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Abstract

This thesis explores the application of Explainable Artificial Intelligence (XAI) in analyzing
digital drawing tests to support the diagnosis of Parkinson’s disease (PD). The study focuses
on kinematic and pressure-based features extracted from drawing data collected via tablets.
A machine learning workflow was implemented, featuring feature extraction, Fisher Score
- based selection, and classifier training (Logistic Regression, SVM, Random Forest), with
Random Forest achieving the highest accuracy (81.45 percent).

To enhance interpretability XAI methods (LIME and SHAP) were integrated, providing
local explanations for model predictions. Their fidelity was quantitatively evaluated using
faithfulness and monotonicity metrics. Results indicated that SHAP explanations were
more consistent (faithfulness up to 0.91) than LIME, particularly for accurate classifications.
Mechanical drawing tasks (e.g., spirals) outperformed cognitive tasks (e.g., digits) in both
accuracy (avg. 0.63 vs. 0.52) and explanation quality.

Key contributions include:

■ A reproducible, interpretable pipeline for PD diagnosis using drawing tests.
■ Quantitative validation of XAI methods.
■ Task-specific insights, highlighting the superiority of motion mass features in me-

chanical tasks.

Limitations include small sample sizes and variability in LIME’s explanations. The work
lays a foundation for future research into transparent AI-assisted diagnostics.

The thesis is written in english and is 33 pages long, including 6 chapters, 13 figures and 2
tables.
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Annotatsioon
XAI-põhine joonistamistestide analüüs Parkinsoni tõve diagnoosimisel

Käesolev bakalaureusetöö uurib seletatava tehisintellekti (XAI) rakendamist Parkinsoni
tõve diagnoosimisel digitaalsete joonistustestide põhjal. Uuringus analüüsitakse joon-
istamise käigus kogutud kineetilisi ja survenäitajaid (nt kiirusmass, tõukemass, rappumis-
mass), mis on eristusvõimelised Parkinsoni tõve korral. Töös kasutatud masinõppemudelid
(Logistiline regressioon, SVM, Random Forest) treeniti Fisher Score’iga valitud tunnustel,
millest parima tulemuse (81,45 protsendi täpsus) andis Random Forest.

Selgitamiseks rakendati XAI meetodeid (LIME ja SHAP), mille usaldusväärsust hinnati
faithfulness ja monotonicity meetrikute abil. SHAP-i selgitused olid stabiilsemad (kuni
0,91 faithfulness) ning mehaanilised testid (nt spiraal) andsid paremaid tulemusi kui
kognitiivsed (nt numbrid).

Töö peamised panused:

■ Selgitustega varustatud masinõppeprotsess Parkinsoni tõve diagnoosimiseks.
■ XAI meetodite kvantitatiivne hindamine.
■ Tõestus, et liigutustunnused on efektiivsemad mehaanilistes ülesannetes.

Piiranguteks on väike andmemaht ja LIME-i ebastabiilsus. Töö annab aluse edasisteks
uuringuteks arvutiabistatud diagnoosimisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 33 leheküljel, 6 peatükki, 13
joonist, 2 tabelit.
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List of Abbreviations and Terms

XAI Explainable Artificial Intelligence
PD Parkinson’s Disease
KT Known Typical
LIME Local Interpretable Model-agnostic Explanations
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1. Introduction

Parkinson’s disease is one of the most common neurodegenerative disorders worldwide,
primarily affecting the motor system. Although there is currently no known cure, early
diagnosis and appropriate treatment can significantly improve patients’ quality of life.
The disease manifests through a variety of motor symptoms, including tremors, rigidity,
slowness of movement and impaired coordination. Because of these characteristics, tasks
involving fine motor control—such as handwriting and drawing—can serve as useful
indicators for early detection of the disease.

Fine-motor assessments have long been used in neurology to identify impairments, and
technological advancements have brought these tests into the digital domain. Instead of
relying on traditional paper-and-pencil tests, tablets and digital pens can now capture not
only the geometry of drawn shapes but also additional parameters such as time, pressure,
velocity and drawing angle. These parameters are not visible to the human eye but
can provide deeper insights into the motor behavior of individuals. As a result, tablets
and artificial intelligence have emerged as valuable tools for the objective analysis of
Parkinson’s symptoms.

However despite the potential of machine learning models, a critical challenge is their
interpretability. Clinicians and researchers must understand the reasoning behind each pre-
diction in order to trust AI-assisted diagnostic support. Explainable Artificial Intelligence
(XAI) provides tools to expose internal decision logic and highlight which input features
influence predictions the most.

The aim of this thesis is to evaluate whether interpretable machine learning methods can be
effectively used to support the diagnosis of Parkinson’s disease through drawing tests. By
combining motion analysis with explainability tools, the study seeks to contribute toward
the development of more transparent and reliable computer-aided diagnostic systems.
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2. Problem Statement

High accuracy of machine learning models does not inherently translate into trust, es-
pecially in sensitive domains like healthcare, where understanding the reasoning behind
predictions is essential. XAI methods can make model decisions more transparent, enabling
clinicians to evaluate and potentially rely on AI-assisted diagnosis.

2.1 Main goal and objectives

The main goal of the present thesis is to implement a statistical machine learning workflow
for the analysis of drawing and writing tests enriched by the post hoc explanation and
explanation evaluation steps. To achieve the main goal, the following subproblems must
be solved:

■ Reproduce previously performed research aimed at feature engineering and selection,
classifier training, and validation. This step serves two purposes. Validate previously
performed research and provide the basis for explanations and their evaluation.

■ Integrate LIME (Local Interpretable Model-agnostic Explanations) and SHAP
(SHapley Additive exPlanations) into the workflow.

■ Calculate faithfulness and monotonicity metrics for LIME and SHAP.
■ Apply the workflow to the available tests and evaluate the results.

For the validation of the first step, a two-stage procedure would be used. The first is
a comparison of the selected features with the previously published results[1]. For the
evaluation of the classifier’s accuracy metrics, precision, recall and the F1 score will be used.
However, values above 0.7 should be considered acceptable. LIME and SHAP explanations
could not be compared to the previously published results, but their monotonicity and
faithfulness values could provide information on the goodness of the explanations. To the
best of knowledge of the author, there are no published results to compare the numerical
values of such outputs, but a comparison between the tests should reveal the limitations of
the proposed approach.

Figure 1. Workflow.
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3. Background

The present thesis is part of a larger research that studies human motor functions whose
objectives are to support the diagnosis of neurodegenerative diseases, detect early cognitive
impairments, and recognize signs of fatigue. The datasets used in this research were
provided by supervisor. The findings of this work might be later used further in research.

The data acquisition process was carried out under strict privacy law guidelines. As such
any and all files containing sensitive data are excluded from this work (all the json files
used for model training and testing).

3.1 Hardware and software

Data used in present thesis was acquired during previous research[1]. For data gathering
during writing tests, Apple iPad pro (2016) with a 9.7-inch screen and Apple pen (stylus)
were used. To collect movements of the stylus tip, software and interface suitable for the
task was developed. The coordinates of the apple pen tip and the pressure applied to the
screen were saved to the matrix. The rows of the matrix correspond to the observation
points acquired up to 200 times per second, and the columns contain information that
describes each point. For each test collected data were saved for future processing in
JavaScript Object Notation (JSON) files.

An example of data in a JSON file is shown below in (Figure 1). For each point was
recorded information about the X coordinate (x) and the Y coordinate (y), pressure applied
to the screen (p), stylus orientation altitude (l) and azimuth (a), time stamp (t).[2]

Figure 2. Part of json file.
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3.2 Motion Mass Parameters

Recent studies[1] have demonstrated that kinematic and pressure-based features extracted
from digital drawing tests can objectively quantify motor impairments in Parkinson’s
disease.

"Tremor-related feature engineering for machine learning based Parkinson’s disease di-
agnostics" (2022)[1] proposed "motion mass" parameters (velocity mass, jerk mass, etc.)
derived from Archimedean spirals, achieving 84.3 percent accuracy in Parkinson’s disease
detection. These integral-like features capture cumulative deviations in motor control,
which are less sensitive to noise than point-wise metrics. This metrics will be used to train
models.

3.3 Explainable AI (XAI)

Transparency in machine learning is critical for medical applications. Explainable AI refers
to a set of processes and methods that aim to provide a clear and human-understandable
explanation for the decisions generated by AI and machine learning models.[3]

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output
of any machine learning model. It connects optimal credit allocation with local explanations
using the classic Shapley values from game theory and their related extensions.[4]

■ Quantifies each feature’s contribution to predictions using game theory.
■ Advantages: Global consistency (features retain importance across samples).

LIME (Local Interpretable Model-agnostic Explanations):
Instead of providing a global understanding of the model on the entire dataset, LIME
focuses on explaining the model’s prediction for individual instances.[5][3]

■ Approximates complex models with interpretable local linear models.
■ Advantages: Intuitive for case-by-case analysis (e.g., "High jerk mass → Parkinson’s

disease" for a specific patient).
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4. Methodology

In this thesis, digital drawings from Parkinson’s patients and healthy individuals are
analyzed to compute a set of kinematic and pressure-based features. In particular, a family
of “motion mass” parameters — such as velocity mass, jerk mass, and shake mass — are
extracted from raw drawing data. Feature relevance is assessed using the Fisher Score[6],
and selected features are used to train multiple machine learning classifiers. The models
are evaluated using nested cross-validation[7] and multiple performance metrics, such as
accuracy, precision, recall and F1 score. Finally, LIME[5] and SHAP[8] are applied to
interpret and compare the predictions of the trained models and their interpretations are
assessed through faithfulness and monotonicity metrics.

The process is separated into two phases, learning and developing the process using only
spiral drawing tests data, adjusting the process to generate models and explanations for
any particular test.

4.1 Feature Extraction

To ensure complete and correct parsing, a recursive data extraction function was developed
to extract all relevant values ("x", "y" pen coordinates, "p" pressure and "t" timestamp) for
one file.

The collected data was processed to compute a series of kinematic and pressure-related
features. These features capture the dynamic properties of the drawing process and serve
as inputs to classification models.

■ Velocity Mass: total magnitude of velocity throughout the drawing.
■ Acceleration Mass: total magnitude of acceleration.
■ Jerk Mass: total magnitude of jerk (change in acceleration).
■ Yank Mass: change in pressure over time.
■ Tug, Snatch, Shake Mass: higher-order pressure derivatives capturing variations in

drawing force.

Features were computed using formulas from "Tremor-related feature engineering for
machine learning based Parkinson’s disease diagnostics"[1], with small constants added
where needed to prevent division by zero.
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4.1.1 Feature Extraction pipeline

Process begins with raw digital drawing data consisting of:

■ x: x-coordinate of pen position
■ y: y-coordinate of pen position
■ p: pressure value
■ t: timestamp

First, we convert timestamps into time differences:

∆t = [t1 − t0, t2 − t1, ..., tn − tn−1] (4.1)

We compute successive derivatives of pressure with respect to time:

Yank: yanki =
pi+1 − pi

∆ti

Tug: tugi =
yanki+1 − yanki

∆ti

Snatch: snatchi =
tugi+1 − tugi

∆ti

Shake: shakei =
snatchi+1 − snatchi

∆ti

(4.2)

From the positional data, we compute displacement and its derivatives:

∆xi = xi+1 − xi, ∆yi = yi+1 − yi

Displacement: di =
√

∆x2
i +∆y2i

Velocity: vi =
di
∆ti

Acceleration: ai =
vi+1 − vi

∆ti

Jerk: ji =
ai+1 − ai

∆ti

(4.3)
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The "mass" parameters represent the cumulative magnitude of each dynamic quantity:

Velocity Mass:
∑

|vi|

Acceleration Mass:
∑

|ai|

Jerk Mass:
∑

|ji|

Yank Mass:
∑

|yanki|

Tug Mass:
∑

|tugi|

Snatch Mass:
∑

|snatchi|

Shake Mass:
∑

|shakei|

(4.4)

This feature extraction pipeline captures both kinematic (movement-related) and pressure
dynamics that are particularly relevant for characterizing Parkinson tremors and other
motor symptoms.

The implementation of feature extraction is available at github repository, in particular
folder Part 1 contains feature extraction process development, for a refined process refer to
Part 5/modelCreator.py.[9]

4.2 Feature Selection

After feature extraction, not all features were equally informative for classification. To
rank their discriminative power, the Fisher Score was applied to each feature across the
two groups.

The Fisher Score, as defined by Aggarwal (2014)[6], measures the ratio of interclass
separation to intraclass variance: The Fisher Score F (X) for a feature X is computed as:

F (X) =

∑k
i=1 pi(µi − µ)2∑k

i=1 piσ
2
i

■ k = number of classes
■ pi = proportion (or probability) of samples in class i
■ µi = mean of feature X for class i
■ µ = global mean of feature X

■ σ2
i = variance of feature X within class i

In this study, 3 the top-ranked features were selected for use in classification.
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4.3 Machine Learning Workflow

Development of machine learning pipeline used to classify Parkinson’s patients based
on their drawing tests. The process includes classifier selection, evaluation using cross-
validation[7], and performance assessment with standard classification metrics. The goal
is to compare different models trained on the most informative features and identify which
ones offer the best predictive performance.

Figure 3. Machine Learning Workflow.

4.3.1 Selected Features

Based on Fisher Score ranking described previously, the three most discriminative features
(Shake Mass, Jerk Mass, and Snatch Mass for spiral test) were selected. These features
were extracted from each sample and used as input for training classifiers.

4.3.2 Classifier Selection

Three well-established classification algorithms were chosen for evaluation:

■ Logistic Regression: A linear classifier used as a baseline due to its simplicity and
interpretability.

■ Support Vector Machine (SVM): Effective in high-dimensional spaces and robust to
small datasets.

■ Random Forest: An ensemble method that combines multiple decision trees for
improved generalization.

Each classifier was tested using the same feature set and evaluation framework to ensure a
fair comparison.
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4.3.3 Cross-Validation

To obtain reliable estimates of model performance and reduce the risk of overfitting, nested
cross-validation was used.[7]

Each model was evaluated using the following performance metrics:

■ Accuracy: Overall percentage of correct predictions.
■ Precision: Proportion of predicted positives that were actually positive.
■ Recall (Sensitivity): Proportion of actual positives that were correctly identified.
■ F1 Score: Harmonic mean of precision and recall, useful in imbalanced datasets.

These metrics were computed using Scikit-learn’s evaluation utilities, and scores were
averaged across folds in cross-validation. The results are as follows:

Table 1. Performance metrics of classifiers

Accuracy Precision Recall F1-Score
SVM: 0.7236 0.7400 0.5000 0.5467

Random Forest: 0.8145 0.8333 0.7000 0.7267

Logistic Regression: 0.7236 0.7400 0.5000 0.5467

Random Forest was chosen to proceed with as the best performing classifier. Hyperparam-
eters for the model were tuned using GridSearchCV.

The implementation of feature and classifier selection is available at github repository, in
particular folder Part 2, model hyperparameters tunning and creation is available in Part 3,
for a refined process refer to Part 5/modelCreator.py.[9]

4.4 Model Explainability with LIME and SHAP

XAI provides tools to interpret model behavior. In this thesis, two XAI methods were
applied: LIME[5] and SHAP[8]. Both techniques offer insights into which features influ-
enced each prediction and to what extent, enabling human validation and understanding.

17



4.4.1 LIME

LIME explains individual predictions by approximating the classifier with a simpler,
interpretable model (e.g. linear regression) around the vicinity of a specific instance. It
perturbs the input data slightly and observes how the model’s prediction changes, allowing
it to assign importance scores to each feature.[5]

In this project, LIME was used to explain predictions made on selected samples. Visual
outputs showed the contribution of each feature (e.g., Shake Mass, Jerk Mass) to the
prediction probability. Below is explanation from LIME made on spiral test file from
Parkinson’s patient:

Figure 4. LIME Explanation.

4.4.2 SHAP

SHAP is based on cooperative game theory and assigns an additive importance value
(Shapley value) to each feature based on how much it contributed to moving the model
output from the baseline. Unlike LIME, SHAP ensures consistency and local accuracy,
making it theoretically grounded and often more stable across different runs.[8]

18



SHAP values were computed for all samples and individual plots were created to show
how specific values of a feature increased or decreased the probability of a sample being
classified as Parkinson’s.[10]

Below is explanation from SHAP made on spiral test file from Parkinson’s patient:

Figure 5. SHAP Explanation.

4.5 Automatization for other tests

The process was refined and consolidated into a single program that accepts paths to a
particular drawing test dataset and creates a model based on it as well as returns said model
performance. For example model for lines test is created:

Created lines test model performance:

L i n e s Model :

S e l e c t e d F e a t u r e s :

Shake Mass ,

Sn a t ch Mass ,

Tug Mass

Accuracy : 0 .6667

P r e c i s i o n : 0 .7500

R e c a l l : 0 .5000

F1− Score : 0 .6000

Confus ion M at r i x :

[ [ 5 1 ]

[3 3 ] ]
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And on figure 4 are all the created models performances. From which we can conclude that
same mass metrics what were developed for spiral drawing test in particular can actually
be utilized to determine Parkinson’s cases in other tests done on same device with higher
accuracy of predictions if said test is more of a mechanical nature.

Figure 6. All Model Performances.

After model creation one case file from dataset can be selected to receive explanation on,
that includes drawing of a test, results of model prediction, accurate prediction, explanation
from LIME, explanation from SHAP and their faithfulness and monotonicity metrics[11]
for each feature that was selected for this dataset. More on that in next section. One
case from lines test was explained as example, below are as follows, test drawing, LIME
explanation, SHAP explanation:

Created explanations performances:

Model p r e d i c t e d : P a r k i n s o n ’ s

Case was : P a r k i n s o n ’ s

=== P a r k i n s o n ’ s Case Lime ===

Shake Mass − F a i t h f u l n e s s : 0 . 9 9 4 8 , M o n o t o n i c i t y : [ F a l s e ]

Sn a t ch Mass − F a i t h f u l n e s s : −0 .4096 , M o n o t o n i c i t y : [ F a l s e ]

Tug Mass − F a i t h f u l n e s s : −0 .5852 , M o n o t o n i c i t y : [ F a l s e ]

=== P a r k i n s o n ’ s Case Shap ===

Shake Mass − F a i t h f u l n e s s : 0 . 9 9 4 8 , M o n o t o n i c i t y : [ F a l s e ]

Sn a t ch Mass − F a i t h f u l n e s s : −0 .4096 , M o n o t o n i c i t y : [ F a l s e ]

Tug Mass − F a i t h f u l n e s s : −0 .5852 , M o n o t o n i c i t y : [ F a l s e ]

20



Figure 7. Lines test case picture Figure 8. LIME Explanation.

Figure 9. SHAP Explanation.

LIME and SHAP integration programms are available at github repository, in particular
folder Part 4, for a refined process refer to Part 5/explanationPic.py.[9]

4.6 LIME and SHAP evaluation

Various quantitative metrics have been introduced in the literature to assess the results of
explainability methods. Two primary metrics such as faithfulness and monotonicity[12]
were employed as suitable criteria for local explanations of LIME and SHAP in this work.
Their scores were computed as averages and separated between accurate classification and
miss-classification cases.
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4.6.1 Faithfulness Metric

Faithfulness measures how well the feature importance scores from explainers (LIME/SHAP)
g reflect the actual importance of the features in the black-box model M for input x. It is
computed using Pearson’s correlation coefficient[13] between the sum of attributions and
the corresponding difference in output values.[11]

µF (M, g;x) = ρ
B∈( [d]

|B|)

(∑
i∈B

g(M,x)i, M(x)−M(xB)

)

■ M : Black-box model.
■ g: Explanation function (e.g., LIME/SHAP).
■ x: Input instance.
■ B: Subset of features set to baseline values.
■ ρ: Pearson’s correlation coefficient.
■ xB: Input x with features in B set to baseline.

A value close to 1 means high faithfulness — the explanation is a good reflection of the
model’s actual behavior.
A value near 0 means the explanation is no better than random.
A negative value, means the explanation is actively misleading: explainer said some
features are important, but in reality, increasing them made the model less likely to predict
what it predicted, or vice versa.

4.6.2 Monotonicity Metric

Evaluates whether incremental changes in input features lead to consistent changes in
explanations.[11]

Given two input points x, x′ ∈ Rd such that xi ≤ x′
i for all i ∈ {1, . . . , d}, the explanation

g is said to be monotonic if, for any subset S ⊆ {1, . . . , d}:∑
i∈S

g(M,x)i ≤
∑
i∈S

g(M,x′)i

M(x)−M (x[xS = x̄S]) ≤ M(x′)−M (x′[x′
S = x̄S])
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High monotonicity means explanations consistently reflect feature importance as inputs
vary. Monotonicity was evaluated per test file as a binary outcome (True/False), for
aggregate reporting, results were averaged into a single score (e.g., 2 out of 3 cases = 0.67),
representing the proportion of monotonic behavior observed.

4.6.3 Output

In following table both faithfulness and monotonicity results averages and standard devia-
tions separated in accurate and miss-classification cases for each test dataset

Table 2. Quantitative Evaluation of XAI Methods Across Models

Model Explainer Accuracy Class Faithfulness Monotonicity

Clock LIME Accurate 0.39 ± 0.61 0.57 ± 0.49
Misclassified -0.05 ± 0.83 0.40 ± 0.49

SHAP Accurate 0.82 ± 0.19 0.71 ± 0.45
Misclassified -0.59 ± 0.55 0.40 ± 0.49

Digits LIME Accurate 0.41 ± 0.72 0.80 ± 0.40
Misclassified -0.48 ± 0.64 0.43 ± 0.49

SHAP Accurate 0.32 ± 0.73 1.00 ± 0.00
Misclassified -0.49 ± 0.69 0.57 ± 0.49

Lines LIME Accurate 0.40 ± 0.61 0.62 ± 0.48
Misclassified 0.26 ± 0.18 1.00 ± 0.00

SHAP Accurate 0.28 ± 0.76 0.75 ± 0.43
Misclassified -0.12 ± 0.86 0.75 ± 0.43

Pcontinue LIME Accurate 0.39 ± 0.74 1.00 ± 0.00
Misclassified 0.45 ± 0.55 0.67 ± 0.47

SHAP Accurate 0.74 ± 0.18 0.88 ± 0.33
Misclassified -0.48 ± 0.15 0.67 ± 0.47

Pcopy LIME Accurate 0.45 ± 0.67 0.88 ± 0.33
Misclassified 0.01 ± 0.84 0.50 ± 0.50

SHAP Accurate 0.62 ± 0.35 0.88 ± 0.33
Misclassified -0.86 ± 0.13 0.50 ± 0.50

Ptrace LIME Accurate 0.59 ± 0.45 1.00 ± 0.00
Misclassified 0.60 ± 0.49 0.67 ± 0.47

SHAP Accurate 0.41 ± 0.56 0.89 ± 0.31
Misclassified -0.74 ± 0.12 0.00 ± 0.00

Plcontinue LIME Accurate -0.17 ± 0.78 0.67 ± 0.47
Misclassified -1.00 ± 0.00 0.67 ± 0.47

SHAP Accurate 0.23 ± 0.57 0.67 ± 0.47
Misclassified -0.41 ± 0.00 0.67 ± 0.47

Plcopy LIME Accurate 0.58 ± 0.60 0.40 ± 0.49
Misclassified 0.57 ± 0.29 0.17 ± 0.37

SHAP Accurate 0.56 ± 0.73 0.40 ± 0.49
Misclassified -0.63 ± 0.47 0.17 ± 0.37
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Model Explainer Accuracy Class Faithfulness Monotonicity

Pltrace LIME Accurate 0.53 ± 0.64 0.86 ± 0.35
Misclassified -0.21 ± 0.93 0.80 ± 0.40

SHAP Accurate 0.76 ± 0.26 1.00 ± 0.00
Misclassified -0.58 ± 0.70 0.80 ± 0.40

Poppelreuter LIME Accurate -0.30 ± 0.82 0.33 ± 0.47
Misclassified -0.01 ± 0.73 0.50 ± 0.50

SHAP Accurate 0.65 ± 0.10 0.33 ± 0.47
Misclassified -0.68 ± 0.24 0.50 ± 0.50

Sentence LIME Accurate -0.67 ± 0.62 0.80 ± 0.40
Misclassified 0.39 ± 0.39 1.00 ± 0.00

SHAP Accurate 0.91 ± 0.05 0.60 ± 0.49
Misclassified -0.22 ± 0.22 1.00 ± 0.00

Spiral LIME Accurate 0.07 ± 0.58 0.78 ± 0.42
Misclassified 0.92 ± 0.02 1.00 ± 0.00

SHAP Accurate 0.72 ± 0.42 0.56 ± 0.50
Misclassified -0.95 ± 0.02 0.50 ± 0.50

LIME and SHAP evaluation programm used in this project is available at github repository,
in particular folder Part 5/explanationAverage.py.[9]
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5. Results

Previously performed research[1] aimed at feature engineering and selection was success-
fully reproduced. Classifiers were trained and validated. LIME[5] and SHAP[8] were
integrated and faithfulness and monotonicity metrics[12] were calculated. The process was
applied to all the available tests.

Explanations Evaluation revealed following:

SHAP generally produced more faithful explanations compared to LIME. Across almost
all models, SHAP explanations for accurately classified samples have consistently high
faithfulness (often >0.6, sometimes as high as 0.91). In contrast LIME shows much more
fluctuation, including negative faithfulness scores in some cases (e.g., Sentence model:
-0.67). For misclassified samples faithfulness drops sharply, especially for SHAP. Many
SHAP values for misclassified inputs are strongly negative (e.g., Pltrace: -0.58, Spiral:
-0.95, Pcopy: -0.86). LIME is also affected but often remains closer to zero or slightly
positive. Strong negative faithfulness values indicate misleading explanations, which may
reflect the model’s incorrect predictions in misclassified cases.

Figure 10. Faithfulness values.
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Monotonicity was generally high for both methods (overall avg: 0.68) and with less
variance than faithfulness scores. Perfect 1.00 scores occur frequently.

Figure 11. Monotonicity values.

From this can be concluded that SHAP is more aligned with the model’s actual behavior
on correct predictions, which supports its use for trustworthy explanation generation in
accurate cases.

5.1 Performance-Explanation Relationship

Refer to Figure 12 and Figure 13 for visuals.
Higher accuracy models tend to have:

■ Better faithfulness (Spiral: 0.82 acc → 0.72 faithfulness)
■ Better monotonicity (Sentence: 0.71 acc → 1.00 monotonicity)

Lower accuracy models show:

■ Bigger explanation variance in faithfulness (Digits: 0.42 acc → 0.32 ± 0.73 faithful-
ness)

■ More frequent negative faithfulness
■ Much bigger variation across the models in monotonicity while maintaining much

smaller variation for one model

26



Figure 12. Faithfulness values and models accuracy.

Figure 13. Monotonicity values and models accuracy.

Overall can be concluded that explanations done for higher accuracy models perform
better.
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5.2 Test-Type Patterns

Spiral tests show best overall metrics:

■ Highest accuracy (0.818)
■ Good faithfulness (0.72 SHAP)
■ Stable monotonicity (0.78 LIME)

Which is expected as the process was developed with spiral tests and later applied on
others.

Constrained/Mechanical tests (Ptrace, Pltrace, Pcopy, Plcopy, Pcontinue, Plcontinue, Lines,
Spiral) outperform Open/Cognitive tests (Clock, Sentence, Digits, Poppelreuter):

■ Avg accuracy: 0.73 (mechanical) vs 0.58 (cognitive)
■ Better explanation quality for mechanical tests

5.3 Conclusion

The integration of LIME[5] and SHAP[8] was meant to provide insights into model
decision-making. Both LIME and SHAP were evaluated with above average results, SHAP
performing better in most cases. From that we can conclude that both LIME and SHAP
can be used as explainers for Parkinson’s drawing tests models and be trusted to provide
accurate explanations. Faithfulness and monotonicity metrics[12] could be used to validate
results of those explanations.

5.4 Limitations and Considerations

Several things should be noted:

■ Relatively small sample size (<30 KT, <20 PD) may affect models performances.
■ LIME explanations showed some instability between runs due to random perturba-

tions.
■ Performance varied across different drawing tasks, suggesting task-specific adapta-

tion may be needed.
■ The reliance on only top 3 motion mass parameters may miss patterns detectable

with more parameters.
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5.5 Contribution and Significance

This work makes several important contributions:

Methodological: Developed a complete, interpretable pipeline for Parkinson’s diagnosis
using drawing tests.

Technical: Successfully integrated statistical feature selection with modern XAI tools.

Practical: Provided quantitative metrics for evaluating explanation quality in clinical
applications.
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6. Summary

This thesis focuses on the application of interpretable machine learning to drawing tests
as a tool for supporting the diagnosis of Parkinson’s disease. The work is situated as an
intermediate step within a larger research effort, where the goal is to support the diagnosis
of neurodegenerative diseases, detect early cognitive impairments, and recognize signs
of fatigue. The goal of this thesis was to explore motion-based features derived from
digital drawing data and make classification results more transparent through explainability
techniques.

The raw data used in the project consisted of drawings collected via tablets from both
healthy individuals and Parkinson’s patients. A significant portion of the work involved
developing a robust data extraction pipeline capable of handling inconsistent JSON struc-
tures, nested artifacts, and other irregularities in the files. The accuracy of data parsing
was confirmed through visualization tools developed specifically for internal verification.

Feature extraction was based on a scientific paper that defined a set of motion mass
parameters[1]. These features were computed and tested for relevance using Fisher
Score[6]. From these, the most informative three features were selected for classification.

Classifiers were evaluated, with Random Forest ultimately selected as the primary model
due to better performance. The models were fine-tuned via hyperparameter optimization,
and explainability was integrated using LIME[5] and SHAP[8] to provide insight into the
model’s decisions.

LIME and SHAP explanations were evaluated and found trustworthy in most cases, SHAP
more so than LIME. As such these explainers can be trusted to provide meaningful insight
on model predictions.

All the code used for this work is accessible at github repository.[9]

Although not a complete end-to-end diagnostic tool, this thesis contributes a validated,
interpretable classification workflow that can serve as a building block for further research.
The models may be tested or retrained on newly provided drawing datasets, and future
improvements may include the integration of additional classifiers, more top selected
features, and expansion to related tasks handled by other researchers and PhD students.
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