
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Chair of Network Software

The Analysis of Offline-capable Web Application
Solution and its Implementation Based on

Whiteboard Application

Master’s Thesis

Student’s name: Risto Novik

Student’s code: 132307IAPMM

Supervisor: Ago Luberg

Tallinn
2015

Declaration Of Authorship

I declare I have written the master’s thesis independently.

All works and major viewpoints of other authors, data from other sources of literature and

elsewhere used for writing this paper have been referenced.

--
(date)

--
(signature)

Annotatsioon

Töö eesmärgiks on arendada kollaboratiivne veebirakendus, mis on võimeline töötama

võrguühenduseta või piiratud võrguühendusega. Igapäevaselt suureneb mobiilsete

seadmete kasutajate hulk, kelle põhitegevus hõlmab interneti kasutamist. Küll aga pole

mobiilse interneti ühenduse tagamine kõikjal maailmas samasugune ning sageli esineb teisi

tehnilisi võrguühendusega seotud probleeme. Lisaks on muutunud veebirakendused üha

rohkem kollaboratiivsemaks ja keerulisemaks, seega on ka ootused ja nõudmised nende

kasutajatelt kasvanud. Eeldades, et veebirakendused suudavad töötada ilma interneti

ühenduseta ning ühenduse taastudes andmed automaatselt serveriga sünkroniseerida.

Antud töö käigus uuriti põhjalikult mobiilse interneti ühendusega ja erinevate seadmetega

seotud probleeme. Tutvuti olemasolevate ja sarnaste lahenduste käsitlustega, millest igaüht

põhjalikult analüüsiti. Analüüsi tulemusena valiti välja lahendus, mida kasutati prototüübi

arendamiseks. Enne arenduse alustamist, uuriti detailselt eelnevalt valitud lahendust ning

kirjeldati täpsemalt metoodikat komponentide tasemel.

Töö tulemusena valmis kollaboratiivne joonistamise veebirakendus, mis töötab piiratud

interneti ühenduse korral. Lisaks ka analüüs hetkel olemasolevate võrguühenduseta

sünkroniseerimise lahenduste kohta.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 66 leheküljel, 6 peatükki, 23

joonist, 4 tabelit.

Abstract

The purpose of thesis is to develop collaborative web application which is able to work

without connection or with in limited connectivity. Every day the number of mobile device

users increases whose activity involves internet connection. Although the network

connection coverage in world is not similar and often occurs other network related

problems. Additional the web applications have changed more collaborative and complex,

because of that the expectations from the users have increased. Assuming that the web

applications could work without connection and on connection restore synchronize data

with server.

In thesis the mobile network connection and different device related problems were

researched in depth. In the search of existing and related work each were analysed. As a

result of analysis the solution were chosen for prototype development. Before the

development the chosen solution details were studied and described the methodology

behind.

The result of thesis were collaborative web applications which works with limited

connectivity. In addition to application the analysis of different offline data synchronization

solutions.

The thesis is in English and contains 66 pages of text, 6 chapters, 23 figures, 4 tables.

List of abbreviations and terms

API Application Programming Interface

CRDT Conflict-free Replicated Data Type

CLI Command Language Interpreter

2G second-generation wireless telephone technology

3G third-generation wireless telephone technology

4G fourth-generation wireless telephone technology

LPWA Low Power Wide Area

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

PDA Personal Digital Assistant

SSL Secure Sockets Layer

TLS Transport Layer Security

WSS Secure WebSocket connection

SDK Software Development Kit

DTIM Delivery Traffic Indication Message

5

List of Figures

Figure 1: Worldwide devices shipments by mobile device type, 2014-2017*.....................13

Figure 2: 4G network coverage in Estonia January 2015..14

Figure 3: Internet service providers’ download speeds in January 2015*............................14

Figure 4: Mobile broadband Internet subscriptions in 2012*..15

Figure 5: Global mobile devices and connections by 2G, 3G, LPWA and 4G....................16

Figure 6: Case when data edited in offline and after in online state how data is merged....21

Figure 7: Case when users edits the same field..21

Figure 8: Case when one of the users edits same field in offline...22

Figure 9: LoopBack modules relation and dependencies...23

Figure 10: CouchDB and PouchDB architecture...25

Figure 11: Firebase architecture...27

Figure 12: Swarm.js example architecture...30

Figure 13: State based replication..36

Figure 14: Operation based replication..37

Figure 15: Use case diagram..41

Figure 16: Specifier format in Swarm.js..43

Figure 17: Server and client side storages..45

Figure 18: Data structures..46

Figure 19: Technology stack..47

Figure 20: Data model..49

Figure 21: Mobile device network settings *...51

Figure 22: Data synchronization test between two browsers...53

Figure 23: Offline data synchronization test..54

Figure 24: ServiceWorker API browser support..57

6

List of Tables

Table 1: Worldwide devices shipments by device type, 2014-2017 ***..............................12

Table 2: Data rates and latency for mobile connection..16

Table 3: Firebase pricing model...29

Table 4: Data synchronization solutions..33

Table 5: Browser data storages...55

7

Table of Contents

 List of Figures...6

 List of Tables...7

1 Introduction...10

1.1 Problem statement..11

1.2 Methodology..11

2 Problem analysis..12

2.1 Connectivity and network reliability...12

2.1.1 Estonian mobile network coverage..14

2.1.2 World mobile network coverage..15

2.2 Device and network stack problems..16

2.3 End user stories..18

2.3.1 Extended use case: Wiki/Wikipedia...18

2.3.2 Extended use case: technician tool..19

3 Related work..20

3.1 Existing solutions..20

3.1.1 StrongLoop LoopBack...23

3.1.2 Apache CouchDB and PouchDB...25

3.1.3 Firebase..27

3.1.4 Swarm.js (CRDT)..30

3.1.5 Overview..32

3.1.6 Conclusion...34

3.2 Convergent or commutative replicated data type..35

3.2.1 State based replication...36

3.2.2 Operation based replication...37

3.2.3 Data structures...37

3.2.4 Real-world uses..39

3.2.5 Limitations and problems..40

4 Solution...41

4.1 Practical collaborative example...41

4.2 Implementation in Swarm.js..42

8

4.2.1 Specifier...43

4.2.2 Clock..43

4.2.3 Host..44

4.2.4 Stream..44

4.2.5 Storage...45

4.2.6 Data structures...46

4.3 License...46

4.4 Technology stack...46

4.5 Data model...49

4.6 Security..50

4.7 Tools for developing and testing..51

4.7.1 Google Chrome Developer tools...51

4.7.2 Network emulation tool - NetEm...52

4.7.3 End-to-end user test...53

4.8 Browser technology...55

4.8.1 Browser storages for mobile devices...55

4.8.2 ServiceWorker API..56

5 Evaluation..58

5.1 Further development..58

6 Summary...60

 Kokkuvõte...62

 References...64

9

1 Introduction

With the increasing number of mobile devices including tablets in our everyday lives, the

problem of connectivity plays an important role. Each device requires its own internet

connection and the signal quality varies a lot between the providers and locations. There

are many places where the connectivity is limited or not available at all. More and more

applications are developed and designed with an understanding that there are no internet

connection interruptions or disconnections. This approach is incorrect, instead the

applications should also be operational within low connectivity or even without the

connection at all. In developing countries people do not have the access to high quality

internet infrastructure or the prices of the Internet Service Providers' services are too high.

Even in the developed countries the mobile connectivity has bandwidth limitations. That is

the reason why the web application development for mobile devices should be overseen.

More companies choose to develop mobile device friendly web sites and applications

instead of the native applications. In order to support all the major mobile platforms that

are Android, iOS and Windows Phone, the native application development requires a huge

effort. On the other hand, the native application provides more possibilities and control

over the device, but in most cases it is not needed. Developing a web application for a

mobile platform has an advantage by supporting multiple platforms. The downside is that

there is a wide variety of devices with different hardware specifications, also the browser

technology is still limited compared to the native solution.

With the improvements in browser technology and in mobile hardware in recent years, it is

possible to create a near native like experience using the browser technology. Currently

there is no built-in solution for the offline synchronization of a mobile device. This

component is critical when one is developing internet based applications, especially

collaborative tools such as drawing, chat, document editing applications etc. One good

example is the Google Docs [27] product which allows working without internet

connection and later, when the connection restores, synchronizes the data.

10

1.1 Problem statement

A mobile device without internet connection is mostly quite useless. It is impossible to

guarantee the persistent connection for the web applications. There is a need for a solution

which allows the mobile applications to work without the internet connectivity. The

following are the main issues addressed in the thesis and the options how to solve them:

• Search for an existing solution for mobile offline data synchronization in

collaborative web application in case not found develop a custom solution.

• Analyse data synchronization conflicts and merging methods.

• Security problems by exposing user data on the client side.

• Development and testing tools for network condition simulation.

• Web technologies that enables the application usage in offline mode.

1.2 Methodology

Based on the problem these are the primary steps to reach the purpose.

• Research more about the causes and the existence of connectivity problem.

• Analyse existing tools, frameworks, libraries, methods which have implemented the

offline synchronization technology.

• Based on an analysis, choose one solution which would be used to develop a

practical collaborative prototype. This is needed to understand the technology

behind the scenes and how the components work together.

• Analyse the positive and negative sides that occurred while using the chosen

solution, also provide possible solutions for the problems.

11

2 Problem analysis

The need for offline data synchronization in collaborative applications is mostly related to

network reliability and stack related problems. In the following chapters is the overview of

connectivity in chapter 2.1 and network stack problems in chapter 2.2 that affect mobile

devices the most.

2.1 Connectivity and network reliability

Internet plays a more relevant role with the increase of wide variety mobile devices and

gadgets (Table 1 [26]). With the increase of devices there has also been also a huge growth

in mobile broadband subscriptions. The fixed cable broadband provided a stable

connection and usually a problem free network, excluding only the dial-up technology.

Moving more and more to mobile broadband means that there is a need for solutions that

are capable of handling instability. That is discussed more in the following chapter.

Most of the devices connect to the Internet through the WiFi or mobile networks such as

3G, 4G etc. This enables us to use all the devices wirelessly which is a great benefit and is

more comfortable. The mobile network is a physically shared resource and that causes

unexpected behaviour with larger user base on a single cellular station. Connection speed

could be lower or the connectivity is limited. If you are travelling a lot or do remote work

from different places you may have noticed that the quality and level of the connection is

12

Table 1: Worldwide devices shipments by device type, 2014-2017 ***

* - The Ultramobile (Premium) category includes devices such as Microsoft's Windows 8 Intel x86 products
and Apple's MacBook Air.

** - The Ultramobile (Tablets and Clamshells) category includes devices such as, iPad, iPad Mini, Samsung
Galaxy Tab S 10.5, Nexus 7 and Acer Iconia Tab 8.

*** - thousands of units

Device Type 2014 2015 2016 2017
PC Market

Traditional PCs (Desk-Based and Notebook) 277 253 244 236
Ultramobile (Premium) * 37 53 74 91

Total PC Market 314 306 318 327

Mobile Devices
Ultramobiles (Tablets and Clamshells) ** 227 237 258 276

Mobile Phones 1879 1944 2018 2056
Total Mobile Devices 2106 2181 2276 2332
Total Devices Market 2420 2487 2594 2659

quite different and unpredictable. Another important topic is the indoor mobile network

coverage which is much lower or missing at all.

Usually the web pages and applications are built with the need for a good internet

connection. Some popular pages like Facebook [23], Instagram [29], Google Docs, which

make a lot of background queries for fetching new data. When the network connection is

dropped, some data might not be synchronized or even be missing. That is the reason why

the web pages and applications should also have an option to work offline mode or in a

limited connectivity network.

The trend of mobile device is increasing as could be seen and more people visit the web

pages from mobiles (Figure 1 [26]). That is one of the reasons it is important to focus on

this problem. Improving the user experience on the mobile web application should be

similar or better than the native application.

13

Figure 1: Worldwide devices shipments by mobile device type, 2014-2017*

* - millions of units

1950

2000

2050

2100

2150

2200

2250

2300

2350

2106

2181

2276

2332

2014 2015 2016 2017YearM
o

b
ile

 D
e

vi
ce

 S
h

ip
m

e
n

ts
 (

M
ill

io
n

s
o

f U
n

its
)

2.1.1 Estonian mobile network coverage

It has been predicted that by the end of year 2018 the mobile internet usage in Estonia will

be about 61% [16]. With the 4G mobile networks the overall network coverage is quite

good, according to the results of EMT in January 2015 it was 99.9% and reached 70

kilometres over sea (Figure 2 [22]). Using the latest mobile generation 4G enables to have

much lower latency compared with the older technologies 3G and 2G. The synchronization

process is faster for the end user and changes will be visible immediately.

14

Figure 3: Internet service providers’ download speeds in January 2015*

* - Shown in columns from left to right EMT, Elisa, Tele2

Figure 2: 4G network coverage in Estonia January 2015

The signal quality is quite different in various places and the quality improvements are

made in big towns and villages. In many places in the countryside has quite bad

connectivity or is missing at all. These are the 4G test measurements by The Technical

Regulatory Authority (Figure 3 [35]), which shows the quality difference between the

internet service providers. In smaller towns the signal coverage is not as good as in larger

towns like Tallinn, Tartu, Pärnu etc.

2.1.2 World mobile network coverage

The network coverage in Estonia is good compared to world overall statistics (Figure 4

[31]). Roaming is more important on the world scale because of many people love to travel

and while flying with a plane the user wants to use application without any interruptions

even when there is no connection.

15

Figure 4: Mobile broadband Internet subscriptions in 2012*

* - a percentage of a country's population

The newer generation network connectivity is slowly getting more popular by the year

2017 3G and 3.5G will surpass the 2G and in 2019 4G will surpass 2G as showed in Figure

5 [20]. This means that developers must also consider high latency and slower mobile

networks which has the majority of the total world connection usage.

2.2 Device and network stack problems

Besides the connectivity problems there are also network stack and technical problems of

mobile devices which might occur during data synchronization. Usually these are the

problems of architecture or the network stack which can not be so easily changed and

adapted.

Table 2: Data rates and latency for mobile connection

■ - high latency
■ - low latency

Generation Data rate Latency

2G 100 – 400 Kbit/s 300 - 1000 ms

3G 0.5 – 5 Mbit/s 100 – 500 ms

4G 1 – 50 Mbit/s < 100 ms

• Packet loss – is higher when dealing with cellular network compared to wired

connections. If the transferred data is text based then the packet loss would not be

as critical compared to voice and video streams where the problem is more visible

16

Figure 5: Global mobile devices and connections by 2G, 3G, LPWA and 4G

to the end user.

• Latency based problems – the latency differences between the mobile connection

generations are quite large (Table 2 [6] page 104). Even if the ISP has good

downlink and uplink for the connection, the latency causes problems with real time

synchronization. In this thesis the real time is defined as an event which occurs

under one second.

• Battery lifetime – another important topic is how the mobile device connectivity

affects the battery lifetime. Most of the time the mobile device is in the idle state.

For example using WiFi technology which allows changing transmit power that

could be mainly between the 30 – 200 mW range. WiFi DTIM (Delivery Traffic

Indication Message) is a multiplier of the beacon interval, with shorter beacon

intervals the wireless traffic is increased and this drains battery faster. Mobile

connections 3G and 4G consume only 15 mW in an idle state, but on data transfer

bursts this could change to 1000 – 3500 mW. It is important to know when to send

data and when not to. For example the periodic connection wake up state drains the

device battery level significantly more. Android SDK has support for job

scheduling API which is responsible for buffering the responses and requests and

then send these as a single batch. Similar technology could be used in browser side

by adding an extra abstraction layer for that. Applying such techniques makes the

energy consumption considerably lower and the battery lasts longer.

• ISO OSI model – the stack consists of multiple layers, starting from top to down:

application, presentation, session, transport, network, data link, physical. The

model was designed for the wired network not for wireless. The model also

introduces overhead for the wireless network which could be avoided using cross-

layer design [11].

• Device features and capabilities – when looking the Android market there are

quite many phone manufacturers, each of these devices has different radio

capabilities and characteristics. Even when the ISP has the support for the latest 4G

networks the device could be limited only to 3G.

17

2.3 End user stories

There are lot of categories and use cases where the offline data storage and collaborative

applications could be used and applied. In this chapter we are going to discuss the main

categories and also the extended use cases.

1. Collaborative whiteboard application – with the increase of tablet devices it is

natural to draw on a device not in desktop PC. The problem is that the content

should not be static and saved into the file system where you have to share the file

with other users. That is why the collaborative whiteboard applications

automatically synchronize the content and also enable working even without the

connectivity.

2. Email client – the received emails with the content should be accessible even in

offline mode. Without internet connection it is impossible to transfer new

composed messages, but it should still be possible to write messages in offline

mode.

3. Chatting application – access older chats even while in offline mode.

4. Multi form editing at the same time with presence – apparently Information

System (IS) includes usually form based editing and those are allowed to be edited

by multiple users. The concurrent editing ends with the saving of the data and one

of the user's data being overwritten. Instead of the previous design, the forms

should be editable by multiple users without locking and it should be possible to

see and save the form in real time.

5. Collaborative document writing – allows edit the same document by multiple

people, Google Docs [27] is a good example.

2.3.1 Extended use case: Wiki/Wikipedia

“A wiki is an application, typically a web application, which allows collaborative

modification, extension, or deletion of its content and structure“ [44].

18

The content is community driven and without the user contributors wikis could not exist.

That means that wikis are collaboration tools, the negative side of this is that when the

users are in edit mode, it locks the content for other users. Popular writings and articles get

many simultaneous edits which usually end in a conflict. Trying to edit the whole

document content locks the posting permission like it is implemented in DokuWiki [21].

Even if using locking for subsections it is not convenient for the end user. Another

approach commonly used in MediaWiki [34] based engine is the post conflict handling.

This allows the user to save the content and then solve the conflict if there was one. Instead

of using the old locking or conflict solving model, it would be better if one could see the

content editing in real time without locking specific parts. That would also allow writing

the document offline and then later synchronizing the article.

2.3.2 Extended use case: technician tool

More and more companies find that the use of mobile devices makes the communication

inside the company much easier and more transparent. Instead of using paper based

orderings as communication between the customer and inside the company, it is a much

better solution to use PDA-s. This makes the technician’s job in the user's first time

customer visit much easier. That is due to the fact that the technician gets the latest

information about the amounts of equipment in storage and can also offer a more

specialized service for the needs of customer. This kind of tool should also have a

requirement to work within offline mode because there are many places where the mobile

network coverage has no signal at all. That is the reason why the developed tools need an

option to later synchronize the data changes. Besides the syncing there might be some

conflict problems which need confirmation from the technician.

19

3 Related work

Before starting one's own custom solution development it is good to have a common

understanding of related work which is solving a similar problem. Analyse each solutions

cons and pros. Find the best matching solution and build based on top of that the prototype

application.

3.1 Existing solutions

Instead of the usual data model design, the offline applications need a different approach.

The offline ready applications should be designed having in mind that in client’s side only

a small subset of data would be available, not the full data set. The user authentication

without the server side validation is impossible, instead the application should be ready

without requiring signing in. Later, when the user has restored the internet connection, the

application should provide merging data for the specific user.

These are the main problems to look for in the solution analysis (Alice and Bob are

example users):

1. How the mode switching has been handled, from “online” to “offline” and from

“offline” to “online”? Does the user get any notifications or messages about the

mode switch?

2. How quickly is the change of state detected? The WebSocket based solutions could

detect the connection drop instantly, which is the opposite to HTTP polling, where

the detection of change could take seconds.

3. How have the lossy, high latency and low speed connection been handled? Does the

application have a mechanism for detecting it?

20

4. How are the data conflicts handled? For example, Alice is in offline state and edits

a text item, after that she moves into online state. How is the data synchronized in

server, does it require the intervention from the user (Figure 6)?

5. Alice and Bob are simultaneously editing the same data field, how is the conflict

handled (Figure 7)? In following case both users edit the same text field received

from server. Merging the data with server causes conflict as there is already

existing field and also merging occurs on the same time for both users.

21

Figure 6: Case when data edited in offline and after in online state how data is merged

Figure 7: Case when users edits the same field

6. Alice is in offline state and edits the same field as Bob in online state, when Alice

comes online and synchronizes the data, how is the conflict handled (Figure 8)? In

this case is important how the offline edited content will be merged back or is the

online synchronized data only primary source.

7. Does the solution allow real time streaming data (for example WebSocket support)

or are all the changes synced with HTTP protocol which is enough for text based

syncing?

8. Consistency problems when there are web clients whose data might be couple

months old without synchronization. In such case, should the system show the

warning on data merge and how are the conflicts handled?

22

Figure 8: Case when one of the users edits same field in offline

3.1.1 StrongLoop LoopBack

StrongLoop LoopBack(v2.x) is a framework for building scalable REST API-s, it is built

on top of the Node.js Express module. LoopBack has a variety of different features and

modules (Figure 9 [41]):

1. CLI with code generation support, base structure.

2. API generation based on Data Models.

3. Automatic API documentation generation with Swagger.

4. Social logins(OAuth) support, own ACL model.

5. Easy to switch between different databases, supports multiple connectors: Oracle,

SQL Server, MySQL, MongoDB etc.

6. Mobile specific implementations push notifications, offline synchronization.

7. Enterprise supported solution.

23

Figure 9: LoopBack modules relation and dependencies

Offline capabilities:

The synchronization module [33] in LoopBack framework is still in an experimental state

so there might be bugs and issues that are not yet solved. The idea of LoopBack syncing

module is similar to the version control systems. The client(browser) replicates the changes

to the server and the server replicates the changes to client. In the replication operation

conflicts might occur, which have to be handled manually. Or if the manual conflict

handling is not preferred it is possible to use the custom merging logic. The models used in

the server and on the client side are common and allow sharing the same models. The

client side replication of data is held in web storage(local storage) which is not a good

option for larger data sets.

Positive:

1. Extensive list of documentation and examples.

2. Enterprise based support, stable releases and tested solutions.

3. Possible own hosting deployment.

4. Data integration with many database providers: Oracle, SQL Server, MongoDB,

MySQL etc.

5. Quick setup with command line tools with code generation.

Negative:

1. Not the best suited for existing projects as this means the rewriting of project and

designing a new data model.

2. Not practical for smaller projects which usually do not need such an extensive list

of features and unnecessary abstractions.

3. The framework components are open-sourced, but the DevOps tools, monitoring,

support are only for paid users.

4. Deep learning curve.

24

3.1.2 Apache CouchDB and PouchDB

The combination of Apache CouchDB(v1.6.x) and PouchDB(v3.4.x) is built for the

covering of the mobile synchronization in mind as shown in Figure 10. On the server side

CouchDB is a NoSQL database that uses JSON documents, for querying the map-reduce

indexes and HTTP for API. The client side library PouchDB has similar API like the

CouchDB which allows easy switching for developer and data model design. PouchDB is

responsible for the client side replication and the data synchronization between the server

and local databases.

Offline capabilities:

PouchDB applies all the operations and document changes locally in the user browser.

Each browser client’s could be thought as a separate replica that is synchronized with the

master CouchDB instance. There could be multiple master nodes in CouchDB which allow

direct connection to the database. The downside of this is the HTTP based synchronization

ping-pong of getting changes and applying the data differences. This should be done using

the WebSockets instead of HTTP requests flood, which cause high network traffic and

25

Figure 10: CouchDB and PouchDB architecture

what are more problematic on mobile devices. The conflict resolution can be controlled

manually and allows custom solutions.

Positive:

1. Full solution with server (CouchDB) and client side (PouchDB) support.

2. Implementing the CouchDB document sync protocol would allow using other

database engines. Only then there would be a need for separate server service for

the data exchange.

3. Multiple client side storage supports: LocalStorage, IndexDB, WebSQL, in memory

storage.

4. CouchDB has support for REST API which allows using a database without the

need for a separate server node layer.

5. Replication history is stored, this would allow implementing undo model.

6. Replication data filter option for not dumping all the database but only a small

subset.

Negative:

1. For most of the existing projects which use a relational database this requires using

a NoSQL database called CouchDB.

2. Maintenance for CouchDB, replication, backup, hosting etc.

3. Learning curve compared to other methods seems much steeper and longer. There

are lots of settings needed to configure before use.

4. Data transport is limited to HTTP due to the CouchDB implementation.

26

3.1.3 Firebase

Firebase is a service for real-time mobile and web application platforms which solves the

storing and data synchronizing problem. Recently, the Firebase team joined the Google

Cloud Platform [3] team to extend the service. The simplified architecture of Firebase is

illustrated on Figure 11 [1]. Besides the direct client connection to Firebase database, it is

possible to access and change data from the server side using REST API.

Offline capabilities:

Firebase mentions the offline capabilities briefly in their documentation [24]. The topics

they have covered are:

• Offline/online status detection works effectively and quickly.

• Reconnection problems have been well solved.

• Main problem of data sync itself is partially solved in the latest version of Firebase.

All the data which the user has created in offline state is stored only in web client’s

memory. That means that after refreshing the page one would not be able to access or sync

the previous data. Even saving the data locally will not solve the data merging. The client

27

Figure 11: Firebase architecture

and server synchronization works on a “best-effort” basis, the data conflicts are solved

with the Last Write Wins method.

Positive:

1. Quick to start development with no extra server setup needed, perfect for

prototyping.

2. Server hosting, replication, backup, analytic problems are already solved.

3. Documented API with lots of examples and different anti patterns.

4. Library support for multiple mobile platforms: Android, iOS and OSX.

5. Providing the server side libraries for Java, NodeJS etc.

6. Account owner has access to the online data editing and viewing administrator UI,

which also allows following the data that is currently added and edited in real time.

7. Open data [25] sets for everyone to use: earthquakes, currencies, weather in the

United States.

8. Multiple authentication providers supported by OAuth, token based, email

password pair.

9. Presence API.

10. The best match for developing a prototype.

Negative:

1. Only service based hosting, you can not setup your own instance on Firebase,

which would give more control about the scaling of the infrastructure.

2. Firebase uses its own way to store the data (key-value storage), due to which there

is need to redesign the existing database solution.

3. From the Firebase database schema design perspective, the data must be structured

flat, as the nested data depth is limited. (Maximum 32 levels deep nested data)

28

4. The reading, writing permission and data validation is done in a single JSON file

where the logic is written in strings. With the growth of the application it is difficult

to maintain, understand and test such rules.

Table 3: Firebase pricing model

The Hacker
plan

Candle Bonfire Blaze Inferno

Connections 50 200 750 2500 10 000

Data transfer 5 GB 20 GB 75 GB 250 GB 1 TB

Data storage 100 MB 3 GB 10 GB 30 GB 100 GB

Other features - Custom domains Custom
domains,
private backups

Custom
domains,
private backups

Custom
domains,
private backups

Price Free $ 49 / month $ 149 / month $ 449 / month $ 1 499 / month

The Firebase is a service based solution, it is good to take the overview of the pricing

model in Table 3 according to the date 17.04.2015. For the development and the test

example is the free “The Hacker plan” enough.

29

3.1.4 Swarm.js (CRDT)

Swarm (v0.3.x) is an isomorphic JavaScript library which synchronizes objects in real time

and allows working in offline (Figure 12). The library is concentrated only on data

synchronization not any other problems. Swarm has support for the complex data

structures which relies on operation-based CRDT.

Offline capabilities:

Swarm uses quite a similar strategy to other solutions, all the data is replicated on the

client’s side. All the actions applied on the client’s side are first saved to local database and

then synchronized. This is perfect for the offline use cases where you can not relay on the

server HTTP responses and network connection. On the restoring of the connection all the

operations are synchronized between the local and replica server. The conflict resolution is

handled by the conflict-free replicated data types which guarantee that there will be no

conflicts and that the data is automatically merged.

30

Figure 12: Swarm.js example architecture

Positive:

1. Small and lightweight, instead of using the full featured and heavy abstracted

framework, all of this can be solved in the modular way.

2. Quick responses to Github issues from the main contributors.

3. The whole project is open source which allows easy contributions.

4. Both the server and the client side share the same data model.

5. License MIT.

Negative:

1. Project is in an early stage, so there will be changes that are not compatible with

previous versions. No stable version for a production use which is well tested.

2. Missing up to date documentation, there are fragments of documentation from

previous versions.

3. No clear milestones of when the next version will be usable and what are the

features and fixes.

4. Not too many examples and real use stories (the project is in an early stage).

5. Learning curve is steeper because before starting with Swarm you have to learn the

concept of CRDT.

6. No supported storages for the relational databases.

31

3.1.5 Overview

In previous subsections different existing solutions and tools were described. This section

gives an overview of those tools along with some analysis. The comparison is shown in

Table 4, the columns represent the analysed solutions whereas the rows represent the

properties which are written out in the following paragraph.

Solution type – the selected solutions are in different types, frameworks, libraries and

services. Libraries are meant to solve only one certain type of problem. This means it is

easier to integrate it with an existing project. Frameworks, on the other hand are trying to

solve multiple problems and tend to have a larger learning curve, also usually the existing

solution would need to be rewritten. Service based solutions mainly provide libraries and

SDK-s for the integration.

Deployment option – the various solutions are only used as services and can not be setup

as a standalone solution. This is important when the solution is needed to be scaled

horizontally, or the customer needs more control over the infrastructure, for example

encrypting stored data.

Offline sync support – has the feature to synchronize the changes made in offline when

the state changes to online.

Conflict handling method – in case of conflict does it need an input from the user to solve

the conflict or are the changes merged automatically.

Sync channel – the protocol which is used to transfer data between server and

client(browser). With older mobile version, depending on the requirements, the HTTP

requests could be the only way for data transfer. WebSocket should be preferred for

desktop and mobile device because it allows transferring data quicker (without the

overhead of opening and handling new connections in HTTP) and with lower latency.

Depending on the browser implementation the concurrent HTTP requests to the same

domain are limited. In Google Chrome v34 to 6 parallel requests and in Microsoft Internet

Explorer v6 to 2 parallel requests.

32

Open source – does the solution have full access to the code and possibly accepts the

project contributions.

Contributors – show the project start date, based on Github.com, also commits of

different contributors of the project. A larger contributor base indicates that the project is

possibly active and growing.

License type – depending on the license type there could be limitations of forking projects

and further monetizing.

Table 4: Data synchronization solutions

■ - negative features
■ - positive features

StrongLoop
Loopback

CouchDB and
PouchDB

Firebase Swarm.js

Solution type
Framework +

offline module

PouchDB is client

side library
Service Library

Deployment
option

+ + - +

Offline sync

support
+ + - +

Conflict

handling
method

User has to
handle conflicts

or based on
custom merge

handler

Custom conflict

handling

Solved as “best-

effort”

Based on the CRDT

data-structure,
mostly auto merge

Sync channel HTTP
Default enabled to

HTTP calls

Data streamed

through Websocket

Multiple channel
types supported,

Websocket, HTTP
long polling

Open source + + - +

Contributors
45 (Apr 7, 2013 –

Apr 6, 2015)

137 (Jun 6, 2010 –

Apr 6, 2015)
-

4 (Feb 3, 2013 – Apr

6, 2015)

License type

Dual license:
MIT +

StrongLoop
License

Apache License Closed, not available MIT

33

3.1.6 Conclusion

Based on the analysis of different data synchronization solutions it is the goal to find the

best solution matching the requirements mentioned in chapter 3.1.

Looking at the solution type it is important that the solution could be hosted one’s your

own server without the need for buying any external service. That is one of the reasons

why Firebase is not suitable for our needs. Additionally, the client side library does not

have persistence in storage support.

The Loopack framework offline module requires use to the full framework and can not be

used without an extracting small part of it. The offline module is more suitable for form-

based applications, where conflict handling requires user action.

One of the maturest production ready solutions is the CouchDB + PouchDB combination.

The downside is that you have to use the CouchDB NoSQL database which is not

compatible with the existing architecture if there is no previous use of CouchDB. To use

other database systems one has to write an adapter or a layer similar to the HTTP

CouchDB synchronization. The data transferring could be done more effectively using

long polling techniques or WebSocket.

Swarm.js has a different approach compared with other solutions, using the idea of CRDTs

as data structures. CRDT's approach is more suitable for multiple data replication systems.

The data merging is easier to understand compared to other methods because of the CRDT

properties. The Swarm.js library is modular and gives the opportunity to extend it with own

custom modules. Data transferring between the client and server can also be chosen based

on the application and user needs. With a real time application you may use WebSocket

connection instead of HTTP for smaller latency.

According to the analysis, the Swarm.js would be a good match to continue to work with.

Before going into details it would be good to understand how the CRDT concept works,

how the data is stored and how to design the data model.

34

3.2 Convergent or commutative replicated data type

This chapter gives a short introduction to the basics of convergent or commutative

replicated data types (CRDT), how they work and what the main guidelines for designing

such a system. The mobile devices could be looked at as a distributed systems, which in

limited connectivity state are isolated and should be able to work without a central network

server. Data replication is the key to look for, each mobile device could be looked at as a

small partial replica. All the operations can be applied locally without any external

synchronization and when in connected state the operations apply asynchronously to other

replicas. The operations can be in a different order as to which they were first created, that

means partially ordered.

Application areas of CRDT include computation in delay-tolerant networks, latency

tolerance in wide-area networks and partition-tolerant cloud computing ([9] page 3). These

are the properties matching with the needs of mobile devices. The current state of the

mobile device’s peer to peer network is still in early steps and is not as usable as the

Internet. The topic of direct peer to peer communication (WebRTC [43]) has been left out

because of the experimental state of browsers and small support by mobiles. This is also

one of the topics which could be further researched, use cases, usability etc. In our case

there are multiple clients (e.g. mobile devices) and a centralized server which is

responsible for the synchronization of data. CRDT has its limitations and problems which

are discussed more in chapter 3.2.4.

All the CRDTs must meet the semilattice (S) algebra identities, where S=(S ,Λ)

satisfying, for all x , y , z∈S : ([10] chapter 5 CRDTs: Convergent replicated data types)

• associativity: x∧(y∧z)=(x∧ y)∧ z

• commutativity: x∧ y= y∧x

• idempotency: x∧ x=x

The CRDTs could be divided into two different types based on the replication: state and

operation based replication. These two types differ mostly by the assumptions and

35

performance which are discussed in chapter 3.2.1 and 3.2.2. The state and operation based

replications could also emulate each-other.

3.2.1 State based replication

State based CRDTs are called Convergent Replicated Data Types (CvRDTs). CvRDT

transmits the full local state between the replicas. This allows using more unreliable

channels for the transmission of the state. Compared to the operation based on the full state

replication, broadcasting has overhead and increases with larger state objects. In CvRDT

the object update occurs entirely at the source, then propagates by transmitting the

modified payload between the replicas x1, x2, x3 (Figure 13 [9] page 6). The dot with “s”

represents the source at start point, the empty dot shows the state change and line with an

arrow shows data transmit.

36

Figure 13: State based replication

3.2.2 Operation based replication

Operation based CRDTs are called Commutative Replicated Data Types (CmRDTs). The

requirement is to have a reliable broadcast channel to deliver all the updates to every

replica. Instead of broadcasting the full local state, CmRDT transmits only operations to be

applied on every replica x1, x2, x3 (Figure 14 [9] page 8). The dot “s” represents the

source at start point, in this time the operations are applied which is represented with dot

“d”.

3.2.3 Data structures

Based on the problem that one is trying to solve one has to choose a suitable data structure.

In CRDT there are quite many data structures for different problems. All the CRDT data

structures have its own limitations and restrictions. For example, when creating a chatting

application where the order of each message matters then a Set data structure might not be

the best match for it as it is not ordered and stores only unique messages. Before choosing

the data structure one has to make sure to understand the conditions and requirements for

the data.

The main supported data structures([10] chapter Replication):

• Counters

◦ Grow-only – on merging uses the maximum function over values, payload is a

single integer.

37

Figure 14: Operation based replication

◦ Positive-negative counter (PNC) – uses two counters, one for increments and

the other for decrements.

• Registers

◦ Last Write Wins – timestamps, or version numbers, on merge get the

maximum(timestamp), payload = value.

◦ Multi-valued – vector clocks, on merge take multiple values.

• Sets

◦ Grow-only set – on merge get the union of set items, payload is set itself and no

removal is allowed.

◦ Two-phase set – uses two sets, in one set stores the added and in other set the

removed items, the downside is that the elements can be added and removed

only once.

◦ Unique set – an optimized version of the two-phase set.

◦ Last write wins settings – on merge uses a maximum timestamp and the

payload is set

◦ Positive-negative set – consists of one PNC per set item

◦ Observed-remove set

• Graphs, sequences

◦ Treedoc – is a collaborative editing system which uses a binary tree to represent

the document [12].

◦ Logoot – similar data structure to Treedoc but instead of the binary tree the n-

ary tree is used, besides that Logoot has support for undo mechanism [15].

38

3.2.4 Real-world uses

Even tough there is not many examples of client side CRDT usage, there are more

examples in server side. These are the two popular projects which are also open source and

a good resource for learning the concept of CRDT.

SoundCloud Roshi – is basically a high-performance index for timestamped data, the

main use case is the SoundCloud activity stream [40]. Roshi implements time-series event

storage with the last write wins element set. It is a stateless, distributed layer on top of the

Redis [37] using the CRDT.

Database Riak – is an open source, key-value storage distributed database which offers

high availability, low-latency, fault-tolerance, operational simplicity, scalability etc [38].

The core of the database is built on the CRDT data structures. The database runs only on

the server side and does not have any browser based support.

Riak supports following data structures [39]:

• Flags – which allow set value to enable and disable, also could be used within

maps. On convergence enable wins over disable.

• Registers – binary value which could be used within a map. On convergence the

last write wins the value.

• Counters – support increment and decrement. On convergence the maximum value

is used as the last, for example if one instance had the counter value of 10 and the

other 20, then max(10, 20) uses the maximum value of 20.

• Sets – collection of unique binary values or strings. On concurrent convergence the

add operation wins over the remove operation. Means if you have added a string

“hi” and deleted it at the same time, the entry “hi” remains.

• Maps – allow storing any other type within fields. On concurrent convergence of

the add, update or remove operations, when the elements are not existing, the add

operation wins and if an element is already existing the update operation wins.

39

3.2.5 Limitations and problems

Using CRDTs gives a lot of freedom on the conflict handling but on the other hand there

are also limits and problems of which the developer needs to be aware.

Garbage collection – the operation’s log size could over time get pretty large and needs to

be compacted. This is an important topic for the replication of mobile devices where the

storage size is rather limited. There is a possible solution to compact the log with strong

consistency based synchronization.

Undo-Redo models – how to implement such a feature so that when the user has undone

some changes and after the replication, these would not be available again or not applied

again, when the client has been offline for quite some time.

Binary formats – all the following solutions will not be able to handle the binary formats

like image, video audio etc. In multimedia heavy application there is a need for a different

solution to support binary synchronization.

Data model changes – the problem with replication based solutions is the backward

compatibility. Changing existing data structure fields or type could lead to problem, when

the client side sent data is not compatible with server side’s. This has to be handled

separately on the server side.

40

4 Solution

This chapter is more about the based on the chosen solution from the previous chapter that

is going to be used to develop the prototype. The prototype should show the possible

bottlenecks, limits, problems etc. Besides that there is a detailed introduction to the main

components, security and license of Swarm.js. Also, a brief overview of the development

and testing tools that can emulate similar conditions to a mobile network is given.

4.1 Practical collaborative example

To understand the solution and concept behind the CRDT and web application

technologies, it is good to apply it in a real collaborative application. There are many

possible use cases that could be implemented, but the drawing application is the clearest

example of collaboration and offline data synchronization. This application could be used

for sketches and brainstorming, the use case diagram is showed in Figure 15.

The requirements for the application are the following:

41

Figure 15: Use case diagram

1. User should be able to draw on canvas.

2. User should be able to switch between multiple canvases.

3. User should be able to draw even if there is no internet connection (offline mode).

For example “User A” had a meeting where he started drawing some sketches.

Later, he was flying on a plane where travelling where the internet connectivity was

limited and wanted to continue his work in offline mode.

4. All the users should see the same drawings on canvas when in connected state.

(collaborative and syncing feature)

5. When user has drawn in offline mode then after restoring the connection the

content should be synchronized. After the plane of “User A” has landed and he has

restored the internet connection, all the sketches should be synchronized without

conflicts.

6. Application should be accessible without the Internet after the first full load. The

problem with the web browser based application is that it is difficult to cache the

base application content, scripts, images, fonts. The following resources do not

often change and could be cached for a quicker web page opening on mobile.

4.2 Implementation in Swarm.js

In this chapter there is going to be a more specific introduction to the technology behind

the Swarm.js, the Lambort vector clocks, specifiers, streams, the data modelling for

Swam.js.

The meaning of the isomorphic library is that there is a common part of the code that could

be run on the server and client side. That is one of the key ideas of Swarm.js and there are

quite many components that could be run on both browser and server. This is only possible

because of the use of code pre-processors like Browserify [19] or Webpack [42] which

bundle all the module dependencies and allow using the Node.js module system in

browser. This method allows using most of the Swarm.js modules also on browser side, if

these are not specific to web or WebSocket server implementations.

42

The main components to analyse are the specifiers, clocks, hosts, streams and data

structures.

4.2.1 Specifier

Swarm.js uses the operational based data exchange described in chapter 3.2.2. This

requires the creation of a special identifier for each operation. In Swarm.js the identifier

consists of multiple values: class, object id, Lamport timestamps, operation and value.

Example of a possible specifier can be found in Figure 16 [17].

4.2.2 Clock

With distributed systems it is almost impossible to synchronize all the clocks of the system

to be exactly the same. Instead, it is only needed to know the partial order of the events,

which are the bases of Lamport timestamps [13]. There is a possibility in Swarm.js to use

different types of clocks such as the MinutePreciseClock, SecondPreciseClock and

LamportClock. The specific clock should be chosen by the frequency of created events, for

example if there are less than 64 events it is better to use a minute based clock. The second

43

Figure 16: Specifier format in Swarm.js

// Second based
var Second = require('swarm').SecondPreciseClock;
var second = new Second('ristopid', 0);

var intReference = setInterval(function () {
 console.log('Second', second.seconds(), ' - ', second.issueTimestamp());
}, 100);

// Output
// Within same second generating more events increases the sequence in the end
// Second 40740380 - 2RQOS+ristopid
// Second 40740380 - 2RQOS01+ristopid
// Second 40740380 - 2RQOS02+ristopid

Snippet 1: Swarm SecondPreciseClock usage

precise clock allows creating more than 4000 events in a second, this should be enough in

most cases. Following is the example of creating a second precise clock and how the time

format looks.

The above Snippet 1 shows the clock format combined of time, sequence number and the

process identification. The code snippet illustrates the case when there are more than one

event generated in a second.

4.2.3 Host

Host is a singleton object which coordinates the streams, clocks and storages. Host is like a

container object used on both the server and the client side. There could be multiple

storages and uplink streams to send data. When adding the peer to peer support for

Swarm.js, it should be controlled by the host object. Host instance is responsible for the

application mode, connected, disconnected etc.

4.2.4 Stream

Streams are the wrappers for data connections between the host objects. The stream

interface is Node.js stream API compatible which allows supporting many

implementations.

Client side:

• PostMessageStream

• SockJSStream

• WebSocketStream

Server side:

• SockJSServerStream

• EinarosWSStream

44

4.2.5 Storage

Data storages (Figure 17) are responsible for writing and reading the data on both on the

server side and on the client side. The supported storages on the server side are

FileStorage, LevelStorage, MongoStorage, RedisStorage. The client side has support from

SharedWebStorage which uses internally local storage or the session storage API.

Currently, there is no storage support for a relational database, for example the PostgreSQL

which needs to be implemented as a separate module. This would be needed if there was

more data than fits into the memory or the file storage querying was too slow. Adding new

storage support requires implementing the following four methods: state snapshots

writeState, readState and appending the operation to log writeOp and readOps.

45

Figure 17: Server and client side storages

4.2.6 Data structures

Figure 18: Data structures

These are the implemented CRDT data structures in Swarm, shown in Figure 18. All the

structures extend the base object called Syncable which defines the base functionality of

the substructures. Beside the main data structures there are some more CRDT-s that could

be implemented in Swarm.js’s counters, graphs etc.

4.3 License

Swarm.js’s license is served as a MIT License, so all the changes and contributions to the

project remain an also open source and share the same license. The developed whiteboard

application and other related test projects’ follow specific license rules, mostly MIT. The

projects source code is available at github.com/offline-ready-web.

4.4 Technology stack

The example is implemented on top of these technologies, it has been mostly driven by the

choice of Swarm.js. The programming language used both on server and client side is

JavaScript following the ECMAScript 5 standards. The technology stack overview is

shown in Figure 19.

46

Client side:

• Google Chrome – Web browser v42 also the Chrome and Firefox Android version.

Server side:

• Node.js – Platform built on top of the Google Chrome's JavaScript engine V8,

which allows developing fast, scalable and asynchronous solutions. The Node.js

version used in our example is v0.12x. Node serves as the layer for the Swarm.js

CRDT logics and storage. The server side could be easily scaled with multiple

Node.js instances and a load balancer.

• Redis – is an in memory key value storage and cache. The Redis version used is

v3.x In our example Redis is used for storing the operation’s keys and values.

Node.js’s modules list:

• Swarm.js – Responsible for the server and client side syncing.

47

Figure 19: Technology stack

• RxJS – The Reactive extensions for the JavaScript library, version used in our

example is v2.5x. The library helps to handle all the data flows with common

stream interface, drawing, user input, data exchange etc.

• browserify – Tool for bundling up all the client side dependencies, which allows

using modules same way as in Node.js.

• hammer.js – Client side library for common event handling for touch events

between different platforms Android, iOS, Windows Surface and browsers.

• simplify-geometry – Storing all the coordinates from the user input is mostly

useless because the coordinates are repetitive and duplicated. To simplify the array

of points the Ramer–Douglas–Peucker algorithm could be used for reducing the

points that are needed to be base on the distance dimension.

48

4.5 Data model

One of the primary topics is what data structures to use for the implementation and how to

store the data. Choosing correct data structures at first could be hard without having the

domain specific knowledge. Also in Swarm.js the modelling process is not similar to

relational databases where you can think of tables, columns and rows.

In our drawing application the main container is the canvas, each user could have multiple

canvases and canvases multiple users (Figure 20). The users in canvas “N” are unique

which means the set data structure guarantees that in UserList. User specific information is

stored in model data structure, that allows the last write wins operations on model

properties. Next key component for canvas is the ItemList containing all the drawn items.

Since the order of drawn items it is important, the vector data structure is used. The

ItemList itself is only container of the items, Item uses model data structure, that stores the

points drawn on canvas. The Item points are pre-processed to lower the data storage

overhead by removing unnecessary points and only store deltas from the start point.

The created data model is shared between the server and client side. By designing the

offline application it is important do not to expose personal user or any other not needed

information. In most use cases there is only a small fraction of data needed for the

functionality.

49

Figure 20: Data model

4.6 Security

In order to make the communication between the server and client more secure the basic

web security rules should be applied. Instead of using the HTTP the HTTPS connection

should be used. For data streaming through the WebSocket it is a must have a “secure

connection” transport WSS. A majority of exploits could be avoided by validating data sent

from the client side in the server side.

Replicating the data to browser might cause another part of the issues:

1. Should the replicated data storage be encrypted [7]? If the encryption is one way to

do it, then how and where should the private key be stored, so it would not be

exposed to all the browser users?

2. The personal user data should, if possible never be replicated.

3. XSS and other script based attacks get the storage information from browser and

forward it to attackers.

4. There is no default support for the access control which needs to be implemented

by the case.

5. The browser side replication persists the user created data, if there are multiple

users on single computer which gives access to the data.

6. Swarm.js’s and the Node.js’s weak spots are transferring larger chunks of data. The

problematic spot of the data exchange is the message size. Swarm.js uses a text

based string to transfer over the network which means the data needs to be

serialized and deserialized using the V8 methods JSON.parse and JSON.stringify.

When the object size gets large enough, for example 1MB the Node.js event loop

starts blocking because these methods cannot be executed asynchronously and V8

has only a single thread. Meanwhile, the application can not accept any other

interaction until the event loop is freed. That is the reason why on the Swarm.js’s or

application’s side there must be limitations on the size of objects.

50

4.7 Tools for developing and testing

Solving the connectivity problems and testing the offline syncing is usually something that

requires manual testing. Even then there is still a need for a testing plan and tools for

simulating similar environment to production. Therefore, this chapter lists the tools for

helping the network simulation in different levels like kernel and application. The tools

should mainly follow the properties that are free/open-source and at least working in the

Linux operating system. The following tools were used for testing the prototype

application.

4.7.1 Google Chrome Developer tools

The developer tools are usually best suited for the web application developers. The

developer tools provide an extensive list of features: memory time-line, CPU profile,

network debugging tools. Small set also includes the tools for mobile devices (Figure 21),

51

Figure 21: Mobile device network settings *

* - Press F12, and click the mobile icon to enable device mode

like device based screen resolution emulation and the basic network quality emulation tool.

The network tool allows changing the network throughput based on many well known

mobile network service profiles like GPRS (50 Kbs 500 ms RTT), Good 3G (1 Mbs 40 ms

RTT), offline mode etc. In the following test the 3G connection based synchronization

were tested between the other user.

4.7.2 Network emulation tool - NetEm

NetEm [30] is a Linux command line network emulation tool that allows testing our

application behaviour with various network properties. The tool is meant to emulate the

connection similar to mobile connection. The emulation is done not only on the application

level but also on the kernel level. With the Linux kernel version 2.6 the NetEm tool is by

default enabled. NetEm has more control and variety options and settings to control the

network compared to Google Chrome Developer tools. When there is a need for more

control over the network properties, the NetEm should be preferred.

These are the main properties that we are going to emulate, the network interface name is

the following wlp3s0:

Packet latency – with this command the latency for the packet is 100ms which is similar

to a 4G network. The latency time can be set within the range of 20ms to 100ms.

tc qdisc add dev wlp3s0 root netem delay 100ms

Packet loss – simulate the random packet loss probability, in this example the loss 20%.

tc qdisc add dev wlp3s0 root netem loss 20%

Bandwidth limit – allow the limiting of the network speed to 2mbits with the latency of

100ms.

tc qdisc add dev wlp3s0 root tbf rate 2mbit burst 1024kbit latency 100ms

To remove all the applied rules.

tc qdisc del dev wlp3s0 root

52

4.7.3 End-to-end user test

A lot of functionality can be tested in the unit tests level which are usually faster to execute

and implement, but there is still a need for integration test. The offline synchronization

scenarios are these cases which need end-to-end user testing and validation by user. Also,

the network emulation tool does not have an API that could make the testing quicker for

the developers. For the prototype application the end-to-end tests are based on the main

cases in chapter 3.1. Automated tests should be preferred over the end-to-end user tests.

The next step is to validate the main test cases for the developed prototype.

Data synchronization test – for the test there is a need for at least two browsers. In this

test case the Google Chrome and Mozilla Firefox are used. The test case has following

steps:

1. Draw in Google Chrome text “Test”.

2. At the same time in the second browser the drawing should appear.

Test result: Test showed that the synchronization worked between the two browsers, all the

items and user’s data were replicated (Figure 22). The text drawn on the second board is

not identical because of the user input is pre-processed by removing unnecessary points.

This increases the performance and lowers the need for data storage size. Changing the

drawing method to draw lines between the points would end up with a same result as in left

53

Figure 22: Data synchronization test between two browsers

browser.

Offline data synchronization test – requires two separate browsers. The test case has

following steps:

1. In one browser use the Google Developer Tools and change the connection to

“offline” or disable the network connection in computer.

2. Start sketching in offline, the drawing should also be available after browser

refresh.

3. On the connection restore the data synchronization to server starts and the drawing

should appear also in other browser.

Test result: Test showed that the square were synchronized when both clients were online

(Figure 23). But the text written in offline state did not appear in the second browser even

after the switch to back online. After search for a bug in code, showed that the data were

synchronized but the event handling on the client side were not handled, that caused the

text to not redraw. This is a good example why the end-to-end tests are mandatory.

54

Figure 23: Offline data synchronization test

4.8 Browser technology

Over the recent years the browser technology has improved a lot by enabling more than

before. Offline synchronization depends on many browser’s API-s like Application Cache,

ServiceWorker API, local storages etc. The concept of ServiceWorker takes an advantage

of background processing that enables more complex web flows, battery optimized

synchronization etc.

W3C specification of ServiceWorker API which has already been implemented in the latest

Google Chrome v40+ web browsers and also in the Android WebView v42+ component.

Allowing a similar native application life-cycle in web application, instead of just single

page application which is loaded by the user. New caching API-s give the opportunity to

create real offline applications. The current implementation Application Cache which is

included in many browsers, but has problems with single page applications, also there is

not much control over the cached items.

4.8.1 Browser storages for mobile devices

Table 5: Browser data storages

Web storage IndexDB Web SQL

Storage size* ~5 MB ~50 MB* ~5 MB

API style Syncrhonous Asynchronous Asynchronous

Mobile device
support

All iOS 8.1, from
Android 4.3

iOS, Android

Query style Key based Key based SQL queries
* - Every browser implementation has different condition and storage size implementations, for example
IE11 has Web storage size ~10MB.
** - Mozilla Firefox will ask permission for storing blobs bigger than 50 MB.

Local data replication in a mobile device depends a lot on the device capability of device

using a local database. That is the reason the device should have fast data writing and

reading operations. Currently, the common standards for browser implemented data

storages are (Table 5):

1. Web Storage [5] (Local storage/session storage) – simple key value storage for

storing string based content. The difference between the local storage and session

55

storage is timing. With session storage the data is stored until the last browser

window is closed. On the other hand, the local storage persists data even if the

browser windows are closed. The main API has the following methods:

getItem(key), setItem(key, value), removeItem(key), clear(), key(n-th index). All the

following methods are synchronous which causes problems with larger data

operations and blocks the UI. The specification suggested storage size is 5MB. The

positive side of Web Storage is the good support from a variety of browser vendors.

2. IndexDB [28] – key value storage with more extensive support for different

features: transactions, database version mechanism, cursors, asynchronous API etc.

An improved database for more advanced usage, also the API is more complicated

compared with LocalStorage. Besides, improved API the storage size is also much

larger and could allow 50MB of data to be stored, with the user permission the

storage size could be even bigger. The downside, compared with Web Storage, is

the browser support which is not so good or could lead to unexpected behaviour in

IE11, Safari 8 and iOS Safari 8.1.

3. Web SQL [4] – the idea is to allow data storage and query handling similar to

SQLite. The W3C specification was abandoned in 2010, the only browser that

supports the Web SQL API is Google Chrome but this is going to be dropped in the

future versions.

The storage size limits are quite different between the browsers and platforms [2].

Choosing the right storage for a mobile device may not be so obvious, although the Web

storage has the best support for different browsers, it is slower and the storage size is quite

limited. There are many wrappers built to fix the compatibility issues and to use common

API, one of which is localForage built by Mozilla [32]. Swarm.js has the implementation

for the Web storage which is used also in the prototype application.

4.8.2 ServiceWorker API

The first steps towards offline based web application access were available with the

browser technology called Application Cache [36]. This required all the resources and

pages described in a manifest file that are needed in offline mode. On request, based on the

56

manifest file, the decision about which files are the cached resources and which are not is

made. The application cache based solution is acceptable in use cases when the content is

static based and does not change.

To get advantage of the cache control flow the ServiceWorker (SW) API must be used. SW

is a special type of web worker that allows background processing even if the user is not

on the web page. The main idea of SW is to give programmed control over the caching

process and also the possibilities of using different storages for caching. Besides the

caching there are many use cases where the mobile experience can be improved. Using the

SW API also enables features for the browser Push API and Notification API. To make the

synchronization process more battery efficient the one-off and periodic synchronization

specification has been created [18].

From the security point of view it is required to use HTTPS, otherwise you will receive a

security error and the SW will not be registered.

Currently the only browsers that support SW API are the Chrome version from 40, Opera

27, Chrome for Android and Firefox 36 with configuration flag

dom.serviceWorkers.enabled (Figure 24). Due to the small number supporting browsers

this technology is not yet widely used and should also be combined with fall-back to the

Application Cache API.

57

Figure 24: ServiceWorker API browser support

5 Evaluation

It is important that the offline support should be implementing only the basic functionality.

This should be done because of the security perspective as the personal user data is not

needed to be exposed. By adding offline support and isolating the main functionality,

allows the application to work even when the centralized synchronization server is down.

From the development point of view adding offline support for application increases the

complexity.

In the related work search and as a result of analysis the Swarm.js solution were chosen.

The Swarm.js is in early stage but there is huge potential to represent different solution

among the version control like data synchronization. With the recent two years

improvements in browser technology mostly by the ServiceWorker API which enables

more features for background processing. From the development side the developers

should prefer modular solutions instead of the single monolithic solution, which does only

one thing and could not be replaced when needed.

The contact with the Swarm.js members and the lead developer, researcher of Swarm.js

PhD Victor Grishchenko has helped a lot. Although the documentation of library is not

ready Victor has introduced the concept and the usage behind Swarm.js.

5.1 Further development

The further development for the application and more specific to Swarm.js.

The evaluation of the Swarm.js library:

• Add the support for the RDBMS for example PostgreSQL, MySQL etc. This allows

storing the data in a more structured way, with the benefits of searching and

additional metrics.

• Peer to peer network, instead of using the central server use other devices to

synchronize the data.

58

• Operation log data compaction and compression, current approach allows growing

the log size without any limits.

• Scalability is another large topic, both vertical and horizontal, the major bottlenecks

are data transfers between database and the client. One single master database has

to handle a lot of inserts so this would be one of the requirements when choosing a

database system.

Developed application evaluation and further development of application:

• User metrics and analytic support, for additional the examples of how many users

have used the application and the timings for each mode offline and online.

• History support, with undo and redo possibility. A more advanced feature would be

timeline based undo and redo which enables to see and roll-back to a specific event

in the past.

• Common shape library support, for example the basic shapes of UML or flow chart.

Besides the basic shape support it would be possible to use machine learning

algorithms to recognize user drawn shapes [8][14].

• Improve the rendering by using the WebGL technology instead of the HTML5

canvas which has better GPU usage on mobile devices. The HTML5 canvas is good

for prototyping and some smaller scale solutions. WebGL uses quite a different API

compared to the HTML Canvas and allows lower level control over the rendering.

59

6 Summary

Within the thesis the offline-capable collaborative web application solutions were analysed

and implemented. The main occurring problems are caused by the bad network

connectivity that affect all of us. Even though the mobile network coverage in Estonia is

good there are still many places, indoors and countryside where connectivity is limited or

not working at all. The situation in the world is more chaotic, the new generation 3G and

4G technology coverage is lower. Besides the connectivity there are also mobile device and

network stack caused problems. That is the reason why the offline data synchronization is

needed.

The main categories where offline data synchronization should be implemented are:

collaborative whiteboard, email client, chatting, collaborative document writing

applications etc. Some use cases were written about in detail to understand the specific

needs.

In search for related work four quite different solutions were found and analysed. The

analysed solutions include StrongLoop LoopBack, CouchDB + PouchDB, Firebase,

Swarm.js. The positive and negative sides of the details of the solutions were analysed.

Based on an analysis the best match was Swarm.js which uses the concept of conflict-free

replicated data types(CRDT). CRDT-s lead to the analysis of different studies and use

cases in distributed systems and networks.

Understanding the methodology and technology behind the Swarm.js CRDT is not enough.

Based on the chosen solution for the development of a collaborative prototype application

the author began to see possible issues and shortcomings. As the Swarm.js is in an early

state there is no good documentation which made the development more time consuming

and complex.

One of the result is prototype developed virtual whiteboard web application, which allows

multiple users to work and sketch on the same board. The data synchronization is done

using the Swarm.js library. The offline enabled mode works with the latest browsers where

the ServiceWorker API has enabled, which is used for caching the resources.

60

There are many subtopics that could be further researched like the server side’s scalability,

security on the client side’s, synchronization optimisations.

61

Kokkuvõte

Antud töö raames analüüsiti ja arendati kollaboratiivse veebirakenduse lahendust, mis

töötab ka võrguühenduse puudumisel. Kehva või puuduva interneti ühendusega on

kokkupuutunud igaüks. Kuigi Eestis on mobiilse interneti ühenduse kvaltiteet heal tasemel

on siiski paljusid kohtasid, kus interneti ühendus on limiteeritud või puudub täielikult.

Näiteks esineb mobiilse võrguühendusega probleeme ruumides ja maakohtades. Olukord

maailmas on veelgi kaootlisem ning uuemate mobiilsete tehnoloogiate 3G ja 4G

kasutatavus on madalam. Lisaks ühendusele on ka probleem mobiilsete seadmete ja

interneti protokolliga seotud piirangutega. See on põhjus, miks on vaja leida jätkusuutlik

lahendus andmete sünkroniseerimiseks piiratud võrguühenduse korral.

Põhilised kasutusalad kus kasutada võrgühenduseta andmete sünkroniseerimist on:

kollaboratiivse virtuaalse tahvli rakendused, e-maili kliendid, suhtlus rakendused,

kollaboratiivsed dokumendi kirjutamise rakendused jne. Probleemi mõistmiseks on

detailsemalt lahtikirjutatud kasutuskohad.

Sarnase töö otsingul leiti neli erinevat lahendust, mida põhjalikumalt analüüsiti. Sarnase

töö lahenduste alla kuulus StrongLoop LoopBack, CouchDB + PouchDB, Firebase,

Swarm.js. Iga lahendus juures analüüsiti põhjalikult positiivseid kui ka negatiivseid külgi.

Analüüsi põhjal selgus, et kõige paremini sobiv lahendus on Swarm.js, mis kasutab

konflikti-vaba replikatiivseid andmetüüpe (KVRA). KVRA lahendusi kasutatakse

hajutatud süsteemides ja võrkudes, mis sobib sarnaselt andmete sünkroniseerimiseks

mobiilsetes seadmetes.

Teoreetiline arusaam Swarm.js tehnoloogiast ning KVRA metoodikast pole piisav. Välja

valitud lahendus põhjal arendati kollaboratiivne prototüübi rakendus, mille käigus tuli välja

probleeme ja puudusi. Swarm.js on alles algusjärgus olev lahendus ning antud hetkel

puudub selge dokumentatsioon, mis muudab arenduse ajaliselt pikemaks ja keerulisemaks.

Töö tulemusena valmis veebipõhine virtuaalne tahvlirakendus, mis lubab mitmel inimesele

samal ajal töötada ja joonistada. Andmete sünkroniseerimine põhineb Swarm.js teegi

lahendusel. Rakenduse kasutamine võrguühenduseta on võimalik ainult uuemate

62

veebibrauseritega.

Tööst tuli välja mitmeid teemasid, mis vajavad põhjalikuma edasiuurimist näiteks: serveri

poolne skaleeruvus, kliendi poolne turvalisus, andmete sünkroniseerimise optimeerimine.

63

References

1. Anant Narayanan, Where does Firebase fit in your app? [WWW]

https://www.firebase.com/blog/2013-03-25-where-does-firebase-fit.html

(25.04.2015)

2. Eiji Kitamura, Working with quota on mobile browsers, 2014

3. Greg DeMichillie, Welcome Firebase to the Google Cloud Platform Team [WWW]

http://googlecloudplatform.blogspot.com/2014/10/welcome-firebase-to-google-

cloud-platform.html (24.03.2015)

4. Ian Hickson, Web SQL Database [WWW] http://www.w3.org/TR/webdatabase/

(11.04.2015)

5. Ian Hickson, Web Storage [WWW] http://www.w3.org/TR/webstorage/ (11.04.2015)

6. Ilya Grigorik, High Performance Browser Networking, 2013

7. Jeff Cross, Ritchie Martori, Anant Narayanan, AngularJS 2.0 Data Persistence Design

Doc - draft, 2015

8. Liam Don, Ioannis Ivrissimtzis, Multi-pen Sketch Recognition in a Learning

Environment, 2009

9. Marc Shapiro, Nuno Pregui ca, Carlos Baquero, Marek Zawirski, A comprehensive

study of Convergent and Commutative Replicated Data Types, 2011

10. Mikito Takada, Distributed systems: for fun and profit, 2013

11. Nabhendra Bisnik, Protocol Design for Wireless Ad hoc Networks:The Cross-Layer

Paradigm, 2005

12. Nuno Pregui¸ca, Joan Manuel Marqu`es, Marc Shapiro, Mihai Leia, A commutative

replicated data type for cooperativeediting, 2010

13. Paul Krzyzanowski, Clock Synchronization, 2002

14. Shikha Garg, Gianetan Singh Sekhon , Shape Analysis and Recognition Based on

Oversegmentation Technique , 2012

15. Stephane Weiss, Pascal Urso and Pascal Molli, Logoot: a Scalable Optimistic

Replication Algorithmfor Collaborative Editing on P2P Networks, 2009

16: The National Audit Office, Effectiveness of the development of a broadband network

or high-speed Internet, 2015

17. Victor Grishchenko, Swarm/Lamport timestamps [WWW]

64

http://swarmjs.github.io/articles/lamport/ (17.04.2015)

18. Background synchronization explained [WWW]

https://github.com/slightlyoff/BackgroundSync/blob/master/explainer.md

(18.05.2015)

19. Browserify [WWW] http://browserify.org/ (17.04.2015)

20. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–

2019 White Paper [WWW]

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white_paper_c11-520862.pdf (31.03.2015)

21. DokuWiki [WWW] https://www.dokuwiki.org (02.05.2015)

22. EMT 4G coverage area [WWW] https://www.emt.ee/en/firmast/leviala (31.03.2015)

23. Facebook [WWW] https://www.facebook.com/ (01.05.2015)

24. Firebase - Offline Capabilities [WWW]

https://www.firebase.com/docs/web/guide/offline-capabilities.html (23.03.2015)

25. Firebase - Open Data Sets [WWW] https://www.firebase.com/docs/open-data

(22.03.2015)

26. Gartner Says Global Devices Shipments to Grow 2.8 Percent in 2015 [WWW]

http://www.gartner.com/newsroom/id/3010017 (21.04.2015)

27. Google Docs [WWW] https://www.google.com/intl/en/docs/about/ (01.05.2015)

28. Indexed Database API [WWW] http://www.w3.org/TR/IndexedDB/ (24.03.2015)

29. Instagram [WWW] https://instagram.com/ (01.05.2015)

30. Linux Foundation - netem [WWW]

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

(12.04.2015)

31. List of countries by number of mobile cellular subscriptions [WWW]

http://en.wikipedia.org/wiki/List_of_countries_by_number_of_broadband_Internet_s

ubscriptions (21.04.2015)

32. localForage - Offline storage, improved [WWW] http://mozilla.github.io/localForage

(26.03.2015)

33. Loopback: Advanced topics - sync [WWW]

http://docs.strongloop.com/display/public/LB/Advanced+topics+-+sync (11.04.2015)

34. MediaWiki [WWW] https://www.mediawiki.org (02.05.2015)

65

35. Mobiilse interneti andmesidekiirused Eestis [WWW]

http://www.tja.ee/public/documents/Elektrooniline_side/Sideteenused/Mobiilse_inter

neti_andmesidekiirused_Eestis_jaanuar_2015_F.pdf (31.02.2015)

36. , Offline Web applications [WWW]

http://www.w3.org/TR/html5/browsers.html#offline (11.04.2015)

37. Redis [WWW] http://redis.io/ (06.05.2015)

38. Riak [WWW] http://basho.com/riak/ (05.05.2015)

39. Riak - Data Types [WWW] http://docs.basho.com/riak/latest/theory/concepts/crdts

(08.04.2015)

40. SoundCloud - roshi [WWW] https://github.com/soundcloud/roshi (25.03.2015)

41. The LoopBack framework [WWW]

http://docs.strongloop.com/display/public/LB/LoopBack (24.04.2015)

42. Webpack - module bundler [WWW] http://webpack.github.io/ (17.04.2015)

43. WebRTC 1.0: Real-time Communication Between Browsers [WWW]

http://w3c.github.io/webrtc-pc/ (04.05.2015)

44. Wiki [WWW] http://en.wikipedia.org/wiki/Wiki (02.05.2015)

66

