analyses in complex matrices (e.g. blood plasma and environmental samples) was
developed and tested.

PhD thesis: Merike Lillenberg, Residues of some pharmaceuticals in sewage sludge
in Estonia, their stability in the environment and accumulation into food plants via
fertilizing, 2011. The aim of the work was to study the presence of some widely used
pharmaceuticals in Estonian sewage sludge and its compost and the uptake of these
pharmaceuticals from fertilized soils by some food plants. As a result of this research
the following was established:

1. Pharmaceuticals were present in sewage sludge and its compost from both
Tallinn and Tartu and in several samples their concentrations exceeded the relevant
trigger values for manure.

2. Degradation of pharmaceuticals took place as a result of composting.

3. The main reason of the decrease in pharmaceutical concentrations during
composting was the applied sludge treatment technology.

4. The uptake of the studied pharmaceuticals by food plants was obvious. The
application of sewage sludge compost as a fertilizer and the resulting uptake of
pharmaceuticals by food plants may cause contamination of these plants.

CONCLUSIONS

Land application of composts is an important and efficient tool in the remediation
of industrial landscapes and agricultural soils in Estonia. Still, due to the frequent
presence of different undesired residues, composts made from sewage sludge need
careful inspection before their use. The work should be continued by the development
of novel and more efficient composting technologies, leading to intelligent solutions of
environmental problems related to biowaste exploitation.
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Abstract

Sewage sludge compost has to be contaminant-free to ensure safe land application. However, it may contain
substantial amounts of pharmaceuticals, personal care products and microbial pollution. In Estonia sewage
sludge is primarly composted and re-used as an agricultural ferilizer. The aim of the current study was to
determine the relationship between the concentrations of ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OFL),
sulfadimethoxine (SDM) and sulfamethoxazole (SMX) and the microbial activity. The pharmaceutical residue can
inhibit active and growing microorganisms and therefore have a negative impact on composting processes
resulting in poor compost quality, non-inactivated pathogens and high microbial biomass. The concentration of
the pharmaceuticals in the sewage sludge during a 120 day composting period was measured by pressurized
liquid extraction (PLE), then followed by solid phase extraction (SPE), and high-performance liquid-
chromatography - mass spectrometry (LC-MS). Soil microbial respiration rates (basal respiration) were measured
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using manometric respirometers (Oxitop®, WTW), which allow the determination of the sample oxygen
consumption. Substrate induced respiration (SIR) was also determined via the Oxitop® manometric system.

The initial concentration of every pharmaceutical was 2 mg/kg in relation to dry weight (dw). All the
pharmaceuticals had a significant decrease in concentration during the composting period. The highest
decomposition rates in different sewage sludge composts were measured for sulfonamides (average 93%) and
the lowest for fluoroquinolones (average 94%).

Most of the compost piles showed significant decrease after 120 days in both BA and SIR values. After 4 months
the basal respiration values of the compost ranged from 0.04-0.16 mg02/g DW*h. The basal respiration value
for the compost pile without pharmaceuticals was 0.26 mg02/g DW*h. The compost containing pharmaceutical
residues showed an average bacterial-to-fungal ratio of 29 : 71 whereas the control compost pile showed a ratio
of 65 : 35. That clearly indicates that pharmaceutical residues in a compost pile have a negative impact not only
on the microbial activity of the composting process, but also on the microbial community composition.

Keywords: sewage sludge, composting, pharmaceuticals, microbial processes.

1. Introduction

Agricultural application of sewage sludge has become the most widespread method for its disposal,
compared to the other methods (as incineration) it is the most economical outlet for sludge [21].
Sewage sludge compost is rich in nutrients and trace elements and could be re-used in agriculture as
fertilizer and for soil as stimulating its biological activity [12]. Nowadays more than 60 % in the U.S.
and 40 % in Europe of the sewage sludge produced are applied to the land [7, 21].

Fertilizing soil with sewage sludge compost a large quantities of different drug residues have been
detected in terrestrial environment [8, 16, 15]. Increasing amounts of pharmaceuticals and their
metabolites reach wastewater treatment plants mainly through excreta and disposal of unused or
expired drugs [13].

Sewage and its sludge is known to contain pharmaceuticals [19, 10, 11, 3, 9, 21]. Since sewage
sludge is primary composted in Estonia and often re-used in agriculture as ferilizer, the pharmaceutical
residue can inhibit active and growing microorganisms and therefore have a negative impact on
composting processes resulting in poor compost quality, non-inactivated pathogens and high
microbial biomass. Antibiotics may inhibit key composting processes mediated by microorganisms
even at low doses [1].

Sewage treatment facilities do not remove all pharmaceutical residues completely and several
antimicrobials do not decompose during sewage sludge composting process [13, 10, 11, 5]. Antibiotics
are designed to be refractory to biodegradation and to act effectively even at low doses [1]. The
sewage sludge containing pharmaceutical residues is used as a fertilizer reach the soil where they can
affect microorganisms, accumulate in plants and may have adverse effects on living organisms [11].
Some of the antibiotics frequently found in agricultural soils are bacteriostatic, such as sulfonamides;
others are bactericidal, such as fluoroquinolones [18, 11].

To compare the influence of different sewage sludge composting technologies to the degradation
rate of the fluoroquinolones and sulfonamides in it - some new experiments were performed. In the
current study the selection of pharmaceuticals was made considering their resistance in soil and the
scale of their use [1, 10, 9, 14]. The studied pharmaceuticals included fluoroquinolones: ciprofloxacin
(CIP), norfloxacin (NOR), ofloxacin (OFL); and sulfonamides: sulfadimethoxine (SDM) and
sulfamethoxazole (SMX). Sewage sludge and support material were composted at the presence of
antimicrobials for 120 days.

31



Nei, L., Haiba, E., Kutti, S., Kipper, K., Herodes, K. & Lillenberg, M. Sewage sludge compost, microbial activity and pharmaceuticals, Global
Journal on Advances in Pure & Applied Sciences [Online]. 2014, 03, pp 30-37. Available from: http://www.world-education-
center.org/index.php/paas

2. Materials and Methods
2.1. Chemicals and materials

Antibiotics — three fluoroquinolones: ciprofloxacin (CIP, purity 99.8%), norfloxacin (NOR, purity
99.9%) and ofloxacin (OFL, purity 99.3%) and two sulfonamides: sulfadimethoxine (SDM, purity 99.4%)
and sulfamethoxazole (SMX, purity 99.9%) — and ammonia were purchased from Riedel-de-Haén
(Seelze, Germany). Hydrophilic-lipophilic balanced (HLB) cartridges (Oasis HLB (60 um), 500 mg/6 mL)
were supplied by Waters (Milford, MA, USA). 1, 1, 1, 3, 3, 3-hexafluoroisopropanol (HFIP) was
purchased from Sigma—Aldrich (St. Louis, MO, USA). HPLC grade acetonitrile and methanol were
obtained from J.T. Baker (Deventer, The Netherlands), phosphoric acid from Lachema (Brno, Czech
Republic) and citric acid monohydrate from Fisher Scientific (Pittsburgh, PA, USA). All chemical
analyses were performed by the Institute of Chemistry, University of Tartu.

2.2. Preparation of compost mixtures

The sewage sludge from an Estonian city was used to make four different composts. Sewage sludge
composts with different reference substances (Table 1) were used in model experiments under fixed
conditions. The initial concentration of every pharmaceutical was 2 mg/kg in relation to dry weight
(dw).

Table 1. Descriptions of composts

Compost sewage sludge treatment technology Bulking agent Added

No pharmaceuticals
in compost

1 methane fermentation peat 2 mg/kg (dw)

2 methane fermentation + vermicomposting®  sawdust 2 mg/kg (dw)

3 methane fermentation sawdust + oil-shale ash 2 mg/kg (dw)

4 methane fermentation sawdust Not added

*Dendrobaena veneta were added

The experiment was conducted in a non-heated room with a mean air temperature of 22-25°C. The
duration of composting was 120 days. Experiments were performed in non-transparent plastic
containers. The temperature of the composting material was measured during the whole experiment.
The matter was mixed periodically every 5-7 days to provide both sufficient aeration and
homogenization. Water was added depending on the dry matter content of sludge composts.

2.3. Chemical parameters of compost mixtures

The chemical composition of the studied wastes was analysed at the beginning and at the end of
the experiment (Table 2). All chemical analyses were performed by the Plant Biochemistry Laboratory
of Estonian University of Life Sciences. The methodologies of the analyses are presented in detail in
the Official Methods of Analysis (1990). The following applications were carried out: moisture
(gravimetric), pHKCI, total nitrogen (TotN, by the Kjeldahl method), total phosphorus (TotP), and
potassium (flame photometric method,). The content of organic matter (loss on ignition) was
determined according to Schulte, [20].
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Table 2. The chemical composition of the composts at the beginning and at the end of the experiment

Compost Organic  Moisture, pH Total N, Total P, Total K,

No matter, % % % g/kg g/kg

1 beginning 56.1 76.5 6.3 3.0 1.3 0.5
after 120 days 54.3 70.0 5.8 3.1 1.3 0.4

2 beginning 69.0 74.9 6.8 1.5 1.3 1.0
after 120 days 55.0 73.5 6.4 2.6 1.7 2.9

3 beginning 47.6 66.3 7.8 15 0.6 2.0
after 120 days 33.9 69.5 7.9 1.6 0.5 2.2

2% beginning 74.5 74.0 6.8 1.4 1.3 1.3
after 120 days 62.5 75.4 6.8 2.5 1.4 1.7

* control compost with no additional pharmaceuticals

2.4. Determination of antimicrobials from sewage sludge compost

The methodology used for the determination of antimicrobials from sewage sludge and compost
together with method validation is described in detail by Haiba et al. [6]. Method for simultaneous
determination of CIP, NOR, OFL, SDM and SMX from sewage sludge compost consisted of 3 parts:
pressurized liquid extraction (PLE), solid phase extraction (SPE), and liquid-chromatography - mass
spectrometry (LC-MS). Analyses were carried out (1) on fresh compost mixtures, where investigational
drugs were not included, (2) on fresh compost mixtures- which included drugs and (3) compost
mixtures stored for 4 months.

2.5. Determination of the microbial parameters of sewage sludge compost

Soil microbial respiration rates (basal respiration) were measured using manometric respirometers
(Oxitop®, WTW), which allow the determination of the sample oxygen consumption. The principle of
the operation was based on the measurement of the pressure difference in the closed vessel system.
During respiration, produced CO, was bound to an absorber (soda lime pellets), and microbial oxygen
consumption resulted in the pressure drop [17]. The samples were incubated for 4 days at 25°C in the
dark.

Substrate Induced Respiration (SIR) was also determined via the Oxitop® manometric system. 50
gram of fieldmoist soil was amended with glycose and incubated in a closed vessel at 22°C in the dark
for 24 hours. After the incubation the microbial biomass C was calculated.

To determine the microbial to fungal ratio the selective inhibition technique was used. In order to
assess the fungal biomass the samples were treated with cyxloheximide (12 mg/g) and glucose (5
mg/g), for the determination of bacterial biomass the samples were treated with streptomycin (6
mg/g) and glucose (5 mg/g). The controls were treated with both inhibitors- cyxloheximide (12 mg/g)
and streptomycin (6 mg/g). All the samples were incubated in closed vessels at 22°C in the dark for 24
hours, after which the biomass C was calculated.

All the microbiological analyses were conducted in Tartu College, Tallinn University of Technology.
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3. Results and Discussion

“Blind” determinations of pharmaceuticals from the studied mixtures showed that the background
concentrations of fluoroquinolones were always above zero (see Table 3). After adding the
pharmaceuticals to the sewage sludge and bulking agent mixtures their initial concentrations in dry
matter were determined again. In most cases the concentration of each pharmaceutical was below 2
mg/kg. This is probably because the degradation of pharmaceuticals starts immediately after adding
them to the compost mixture. Still, some of the concentrations (in Table 3) are above this value,
probably due to the rapid adsorption of pharmaceuticals (from liquid phase) to solid particles of
sewage sludge or bulking agent. This is in agreement with the data presented in [2, 4, 22].

According to the data presented in Table 4, the level of degradation after 4-month period from the
beginning of the experiment was 92 - 95 % for CIP, 82 - 96 % for NOR, 99 - 100 % for OFL, 83 - 100 %
for SMX and 76 - 99 % for SDM.

Table 3. Degradation of antimicrobials during 4-month composting period

Compost AM concentration in sewage sludge compost pg/kg (dw)
No Compost characteristics SMIX SDM NOR cIp OFL
1 fresh n.d. n.d. 39 34 6
fresh, with pharmaceuticals 2232 1783 1520 975 1678
after 4-months of
composting 375 422 157 82 5
2 fresh n.d. n.d. 33 n.d. n.d.
fresh, with pharmaceuticals 2038 2220 1997 1349 1893
after 4-months of
composting 6 15 88 61 8
3 fresh n.d. n.d. 30 34 27
fresh, with pharmaceuticals 174> 1779 1724 1108 1540
after 4-months of
composting n.d. 68 319 65 20

*n.d. - not detected

Table 4. The extent of degradation of pharmaceuticals in compost mixtures during 4-month composting period
Degradation after 4 months of composting, %

Compost SMX SDM NOR CIP OFL
No

1 83 76 90 92 100
2 100 99 96 95 100
3 100 96 82 94 99

The microbial parameters in the control compost did not differ significantly from the compost piles
with pharmaceuticals at the beginning of the experiment (Table 5). At the end of the experiment the
control compost was clearly showing signs of increased microbial activity compared to the composts
with pharmaceuticals, which showed a decrease in microbial activity. Reasons for that increase are not
certain yet.
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Composts number 2 and 3 have similar characteristics to the control compost- the changes in both
BA and SIR are quite similar. Compost number 1 differed significantly from other composts in
microbial parameters measured. This is probably due to the bulking agent used. All other composts
except for no. 1 used sawdust as bulking agent, not peat. Peat, having slightly antimicrobial properties,
caused a noticeable decrease in microbial parameters. The lower microbial activity in compost 1 may
have resulted in poorer degradation of some pharmaceuticals shown in Table 4.

Table 5. The microbial parameters of fresh and 120 days old compost

Compost SIR, BA,
Duration

No mg biomassC/g dw mg 0,/g dw*h

1 Fresh 5.55 0.09
after 120 days 2.54 0.04

5 Fresh 12.92 0.42
after 120 days 9.89 0.14

3 Fresh 13.17 0.25
after 120 days 8.98 0.16
Fresh 8.87 0.2

4 *
after 120 days 13.02 0.26

SIR- substrate induced respiration, BA- basal respiration,
* control compost with no additional pharmaceuticals

The bacterial-to-fungal ratio (Table 6) of the three composts compared to the control shows clearly
that the composting bacteria are affected by pharmaceuticals present in the compost. The control
compost has a twofold increase in bacterial activity compared to the other three composts. The
abundance of bacteria in the control compost could be explained not only by the lack of
pharmaceuticals but also the fact that the microbial activity increased instead of decreasing in the
control compost. Bacteria are the first and foremost colonizers of compost and greatly affect the SIR
and BA values.

Nevertheless, the presence of pharmaceutical residue clearly affected the microbial community
composition- it inhibited bacteria and allowed fungi to be the predominant microorganisms in the
composting process.

Table 6. The average bacterial-to-fungal ratio at the end of the experiment.

Compost No Bacterial, % Fungal, %
1 34.9 65.1
2 42.7 57.4
3 28.8 71.3
4% 64.9 35.1

* reference compost without added pharmaceuticals

4. Conclusion

The degradation of five antibiotics was evaluated in laboratory scale composting. More than 90% of
the total amount of antibiotics decomposed during the 120 days of sewage sludge composting. The
sewage sludge and its compost should be analysed for the content of pharmaceuticals of long
persistence before using it as a fertilizer. Sewage sludge and compost are not homogenous, despite
mixing them many times. If locally high content of antibiotics exists also in compost ready for
utilization the antibiotics can reach soil and plants via fertilizing.
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Since microorganisms play a key role in composting processes and nutrient turnover even slight
changes in microbial activity and community composition due to antimicrobial agents may result in
poor compost quality and prolonged time needed for compost stability. Also, the microbial community
may reflect the evolution and performance of the composting process thus acting as an indicator of
compost maturity.

The presence of antibiotics in our study clearly affected the microbial community composition of
the compost that resulted in lower microbial activity values. Antibiotic residues inhibited a large
portion of the bacterial community and therefore allowed fungi to be the predominant decomposers.
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Abstract

The fate of five antibiotics was studied during sewage sludge composting. These pharmaceuticals were
fluoroquinolones (ciprofloxacin C;7H1gFN303, norfloxacin Ci6H13FN3O3 and ofloxacin CigH;0FN3O4) and
sulfonamides (sulfadimethoxine Ci,H14N;04S and sulfamethoxazole CioH;1N303S). Different composting
technologies were applied. The selection of drugs was made considering the extent of consumption, resistance
in soil and the results of plant uptake studies. The presence of these substances in sewage sludge and possible
accumulationinplants areacknowledged, but littleinformationis available on their degradation. No systematic
work concerning biodegradation of pharmaceuticals when using different sewage sludge composting
technologies has been published. This study shows that composting remarkably reduces the concentrations of
these pharmaceuticals. In most experiments their concentrations decreased by 95% or more during 4 months of
composting. The best results were obtained when the sludge was mixed with sawdust. In the case of using straw
or peat instead the decomposition rates were lower.

Keywords: Sewage sludge, composting, pharmaceuticals.

* ADDRESS FOR CORRESPONDENCE: Lembit Nei, Tallinn University of Technology, Tartu College, Puiestee 78, Tartu 51008,
Estonia. E-mail address: lembit.nei @ttu.ee / Tel.: +372-534-58322



Haiba, E., Nei, L., Lillenberg, M., Kipper, K. & Herodes, K. Degradation of some pharmaceuticals during sewage sludge composting, Global
Journal on Advances in Pure & Applied Sciences [Online]. 2013, 01, pp 827-832. Available from: http://www.world-education-
center.org/index.php/paas

1. Introduction

Over the past two decades, the scientific community has become increasingly interested in the
impacts of pharmaceutical contaminants to the environment and human health. In contrast to the
properties and effects desired from the therapeutic application of antibiotics, these same properties
are frequently disadvantageous forthose targetand non-target organisms presentin the environment
[1]. The primary route of entry of human pharmaceuticals into the environment is through sewage
pointsources. Differentantimicrobials are often not readily degradable [2; 3]. The sewage sludge and
its compost containing drugresidues are used as fertilisersin the fields [4-6]. This way drugs reach the
soil where they can affect microorganisms and accumulate in plants. The significance of the route
involving the uptake of the pharmaceuticals from fertilized soil by plants in terms of risk to human
health was shown by Lillenberg et al., in 2010 [7].

The concentrations of most of the pharmaceuticals decrease significantly after sewage sludge
digestionand compost processes, but many of them are still presentin compost [8]. In spite of the fact
that evenverylow druglevelsin the environment can have undesirable ecological and health effects,
until now the problems related to the presence of pharmaceuticals in sewage sludge and its compost
have received little attention. There is only limited information on antibiotics degradation that occurs
during sewage sludge composting.

In the current preliminary study model experiments with different compost mixtures were
performed with the aim of establishing the impact of the compost composition on the de gradation of
some pharmaceuticals. These pharmaceuticals included fluoroquinolones and sulfonamides: namely
ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL), sulfadimethoxine (SDM) and
sulfamethoxazole (SMX). The selection of pharmaceuticals in the current study was made considering
their wide usage for treatment of human and animal diseases [9], stability in soil and potential
accumulationinto plants. It has been shown that sawdust can be considered a good bulking agent for
use with sewage sludge as it presents the dilution effect on toxic substances [10].

A detailed study performed by Yousefi et al. and published in 2013 [11] was to blend one waste
high in carbon and low in nitrogen (sawdust) with another waste that is high in nitrogen (municipal
solid waste, MSW) in order to obtain an optimum C/N ratio for composting, increase water
preservation and improve the final quality of the compost product. The composting piles with 16% and
32% sawdust required shorter composting periods than those without any sawdust. Moreover this
study investigated the effect on other quality parameters of compost with different amounts of
sawdust added to the raw material (MSW), such as temperature, pH, EC, major cations (Na*, Mg*", K,
and Ca*"), and the heavy metal content of MSW compost. Wong et al. have established that addition
of coal fly ash significantly reduces the availability of heavy metalsin sewage sludge, supportingits use
as a co-composting material with sewage sludge [12]. In the present study we tried to find an answer
to the question: does the bulkingagent have an effect on the degradation of pharmaceutical residues
present in sewage sludge compost.

2. Experimental
2.1. Chemicals and materials

Antibiotics and ammonia were purchased from Riedel-de-Haén (Seelze, Germany) — three
fluoroquinolones: ciprofloxacin (CIP, purity 99.8%), norfloxacin (NOR, purity 99.9%) and ofloxacin (OFL,
purity 99.3%) and two sulfonamides: sulfadimethoxine (SDM, purity 99.4%) and sulfamethoxazole
(SMX, purity 99.9%). Hydrophilic-lipophilic balanced (HLB) cartridges (Oasis HLB (60 um), 500 mg/6
mL) were supplied by Waters (Milford, MA, USA). 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) was
obtained from Sigma—Aldrich (St. Louis, MO, USA). HPLC grade acetonitrile and methanol were
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obtained from J.T. Baker (Deventer, The Netherlands), phosphoric acid from Lachema (Brno, Czech
Republic) and citric acid monohydrate from Fisher Scientific (Pittsburgh, PA, USA).

2.2. Preparation of compost mixtures

Mixtures of sewage sludge, bulking agent and water, containing the studied pharmaceuticals, were
composted for fourmonthsininsulated containers. The composition of the studied compost mixtures
is presented in table 1. The initial concentration of every pharmaceutical was 2 mg/kg in relation to
dry matter (dm). The composting piles were mixed periodically every 5-7 days for 4 months to
maintain adequate oxygen levels and to homogenize them.

Table 1. The composition of compost mixtures

Pile sewage sludgetreatment technology Bulkingagent (% from dry matter) dry matter, %
No

1 methane fermentation peat (50) 23.1

2 methane fermentation + vermicomposting® sawdust(33) 24.7

3 methane fermentation sawdust+ oil-shaleash (29+14) 323

4 compressed by centrifugation sawdust+ wood chips (total 43) 25.8

5 compressed by filtration straw (50) 13.9

6 compressed by filtration +vermicomposting® sawdust(33) 214

7 compressed by filtration sawdust+ oil-shaleash (29+14) 35.5

*Dendrobaena veneta were added

2.3. Sample preparation and LC-MS analysis

The collected samples were stored at -80°C prior to the preparation and analysis. Pressurized liquid
extraction (PLE) with reduced sample size (611 g) and solvent volume (20 mL per one cycle) was
performed accordingin-house developed sample preparation method [4]. Solid phase extraction (SPE)
procedures are with using hydrophilic-lipophilic balance (HLB) cartridges [4]. The SPE extracts were
analyzed by LC-MS (Agilent Series 1100 LC-MSD Trap XCT (Santa-Clara, CA, USA)) equipped with a
binary pump, a degasser, an auto-samplerand a column thermostat. For instrument control and data
analysis software: Agilent ChemStation for LC Rev. A. 10.02; MSD Trap Control version 5.2 and Data
Analysis for LC-MSD Trap 3.2. were used. Antibiotics were chromatographed using a Waters XBridge
C18 column (150 mm x 3 mm, 3.5 um) equipped with a Waters Guard Cartridge (20 mm x 4.6 mm)
(Waters, Milford, MA, USA). Gradient elution was performed with methanol and 5 mM HFIP buffer
solution (pH9.0 adjusted with NH,OH). The linear gradient with a flow rate 0.3 mL/min started at 10%
of methanol. The methanol percentage was increased to 55% in 25 minutes, after that methanol
content was raised to 100% in 5 minutes and held at 100% for 5 minutes, and then methanol content
was loweredto 10% during 5 minutes. For column stabilization the methanol content was held at 10%
for 5 minutes. Column temperature was set to 30°C and the injection volume was 10 pL. Antibiotics
were detected using electrospray ionization in the positive ion mode and total intensity of fragments
selected reaction-monitoring mode detected [5]. Stock solution concentrations were 0.5 mg/mL for
SDM and 1 mg/mL forotherantibiotics. Stock solutions and working standards in appropriate solvent
[7] were stored at -20 2C. In calibration solutions the concentration of antibiotics ranged from 0.5
ng/mLto 5,000 ng/mL.

829



Haiba, E., Nei, L., Lillenberg, M., Kipper, K. & Herodes, K. Degradation of some pharmaceuticals during sewage sludge composting, Global
Journal on Advances in Pure & Applied Sciences [Online]. 2013, 01, pp 827-832. Available from: http://www.world-education-
center.org/index.php/paas

3. Results and Discussion

A pilot study of sewage sludge from two Estonian largest cities, Tartu and Tallinn, was performed.
Concentrations of NOR, OFLand CIP; SDM and SMX were determined in sewagesludge. In all samples
the residues of fluoroquinolones and sulfonamides were present. As a rule, the concentrations of
antimicrobials in Tallinn sewage sludge were relatively low. Still, in some cases the contents of CIP,
NOR and OFL were over the trigger value set for manure (100 pg/kg). In Tartu, on the contrary, the
contentof CIP and NOR was mostly overthe triggervalue, buta high content of OFL was detected only
in August, September and October. The content of sulfonamides was quite low in both cities, under
the trigger value set for drug residues in manure. The highest concentrations of antibiotics found in
Tallinn were: CIP - 1520 pg/kg and NOR - 580 pg/kg (dm). The maximum concentrations of OFL (134
ug/kg), SDM (73 ug/kg) and SMX (22 ug/kg) were lower. The highest concentrations of antimicrobials
insewage sludge of Tartuwere: NOR - 439 ug/kg and CIP - 442 ug/kg (dm), OFL - 157 ug/kg (dm), SDM
- 32 pug/kg, SMX - 16 ug/kg. These results clearly show that it is important to make sure that the
compost made from sewage sludge does not possess any risks originating from the residues of
pharmaceuticals.

Small quantities of the studied pharmaceuticals were present in sewage sludge that was used for
preparing the compost mixturesusedin ourexperiments. “Blind” determinations of pharmaceuticals
from the studied mixtures showed that the background concentrations of fluoroquinolones were
never equal to zero (see table 2). This is in agreement with the results of the pilot study concerning
the presence of pharmaceuticalsin Tallinn and Tartu sewage sludge. After adding the pharmaceuticals
to the sewage sludge and bulking agent mixtures their initial concentrations in dry matter were
determined again. The results are presented in table 2. In most cases the concentration of each
pharmaceutical was below 2mg/kg. Thisis probably due to the phenomenon that the degradation of
pharmaceuticals starts immediately after adding them to the compost mixture. Still, some of the
concentrations (intable 2) are above thisvalue, probably due to the rapid sorption of pharmaceuticals
(fromliquid phase) to solid particles of sewage sludge or bulking agent. This is in agreement with the
data presented in [13]. After 4 months of composting, the concentrations of the formerly added
pharmaceuticals were analytically determined again. According to the data presented in table 3, itis
evident that the degradation of pharmaceuticals was more complete when sawdust was used as a
bulking agent (the degree of degradation of the total amount of pharmaceuticals was 94-98%), if
compared to the sewage sludge mixtures with peat and straw (with 88% indicating the extent of
degradation). There is no clear proof that the addition of oil-shale ash influences the degradation rate
of the studied pharmaceuticals. As huge amounts of coal and oil-shale ash are produced every year
and these wastes perform several good qualities as co-composting materials with sewage sludge, it
would be reasonable to direct further studies on the establishment of the optimum composition of
the sewage sludge compost with sawdust and oil-shale ash as co-composting agents.

4. Conclusions

The degradation of fluroquinolones and sulfonamides takes place during sewage sludge co-
composting with sawdust, peat and straw. Additions of sawdust clearly speed up this process, whereas
the mixtures with peatand straw perform lowerabilities to decompose pharmaceutical residues. No
clearevidence was received concerning the impact of vermicomposting and oil shale amendments on
the degradation speed of the studied pharmaceuticals.
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Table 2. Degradation of pharmaceuticals in different compost samples

PileNo Sample pharmaceuticalsin dry matter, mg/kg
SMX SDM NOR CIP OFL
1 fresh 0.00 0.00 0.04 0.03 0.01
fresh, with pharmaceuticals 2.23 1.78 1.52 0.98 1.68
after 4-months composting 0.38 0.42 0.16 0.08 0.01
2 fresh 0.00 0.00 0.03 0.00 0.00
fresh, with pharmaceuticals 2.04 2.22 2.00 1.35 1.89
after 4-months composting 0.01 0.02 0.09 0.06 0.01
3 fresh 0.00 0.00 0.03 0.03 0.03
fresh, with pharmaceuticals 1.74 1.78 1.72 111 1.54
after 4-months composting 0.00 0.07 0.32 0.07 0.02
4 fresh 0.00 0.00 0.15 0.17 0.05
fresh, with pharmaceuticals 2.11 137 2.33 2.31 3.12
after 4-months composting 0.01 0.02 0.21 0.04 0.43
5 fresh 0.00 0.03 0.29 0.09 0.12
fresh, with pharmaceuticals 1.85 191 1.56 1.56 1.46
after 4-months composting 0.02 0.06 0.38 0.16 0.41
6 fresh 0.00 0.00 0.07 0.04 0.02
fresh, with pharmaceuticals 2.50 2.09 1.58 144 0.74
after 4-months composting 0.02 0.04 0.15 0.05 0.02
7 fresh 0.00 0.00 0.02 0.01 0.00
fresh, with pharmaceuticals 1.88 1.38 1.61 1.34 1.67
after 4-months composting 0.01 0.02 0.02 0.01 0.00

Table 3. The extent of degradation of pharmaceuticals in compost mixtures during 4-months composting period
Degradation after 4 months of composting, %

Pile No SMX SDM NOR Cip OFL
1 83 76 90 92 100
2 100 99 96 95 100
3 100 96 82 94 99
4 100 99 91 98 86
5 99 97 79 90 74
6 99 98 91 97 98
7 99 98 99 100 100
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Sewage sludge compost can be a source of nutrients for plants and contamination by pharmaceutical
products. In this study the presence of some widely used pharmaceuticals in sewage sludge and its
compost — namely ciprofloxacin C17H18FN303, ofloxacin C18H20FN304, norfloxacin C16H18FN303,
sulfadimethoxine C12H14N404S and sulfamethoxazole C10H11N303S — was shown. In several sewage
sludge samples their concentrations exceeded the relevant trigger values for manure. The highest
concentrations of ciprofloxacin, ofloxacin and norfloxacin in the compost ready for commercialization
sufficiently exceeded the threshold concentration — 1 pg/kg — for pharmaceuticals in soil. The values of
the highest detected concentrations of these pharmaceuticals in compost were respectively 70, 64 and
8 ug/kg. The uptake of these pharmaceuticals was demonstrated from both sandy and loamy soils into
food plants such as carrot (Daucus carota L), potato (Solanum tuberosum L) and wheat (Triticum

vulgareL).

Key words: Soil pollution, plant uptake, pharmaceuticals.

INTRODUCTION

Utilization of sewage sludge for agricultural application is
increasing (Babel et al., 2009; Lillenberg et al., 2009).
Composting is recognized as one of the sewage sludge
recycling options (Hara and Mino, 2008). The scientific
community has become increasingly interested in the
impacts of pharmaceutical contaminants to the environ-
ment and human health, leading to the development of
novel analytical tools (Kipper et al., 2011). In contrast to
the properties and effects desired from the therapeutic
application of antibiotics, these same properties are often
disadvantageous for those target and non-target
organisms present in the environment. The primary route

of entry of human pharmaceuticals into the environment
is through sewage point sources. Pharmaceuticals may
be transferred without degradation and stored, at least
temporarily, in other matrices or compartments through
processes such as bio-concentration, sorption and
deposition of particles (Glassmeyer et al., 2008).
Composting of organic wastes is a traditional way to
reuse organic matter (Tremier et al., 2005; Suthar and
Sing, 2008). Previous studies have shown (Blylksdnmez
and Sekeroglu, 2005), that the degradation of some
pharmaceuticals (ibuprofen, galaxolide) and personal
care products (phthalate esters) may take place during

*Corresponding author. E-mail: lembit.nei@ttu.ee.




bio-solid composting, but still no systematic work
concerning the degradation of antimicrobials during
sewage sludge composting has been published. It has
been claimed, that the content of antimicrobials in the
compost made from sewage sludge may easily lead to
their elevated concentrations in food plants, if the
compost is used as a fertilizer (Lillenberg et al., 2010). A
number of pharmaceuticals, known to be persistant in
soil, are able to accumulate into food plants (Brambilla et
al., 1996; Jjemba, 2002; Migliore et al., 2003; Boxall et
al., 2006; Dolliver et al., 2007).

Remarkable amounts of pharmaceuticals enter the soil
via fertilizing with sewage sludge. There exist no trigger
values for residues of human pharmaceuticals in sewage
sludge or its compost in European Union. The most
closely related act is EU directive establishing trigger
values for veterinary medicines in  manure
(EMEA/CVMP/055/96, 1998). The content of drugs
should not exceed 100 pg/kg in manure, and 10 pg/kg in
soil fertilized with manure. However, the EU Scientific
Steering Committee (EU SSC) considers the trigger value
for pharmaceuticals in soil non-scientific and
recommends a value considerably lower - 1 pg/kg. Only
such concentration can be safe for all soil organisms
(Montforts, 2005).

The antibiotic resistance in soil bacteria can develop
even at lower drug concentration in soil. This would push
the soil concentration trigger further down to 0.01 to 0.1
pg/kg (Montforts, 2005). The antibiotic resistance can be
transferred from soil bacteria to pathogens via horizontal
gene transfer (Knapp et al., 2010). The trigger values
recommended by EMEA/CVMP and EU SSC were used
for estmation of the safety of sewage sludge and its
compost as agricultural fertilizer.

The aim of this work was to study the presence and
concentration  levels of some  widely used
fluorogquinolones and sulfonamides in urban sewage
sludge and its compost, and the possible uptake of these
antimicrobials from compost-fertilized soils into food
plants.

MATERIALS AND METHODS
Chemicals and equipment

In the current study the selection of pharmaceuticals was made
considering their possible presence in sewage sludge compost,
stability in soil and potential ability to accumulate into plants. These
pharmaceuticals included fluoroquinolones (FQs), ciprofloxacin
(CIP), norfloxacin (NOR), ofloxacin (OFL), and sulfonamides (SAs),
sulfadimethoxine (SDM) and sulfamethoxazole (SMX). FQs and
SAs represent the most commonly used families of antibiotics
(Pérez et al., 2005; Picé and Andreu, 2007). FQs are among the
most important antibacterial agents used in human and veterinary
medicine. Because of the growing practice of adding manure and
sewage to agricultural fields these drugs end up in soils, where they
can accumulate and have adverse effects on organisms. CIP is the
most widely prescribed FQ in the world, followed by OFL. NOR, an
oral broad-spectrum antibacterial agent is very common in Europe
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(Pic6é and Andreu, 2007). SAs are among the most commonly used
antibiotics in veterinary medicine and to a lesser extent in human
medicine (Garcia-Galan et al., 2009). In the present study, SDM
and SMX were chosen as target antibiotics because of their
widespread use (Isidori et al., 2005; De Liguoro et al., 2007). SMX
is one of the most consumed SAs in human medicine. It has been
reported frequently and is considered ecologically harmful (Garcia-
Galan et al., 2009).

Antibiotics were purchased from Riedel-de-Haén (Seelze,
Germany) - three FQs: CIP (purity 99.8%), NOR (purity 99.9%) and
OFL (purity 99.3%); two SAs: SDM (purity 99.4%) and SMX (purity
99.9%). Hydrophilic-lipophilic balanced (HLB) cartridges (Oasis
HLB (60 m), 500 mg / 6 ml) by Waters (Milford, MA, USA).
Acetonitrile and methanol were obtained from J.T. Baker (Deventer,
The Netherlands), phosphoric acid from Lachema (Brno, Czech
Republic), citric acid monohydrate from Fisher Scientific (Pittsburgh,
PA, USA), formic acid from Riedel-de-Haén, ammonium acetate
from Fluka (Buchs, Germany). All solvents were of reagent grade or
higher quality.

Collection of the sewage sludge and compost samples

"Raw" sewage sludge, 6 and 12 months stored compost were
sampled. Approximately 200 g of sludge (content of dry matter was
28% in Tallinn and 25% in Tartu) or sewage sludge compost
(anaerobically digested sludge mixed with peat in Tallinn or pressed
raw sludge mixed with tree bark in Tartu) was placed into a 500 ml
glass jar and mixed thoroughly. The jar was covered hermetically
with a lid. The samples were stored at +4°C in the dark to avoid
photodegradation of antimicrobials. The samples were analyzed as
soon as possible, typically within a week. Alternatively they were
stored in polypropylene vials frozen at temperature -80°C.

Determination of antimicrobials from sewage sludge and
compost

The methodology used for the determination of antimicrobials from
sewage sludge and compost together with method validation is
described in detail by Lillenberg et al. (2009). Pressurized liquid
extraction (PLE) followed by solid phase extraction (SPE) and liquid
chromatography electrospray ionization — mass spectrometry (LC-
ESI-MS) were used for analysis. Relative standard deviation (RSD)
of the determinations was within 2%.

Plant uptake experiments

Potato (Solanum tuberosum L.), carrot (Daucus carota L.) and
wheat (Triticum vulgare L.) were grown in the presence of five
antimicrobials, found in Estonian sewage sludge (CIP, NOR, OFL,
SDM, and SMX). The potato tubers or seeds of plants were planted
into the pots with the capacity of 3 dm3, one tuber or 35 seeds in
every pot. The plants were cultivated in greenhouse under natural
light conditions for 120 days from planting. Two different soils were
used for experiments - loamy and loamy sand. The soil was
weighted and aqueous solutions of the studied pharmaceuticals
were mixed with soil.

The final concentration of each pharmaceutical in soil was 0.01;
0.1; 0.5; 1 and 10 mg/kg (dry weight). To assure better dissolution
of the studied pharmaceuticals FQs were dissolved in 2 ml of 0.1
mM ammonium acetate buffer solution with pH=2.8 and SAs were
dissolved in 2 ml of 0.3 M NaOH. Three parallel pots were used for
each concentration of antimicrobials in both soils, and for control
plants grown in antimicrobial-free soil. The edible parts of the plants
were collected, washed carefully, dropped, dried in the dark and
milled for analyses. The milled samples were dried in a thermostate
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Figure 1. Average recoveries for 5 antimicrobials (CIP, NOR, OFL, SDM, SMX)
detected from different parts of food plants grown in different soils using LE and

SPE. Error bars show the recovery ranges

at 45°C and held in hermetic plastic bags at -80 °C before analysis.

Determination of antimicrobials from plants
Liquid extraction
Determination of antibiotic residues in plant material has been

demonstrated in Kipper et al. (2011). Method for liquid extraction
was modified from Palmada et al. (2000). 250 mg of dried plant

sample was extracted with 10 ml of 1:1 (v/v) mixture of
acetonitrile and 1% acetic acid, then homogenized with
laboratory homogenizer DIAX 900 (Heidolph Instruments,

Germany) 25 000 rpm, sonicated (5), vortexed (1°) and centrifuged
at 8000 rpm. The supernatant was separated and dried by nitrogen
stream. 15 ml of 1% acetic acid was added to the 1 ml of
evaporation residue.

Solid phase extraction

The extract collected by liquid extraction was cleaned up by solid
phase extraction (SPE). Antibiotics - CIP, NOR, OFL, SDM and
SMX - were extracted using HLB cartridges. For SPE procedure the
vacuum manifold, supplied by Agilent Technologies, was used. HLB
cartridges were preconditioned with 20 ml of methanol and 10 ml of
Milli-Q water. The sample was loaded at a rate of 6 ml/min. After
extraction, the compounds were eluted from cartridges using 12 ml
of methanol. The SPE extracts were concentrated in polypropylene
vials in N2 stream. Residue was dissolved in 1 ml of 10% methanol
with a buffer solution (5 mM 1,1,1,3,3,3-hexafluoro-2-propanol, pH
adjusted to 9.0 with NH4OH).

LC-ESI-MS method for detection of antimicrobials from plants

The SPE extracts were analyzed by liquid chromatography
electrospray ionization - mass spectrometry (LC-ESI-MS).
Antimicrobials were chromatographed using a Waters X Bridge C18
column (150 x 3 mm, 3.5 ym) equipped with a Waters Guard
Cartridge 4.6 x 20 mm. Gradient elution was carried out with
methanol and hexafluoroisopropanol (HFIP) buffer solution (5 mM

1,1,1,3,3,3-hexafluoro-2-propanol, pH adjusted to 9.0 with NH4OH).
The linear gradient started at 10% methanol and was raised to
100% within 50 min, after that methanol concentration was 100%
for 5 min, then lowered to 10% in 5 min and kept in 10% for 5 min.
The eluent flow rate was 0.3 ml/min, the column temperature was
set to 30°C and the injection volume was 10 pl.

Method validation

The described method was validated for the simultaneous
determination of CIP, NOR, OFL, SDM, and SMX from plants. For
calibration antimicrobials standard solutions were prepared in
eluent (hexafluoroisopropanol and 10% methanol). The calibration
graphs with peak area versus concentration were composed on
concentration range 1 to 10 000 ng/ml and were linear with
r2>0.9998. Recovery was calculated from standard addition
experiments. Recoveries for all detected pharmaceuticals in all
matrices varied from 54 to 98%, the average recoveries are shown
in Figure 1. The method validation was performed in the matrix,
which showed the lowest recovery — carrot roots in loamy soil
(recovery ranges 54 to 78%, average recovery 66%) (Figure 1). The
average recoveries of antimicrobials from carrot roots were 73%
(CIP), 69% (NOR), 76% (OFL), 55% (SDM), 70% (SMX). Standard
deviations for the recoveries were 1% (CIP), 2% (NOR), 2% (OFL),
1% SDM and 1% SMX.

The limits of quantification (LOQ) were as follows: CIP 108.3;
NOR 162.2; OFL 22.9; SDM 71.2 and SMX 130.6 pg/kg. The
standard deviations were accordingly 2.7; 4.1; 0.6; 1.8 and 3.3.
LOQ was estimated as 10 times of the standard deviation from five
replicate analysis of unspiked and spiked plant samples using HLB
cartridges.

RESULTS AND DISCUSSION
Pharmaceuticals in sewage sludge compost
As shown in Tables 1 and 2, the concentrations of the

studied antimicrobials decreased during composting. In
Tallinn the antimicrobials were almost absent in compost
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Table 1. The highest contents of antimicrobials in Tallinn sewage sludge and its compost.

Concentration pg/kg (dm)

AM Sewage sludge 6 months stored compost 12 months stored compost _ Trigger value for soil
CIP 1520 9 0.3 10t

NOR 580 17 0.1

OFL 134 8 0.03

SDM 73 n.d. n.d. 1**

SMX 22 n.d. 0.01

AM, antimicrobial; CIP, ciprofloxacin; NOR, norfloxacin; OFL, ofloxacin; SDM, sulfadimethoxine; SMX, sulfamethoxazole;
*recommended by EMEA/CVMP; ** recommended by EU SSC; n.d., not detected.

Table 2. The highest contents of antimicrobials in Tartu sewage sludge and its compost.

Concentration pg/kg (dm)

AM Sewage sludge 6 months stored compost 12 months stored compost  Trigger value for soil
CIP 442 44 70 10*

NOR 439 40 64

OFL 157 9 8

SDM 32 1 n.d. 1

SMX 16 2 2

AM, antimicrobial; CIP, ciprofloxacin; NOR-norfloxacin;

ofloxacin; SDM,sulfadimethoxine; SMX-sulfamethoxazole;

*recommended by EMEA/CVMP; ** recommended by EU SSC; n.d. - not detected.

stacks that had been formed 12 months earlier. However,
in the compost stored for 6 months the contents of all
FQs exceeded the trigger value for soil recommended by
EU SSC and the content of NOR exceeded both triggers.
In Tallinn the 6-months stored compost is ready for
application, in Tartu the storage time must be at least one
year. In Tartu the antibiotics were not completely
degraded even after 12 months of storage of the compost
stack (Table 2). The contents of CIP and NOR were
remarkably higher than the trigger values for soil. The
contents of OFL and SMX were lower, but still exceeded
1 pg/kg. SDM was not detected in the compost stored for
12 months. Despite mixing, the compost was not
homogeneous. The concentrations of pharmaceuticals
vary noticeably within the same compost stack. For
example, the content of fluoroquinolones differed up to
1.8 times within the same stack in Tartu. Heterogeneity of
the compost may be the result of adsorption of the
pharmaceuticals to solid particles (Carmosini and Lee,
2008).

We suppose that the main reason of the decrease in
pharmaceutical concentrations during composting is the
applied sludge treatment technology. The decomposition
of pharmaceuticals was faster in the case of Tallinn
composting technology. In Tartu the sewage sludge
compost was made by mixing the raw sludge with tree
bark, in Tallinn the methane fermentation and mixing with
peat were used. The compost stacks were mixed
frequently in both cities for promoting growth of the

aerobic bacteria. Mixing exposes different parts of the
stack to the light. As photodegradation is considered to
be one of the reason of decomposition of FQs (Hooper
and Wolfson, 1991), the time of stack mixing might have
an influence to the degradation rate of FQs.

Uptake of pharmaceuticals by food plants

At soil concentrations of 10 mg/kg antimicrobials
accumulated in potato tubers and carrot roots in
amounts, which exceeded their maximum residue levels
(MRL) set for food of animal origin - milk and meat
(EMEA/MRL/026/95; EMEA/MRL/820/02, 2002). The
highest concentrations of antimicrobials accumulated in
plants are shown in Table 3.

Plants accumulated antimicrobials from soil even at soil
concentration of 0.01 mg/kg (CIP, OFL). The drug
residues were detected in carrot roots and potato tubers.
CIP, OFL and SDM were detected also in wheat seeds.
The level of accumulation depended on chemical
properties of the compound, soil type, plant species and
part (overground or underground). As a rule, the higher
concentrations of antimicrobials were detected in the
plants grown in sandy soil. The average contents of
antimicrobials in edible parts of the plants grown at lower
drug concentrations (1 mg/kg) were higher than MRL in
case of OFL, SDM and SMX in carrot roots. The MRL for
SAs —100 pg/kg - is set for the sum of all SAs in meat
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Table 3. The highest contents of antimicrobials detected in edible parts of food plants pg/kg (dm).

AM AM conc. in soil Carrot roots Potato tubers Wheat seeds MRL for milk
mg/kg (dm) Loamy  Sandy Loamy  Sandy Loamy Sandy and meat (ug/kg)
10 - 740 170 160 - T
1 - 50 20 10 - -
CIP 0.5 - 70 - 50 40 - 100
0.1 - - 40 6 - -
0.01 - - - 3 - -
10 - 990 180 260 - 1
1 - 80 40 - - -
NOR 05 ) . i ) i ) -
0.1 - - 40 - - -
10 40 830 110 240 - T
1 - 160 60 50 - 9
OFL 0.5 30 80 30 90 30 - -
0.1 5 10 6 20 15 5
0.01 3 10 3 5 -
10 100 660 340 1750 50 T
SDM 1 130 20 120 40 - - SDM + SMX
0.5 40 10 - 10 36 -
10 480 4910 580 5150 - T
1 120 290 - - - -
SMX 0.5 60 110 - - - - 100
0.1 - 20 - - - -

AM-antimicrobial; CIP-ciprofloxacin; NOR-norfloxacin; OFL-ofloxacin; SDM-sulfadimethoxine; SMX-sulfamethoxazole; MRL- maximum
residue level; 1- at soil AM concentration 10 mg/kg the wheat plants wilted before flowering.

and milk (EMEA/MRL/026/95, 1995). In carrot roots the
sum of average concentrations of SDM and SMX was
over the MRL. CIP, OFL and SDM were detected in
wheat seeds grown in loamy soil, however, in wheat
seeds grown in sandy soil only OFL was found. The level
of germination of the wheat seeds in sandy soil at
antimicrobial concentration of 10 mg/kg was very low and
the development of the plants was noticeably slowed
down. These plants wilted before flowering and the
formation of grains could not take place. In carrot roots
and potato tubers most of the studied antimicrobials were
detected, except CIP and NOR in carrots grown in loamy
soil. OFL accumulated into carrots and potatoes from
soils with lowest antimicrobial concentration - 0.01 mg/kg.
The content of CIP was found only in potatoes grown in
sandy soil at antimicrobial concentration of 0.01 mg/kg.
The content of antimicrobials in plants cultivated in
sandy soil was usually higher than in plants grown in
loamy soil. Potato tubers and carrot roots grown in sandy
soil at highest drug concentration of 10 mg/kg contained
several hundreds or thousands micrograms of
antimicrobials per kg. The content of antimicrobials in

potatoes and carrots grown in loamy soil was
considerably lower. SAs are among the most commonly
used antibiotics in veterinary medicine and to a lesser
extent in human medicine (Thiele-Bruhn, 2003). They are
both fairly water-soluble and polar (Thiele-Bruhn et al.,
2004).

The low adsorption of SAs on soil particles is known
(Beausse, 2004) and due to this phenomenon they are
“ready” to migrate into plants. An opposite behavior is
characteristic to FQs. It has been shown that more than
90% of applied CIP and OFL is adsorbed on different
soils (Beausse, 2004). For this reason no significant
migration of FQs from soil into plants takes place. In
loamy soil the molecules of SAs attach to clay particles
(Thiele-Bruhn, 2003), reducing their uptake by plants.

Variance analysis (ANOVA) showed that plant uptake
results were statistically significant (p<0.05) only in the
case of carrot roots and potato tubers grown in soils with
drug concentrations of 10 mg/kg. At lower drug
concentrations in soil the dispersion of the results was
too high, which can be explained with the very high
heterogeneity of both soil and plant matter.



Conclusions

FQs and SAs were present in sewage sludge and its
compost both in Tallinn and in Tartu and in several
samples their concentrations exceeded the relevant
trigger values for manure. Degradation of these
pharmaceuticals took place as a result of composting.
The concentrations of the studied antimicrobials
decreased remarkably as a result of composting. Still, in
6 month stored compost the content of NOR was over
and the content of CIP was near the recommended
trigger value for soil. The decomposition rate of
pharmaceuticals depends on the applied sludge
treatment  technology. @ The  decomposition  of
pharmaceuticals was faster in the case of Tallinn
composting technology.

The uptake of pharmaceuticals by the studied food
plants was present. Wheat grains had low or zero
concentrations of the analysed pharmaceuticals. This
shows the potential applicability of sewage sludge
compost for fertization of the crops of this type. The
uptake of FQs and especially SAs by plants like potato
and carrot might present health risk. Due to this the
application of sewage sludge as a fertilizer for these
crops may take place only after careful testing against
possible different toxic pollutants. The safest way to
exclude exposing plants to pharmaceuticals is to ensure
that these substances are adequately degraded before
sewage sludge compost is applied onto arable land.
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