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1 Introduction

The invention of electricity in the 19th century changed the everyday habits of humankind.
Nowadays it is difficult to imagine a world without constant electricity consumption—
light, motors, modern transport, computers, communication—all these technologies have
become viral in modern civilization. Nevertheless, every human activity has positive and
negative outcomes. Consequently, fossil fuel-based energy has become one of the rea-
sons for global warming, though trends have changed dramatically since international
agreements on power have been signed by many countries. For the future of power en-
gineering, an important step is to move towards the concept of a recyclable economy.
Moreover, the International Energy Agency (IEA) predicts that by 2030, global electricity
consumption will increase to 30,000 TWh, i.e. twice the energy consumed in 2010 [79].

These changes significantly increased demand for renewable energy sources, which
should replace traditional power plants. However, the generation of stable and sustain-
able power from natural sources is a big challenge for today’s infrastructure because AC
power networks, widely used since their victory in the wars of the currents, were designed
to be provided by power with stable generation and high inertia. In contrast, renewable
power sources, including wind turbines and electronics-based solar panels, are unstable
and have low inertia, the impact of which increases in parallel with degree of variable
renewable energy (VRE) penetration. Therefore, VREs are applicable for grids designed
to adapt generators with decreased inertia. An isolated microgrid is a great example of
this power system, where a high-inertial thermal power plant (TPP) works alongside low-
inertial wind generators and PV panels that have instant inertia drop. If inertia becomes
too low, there is a high risk of a short-term grid shutdown and damage to many electrical
devices. This can happen due to a drop in frequency and a high rate of change of fre-
guency (RoCoF), hence the full scale of the impact so far requires deeper understanding
[97, 61, 41, 46]. Therefore, low-inertia phenomena appeared due to the transition from
a generator-dominated to an inverter-dominated power system (See Fig. 1). This poses a
significant challenge to the industry of distributed power systems. So far, decreased in-
ertia is an open problem that requires study balance models, stability theory and control
methodologies, which still need to be developed and validated [61, 46, 36]. Moreover,
microgrids introduce a complex and ramified network of interconnected generators with
varying inertia and have many criteria for frequency stability support, which is critically
important.

Coal Power Hydro Energy Storage
Plants Power Plants Conventional Systems
Generator Systems

i Low
) Inertia Inertia

PV-Wind

Nuclear Systems PV Wind
Power Plants Systems Systems
Generator Dominated Power System Inverter Dominated Power System

Figure 1: Evolution of inverter-dominated systems adopted from [93]
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Nowadays engineers have proposed methodologies to facilitate the mitigation of prob-
lems. For instance, a common way is virtual inertia emulation, usually for inertia emula-
tion, which applies the battery storage system combined with a power electronics device
known as a virtual synchronous generator [98, 95, 61]. However, the inertia emulation
process should be controlled using a robust method. In recent works, the droop control
has been mentioned in [78, 24], where a comparative analysis between implementations
for virtual synchronous machine were provided. Certain developments have been dedi-
cated to frequency support by inertia response [13] and frequency measurement by phase
lock-loop device (PLL) [93]. Some works propose inertia control provided by virtual inertia-
based PI controller [28, 42] and use of the derivative control technique [9, 22], including
the frequency support by method time-variable droop characteristic in [19].

The latest achievements in machine learning development (e.g. reinforcement learn-
ing, evolution algorithms and supervised learning) demonstrate high adaptivity to unstud-
ied conditions in various tasks, such as medicine, economics, data mining, self-driving cars,
cyber-security, gaming [20, 91]. Therefore, recent research focuses on searching for a so-
lution based on computational intelligence. Recent developments in the field of artificial
intelligence propose a large number of methods, but only a limited number of Al methods
was applied for microgirds [110].

According to a recent study on the state of the art of the virtual inertia control meth-
ods provided in[86], several works tried to solve the problem of controllable virtual inertia
emulation. All of the proposed methods have advantages and limitations that can have
a serious impact on real implementation. For example, classical methods, such as the
coefficient diagram method (CDM) and H.. in [2, 34] are robust but use the state-space
representation of the process, which makes it difficult to recreate the dynamics of the real
system and guarantee stability. Besides, H.. has problems with order reduction. The fuzzy
logic controller (FLC) proposed in [38] is an advanced adaptive method with flexible ar-
chitecture but requires good knowledge of the design of optimal fuzzy rules that perform
manually alongside a computational complex. A hybrid method such as the optimal PI/PID
controller tuned by particle swarm optimisation (PSO) in [53] is a realistic alternative, but
learning takes place in the offline mode, which means that the optimal performance pro-
vided is limited and requires a long time for repeated tuning. Another hybrid method is
the model predictive controller (MPC) proposed in [33, 90], which is a robust method that
uses the finite-horizon method for adaption to uncertainties, but its performance heavily
depends on the accuracy of the predicted input signal. Most of these methods are difficult
to deploy for coordinated control or for another multi-scale system. Moreover, most of
the methods lack any validation rules for fail-safe mode when applied to real processes in
an unstudied environment.

This thesis is based on a collection of peer-revived scientific works published in re-
puted conferences and journals, where the study on virtual inertia problems and major
contributions provided by the prepared doctoral thesis can be summarised as:

¢ Design of ANN-based controller for virtual inertia control (VIC). We design an ANN
for VIC application and train by model-free reinforcement learning (RL) methods
with DDPG and SDDPG policy rules.

¢ Design of reward/punishment system for VIC applications. We apply a data-driven
approach for the study of unknown systems and train any controller by trial and
error, where we design a specific set of reward and punishment rules to provide
robust training of the RL agent in an unstudied environment and where the major
criterion for rewarding is the calculated frequency stability.

14



¢ Combination of advanced energy storage control scheme with MIMO neural network-
based controller trained by deep reinforcement learning. A redesigned ANN can be
applied as a controller and/or an online tuning strategy for another control method.
In an applied energy storage model we provide (dis)charge dynamics and optimal
operation of a control scheme, where the designed MIMO controller organises con-
trol of incoming power flow and additional control of positive and negative feedback
parts.

¢ Design of multi-agent reinforcement learning control architecture for coordinated
control of hybrid microgrid. RL can be deployed as a multi-agent strategy and pro-
vide parallel training of multiple controllers. For example, a hybrid isolated micro-
grid model requires the design of a coordinated control strategy. We apply the
multi-agent approach, which was trained by stochastic reinforcement learning (SRL).

e Combination of neural network-based tuner with VFOPID controller. The pro-
posed hybrid model combines the robustness of VFOPID and the flexibility of an
ANN, where training is supported by reinforcement learning. In addition, a combi-
nation of SRL and SDDPG policy is provided to optimise the duration of training.

1.1 Thesis structure

The thesis separated into seven chapters and covers one research topic, with two sub-
topics of isolated microgrid and hybrid microgrid. A brief description of the content of
each chapter is provided in the following list:

e Chapter 1, Introduction, provides an introduction to the topic virtual inertia control
in isolated microgrid systems.

¢ Chapter 2, Background and challenges, addresses research questions and problems
of the related topic.

o Chapter 3, Modelling of isolated microgrid, provides information on the features of
the mathematical model isolated microgrid, including TPP, VIC, ESS, System inertia
and damping, Domestic loads, VRE.

e Chapter 4, Analysis of methods for virtual inertia control in isolated microgrid, re-
flects the state of the art in recent algorithms applied for VIC, discusses their bene-
fits and drawbacks.

e Chapter 5, Virtual inertia control in isolated microgrid mode, provides solutions on
VIC proposed by the thesis, including a solution for the advanced energy storage
model.

e Chapter 6, Coordinated frequency control in hybrid microgrid, provides a solution
to the problem of the coordinated load-frequency control of hybrid microgrids.

e Chapter 7, Conclusion and Future Plans, addresses conclusion and final discussion
of this thesis and future plans.

15



1.2 Research questions

In thesis we tried find answers for following research questions:
e How virtual inertia emulation help mitigate low inertia problem?

¢ What advantages reinforcement learning has in contrast to other optimization/training
methods?

¢ What benefits combination of ANN and (FO)PID controllers has?

¢ How multi-agent reinforcement learning can be applied for coordinated control of
hybrid microgrid?

16



2 Background and challenges

2.1 State of the art on low inertia systems

The low-inertia microgrid encompasses participants with different inertia power gener-
ation capacities and loads with very complex dynamics [28, 78, 24, 30]. Therefore, mi-
crogrids with high RES penetration are a big barrier for integration into massive distribu-
tion networks, creating various challenges such as: (1) active/reactive power imbalance
and voltage droop in transmission lines; (2) production/consumption imbalance in dis-
tribution loads; and (3) frequency mismatch with other microgrids and the rest of the
power grid [61, 59]. Hence, energy storage systems are considered as the prime actua-
tor in frequency stability control, which in reality have physical limitations such as: (1)
(dis)charge cycles; (2) restricted power reservation; (3) reserved power losses; and (4)
individual speed of (dis)charge. Moreover, energy storage control performed by virtual
inertia or virtual synchronous generator (VSG) uses power-inverting electronics, which
come with physical delays and limitations in frequency measurement and power conver-
sion [99, 108, 8, 107, 13, 93].

Renewable energy sources (RES) are frequently deployed in modern power grids to
promote myriad environmental and economical aspects. However, increasing integration
of RES significantly decreases the rotational inertia of the grid, which jeopardises grid sta-
bility and its overall dynamic behaviour [98, 41, 61, 42]. A central challenge is the regula-
tion of the grid’s frequency, considering the high penetration levels of renewable sources.
One approach to the mitigation of this problem is the installation of fast-reacting stor-
age systems with integrated virtual synchronous generators alongside low-inertia power
sources. Such controllers have been studied extensively in recent years [9, 22, 101, 21, 69,
1, 36]. Each control method has its own benefits and limitations. For instance, classical
control paradigms are simple in general but are designed for specific scenarios, whereas
data-driven algorithms are flexible and enable online learning. On the other hand, these
algorithms are numerically complex and require adequate data to operate efficiently. Fur-
thermore, hybrid control strategies have low numeric complexity, but their convergence
is hard to guarantee in most cases. Proposing suitable guidelines for choosing the best
algorithm is currently an open question—a question which becomes more acute when
the microgrid is isolated [93, 64, 109, 105, 53, 72, 36].

Isolated microgrids have received increasing attention as a means of integrating dis-
tributed generation into the electricity grid. Usually described as confined clusters of
loads, storage devices and small generators, these autonomous networks connect as sin-
gle entities to the public distribution grid through a point of common coupling (PCC).
Fig. 2 illustrates a typical microgrid network. Microgrids comprise a variety of technolo-
gies: renewable sources such as photovoltaic and wind generators are operated alongside
traditional high-inertia synchronous generators, batteries and fuel-cells. Thus, energy is
generated near the loads, enabling the utilisation of small-scale generators that increase
reliability and reduce losses over long power lines. The locality of the microgrid network
enables the improved management of energy. Generators (and possibly loads) may be
controlled by a local energy management system to optimise power flow within the net-
work. The objectives of energy management depend on the mode of operation: islanded
or grid-connected. In grid-connected mode, the typical objectives are to minimise the
price of energy import at the PCC, to improve the power factor at the PCC, and to optimise
the voltage/current profile within the microgrid. In islanded mode, which is addressed in
this work, the main goal of power management is to stabilise the system and preserve
high reliability and resiliency in terms of frequency, voltage and power.
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Figure 2: Schematic representation of a typical microgrid, including power conversion devices, power
generators with different inertia

Few recent survey papers describe the various aspects in the context of virtual inertia
within power grids with high penetration of RES. A comprehensive review of virtual iner-
tia implementation techniques is provided in review work [93]. The reviewed works are
classified and compared by means of virtual inertia topologies. Some selected topologies
are simulated and it has been shown that a similar inertial response can be achieved by
relating the parameters of these topologies through time and inertia constants. More-
over, a discussion on the challenges and research directions is presented and points out
future research needs for the integration of virtual inertia systems. Review [82] presents
various topologies for emulating the virtual inertia algorithm along with control strategies
for general distributed generation. Furthermore, it provides a review of the optimal size
and location of synthetic inertia in a power system. In [16], the authors presented a review
focusing on inertia values for power systems. The inertia values were estimated based on
different regions in the last 20 years. Furthermore, the contribution of PV power plants
as virtual inertia is discussed and an analysis of the damping factor evolution provided.

Contrary to these comprehensive review papers, which focus on the implementation
of virtual inertia topologies [93], virtual inertia and frequency control for distributed en-
ergy sources [82] and inertia estimation evolution in power systems [16], this study focuses
on the systematic comparison of virtual inertia control methods designed to solve the fre-
quency regulation problem in islanded microgrids. In particular, we strive to understand
why certain control methods are more efficient in different circumstances and which con-
trol strategies will be gaining popularity in the upcoming years. To this end, we consider
the different control techniques available in literature for the period from 2010 — 2023 and
then categorise them into three groups of classic, advanced and hybrid methods. There-
after, we provide a detailed analysis of each control and the optimisation paradigms by
means of various quality criteria. Finally, we perform a contextual analysis and highlight
the current developments and trends for various combinations of virtual inertia control
methods and technologies with a focus on microgrid applications.
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2.2 Motivation

Complex and interconnected microgrids with decreased rotational inertia are a challenge
for the development of new methods that can provide the effective injection of synthetic
inertia via managing electronic-based devices, including DC/AC inverters, and stabilise en-
ergy in the multi-scale and decentralised energy generation network provided by grid-
forming power sources, including thermal power plants, wind turbine parks and solar
panel parks, as well as grid-following power sources, including ultra-capacitors, batteries,
fuel cells, private solar panels and wind turbines. In simulated microgrid the frequency
support provides by virtual inertia emulation, which in real life is a serious challenge for
many classical and advanced control algorithms, since every microgrid has individual fea-
tures and limitations that should be studied. In this thesis, the goal is to develop flexible
algorithms based on artificial neural networks using the deep reinforcement learning ap-
proach. Many of the challenges are connected to the following tasks:

e Development of a reinforcement learning-based controller with (S)DDPG policy and
design reward rules for application in a model of virtual inertia control.

e Study of microgrid dynamics to design the correct reward rules for training an RL
control agent.

e Design of arobust artificial neural network-based controller frequency support/control
in an isolated microgrid that can be a good alternative to the existing control meth-
ods proposed in the state of the art, including MPC, PID, FLC and H...

¢ Application of the advanced energy storage scheme proposed in [47], which in-
cludes modelling of (dis)charge dynamics and limitations. Design of an ANN-based
controller for applied system and development of simplified DDPG policy for control
applications.

¢ Development of a hybrid of ANN and FOPID controllers for application in the virtual
inertia controller scheme proposed in [36] in order to provide frequency support in
an isolated microgrid.

e Development of multi-agent control architecture based on reinforcement learning
to provide frequency support in a multi-area microgrid system.

¢ Development of multi-agent reinforcement learning for application in coordinated
control of the hybrid microgrid model.

e Development of a reward system based on angular integral absolute error (IAE) to
provide accurate punishing/rewarding of an RL agent.
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3 Modelling of isolated microgrid

In this chapter, we illustrate the state of the art in modelling isolated microgrids applica-
ble for testing control algorithms, which was proposed in [43] and in recent years saw an
extension in an additional control loop provided by a virtual inertia controller. This thesis
presents a simplified mathematical model of an isolated microgrid adopted from several
recent publications [34, 38, 35, 2, 53, 84] and depicted in Fig. 3. The addressed scheme in-
cludes simplified residential/industrial loads, energy sources (thermal power plant, wind
farm and solar power plant) and energy storage systems [76, 65, 36]. The thermal power
plant is composed of a governor with a generator rate constraint (GRC) and a turbine with
a frequency rate limiter, which restricts the valve opening/closing (Vy, V). The dynamic
model of the microgrid utilises the hierarchical architecture with primary and secondary
control loops. The primary control loop has a droop coefficient of 1/R and the secondary
loop has an area control error (ACE) system with the second frequency controller with a
gain of K; and the first-order integrator. The frequency regulation is performed by the vir-
tual inertia device with an additional controller. The balancing system performed as the
first-order transfer function with microgrid damping coefficient D and system inertia H
has a common value for all generators. The power generation by variable energy sources
is modelled as a random signal with the first-order holder. The structure of hierarchical
control includes frequency control by the primary control loop (PCL) and secondary con-
trol loops (SCL). The modelling parameters of the microgrid from different publications
are summarised in Table 1.
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control loop control loop T T T T T T T T T
I
(LFC) | [Residential Industrial | 1
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I |
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Figure 3: Mathematical model of isolated microgrid with hierarchical control loop and frequency
support provided by virtual inertia controller, including renewable energy and domestic loads

3.1 Thermal power plant

In real life, a thermal power plant is represented as the major power supplier with a mas-
sive synchronous generator, which has high rotational inertia. In the applied mathemati-
cal model to control the frequency deviation Af and preserve MG stability under various
disturbances, two main frequency control schemes are employed: PCL, SCL. In this hier-
archical architecture, PCL and SCL are responsible for balancing and restoring the system
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Table 1: Applied parameters of the isolated microgrid

Parameter Physical meaning Nominal Unit
value
APrpp TPP power changes - p.u.
APgp General power deviations - p.u.
H System inertia 0.083 p.u.s
D Damping coefficient 0.015 p.u./Hz
APy Virtual inertia power changes - p.u.
Ky, Virtual inertia constant - p.u.s
Dyp Virtual damping coefficient 0.3 p.u./Hz
Ry, Virtual inertia droop coefficient 2.7 Hz/p.u.
R Droop coefficient 2.4 Hz/p.u.
Ty, Virtual inertia time constant 10 3
T; Turbine time constant 0.4 s
APg Governor power changes - p.u.
TG Governor time constant 0.1 S
APgcr. ACE action changes of SCL - p.u.
APpc, Control changes of PCL - p.u.
K; Integral controller gain 0.075 s
APRgs RES power changes - p.u.
APy WTG power changes - p.u.
APyina Initial wind power variation - p.u.
Twrc WTG time constant 1.85 s
APpy PV power changes - p.u.
APy10r Initial solar power variation - p.u.
Tpy PV time constant 1.5 s
AP Load power changes - p.u.
APgy, Residential loads variations - p.u.
APy, Industrial loads variations - p.u.
Vu, Vi Governor valve limiter +0.5 p.u.
AP 3% Governor dead band limits +0.12  p.u. MW/min
APy, Virtual inertia valve limiter +0.25 p.u.

frequency stability, respectively. These two loops are applied to the thermal power plant
(TPP) governor to generate power from the turbine system provided as

1

APG = ———
G 1+STG

(APscr, — APpct)

(1)

in which APpc;, = R™'Af and APsc; = s~ — K;Af are the control and ACE action changes
from PCL and SCL, respectively; R is the droop constant; and K is the integral controller
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gain. Finally, its output is defined as:

APrpp = AFg, (2)

1+4sT;

where AP is limited by valve opening/closing constants Vi; and V..

3.2 Variable renewable energy sources

In traditional power plants, the synchronous machine has high inertia, the magnitude of
which defines the total mass of the armature, so inertia is rather an advantage than a
drawback. To understand the true scale of the problem, the fact that in traditional power
plants the rotational speed of the generator depends on controllable steam flow, which is
easily controlled by simple closed-loop methodologies, needs to be emphasised. In con-
trast, the kinetic energy of wind turbines is defined by wind velocity and air density, which
is not controllable. Moreover, the rotational speed strongly depends on the total size and
mass of the wind turbine. Unfortunately, future grids require an increase in wind turbine
generation; an increased need for power requires larger and larger turbines. A similar
situation occurs in relation to solar panels; however, photoelectric panels have zero iner-
tia and energy generation depends on the daily intensity of solar radiation. In modelling,
we consider variable renewable energy as a source with unstable power generation and
decreased inertia, where solar panels APpy and wind turbines APy r provided as the ran-
dom signals with a transfer function that simulate natural transfer delay power flow. To
make the simulated system more feasible, the renewable energy sources do not partici-
pate in frequency management and are considered MG uncertainties. Hence, the follow-
ing simplified models of the renewable energy power changes are sufficiently accurate for
our analysis:

1
APrps = A +APpy = ———APyipg + —————
RES Pyrc PV 1+ sTwre wind 1+ sTpy

where AP,;,s and APy, are signals with random defined values, where Ty and Tpy
are transfer delays of wind turbine and solar panels, respectively.

APsolar- (3)

3.3 System inertia and damping

In the majority of power systems, the inertia model has a predefined constant of system
inertia H (sometimes referred to as M), whose nominal value is 0.083 (i.e. 100% inertia)
and can be changed to simulate the dynamics scenario with decreased inertia, e.g. with
80% and 40% of nominal magnitude; in the must-case load, damping coefficient D has a
nominal value of 0.015. By defining the damping D and inertia constant H, the frequency
deviation Af can be represented as

1
2Hs+D

where APg is the general power deviation resulting from all power sources and loads and
can be calculated as

Af = APg, (4)

APg = APrpp + APyrG + APpy + APy; — AP, (5)

with AP, = APr; + APy, as the load power changes, respectively. The system and damping
function are based on a swing equation, which in the common form is represented as:

TE:PM—PL (6)
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and simulates the simplified behavior of a real synchronous generator.

3.4 Energy Storage

Energy Storage is multidisciplinary domain in development technologies related to energy
holding for a certain time. Since the invention of electricity, Energy Storage Systems (ESS)
technologies have had implementations in various physical forms. The most perspective
types of ESS are battery storage system, supercapacitor, flywheel, pumped hydrostorage
and superconducting magnetic. During the last decade, energy storage technology be-
came essential in power systems as never before [61, 76], as they allow the smoothness of
any unstable energy source by energy accumulation for later dispatch. Energy storage can
be directly incorporated into frequency response services and activated quickly, slowing
down the RoCoF during a frequency event. Energy storage can be applied for any variable
renewable energy generator, including Wind and Solar. Using this method, energy can
be stored during overproduction and utilised during the underproduction of power in the
grid. In fact, the majority of storage technologies are considered expensive developments
that require additional enhancements. ESS has implementations in various physical real-
isations [14, 63, 76] and can be directly incorporated into frequency response services to
support RoCoF during a frequency change event. For the last decade, ESS has become an
essential component in the integration of variable renewable energy, since it may provide
frequency smoothness and balance for further dispatch [44, 75, 106, 71, 5, 9, 96]. The
simplified model of ESS can be represented as:

APVIma)h APVI>APVImax
APVI = G(S)ROCOF, APVImin < AB/'I < AR/Imax (7)
APy rmin, APy; < APyrmin

where G(s) represented as first order function:

1

G -
O T

(8)
where Ty is time delay that simulates ESS speed and APy, the power injection limitations.

3.5 Domestic loads

Domestic loads simulate the dynamics of regular electricity consumers in every big set-
tlement, including residential (i.e. residential buildings, civil institutions, private houses,
schools) and industrial loads (i.e. factories, chemical plants, manufactures, mining insti-
tutions). This part of MG is reasonably considered as a variable set point in a simulated
closed-loop isolated microgrid, where residential and industrial loads are summarised to
one signal represented as:

AP = APgpr + APy, 9)

where APg; and AP;;, are randomly generated signals; to simulate natural delay, the first
order holder is applied.

3.6 Virtual Inertia Control

A virtual synchronous generator (VSG) is a power converter-based device that produces
the power alternative to the real synchronous machine [6, 23, 61]. A VSG is designed to
compensate for the lack of inertia using a power injection mechanism. Such a generator
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can be applied in systems with a high level of fluctuating renewable power to enhance the
frequency stability. A virtual inertia controller is a simplified mathematical model of a VSG
that neglects real measurements like voltage, current and (re)active power control [97, 61,
36]. The default operational limitations of a virtual inertia controller (VIC) cannot provide
reliable frequency support. Therefore, the additional robust controller has to be used to
deal with nonlinearities in low-inertia environments. Traditionally, a virtual inertia control
setup (see Fig. 4) consists of a derivative component, virtual inertia variable gain Ky, an
energy storage system and a power limiter (APy; max, APy1min). The main concept used in
virtual inertia control is the so-called Rate of Change of Frequency (RoCoF), which can be
calculated as:
d(Af)

RoCoF = —=. (10)
dr

The RoCoF defines the time derivative of the frequency signal, which is used to calculate
the inertia response of the system as

Ky; d(Af)

APy; =
T T 5Ty dt

(1)

where virtual inertia constant Ky; is usually defined as
2HP,
Ky = =™, (12)
Jo
where fj is the nominal frequency, Py, is the power of the inverter and H is the calculated
inertia [53, 2, 37].

Virtual Inertia

APy
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System (ESS)

|
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Figure 4: Typical structure of virtual inertia controller with constant Ky described as virtual inertia
gain

3.7 Enhanced virtual inertia controller

An enhanced virtual inertia controller can be provided by:

_ sKy;+Dyy (Af(s)
Abyr = 1+ sTy; < Ry ) (3)

The enhanced VIC proposed by [36] decreases the influence of decreased inertia (see 5),
which provides an illustrative comparison between versions of virtual inertia controller, il-
lustrated in Fig. 4. (a)—full scheme with proposed by [36]; (b)—scheme without virtual
droop block 1/Ry; proposed by [37]; and (¢)—scheme without virtual droop 1/Ry; and
virtual inertia damping Dy proposed by [34, 53, 2, 84]. In the last version, we can see
the significant effect of decreased inertia. To be more specific, the minimum level of in-
ertia, or its critical floor, is usually used to determine the minimum inertia required for
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the system to be stable and operate in a safe mode. This level can be determined based
on the maximum RoCoF and the frequency nadir. These two constraints can be deter-
mined by analysing the transient response of the system. As can be seen in Fig. 5, all
three results show different RoCoF and frequency overshoot and nadir for different lev-
els of inertia. When the system inertia and damping are reduced due to renewable energy
sources and distributed generations penetrations, the constraint nadir/overshoot of the
microgrid significantly increases, resulting in a longer stabilising time. Additionally, the
RoCoF of the system increases, meaning that a system operator has less time to respond
to disturbances. In this case, following the disturbance, the generated power fluctuates
more, leading to the stress in this unit.
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Figure 5: lllustration of decreased inertia effects with variations of virtual inertia controller: (a)—full
scheme with constant Kyy; (b)—without 1/Ry; and (c)—without 1/Ry; and Dy;.
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4 Analysis of methods for virtual inertia control in isolated mi-
crogrid

Several recent works [93, 52, 34, 53, 2, 38, 37, 35] address the problem of optimal fre-
quency support with high penetration of variable renewable energy sources. For exam-
ple, in [35], a robust H., controller was designed to provide stability support based on the
Rate of Change of Frequency (RoCoF). The proposed solution has shown advantages over
conventional virtual inertia control and optimally tuned PI controllers in scenarios where
the wind farm is connected, solar panels are disconnected and the system inertia is 10%
and 100%, respectively. In [38], the problem was further studied by implementing a vir-
tual inertia control scheme combined with a fuzzy-logic based approach. The proposed
algorithm performed robustly under different scenarios with additional uncertainties, in-
cluding 80%, 40% and 30% total system inertia and a mismatch in primary/secondary con-
trol loops. In [33], the model predictive control scheme was proposed and compared to
the fuzzy-logic controller for the case of additional loads connection. Unlike the previous
works, the studied microgrid has conceptual differences, such as a closed-loop TTP sys-
tem, RES power generation from two complex wind farms and minor differences in trans-
fer function describing turbine and system inertia. Similar ideas were presented in [92]
but without modelling renewable energy disturbances. Work [53] presents a Pl controller
optimised by particle swarm optimisation and combined with the digital frequency pro-
tection system in scenarios of (dis)connecting load and renewable energy sources.

Advanced Hybrid Classical
e e Mo.dell Co_efficient
Learning Predictive Diagram
Control Method

Particle

: Swarm
Fuzzy-Logic . B
Caiieral Optlmfatlon H-infinity

PI Controler

Figure 6: Classification of algorithms for virtual inertia control

4.1 H-infinity

H.. applies the synthesis of an optimal controller by taking into consideration microgrid
disturbances and uncertainties via state-space representation, which can provide high ro-
bustness and simple hardware realisation. However, the main difficulty is the necessity
to design an accurate state-space description for tuning the controller [34, 35]. The fre-
quency control based on H., was used in [83, 39, 15, 34, 35]. In [104], mixed H,/H.. was
applied for multi-area microgrid and compared to fuzzy logic controllers. The solution
presented in [35] applies linear fractional transformation in optimal H., regulator design
as the basis for modelling microgrid uncertainties z, such as system inertia H, damping
properties D and PLL delays (®, and {). H.. optimisation preforms in offline mode and
is more vulnerable to low-inertia nonlinearities than data-driven algorithms. At the same
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time, synthesis of the robust model by H.. provides reliable frequency support. For exam-
ple, work [34] shows the implementation of this method, successfully tested with 95%,
45% and 15% of the nominal system inertia and using two types of disturbance: 1) 10%
of step change in load power demand; and 2) a mismatch in microgrid generation by in-
creased time constant of governor and time constant of turbine. Work [35] shows the H..
controller tested with 100% and 10% of system inertia in scenario with 80% renewable
energy penetration. However, the common limitation of the H.. method is notable peaks
during (dis)connection of power plants. H., requires detailed understanding of classical
control theory and optimisation, which does not require powerful hardware for opera-
tion. Nevertheless, the synthesised control model is a high-order transfer function and
often requires order reduction [34, 35]. The biggest difficulty of H., optimisation is the
procedure for the development of an accurate state-space representation and the man-
ual estimation of disturbances. A controller based on the coefficient diagram method
(CDM) relies on an algebraic optimisation approach through polynomial state-space rep-
resentation and the Routh-Hurwitz stability criterion [56, 57], where the theoretical basis
is constituted to satisfy the Lipatov and Sokolov stability criterion [49, 55, 4, 12].

4.2 Coefficient Diagram Method

Similarly to H.., the optimisation procedure is designed for offline mode. Implementation
of a controller based on CDM in [2, 3] provides frequency stability in a range less than
+0.1 Hz in a scenario with 100% inertia and two types of disturbance: (1) 10% step load
perturbation; and (2) random load demand. In contrast to H.., it can mitigate peaks after
(dis)connection of renewable energy sources. However, the solution uses a two degree
of freedom system structure expressed as N(s)/D(s), which is designed to track a limited
number of disturbances. The main drawback of CDM controller synthesis is similar to that
of H,, and relies on a good understanding of classical control theory optimisation. At the
same time, it can be implemented using relatively simple hardware. In contrast to H..,
CDM optimisation performs without necessity in order reduction and utilises the coeffi-
cient method instead of the Bode diagram [2, 3]. However, the validation of synthesised
control by the Routh-Hurwitz or Lipatov-Sokolov stability criterion depends on the order
of the synthesised control system [4, 12, 2, 3].

4.3 Fuzzy Logic Controller

The fuzzy logic controller design provides effective manual optimisation compared to other
advanced algorithms. Several examples of frequency regulation can be found in [62, 7, 77,
60, 29, 38, 10]. Since a fuzzy logic-based controller can be manually tuned, the data-driven
approach is optional. Correct configuration of the controller can make a robust system.
Work [38] applies a standard fuzzy logic controller for virtual inertia control, which was
mostly capable of holding Af inside a 0.1 Hz band with 80%, 60% and 30% system in-
ertia in scenarios with 20%, 80% RES penetration and a mismatch in primary/secondary
control loops. Controller design requires a good understanding of the design principles
of fuzzy rules. In addition, this method requires powerful hardware for implementation.
However, it utilises fuzzy logic without an optimiser, which can be considered a drawback,
since it requires optimal fuzzy rules by manual design [54, 60, 104].
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4.4 Evolutionary Optimisation

Particle swarm optimisation is a popular evolutionary algorithm inspired by collective
species behavior, such as a flock of birds [31], the stochastic optimisation of which should
provide the best performance via searching a global minima. Particle swarm strategy is a
stochastic data-driven optimiser and enables online learning [18, 32, 53, 51]. In work [53],
PSO is used for the optimal tuning of Pl via searching the global minima of a microgrid and
provides robust control with 100%, 80% and 30% system inertia. Performance of the op-
timal PI demonstrated in [53] shows relatively stable frequency support with 100%, 50%
and 30% system inertia and 57% RES penetration. In contrast to other solutions, in [53],
a dynamic model of a microgrid with digital protection is applied and provides additional
frequency stability. PI/PID is a widely used controller in the power industry since its con-
struction is simple [74, 17, 27]. However, the PSO algorithm belongs to the self-learning op-
timiser, whose implementation is more complex. In order to receive the optimally tuned
PI controller, the optimiser has to consider the state-space dynamic modelling of micro-
grid uncertainties, which requires a relatively long time for finding the optimal settings,
which in turn is not safe for industrial applications.

4.5 Model Predictive Control

A model predictive controller (MPC) requires the development of a robust prediction
model based on a detailed representation of process dynamics via collected data or state
space [11, 58, 33]. As a hybrid algorithm, the MPC can be implemented with a data-
driven [26] or finite time-horizon [40, 90] optimisation approach. Work [33] shows the
application of the finite impulse response optimisation for model prediction based on the
virtual inertia emulation with microgrid state-space representation. In aspects of opti-
misation, the MPC can provide real-time learning using a data-driven and finite-horizon
approach. According to [33], the control performance of the MPC is higher than that of the
fuzzy logic-based controller and may provide better A f stability during (1) (dis)connection
RES power; (2) sudden load change; and (3) mismatch in the main thermal generation
scenarios with 100%, 50% and 25% system inertia and 34% RES penetration. The im-
plementation of a model prediction-based controller depends on the type of prediction
model. The controller requires calculation of each time sample and heavily depends on
the designed model used in predictions of microgrid disturbances [33, 92]. Specifically,
in [33] the finite impulse response was used, which considers each sampling instantly in
the prediction of microgrid disturbances.

4.6 Reinforcement learning-based controller

Reinforcement learning (RL) is an agent-based and model-free machine learning algo-
rithm [91]. The main feature of RL optimisation is an approach based on trial and error,
which allows validation of the artificial neural network (ANN)-based controller directly
with the control object and prediction of any negative consequences [48, 91, 84]. The
benefit of this method is mandatory data-driven optimisation, which is naturally designed
for online learning. In [84], RL was compared to H., and resulted in the slightly better
performance of frequency stability in scenarios with 100%, 80% and 40% inertia and con-
nection of wind, solar and thermal plants during the launch of industrial and residential
loads, and 20% RES penetration. In [86], frequency stability with 50% RES penetration
was provided. Since the algorithm uses a deep neural network, it requires strong com-
putational hardware and is relatively complex to implement. The method requires the
selection of optimal action a()* at each step s(¢) and takes a long time. Moreover, for RL,

28



it is necessary to design a proper reward system and choose the right training strategy,
which can differ [25, 80, 103, 84]. For example, in works [25, 80], the RL optimisation for
frequency support was performed by approximated dynamic programming. In contrast,
work [84] uses the deep deterministic policy gradient to train an RL-based controller for
virtual inertia emulation.

4.6.1 Neural Actor-Critic Architecture

Neural actor-critic implies the combination of two Artificial Neural Networks: the actor
network (s | 6); and the critic network Q(s,a | 6p). In the proposed strategy, the critic
network supervises the algorithm, which tracks errors from interactions between actor a,
and environment S; according to the defined policy. The network corrects them in order
to find the optimal estimation of actor action a}, which predicts the maximum possible
reward r (see [91]). The key advantage of reinforcement learning algorithms is the study
based on interaction with the environment [91]. This means that when an agent makes the
action, it expects to get the reward +r or the punishment —r. The mechanism of control
can be briefly summarised as follows: The measured frequency difference Af produces
the control error, which goes as an observation to the RL agent. At the same time, the
calculated error goes to the block "calculate reward” to reward or punish the neural RL
actor.

Q(st, a \9(2)

(a) Implemented actor neural network (b) Implemented critic neural network

Figure 7: Example of implemented neural networks of actor (i.e. Tuner) and critic with illustrated
connections between them defined as action a, and state s; (green dashed line), applied in publica-
tion [67], where Af, Af /s, dAf /dt is state s; and K, (t), K;(t), K4(t), A(t), u(t) is action a,
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4.6.2 Deep deterministic gradient descent

Deep Deterministic Policy Gradient is a reinforcement learning algorithm designed for
tasks with a low-dimensional continuous action space [48]. The DDPG optimisation intro-
duces the fusion of deep Q-learning (DQL) and deterministic policy gradient (DPG), which
inherits neural actor-critic from DQL strategy. The principle of optimisation is based on
the search of a minimal difference between the target action-value function of the policy
yi and the critic network Q(s;,a; | 6p) at each actor network p (s | 6,) decision a; (Ky;)
per step i in the state s, (i.e. Af;) in order to minimise the loss function L and receive
the maximum possible reward r; per training episode. Next, we summarise the overall
procedure in the form of a pseudo-code as shown in Algorithm 1, adapted from [48].

Algorithm 1 DDPG Algorithm

1: Initialise critic Q(s,a | 6p) and actor (s | 8, ) networks with random weights 6 and
Ou-

2: Initialise target network Q' and u’ with 6y < 6, 6,/ < 6.
3: Initialise replay buffer R.
4: for episode =1 to M do
5: Receive initial process observation as state s.
6: fortr=1to T do
7: Select action a; = (s, | 8) according to current policy and disturbances ex-
ploration.
8: Execute action a,. Observe reward 7;, state s;1.
9: Store transition (s;,a;, 77, 8.41) in R.
10: Sample random minibatch of N transitions (s;,a;, r;,s;+1) from R.
m: Set y; = ri+¥Q' (Si+1, 1 (si+1]6) | O ).
12: Update critic by minimising loss: L = %Zi(yi —O(si,a; | OQ))Z.
13: Update actor policy using sampled gradient:
14 Veu.] IS %Zz V.0 (s,a | GQ) |S=Si7a=I1(Si) X VQM[.L(S | 9u)|~"i‘
15: Update the target network: 62 <+ 762 + (1 — 7)< and 6 + 76" + (1 —
T)OM,
16: end for
17: end for
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4.6.3 Simplified Deep Deterministic Policy Gradient

In contrast to the original DDPG, the modified version has a simplified loss function for
actor L, and training is performed without a replay buffer. The principle of optimisation
is based on the search for a minimal difference between target action-value function y;
and critic network reward prediction Q(s;, a; | 6p) for each actor network (s | 6, ) deci-
sion a; (i.e. Kyy) per step i in microgrid state s; (i.e. Af;). The aim of the simplified DDPG
algorithm is to receive the maximum possible average reward r; per training episode via
minimisation of critic Lo and actor L, loss functions. The pseudo-code shown in Algo-
rithm 2 illustrates the simplified DDPG algorithm.

Algorithm 2 Simplified DDPG algorithm

1: Initialise critic Q(s,a | 8p) and actor (s | 8, ) networks with random weights 6, and
6.

2: Initialise learning rate for critic atp = 0.1 and actor ay, = 0.1 networks.
3: Initialise smooth 7 = 0.5 and discount factor y = 0.25.
4: for episode =1 to M do
5: fort=1to T do
6: Receive initial process observation as state s;.
7: Select action a; = u(s; | 6,) according to current reward prediction Q(s;,a; |
6p).
8: Execute action a,, observe reward r, and future state s; 1.
9: Select the best critic reward prediction weights Q' (s;11, 1t (sit1 |6,/) according
to explored max average reward max (4 ¥, i(si, a;))
10: Set action-value function of DDPG policy y; = r; + Q' (si+1, 1 (si41 16u) | Bp).
1: Update critic by minimising the loss: Ly = & ¥, (yi — Q(si,a; | 6))>.
12: Update actor policy using sampled gradient of critic: L, =
%Zl(Q (s,a | OQ) |S:S,-,Ot:u(s,-))2
13: Update target networks:

14: 02 «— 102+ (1-1)62 apLy,
15 04« TOM + (1 —1)0" o L.
16: end for

17: end for
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4.6.4 SDDPG training algorithm with semi-stochastic approach

We apply a basic stochastic RL (SRL) combined with the SDDPG technique to train an agent
implemented as trainer systems for ANN-based control of a microgrid. In the first stage
of the proposed algorithm, the provided SRL algorithm m times generates weights with a
random value and verifies every combination of the obtained weights through a "reward”
feedback mechanism.

According to the proposed SRL optimisation approach, the RL agent will be defined
as (s | 6y) with an initialised random set of weights Y, 6,,, where @ is the array of
non-negative random values that updates the defined number of episodes M. Then, the
reward function r;(a;,s,), where a, = AKy,(t) and s, = Af, will be observed at each ac-
tion and state. Finally, the weights 6, of the agent with the best average reward will be
selected using

6, — Ouprir = Ouys  iF 11 > Fiax, (14)
! O, = Oy if 77 < Fmax,

where rmax = argmax(r (s, a;)). The pseudo-code of this optimisation approach, applied
to the first stage, is summarised in Algorithm 3.

Algorithm 3 SRL Optimisation Approach.

1: Initialise neural network of agent as ts | 6y,)

2: for j=1toM do

3 Initialise random weights of each agent 6y, ,, M times

4 Execute action a;, observe the reward r; at each step ¢ in common state s;
5: if Maximum reward r > ry.x then

6 Save weights of each agent 6,

7 end if

8: end for

In the second stage of learning, we use the SDDPG method to improve the perfor-
mance of the proposed algorithm. To this end, the gradient descent, which acts in a similar
way to Q-learning architecture Actor-Critic with multiple agents, is applied. The proposed
Actor-Critic with SDDPG technique provides gradient descent for each ANN-based con-
troller in order to train them simultaneously. We design the reward system for each agent
and take into account the common calculated reward. This stage is more computationally
complex and provides the additional changes in the received weights from stage one by
SDDPG (which inherits major features of the original DDPG method, proposed in [48]). In
this stage, and by using the SDDPG technique, we try to receive the maximum possible
reward formulated as ryax = argmax(r;(s;,a;)) via reward prediction, which is provided
by the output of the critic ANN given as Q(s;,a;) and obtained by

Ye=1T1 +7Q/(Sl+la/~1,(5t+1|9u’) | 6g), (15)

and comparing the predicted reward with the actual one. The accuracy of reward predic-
tion depends on the quality of monitoring in the actor’s ANN state s; and action a;, which
is defined by the critic weights 8. In the following, the algorithm changes the weights
of the actor’s ANN (i.e. 6,) via gradient descent and tests an ANN-based controller after
every change in the weights.

In general, control applications are not easy to solve with any machine learning method.
This is especially true when training an ANN-based controller, since many gradient de-
scent methods, such as supervised learning, take a long time to find the optimal weights
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for such controllers. As the first stage is more effective for using stochastic methods (e.g.
dynamic programming, brute force method), we have 20 episodes of training to find op-
timal weights, while it takes at least 200 episodes in the second stage associated with
the SDDPG technique. Nevertheless, the gradient descent and applied policy increase
the performance of the proposed controller by up to 5-15%. In both stages, validation of
the controller is performed by the reward system. The following equation demonstrates
how the DDPG policy affects the quality of the prediction in the reward system defined as
action-state function Q(s;,a;):

1
Lo = NZ(% —Q(s1,ar | 6g,))*. (16)
t
This equation is the full form of the loss function, including the critic's prediction of the
reward system. The output of the critic provides the change in the actor weights 6,, by
1 2
Ly = N Z(Ql (S,a | 6Qi) |s=s;,a=u(s,)) . (17)
t
In order to increase the quality of the prediction algorithm, we store the best prediction
as Q/(St+1,,LL/(S1+1 |9'u/> | GQ/)
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All described steps of method summarised in Algorithm 4.

Algorithm 4 SDDPG algorithm with semistochastic method.

: Initialise critic Q(s,a | 6p) actor u(s | 6, ) networks

: fort =1toNdo

Initialise random weights of actor 6,,.

Execute action a;, observe reward r, at each step

if rave > Tavg max = max(% Yiri(si,a;)) then
Save weights 6 and 6, with best r,,,,.

end if

: end for

. Initialise random weights of critic 6.

: Define the learning rate of critic oty and actor oy, networks.

: Define the smooth factor constant 7 € [0, 1].

WHRN>OHEODN 2

N
= O

12: for episode =1 to M do

13: fort=1to T do

14: Receive initial process observation as state s;.

15: Select action a; = u(s; | 6,) according to current reward prediction Q(s;,a; |
6o).

16: Execute action a,, observe reward r,; and future state s; 1.

17 Select the best critic reward prediction weights Q' (i1, ' (sit1 |6,/) according
to the explored ravg max.

18: Set the state-action-value function of DDPG policy y; = r; +
YO (siv1, 1 (5i1(0w) | O )-

19: Update the critic by minimising the loss: Ly = %Zi(yi — O(si,ai | 6p))>.

20: Update actor policy using the sampled gradient of criticc L, =
%ZI(Q (sva | GQ) |s:s,-,oc:/4(s,ﬂ))2

21 Update target networks:

22: 69 + 109+ (1-1)0% oLy,
23: OF 1O + (1 — r)Gﬂ/aﬂL”.
24: end for

25: end for
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4.7 Reward system for training of RL agent

4.7.1 Error band-based reward system

To ensure the learning of the agent, we use the reward/punishment system proposed in
[84]. The reward system is organised in such a way that the measured frequency devia-
tion is converted to reward/punishment ;4. To provide the instructions according to the
stability criteria of error signal Af in the £0.1 Hz band [84, 87], the regulation system is or-
ganised as follows: if |Af| < 0.05, the agent receives a reward r+; otherwise, the system
punishes r— after each performed action. To provide a reasonable reward for the agent,
we separated the rewarding approach for each task; the frequency support reward task
is limited to the range u € {1.8,...,2} and the punishment is unlimited and multiplied by
2. The following equation presents the mathematical expression for the designed rules:

. {OS-s-IAf if |Af] < 0.05, )
—2|Af], if |Af| > 0.05.

4.7.2 Error angle-based reward system

The proposed reward system was applied in [88], the main criterion here for rewarding is
the magnitude measured state s, = A f, which is considered as the measured control error
calculated as integral absolute error (IAE). The agent receives a positive reward +r if ¢ is
less than 45 deg; otherwise, it receives a negative reward or punishment —r. In contrast
to [84], the new reward system is more adaptive for control applications associated with
high dynamical changes, such as interconnected microgrids, since it is based on a perfor-
mance metric (IAE), which is a good criterion for process control. The major problem with
multiple agents is synchronised training because the actions of the first agent affect the
results of the other two agents and vice versa. Therefore, we admit that the reward of
agents is easier to individually be calculated by a common summarised reward and save
the weights with the best reward for each agent. The rewarding rules described can be
summarised as follows:

2 AE if sing < 0.5
"= —1(|)L2+’t2 if sing > 0.5 19)
VIAE2 42’ -

where IAE denotes the integral absolute error calculated by

IAE — /Ot\Af|dt. (20)

35



4.8 Conclusion

This chapter reviews recent methods related to virtual inertia control methods designed
to solve the frequency regulation problem in islanded microgrids, with an attempt to bet-
ter understand the unique characteristics, common uses and mathematical foundations
of the most popular control methods. This analysis reveals interesting trends in the cur-
rent research and may help to understand why certain control methods are more effi-
cient in different circumstances and which control strategies will be gaining popularity in
the coming years. For instance, the data show that evolutionary algorithm methods are
widely used for tuned PI/PID controllers, likely because this enables analysis of stochastic
scenarios with nonlinear constraints. However, evolutionary algorithms may converge to
the local minimum and therefore are not suitable for every application. In such cases,
classical control methods seem to be the natural choice, since they provide simple and
effective solutions to virtual inertia problems whenever grid dynamics are well-defined.
Moreover, in the case of uncertainty in the grid dynamic and nonlinear constraints, fuzzy
logic-based controllers are used extensively, although these fuzzy controllers are limited
to specific and manually defined rules and in the case of high number of rules the required
resources increase significantly. The controller based on the coefficient diagram method
principle seems to be the least popular method, perhaps due to its limitation of tracking
a limited number of disturbances. Artificial neural networks in combination with rein-
forcement learning are also becoming an important trend due to increasing amounts of
available data—specifically, these model-free approaches can be used for solving complex
problems when no fully satisfactory algorithm is available.
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5 Virtual inertia control in isolated microgrid model

In this chapter, we discuss the control methods applied for virtual inertia emulation in
isolated microgrids proposed in the thesis and illustrated in Fig. 3 with different versions
of VIC, whose proposed implementations were studied in publications [84],[86] and [89].

5.1 Reinforcement learning-based controller

In [84], neural actor-critic implies the combination of two ANNs: the actor network pi(s |
0. ), and the critic network Q(s,a | 8p). In the proposed strategy, the critic network is
supervising the algorithm, which tracks errors from the interaction of the actor a; with
the environment s; according to the defined policy. The network corrects them in order to
find an optimal estimation of actor action a;, which predicts the maximum possible reward
r (see [91]). The key advantage of reinforcement learning algorithms is the study based
on interaction with the environment [91, 48]. This means that when an agent makes the
action, it expects to get the reward +r or the punishment —r. The mechanism of control
can be briefly summarised as follows. The measured frequency difference Af produces
the control error, which goes as an observation to the RL agent. At the same time, the
calculated error goes to the block “calculate reward” to reward or punish the neural RL
actor. The general structure of the proposed controller is presented in Fig. 8.

APy
Environment | &+ Yi
State DDPG
Algorithm
Microgrid TR lL
st | 541 = Crinc
Observation lQ(st,at | 9@)‘
Calculate Tt 15t _fag
Reward Reward ’ Actor a
(s | 0 -
L .“(SL | u) | Action
Forced RL Agent
Replay
APy | Virtual Inertia | Kvr

Control

Figure 8: Structure of implemented reinforcement learning-based controller developed in [84], in-
cluding the forced replay block, applied to decrease number of episodes with negative reward

5.1.1 Numerical results

Figure 10 illustrates the case without additional virtual inertia control; all control algo-
rithms provide almost identical results. This is further emphasised by the statistical mea-
sures shown in Table 2. The proposed algorithm and H..-based approach both appear to
be the most accurate. However, their advantage is rather symbolic with respect to Pl and
default controller cases. Therefore, in systems with high inertia, utilisation of additional
virtual inertia controllers is rather optional. To conclude, the proposed reinforcement
learning-based additional virtual inertia controller appears to be more accurate in most
cases. However, the difference in most cases is very small. At the same time, it can be
observed that on average the proposed controller performs better than other tested con-
trollers as defined by mean average error. This is further confirmed by another related
integral absolute error measure.
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Figure 9: Power generated by wind and solar plants (top and middle), domestic load profile (bottom)
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Figure 10: Frequency variation for the nominal case
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Table 2: Calculated performance in Nominal Scenario

Metric  Controller Nominal
Proposed  0.0358

RMSE H., 0.0356
PI 0.0364
Proposed  0.0287

MAE H., 0.0287
PI 0.0293
Proposed 28.4136

IAE H. 28.4461
PI 28.7557

5.2 Deep reinforcement learning-based controller with advanced virtual
inertia controller

5.2.1 Advanced virtual inertia controller

In [86], the novel virtual inertia controller is based on the nonlinear control strategy of
the energy storage system presented in [47] and includes the positive (red) and negative
feedback (blue) loops (see Fig. 11). The positive loop has the energy accumulation part E;
with defined charge limits 2E,.x and 0; the energy acceleration part is performed as the
dead-band {(E;) connected to controllable signal Aa, which goes to the integral block
with limits Apax and Apin. The negative feedback loop has controllable signal AS. Finally,
both loops control the power output APy;. The control part of the VIC is performed by
a multi-loop based controller with three output signals: two non-negative Ao and Af;
and one real Ay, which controls the power inflow AP, from the microgrid to the storage
device. The proposed multi-loop DRL controller has several input signals: Af, APy and
AP;. The Af value depends on system inertia and its stability is important. Therefore, the
DRL controller includes the Af acceleration via differential block and the total deviation
by discrete-time integration block.

Virtual Inertia Control

1 U

!

1 1 ES ; C |

x EN w 1 X = |
MIMO S S ! APinertia
Deadband Positive feedback >

Controller [AY
|
‘ u| Negative feedback !
77777777777777777777777777777 I

APLW

KxTs

Figure 11: Schematic representation of the virtual inertia control strategy proposed in[86], including
developed MIMO type of ANN-based controller/tuner

The considered microgrid model has an energy storage model (see Fig. 11), which pro-
vides power accumulation and (dis)charge dynamics. The dynamics of energy storage are
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defined using the following equation:

dE,
d; = u(t) = AP,Ay,

ES(O) = O-SEma)u 0< E, < Emaxv

(21)

where AP, is the power flowing into the storage and Ay is the control law. The dead-zone
function is defined as:

Emaxs g > §(Es)max
C(Es) =10, §(E)max > 52 > C(Es)min (22)
_Ema)u Emax < g(Es)min

where the input is defined as % = Ao (E;), A(T) = 0. The following part represents the
ESS controllable power output that summarises all signals:

da AB E;

T At T Emay

APy (23)

5.2.2 Deep Reinforcement Learning-based Controller

The proposed deep reinforcement learning-based controller is a combination of two ar-
tificial neural networks: the actor (s | 6,,) that preforms the frequency control and the
critic O(s,a | Bp) that selects the best actions of an actor (see Fig. 12). The training rules
of the agent are defined by certain reinforcement learning (RL) policies (e.g. Dynamic
programming, Monte Carlo, Q-learning, SARSA, DDPG, A3C, SAC) [81, 48, 91]. The major
feature of RL training is a strategy based on the rule of trial and error. When the actor
makes a correct action a; according to the designed reward/punishment rules, it receives
a reward r at each step of the action; otherwise, it receives a punishment —r. The train-
ing duration depends on the number of the epochs and learning rate ¢, actor and ap
critic networks; after each epoch, the reward system calculates the average reward r,,,.
If the average reward of the last epoch is significantly less than that of the previous, the
algorithm initialises new weights of neural networks to try another combination, unless
the accumulated reward reaches a target value r;44,. We apply this architecture as an
additional MIMO controller of the VIC scheme, which is illustrated in Fig. 11.

Yi
Calculate Tt DDPG
Reward Reward Algorithm
APy, TQ(st,at\SQ) lLQ
Afi St1St+1 Critic
' Observation Q(st, alq)
1Ly 1a A
1% t (%
A Actor ag
o) (et el AB
RL Agent A’y

Figure 12: Schematic representation of implemented deep reinforcement learning control algorithm
for energy storage model applied in [87] with consideration of dynamical signals for ESS Ao, AB and
control of incoming power by Ay
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Figure 13: Scenario with simulated large amount of incoming power generated by park of wind
turbines, organised to show (dis)charge changes of applied energy storage model

5.2.3 Numerical results

The simulated scenario allows the smooth connection of wind turbines at + = 300 s and
disconnection at r = 400 s. It can be seen that the ESS charges faster after connection
of the wind generated power and initiates discharge after disconnection of this power
source as depicted in Fig. 13. As we can see before the connection of wind turbines, en-
ergy storage has a minimal state of charge. After disconnection of wind turbines, the
energy storage provides active frequency support to the microgrid, helping to stabilise
Af in the case of the proposed controller; however, without the additional controller, the
frequency keeps oscillating. In contrast to the previous scenario, the influence of low in-
ertia on energy reservation is higher. Fig. 14 shows how the controller responds to the
connection of a renewable source in events with excess power income, e.g. strong wind.

Table 3 shows the evaluation results of the proposed controller in a nominal scenario
and a scenario with (dis)connecting renewable energy sources. Root mean square error
(RMSE) and integral absolute error (IAE) statistical metrics are used to validate the perfor-
mance. Both metrics confirm that the proposed VIC and DRL-based controller performs
better than the standard one.
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Figure 14: Provided control signals of ESS with dynamical coefficients Ao, A and Ay

Table 3: Performance of the Proposed Controller

Approach | With MIMO controller | Without MIMO controller
Inertia 100% 40% 100% 40%
IAE 37.4870 38.7273 2040.9 1725.6
RMSE 0.0999 0.1027 3.0616 2.9267
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5.3 Deep reinforcement learning-based VFOPID Controller

The key advantage of reinforcement learning is the direct interaction of an NN with a con-
trollable environment and the application of nature-inspired reward-punishment-based
learning, by which it can theoretically find the global minimum after the training proce-
dure [45, 91]. Usually, reinforcement learning is applied in applications where it is neces-
sary to train an NN for tasks in which the correct interaction of an autonomous system with
the environment is critical [48, 91]. The general structure of the proposed controller is pre-
sented in Fig. 15. How to properly interact with VFOPID and MG using "double feedback”,
i.e. from the reward system and from the process directly, can be seen in the presented
architecture of neural actor-critic studies, which are illustrated in detail in Fig. 7. The first
operates in offline mode and the second in online mode, which can be summarised as
follows:

e Reward or punish the agent by directing the measured error Af into the block "re-
ward system”.

e Formulate the observation for the agent using the measured variables Af and AP,
which can be considered as the control error and pre-error, respectively.

Reward system
i Policy ¥i
Critic reward '
prediction Q(s¢, ay | 0g) Lq  Critic loss
______________ ,
Critic NN i
S, Q(st,a1 | 0g) E ay(Kp,ia, A, 1)
Ly l Actor lossi Afy
= Actor NN |
| VFOPID |~ VIC] 6@
s #(se | 6,0) !
1

’_> RL agent APg

Figure 15: Scheme of the proposed DRL-based VFOPID for VIC in an MG proposed in [84]
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5.3.1 VFOPID Controller
The original FOPID controller was first introduced in its parallel form described as [73]:

u(t) = Kye(t) + KD *e(t) + KgD e(t), (24)

where D% is the fractional differential (o > 0) (or integral (o < 0)) operator, i and A are
the positive integration and differentiator orders, respectively, u(z) is the control signal,
e(t) is the error signal, which is equal to Af(¢), and K),, K; and K are the proportional, in-
tegration and derivative constant gains, respectively. The controller (24) has more tuning
freedom that leads to making the plant stable under control and fulfilling intricate con-
trol performance requirements that are not in the scope of classical controllers. However,
as this controller binds a control engineer to manipulate all of the features, the VFOPID
controller with five variable parameters can significantly improve the performance of the
controlled system due to its greater flexibility. Referring to Fig. 16, this means that it is
possible not only to move continuously in the PID plane, instead of jumping between the
fixed points, but also to explore for the desired controller values in a space inside the cube
and between the eight vertices.

Kd

I
FOPID

2 /
’ |D/ ID
pp. D

|
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Figure 16: Relationships between the VFOPID controller and its classical variations

Integration and differential functions affect the steady-state process and the dynamic
characteristics when both the associated gains and orders of each function vary:

e Integral action: This action is dependent on the gain K; and the order A. While
K; being oversized will make a system more unstable, its smaller size will force the
system to diverge from its ideal dynamic performance. Additionally, for a small A,
the frequency band is wide, and the system is steady with rapid response and static
error. In contrast, an oversized A will degrade system stability with the increase in
the overshoot, rise and settling times.

e Derivative action: The gain K, has no effect on the steady-state error but can im-
prove the dynamic characteristics. For a small K),, the overshoot and settling time
will increase, while for a large gain, the system noise may increase and the system
performance will degrade. Finally, the order u can improve response accuracy and

44



steady-state error when it is relatively small. However, by increasing u, the over-
shoot and settling time decrease and the closed-loop system stability will degrade.

Itis necessary to keep both the gains and orders within a suitable range at any moment
in order to maintain satisfactory control performance for a target system. To take advan-
tage of this controller flexibility and promote controlled system performance simultane-
ously, the VFOPID needs to be considered as a target controller in the regulation process.
The concept of VFOPID can be given as [50]:

u(t) = K, (1)e(t) + Ki(t)D*De(t) + Kg(1)D* Ve (1), (25)

where D~*(1) and D,W) are the variable order fractional integral and derivative, respec-
tively. The implementation of (25) with a floating point requires a powerful computational
device [70]. Therefore, we propose using a parallel connection of FOMCON library blocks
from [94] and provide a real-time switch between fractional-order constants with a res-
olution of 0.1. In conjunction with switching objective functions and arising from an in-
put signal derived from the NN tuner system, these functions attempt to switch between
fractional integration and differentiator operators and implement a VFOPID controller ac-
cording to the tuned parameters. By doing so, the fractional-order tuning and controller
gains can be performed online.
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5.3.2 ANN Tuning-based VFOPID Controller

We apply the multiple input multiple output type of NN as the tuner of the VFOPID con-
troller. This hybrid algorithm combines the robustness of FOPID and the flexibility of ANN.
The major task here for actor NN (i.e. tuner) is to search for an optimal combination of
these coefficients considering MG disturbances. Fig. 17 illustrates the proposed architec-
ture of the ANN-based tuner, where output neurons are five controller parameters: K,,,
Ki, K4, A, and u. Since the values of each output neuron should be non-negative, we
designed the network to keep the outputs for the fractional orders and the gains of the
controller within the range [0,7/2], defined by the equation

y(t)

n

= T /2 (26)

In fact, the variable orders A and p are very sensitive to any changes and are compu-
tationally expensive. Therefore, we organised the change in the integral and derivative
parameters with the discrete step of 0.1 using an automatic switch between predefined
series of FOMCON blocks implemented in the MATLAB/Simulink environment, where each
block has a frequency range [0.001, 1000] and an approximation order 3. In the proposed
method, tuning the VFOPID parameters depends on the magnitude of Af being propor-
tional to the power variation APg, which is driven to the NN tuner (see Fig. 17) and is then
transformed by the ransig activation function illustrated in eq. 26 to give the tuned pa-
rameters as the given trajectories. The output value of every coefficient depends on the
gain provided by every weight considered in the NN tuner.
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Figure 17: Scheme of VFOPID controller with proposed NN-based tuner designed for [67], taking into
consideration switchable FOMCON blocks of orders A and u defined by VO-FI and VO-FD, respec-
tively
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5.3.3 Numerical results

We analysed the performance of the proposed algorithm (NN-based VFOPID controller)
and compare it with FOPID and PID. The controllers were carefully tuned and the obtained
parameters were K, = 50, K; = 1.75, K; = 2, A =1.25 and u = 1.75 for the FOPID con-
troller, and K, = 50.5, K; = 5.85 and K; = 5.5 for the PID controller. These parameters
were obtained by heuristic search, where we attempted to find the optimal parameters
for the studied system and provide a fair comparison with the proposed method. In these
experiments, we perform simulations for scenarios with (dis)connection of RESs for nomi-
nal (100%) and decreased inertia (40%). Fig. 18 shows the dynamics of renewable energy.
To compare the algorithms, an additional (dis)connection-based scenario is carried out
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Figure 18: Data used in the considered scenarios with RESs connection and disconnection

and the performance is evaluated. We organise the smooth connection of solar panels
and the disconnection of wind turbines in time steps 300 and 700 seconds, respectively
(see Fig. 18). Fig. 19 depicts the significant influence of the wind turbine connection on
the performance of all control algorithms. However, the proposed strategy shows the
best performance in smooth transient behaviour. Performance indices are calculated in
the steady-state conditions (i.e. from 100 to 1,000 seconds) to eliminate the effect of high
initial oscillations. All calculations are performed for three scenarios with both nominal
(100%) and decreased inertia (40%). The results are summarised in Table 4. It can be seen
that the proposed NN-based VFOPID controller has better results in all cases modelled.

Table 4: Comparison of different controllers using metrics

Metric Inertia Proposed FOPID PID
100% 11.10 21.23 22.81

IAE 40% 9.18 21.26 2291
RMSE 100% 0.0175  0.0300 0.0328
40% 0.0147  0.0301 0.0330
MAE 100% 0.0123  0.0236  0.0253

40% 0.0102  0.0235 0.0254
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5.3.4 Online Tuning of the VFOPID

Fig. 20 presents an example of the online optimisation (tuning) results of all five VFOPID
controller parameters, where the output of the neural tuner is shown and the influence
of renewable sources and decreased inertia on the VFOPID tuner is significant, where the
integral knob K; has a notable increase after connecting the wind turbine from 300 to
400 seconds and decreases after disconnecting the solar panels in 700 seconds. A similar
change is seenin K, Ky, 1, and A.
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Figure 20: Evolution of VFOPID gains and orders for both nominal (100%, blue) and decreased inertia
(40%, red)

5.4 Conclusion

Increasing the penetration of renewable source-based power creates multiple challenges
related to the frequency stability of future microgrids. These problems can be solved by
adding optimally designed control algorithms. Recent studies indicate that without extra
virtual inertia support, the system is stable only for relatively high system inertia. Other-
wise, the virtual inertia device is not able to provide satisfactory frequency stability with
high penetration of renewable energy sources. Therefore, in this paper, we propose the
reinforcement learning-based control of virtual inertia and compare this to H., and PI
controllers. In most situations, the proposed controller has shown slightly better results.
More complex scenarios and detailed analyses will form a subject for future research. Re-
inforcement learning is a recently introduced optimisation strategy. Also, in this chapter,
we presented the novel combination of an NN with a VFOPID controller, applied to robust
virtual inertia emulation in isolated microgrids with high renewable energy penetration,
where all tuned parameters (both gains and orders) of this controller were optimised by
the semi-stochastic DRL algorithm with SDDPG policy. We proved that VFOPID controller
fusion with an NN-based tuner is an effective strategy for virtual inertia emulation tasks.
In contrast to other proposed algorithms, the NN-based VFOPID controller has active sup-
port from a machine-learning algorithm that makes it self-adaptive to MG disturbances,
resulting in smooth deviation but a more significant influence from decreased inertia. It
was shown that the proposed controller is capable of providing good response and fre-
quency support in all simulated scenarios. The artificial neural network controller is faster
but less flexible in many disturbances, including decreased inertia. Despite differences in
the reinforcement learning algorithm applicable for training all tested controllers, every
methodology requires design individual reward/punishment rules, including the sensitiv-
ity of the reward system to the measured error and limitations in rewarding.
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6 Coordinated frequency control in hybrid microgrid

This chapter follows a discussion on the design of coordinated frequency control in the
hybrid microgrid, which, in contrast to the isolated microgrid discussed in the previous
chapter, has frequency control via energy management of the fuel cell and ultra capacitor.
These two independent units require the integration of multi-agent control architecture
to provide power balance.

6.1 General Structure of hybrid microgrid

Figure 21 presents the proposed hybrid MG, which encompasses power generation sub-
systems consisting of a WTG, PV panels, an FC system and a DLC. These subsystems are
interconnected in parallel to a shared AC bus that provides isolated loads. To examine this
system, high-order mathematical models with nonlinear dynamics are required for each
subsystem. However, in the majority of studies, first-order transfer functions are used to
analsze all components, and the system simulations rely on simplified linear models. Al-
though deploying nonlinear modelling techniques can greatly increase the accuracy and
extract the full system potential, they come at a high computational complexity along with
challenges in the LFC system analysis during the design process [102]. In this regard, we
substitute the FC and DLC systems with their fractional-order models, which eliminate the
disadvantage of the low accuracy while at the same time reducing the model complexity.
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Figure 21: General structure of the hybrid microgrid

Effective control of components is necessary for the stable operation of the hybrid
microgrid (HMG) system with different power generations. This can be achieved by regu-
lating the fluctuation in the frequency profile Af, which can be expressed using the power

balance AP = Pyer — Proaq @S

AP
Af = ) (27)
f Kuymc

where Py,; and P;,,, are the net and load power, respectively, and Ky is the system
frequency constant of HMG. The dynamical model of frequency variation according to per
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unit power deviation can be given by

Af 1
AP sM+D’

(28)

where M and D are the inertia and damping constants of HMG, respectively. Using a coor-
dinated control strategy between FC and DLC (see Fig. 23), the FDC problem can be solved
with enhanced power quality. In this regard, DLC and FC systems act as backup systems
and compensate for high and low frequency deviation, respectively. A high-pass filter
(HPF) here can reduce the charging and discharging of DLC in long-term operation. Also,
as seen from Fig. 23, the net power generation is comprised by the following equation:

Pyet = PvrG + Ppy + Prc = Pppc. (29)

Table 5: Parameters of the isolated HMG

RESs FC and DLC Frequency Deviation Model
TWTG =1.5s TFC =0.26s M=04
Tpy =185 Tpic =0.01s D =0.03

6.1.1 WTG Model

Wind speed has a direct effect on the output power of WTGs, as mechanical power in the
turbine is determined by the formula

1
Pyrg = 5pAV3Cp()Lv 0), (30)

where p is the density of air, A is the area swept by the blades, and v is the wind velocity.
Also, Cp is the rotor efficiency, which is a function of tip speed ratio A and pitch angle 9,
as

Cp(A,0) =0.5(1161""1—0.40 —5)e 212" 10.00684, (31)

with A~1 = (A +0.086) —0.035(63 + 1). As depicted in Fig. 22a, the Cp,uax can be ac-
quired for a given direction of the blades and when A is in its special value, which directly
depends on the aerodynamic structure of the turbine. Depending on wind velocity v, the
rotor speed can keep A at its optimal level, which means that the most energy from the
wind can be used. Also, Fig. 22b illustrates the variation of Py according to v. It remains
constant by using the pitch angle control system to prevent excessive rotor speed and pre-
serve the equipment when v increases to the rated wind velocity. When v is smaller and
greater than the cut out and on wind speeds, respectively, i.e. 14 < v < 25 m/s, Pyrg
takes its constant maximum value and is zero for v < 4 m/s. However, for v > 25 m/s, the
wind turbine stops operation. By defining Ty 7 as a time constant, the dynamical model
of WTG in the frequency domain can be given by

APyrg 1
APyina  sTwrg+1’

(32)

where AP,;,s and APy ¢ are the variations of the mechanical power and output power
of WTG, respectively.
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6.1.2 PV Model

One of the most promising, flexible and environmentally friendly power sources is the PV
system, which consists of photovoltaic panels connected together in series and parallel
structures. This system converts solar radiation to electrical energy based on solar cell
temperature and array area, and its output power Ppy can be expressed as follows in terms
of conversion efficiency 1, PV array area S, solar irradiation ¢ and ambient temperature
T

Ppy =nS¢e(1—0.005(T, +25)). (33)
The variations of solar irradiation to output power of PV system can be described as
AP, 1
PV _ - (34)
Ap  sTpy +1

where Tpy is the PV time constant.

6.1.3 FC Model

The FC technology, which has been considered as a high-efficiency power generation de-
vice, can convert chemical energy into electrical energy using hydrogen and oxygen. This
static device has slow dynamics in its fuel supply sections, such as pumps and valves, re-
sulting in slower power output. The dynamic response of the FC system can be given by
introducing the first-order time delay transfer function and Tr¢ as the FC time constant

1

Gre= ————.
e STre+1

(35)

6.1.4 DLC Model

The General Electric Company first patented electro-chemical capacitors in 1957, consist-
ing of porous electrodes using the DLC mechanism of charging [100]. Nowadays, this
technology plays a key part in fulfilling the demands of possible applications, including
memory back-up, electric vehicles, power quality and RESs. The transfer function of this
highly efficient device with a fast load frequency can be represented by the first-order lag
equation .

S 36
sTprc+1 (36)

Gpic =

where Tpc is a time constant.
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6.2 Coordinated ANN-based PI controller

In the proposed coordinated control solution, each ANN performs online tuning of each
PI controller simultaneously. At time step ¢ and after each system disturbance, the given
solution provides a reasonable change in the tuning of two parameters Kp(¢) and K; (¢) of
the controller, stated as

KPI(S) = Kp(t) + Kli(t)

(37)
The tuning of the differential part Kp(¢) is avoided because it is very sensitive to distur-
bances and difficult to change without losing tone stability. To organise the effective and
fast training of two independent agents, we designed the multi-agent SRL optimisation
method with individual positive weight w ranges [0, 5] and [0, 10] for agents 1 and 2, re-
spectively. We also propose an ANN with a modified tansig activation function defined

as
m

= 71 +e—0.1W|X‘ —n, (38)

y
where the absolute value of x is used to avoid negative output, provide a sufficient range
of coefficients for the Pl controller and make the tuning process more robust. For effective
coordination purposes of the two subsystems, DLC and FC, the parameters m and n are
considered to be 200 and 100 for the DLC element, and 10 times larger for the FC subsys-
tem. We avoid connecting the HPF to the ANN-based tuner since it has a negative impact
on the stability of the tuner and confuses the reward system. Therefore, the input signal
for both agents is the same.
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Figure 23: Proposed in [89]: coordinated multi-agent FDC scheme with NN-PI controller

6.2.1 Numerical Results

To develop the proposed multi-agent management strategy and to investigate the coor-
dinated NN-PI controller performance, the given control scheme (see Fig. 23) has been
implemented using MATLAB/Simulink with model parameters given in Table 5. Figure 24
(top and middle plots) shows the output power of WTG and PV systems modelled as day
dynamics with period 24 hours; while the bottom plot depicts the load demand. Figure 34
shows how the FDC problem can be appropriately solved using the proposed controller,
in which all hybrid power generation is better compensated by considering the effects of
system frequency variation as compared to the usual Pl controllers and when the system
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is free of control. In terms of transient response, NN-PI has a smaller overshoot with a
shorter settling time, indicating a faster transient time. In terms of steady state, the pro-
posed approach has small steady-state errors when compared to the usual controller (see
Table 6).

APpy

0 L L L L
0 5 10 15 20

Time [h]

Figure 24: Output powers of WTG, PV and load variations

According to the results, we can see the insignificant influence of RESs disturbances
on the proposed NN-PI controller. In contrast, the usual Pl controllers show less flexibil-
ity in the distributive process. Figure 25 illustrates the online tuned parameters of two
controllers. Here, we can see how the ANN adjusts the parameters of both controllers to
optimal values after each time step. For the usual Pl controllers, the parameters are fixed
at K, prc = 30, Kiprc = 0.1, and K, rc = 150, K; rc = 1000. Since the tuning process
depends on measured error dynamics, each ANN provides the dynamics of tuning in a
similar form. While in agent 1, the range of coefficients is similar; in agent 2, it is better to
keep the coefficients different.

Table 6: Performance Results

Controller IAE Root MSE MSE
Coordinated NN-PI | 0.0027 0.0004 0.0000016
Coordinated PI 0.005 0.001M 0.000012

IAE: Integral Absolute Error, MSE: Mean Square Error
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6.3 Coordinated ANN-based VFOPID control

The artificial neural network-based online tuner of (FO)PID extends the robustness of the
FO(PID) controller and can be a direct competitor of the fuzzy logic-based (FO)PID, which
can be optimised by a countless number of machine learning methods. The main idea
of an online tuner is the design of architecture that uses a control error signal to change
the values of (FO)PID. Machine learning helps to define the change in regard to which co-
efficients are more significant; such an intelligent approach can automatically adapt the
controller to any process. It is difficult say which architecture of neural network-based
tuner is right, for example, the optimal number of hidden neurons for each process can
be individual and an NN can take into consideration additional inputs that define control
error, including setpoints, disturbances, etc. We suggest this problem can be solved by ge-
netic algorithms such as the NEAT (neuroevolution of augmenting topologies) algorithm
that changes the topology of a neural network. The ANN-based tuner must abide by the
idea of a PID controller; in other words, the neural network-based tuner must include
integrator D,’1 (see Fig. 27), but differential part D, is optional since is sensitive to distur-
bances in a control loop and can destabilise the tune of all (FO)PID coefficients. Moreover,
negative values of PID (K, (t), K;(t), K;(t)) are not acceptable, therefore activation func-
tions in a neural network must be designed with this approach to avoid negative output.
Nevertheless, variable K,(t) is very sensitive to any rapid change or controller error and
cannot be stable for all processes, hence for the majority of processes, the variable FO(PI)
version is more applicable. In the case of variable fractional order coefficients (A (¢), u(z)),
we have to be sure about the exact range and resolution of output values because they
are computationally very complex in real-time control.
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Figure 27: Proposed for [68]: coordinated multi-agent FDC scheme with V(FO)PID controller

6.3.1 Numerical results

According to the results, we can see an insignificant influence of WTG and PV disturbances
on the proposed combination of NN and variable PID-type controller (see Fig. 28). In con-
trast, the traditional controllers show less flexibility in this case. In terms of transient re-
sponse, the NN-based V(FO)PID controller has a smaller overshoot with a shorter settling
time, thus indicating a faster transient time and hence better reference tracking perfor-
mance. In terms of steady state, the NN-based controllers have small steady-state errors
and reduce the values of the integral absolute error (IAE), mean square error (MSE) and
root MSE (RMSE) when compared to the traditional PID type controller (see Table 7). As
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Table 7: Calculated performance results of tested algorithms

Performance metric NN-VFOPID NN-PID FOPID PID
IAE 0.003324 0.004559 0.005774 0.006403
RMSE 0.0001804 | 0.0002482 0.000322 0.000323
MSE 3.2528*10°% | 6.1618%10°% | 1.0633%10°7 | 1.0416% 107’

seen, the proposed combination of NN and V(FO)PID produces the best results. One can
see that when NN is combined with V(FO)PID, the reactions to the system disturbances
are reduced. Figs. 30a and 30b illustrate the parameters of the online tuned V(FO)PID
controller for both agents 1 and 2. Here, we can see how the NN adjusts the parameters
of both controllers to optimal values after each step in the signal.
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Figure 28: Performance of proposed coordinated NN-VFOPID control of hybrid microgrid with com-
parison of tested algorithms
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6.4 Coordinated ANN-based control

Utilising a coordinated control strategy that combines FC and DLC systems, the LFC prob-
lem can be effectively resolved while also improving power quality, as depicted in Fig. 31.
In this approach, the fractional order DLC and FC systems serve as backup systems and
compensate for high and low frequency deviations, respectively. Also, to minimise the
charging and discharging of FDLC during long-term operation, a high-pass filter (HPF) is
employed. Furthermore, to maintain the stable operation of the autonomous isolated
MG system, effective control of the supply power is necessary since the output power of
various power generation components can fluctuate under certain conditions. The con-
trol strategy in this system is based on the power balance error AP, which is calculated
as the difference between the power supply Py.; and the power demand P, 4, given as
AP = Pye — Proaqa- As power generation varies, the frequency fluctuates, and this fre-
quency deviation Af is calculated using

ar=%. (39)

where K is the system frequency characteristic constant of the system. However, due to
delays in the frequency characteristics, the above equation is modified to
AP AP

Af= K(sTr+1) T SM+D’ (40)

which takes into account the frequency characteristic time constant 7 as well as the load
damping constant D and the inertia constant M. The net power generation is computed
using Pyver = Pyt + Ppy + Prrc £ Prprc, Which involves various contributing factors. For
control purposes, two ANN-based controls are employed for two fractional subsystems
associated with a common stochastic RL-based training unit. This control framework and
its strategy, which is integrated into the control unit, will be further investigated in the
following two subsections.
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Figure 31: Coordinated LFC strategy with the multi-agent ANN strategy proposed in [88]

6.4.1 ANN-based controller

The proposed ANN-based controller, which is similar to the PID-type controllers, is illus-
trated in Fig. 32. The controller takes frequency deviations as an error signal in three
different forms: original Af, differentiated dAf/dt, and integrated Af /s, and inputs them
into neurons. In this architecture, multiple ANN weights of actor systems are defined as
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wy1,; and wys; for hidden and output layers, respectively. The hidden layer consists of
three neurons, while the output layer has one neuron that summarises all signals into
output provided for the inputs of fractional DLC and fractional FC systems. Every artificial
neuron uses an adjustable tansig activation function that provides bipolar output and is
suitable for many control applications. The performance of the proposed controller de-
pends on the magnitude of the weights in each artificial axon and the constants defined
in the applied activation function as

y(t)

nj n;

- 1 fewix() 27 (41)

where weight w defines sensitivity to disturbances, constant n defines limits for output
signal in every neuron and i is agent number
Hidden

Input layer
layer Wy,i

v W2, Output
| ( W layer
oV Ay

Af

Figure 32: Proposed artificial neural network-based controller

6.4.2 Numerical Results

The proposed controller was found to be effective in addressing the LFC problem, as
shown in Fig. 34 (top plot), where it outperformed the FOPID controller. In terms of
transient response, the ANN-based controller demonstrated faster response times with
smaller overshoots and shorter settling times in a fractional order environment. The pro-
posed approach also exhibited smaller steady-state errors compared to the traditional
controller, as detailed in Table 8. Our proposed algorithm yields lower values of integral
absolute error (IAE), root mean square error (RMSE) and mean absolute error (MAE) when
compared to the FOPID controller, as evidenced by the results. It is worth noting that for
two FOPID controllers, the parameters are set to fixed values as K}, p;c = 100, K; prc = 50,
Kipric = 0.5, Aprc = 1.35, upyc = 1.2 and K, rc = 1000, K; pc = 200, K4 rc = 0.5,
Arc = 1.2, upc = 1.25. According to the results, we can see the insignificant influence of
renewable energy source disturbances on the proposed ANN controller. In contrast, the
usual FOPID controllers show less flexibility in the distributive process. Here, we can see
how the ANN is robust and adjusts the parameters of both controllers to optimal values
after each time step.

To verify the effectiveness of the fractional order modelling strategy and its impact on
the LFC enhancement compared to the classical integer order models, we repeated the
experiment for the considered MG system for the case of integer order FC and DLC mod-
els with the same parameters. It can be seen in Fig. 34 (bottom plot) that the proposed
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method using the same trained process for the fractional order case again shows better
performance than the FOPID controller. One may see that this resulted in a slightly de-
graded performance when compared to the fractional order case above. Nevertheless, in
both cases, the proposed controller was able to keep the frequency within the limits.

Table 8: Numerical comparison between ANN-based controller and FOPID

Controller IAE RMSE MAE

Proposed 0.0221 17678 ° 9.2214°°
FOPID 0.3125 1.7269~% 1.301474
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Figure 33: Output power changes of renewable energy sources and load
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Figure 34: Control performance of tested algorithms with fractional order system

6.5 Conclusion

In this chapter, we proposed ANN trained control methods using the SRL algorithm to solve
the FDC problem of the given isolated HMG. The results demonstrate that the proposed
combination of PI controller and neural tuner and automatic tuning technique captures
all the remarkable advantages of the controller, including robustness improvement and
disturbance rejection, and gives rise to a generation of control laws that improve both
transient and steady state cases. Furthermore, a neural network as a dependent con-
troller shows good results with the fractional order version of a hybrid microgrid. Two
ANN controllers were deployed for each component in a multi-agent framework using
a multi-agent SRL optimisation technique, which, in addition, were compared with two
optimally tuned FOPID controllers. Test results on an isolated MG with fractional compo-
nents validated the effectiveness of the proposed coordinated LFC strategy. As illustrated
in this study, it was observed that while the proposed algorithm outperforms the FOPID
controller in both systems with integer and fractional model of components, it exhibits an
enhanced LFC system with greater stability in the MG system with fractional order sub-
systems. In addition, this chapter presented two NN-V(FO)PID controllers applied to the
LFC problem in isolated HMG with high RES penetration, where the SRL algorithm opti-
mised all tuned parameters (both gains and orders) of this controller. We demonstrated
that combining a V(FO)PID controller with an NN-based tuner is an effective strategy for
FDC tasks. Unlike traditional PID-type controllers, the NN-based V(FO)PID controller has
active support from an ML algorithm, allowing it to self-adapt to HMG disturbances and
produce smooth frequency deviation. The results demonstrate that the proposed combi-
nation of PID-type controllers and an NN tuner captures all the remarkable advantages of
the controller and gives rise to a generation of control laws that improve both transient
and steady-state errors.
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7 Conclusion and Future Plans

This doctoral dissertation developed an artificial neural network-based controller with a
training system provided by the deep reinforcement learning approach, which was ap-
plied in a simulated model of an isolated microgrid with high penetration of renewable
energy sources. In this work, the author tried develop new methods that can increase
efficiency and provide adaptive virtual inertia emulation. To provide effective training for
an RL agent, the new reward system with designed frequency control rules was proposed.
In the numerical results and control quality criteria presented in [87], we can see the pro-
posed methods are competitive, on the one hand, to the classical control methods, in-
cluding PID, H,,, CDM, and on another hand to the advanced control methods, including
MPC, FLC. Work [86] attempted to combine the control scheme of energy storage pro-
posed in [47] with the designed MIMO neural network-based controller. The result of this
work was increased performance and flexibility in the frequency support of an isolated
microgrid. In publication [89], we tried to combine the fractional order PID controller
with the developed artificial neural network-based tuner, which provided online tuning of
FOPID knobs. With integrated reinforcement learning, this hybrid method showed very
good results in frequency management.

These developments have a lot of potential for future development and research to-
wards practical application. To make this more feasible, we plan and design a variable
fractional order with direct order calculation instead of switching between predefined
blocks. Some ideas in some publications were not fully completed; for example, the SD-
DPG policy needs to be deeply integrated with stochastic reinforcement learning and be
combined with a stability analysis of proposed control methods in order to design con-
strained neural network that can guarantee stable performance in power management.
Moreover, we plan to implement an ANN as a controller for a real DC/AC inverter in or-
der to provide robust and adaptive voltage control with respect to the measured current.
Additionally, we plan to extend the designed system in a simulated multi-microgrid archi-
tecture, where a multi-agent control architecture is used to provide frequency stability in
each area of the interconnected microgrid.

63



List of Figures

1

12

13

14

15

16

17

18

19

20

21

22
23
24

Evolution of inverter-dominated systems adopted from [93]................. 13
Schematic representation of a typical microgrid, including power conver-
sion devices, power generators with differentinertia......................... 18

Mathematical model of isolated microgrid with hierarchical control loop
and frequency support provided by virtual inertia controller, including re-

newable energy and domesticloads ...........coooiiiiiii i 20
Typical structure of virtual inertia controller with constant Ky; described
asvirtual inertia gain. ... ...ooiiiiiii e 24

Illustration of decreased inertia effects with variations of virtual inertia
controller: (a)—full scheme with constant Ky;; (b)—without 1/Ry; and
(¢)=without 1/Ry;and Dy .....oouvieiiiiiiiiiiiiiiiiiiiiiiiia e 25
Classification of algorithms for virtual inertia control ......................... 26
Example of implemented neural networks of actor (i.e. Tuner) and critic
with illustrated connections between them defined as action a; and state
s (green dashed line), applied in publication [67], where Af, Af /s, dAf /dt
is state s; and K, (1), K;(t), K4(r), A(t), u(t) isactiona; ...................... 29
Structure of implemented reinforcement learning-based controller devel-
oped in [84], including the forced replay block, applied to decrease num-

ber of episodes with negativereward ..., 37
Power generated by wind and solar plants (top and middle), domestic load
profile (BOttOM) ... oot 38

Schematic representation of the virtual inertia control strategy proposed
in[86], including developed MIMO type of ANN-based controller/tuner .... 39
Schematic representation of implemented deep reinforcement learning
control algorithm for energy storage model applied in [87] with consider-
ation of dynamical signals for ESS A, A and control of incoming power

Scenario with simulated large amount of incoming power generated by
park of wind turbines, organised to show (dis)charge changes of applied
energy storage model ........oooiiiiiiiii e 1
Provided control signals of ESS with dynamical coefficients Ao, AB and Ay. 42
Scheme of the proposed DRL-based VFOPID for VIC in an MG proposed in
B i s 43
Relationships between the VFOPID controller and its classical variations.... 44
Scheme of VFOPID controller with proposed NN-based tuner designed
for [67], taking into consideration switchable FOMCON blocks of orders

A and u defined by VO-FI and VO-FD, respectively ...................ceo.eee. 46
Data used in the considered scenarios with RESs connection and discon-
[T<Tex 1 o 1R 47

Frequency deviation. Performance results of the proposed (green), FOPID
(purple with crosses) and PID (dashed orange) with different inertia. Red

dashed lines indicate RES (dis)connection moments............ccovveen... 48
Evolution of VFOPID gains and orders for both nominal (100%, blue) and

decreased inertia (40%, red) ........oviiiiiiiiii e 49
General structure of the hybrid microgrid ... 50
Variation of Cp and Py7¢ accordingtothe A and v. ...........coooeiinn... 52
Proposed in [89]: coordinated multi-agent FDC scheme with NN-PI controller 53
Output powers of WTG, PV and load variations .............ccoevviiiiinn. .. 54

64



25
26

27

28

29
30

31
32

33
34

Online tuning of PI controllers DLC (top) and FC (bottom) ....................
Control results of proposed control approach and Pl controllers for DLC

Proposed for [68]: coordinated multi-agent FDC scheme with V(FO)PID
CONEEOIIET Lo e
Performance of proposed coordinated NN-VFOPID control of hybrid mi-
crogrid with comparison of tested algorithms.........................
Modelled scenarios of renewable sources and loads in hybrid microgrid....
Online tuning of VFOPID controllers include dynamics of orders A and u,
and gains Ky, Ki, Kyoovoviinii
Coordinated LFC strategy with the multi-agent ANN strategy proposed in
B8] oo e,
Proposed artificial neural network-based controller ..........................
Output power changes of renewable energy sources and load...............
Control performance of tested algorithms with fractional order system.....

65



List of Tables

1 Applied parameters of the isolated microgrid ..., 21
2 Calculated performance in Nominal Scenario .............ccooeviiiiiiieaa.. 39
3 Performance of the Proposed Controller ..., 42
4 Comparison of different controllers using metrics ..................oooooiil 47
5 Parameters of the isolated HMG ..........cccoiiiiiiiiiiiiiiii s 51
6 Performance RESUILS ..........ooiiiiiii s 54
7 Calculated performance results of tested algorithms ......................... 57
8 Numerical comparison between ANN-based controller and FOPID .......... 61

66



References

[1]

(2]

(3]

[4]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

(13]

(14]

H. Abubakr, T. H. Mohamed, M. M. Hussein, J. M. Guerrero, and G. Agundis-
Tinajero. Adaptive frequency regulation strategy in multi-area microgrids including
renewable energy and electric vehicles supported by virtual inertia. International
Journal of Electrical Power & Energy Systems, 129:106814, 2021.

H. Ali, G. Magdy, B. Li, G. Shabib, A. A. Elbaset, D. Xu, and Y. Mitani. A new fre-
qguency control strategy in an islanded microgrid using virtual inertia control-based
coefficient diagram method. IEEE Access, 7:16979-16990, 2019.

H. Ali, G. Magdy, and D. Xu. A new optimal robust controller for frequency stability
of interconnected hybrid microgrids considering non-inertia sources and uncertain-
ties. International Journal of Electrical Power & Energy Systems, page 106651, 2021.

R. Ali, T. H. Mohamed, Y. S. Qudaih, and Y. Mitani. A new load frequency control
approach in an isolated small power systems using coefficient diagram method.
International Journal of Electrical Power & Energy Systems, 56:110-116, 2014.

D. Bazargan, S. Filizadeh, and A. Gole. Stability analysis of converter-connected
battery energy storage systems in the grid. In 2015 IEEE Power & Energy Society
General Meeting, volume 5, pages 1204-1212, 2014.

H.-P. Beck and R. Hesse. Virtual synchronous machine. In International Conference
on Electrical Power Quality and Utilisation, 2007.

H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, and Y. Mitani. Intelligent fre-
qguency control in an AC microgrid: Online PSO-based fuzzy tuning approach. IEEE
Transactions on Smart Grid, 3(4):1935-1944, 2012.

H. Bevrani, T. Ise, and Y. Miura. Virtual synchronous generators: A survey and new
perspectives. International Journal of Electrical Power & Energy Systems, 54:244-
254, 2014.

V. A. Boicea. Energy storage technologies: The past and the present. Proceedings
of the IEEE, 102(11):1777-1794, 2014.

H. R. Chamorro, I. Riafo, R. Gerndt, I. Zelinka, F. Gonzalez-Longatt, and V. K. Sood.
Synthetic inertia control based on fuzzy adaptive differential evolution. Interna-
tional Journal of Electrical Power & Energy Systems, 105:803-813, feb 2019.

J. Chen, F. Yang, and Q.-L. Han. Model-free predictive h control for grid-connected
solar power generation systems. IEEE Transactions on Control Systems Technology,
22(5):2039-2047, 2014.

J. P. Coelho, J. Boaventura-Cunha, and P. B. de Moura Oliveira. Extended Stability
Conditions for CDM Controller Design. Springer International Publishing, 2015.

S. Curi, D. Gross, and F. Dorfler. Control of low-inertia power grids: A model reduc-
tion approach. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
2017.

F. Diaz-Gonzalez, A. Sumper, O. Gomis-Bellmunt, and R. Villafafila-Robles. A review
of energy storage technologies for wind power applications. Renewable and Sus-
tainable Energy Reviews, 16(4):2154-2171, may 2012.

67



[15]

[16]

(17]

(18]

[19]

[20]
(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

A. Fathi, Q. Shafiee, and H. Bevrani. Robust frequency control of microgrids using
an extended virtual synchronous generator. IEEE Transactions on Power Systems,
33(6):6289-6297, nov 2018.

A. Fernandez-Guillamén, E. Gomez-Lazaro, E. Muljadi, and A. Molina-Garcia.
Power systems with high renewable energy sources: A review of inertia and fre-
qguency control strategies over time. Renewable and Sustainable Energy Reviews,
115:109369, 2019.

P. F. Frack, P. E. Mercado, and M. G. Molina. Extending the VISMA concept to im-
prove the frequency stability in microgrids. In 2015 18th International Conference
on Intelligent System Application to Power Systems (ISAP), 2015.

Z-L. Gaing. A particle swarm optimization approach for optimum design of PID
controller in AVR system. IEEE Transactions on Energy Conversion, 19(2):384-391,
2004.

M. Garmroodi, G. Verbic, and D. J. Hill. Frequency support from wind turbine gen-
erators with a time-variable droop characteristic. IEEE Transactions on Sustainable
Energy, 9(2):676-684, apr 2018.

I. Goodfellow, Y. Bengio, and A. Courvile. Deep Learning. The MIT Press, 2016.

D. Grol3 and F. Dorfler. On the steady-state behavior of low-inertia power systems.
IFAC-PapersOnLine, 50(1):10735-10741, 2017.

D. GroB, S. Bolognani, B. K. Poolla, and F. Dorfler. Increasing the resilience of low-
inertia power systems by virtual inertia and damping. In Proceedings of IREP’2017
Symposium. ETH Zurich, 2017.

S. S. Guggilam, C. Zhao, E. Dall'Anese, Y. C. Chen, and S. V. Dhople. Engineering
inertial and primary-frequency response for distributed energy resources. In 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017.

F. Guo, L. Wang, C. Wen, D. Zhang, and Q. Xu. Distributed voltage restoration and
current sharing control in islanded DC microgrid systems without continuous com-
munication. IEEE Transactions on Industrial Electronics, 67(4):3043-3053, 2020.

W. Guo, F. Liu, J. Si, and S. Mei. Incorporating approximate dynamic programming-
based parameter tuning into PD-type virtual inertia control of DFIGs. In Interna-
tional Joint Conference on Neural Networks, 2013.

H.-G. Han, L. Zhang, Y. Hou, and J.-F. Qiao. Nonlinear model predictive control based
on a self-organizing recurrent neural network. IEEE Transactions on Neural Net-
works and Learning Systems, 27(2):402-415, 2016.

B. Hekimoglu. Optimal tuning of fractional order PID controller for DC motor speed
control via chaotic atom search optimization algorithm. [EEE Access, 7:38100-
38114, 2019.

I. A. Hiskens and E. M. Fleming. Control of inverter-connected sources in au-
tonomous microgrids. In 2008 American Control Conference. IEEE, 2008.

Y. Hu, W. Wei, Y. Peng, and J. Lei. Fuzzy virtual inertia control for virtual synchronous
generator. In 2016 35th Chinese Control Conference (CCC), 2016.

68



[30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

S.Jung, Y. T. Yoon, and J.-H. Huh. An efficient micro grid optimization theory. Math-
ematics, 8(4):560, 2020.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN95
- International Conference on Neural Networks, volume 4, pages 1942-1948, 1995.

T. Kerdphol, Y. Qudaih, and Y. Mitani. Optimum battery energy storage system using
PSO considering dynamic demand response for microgrids. International Journal
of Electrical Power & Energy Systems, 83:58-66, 2016.

T. Kerdphol, F. Rahman, Y. Mitani, K. Hongesombut, and S. Kiifeoglu. Virtual in-
ertia control-based model predictive control for microgrid frequency stabilization
considering high renewable energy integration. Sustainability, 9(5):773, 2017.

T. Kerdphol, F. S. Rahman, Y. Mitani, M. Watanabe, and S. Kiifeoglu. Robust virtual
inertia control of an islanded microgrid considering high penetration of renewable
energy. IEEE Access, 6:625-636, 2018.

T.Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani. Robust virtual inertia control
of a low inertia microgrid considering frequency measurement effects. IEEE Access,
7:57550-57560, 2019.

T. Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani. Virtual Inertia Synthesis and
Control. Springer International Publishing, 2021.

T. Kerdphol, F. S. Rahman, M. Watanabe, Y. Mitani, D. Turschner, and H.-P. Beck.
Enhanced virtual inertia control based on derivative technique to emulate simul-
taneous inertia and damping properties for microgrid frequency regulation. IEEE
Access, 7:14422-14433, 2019.

T. Kerdphol, M. Watanabe, K. Hongesombut, and Y. Mitani. Self-adaptive virtual
inertia control-based Fuzzy logic to improve frequency stability of microgrid with
high renewable penetration. IEEE Access, 7:76071-76083, 2019.

A. A.Khan, M. Q. Khan, S. G. Satti, and M. Adil. Robust control of hybrid distributed
generation for frequency regulation. In 2017 14th International Bhurban Conference
on Applied Sciences and Technology (IBCAST), 2017.

P. Kou, D. Liang, L. Yu, and L. Gao. Nonlinear model predictive control of wind farm
for system frequency support. IEEE Transactions on Power Systems, 34(5):3547-
3561, 2019.

B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and
B. Hannegan. Achieving a 100% renewable grid: Operating electric power systems
with extremely high levels of variable renewable energy. IEEE Power and Energy
Magazine, 15(2):61-73, 2017.

D. Kumar, B. K. Mukherjee, H. D. Mathur, H. Siguerdidjane, and S. Bhanot. Forecast-
based modeling and robust frequency control of standalone microgrids considering
high penetration of renewable sources. International Transactions on Electrical
Energy Systems, 31(2), 2020.

P. Kundur. Power System Stability and Control. MCGRAW HILL BOOK CO, 1994.

69



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

(54]

[55]

[56]

(57]

H.-J. Kunisch, K. G. Kramer, and H. Dominik. Battery energy storage another option
for load-frequency-control and instantaneous reserve. IEEE Transactions on Energy
Conversion, EC-1(3):41-46, 1986.

M. Kusy and R. Zajdel. Application of reinforcement learning algorithms for the
adaptive computation of the smoothing parameter for probabilistic neural network.
IEEE Transactions on Neural Networks and Learning Systems, 26(9):2163-2175, sep
2015.

F. Lamnabhi-Lagarrigue, A. Annaswamy, S. Engell, A. Isaksson, P. Khargonekar, R. M.
Murray, H. Nijmeijer, T. Samad, D. Tilbury, and P. V. den Hof. Systems & control
for the future of humanity, research agenda: Current and future roles, impact and
grand challenges. Annual Reviews in Control, 43:1-64, 2017.

Y. Levron and J. Belikov. Control of energy storage devices under uncertainty using
nonlinear feedback systems. In 2020 IEEE Power & Energy Society General Meeting
(PESGM). IEEE, 2020.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv, 2019.

A. V. Lipatov and N. I. Sokolov. On some sufficient conditions for stability
and instability of linear continuous stationary systems. Avtomat. i Telemekh.,
39(9):1285-1291, 1978.

L. Liu, F. Pan, and D. Xue. Variable-order fuzzy fractional PID controller. ISA Trans-
actions, 55:227-233, 2015.

G. Magdy, H. Ali, and D. Xu. A new synthetic inertia system based on electric vehicles
to support the frequency stability of low-inertia modern power grids. Journal of
Cleaner Production, 297:126595, may 2021.

G. Magdy, A. Bakeer, G. Shabib, A. A. Elbaset, and Y. Mitani. Decentralized model
predictive control strategy of a realistic multi power system automatic generation
control. In Nineteenth International Middle East Power Systems Conference, 2017.

G. Magdy, G. Shabib, A. A. Elbaset, and Y. Mitani. A novel coordination scheme
of virtual inertia control and digital protection for microgrid dynamic security con-
sidering high renewable energy penetration. IET Renewable Power Generation,
13(3):462-474, 2019.

E. Mamdani and N. Baaklini. Prescriptive method for deriving control policy in a
fuzzy-logic controller. Electronics Letters, 11(25-26):625, 1975.

S. Manabe. Coefficient diagram method as applied to the attitude control of
controlled-bias-momentum satellite. IFAC Proceedings Volumes, 27(13):327-332,
1994.

S. Manabe. Importance of coefficient diagram in polynomial method. In 42nd IEEE
International Conference on Decision and Control (IEEE Cat. No.0O3CH37475), 2003.

S. Manabe. Coefficient diagram method in mimo application: an aerospace case
study. IFAC Proceedings Volumes, 38(1):7-12, 2005.

70



(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S. Mariethoz, A. Fuchs, and M. Morari. A VSC-HVDC decentralized model predic-
tive control scheme for fast power tracking. IEEE Transactions on Power Delivery,
29(1):462-471, 2014.

W. Mendieta and C. A. Canizares. Primary frequency control in isolated microgrids
using thermostatically controllable loads. IEEE Transactions on Smart Grid, 12(1):93-
105, 2021.

K. Mentesidi, R. Garde, M. Aguado, and E. Rikos. Implementation of a fuzzy logic
controller for virtual inertia emulation. In 2015 International Symposium on Smart
Electric Distribution Systems and Technologies (EDST), 2015.

F. Milano, F. Dorfler, G. Hug, D. J. Hill, and G. Verbic. Foundations and challenges
of low-inertia systems (invited paper). In 2018 Power Systems Computation Confer-
ence (PSCC), 2018.

M. E. Mokadem, V. Courtecuisse, C. Saudemont, B. Robyns, and J. Deuse. Fuzzy
logic supervisor-based primary frequency control experiments of a variable-speed
wind generator. IEEE Transactions on Power Systems, 24(1):407-417, 2009.

M. G. Molina. GRID ENERGY STORAGE SYSTEMS. Wiley, 2019.

H.-J. Moon, J. W. Chang, S.-Y. Lee, and S.-l. Moon. Autonomous active power man-
agement in isolated microgrid based on proportional and droop control. Energy
Procedia, 153:48-55, 2018.

A. Naderipour, Z. Abdul-Malek, M. Hajivand, Z. M. Seifabad, M. A. Farsi, S. A.
Nowdeh, and I. F. Davoudkhani. Spotted hyena optimizer algorithm for capacitor
allocation in radial distribution system with distributed generation and microgrid
operation considering different load types. Scientific Reports, 11(1), 2021.

K. Nosrati, V. Skiparev, A. Tepljakov, E. Petlenkov, J. Belikov, and Y. Levron. Con-
strained intelligent frequency control in an AC microgrid: An online reinforcement
learning based PID tuning approach. In 2023 IEEE Power and Energy Society General
Meeting, pages 1-5, 2023.

K. Nosrati, V. Skiparev, A. Tepljakov, E. Petlenkov, Y. Levron, and J. Belikov. Coordi-
nated Pl-based frequency deviation control of isolated hybrid microgrid: An online
multi-agent tuning approach via reinforcement learning. In 2022 IEEE PES Innova-
tive Smart Grid Technologies Conference Europe (ISGT-Europe), pages 1-5, 2022.

K. Nosrati, V. Skiparev, A. Tepljakov, E. Petlenkov, Y. Levron, and J. Belikov. 9 - ap-
plication of neural network based variable fractional order pid controllers for load
frequency control in isolated microgrids. In D. K. Mishra, L. Li, J. Zhang, and M. J.
Hossain, editors, Power System Frequency Control, pages 203-216. Academic Press,
2023.

Y. Ojo, J. Watson, and I. Lestas. A review of reduced-order models for microgrids:
Simplifications vs accuracy.

P. Ostalczyk and P. Duch. Variable, fractional-order PID controller synthesis novelty
method. In W. Wang, editor, Control Based on PID Framework, chapter 1. Inte-
chOpen, Rijeka, 2021.

71



[71]

[72]

[73]

(74]

[75]

[76]

[77]

(78]

[79]

[80]

(81]

(82]

(83]

[84]

A. Oudalov, D. Chartouni, and C. Ohler. Optimizing a battery energy storage system
for primary frequency control. IEEE Transactions on Power Systems, 22(3):1259-
1266, 2007.

N. U. Padmawansa and L. N. W. Arachchige. Improving transient stability of an is-
landed microgrid using PV based virtual synchronous machines. In 2020 Moratuwa
Engineering Research Conference (MERCon). IEEE, 2020.

. Podlubny. Fractional-order systems and PIADp-controllers. IEEE Transactions on
Automatic Control, 44:208-214, 1999.

Z. Qi, Q. Shi, and H. Zhang. Tuning of digital PID controllers using particle swarm
optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE
Transactions on Industrial Electronics, 67(7):5637-5646, 2020.

P. F. Ribeiro and M. L. Crow. Energy storage systems for advanced power applica-
tions. Proceedings of the IEEE, 89(12):1744-1756, 2001.

D. M. Rosewater, D. A. Copp, T. A. Nguyen, R. H. Byrne, and S. Santoso. Battery
energy storage models for optimal control. IEEE Access, 7:178357-178391, 2019.

N. Sa-ngawong and I. Ngamroo. Optimal fuzzy logic-based adaptive controller
equipped with DFIG wind turbine for frequency control in stand alone power sys-
tem. In 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). IEEE, 2013.

J. Schiffer, D. Zonetti, R. Ortega, A. M. Stankovi¢, T. Sezi, and J. Raisch. A survey on
modeling of microgrids—from fundamental physics to phasors and voltage sources.
Automatica, 74:135-150, 2016.

K. Sharifabadi, L. Harnefors, H.-P. Nee, S. Norrga, and R. Teodorescu. Desigh, Con-
trol, and Application of Modular Multilevel Converters for HYDC Transmission Sys-
tems. John Wiley & Sons, Ltd., first edition, 2016.

D. Shrestha, U. Tamrakar, N. Malla, Z. Ni, and R. Tonkoski. Reduction of energy con-
sumption of virtual synchronous machine using supplementary adaptive dynamic
programming. In IEEE International Conference on Electro Information Technology,
2016.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In 31st International Conference on Machine Learning,
volume 22, Beijing, China, 2014.

D. Singh and K. Seethalekshmi. A review on various virtual inertia techniques for dis-
tributed generation. In 2020 International Conference on Electrical and Electronics
Engineering (ICE3). IEEE, 2020.

V. P. Singh, S. R. Mohanty, N. Kishor, and P. K. Ray. Robust H-infinity load frequency
control in hybrid distributed generation system. International Journal of Electrical
Power & Energy Systems, 46:294-305, 2013.

V. Skipareyv, J. Belikov, and E. Petlenkov. Reinforcement learning based approach
for virtual inertia control in microgrids with renewable energy sources. In IEEE PES
Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, NL, 2020.

72



(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

V. Skiparey, J. Belikov, and E. Petlenkov. MIMO reinforcement learning based ap-
proach for frequency support in microgrids with high renewable energy penetra-
tion. In IEEE PES General Meeting, Washington DC, USA, 2021.

V. Skiparey, J. Belikov, E. Petlenkov, and Y. Levron. Reinforcement learning based
MIMO controller for virtual inertia control in isolated microgrids. In IEEE PES Inno-
vative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia,
2022.

V. Skiparev, R. Machlev, N. R. Chowdhury, Y. Levron, E. Petlenkov, , and J. Belikov.
Virtual inertia control methods in islanded microgrids. Energies, 14(6):1562, 2021.

V. Skiparev, K. Nosrati, J. Belikov, A. Tepljakov, and E. Petlenkov. An enhanced
NN-based load frequency control design of MGs: A fractional order modeling
method. In 2023 IEEE International Conference on Compatibility, Power Electronics
and Power Engineering (CPE-POWERENG), Tallinn, Estonia, 2023.

V. Skiparev, K. Nosrati, A. Tepljakov, E. Petlenkov, Y. Levron, J. Belikov, and J. M. Guer-
rero. Virtual inertia control of an isolated microgrid using NN-VFOPID controller: A
self-tuning approach. IEEE Transactions on Sustainable Energy, 2023.

N. Sockeel, J. Gafford, B. Papari, and M. Mazzola. Virtual inertia emulator-based
model predictive control for grid frequency regulation considering high penetration
of inverter-based energy storage system. IEEE Transactions on Sustainable Energy,
11(4):2932-2939, 2020.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

U. Tamrakar, T. M. Hansen, R. Tonkoski, and D. A. Copp. Model predictive frequency
control of low inertia microgrids. In 2019 IEEE 28th International Symposium on
Industrial Electronics (ISIE), 2019.

U. Tamrakar, D. Shrestha, M. Maharjan, B. Bhattarai, T. Hansen, and R. Tonkoski.
Virtual inertia: Current trends and future directions. Applied Sciences, 7(7):654,
2017.

A. Tepljakov, E. Petlenkov, and J. Belikov. FOMCON: Fractional order modeling and
control toolbox for MATLAB. In The 18th International Conference Mixed Design of
Integrated Circuits and Systems, pages 684-689, Gliwice, Poland, 2011.

L. Toma, M. Sanduleac, S. A. Baltac, F. Arrigo, A. Mazza, E. Bompard, A. Musa, and
A. Monti. On the virtual inertia provision by BESS in low inertia power systems. In
2018 IEEE International Energy Conference (ENERGYCON), 2018.

L. Toma, M. Sanduleac, S. A. Baltac, F. Arrigo, A. Mazza, E. Bompard, A. Musa, and
A. Monti. On the virtual inertia provision by BESS in low inertia power systems. In
2018 IEEE International Energy Conference (ENERGYCON), 2018.

A. Ulbig, T. S. Borsche, and G. Andersson. Impact of low rotational inertia on power
system stability and operation. In The International Federation of Automatic Control
IFAC Cape Town, 2014.

A. Ulbig, T. S. Borsche, and G. Andersson. Impact of low rotational inertia on power
system stability and operation. IFAC Proceedings Volumes, 47(3):7290-7297, 2014.

73



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

T. V. Van, K. Visscher, J. Diaz, V. Karapanos, A. Woyte, M. Albu, J. Bozelie, T. Loix,
and D. Federenciuc. Virtual synchronous generator: An element of future grids. In
2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe),
2010.

B. Vedik, R. Kumar, R. Deshmukh, S. Verma, and C. K. Shiva. Renewable energy-
based load frequency stabilization of interconnected power systems using quasi-
oppositional dragonfly algorithm. Journal of Control, Automation and Electrical
Systems, 32(1):227-243, oct 2020.

P. Vorobey, P-H. Huang, M. A. Hosani, J. L. Kirtley, and K. Turitsyn. A framework
for development of universal rules for microgrids stability and control. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), 2017.

Y. Wang and G. Zhao. A comparative study of fractional-order models for lithium-
ion batteries using runge kutta optimizer and electrochemical impedance spec-
troscopy. Control Engineering Practice, 133:105451, 2023.

Z. Wang, Q. Wang, D. He, Q. Liu, X. Zhu, and J. Guo. An improved particle swarm
optimization algorithm based on fuzzy PID control. In 2017 4th International Con-
ference on Information Science and Control Engineering (ICISCE), 2017.

L. Yang and Z. Hu. Coordination of generators and energy storage to smooth power
fluctuations for multi-area microgrid clusters: A robust decentralized approach.
IEEE Access, 9:12506-12520, 2021.

K. Y. Yap, C. R. Sarimuthu, and J. M.-Y. Lim. Virtual inertia-based inverters for miti-
gating frequency instability in grid-connected renewable energy system: A review.
Applied Sciences, 9(24):5300, 2019.

J. Zeng, B. Zhang, C. Mao, and Y. Wang. Use of battery energy storage system to
improve the power quality and stabilty of wind farms. In 2006 International Con-
ference on Power System Technology, 2006.

Q.-C. Zhong, G. C. Konstantopoulos, B. Ren, and M. Krstic. Improved synchronvert-
ers with bounded frequency and voltage for smart grid integration. IEEE Transac-
tions on Smart Grid, 9(2):786-796, 2018.

Q.-C. Zhong and G. Weiss. Synchronverters: Inverters that mimic synchronous gen-
erators. IEEE Transactions on Industrial Electronics, 58(4):1259-1267, 2011.

J. Zhu, Y. Zheng, Y. Wang, and Y. Yuan. Isolated microgrid capacity configuration
considering economic risk of customer interruption. In 2019 IEEE Innovative Smart
Grid Technologies - Asia (ISGT Asia). IEEE, 2019.

M. F. Zia, E. Elbouchikhi, and M. Benbouzid. Microgrids energy management sys-
tems: A critical review on methods, solutions, and prospects. Applied Energy,
222:1033-1055, 2018.

74



Acknowledgements

| wish to thank my long-time collaborator Komeil Nosrati, who has helped me publish
many significant works included in this Ph.D thesis and has provided two fantastic years
of productive scientific work and cooperation. Special acknowledgment to my Israeli col-
lages Dr. Ram Machlev, Prof. Yoash Levron and Dr. Nilanjan Roy Chowdhury for assistance
in research and recommendations. Also, acknowledgement to my supervisors Prof. Juri
Belikov and Prof. Eduard Petlenkov for personal, financial support and professional recom-
mendations. Additional acknowledgment to my parents for mental support and patience.

75



Abstract
Virtual inertia control of microgrids using deep reinforcement
learning methods

Concerns about climate change turned the development of power systems towards the
direction of increased energy generation by renewable energy sources and decentralisa-
tion of the grid. However, increased penetration of renewable energy sources triggered
the phenomenon known as low inertia. A power system with decreased inertia creates
many problems and risks in relation to total power stability, including decreased frequency
stability, frequency mismatch between parts of the interconnected grid, power consump-
tion/production imbalance and power outrage. In order to increase the inertia and miti-
gate risks, many engineers propose to emulate the inertia of the synchronous machine by
power electronics-based devices known as virtual synchronous generators (VSG). How-
ever, emulation of virtual inertia can only be accurate if its operation is controlled by a
robust closed-loop algorithm. In the last few years, many classical, hybrid and advanced
algorithms have tried to emulate optimal inertia; however, most of them still have uncov-
ered limitations in scalability and deployment for decentralised power systems, limited
flexibility and computational complexity. In other words, they cannot mitigate all poten-
tial stability risks in the full-scale decentralised and interconnected grid. In this doctoral
dissertation, we propose a deep reinforcement learning (RL)-based method with a new
reward/punishment system. The result of the proposed advanced controller is increased
efficiency of inertia emulation in scenarios with different system inertia, renewable en-
ergy and domestic loads (dis)connection. In addition, we demonstrate scalability, since RL
can train an artificial neural network (ANN) as an independent controller and as a hybrid
combined with V(FO)PID controllers and a control scheme of advanced energy storage.
Moreover, we demonstrate deployment potential in microgrid applications, e.g. provide
coordinated control in isolated hybrid microgrid using multi-agent architecture.
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Kokkuvote
Mikrovorkude virtuaalse inertsi juhtimine siligava
stiimuloppe meetoditega

Kliimamuutustega seotud probleemid on suunanud elektrisiisteemide arengu taastuva-
te energiaallikate suurema energiatootmise ja vorgu detsentraliseerimise suunas. Taas-
tuvate energiaallikate kasvav levik kédivitas aga ndhtuse, mida tuntakse kui madalat
inertsi. Vahenenud inertsiga elektrislisteem tekitab mitmeid probleeme ja riske
seoses voOrgu stabiilsusega, sealhulgas vahenenud sagedusstabiilsus, sageduse
mittevastavus vorku (ihendatud osade vahel, elektritarbimise ja -tootmise
tasakaalustamatus ning elektrikatkestused. Inertsi suurendamiseks ja riskide
vahendamiseks teevad paljud insenerid ettepaneku emuleerida stinkroonmasina inertsi
jouelektroonikapohiste seadmetega, mida nimetatakse virtuaalseteks
stinkroongeneraatoriteks (VSG). Virtuaalse inertsi emuleerimine saab aga olla tipne
ainult siis, kui selle t66d juhib robustne suletud ahela algoritm. Viimastel aastatel on
paljud klassikalised, hibriid- ja taiustatud algoritmid plilidnud emuleerida optimaalset
inertsi; enamikul neist on siiski leitud piirangud seoses skaleeritavuse ja
detsentraliseeritud elektrisiisteemide kasutuselevotuga, piiratud paindlikkusega ja ar-
vutuskomplekssusega. Teisisonu, nad ei suuda leevendada koiki voimalikke stabiilsusriske
tadiemahulises detsentraliseeritud ja Ghendatud vorgus. Kaesolevas doktorit6ds pakume
valja stigava stiimuléppel (RL) p&hineva meetodi koos uue tasu/karistuse slisteemiga.
Valjapakutud taiustatud kontrolleri tulemuseks on suurem tdhusus inertsi jaljendamisel
stsenaariumides, kus on erinev slisteemi inerts, taastuvenergia ja kodumaiste koormuste
(lahti)ihendamine. Lisaks demonstreerime skaleeritavust, kuna RL saab 6petada tehis-
narvivorgu (ANN) iseseisva kontrollerina ja hibriidina koos V(FO)PID-regulaatorite ja taius-
tatud energiasalvestuse juhtimisskeemiga. Lisaks sellele demonstreerime kasutuselevétu
potentsiaali mikrovorkude rakendustes, nt koordineeritud juhtimise tagamine
isoleeritud hibriidmikrovorgus, kasutades mitmeagendi arhitektuuri.

77






Appendix 1

IX

V. Skiparev, J. Belikov, and E. Petlenkov. Reinforcement learning based
approach for virtual inertia control in microgrids with renewable energy
sources. In IEEE PES Innovative Smart Grid Technologies Europe (ISGT-
Europe), The Hague, NL, 2020

79






2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)

Virtual, October 26-28, 2020

Reinforcement Learning based Approach for Virtual
Inertia Control in Microgrids with Renewable
Energy Sources

Vjatseslav Skiparev, Juri Belikov
Department of Software Science
Tallinn University of Technology

Akadeemia tee 15a, 12618 Tallinn

Email: {vjatseslav.skiparev, juri.belikov}@taltech.ce

Abstract—The increasing penetration of distributed and renew-
able energy sources into power grids results in various control
challenges. Among others is a problem of decreasing inertia,
especially in the case of islanded microgrids with high penetration
of a low-inertia power sources. One approach is based on a
concept of additional virtual inertia control. In this paper we
propose reinforcement learning based virtual inertia control with
deep deterministic policy gradients based optimization algorithm.
The proposed solution is demonstrated using standard topology
of a microgrid and compares to H-infinity and optimally tuned
PI controllers.

Index Terms—virtual inertia, reinforcement learning, micro-
grids, renewable energy

I. INTRODUCTION

The last decade has witnessed the raising concerns regarding
continuous environmental changes. This has motivated various
actions for shifting energy production toward more intense
utilization of renewable energy sources such as wind or solar.
However, due to the natural lack of inertia, massive switch to
renewable energy creates multiple stability related problems
in the grid. These challenges resulted in various solutions;
among others different control algorithms for the optimal
virtual inertia control [1].

Several recent works [2], [3] have addressed the problem
of optimal frequency regulation with high penetration of
renewable energy sources. In [4] the robust H,, controller
was developed for the Rate of Change of Frequency (RoCoF)
stability support. The proposed solution has shown advantages
over conventional virtual inertia control and optimally tuned PI
controller in scenarios when the wind farm is connected, solar
panels are disconnected, and the system inertia is 100% and
10%. In [5] this problem was further studied and virtual inertia
control was implemented using Fuzzy-logic based approach.
The proposed algorithm performed robustly under different
scenarios with additional uncertainties, including 80%, 40%,
30% system inertia and mismatch in primary/secondary con-
trol loops. In [6] the model predictive control scheme was pro-
posed and compared to Fuzzy-logic controller during sudden
load changes. Unlike the previous works, the studied microgrid
has conceptual differences such as closed-loop turbine system,

978-1-7281-7100-5/20/$31.00 ©2020 IEEE

Eduard Petlenkov
Department of Computer Systems
Tallinn University of Technology
Akadeemia tee 15a, 12618 Tallinn
Email: eduard.petlenkov @taltech.ee

renewable energy power generation from two more complex
wind farm models, and minor differences in turbine and system
inertia transfer functions. Similar ideas are presented in [7], but
without renewable energy penetration. In [8] optimization of
PI controller was performed by Particle Swarm Optimization
technique combined with digital frequency protection system
in scenarios of (dis)connecting load and renewable energy
sources.

In this paper we join the current trend of research and
propose an effective deep Reinforcement learning (RL) algo-
rithm for the robust virtual inertia control in microgrids with
varying system inertia. The approach is designed to control the
frequency using Deep Deterministic Policy Gradient (DDPG)
in Neural Actor-Critic strategy. Specifically, we design rein-
forcement learning control to adjust the frequency deviation
using typical microgrid model with several fluctuating renew-
able energy sources. The reward system has been adjusted
by changing the error band for controller reward/punishment,
selecting the optimal constants at each step, and modifying the
optimal number of fully connected layers in the network. The
proposed solution is compare to H,, and optimally tuned PI
controllers using several statistical measures. It was observed
that on average the proposed solution performs better.

II. MOTIVATION AND PROBLEM STATEMENT

The frequency stability problem forms a core challenge
for the future power systems. In the light of increasing
penetration of renewable energy sources and decreasing in-
ertia, the development of new robust methodologies with
potential advantages for handling low-inertia uncertainties and
domestic load non-linearities forms considerable challenge.
Implementations of traditional control methods have certain
limitations for optimal management of virtual inertia. For
example, Fuzzy-logic based controller performance depends
on the designed landscape pattern emerging from fuzzy rules.
H, controller is usually based on advance optimization pro-
cedure. In contrast, reinforcement learning based algorithms
do not demand construction of the specific representation of a
process and have potential for online optimization. The low-
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inertia grid stability support based on reinforcement learning
with neural actor-critic architecture was addressed in several
recent works. For example, in [9] approach was combined
with approximate dynamic programming and applied to tune
PD controller for virtual inertia control in power system
with parallel connected three synchronous generators and one
wind farm. In [10] reinforcement learning was combined with
dynamic programming and used to tune PID controller for
virtual synchronous machine. The work [11] proposed neural
actor-critic with adaptive learning approach for voltage/current
regulation in autonomous microgrids. In this paper we utilize
deep deterministic policy gradient method introduced in [12].
Compared to other reinforcement learning optimization meth-
ods oriented to high-dimensional and discrete time spaces,
DDPG was developed for low-dimensional and continuous
space actions, which appears to be suitable for the addressed
scenario. This optimization algorithm was previously tested
for pendulum and cart-pole balance, cheetah acceleration and
moving gripper position control [12].

Secondary
control loop
(LEC)

Primary
control loop

Domestic Loads

Residential Industrial
Load Load

Thermal Power Plant AP System Inertia
APacr v and Damping
4 oy — v =
) N ALy
> T,
Governor GRC Vi

Area control error

(ACE) system Wind Power Plant

APyind

Additional
controller

Solar Power Plant

APuolar

Fig. 1. Dynamic model of studied microgrid with hierarchical control.

A. Structure of the Studied Microgrid

The studied microgrid is adopted from several recent publi-
cations [2], [4], [5], [8] and depicted in Fig. 1. The addressed
scenario includes residential/industrial loads, energy sources
(thermal power plant, wind farm, and solar power plant), and
energy storage system. Thermal power plant is composed of
a governor with generator rate constraint (GRC) and turbine
with frequency rate limiter, which restricts the valve open-
ing/closing (Vy, V). The dynamic model of microgrid uti-
lizes the hierarchical architecture with primary and secondary
control loops. The primary control loop has droop coefficient
1/R, and the secondary loop has an area control error system
(ACE) with the second frequency controller K; and the
first-order integrator. The frequency regulation is performed
by virtual inertia device with additional optional controller.
Microgrid balancing system performed as transfer function
with microgrid damping coefficient D and system inertia H.
The power generation by variable energy sources computed
as combination of two random signals with first-order holder.

TABLE I
NOMENCLATURE: PARAMETERS OF MICROGRID

Variable Physical meaning

APy, generated power change from the distributed generator
T time constant of the turbine

AP, governor valve-position change

Ty time constant of the governor

APjcp  control signal change for secondary control
Kr integral control variable gain

APy change in generated power-based wind farm
APy ing initial wind power variation

Twr time constant of wind turbines

APpy change in generated power-based solar farm
APgo1qr  initial solar power variation

Tpy time constant of the solar system

APy, load power change

APRL variations in residential loads

APy, variations in industrial loads

The deviation of frequency in the studied microgrid can be
calculated as

1
Af=——— (AP, AP AP,
1= S5y p\Am + APw + APpy
+ Apinertia - APL)» (1)
where
AP, = #AP
me 1+ STt 9
AP ——L1 (AP Ias
I 45T, \TT AP T RT )
K
APack = TIAf,
1
APy = 7A-szn )
w 1+ STWT d
1
APpy = ——— AP 1ar
PV 1+ STPV solar,

APy = APgrp + APy,
and parameters are summarized in Table I.

B. Modeling of Virtual Inertia System

Virtual synchronous generator (VSG) is considered as a
converting power alternative to a real synchronous machine
[13]. Such generator can be applied in systems with high
level of fluctuating renewable power to enhance the frequency
stability in conditions of dynamic power generation. Virtual
inertia (VI) is a specific part of VSG designed to compensate
the lack of inertia [1]. Unfortunately, the default operational
limitations of virtual inertia device cannot provide enough
frequency support. Therefore, the additional robust controller
has to be used to deal with nonlinearities in low-inertia envi-
ronments. Traditionally, virtual inertia consists of derivative
component, designed controller, energy storage system and
power limiter as depicted in Fig. 2. The inertia power satura-
tion limiter (P; max, 4 min) provides the additional robustness
for tested algorithms and creates limitations for more realistic
simulations.
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Fig. 2. Typical structure of virtual inertia block.

The main concept used in virtual inertia control is the so-
called Rate of Change of Frequency (RoCoF), which can be
calculated as

d(Af)

i @

The RoCoF defines time derivative of the frequency signal,
which is used to calculate the inertia response of a system as

Kyr  d(Af)
14+ 8Ty dt ’

where Ky is the virtual inertia constant, and Ty/; is time
constant of the virtual inertia transfer function.

RoCoF =

APL’nertia =

3)

III. PROPOSED SOLUTION
A. Neural Actor-Critic Algorithm

Neural actor-critic implies the combination of two Artificial
Neural Networks: The actor network u(s | 6,,) and the critic
network Q(s,a | 6g). In the proposed strategy critic network
is supervising algorithm, which tracks errors from interaction
of actor a; with environment s; according to defined policy.
The network corrects them in order to find an optimal estima-
tion of actor action a;, which predict max possible reward
r, see [14]. The key advantage of reinforcement learning
algorithms is the study based on interaction with environment
[14]. In other words, when agent makes the action, it expects
to get the reward +r or the punishment —r. The mechanism of
control can be briefly summarized as follows. The measured
frequency difference A f produces the control error which goes
as an observation to RL agent. At the same time calculated
error goes to the block “calculate reward” to reward or punish
neural RL actor. General structure of the proposed controller
is presented in Fig. 3.

APy,

B. Deep Deterministic Policy Gradient

Here, we briefly explain the key application details of the
proposed controller based on reinforcement learning algorithm
optimized by deep deterministic policy gradients. DDPG is
model-free reinforcement off-policy learning algorithm, de-
signed for tasks with low-dimensional continuous action space
[12]. DDPG study introduces the fusion of deep Q-learning
(DQL) and deterministic policy gradient (DPG), which in-
herits from DQL strategy neural actor-critic. The principle of
optimization is based on the search of a minimal difference
between target action-value function of the policy y; and the
critic network Q(s;,a; | 0g) at each actor network si(s | 6,,)
decision a; (Ky ) per step ¢ in the state s; (i.e., Afy). In
order to minimize the loss function L and receive the max
possible reward r; per training episode. Next, we summarize
the overall procedure in the form of a pseudo-code as shown
in Algorithm 1 adapted from [12].

Algorithm 1 DDPG Algorithm
1: Initialize critic Q(s,a | 0g) and actor u(s | 6,,) networks
with random weights 6 and 0,,.
2: Initialize target network Q' and ' with g < 6q, 6,/ <
0.
: Initialize replay buffer R.

3

4: for episode =1 to M do

5 Receive initial process observation as state si.

6: fort=1to T do

7: Select action a; = pu(s; | ) according to current
policy and disturbances exploration.

8: Execute action a;. Observe reward 7, state Syy1.

9: Store transition (s, ag, 7, S¢41) in R.

10: Sample random minibatch of N transitions
(84, @iy Tiy Siy1) from R.

11: Set yi = 7 + Q' (si11, 1/ (564110, | Or)-

12: Update critic by minimizing loss: L = & >, (y; —
Q(si,a: | 0Q))°.

13: Update actor policy using sampled gradient:

VQ[LJ ~ %Zan (Sva’ | GQ) |s=si,a:;x(si)
2
X Voun(s | 09).

14: Update the target network: 2" + 7609+(1—7)0?’
and 0% «— 76" + (1 — 7)0%",

15: end for

16: end for

APy
AP < 7| Environment Afi Yi
. State DDPG
‘ Algorithm
Microgrid i 1L
Sl St T Critic
Observation || Q(s¢, a; | 0g)
Calculate r s fa
Reward Reward ‘ Actor ‘ @
plsi 1 04) | Action
RL Agent
APinertia_| Virtual Inertia | Kvi

Control

Fig. 3. Structure of implemented reinforcement learning based controller.

IV. SIMULATION RESULTS

Consider the microgrid depicted in Fig. 1, which is imple-
mented in MATLAB/Simulink environment. We compare the
proposed RL-based control algorithm with the traditional PI
controller (with K), = 0.25, K; = 0.01) and H, control.
Simulations intend to illustrate the reaction of each controller
on RoCoF rise after synchronous connection of thermal power
station, wind and solar power plants. Parameters used in

1022

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on January 06,2023 at 07:44:52 UTC from IEEE Xplore. Restrictions apply.



simulations are defined as: R = 2.4,T, = 0.1,T; = 0.4, K; =
0.05, GRC € [-0.12,0.12], Vi, = —0.5, Viy = 0.5, Twr =
1.85, Tpy = 1.5, Pjmax = 0.25, P; min = —0.25. Moreover,
wind power generation varies as APyinq € [0.03,0.05], solar
power varies as A Ps,q, € [0.05,0.07], residential and indus-
trial load profiles are defined by APg; € [0.125,0.25] and
APry, € [0.15,0.25] as depicted in Fig. 4. Finally, the stored
energy changes in the range [—0.25,0.25] and energy gener-
ated by the thermal power is defined by AP, € [-0.5,0.5].
All signals are specified in per-unit system. We consider
three different scenarios with high (100%, H = 0.083),
decreased (80%, H = 0.067), and low (40%, H = 0.032)
inertia. Results of simulations for the nominal case and the
the entire period of 7' = 1000 s are shown in Fig. 5. Other
cases for a shorter period of [20,60] are presented in Fig. 6.
Performance of control algorithms is validated in steady-state
by root mean square error RMSE = /1/n 2?:1 A i2, mean
absolute error MAE = 1/n Y7 | |Af;|, max/min deviation of
frequency signal max(Af), min(Af), and integral absolute
error IAE = fOT |Af|dt as summarized in Tables II-V. We
remove the first 20 seconds from simulation results, which
correspond to the transient process.

Nominal case: The top plot in Fig. 6 shows that the case with-
out additional virtual inertia control and all control algorithms
provide almost identical results. This is further emphasized
by statistical measures shown in Tables II-V. The proposed
algorithm and H ., based approach both appear to be the most
accurate. However, their advantage is marginal with respect
to PI and default controller cases. Therefore, in systems with
high inertia utilization of additional virtual inertia controllers
is rather optional.

Scenario I: The middle plot in Fig. 6 shows very similar
picture to the one obtained in the nominal case. The statistical
measures confirm this observation, and the only difference
appears for MAE in Table III, where the proposed controller
and no virtual inertia control cases become slightly more
accurate than H., controller.

Scenario II: The bottom plot in Fig. 6 corresponds to the low-
inertia case, and shows the real advantages of additional virtual
inertia controllers, since the nominal controller cannot provide
satisfactory behavior and becomes oscillating. The statistical
measures again show that in most cases the proposed controller
becomes slightly more accurate than other techniques. The
only case in which H, controller becomes more advantageous
is maximum and minimum frequency deviations as indicated
in Table IV.

To conclude, the proposed reinforcement learning based
additional virtual inertia controller appears to be more accurate
in most cases. However, the difference in most cases is very
small. At the same time, observe that on average the proposed
controller performs better than other controllers in all scenarios
as defined by mean average error. This is further confirmed
by another related integral absolute error measure.

Table VI provides the performance summary for algorithms
with variable and fixed step of the solver. We run the sim-
ulation for 10 times and calculated the mean value. It can
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Fig. 4. Power generated by wind and solar plants (top and middle). Domestic
load profile (bottom).

0.05 - 43 W &4

Af

-0.05 | ! i iy’ i it |

-0.1

0 200 400 600 800
Time [s]

1000

Fig. 5. Frequency variation for the nominal case.
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virtual inertial controller ("—).
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TABLE II
PERFORMANCE IN DIFFERENT SCENARIOS: RMSE

Controller ~Nominal  Scenario I  Scenario II

Proposed 0.0358 0.0357 0.0353

Hy 0.0356 0.0356 0.0355

PI 0.0364 0.0366 0.0362

No VIC 0.0379 0.0359 0.6727
TABLE 111

PERFORMANCE IN DIFFERENT SCENARIOS: MAE

Controller ~Nominal  Scenario I  Scenario II

Proposed 0.0287 0.0285 0.0282

Heo 0.0287  0.0288 0.0288

PI 0.0293 0.0303 0.0292

No VIC 0.0303 0.0285 0.5953
TABLE IV

PERFORMANCE IN DIFFERENT SCENARIOS: MAXIMUM AND MINIMUM
FREQUENCY DEVIATION (max (A f); min(Af))

Controller Nominal Scenario I Scenario II
Proposed 0.1142; —0.0988 0.1139; —0.0987 0.1142; —0.0965
H 0.1147; —0.0989  0.1145; —0.0993 0.1122; —0.0960
PI 0.1162; —0.1011  0.1164; —0.1016 0.1134; —0.0977

No VIC 0.1223; —0.1069 0.1239; —0.1103  1.1733; —1.2097
TABLE V
PERFORMANCE IN DIFFERENT SCENARIOS: INTEGRAL ABSOLUTE ERROR

Controller ~ Nominal Scenario I~ Scenario II

Proposed 28.4136 28.4259 28.3313

Hoo 28.4461 28.4520 28.4087

PI 28.7557 28.7941 28.7693

No VIC 29.6323 36.6168 594.3056

be seen while in case of variable step H, yields the fastest
simulation time, it fails to converge for the fixed step. PI
controller results in slightly slower performance. The case
without VIC appears to be the fastest for fixed step. Finally, the
proposed algorithm works slower than others, due to complex
and non-linear structure defined by the Deep Neural Network.

TABLE VI
COMPARISON OF ALGORITHMS FOR VARIABLE AND FIXED STEP

Elapsed time

Controller ~ Variable  Fixed
Proposed 2975.5 26814
Hy 613.26 —

PI 820.88 15227
No VIC 1175.5 13380

V. CONCLUSION AND DISCUSSION

Increasing penetration of renewable sources based power
creates multiple serious challenges related to the frequency
stability of future microgrids. These problems can be solved by
adding optimally designed control algorithms. The recent stud-
ies indicate that without extra virtual inertia support the system

is stable only for the relatively high system inertia. Otherwise,
the virtual inertia device is not able to provide satisfactory
frequency stability with high penetration of renewable energy
sources. Therefore, in this paper we propose the reinforcement
learning based control of virtual inertia, and compare to H,
and PI controllers. In most situations the proposed controller
has shown slightly better results. More complex scenarios and
detailed analysis will form subject for the future research.
The reinforcement learning is recently introduced optimization
strategy. We plan to extend the DDPG Reinforcement learning
based controller via modification of the reward/punishment
system and derive the controller for MIMO case. Finally, we
will apply the proposed technique to study problems of energy
transmission and demand side management fields.
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Abstract—In this paper we propose here a nonlinear control
scheme for frequency support in low-inertia microgrids with high
level integration of renewable energy sources. We first develop
a multi-loop reinforcement learning based controller with deep
deterministic policy gradient optimization. Then, we apply it to
the simultaneous frequency support and control of renewable
energy generation. In addition, we adjust the reward system to
track the thermal power and provide the balance between energy
generation and consumption. This modified controller is shown to
work well in several practical scenarios, in which it is compared
to a single loop RL controller.

Index Terms—MicroGrid, Reinforcement learning, Renewable
energy

I. INTRODUCTION

Concerns on future state of environment gained attention
to electronic-based renewable energy sources. However, the
integration of renewable energy in large amounts creates power
stability related problems such as frequency drop, power
oscillations and mismatch in energy generation [1]-[3]. These
challenges raise important problems in the light of future
power systems. Among others frequency support gains an
increased trend [3]-[6].

Several recent works [7]-[12] addressed the problem of
robust frequency regulation with high penetration of renewable
energy sources. For example, in [9] the robust H., con-
troller combined with phase-lock loop (PLL) for microgrid
support with 100% and 10% inertia, and 80% penetration
renewable energy. In [13] the problem was studied with using
fuzzy-logic controller in scenarios with various uncertainties,
including 20% and 80% integration, and 80%, 40%, 30%
system inertia mismatch in primary/secondary control loops.
In [14] the model predictive control approach proposed and
compared with fuzzy-logic controller with 34% integration
of RES power. In [12] reinforcement learning based control
strategy proposed compared with H., and PID in microgrid
with 20% of renewable energy integration and 100%, 80%,
40% system inertia. Also frequency control by reinforcement
learning strategy was addressed in [15], [16].

The work of V. Skiparev and E. Petlenkov was partly supported by the
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Optimal frequency support in islanded microgrids with high
integration level of renewable energy sources and decreas-
ing inertia is one of the core challenges for future power
systems [17], [18]. Therefore, development of novel and
advanced methodologies with potential to handle renewable
power, domestic loads and low-inertia uncertainties becomes
extremely important. Implementations of traditional control
schemes have certain limitations for the optimal frequency
support. For example, the standard PID controller is single
input single output system with limited performance, including
weak tolerance to disturbances and efficiency in specific condi-
tions. Another popular H, controller operates with additional
inputs as disturbances and synthesized controller provides
input/output relation similar to that of PID [9]. At the same
time, data-driven algorithms can be implemented as multi
input systems. For example, in [13] fuzzy-logic controller
designed with two inputs A f and A Prpg. Similar approach is
applied in [14] to develop state-space based model predictive
control with inputs Af and APy,. The work [12] proposed
reinforcement learning based control approach, which consider
the Af dynamics and acceleration, and total power dynamics
AP);. The above mentioned work consider multi-input single-
output scenario.

In this paper, we extend our previous work [12] and pro-
pose reinforcement learning controller with multi-input multi-
output architecture. The new design enables more robust multi-
loop frequency support in islanded/isolated microgrids with
varying system inertia. Specifically, we develop a technique
which provides simultaneous control of renewable energy
flow and virtual inertia emulation. Furthermore, we adjust
the reward system by changing the error band for controller
reward/punishment, selecting the optimal constants at each
step, and change the optimal number of artificial neurons and
fully connected layers in the network. The benefit of such
modification is the possibility to decrease the negative influ-
ence of renewable energy and provide the balance in energy
production between different energy generation sources. As
result extended RL controller provides the effective frequency
stability with integration up to 50% of renewable power.
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II. STRUCTURE OF THE STUDIED MICROGRID

The studied microgrid is adopted from several recent pub-
lications [8]—[10], [13] and depicted in Fig. 1.

Secondary
control loop
(LFC)

Primary
control loop

Domestic Loads

Residential Industrial
Load Load

APacey

K

3

Area control error Govemor
(ACE) system Wind Power Plant
APying
Solar Power Plant
APyotar N
Power
Fig. 1. Block-scheme of the islaned microgrid with hierarchical control.

The addressed setup includes residential APg; and in-
dustrial loads APy, energy sources (thermal power plant
AP,,, wind farm APy, and solar power plant APpy ), and
energy storage system. Thermal power plant is composed of
a governor with generator rate constraints (P max, Py min)
and turbine with frequency rate limiter, which restricts the
valve opening/closing (Vi;, V7). The dynamic model of mi-
crogrid utilizes the hierarchical architecture with primary and
secondary control loops. The primary control loop has droop
coefficient 1/R, and the secondary loop has an area control
error system APy with the second frequency controller K
and the first-order integrator 1/s. The frequency regulation is
performed by virtual inertia AP;,¢,+;, and renewable energy
control APgrpg. Microgrid balancing system performed as
transfer function with microgrid damping coefficient D and
system inertia H. The power generation by variable energy
sources computed as combination of two random signals with
first-order holder. The deviation of frequency in the studied
microgrid can be calculated as

1
Af N m(APm + APRES + APincrtia - APL),
(1
where

AP, _;AP
m T 1 + ST{ gs

AP = (APiwr— LAy
91+ sTy ACE R )

K
APace = TIAﬂ
AP;, = APgp, + APyp,.

Modeling parameters of the microgrid are summarized in
Table I.

TABLE 1
NOMENCLATURE: PARAMETERS OF MICROGRID.

Parameter Value
Ti(s), time constant of the turbine 0.4
Ty(s), time constant of the governor 0.1
K (s), integral control variable gain 0.05
H(p.uMW s), System inertia 0.083
D(p.u.MW s), System damping coefficient 0.05
R(Hz/p.uMW), Droop characteristic 24
Twr(s), time constant of wind turbines 1.85
Tpy (s), time constant of the solar system 1.5
TrEs(s), time constant of the renewable energy storage 1
Ty 1(s), time constant of the virtual inertia emulation 10
Vi, Maximum limit of valve gate speed 0.5
V1, Minimum limit of valve gate speed -0.5
Pinertia,max, Maximum capacity of ESS 0.25
Pinetia_min, Minimum capacity of ESS -0.25
PRrES,max» Maximum capacity of renewable power storage 0.5
PRES, min. Minimum capacity of renewable power storage -0.5
Pg‘max(pAu. MW/min), Maximum generation rate 0.12
Py min(p.u. MW/min), Minimum generation rate -0.12

III. PROPOSED SOLUTION
A. Neural Actor-Critic

Neural actor-critic architecture is special type of RL agent
implies the parallel work of two artificial neural networks: the
actor network si(s | 6,,) and the critic network Q(s,a | 6g).
In the proposed solution the critic network is an algorithm
tracking errors from interaction of actor network a; with
environment s; according to selected policy. The critic net-
work corrects them in order to find potential right estimation
of actor action a;, which predicts max possible reward r,
see [19] for more technical details. The key advantage of
reinforcement learning algorithms is the data-driven study
based on interaction with environment. In other words, when
agent makes an action, it expects to receive the reward +r
or the punishment —r. Control mechanism can be briefly
summarized as follows. The measured variables Af, APy,
AP, formulate observation for RL agent. In this paper A f
is considered as the control error and other variables as
disturbances. At the same time calculated deviations A f and
AP, go to the block “calculate reward” to reward or punish
neural RL actor. General structure of the proposed controller
is shown in Fig. 2.

B. Deep Deterministic Gradient Descent

Next, we briefly explain the key application details of
the proposed controller optimized by deep deterministic pol-
icy gradient (DDPG). DDPG is a model-free reinforcement
learning algorithm, designed for tasks with low-dimensional
continuous action space [20]. Optimization phase introduces
the fusion of deep Q-learning (DQL) and deterministic policy
gradient (DPG), which inherits from DQL strategy neural
actor-critic. The principle of optimization is based on the
search of a minimal difference between target action-value
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function of the policy y; and the critic network Q(s;, a; | 0¢g)
at each actor network (s | 6,) decision a; (Ky 1) per step 4
in the state s; (i.e., Af;). This is done to minimize the loss
function L and receive the max possible reward r; per training
episode. Next, we summarize the overall procedure in the form
of a pseudo-code as shown in Algorithm 1.

Algorithm 1 DDPG Algorithm.

1: Initialize critic Q(s,a | fg) and actor yu(s | 6,,) networks
with random weights 6 and 6.

2: Initialize target network Q" and i’ with g/ < 6g, 6, <
0,,, respectively.

3: Initialize replay buffer R.

4: for episode =1 to M do

5 Receive initial process observation as state sj.

6

7

for t =1to T do
Select action a; = pu(s; | 6,,) according to current
policy and disturbances exploration.

8: Execute action a;. Observe reward r;, state s;i1.
9 Store transition (s¢, at, 7, S¢41) in R.
10: Sample random minibatch of N transitions
(8i, @iy Tiy Si41) from R.
11: Set yi =1 + Q' (sit1, 1/ (si110) | O).-
12: Update critic by minimizing loss: L = & > (y; —
Qlsivai | 00))
13: Update actor policy using sampled gradient:
1
VQ;L'] ~ N Zan (370' | GQ) |s:s,v7a:,u(si)
7
X Vouia(s | 0°)]s,-
14: Update the target network: 2" < 709+ (1—7)0%'
and 0%« 70" + (1 —7)0"
15: end for
16: end for
Af, APrpoads D]gli)G
R L
APy, l st | St e
observation | Qs o) |
Calculate T ETELXT AKyg
Reward reward | Actor | a
e 8“] action
RL agent
AKRrps
Forced
“| Replay

Fig. 2. Structure of the proposed RL controller.

C. RL Agent Reward/Punishment System

In this paper, we redesign reward/punishment strategy to
provide more accurate punishment action for RL agent. Re-
ward system is organized to transform the measured fre-
quency deviation to the reward/punishment 7;. Unlike [12]
here the reward/punishment system incorporates limitations

of frequency deviation and the power generated by traditional
power plant. To provide instructions for A f regulation, system
is organized as follows: initial signal is transformed to the
absolute value |[Af|; if Af < 0.05 the RL agent receives
the reward, otherwise system does the punishment. In order
to provide reasonable rewarding for each action, reward is
limited to the range P, € {0.05,...,2}; however, due to the
specific procedure of the controller training the punishment is
unlimited and multiplied by 2. To force RL agent to adjust
renewable energy generation to traditional power plant the
reward/punishment system provides a negative reward —10
if P, ¢ {0.05,...,0.45}, otherwise reward becomes 0. If
agent’s actions collect punishment r, < —500, then the com-
mand forced replay is activated. The proposed implementation
of reward/punishment system can be summarized as:

osniapy if |Af]<0.05,

= —2|Af], if |Af] > 0.05, )
0, it AP, €{0.05,...,0.45},
-10, if AP, ¢ {0.05,...,0.45}.

D. Frequency Support Controller

Here we present a modified controller for the frequency
support, which combines the virtual inertia control and re-
newable energy control loops. The proposed architecture is
designed to provide more advanced frequency support in the
low inertia microgrids. Virtual inertia consists of 3 input
system (i.e. discrete time integrator, derivative component
and initial input), energy storage system and power limiter
as depicted in Fig. 3. It has the inertia power saturation
limiter (Pinertia,maxs Pinertia,min), Which provides additional
robustness for tested algorithms and creates limitations for
more realistic simulations. The renewable energy control loop
is organized in a similar manner. It has the input AP,,, en-
ergy storage system and power saturation limiter (Pres,max
PRES,min)‘

— M Virtual inertia control
z—1
APinertia,max
Af d K AP,
VI — inertia
—_ g ——— L Limiter —>
dtf' Ty vl s Kl
APjpertia,min
AP Controller
—> APRES max
APy, APgp
N | _KrES (APrBS
1+sTrES
APRESmin

Renewable energy control

Fig. 3. Structure of frequency support controller.

The main concept used in virtual inertia control is so-
called Rate of Change of Frequency (RoCoF), which can be
calculated as: dA

RoCoF = (dtf)' 3)
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The RoCoF defines time derivative of the frequency signal,
which is used to calculate the inertia response of as system

as:
Kyi  d(Af)
1 + STVI dt

where Ty 7 is time constant of energy reservation and Ky ;
virtual inertia constant. The renewable energy control flow can
be defined as:

APincrL’ia = ; )

KrEes

AP, =—
RES 1+ sTres

(APw + APpy), )

where
N
1+ STWT

1
—— AP,
1+ STPV solar,

and TrEg is time of renewable energy storage and Krpg is
renewable energy passing coefficient.

APW = prinda

APpy =

IV. NUMERIC RESULTS

Consider a microgrid shown in Fig. 1. In this paper we
increase the upper limit on a total amount of renewable energy
to the level of 50%, and experiment with 100%, 80% and
40% inertia. Figure 4 depicts variation limits of renewable
energy APrps € {0.35,0.475} and residential loads APy, €
{0.45,0.75}. Microgrid parameters are presented in Table 1.

0.5 T T T T T T T T

APgrps

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450
Time [s]

Fig. 4. Variation renewable energy and residential loads during simulations.

In order to validate the proposed method, we compared it
with the previously developed single loop algorithm. Simu-
lation results show the reaction of each method on RoCoF
variation after contemporary connection of thermal, wind and
solar power plants. We consider three different scenarios:
Nominal case with high (100%), Scenario 1 with decreased
(80%) and Scenario II with low (40%) system inertia.

Top plot in Fig. 5 shows that without additional learning
rules and output, the single loop RL controller cannot provide
the effective control strategy and becomes oscillating. The

middle plot shows results similar to those from the nominal
case. In fact, according to majority of numerical results the
performance of both implementations is affected. The bottom
plot shows an observable influence of low inertia on RoCoF
change after microgrid being lunched. However, rest of the
picture is similar to previous scenarios. Summary of several
statistical measures is presented in Table II.

Nominal ‘ Double loop — — — -Single loop
H R R RN E— T T T T T o
0.1 Lhrereh [
TR I
MR |
30 Ul I
!
0.1 | J
1l . . . . wl .
0 50 100 150 200 250 300 350 400 450

L Il
300 350 400 450

I I
0 50 100 150 200 250

|
I
1
il L L Ll L
0 50 100 150 200 250 300 350 400 450

Time [s]
Fig. 5. Frequency variation for inertia coefficients H = 0.083 (upper,

Nominal), H = 0.067 (middle, Scenario I) and H =
Scenario II).

0.032 (bottom,

TABLE II
SUMMARY OF STATISTICAL MEASURES FOR DIFFERENT LEVELS OF
INERTIA.
Controller Nominal ~ Scenario I~ Scenario II
Root mean square error (RMSE)
Double loop RL  0.0359 0.0371 0.0384
Single loop RL 0.2792 0.2791 0.2867
Mean absolute error (MAE)
Double loop RL  0.0269 0.0269 0.0274
Single loop RL 0.1664 0.1678 0.175
Integral absolute error (IAE)
Double loop RL 129.74 131.25 136.86
Single loop RL 826.81 828.27 838.58

The proposed double loop RL controller allowed to increase
the level of renewable integration energy from 20% to 50%
without compromising overall performance. From Table II we
can see that the influence of decreased inertia on performance
of both control methods is insignificant. At the same time,
the increased RES penetration provides a notable affect on
performance of the single loop controller. This can be seen in
the form of oscillations of signal Af, which happen shortly
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after the microgrid lunch and periodically repeat. It happens
due to conflict in power generation between traditional power
plant and renewable energy. Proposed modified reinforcement
learning controller is designed to avoid such unwanted situa-
tions and yields better performance in all scenarios than the
previously proposed single loop controller.

V. CONCLUSION AND DISCUSSION

Presented paper demonstrates the potential of extended
reinforcement learning based controller in mitigation of low
inertia phenomena with high penetration of renewable en-
ergy. Reinforcement learning control with single loop and
single input reward system cannot provide satisfactory control
quality in case of microgrids with high renewable energy
integration. Therefore, in this paper we propose modified
reward/punishment system and control architecture of rein-
forcement learning based controller for virtual inertia and
renewable energy flow control. The comparative study is based
on three different scenarios in conditions with high renewable
energy integration. In the future research we plan to apply
more advanced models of energy storage, and develop a
software for RL based controller stability validation.
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Abstract: Although the deployment and integration of isolated microgrids is gaining widespread
support, regulation of microgrid frequency under high penetration levels of renewable sources is
still being researched. Among the numerous studies on frequency stability, one key approach is
based on integrating an additional loop with virtual inertia control, designed to mimic the behavior
of traditional synchronous machines. In this survey, recent works related to virtual inertia control
methods in islanded microgrids are reviewed. Based on a contextual analysis of recent papers from
the last decade, we attempt to better understand why certain control methods are suitable for different
scenarios, the currently open theoretical and numerical challenges, and which control strategies
will predominate in the following years. Some of the reviewed methods are the coefficient diagram
method, H-infinity-based methods, reinforcement-learning-based methods, practical-swarm-based
methods, fuzzy-logic-based methods, and model-predictive controllers.

Keywords: frequency control; islanded microgrid; renewable energy; virtual inertia control

1. Introduction

Renewable energy sources (RESs) are frequently deployed in modern power grids
to promote a myriad of environmental and economical benefits. However, the increasing
integration of RESs significantly decreases the rotational inertia of the grid, which jeopar-
dizes grid stability and its overall dynamic behavior [1-4]. A central challenge is regulating
the grid’s frequency under high penetration levels of renewable sources. One approach
for addressing this problem is to install fast-reacting storage systems with virtual inertia
controllers alongside low-inertia power sources; such controllers have been extensively
studied in recent years [5-11]. Each control method has its own benefits and limitations.
For instance, classical control paradigms are simple in general but are designed for spe-
cific scenarios, whereas data-driven algorithms are flexible and enable online learning.
However, these algorithms are numerically complex and require adequate data to operate
efficiently. Hybrid control strategies have low numeric complexity, but their convergence
is hard to guarantee in most cases. Proposing suitable guidelines for choosing the best
algorithm is currently an open question, and this question becomes more important when
the microgrid is isolated [11-17].

Microgrids have received increasing attention as a means of integrating distributed
generation into the electricity grid [18]. Usually described as confined clusters of loads,
storage devices, and small generators, these autonomous networks connect as single
entities to the public distribution grid through a point of common coupling (PCC). Figure 1
illustrates a typical microgrid network. Microgrids comprise a variety of technologies:
renewable sources, such as photovoltaic and wind generators, are operated alongside

Energies 2021, 14, 1562. https:/ /doi.org/10.3390/en14061562

https:/ /www.mdpi.com/journal/energies



Energies 2021, 14, 1562

2 of 20

traditional high-inertia synchronous generators, batteries, and fuel-cells. Thus, energy is
generated near the loads, enabling the use of small-scale generators that increase reliability
and reduce losses over long power lines. The locality of the microgrid network enables
the improved management of energy. Generators (and possibly loads) may be controlled
by alocal energy management system to optimize power flow within the network. The
objectives of energy management depend on the mode of operation: islanded or grid-
connected [19]. In grid-connected mode, the typical objectives are to minimize the price of
energy import at the PCC, to improve power factor at the PCC, and to optimize the voltage
profile within the microgrid [20]. In islanded mode, which is addressed in this paper, the
main goal of power management is to stabilize the system and preserve high reliability
and resiliency in terms of frequency and voltage.

Wind Power
Plant
d Energy
Solar Power Y Storage
Plant = q\ System
Thermal Al
Power g 7 =D
Plant ‘ﬁ.
Z = =
I 4
R Static & I I !
Main — gyitch = = = DC/AC
Grid ~ ~ ~ Inverters
| | |

MicroGrid

T T
PCC
Residential Industrial

Figure 1. Schematic representation of a typical microgrid. PCC—point of common coupling.

Few recent survey papers describe different aspects in the context of virtual inertia
within power grids with a high penetration of RESs. A comprehensive review of vir-
tual inertia implementation techniques was provided in [12]. The reviewed works were
classified and compared using virtual inertia topologies. Some selected topologies were
simulated, showing that similar inertial responses can be achieved, relating the parameters
of these topologies through time and inertia constants. A discussion of the challenges
and research directions is presented, indicating future research needs for the integration
of virtual inertia systems. Singh et al. [21] reviewed various topologies for emulating a
virtual inertia algorithm along with control strategies for general distributed generation.
They also reviewed the optimal size and location of synthetic inertia in a power system.
Other authors [22] presented a review focusing on the inertia values for power systems.
The inertia values were estimated based on different regions in the last 20 years. The
contribution of photovoltaic (PV) power plants as virtual inertia was discussed and the
damping factor evolution was analyzed.

Contrary to these comprehensive reviews, which focused on virtual inertia topolo-
gies implementation [12], virtual inertia and frequency control for distributed energy
sources [21], and inertia estimation evolution in power systems [22], we focused on the
systematic comparison of virtual inertia control methods designed to solve the frequency
regulation problem in islanded microgrids. In particular, we aimed to understand why
certain control methods are more efficient in different circumstances, and which control
strategies will gain popularity in the coming years. Toward this end, we considered dif-
ferent control techniques available in the literature for the period of 2010-2020, and then
categorized them into three groups: classic, advanced, and hybrid methods. We provide
a detailed analysis of each control and optimization paradigm through various quality
criteria. Finally, we provide a contextual analysis and highlight the current developments
and trends for various combinations of virtual inertia control methods and technologies
with a focus on microgrid applications.
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The rest of this paper is organized as follows: Section 2 presents a model of a standard
low-inertia microgrid and explains different control quality criteria. Section 3 summarizes
the classical methods applied for virtual inertia control, followed by a discussion of the
advanced control methods presented in Section 4. Hybrid control algorithms are described
in Section 5. Section 6 provides an analysis of recent trends in low-inertia power systems
and virtual inertia control.

2. Overview of Low-Inertia Microgrid System

The low-inertia microgrid encompasses participants with different power generation
inertia and loads with complex dynamics [23-26]. Therefore, microgrids with high RES
penetration pose various challenges for integration to the massive distribution networks
such as (1) active/reactive power imbalance and voltage droop in transmission lines, (2)
production/consumption imbalance in distribution loads, and (3) frequency mismatch with
other microgrids and the rest of the power grid [3,27]. Hence, energy storage systems are
considered the prime actuator in frequency stability control, which, in reality, have physical
limitations such as (1) (dis)charge cycles, (2) restricted power reservation, (3) reserved
power losses, and (4) individual speed of (dis)charge. Moreover, energy storage control
performed by virtual inertia or a virtual synchronous generator (VSG) uses power-inverting
electronics, which has delays in frequency measurement and power conversion [12,28-32].

2.1. Modeling of a Low-Inertia Microgrid

The considered microgrid was adopted from several recent publications [16,33-37] and
is depicted in Figure 2. The addressed scenario includes simplified residential /industrial
loads, energy sources (thermal power plant, wind farm, and solar power plant), and energy
storage systems [11,38,39]. The thermal power plant is composed of a governor with a
generator rate constraint (GRC) and a turbine with a frequency rate limiter, which restricts
the valve opening/closing (Vi; and V|, respectively). The dynamic model of a microgrid
uses a hierarchical architecture with primary and secondary control loops. The primary
control loop has a droop coefficient 1/ R, and the secondary loop has an area control error
(ACE) system with a second frequency controller K; and a first-order integrator. Frequency
regulation is performed by a virtual inertia device with an additional controller. The
balancing system is performed as the first-order transfer function with microgrid damping
coefficient D and system inertia H, which are common for all generators. The power
generation by variable energy sources is modeled as a random signal with a first-order
holder. The hierarchical structure includes the reservation of the primary and secondary
control loops. The modeling parameters of the microgrid are summarized in Table 1;
Table 2 lists the typical simulation scenarios available in the recent literature.

Table 1. Nomenclature: microgrid parameters.

Variable Physical Meaning

APy, Generated power change from the distributed generator
T; Time constant of the turbine

AP Governor valve-position change

Ty Time constant of the governor

APace Control signal change for secondary control
K Integral control variable gain

APy Change in generated power-based wind farm
APyying Initial wind power variation

Twr Time constant of wind turbines

APpy Change in generated power-based solar farm
APyolar Initial solar power variation

Tpy Time constant of the solar system

APy, Load power change

APRL Variations in residential loads

AP Variations in industrial loads
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Figure 2. Schematic representation of an islanded microgrid with hierarchical control. GRC—
generator rate constant; LFC—load-frequency control.

2.2. Frequency Regulation in Low-Inertia Power Systems

Frequency stability is important when low-inertia energy sources penetrate the grid
in large amounts [1,40,41]. For example, the wind turbine rotor of a synchronous generator
has natural inertia, which plays a key role in the power compensation for short periods
(up to 5 s) [3]. Solar panels may be considered as zero-inertia generators, since they do not
provide physical energy storage [42]. The response of frequency deviation is defined by
the rate of change of frequency (RoCoF), which can be calculated as follows [43,44]:

d(A
RoCoF — %. (1)
The magnitude of the RoCoF reflects the balanced state in the dynamics of renewable
power sources. The problem is generating an active power resembling that generated by
traditional power plants.

Table 2. Nomenclature: dynamic parameters of islanded microgrids in different scenarios.

Name Uncertainty Nominal Scenario 1 Scenario 2 Scenario 3  Scenario4 Scenario 5
Parameter Value
System inertia H (p.u. MW 95-100% 80% 40-50% 25-30% 15% 10%
s)
Droop characteristic R (Hz/p.u. 24 24 24 1.8-24 24 12
MW)
Time constant of governor Tg (s) 0.1-0.12 0.1 0.1 0.1-0.15 0.1 0.175
Time constant of turbine Tt (s) 0.4-0.975 0.4 04 0.4-0.7 0.4 0.7
Time constant of solar Tpy (s) 1.8-1.85 1.85 1.8-1.85 1.8 1.85 1.85
panel
Time constant of wind Twr (s) 1.5 1.5 1.5 1.5 1.5 1.5
turbine
Integral control variable K; (s) 0.05 0.05 0.05 0.04-0.05 0.05 0.03
gain
System damping coeffi- D (p.u. 0.015-0.0195 0.015 0.015 0.0135-0.015 0.015 0.003
cient MW /Hz)
Frequency bias B (p-u. 1.0 1.0 1.0 0.8-1.0 1.0 0.7
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Table 2. Cont.

Name Uncertainty Nominal  Scenario1l Scenario Scenario3 Scenario4 Scenario5
Parameter Value 2

Virtual inertia control Ky 0.5-0.8 1.0 1.0 0.8-1.0 1.0 04

gain

Virtual inertia time Ty (s) 10 10 10 10 10 11

constant

Virtual inertia control  APj;ertig max / min0-25-0.3 0.25-0.3 0.25-0.3 0.3 0.3 0.25

power limiter

Valve gate speed Vus 0.3-0.5 0.5 0.1-0.5 0.1-0.5 0.3 0.5

Time constant phased wy (8) 1.5 - - - - 0.3

locked-loop (PLL)

References [16,33,35- [34,37] [16,33,34, [16,34] [33] [35]

37,45] 37,45,46]

2.3. Virtual Inertia Control

The virtual synchronous generator (VSG) produces the power alternative to the real
synchronous machine [47,48]. This generator can be applied in systems with a high level
of fluctuating renewable power to enhance the frequency stability. Virtual inertia (VI) is
a specific part of the VSG designed to compensate for the lack of inertia using a power
injection mechanism [3]. The default operational limitations of the virtual inertia device
cannot provide reliable frequency support. Therefore, an additional robust controller must
be used to deal with nonlinearities in low-inertia environments. Traditionally, the virtual
inertia control setup (Figure 3) consists of a derivative component, a designed controller
K(s), virtual inertia control (energy storage system and virtual inertia variable gain), and a
power limiter (APyertiamax, APinertia,min)-

A-Pinertin.,max

Af d Y K APinertia
A K ) P b

Derivative Controller Virtual Inertia
Control

A-P'i,ne'rtia,min
Figure 3. Typical structure of a virtual inertia control block.

2.4. Energy Storage System

The energy storage system (ESS) has been implemented in various physical real-
izations [38,49,50]. The technology can be directly incorporated into frequency-response
services and support the RoCoF during a frequency event. For the last decade, ESSs became
an essential component in renewable energy integration, since they may provide frequency
smoothness and balance for further dispatch [5,51-57]. The simplified ESS model can be

represented as follows:
1

G =51

@

2.5. Hierarchical Control

Hierarchical frequency control introduces a multilevel cascade system with three
key layers: primary, secondary (load frequency control), and tertiary control, and two
additional layers: internal generation control and high-level policy control. Primary control
is responsible for regulation of individual elements: power sharing, frequency droop, and
local voltage control. Secondary control is oriented toward the balancing of active and
reactive power by determination of the set-points of the primary controller and secondary
control, including grid synchronization, automatic generation control (AGC), secondary
load-frequency control (LFC), and voltage-drop control. Tertiary control (i.e., reserved) is
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related to energy management. It is used to provide optimal power flow and steady-state
conditions in a distribution network [3,58-61].

2.6. Control Quality Criteria

In this section, we discuss typical control criteria. They are then used to examine the
benefits and drawbacks of the presented algorithms.

¢ Online learning. Real-time optimization is used to adapt controllers to varying con-
ditions [62,63], and usually requires a special computational device for additional
tuning, validation, and verification.

* Robustness. Flexible reaction to disturbances is an important requirement in low-
inertia power grids, since, in practice, frequency deviation is limited to the range of
+0.1-1.5 Hz [12,64-68], and Nadir requirements are +0.024 Hz [12,69]. Using this
criterion, we briefly describe testing scenarios and the performance of the considered
virtual inertia controller.

e Implementation complexity. Complexity corresponds to the implementation efforts
of an algorithm in real controlling hardware: size, number of inputs and outputs,
mathematical complexity, etc.

*  Optimization difficulty. This depends on the number of inputs and outputs, time
for optimization procedure, and other requirements for the computational power to
provide the maximum possible efficiency.

2.7. Description of the Virtual Inertia Control Algorithms

Several recent works [12,16,33-36,70,71] addressed the problem of optimal frequency
support with high penetration of variable renewable energy sources. For example, Kerd-
phol et al. [35] designed a robust He, controller to provide stability support based on the
rate of change of frequency. The proposed solution provides advantages over conven-
tional virtual inertia control and optimally tuned proportional integral (PI) controllers
in scenarios when the wind farm is connected, solar panels are disconnected, and the
system inertia is 10% and 100%, respectively. Kerdphol et al. [34] further studied the prob-
lem by implementing a virtual inertia control scheme combined with a fuzzy-logic-based
approach. The proposed algorithm performed robustly under different scenarios with
additional uncertainties, including 80%, 40%, and 30% total system inertia and mismatches
in the primary/secondary control loops. Kerdphol et al. [45] proposed a model predictive
control scheme and compared it to a fuzzy-logic controller for the case of additional load
connections. Unlike the previous works, the studied microgrid has conceptual differences:
a closed-loop turbine system, RES power generation from two complex wind farms, and
minor differences in the transfer function describing the turbine and system inertia. Similar
ideas were presented in Tamrakar et al. [72], but without modeling renewable energy
disturbances. Magdy et al. [16] presented a PI controller optimized using particle swarm
optimization and combined with a digital frequency protection system in scenarios of
(dis)connecting loads and renewable energy sources.

In the following sections, we discuss the main features and constructive advantages
and disadvantages of the most common algorithms for virtual inertia control, focusing
on the load-frequency stability, implementation complexity, and performance against
disturbances. We categorize the revised implementations into three groups: advanced,
classical, and hybrid control as detailed in Figure 4.



Energies 2021, 14, 1562

7 of 20

Advanced Hybrid Classical
Reinforcement Mo_de_l Cogfficient
Learning Predictive Diagram
Control Method
Particle
- Swarm
Fuzzy-Logic . PP
CoTntro? Optnmfatnon H-infinity

PI Controler

Figure 4. Classification of algorithms for virtual inertia control. Pl—proportional integral.

3. Classical Control Algorithms

The major features of classical control algorithms are as follows:

e  C(lassical optimization. The optimization is based on the reaction to disturbances,
which are approximated by a transfer function or state-space representation. Usually,
classical optimization are applied to slow processes [73].

¢  Simplicity. Classical algorithms have a simple control structure, which enables effec-
tive manual tuning and requires low computational power.

*  High robustness. Classical algorithms can be highly robust, but require a specific
design procedure.

3.1. H-Infinity

H-infinity, He, achieves the synthesis of an optimal controller by considering mi-
crogrid disturbances and uncertainties via state-space representation, which can provide
high robustness and simple hardware realization. However, the main difficulty is the
necessity of designing an accurate state-space description for tuning the controller [33,35].
Frequency control based on He was used in [33,35,74-76]. The solution presented in [35]
applies a linear fractional transformation in the optimal He regulator design as the basis
for modeling microgrid uncertainties z, such as system inertia H, damping properties D,
and phased locked-loop (PLL) delays (w, and ().

H optimization performs in offline mode and is more vulnerable to low-inertia
nonlinearities than data-driven algorithms. At the same time, synthesis of the robust
model by Hy, provides reliable frequency support. For example, Kerdphol et al. [33]
implemented this method, which was successfully tested with 95%, 45%, and 15% of the
nominal system inertia and using two types of disturbances: (1) 10% of step changes in
load power demand and (2) mismatch in microgrid generation by increased time constant
of the governor and time constant for the turbine. Kerdphol et al. [35] reported an He,
controller tested with 100% and 10% system inertia in a scenario with 80% renewable
energy penetration. However, the common limitation of the Ho, method is the notable
peaks during (dis)connection of power plants. Hy, requires a detailed understanding of
classical control theory and optimization, which does not require powerful hardware for
operation. Nevertheless, the synthesized control model is a high-order transfer function
and often requires order reduction [33,35]. The biggest difficulties with He optimization
are the procedure for developing an accurate state-space representation and the manual
estimation of disturbances. The optimization based on application of the Hy, controller is
summarized in Algorithm 1.
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Algorithm 1 Design of the He controller

: Define the state vector xT = [Af, APy, APq, APACE, APinertiar AP, APy, Afpri1, Afpria]T

: Define the distribute vector @' = [APyind, APsotar, APL]T

: Define the control input u = Afpy and output y = AfprK(s)

: For a given microgrid, derive the state-space model with defined vectors

: Design the optimal He controller using the linear fractional transformation technique

: Validate the designed K(s) controller using a close-loop inequality equation, and if needed, repeat
the optimization procedure

Ul = W N =

3.2. Coefficient Diagram Method

Controllers based on the coefficient diagram method (CDM) rely on an algebraic
optimization approach through polynomial state-space representation and the Routh-
Hurwitz stability criterion [77,78], where the theoretical basis is constituted to satisfy the
Lipatov—Sokolov stability criterion [79-82].

Similar to He, the optimization procedure is designed for offline mode. The imple-
mentation of a controller based on the CDM in Ali et al. [36] produced frequency stability
in a range less than 0.1 Hz in a scenario with 100% inertia and two types of disturbances:
(1) 10% step load perturbation and (2) random load demand. In contrast to He, it can
mitigate peaks after the (dis)connection of renewable energy sources. However, the so-
lution uses a two degrees of freedom system structure expressed as N(s)/D(s), which is
designed to track a limited number of disturbances. The main drawback of CDM con-
troller synthesis is similar to He: it relies on a good understanding of classical control
theory optimization. However, it can be implemented using relatively simple hardware. In
contrast to Heo, CDM optimization performs without requiring order reduction and uses
the coefficient method instead of the Bode diagram [36,83]. However, the validation of
synthesized control by Routh-Hurwitz or Lipatov-Sokolov stability criteria depends on the
order of the synthesized control system [36,81-83]. The design procedure is summarized
in Algorithm 2, which was adopted from the flowchart provided by [36].

Algorithm 2 CDM algorithm

1: Define polynomial equation for microgrid modeling

2: Define external disturbances d = [Py;ng, Psorar, Pr] and reference input r = A frer and
CDM controller as K(s)

3: Calculate the K(s) output system as y = APj,,1i; and the input system as u = Af with
external disturbances and reference input

4: Calculate the polynomial of the designed K(s) control system with microgrid external
disturbances

5. Validate the designed K(s) control system
6: if the stability conditions of optimal CDM controller are verified then, go to step 10
7. else Check the value of the stability indices and the stability limits
8: Calculate the desirable CDM controller Kigyget(s)
9: Compare Kigrget (s) and K(s),

10: if the model is validated then

11: A robust K(s) controller is obtained

12: Check the robustness of the system response

13: else Repeat the procedure

14: end if

15: end if

4. Advanced Control Algorithms

The major features of advanced control algorithms can be expressed as follows:

e  Adaptation to uncertain conditions. Advanced control algorithms may provide adap-
tive reactions to disturbances that were not predicted.
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*  Prediction-based optimization. Fast processes, such as electrical frequency variation,
are easier to predict than postreaction. This principle gives additional advantages,
because data-based optimization follows the events prediction model. The drawback
of the approach is the necessity to design a memory buffer for data recording and
further prediction-based tuning.

¢ Online learning. Data-driven optimization implies recorded data analysis of controlled
processes. When conditions are changing radically, this approach provides a strategy
for optimization of controller parameters in parallel with real-time control.

e Complexity. Advanced algorithms require a powerful computing system. The main
benefit from complexity is effective multiloop control and adaptation to process
dynamics.

4.1. Reinforcement Learning-Based Controller

Reinforcement learning (RL) is an agent-based and model-free machine learning al-
gorithm [84]. The main approach of RL optimization is based on trial and error, which
allows direct validation of the artificial neural network (ANN)-based controller with the
control object and prediction of negative consequences [37,84-86]. The benefit of this
method is mandatory data-driven optimization, which is naturally designed for online
learning. In [37], RL was compared with He, producing slightly better performance in
terms of frequency stability in scenarios with 100%, 80%, and 40% inertia and connection
of wind, solar, and thermal plants during the launch of industrial and residential loads,
and 20% RES penetration. Since the algorithm uses a deep neural network, it requires
strong computational hardware and is relatively complex for implementation. The method
requires selection of an optimal action a(t)* at each step s(t) and takes a long time. For RL,
it is necessary to design a proper reward system and to choose the right training strategy,
which may differ [37,87-89]. For example, in previous works [87,88], the RL optimization
for frequency support was performed by approximated dynamic programming. In contrast,
Skiparev et al. [37] used the deep deterministic policy gradient to train an RL-based con-
troller for virtual inertia emulation. The optimization mechanism using the RL algorithm
is summarized in Algorithm 3.

Algorithm 3 Reinforcement-learning-based algorithm

: Define the actor and critic neural networks
: Define a; = APjpertiq, St = Aft, and sy = Af;1 of RL controller
: Define the desirable total reward for the RL controller target
. Start training the RL-based controller
: Receive initial process observation of microgrid dynamics as state s;
. Select action a; of the actor network according to current policy and disturbances
exploration
. Execute action 4; of the actor network
8: Observe reward r; and state s;, 1 using the critic network
9: if 7 > 74grger then Controller training successfully completed
10: else Continue training
11: end if

QU B WN =

N

4.2. Fuzzy Logic Controller

Fuzzy logic controller design provides effective manual optimization compared with
other advanced algorithms. Several examples of frequency regulation can be found in
the literature [34,62,90-94]. Since fuzzy-logic-based controllers can be manually tuned,
the data-driven approach is optional. Correct configuration of the controller can create a
robust system. Kerdphol et al. [34] applied a standard fuzzy logic controller for virtual
inertia control, which was capable most of the time of holding Af inside the 0.1 Hz band
with 80%, 60%, and 30% system inertia in scenarios with 20% and 80% RES penetration
and mismatch in primary/secondary control loops. Controller design requires a good
understanding of fuzzy rules design principles. In addition, the method requires powerful
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hardware for implementation. However, it uses fuzzy logic without an optimizer, which
can be considered a drawback, since it requires the manual design of the optimal fuzzy
rules [92,95].

5. Hybrid Control Algorithms

Hybrid algorithms inherit features from both categories. Model predictive control
(MPC) is an example of a controller that cannot be classified into either of the above-
mentioned categories. Optimization can be based on state-space representation [45] or
input/output (I/0) relation approximated by the data-driven approach [96]. The PI
controller optimized by particle swarm optimization (PSO) is another hybrid example,
combining a simple controller with the data-driven approach [16].

5.1. Evolutionary Optimization

Particle swarm optimization is a popular evolutionary algorithm inspired by collective
species behavior such as flocks of birds [97]; stochastic optimization should provide the
best performance through searching for a global minima. The particle swarm strategy is a
stochastic data-driven optimizer that enables online learning [16,56,98,99]. Magdy et al. [16]
used PSO for optimal tuning of a PI controller via searching the global minima of a
microgrid, which provided robust control with 100%, 80%, and 30% system inertia. The
performance of the optimal PI in Magdy et al. [16] showed relatively stable frequency
support with 100%, 50%, and 30% system inertia and with 57% RES penetration. In contrast
with other solutions, Magdy et al. [16] applied a dynamic model of a microgrid with
digital protection, which provided additional frequency stability. PI/PID is a widely used
controller in the power industry due to its simple construction [100-102]. However, the
PSO algorithm is a self-learning optimizer, which is more complex for implementation.
To produce an optimally tuned PI controller, the optimizer has to consider the state-space
dynamic modeling of microgrid uncertainties, which requires a relatively long time to find
optimal settings. The PSO procedure is summarized in Algorithm 4, adopted from [16].

Algorithm 4 PSO algorithm

: Define microgrid state-space matrix

: Define state vector X1 = [Af, APg, APy, APwt, APpy, APipertia]

. Define external disturbances vector WT = [APyind, APsopar, APL]T

: Define the control output signal as Y = [Af]

: Compute the state-space model for a given microgrid with defined inputs and outputs

. Initialize the D-dimension of particles as PI/PID controller coefficients

: Perform optimization by minimization of the fitness function for each particle

: Calculate the velocity and current position of each particle. Validate the optimized
PI/PID controller
9: if stopping criteria of PI/PID controller are met then

10:  Optimal parameters of PI/PID are obtained

11: else Repeat optimization

12: end if

@ N O Ul W N =

5.2. Model Predictive Control

The model predictive controller (MPC) requires the development of a robust pre-
diction model based on a detailed representation of the process dynamics via collected
data [45,103,104]. As a hybrid algorithm, the MPC can be implemented with data-driven [105]
or finite-time-horizon [46,106] optimization approaches. Kerdphol et al. [45] applied finite
impulse response optimization for model prediction based on the virtual inertia emulation
with microgrid state-space representation.

Regarding optimization, MPC can provide real-time learning through data-driven
and finite-horizon approaches. According to Kerdphol et al. [45], MPC performance is
higher than that of the fuzzy-logic-based controller, and may provide better Af stability



Energies 2021, 14, 1562

11 0f 20

during (1) (dis)connection of RES power, (2) sudden load change, and (3) mismatch in the
main thermal generation scenarios with 100%, 50%, and 25% system inertia and 34% RES
penetration. Implementation of the model-prediction-based controller depends on the type
of prediction model. The controller requires the calculation of each time sample and heavily
depends on the designed model used in the predictions of microgrid disturbances [45,72].
Specifically, Kerdphol et al. [45] used the finite impulse response, which considers each
sampling instant in the prediction of microgrid disturbances. The general concept of MPC
optimization is summarized in Algorithm 5.

Algorithm 5 MPC algorithm

1: Define the MPC controller as K(s)

2: Define the MPC controller input as u = Af, outputas y = K(s)A f, and the desired
profile as r = Af.f

: Predict the microgrid dynamics for the current time

. Optimize the first control step of K(s)

. Adjust the first control step according to MPC control rules

: Implement the local MPC controller

. if Evaluate the disagreement of tracking consensus with constrains then

End MPC optimization

: else Repeat optimization

10: end if

O ® N U oE W

6. Recent Directions and Trends

One goal of this study was to highlight the popularity of various control methods
for virtual inertia emulation reflected in the recent literature. Such trends are explored in
this section based on the contextual analysis of additional virtual inertia control. Based on
this analysis, we explain the motivation for the choice of several optimal control methods
and try to better understand why and when the reviewed methods are most efficient.
Special attention is paid to the analysis of relevant keywords describing each method and
application area. The fuzzy logic controller, model predictive control, coefficient diagram
method, and H-infinity methods are well-defined by their names. However, reinforcement-
learning and evolution algorithms are often defined by a specific strategy. Therefore, we
used several of the most common types of these optimizations during our literature search.
The keywords we used for the control methods are summarized in Table 3. The search was
also restricted to the title, abstract, and keywords fields.

Table 3. Search expressions that were used in the literature search.

Primary Expression Secondary Expression Third Expression

“FLC OR Fuzzy Logic Controller”
“MPC OR Model predictive
control”
“P1/PID”
“virtual inertia control” “microgrid” “EA OR GA OR Evolution
algorithms OR Genetic algorithms

“CDM OR Coefficient diagram
method”
”’Heo OR H-infinity”
“PSO OR Particle swarm
optimization ”
“RL OR Reinforcement learning ”
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Figure 5 depicts the rising trend in publications on virtual inertia control over an
11-year period. The Scopus database produced 404 papers and IEEE Xplore produced
239 papers.
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Figure 5. Yearly number of publications in the period from 2010 to 2020 on virtual inertia control.

The frequency-support-related algorithms mostly continued the rising trend, as de-
tailed in Figure 6. To provide a more in-depth analysis, we selected several algorithms
commonly used in frequency-control applications. Fuzzy logic and PI/PID appeared to be
the most popular control algorithms. Publications indicate the stable interest in usage of
PID controller, which can be further equipped with an additional optimization loop based
on data-driven algorithms and/or combined with advanced controllers [16,62,99,107,108].
Due to the natural ability in finding global minima, evolution algorithms (e.g., PSO, firefly,
and bat) are mostly combined with the fuzzy logic controller (FLC) and/or PID [16,62,99]
as one of the most frequently used hybrid algorithms of the existing control loops. Model
predictive controllers gained similar attention; in recent years, they have become the most
popular. One notable rise was found in the usage of the reinforcement-learning-based
strategies, which may become even more popular in the next years due to their ability to
perform effective study based on interactions with the environment [37,85,88]. Therefore,
we think that the data-driven algorithms will attract more attention in the coming years
due to the growing prevalence of data mining and cloud technologies.

60 T T
- —e— FLC
g 50 MPC 3
‘§ wl —»— PI/PID |
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£ 30 RL 1
) —— He ]
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g
z 10g M

00 & .
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Figure 6. Trends in the frequency-support algorithms in microgrids. FLC—fuzzy logic controller,
MPC—model predictive control, EA—evolution algorithm, RL—reinforcement learning, Hoo—H-
infinity, CDM—coefficient diagram method.

Figure 7 depicts the search results for the specific technologies used for frequency
regulation in microgrids. Energy storage appears to be the most widely used technology.
Virtual synchronous generators, virtual inertia, and phase locked-loop have small numbers
of publications, since each technology related to synthetic inertia generation is individual
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and requires specific design and case studies. Notably, many possibilities exist for research
into VSG/VI-related applications [12,22].
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Figure 7. Trends in frequency-control technologies in microgrids. ESS—energy storage system,
VSG—virtual synchronous generator, VI—virtual inertia, PLL—phased locked-loop.

Based on analysis of the above trends, it is reasonable to conjecture that in the coming
years, the virtual inertia problem will remain in the focus of the community. The isolated
microgrid, as a part of the general power grid, faces several important challenges such as
active and reactive power balance, power losses in transmission lines, grid frequency out-
matching, power production/consumption balance, among others [109]. Most microgrids
use simplified models of domestic loads, power plants, and energy storage systems. The
European Commission reported the potential research challenges in the renewable energy
area in the period of 2021-2027:

* Integrated local energy systems, microgrids, and modular solutions [110-113];

e Cross-border cooperation in transmission grids [110,114-117];

e  Electrical transport (cars, trucks, ships, etc.) [110,118-120];

¢  Effective energy management in domestic appliances (HVAC, boilers) by demand-side
management technologies [110,113,115,121,122];

®  Solutions for the integration of energy systems and coupling of different energy
vectors, networks, and infrastructures in the context of a digitalized, green, and
cybersecure energy system [110,113,123].

According to the REN21 report, 63% of world experts agree that by 2050, power
generation will focus on centralized or decentralized renewable energy [119] and 71% agree
that the transition to 100% renewable energy on a global level is feasible and realistic [119].
In addition, most experts agree that renewable energy should provide at least 32% of the
EU energy consumption by 2030 [2,119]. Hence, there is a clear need for continuing the
research on and adoption of various solutions, supporting the integration of renewable
energy sources; microgrids will most likely play a key role in achieving these goals.

7. Conclusions

Here, we reviewed recent works related to virtual inertia control methods designed to
solve the frequency regulation problem in islanded microgrids, with an attempt to better
understand the unique characteristics, common uses, and mathematical foundations of
the most popular control methods. The control techniques on which we chose to focus
were selected following an in-depth content analysis of various sources from the main
databases, as detailed in Section 6. This analysis revealed interesting trends in the current
research, and may help to understand why certain control methods are more efficient in
different circumstances (Table 4), and which control strategies will gain popularity in the
coming years.
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Table 4. Comparison of virtual inertia control algorithms: advantages, drawbacks, and quality criteria.

Hand. App.  Online/ Advantages Drawbacks Computational Robustness Optimization Refs.
Offline Complexity Complexity
Robust H- Offline ® Robust frequency e Significant peaks Medium High Medium [36,74,75,124—
é’ infinity control during connec- 126]
S * Strong overshoot tion disturbances
§o minimization  Need for order
= reduction
] ¢ Limited robust-
‘% ness
O Coefficient Offline ¢ Higher robust- ® Limited robust- Medium High Medium [36,81,83,127]
diagram ness ness
method * No need for
order reduction
Fuzzy-logic-  Online  Flexible reaction  ® Limited by fuzzy High High High [16,34,45,128]
»  based con- rules adaptation
£ troller * Manual optimiza-
g tion
%D ¢ Long compu-
5 tational time
g
g Online * Reward learning  ® Available sample Very High High Very High [37,85,87,88,
o .
< Reinforcement- system data are needed 129]
learning- ¢ Advanced feed- e Specific to the re-
based back from system ward /punishment
controller * High robustness optimization
PI/PID and Online ¢ Low numeric ¢ Convergence to Low Low Low [16,56,98]
»  Pparticle complexity global optimal
E swarm op- * Simple controller solution is not
b=t timization guaranteed
Eo e Limited robust-
-r; ness
E Model predic- Online * High robustness * Need data re- High High High [45,46,70,72,
> . .
T tive control o Fast reaction served for predic- 106,130]
based on predic- tion model
tion e Complex opti-
¢ Fast optimization mization

For instance, the data show that evolutionary algorithms methods are widely used for
tuned PI/PID controllers probably since this enables the analysis of stochastic scenarios
with nonlinear constraints. However, evolutionary algorithms may converge to local
minima and are therefore not suitable for every application. In such cases, classical control
methods seem to be the natural choice since they provide simple and effective solutions
to the virtual inertia problems whenever grid dynamics are well-defined. If there is
uncertainty in the grid dynamic and nonlinear constraints, fuzzy-logic-based controllers
are used extensively, although they are limited to specific and manually defined rules;
in cases with a large number of rules, the needed resources increase significantly. The
controllers based on the coefficient diagram method principle seem to be the least popular
method, maybe due to their limitation of tracking only a limited number of disturbances.
Artificial neural networks are also increasing in use due to the increasing amounts of
available data; specifically, reinforcement-learning methods are commonly used for solving
complex problems when a fully satisfactory algorithm is lacking. In our opinion, these
trends may change in the near future due to global initiatives related to the integration
of electric vehicles into microgrids and due to the continuing integration of renewable
energy sources and beyond-the-meter technologies, which may lead to more available
data and thus favor the use of new and more efficient controllers with a focus on data-
driven approaches.

Concerning future research, since microgrids are increasingly decentralized and less
regulated by governments, it is often impractical to study them from the perspective
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of one single entity with unlimited information and control span. Therefore, the recent
increasing trend in studies of virtual inertia control for isolated microgrids will likely
continue. Whereas classic control techniques are still mainly the focus of the community,
the wide adoption and integration of technological innovations such as the Internet of
things (IoT), cloud technologies, and data processing powers will likely start shifting the
main attention toward data-driven control techniques in the coming years. Another topic
of interest may be combining virtual inertia control with suitable energy storage as a
supportive technological solution in isolated microgrids. To answer this challenge, the
development of new optimal control methods can be considered a possible avenue for
future research.
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MPC Model predictive control
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Abstract—In this paper, we propose a multi-input multi-output
controller for optimal control of nonlinear energy storage, using
deep reinforcement learning (DRL) algorithm. This controller
provides the frequency support in an isolated microgrid with high
penetration of variable renewable energy sources and varying sys-
tem inertia. To achieve an optimal control we redesigned neural
network of actor and critic, simplified deep deterministic policy
gradient (DDPG) rules, and reorganized the reward/punishment
system. Simulation results show the efficiency of the proposed
virtual inertia control architecture in several scenarios.

Index Terms—Virtual inertia control, deep reinforcement
learning, microgrids, renewable energy

I. INTRODUCTION

Modern concerns about the future stability of global en-
vironment became the major vector for the development of
technologies to achieve decrease in pollution [1]-[3].

The variable renewable energy (VRE) sources (e.g., wind or
sun) are most available type of renewable energy. However, the
integration of VRE sources at the high levels decreases the
rotational inertia of the power grids and jeopardizes overall
grid stability [4]-[6], which can result in disturbed balance in
energy production/consumption and the frequency mismatch
with rest AC power grids and local blackout(s) [1]. The energy
storage system (ESS) is a technology capable to compensate
the lack of rotational inertia and increase stability of power
grid, which applies for energy balance in power system with
renewable energy penetration [7]-[9]. The isolated microgird
is a type of system, which integrates the traditional and renew-
able sources with various share of the power generation, and
serves as an example of a power system sensitive to the VRE
penetration [6]. This system has drawn significant attention
and was discussed in recent works [10]-[15]. The energy
balance was achieved by the energy storage, modeled using
the simple first-order transfer function with output limiter,
which does not provide energy accumulation. This issue was
addressed in several works [16], [17], where storage was
modeled as a park of electrical vehicles.
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In this paper, we extend a multi-input multi-output (MIMO)
deep reinforcement learning (DRL) based controller from [18]
and develop an optimal control architecture for nonlinear
energy storage model from [19]. We use this method for virtual
inertia control of an isolated microgrid with high penetration of
renewable energy sources. The proposed DRL controller is ap-
plied as an additional MIMO controller to compensate virtual
inertia. Here, we propose a modified controller by redesigning
actor and critic neural networks, simplifying DDPG training
algorithm, and reorganizing the reward/punishment system,
where the actor network is designed to provide simultaneous
control of power reservation and coefficients of the positive
and negative feedback loops to provide frequency support. In
addition, we tested the proposed control architecture for sce-
narios with varying system inertia and smooth (dis)connection
of renewable energy sources.

II. MOTIVATION AND PROBLEM STATEMENT

Modeling and control of isolated microgrids has several
important challenges for future works. One of these challenges
is the energy storage, which should simulate the natural
process of energy accumulation and distribution to the grid
influenced by the decreased inertia. Traditionally, ESS is used
as the part of virtual inertia controller that operation principles
are not optimal for inertia emulation and require integration
of additional control algorithm [6], [20]. The central challenge
here is to regulate the grid’s frequency with the high level
penetration of variable renewable energy sources. In order to
provide the optimal operation of the hybrid power system it is
important to develop methods for effective control of energy
storage device, which provide the control of energy flow in
closed systems such as isolated microgrid.

A. Structure of Studied Microgrid

In this paper, we consider model of the isolated microgrid
proposed and addressed in several recent papers [10], [11],
[13], [14], which incorporates power players with different
inertia, see Fig. 1. The typical configuration includes res-
idential APg;, and industrial loads APy, energy sources
(mechanical power of thermal plant A P,,,, wind turbines A Py,
and solar power plant APpy combined as renewable energy
APrgs), and energy storage system. Thermal power plant
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Fig. 1. Schematic representation of isloated microgrid with the proposed

virtual inertia MIMO controller.

is composed of a governor with generator rate constraint
(Py,max> Pg,min) and turbine with frequency rate limiter, which
restricts the valve opening/closing (Viy, Vi). The dynamic
model of a microgrid utilizes the hierarchical architecture with
primary and secondary control loops. The primary control loop
has droop coefficient 1/R, and the secondary loop has an
area control error system AP,cp with the second frequency
controller K and the first-order integrator 1/s. The frequency
support is performed by a novel virtual inertia controller with
output A P;,,¢rtiq, being the input for the total power deviation
AP,. Microgrid balancing system is represented as the first-
order transfer function with microgrid damping coefficient D
and system inertia H. The power generation by variable energy
sources and loads computed as combination of two random
signals with the first-order holder, their connection provides
by function with smooth start. The deviation of frequency in
the studied microgrid can be calculated as:

1
2Hs+ D
where signals are defined as: AP, = APy + APipertia —
AP, APy = APrps + APy, AP, = TiTiAPg, AP_q =
ﬁ(APACE_%Af)’ APscE = %Af, AP, = APrr+
APrr,, APrps = APy +APpy . Parameters of the microgrid
are summarized in Table L

Af = (AP.), 1

III. METHODS
A. Proposed Virtual Inertia Control Scheme

The novel virtual inertia controller is based on nonlinear
control strategy of the energy storage system presented in [19],
and includes the positive (red) and negative feedback (blue)
loops, see Fig. 2. Positive loop has the energy accumulation
part E, with defined limits 2E,,,, and 0, the energy ac-
celeration part performed as the dead-band ((E;) connected
to controllable signal Ac, which goes to the integral block
with limits A\pax and Apin. The negative feedback loop has
controllable signal AS. Finally, both loops control the power
output AP;,ertiq. The control part of VIC is performed by
multi-loop based controller with three output signals: two non-
negative A« and AfS, and one real Ay, which controls the

TABLE 1
NOMENCLATURE: PARAMETERS OF A MICROGRID

Parameter Physical meaning Nominal Unit
value
T time constant of the turbine 0.4 s
Ty time constant of the governor 0.1 s
Ky integral control variable gain 0.05 N
H system inertia 0.083 puMW s
D system damping coefficient 0.015 p-uMW s
R droop characteristic 24 Hz/p.uMW
Twr time constant of wind tur- 1.85 s
bines
Tpy time constant of solar system 1.5 s
Vu maximum limit of valve gate 0.5 -
speed
\%3 minimum limit of valve gate 0 -
speed
Py max maximum generation rate 0.12 p-u. MW/min
Py min minimum generation rate -0.12 p.u. MW/min
((Es)max  maximum ESS rate 1 _
((Es)min  minimum ESS rate -1 -
FEmax maximum capacity of ESS 1.0 —

MIMO
Controller APinertia
APy
N
Fig. 2. Schematic representation of the proposed virtual inertia control
strategy.

power inflow AP, from the microgrid to the storage device.
The proposed multi-loop DRL controller has several inputs
Af, APy and APp. The Af value depends on system
inertia and its stability is important. Therefore, DRL controller
includes the Af acceleration via differential block and the
total deviation by discrete-time integration block. Considered
microgrid model has the energy storage model (see Fig. 2),
which provides the power accumulation and (dis)charge dy-
namics. Dynamics of energy storage is defined as:

d(ﬁs =u(t) = AP.A~,

ES(O) = 0~5Emax7 0 S ES S EI!]&X',

where AP, is the power flowing into the storage and A~ is
the control law. The dead-zone function is defined as:

@

Emaxv Eiix > C(Es)max
C(Es) = 07 C(Es)max 2 Ef;x 2 C(Es)min (3)
_ElnaX7 Ei;x < C(Es)min

where the input is defined as 4 = Aa((E;), A(T) = 0. The

following part represents ESS controllable power output that
summarizes all signals:

dA Es
A]Dinertia = E - ABE .

“
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control algorithm.

B. Deep Reinforcement Learning based Controller

Proposed deep reinforcement learning based controller is
a combination of two artificial neural networks: the actor
u(s | 6,) that preforms the frequency control and the critic
Q(s,a | 6g) that selects the best actions of an actor (see
Fig. 3). The training rules of agent are defined by certain re-
inforcement learning (RL) policy (e.g. Dynamic programming,
Monte Carlo, Q-learning, SARSA, DDPG, A3C, SAC) [21]-
[23]. The major feature of RL training is a strategy based
on the rule of try and error. When the actor makes a right
action a; according to the designed reward/punishment rules,
it receives a reward r at each step of the action, otherwise
take a punishment —r. The training duration depends on the
number of the epochs and learning rate «,, actor and «a critic
networks, after each epoch the rewarding system calculates
average reward 7g,,. If the average reward of last epoch
is significantly less than previous, then RL repeat weights
initialization of neural networks to try new control strategy,
unless the accumulated reward will reach a target value 7¢qrget-
We apply this architecture as additional MIMO controller of
VIC scheme, which is illustrated in Fig. 2.

C. Simplified Deep Deterministic Policy Gradient

We briefly explain the key application details of the pro-
posed controller based on RL algorithm optimized by sim-
plified deep deterministic policy gradient (SDDPG). Original
deep deterministic policy gradient is model-free reinforcement
learning algorithm, designed for tasks with low-dimensional
continuous action space [22]. The DDPG optimization com-
bines Deep Q-learning (DQL) [23] and deterministic policy
gradient (DPG) [21], [22], which inherits from the DQL neural
actor-critic architecture. In contrast to original DDPG, the
modified version has simplified loss function for actor L,, and
training is performed without replay buffer. The principle of
optimization is based on the search of a minimal difference be-
tween target action-value function y; and critic network reward
prediction Q(s;,a; | 6g) for each actor network (s | 6,,)
decision a; (i.e., Ao, AB, A7) per step 7 in microgrid state
sy (e., Afy, AP, APy). The aim of simplified DDPG
algorithm is to receive the maximum possible average reward
ry per training episode via minimization of critic Lg and
actor L, loss functions. Pseudo-code shown in Algorithm 1
illustrates simplified DDPG algorithm.

Algorithm 1 Simplified DDPG algorithm
1: Initialize critic Q(s,a | 6g) and actor u(s | 6,) networks
with random weights 6 and 6,,.
2: Initialize learning rate for critic ag = 0.1 and actor o, =
0.1 networks.

3: Initialize smooth 7 = 0.5 and discount factor v = 0.25.

4: for episode =1 to M do

5: fort=1to T do

6: Receive initial process observation as state s;.

7: Select action a; = pu(s; | 6,,) according to current
reward prediction Q(s;,a; | 0g).

8: Execute action a;, observe reward r; and future
state St41-

9: Select the best critic reward prediction weights

Q'(Sit1, 1 (8i+1]0,) according to explored max average
reward max(+ 3=, (s, a;))

10: Set action-value function of DDPG policy y;
i+ Q' (8141, W (si41[0,) | Or).

11: Update critic by minimizing the loss: Lo =

¥ >y — Qsiy ai | 6))>

12: Update actor policy using sampled gradient of
critic: Lu = % Zz(Q (s,a I GQ) ‘s:si,a:u(si))z
13: Update target networks:

14 09 « 709 + (1 - 1)0% agLq.
15 04« 708 4+ (1 — T)ﬁﬂ/aﬂLu.
16: end for

17: end for

D. RL Agent Reward/Punishment System

The reward/punishment system proposed in [18] was re-
designed to provide a more accurate punishment system for
DRL agent in virtual inertia control task. Reward system is
organized to transform the measured frequency deviation and
other signals to the reward/punishment r;, defined as:

1
TETIATT for Af < 0.05,
_ =4

= 2|Af|, for Af > 0.05, )
0.1a, for a > f3,
—0.58, for > a.

To provide instructions for A f regulation system is organized
as follows: initial signal transforms to the absolute value |A f],
if Af < 0.05 the DRL agent receive a reward, otherwise
system does a punishment. In order to provide reasonable
rewarding of each action, the reward is limited by Af €
[0.05, 2]; however, the punishment is unlimited and multiplied
by constant value 2. Additional reward rules are provided to
help RL agent understand the difference between A« and AfS
magnitudes.

IV. NUMERICAL RESULTS

The renewable energy sources are modeled using AP,;nq €
[0.1,0.125] and APy, € [0.075,0.125]. Load is modeled
using APg;, € [0.15,0.25] and APy, € [0.2,0.325]. We
organize experiments with and without MIMO controller to
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show how proposed methodology increases the ESS operation
efficiency. In addition, in each scenario we perform experi-
ments with different system inertia 100% (i.e. H = 0.083)
and 40% (i.e. H = 0.032) to show how it affects on energy
storage charge dynamics. Simulation results of the proposed
virtual inertia controller are illustrated in Figs. 4-7.

Scenario 1: The first simulation illustrates the nominal case
without any changes during the operation time, see Fig. 4. The
proposed virtual inertia controller slightly influences the Ej,
and it can be seen how different levels of inertia affect the
process of energy accumulation. According to the obtained
results, lower inertia causes the lowered energy accumulation
in ESS. If the energy storage is almost discharged, then
frequency support of microgrid becomes more difficult, but
still frequency deviation is kept in the range £0.05 Hz. In
contrast, without additional controller the deviation is higher.
Figure 5 illustrates performance of the proposed controller
with three controllable signals.

T
100% inertia — — — 40% inertia

e
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Fig. 4. Simulation results for Scenario 1.

Scenario 2: The second scenario provides the smooth
connection of wind turbines at ¢ = 300 s and disconnection
at t = 400 s. It can be seen that ESS charges faster after
connection of the wind power and starts discharge after
disconnection of this power source as depicted in Fig. 6.
As we can see before connection of wind turbines energy
storage has a minimal state of charge. After disconnection of
wind turbines the energy storage provides active frequency
support of microgrid, helping to stabilize Af in case of
the proposed controller; however, in case without additional
controller frequency keeps oscillating. In contrast to previous
scenario the influence of low inertia on energy reservation is
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Fig. 5. Control signals for Scenario 1.

higher. Figure 7 shows how controller responds for connection
of renewable source with excess power income.
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Fig. 6. Simulation results for Scenario 2.

Tables II and III show evaluation results of the pro-
posed controller in nominal scenario and scenario with
(dis)connecting renewable energy sources. Root mean square
error (RMSE) and integral absolute error (IAE) statistical
metrics are used to validate the performance. Both metrics
confirm that the proposed VIC and DRL based controller
performs better than the standard one.
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Fig. 7. Control signals for Scenario 2.

TABLE II
PERFORMANCE OF THE PROPOSED CONTROLLER: IAE

Approach With MIMO controller | Without MIMO controller
Inertia 100% 40% 100% 40%
Scenario 1 | 23.5960 24.7705 44.1569 51.1119
Scenario 2 | 37.4870 38.7273 2040.9 1725.6
TABLE III

PERFORMANCE OF THE PROPOSED CONTROLLER: RMSE
Approach With MIMO controller | Without MIMO controller
Inertia 100% 40% 100% 40%
Scenario 1 | 0.0837 0.0842 0.1446 0.2349
Scenario 2 | 0.0999 0.1027 3.0616 2.9267

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose a novel virtual inertia control
scheme that manages the power flow in energy storage system
within an isolated microgrid.

We applied the modified deep reinforcement learning based
controller as optimal MIMO controller for the proposed VIC.
In order to receive a robust control architecture, the structure of
neural actor and critic were changed. In addition, we simplified
the policy rules of the DDPG algorithm and redesigned the
reward/punishment system. To validate the proposed algorithm
we performed simulations with the nominal scenario and with
smooth (dis)connection of renewable energy sources for the
cases of nominal (100%) and decreased (40%) inertia in
each scenario. It was shown that the proposed controller is
capable of providing good response and frequency support in
all simulated scenarios.
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Abstract—Numerous remote area applications welcome stand-
alone renewable energy power generation systems or isolated
microgrids (MGs). Due to the nature of solar and wind energy,
the frequency deviation control (FDC) in hybrid MGs has become
more complicated and critical than the conventional grid for
power quality purposes. By using a coordination control strategy
between a double-layered capacitor and a fuel cell, our mission
here is to design a FDC system based on the PI controller which
is tuned by an artificial neural network (ANN) in a multi-agent
structure. To achieve this aim, a reinforcement learning technique
is applied to train the ANN-based tuners. The performance of
the proposed FDC system has been verified under different
conditions by using real data to demonstrate the stability and
robustness of the proposed controller.

Index Terms—Microgrid, frequency deviation control, multi-
agent, neural networks, reinforcement learning

I. INTRODUCTION

Wind turbine generator (WTG) and photovoltaic (PV) sys-
tems are two of the most promising renewable technologies in
the hybrid stand-alone power generation systems and isolated
microgrids (MG) utilized in many remote area applications
with no access to grid electricity [1]. Energy storage systems
(ESSs) and additional power generation components such as
batteries and fuel cells (FCs) are integrated into the isolated
MG to mitigate power fluctuation caused by changing weather
conditions and to provide a stable power supply [2].

FC system, a high efficient and modular energy generation
element using chemical energy conversion, is one of the
most reliable energy technologies for sustainable future [3].
Parallel to its good power capability in steady-state operation,
the main drawback of this system is its slow dynamics and
time delay [4]. Therefore, it is always utilized along with
ESSs to change its power to a desired value and improve
system performance. Due to the restricted control operation
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PRG658 and PRG1463, and by Israel Science Foundation grant No. 1227/18.
The work of V. Skiparev and K. Nosrati in the project “ICT programm” was
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of hydrogen in FC and its long time delay, the usual DC
link capacitor cannot compensate for the variation of load
demand [5]. So, double-layered capacitors (DLCs) with fast
power response and associated with DC/DC converters can
complement the slower power output of the main source
to compensate for the load demand variation and transient
response of the FC system [6].

Unlike a single power system, there are two or more power
generation sources in a hybrid MG (HMG) that enhance the
operating characteristics of the system [7]. A proper coordi-
nation of frequency deviation control (FDC) of components
can ensure effective power delivery to the load sides. Among
different efforts on FDC of HMG, the small signal stability
analysis of a hybrid power system with an isolated load was
discussed in [8]. In [9] and by using reduced dump load tech-
nique, the load FDC of an isolated power plant was achieved.
As a contribution to FDC and power quality enhancement, a
coordinated proportional-integral-differential (PID) was given
in an isolated HMG [10], in which some improvements were
proposed in terms of time domain response and MSE value as
compared with previous works.

By optimal parameter setting of the PID controller fam-
ily, an efficient stability condition of grid operation can
be achieved. In this regard, some control and optimization
approaches, such as genetic algorithm (GA) [11], fractional
order control [12], biogeography-based optimization (BBO)
technique [13], and multi-verse optimization (MVO) technique
[14] were proposed for the FDC of HMG. However, all
previous studies attempted to achieve a higher degree of FDC
by adjusting parameters in an offline approach, associated
with a few problems, including premature convergence, time
complexity, and parameter tuning search space. The control
options in these works are limited to manual tuning, and all
of the controller’s features, such as the use of integration and
derivative actions, cannot be manipulated automatically.

In this study, we aim to provide the synthesis of a new
flexible PI-based FDC to evaluate the grid stability under dif-
ferent levels of renewable energy systems (RESs) penetration
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and load disturbances. For this purpose, we propose an online
tuning of the PI controller based on an artificial neural network
(ANN), which is trained by the reinforcement learning (RL)
algorithm. This automatic tuning technique, which admits to
capturing all the remarkable advantages of the PI controller,
including robustness improvement and disturbance rejection,
can give rise to the generation of control laws that lead to
superior performance of the system. The research motivation
here addresses the problem of FDC for an islanded HMG
based on an automatic tuned ANN-PI controller associated
with stochastic RL (SRL) and pursues the development of
an online multi-agent strategy to improve the system perfor-
mance. It is worth mentioning that the proposed algorithm
shows a successful tuning effort of the controller in a multi-
agent structure, which is valid for FDC purposes in HMG
typologies.

II. SYSTEM CONFIGURATION AND MODELING

A. System Structure

The proposed isolated power generation/energy storage sys-
tem, or HMG, is depicted in Fig. 1. The power generation
subsystems comprise a wind turbine, PV panels, a FC system,
and a DLC bank employed as ESS. All four systems are
connected in parallel to a common AC bus line to supply
isolated loads with PV, FC, and DLC connected via three
separate AC/DC converters. In the proposed system, RESs PV
and WTG are used as primary energy generators, with priority
given to power generation to meet load demand.

To study the proposed HMG system, high order mathemat-
ical models with nonlinear dynamics must be used for each
subsystem. In our scenario, simplified models such as linear
first-order transfer functions are often used for simulating
and investigating all components of such MGs. As a result,
the system non-linearities will be ignored, and the system
simulations in this study will use a simplified model of the
components. In what follows, mathematical models of the
components are presented.

B. WTG Model

Wind speed has a direct effect on the output power of
WTGs, as mechanical power in the turbine section is deter-
mined by

1
Pyra = 5/)14’030;;()\7 9), (1)

where p is the density of air, A is the area swept by the blades,
v is the wind velocity, C'p is the rotor efficiency, which is a
function of tip speed ratio A and pitch angle 6.

As depicted in Fig. 2a, the Cpnqz can be acquired for a
given direction of the blades and when A is in its special value,
which directly depends on the turbine aerodynamic structure.
Depending on the wind speed, the rotor speed can keep A
at its optimal level, which means that the most energy from
the wind can be used. Also, Fig. 2b illustrates the variation
of the output power according to the wind speed. The power
remained constant by using the pitch angle control system
to prevent excessive rotor speed and preserve the equipment
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Fig. 1. General configuration of the isolated HMG.

when v increases through the rated wind velocity. When v
is smaller and greater than the cut out and on wind speeds,
respectively, i.e., 14 < v < 25 m/s, the output power takes its
constant maximum value, and is zero for v < 4 m/s. However,
for v > 25 m/s, the system takes out of operation.
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Fig. 2. Variation of C'p and Py, 1 according to the X and v.

(b) Pwrg —v

By defining Ty 7 as a time constant, the dynamical model
of WTG in the frequency domain can be given by

APwra 1

- , 2
APyina  sTwra +1 @

where AP,;nq and APy ¢ are the variations of the mechan-
ical power and output power of WTG, respectively.

C. PV Model

One of the most promising, flexible, and environmentally
friendly power sources is the PV system, which consists of PV
panels connected in series and parallel structures. This system
converts solar radiation to electrical data based on solar cell
temperature and array area, and its output power Ppy can be
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expressed as follows in terms of conversion efficiency 7, PV
array area S, solar irradiation ¢, and ambient temperature 77,

3

The variations of solar irradiation to output power of PV
system can be described as
APpy 1
Ap a sTpy +1’

where T, is the PV time constant.

Ppy =nSep(1 —0.005(T, + 25)).

“

D. FC Model

The FC technology, which has been considered as a high-
efficiency power generation device, can convert chemical
energy into electrical energy by using hydrogen and oxygen.
This static device has a slow dynamics in its fuel supply
sections such as pumps and valves, resulting in slower power
output. The dynamic response of the FC system can be given
by introducing the first-order time delay transfer function and
Trc as the FC time constant

1

=—. 5
STFC+1 ()

Grc

E. DLC Model

General Electric Company first patented electro-chemical
capacitors in 1957, consisting of porous electrodes using the
DLC mechanism of charging [15]. Nowadays, this technology
plays a key part in fulfilling the demands of possible appli-
cations, including memory back-up, electric vehicles, power
quality, and RESs. The transfer function of this highly efficient
device with a fast load frequency can be represented by the
first-order lag equation

1
sTpre +1°

where Tpr ¢ is a time constant.

6)

Gprc =

F. Frequency Deviation System

For the stable operation of the HMG system with different
power generations, effective control of components is neces-
sary. This can be achieved by regulating the fluctuation in the
frequency profile A f, which can be expressed using the power
balance AP = Py¢t — Proad as

AP

Kyma'

Af = (O]

where Pne; and Ppqq are the net and load power, respec-
tively, and K g/ is the system frequency constant of HMG.
The dynamical model of frequency variation according to per
unit power deviation can be given by

aAf 1
AP sM+D’

where M and D are the inertia and damping constants of
HMG, respectively, see [15].

®)

III. PROPOSED MULTI-AGENT CONTROL STRATEGY

In the given HMG system, the RESs, including PV and
WTG, are considered the main and primary energy sources to
generate power for the loads. Because of the high dependency
of the produced power by these two subsystems on weather
parameters, the HMG is equipped by FC to provide the
required energy to meet the connected loads. To obviate the
slow dynamical response of the FC, the residual energy of the
HMG is provided by ESSs, especially the DLC system, which
is flexible and fast. This subsystem can effectively complement
the slower power output of the main source to compensate for
the variation of load demand and FC system power.

By using a coordinated control strategy between FC and
DLC (see Fig. 3), the FDC problem can be solved with
enhanced power quality. In this regard, DLC and FC systems
act as backup systems and compensate for high and low
frequency deviation, respectively. A high-pass filter (HPF) here
can reduce the charging and discharging of DLC in long-term
operation. Also, as seen from Fig. 3, the net power generation
is comprised by the following equation

Pxnet = Pwra + Ppy + Pro = Ppre. )

Here, an online and automatic tuning based PI controller,
which admits to capturing all the remarkable advantages of the
controller, including robustness improvement and disturbance
rejection, is applied for the control purpose. The robustness
of the isolated HMG system can be improved using an
online tuning of the PI controller based on a NN technique
trained by the SRL algorithm, resulting in superior system
performance. It shows that the controller can be tuned in a
multi-agent structure, which is good for FDC in HMG types of
systems. This online-tuned ANN-PI controller strategy shows
a successful effort to do so as shown in the next sections.

A. ANN Tuning-based PI Controller

In the proposed solution, each ANN performs online tuning
of each PI controller simultaneously. After each HMG dis-
turbance, we provide a reasonable change in the controller’s
two parameters tuning, whose transfer function is stated as
Kpr = K,(t) + K;s~1(t). In the proposed architecture, we
avoid tuning of all PID controller coefficients because the
differential part is sensitive to disturbances and difficult to
change without losing tone stability. To organize effective
and fast training of two independent agents, we designed the
multi-agent SRL optimization method, where weight range is
designed for each agent individually. We propose a simple
ANN with positive weights in the range of [0,5] and [0, 10]
for agents 1 and 2, respectively, and a modified tansig
activation function by adding absolute value

m

= T o oisl —n, (10)

)
where the absolute value of z is used to avoid negative output,
provide a sufficient range of coefficients for the PI controller,
and make the tuning more robust. For effective coordination
purposes of the two subsystems, DLC and FC, the parameters
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m and n are considered to be 200 and 100 for the DLC
element, and 10 times larger for the FC subsystem. We avoid
connecting a high-pass filter (HPF) to the ANN-based tuner
since it has a negative impact on the stability of the tuner and
confuses the reward system. Therefore, the input signal for
both agents is the same.

sT,

5Tyrg +1

Af

Fig. 3.

Proposed coordinated multi-agent FDC scheme.

B. SRL-based Training for Multiple Agents

We use a basic SRL to train multiple RL agents and provide
optimal online tuning of each PI controller, in which random
weights are generated M times. The training is based on
reward feedback organized by reward system proposed in [16],
where the best weights can be obtained via the selection of
actions with the highest possible reward. In this approach,
we perform actions a; (i.e., Kp(t) and K;(t)) and check the
received maximum average reward 74, max Of each agent
individually, where the main criterion for rewarding is the
magnitude of Af (see (11)), considered as control error, and
an agent receives a positive reward +r if frequency deviation
is less than band 0.01 Hz; otherwise, it takes a negative reward
or punishment —r. The major problem with multiple agents
is synchronized training, because the actions of the first agent
affect the results of the second agent and vice-versa. Therefore,
we admit that the reward of both agents is easier to calculate
by a common summarized reward and saving weights with
the best reward for each agent individually. The following
equation illustrates the provided common reward rules for all
agents:

if 10]Af] < 0.01
if 10|Af] > 0.01.

1
o= 0.5+10[Af]? 11
t {20|Af, (a

IV. NUMERICAL RESULTS

To develop the proposed multi-agent management strategy
and to investigate the coordinated ANN-PI controller perfor-
mance, the given control scheme (see Fig. 3) has been im-
plemented using MATLAB/Simulink with model parameters
TWTG =1.5 S, TPV =1.8 S, TFC =0.26 S, TDLC =0.01 S,
M = 0.4, and D = 0.03. Figure 4 (top and middle plots)
shows the output power of WTG and PV systems, respectively;
while the bottom plot depicts the load demand applied for

Algorithm 1 Multi-Agent SRL optimization approach.

1: Initialize neural network of agent n as i, (s | 6,,,,)

2: for episode =1 to M do

3: Initialize random weights of each agent 6,

4 for i =1to N do

5 Execute action a;, = Kpy, (t), observe reward r,
at each step 7 in common state s; = Af;

6: if Average reward of n agent 74ur, > Tavr,max, =
max (% Y, 7i, (si,a:,)) then

7 Save weights of each agent 0,
8: end if

9: end for

10: end for

HMG systems. Figure 5 shows how the FDC problem can
be appropriately solved by using the proposed controller, in
which whole hybrid power generation is better compensated
by considering the effects of system frequency variation as
compared to the usual PI controllers and when the system is
free of control (without control). In terms of transient response,
ANN-PI has a smaller overshoot with a shorter settling time,
indicating a faster transient time. In terms of steady state, the
proposed approach has small steady-state error and reduces
the values of the integral absolute error (IAE), mean square
error (MSE), and root MSE (RMSE) when compared to the
traditional PI controller for the entire period (see Table I).

0.3k j
Zo2f f
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o ‘ ‘ ‘
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Fig. 4. Output powers of WTG, PV, and load variations.

TABLE 1
PERFORMANCE RESULTS.
Controller TIAE RMSE MSE
Coordinated ANN-PI | 0.0027  0.0004  0.0000016
Coordinated PI 0.005 0.0011 0.000012
No control 14.93 0.6595 0.435
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Fig. 5. FDC results of the proposed control approach (ANN-PI) compared to
the classical control (PI), and when HMG is free of control (without control).

According to the results for the proposed controller, we can
see an insignificant influence of WTG and PV disturbances
on the proposed combination of ANN and PI controller. In
contrast, the traditional PI controllers show less flexibility in
the distributive process. Figure 6 illustrates the parameters of
the online tuned PI controllers. Here, we can see how ANN
adjusts the parameters of both controllers to optimal values
after each step in the signal. For the usual PI controllers,
the parameters are fixed at K, prc = 30, K; prc = 0.1,
and K) rc = 150, K; pc = 1000. Since the tuning of the
coefficient directly depends on measured error dynamics, each
ANN provides the dynamics of tuning in a similar form. While
in agent 1, the range of the coefficients is similar to each other,
in agent 2, it is better to keep the coefficients different from
each other.

Time [s]

Fig. 6. Online tuning of two PI controllers DLC (top) and FC (bottom).

V. CONCLUSION

In this work, we proposed an online tuning method for
the PI controller based on an ANN trained using the SRL
algorithm to solve the FDC problem of the given isolated
HMG. The results demonstrated that the proposed combination
of PI controller and neural tuner and automatic tuning tech-
nique captures all the remarkable advantages of the controller,
including robustness improvement and disturbance rejection,
and gives rise to the generation of control laws that improve
both transient and steady state cases.
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Virtual Inertia Control of Isolated Microgrids Using
an NN-Based VFOPID Controller

Vjatseslav Skiparev
Aleksei Tepljakov
Juri Belikov

Abstract—Reduction in system inertia and maintaining the fre-
quency at the nominal value is a staple of today’s and future power
systems since their operation, stability, and resiliency are degraded
by frequency oscillation and cascading failures. Consequently, de-
signing a stable, scalable, and robust virtual inertia control system
is highly relevant to skillfully diminishing the deviations during
major contingencies. Therefore, considering the potential problems
in predesigned nonflexible control systems with offline tuning tech-
niques, we propose a variable fractional-order PID controller for
virtual inertia control applications, which is tuned online using a
modified neural network-based algorithm. The new proposed tuner
algorithm is trained using a deep reinforcement learning strategy
with a simplified deep deterministic policy gradient, which consid-
ers microgrid uncertainties. Compared with existing methods, all
the tuning knobs of the discrete type and fully tunable variable
FOPID controller (for both gain and order) can be captured based
on the proposed hybrid algorithm, which inherits features from
both classical and advanced techniques. To demonstrate the effec-
tiveness of the training of the proposed controller, a comparative
analysis with the standard FOPID and PID controllers is given
under three different scenarios with a smooth (dis)connection of
renewable energy sources and loads.

control, deep
neural networks,

Index Terms—Microgrid, virtual inertia
reinforcement learning, variable FOPID,
renewable energy.
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CDM Coefficient diagram method.

DG Distribution grid.

DRL Deep reinforcement learning.

ESS Energy storage system.

FLC Fuzzy logic control.

FOMCON  Fractional-order modeling and control.
FOPID Fractional-order PID.

GRC Generation rate constraint.

MG Microgrid.

MPC Model predictive control.

NN Neural network.

PCL Primary control loop.

PID Proportional-integral-derivative.
PV Photovoltaic.

RES Renewable energy source.

SCL Secondary control loop.

SDDPG Simplified deep deterministic policy gradient.
TPP Thermal power plant.

VFOPID  Variable FOPID.

VIC Virtual inertia control.

VO-FD Variable order fractional derivative.
VO-FI Variable order fractional integral.
WTG Wind turbine generator.

I. INTRODUCTION

UTONOMOUS MGs are an increasing trend in power
A systems, where the high RES penetration is a significant
challenge for the control of power supply stability, especially
when the system is isolated from the grid [1], [2], [3]. Virtual
inertia emulation is a solution that helps balance power systems
with high-order dynamics [4]. This specific part of the virtual
synchronous generator uses ESSs to compensate for the lack
of rotational inertia and decrease the jeopardizing influence of
RESs [5]. The parameters of these systems can be manipulated
to enhance the dynamic system response. As a result, the concept
of VIC with a suitable strategy is critical for MG operation [6].

To improve the stability of low-inertia MGs, different con-
trol structures, such as central and decentralized control, are
used. While all control actions are made by a central unit
or controllable distributed generations in the former structure,
the latter offers local-based robust VIC techniques considering
the increased uncertainties and nonlinearity contributed by the
integration of renewable energy and distributed generation [7],

1949-3029 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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[8] to obtain more system efficiency and dynamic robustness [9].
This concept was first implemented in [10] using converters,
and many other strategies have been developed in the literature
since, with a special look at the control algorithm—as the
core of the system—based on decentralized approaches. Several
approaches have been proposed in this regard to solve the VIC
problem with an adaptable virtual inertia constant, which is
an important factor in emulating inertia power into the MGs,
including optimal control [11], [12], H-infinity control [13],
[14], CDM [15], integer and FOPID controllers [16], [17], [18],
[19], [20], [21], [22], FLC [23], [24], DRL method [25], [26],
and MPC [27], [28]. These approaches are frequently used as
a reference for comparing the performance of VIC and can be
divided into three main categories [2]:

® Classical algorithms: Most standard systems use classical
algorithms such as H-infinity control [13], [14], CDM [15],
and PID or FOPID-based controllers [16], [17], [18], [19],
[20] for inertia emulation. Classical optimization, simplic-
ity, and high robustness are three major benefits offered by
these algorithms.

o Advanced algorithms: With FLC [23], [24], a self-adaptive
system frequency stabilization, via manual design and
without any on/offline optimization, was developed against
the high amplitude fluctuations. For an optimal tradeoff be-
tween the transient frequency regulation and the respective
control effort, the DRL method was applied to design an
optimal controller [25], [26]. The major features of these
algorithms are adaptation to uncertain conditions, online
learning, and complexity, which is effective in multiloop
control and adaptation to process dynamics but requires
notable computational power.

® Hybrid algorithms: The algorithms in this category in-
herit features from the first two categories and can be
used effectively to improve the system performance in
future practical applications. The MPC [27], [28] and
evolutionary-based optimization [19], [21], [22] of the clas-
sical controllers, associated with a data-driven approach,
are two examples that cannot be classified into either of the
abovementioned categories.

Recently, tuning-based FOPID and PID controllers were ap-
plied to the automatic load-frequency control of an islanded MG
in a hybrid strategy [19], [21], [22]. Compared to other control
techniques and according to the field researcher highlights,
FOPID and PID controllers can properly generate the virtual
inertia constant, which is the crucial term in emulating addi-
tional inertia power and was considered fixed before in control
practice, which can imitate effective inertia power, resulting in
improvement of the control system robustness against system
perturbations and contribution to disturbance rejection control.
By optimizing the controller parameters, it is possible to achieve
not only a sufficient virtual inertia constant in relation to the
additional power but also a stable grid operation. However,
all previous studies attempted to achieve a higher degree of
frequency control by adjusting parameters using traditional and
intelligent rules in an offline approach. In these works, partic-
ularly for fractional cases, using the FOPID can bind a control
engineer to manipulate all of the features of this controller,
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such as the use of integration and derivative actions, toward a
well-performing frequency control [29], [30], [31]. The online
tuned PID controller from [32], applied to the superconducting
transformer system, is based on the radial basis activation func-
tion and supervised learning optimization method, which can
only find the local minimum.

To overcome the aforementioned control problems in MG
related to the frequency deviation and the application of VIC,
such as recovery time and instability, the selection of a proper
control is very important. The online and automatic tuning-based
FOPID controller, which captures all the remarkable advantages
of the controller, including robustness improvement, disturbance
rejection, and its contributions to time delay systems, is ap-
plied to generate the proper virtual inertia constant in a hybrid
strategy. We aim to synthesize a new decentralized and flexible
VFOPID to evaluate the virtual inertia power under different
levels of renewable energy penetration and load disturbances.
Therefore, we join the current trends in VIC modeling and
propose using an additional NN-based VFOPID controller, in
which the NN-based tuner is trained by the DRL algorithm. This
hybrid strategy, including the FOPID controller, can improve the
robustness of the system and, with its additional features and
“tuning knobs,” give rise to generating control laws that lead to
superior frequency support loop performance. The application
of the NN-based tuning method here is due to its learning ability
and adaptability with parameter variation in the complex MG
environment under intermittent dynamics. This technique was
previously used to adjust the controller’s parameters in an offline
mode [33], [34] for frequency load control in hybrid MGs,
resulting in nonflexible approaches that suffer from “dynamic
adaptation”.

The research motivation here addresses the frequency devia-
tion control problem and the VIC application of islanded MGs
based on an NN-based VFOPID controller associated with DRL
and pursues the following objectives:

® Present an SDDPG with a semistochastic optimization
algorithm that searches for optimal NN weights;

e Create an NN-based VFOPID controller trained using the
proposed algorithm;

® Develop an online decentralized control strategy based
on the designed automatically tuned VFOPID controller,
including tuning variable order coefficients ;2 and A;

e Develop an intelligent control policy that will fully utilize
the potential of an ESS and provide improved frequency
support; and

e Organize various smoothed connection-based scenarios
involving RESs and loads.

It is worth mentioning that the proposed algorithm performs
the additional virtual inertia emulation control using the scheme
from [4], [35]. Here, and unlike the works [19], [21], [22],
we introduce an NN as an online tuner for VFOPID controller
coefficients. In contrast to [32], the DRL-based strategy together
with the SDDPG policy technique is applied here to find the
optimal weights of an NN-based VFOPID controller on a global
scale. This policy with an extended reward system meets the
requirements of the proposed hybrid frequency and ESS control.
We create special rewarding rules to train the RL agent resulting
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Fig. 1. Schematic of the isolated MG with VIC.

in a decrease in energy storage system power losses and a
possible solution to balance energy cost and performance in fu-
ture works. Furthermore, by providing a desirable performance
related to frequency support problems, our method can provide
many benefits to MG frequency support operations with high
levels of renewable energy. We discover how all the tuning
knobs of the FOPID controller can be captured by designing
a self-tuning technique, resulting in robustness improvement,
fast recovery time, and frequency stability enhancement.

II. PROBLEM STATEMENT
A. Structure of an Isolated MG

The studied MG presents a simplified version of areal AC-DC
system without power convergence and is adopted from several
recent publications [4], [13], [14], [15], [19], [25], depicted in
Fig. 1. The addressed architecture includes 15 MW simplified
domestic loads with a function for a smooth start, a 12 MW AC
source (TPP), a 16 MW installed capacity of RESs (a WTG
and a PV system), and an ESS with an extended VIC. The
TPP is a major power producer composed of a governor with
a GRC and a turbine with an applied frequency rate limiter,
which restricts valve opening and closing actions (Vi/, V1) (see
Fig. 2). Due to the restriction in the rate of change in the TPP
unit, its physical dynamics are employed using GRC to regulate
the turbine speed. Additionally, the delay in the speed governor
is another significant constraint that necessitates the use of a
dead band component for frequency regulation under various
disturbances. Due to the small size of the turbine, the dead
band saturation governor has a constant £0.12 p.u. MW/min
for nonreheat generating units.

To control the frequency deviation A f and preserve MG sta-
bility under disturbances, three main frequency control schemes
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Fig. 2. Scheme of the VIC system, PCL, and SCL.

are employed: PCL, SCL, and VIC. In this hierarchical archi-
tecture, the PCL and SCL are responsible for balancing and
restoring the system frequency, respectively. These two loops
are applied to the TPP governor to generate power from the
turbine system as

APg (APscr — APpcL), )]

- 1+ sTa
in which APpcr, = R™VAf and APscr, = s~ ! — K;Af are
the control and ACE action changes from PCL and SCL, respec-
tively, R is the droop constant, and K is the integral controller
gain. By defining the load damping coefficient D and inertia
constant H, the frequency deviation A f can be represented as
1

Af = ——
! 2Hs + D
where AP is the general power deviation resulting from all
power sources and loads and can be calculated as

APp = APrpp + APwrc + APpy + APyr — APr, (3)

APy, 2

with

1

APrpp = r sTtAPG’ C))
and AP; = APgrp + APy, as the load power changes, re-
spectively. To make the system more feasible, the renewable
energy and loads do not participate in frequency management
and are considered system uncertainties. Hence, the following
simplified models of the renewable energy power changes are
sufficiently accurate for our analysis:

APrps = APwrc + APpy

1
= 7pr7ﬁnd +

APS’(), T
1+5TWTG sola (5)

1+ STPV
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TABLE I
PARAMETERS OF THE MG

Parameter ~ Physical meaning Nominal Unit
value
APrpp TPP power changes - p.u.
APg General power deviations - p.u.
H System inertia 0.083 pu.s
D Damping coefficient 0.015 p.u./Hz
APy Virtual inertia power changes - p.u.
Kvyr Virtual inertia constant - pu. s
Dyr Virtual damping coefficient 0.3 p.u./Hz
Ryr Virtual inertia droop coefficient 2.7 Hz/p.u.
R Droop coefficient 24 Hz/p.u.
Tvr Virtual inertia time constant 10 s
T Turbine time constant 0.4 s
APg Governor power changes - p.u.
Ta Governor time constant 0.1 s
APscr, ACE action changes of SCL - p.u.
APpcp, Control changes of PCL - p.u.
Ky Integral controller gain 0.075 s
APrps RES power changes - p.u.
APywrc  WTG power changes - p.u.
APyind Initial wind power variation - p.u.
Twra WTG time constant 1.85 s
APpy PV power changes - p.u.
APgorar Initial solar power variation - p.u.
Tpyv PV time constant 1.5 s
APr, Load power changes - pu.
APRr, Residential loads variations - p-u.
APrp, Industrial loads variations in - p-u.
Vu, Vi Governor valve limiter +0.5 p-u.
APy,m2%  Governor dead band limits +0.12  p.u. MW/min
APy, Virtual inertia valve limiter +0.1 p.u.

The given parameters in the equations are summarized in
Table I.

B. VIC Modeling

The applied decentralized controller scheme is adapted
from [4] and is illustrated in Fig. 2. The scheme describes the
behavior of an electronics-based power inverter applied to the
inertia emulation. The virtual inertia constant Ky ; is usually
defined as

QHPI'IL'U
fo 7

where fy is the nominal frequency, Py, is the power of the
inverter, and H is the calculated inertia [15], [19], [35]. To
mimic the necessary inertia power, Ky ; must be able to adapt
to a variety of disturbances without jeopardizing the system
stability. The original scheme with a directly adjustable junction
Ky 1 by an additional controller was addressed in several recent
publications [14], [15], [28]. The extended version includes the
damping constant Dy and junction variable Ky ; adjusted by
an additional controller. In this work, the proposed additional
controller is affected by input signals A f and A Pg, in which

Ky = (6)
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the latter is an estimated power system measurement value due
to its complexity [36]. Furthermore, as shown in Fig. 2, the
scheme employs PCL and SCL with Af as an input signal,
which reduces the influence of noise and controls the active
power in relation to frequency deviation. The dynamic equation
of the power changes APy can be given by

sKyr+ Dy <Af(5)> '

APy =
v 1+ sTyr Ryr

O]

The rate of change in frequency (RoCoF) can be expressed as

_dAf
RoCoF = T (®)

In the proposed dynamic structure, the derivative control
approach is the fundamental behavior behind the VIC, where
it can compute the RoCoF to adjust an extra power to a given
point during RES penetration and contingency [37] and gives
the optimum frequency response due to its impact on the system
inertia and damping [38], [39]. In this regard and to reduce
power oscillations associated with better inertia support, the
proposed VFOPID controller is considered to manipulate the
virtual inertia unit in choosing the proper Ky ;(t) in each time
step ¢ for emulating sufficient inertia power against various
changes. To achieve an optimal Ky ;, we propose a methodology
and design an algorithm for the VIC-based VFOPID feedback
control technique to calculate a reasonable approximation in
estimating a suitable value for Ky ; and provide the additional
power transfer APy ; when Af and RoCoF exceed defined
limits.

III. PROPOSED SOLUTION

The proposed methodology is based on the reinforcement
learning architecture neural actor-critic [40], [41], which is used
to train an NN-based online tuner of the VFOPID controller
coefficients. The tuner is implemented as an actor whose in-
teractions are observed by the critic according to the SDDPG
policy estimation of the MG state.

A. VFOPID Controller

The original FOPID controller was first introduced in its
parallel form described as [42]:

u(t) = Kpe(t) + K; D e(t) + KqD"e(t), )

where D® is the fractional differential (o > 0) (or integral
(o < 0)) operator, 1 and A are the positive integration and
differentiator orders, respectively, u(¢) is the control signal,
e(t) is the error signal, which is equal to Af(t), and Kp,
K;, and K, are the proportional, integration, and derivative
constant gains, respectively. The controller (9) has more tuning
freedom that leads to making the plant stable under control
and fulfilling intricate control performance requirements that
are not in the scope of classical controllers. However, because
this controller binds a control engineer to manipulate all of the
features, the VFOPID controller with five variable parameters
can significantly improve the controlled system performance due
to its greater flexibility. Referring to Fig. 3, this means that it is
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Relationships between the VFOPID controller and its classical varia-

possible to move continuously not only in the PID plane instead
of jumping between the fixed points but we can also explore
for the desired controller values in a space inside the cube and
between the eight vertices.

Both integration and differential functions affect the steady-
state process and the dynamic characteristics when both the
associated gains and orders of each function vary:

® [Integral action: This action is dependent on the gain K

and the order A. While the oversize of K; will make a
system more unstable, its small size will force the system to
diverge from its ideal dynamic performance. Additionally,
for a small A, the frequency band is wide, and the system
is steady with rapid response and static error. In contrast,
an oversized A will degrade the system stability with the
increase in the overshoot, rise, and settling times.

® Derivative action: The gain K, has no effect on the steady-

state error but can improve the dynamic characteristics. For
a small K, the overshoot and settling time will increase,
while for a large gain, the system noise may increase, and
the system performance will degrade. Finally, the order p
can improve the response accuracy and steady-state error
when it is relatively small. However, by increasing i, the
overshoot and settling time decrease, and the closed-loop
system stability will degrade.

It is necessary to keep both the gains and orders in a suit-
able range at any moment to maintain a satisfactory control
performance for a target system. To take advantage of this con-
troller flexibility and promote controlled system performance
simultaneously, the VFOPID needs to be considered as a target
controller in the regulation process. The concept of VFOPID
can be given as [43]:

u(t) = K,(He(t) + K;()D*We(t) + K (t) D" Pe(t),
(10)
where D~*(*) and D} () are the variable order fractional integral
and derivative, respectively.
The implementation of (10) with a floating point requires
a powerful computational device [44]. Therefore, we propose
using a parallel connection of FOMCON library blocks from
[29] and provide a real-time switch between fractional-order
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Fig. 4. Scheme of the VFOPID NN-based tuner (actor NN).

constants with a resolution of 0.1. In conjunction with switching
objective functions and arising from an input signal derived from
the NN tuner system, these functions attempt to switch between
different fractional integration and differentiator operators and
implement a VFOPID controller according to the tuned parame-
ters. By doing so, the fractional-order tuning and controller gains
can be performed online.

B. NN-Based Tuning of the VFOPID Controller

We apply the multiple input multiple output type of NN as
the tuner of the VFOPID controller. The major task here for
actor NN (i.e., tuner) is to search for an optimal combination of
these coefficients considering MG disturbances. Fig. 4 illustrates
the proposed architecture of the NN-based tuner, where output
neurons are five controller parameters: K, K;, K4, A, and p.
Since the values of each output neuron should be nonnegative,
we designed the network to keep outputs for the fractional orders
and gains of the controller in the range [0,2] defined by the
equation

2
y(t) = 15 e

In fact, the orders A and y are very sensitive to any changes
and are computationally expensive. Therefore, we organized
the change in the integral and derivative parameters with the
discrete step of 0.1 by using an automatic switch between
predefined series of FOMCON blocks implemented in the MAT-
LAB/Simulink environment, where each block has a frequency
range [0.001, 1000] and approximation order 3. In the proposed
method, tuning the VFOPID parameters depends on the mag-
nitude of A f being proportional to the power variation AP,
which is driven to the NN tuner (see Fig. 4), and is then trans-
formed by the tansig activation function illustrated in (11) to
give the tuned parameters as the given trajectories depicted in
Fig. 9. The output value of every coefficient depends on the gain
provided by every weight considered in the NN tuner.

(11)

C. DRL-Based VFOPID Controller

The key advantage of reinforcement learning is the direct
interaction of NN with a controllable environment and the appli-
cation of nature-inspired reward-punishment-based learning, by
which it can theoretically find a global minimum after training
procedure [41], [45]. Usually, reinforcement learning is applied
in applications where it is necessary to train NN for tasks in
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Fig. 5. Scheme of the proposed DRL-based VFOPID for VIC in an MG.

which the correct interaction of an autonomous system with
the environment is critically important [40], [41]. The general
structure of the proposed controller is presented in Fig. 5. How to
properly interact with VFOPID and MG by “double feedback,”
i.e., from the reward system and from the process directly, is
seen in the presented architecture of neural actor-critic studies.
The first operates in offline mode and the second in online mode,
which can be summarized as:
e Reward or punish the agent by directing the measured error
A f into the block “reward system”.

¢ Formulate the observation for the agent using the measured
variables A f and APg, which can be considered as the
control error and preerror, respectively.

1) Neural Actor-Critic: The neural actor-critic architecture
requires synchronizing two NNs: the actor network s(s | 6,,)
and the critic network Q(s, a | 6¢). The actor network in this
architecture is an agent that interacts directly with the envi-
ronment, while the critic network observes any changes in the
environment state s;, and the reaction of the actor a; corrects
its interaction according to the defined policy (e.g., dynamic
programming, Monte-Carlo policy gradient, stochastic policy
gradient, Q-learning, DDPG). This network uses the loss func-
tion L, to correct actor weights to find a potential right esti-
mation of the state-action-value function Q(s,a) with a pre-
diction of possible average reward 7., per epoch. To increase
the quality of the prediction, we store the best prediction as
Q'(Si+1, 1 (si4110,) | Or) applied for the state-action-value
function.

2) SDDPG with Semistochastic Approach: Original DDPG
is a model-free algorithm and is designed for low-dimensional
continuous action space tasks [40]. Deep Q-learning [41] and
deterministic policy gradient [40], [46] methods are combined
in the DDPG optimization technique, which inherits the neural
actor-critic architecture. Unlike the original DDPG, the modified
version has a simplified loss function for the actor L,,, and learn-
ing is performed without the replay buffer and noise exploration.
The optimization principle is based on minimizing the difference
between the target action-value function y; and the critic network
reward prediction Q(s;, a; | 6¢). For each actor NN (s | 6,,),
the decision is defined as a; (i.e., Kp(t), K;(t), Kq(t), A(t),
u(t)) perstepiin MG state s; (i.e., A fy, Afi/s,dAf/dt, APg).
The SDDPG algorithm seeks to maximize the average reward 7,
per training episode M/ by minimizing the critic L¢ and actor L,
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Algorithm 1: SDDPG algorithm with semistochastic
method.

1: Initialize critic Q(s,a | ) actor u(s | 6,,) networks
2: fort=1to N do
3:  Initialize random weights of actor 0,,.
4: Execute action a;, observe reward r; at each step
5: if 7009 > Tavg maz = max(% > ri(siya;)) then
6: Save weights ¢ and 6, with best 74,,.
T: end if
8: end for
9: Initialize random weights of critic 6.

10:  Define the learning rate of critic a.q and actor o,

networks.
11: Define the smooth factor constant 7 € [0, 1].
12: for episode =1 to M do
13: fort =1toT do

14: Receive initial process observation as state s;.

15: Select action a; = pu(s; | 0,,) according to current
reward prediction Q(s;, a; | 0q).

16: Execute action a;, observe reward r; and future
state St41-

17: Select the best critic reward prediction weights

Q'(Si+1, 1/ (8i41]0,r) according to the explored

Tavg_mazx-

18: Set the state-action-value function of DDPG
policy y; = 7; + Q' (sit1, ' (8i+1(0,) | ).
19: Update the critic by minimizing the loss:
Lo =5 >y — Qlsisai | 0))*
20: Update actor policy using the sampled gradient of
critic: L,u = % Zi(Q(sva | 9Q)|s:si,a:p(sl))2
21: Update target networks:

22: 09 « 709 + (1 - 71)0%agLq,
230 0% 70" + (1 —T1)0" L,
24: end for

25:  end for

loss functions [40], [47]. Unlike [47], we extend the algorithm
by combining it with the stochastic approach, in which we
initialize random weights /V times and choose parameters with
the highest average reward 74, _mas after beginning training
with SDDPG. This approach can help increase the speed of the
optimization process. The pseudocode of the proposed method is
shown in Algorithm 1, which summarizes the SDDPG algorithm
associated with the semistochastic approach.

3) Agent Reward System: To provide agent learning, we
use the reward/punishment system proposed in [25], [26]. The
reward system is organized in such a way that the measured
frequency deviation is converted to reward/punishment r;=+.
To provide the instructions according to the stability criteria
of error signal Af in the £0.1 Hz band [2], [4] and inertia
injection APy in range +0.1 p.u., the regulation system is
organized as follows: if |Af| < 0.05 and if [APy ;| < 0.075,
the agent receives a reward r+; otherwise, the system punishes
r— after each performed action. To provide a reasonable re-
ward for the agent we separated the rewarding approach for
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Fig. 6. Data used in the considered scenarios. Cases (a, b) apply to Scenario 1

(Nominal), (a, d) to Scenario 2 (RESs), and (b, ¢) to Scenario 3 (Loads) with
arrows indicating (dis)connection moments.

each task, the frequency support reward task is limited to the
range u € {0.05,...,2}, and the punishment is unlimited and
multiplied by 2. In the inertia injection task, control the reward
multiplied by 0.1 and punishment by 0.5. The following equation
presents the mathematical expression for the designed rules:

ST if[Af] < 0.05,

. ] 2A) if[Af] > 0.05. 12
0.1‘APV]|, lf|APV[‘ < 0.075
—0.5|APy |, if|APy;| > 0.075

IV. NUMERICAL RESULTS

In this section, we analyze the performance of the proposed
algorithm (NN-based VFOPID controller) and compare it with
FOPID and PID. The controllers were carefully tuned, and the
obtained parameters were K, = 50, K; = 1.75, Kqg =2, A =
1.25, and ;i = 1.75 for the FOPID controller and K, = 50.5,
K; = 5.85, and K, = 5.5 for the PID controller. These param-
eters were obtained by heuristic search, where we attempted to
find the optimal parameters for the studied system and provide
a fair comparison with the proposed method. All simulations
were performed in the MATLAB/Simulink environment, and the
different parameters were previously described. In these experi-
ments, we perform simulations for three different scenarios: the
nominal case (Scenario 1), the case with (dis)connection of RESs
(Scenario 2), and the case with smooth (dis)connection of loads
(Scenario 3). Each scenario is simulated for nominal (100%) and
decreased inertia (40%). Fig. 6 shows the dynamics of renewable
energy and loads. Subplots (a) and (b) illustrate the data used in
the nominal scenario, while subplots (c) and (d) show scenarios
with loads and renewable energy (dis)connections. To replicate
more natural power disturbances, smooth (dis)connections are
provided.
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A. Comparative Analysis

Here, we compare the mentioned algorithms in three different
scenarios. We remove the first 100 samples to eliminate the effect
of high oscillations appearing at the beginning of the simulations
due to random initial conditions.

Scenario 1 (Nominal): Recall that in this case, we do not
provide any (dis)connections. The top plots in Figs. 7 and 8
show the performance results of the three considered algorithms
for the cases with 100% and 40% inertia levels, respectively. It
can be observed that the proposed algorithm provides smooth
frequency support with a deviation of less than +0.075 Hz.
The other two algorithms, FOPID and PID, provide reasonable
performance with some notable oscillatory behavior.
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TABLE IV

COMPARISON OF DIFFERENT CONTROLLERS USING THE IAE METRIC

COMPARISON OF DIFFERENT CONTROLLERS USING THE MAE METRIC

Scenario Inertia  Proposed ~ FOPID PID Without* Scenario Inertia  Proposed  FOPID PID Without
Scenario 1 100%  10.28  19.99  22.31 34.20 Scenario I 100%  0.0114  0.0222  0.0248  0.038
40% 9.05 20 22.33 33.48 40% 0.0100 0.0223 0.0248  0.0372
Scenario 2 100% 11.10 21.23 22.81 34.31 Scenario 2 100% 0.0123 0.0236  0.0253  0.0381
40% 9.18 21.26 22.91 33.77 40% 0.0102 0.0235 0.0254  0.0375
Scenario 3 100% 19.50 23.65 26.44 37.18 Scenario 3 100% 0.0180 0.0262  0.0293  0.0413
40% 18.14 23.72 26.51 36.19 40% 0.0168 0.0263  0.0294  0.0402
*Hereinafter, ‘Without’ means that no additional VIC is applied.
[ 100% inertia — — —40% inertia.
TABLE III sl g, W T
COMPARISON OF DIFFERENT CONTROLLERS USING THE RMSE METRIC 18 = B
Y50 200 a0 400 500 600 700 800 900 1000
Scenario Inertia  Proposed = FOPID PID Without s T T T T T T T T T
Scenario 1 100%  0.0157  0.0281 0.0311  0.0476 Z L he =
40% 00136 0.0282 0.0311  0.0463 Y% 0 200 a0 400 500 600 700 800 900 1000
Scenario 2 100% 0.0175 0.0300 0.0328  0.0482 . X ] T T ! T T T T
40%  0.0147 0.0301 0.0330  0.0471 Elfgt( e )
Scenario 3 100% ~ 0.0324  0.0351  0.0379  0.0523 L) o0 200 300 400 300 600 700 S0 900 1000
40% 0.0312 0.0352  0.0380  0.0511 LTS i . i i . i . i
= 17 1W
= 1.65 1 h 1 1 1 1 1 L 1 L 1
0 100 200 300 400 500 600 700 800 900 1000
Scenario 2 (RESs (dis)connection): To compare the algo- Al'“' A ’ T T y T ‘ T ‘
rithms, an additional (dis)connection-based scenario is carried ¥ 19 & ]
out, and the performance is evaluated. We organize a smooth 0 100 200 300 400 500 600 700 800 900 1000
connection of solar panels and the disconnection of wind tur- Time [s]
bines in time steps 300 and 700 seconds, respectively (see Fig.
P P y ( g Fig. 9. Scenario 1 (Nominal). Evolution of gains and orders of the proposed

6(d)). Figs. 7 and 8 depict a significant influence of the wind
turbine connection on the performance of all control algorithms.
However, the proposed strategy shows the best performance and
again results in smooth transient behavior.

Scenario 3 (Loads (dis)connection): Here, we provide the
test with the smooth connection and disconnection of residential
loads. This scenario appears to be the most challenging for all
considered algorithms, as depicted in Figs. 7 and 8. The proposed
method shows the best performance, while the FOPID and PID
controllers provide reasonable performance.

To quantify the effectiveness of all control algorithms, we
use the integral of the absolute value of error (IAE) metric (i.e.,
total frequency deviation): IAE = fOT |Af|dt, where T is the
simulation time period. Then, the performance is evaluated using
the absolute error MAE = Zf\io |Af;|, where N is the number
of samples. In addition, we evaluate the performance using the
root mean square error (RMSE) metric given by:

1 N
RMSE = ‘/N ZZ_:O(Afi)Z

Performance indices are calculated in the steady-state conditions
(i.e., from 100 to 1,000 seconds) to eliminate the effect of high
initial oscillations. All calculations are performed for three sce-
narios with both nominal (100%) and decreased inertia (40%).
The results are summarized in Tables II-IV. It can be seen that
the proposed NN-based VFOPID controller has better results in
all cases.

13)

controller for both nominal (100%, blue) and decreased inertia (40%, red
dashed).

B. Online Tuning of the VFOPID

Figs. 9— 11 present the online optimization (tuning) results
of all five VFOPID controller parameters. This is done for
three different scenarios and two inertia cases, as detailed in
the previous section.

Scenario 1 (Nominal): Fig. 9 depicts that the VFOPID co-
efficients have rather stable behavior, all parameters vary 500
seconds and later stabilize, and the influence of decreased inertia
is relatively small.

Scenario 2 (RESs (dis)connection): Unlike the above case,
Fig. 10 shows the output of the neural tuner, where the influence
of renewable sources and decreased inertia on the VFOPID
tuner is significant. The integral knob K; has a notable increase
after connecting the wind turbine from 300 to 400 seconds and
decreases after disconnecting the solar panels in 700 seconds. A
similar change has K, K4, u, and X.

Scenario 3 (Loads (dis)connection): Similar to the previous
cases, Fig. 11 shows a notable influence of load disconnection
(att = 300s) on parameters K, Kg4, jt, and A. The integral gain
K; has a notable peak from 320 to 400 seconds. Additionally,
after reconnecting loads at the time step 700 s, the gains and
orders change significantly and attempt to return to their nominal
range variations. However, the influence of decreased inertia is
still minimal.
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Fig. 11.  Scenario 3 (Loads (dis)connection). Evolution of gains and orders
of the proposed controller for both nominal (100%, blue) and decreased inertia
(40%, red dashed).

TABLE V
POWER BALANCE FOR DIFFERENT CONTROLLERS

| Inertia  Proposed ~ FOPID PID Without
Scenario 1 | 100%  0.1384 —1.0669 —1.9882 —0.0178
40%  0.2098 —0.9745 —1.8653 —0.0182

C. Energy Storage Dynamics

Table V provides a criterion, calculated as y = fON APy dt,
which summarizes the final balance between injected (positive)
and absorbed (negative) power by the storage system in the
nominal scenario. It can be seen that the proposed controller
uses energy storage more effectively, as the final balance tends
to be minimal in all cases. Fig. 12 illustrates that the proposed
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Fig. 12.  Power flow in ESS. Comparison of algorithms: the proposed (green),
FOPID (purple with crosses), and PID (dashed orange) in the nominal scenario
with 100% (top plot) and 40% inertia (bottom plot).

algorithm is forced to inject and store slightly more energy
than other controllers; however, this happens only at certain
time instances (approximately 180 and 420 s). This is done to
guarantee smooth frequency support, which is encoded in the
designed algorithm.

V. DISCUSSION

Integration of renewable energy into microgrid systems re-
duces the system inertia, which is the striking capability to
sustain the frequency at its nominal value, resulting in a stable
and resilient MG as well as the main grid. Renewable energy may
increase the level of uncertainty during abnormal operations,
introduce some technical implications to the VIC concept, and
raise some questions about the sufficiency of traditional control
approaches. The main question is what happens in a MG when
there are natural changes and uncertainties, where traditional
controllers cannot provide robust performance.

In response to this question, the present paper can be con-
sidered an effort to design a stable, scalable, and robust control
system, which is highly relevant to skillfully diminishing the
deviations during major contingencies. Although some recent
studies have attempted to achieve a higher degree of frequency
support by adjusting the parameters of well-known FOPID
controllers using classical rules, offline tuning approaches can
limit a control engineer’s ability to manipulate all the features
therein. Without intelligent control methods, it will be difficult
to control the virtual inertia in modern MGs, which are continu-
ously changing. For this purpose in real practice, the VIC system
should be flexible and robust to enable a matching mechanism
over a wide range of operations.

In this regard, we proposed an NN-based tuner for the
VFOPID controller and both coefficients and fractional orders
using the reinforcement learning strategy together with the SD-
DPG optimization technique. Our method can offer many bene-
fits for MG frequency support operations with renewable energy
by providing desirable performance related to load-frequency
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support problems. Additionally, we discovered how all the tun-
ing knobs of such a controller can be captured by designing a
self-tuning technique, resulting in robustness improvement, fast
recovery time, and frequency stability enhancement.

VI. CONCLUSION

In this paper, we presented the novel combination of NN with
a VFOPID controller, applied to robust virtual inertia emulation
in isolated microgrids with high renewable energy penetration,
where all tuned parameters (both gains and orders) of this
controller were optimized by the semi-stochastic DRL algorithm
with SDDPG policy. We proved that VFOPID controller fusion
with the NN-based tuner is an effective strategy for virtual inertia
emulation tasks. In contrast to other proposed algorithms, the
NN-based VFOPID controller has active support from a machine
learning algorithm that makes it self-adaptive to MG distur-
bances, resulting in smooth deviation but a more significant
influence from decreased inertia. Compared to recent efforts,
the major benefits of the proposed solution can be summarized
as follows:

® An effective NN-tuning-based system for VFOPID con-
troller coefficients uses the SRL strategy together with
the SDDPG technique to find optimal weights for the
controller.

e Fast training of the NN-based tuner by the proposed effec-
tive semi-stochastic RL.

e Capturing all features of the FOPID controller using a self-
tuning technique, resulting in robustness improvement, fast
recovery time, and frequency stability enhancement.

e (Capability of the designed controller over a wide range of
operating conditions is due to its flexibility in the use of
integration and derivative actions toward a good perfor-
mance in frequency support operations with high levels of
renewable energy.

Further work is needed to address some technical issues for
the VIC system in terms of algorithm performance evolution, in-
cluding computational complexity reduction, accuracy enhance-
ment, and robustness improvement. In this regard, implementing
a real and high-resolution VFOPID controller associated with
a constrained parameter search space based on a MG stability
region derived by using the stability boundary locus method can
be a future effective strategy for more complex systems such as
multi-area interconnected MGs and power electronics. In addi-
tion, in an actual power system with high-order of complexity,
the intermittent dynamics can affect the algorithm performance
and routine process of the system. Therefore, developing a robust
RL strategy, by upgrading the reward rules and integrating a
digital protection system during the wrong training process,
is also another actual control problem to be considered in the
future.
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Abstract—Variable output power in isolated microgrids (MGs)
threatens frequency stability and may even degrade power qual-
ity. In response, intelligent control methods have been developed
and applied to frequency deviation control systems with excellent
results. Nevertheless, a potential problem is that the application
of such advanced techniques with a large search space is not
enough to deal with highly dynamic environment and real-time
operations of MGs. In this light, the present study introduces a
flexible artificial neural network (ANN)-based frequency devia-
tion control solution in a constrained structure that operates as
follows. First, the stable controller parameter space of the PID-
based AC microgrid is derived by using the stability boundary
locus method. Then, the controller parameters are tuned and
updated online by searching for an optimal combination of the
coefficients with consideration of output variations sensed by
a constrained ANN in the derived reduced parameter space.
To accomplish this step, a reinforcement learning technique is
applied to train the ANN-based tuners. The performance of the
proposed technique has been verified under a given scenario to
demonstrate how the reduced parameter space should facilitate
the optimization procedure.

Index Terms—AC microgrid, Load frequency control, Con-
strained neural networks, Reinforcement learning

I. INTRODUCTION

Technical issues in renewable energy sources (RESs) require
many standards, including frequency regulation and proper
control system design to achieve the desired performance.
These standards are integrated into the microgrid (MG) con-
cept [1]. Reliability enhancement, improvement in environ-
mental issues, and economic interests are three major reasons
for the emergence of MGs [2]. Small generating units, such as
diesel engine generators (DEGs), photovoltaic (PV) systems,
wind turbine generators (WTGs), and fuel cells (FCs), installed
at the client site and connected into the power grid—referred
as distributed generation—are the primary power sources in
MGs [3]. Using energy storage systems (ESSs) including
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battery ESS (BESS) and flywheel ESS (FESS) as backup
devices enhances the stability of the MG systems, which can
be degraded by the light inertia of the units [4].

Two key system parameters, i.e., voltage and frequency,
must be regulated under proper control techniques due to inter-
mittent power generation, erratic changes in load demand, and
low inertia [5]. To preserve stability and improve performance,
three main frequency deviation control (FDC) structures were
proposed: central, single agent, and decentralized control [2].
While in the first approach, a central control takes over the
FDC task according to collected data through the system, the
two other methods try to use one or several controllable and
locally distributed generation units for the system parameters
and control purposes [6]. Modern MG systems should be
able to handle complex multi-objective regulation optimization
problems, which instigate the system to use intelligent FDC
units and tuning methods associated with adaptable intelligent
algorithms at their core [7].

To improve the robustness of the FDC problem, intelligent
PID-type controllers were proposed in isolated MGs [3], [8],
among many other controllers such as model predictive control
[9], adaptive control [10], fuzzy logic control [11], H, control
[12] and conventional PID control [13], [14] approaches ap-
plied to the distributed generations. Table I summarizes some
recent FDC works with intelligent optimization approaches,
including the genetic algorithm (GA) [15], biogeography-
based optimization (BBO) [16], particle swarm optimization
(PSO) [17], reinforcement learning (RL) [18], harmony search
algorithm (HSA) [8], and black hole algorithm (BHA) [3] for
optimal tuning of PID-type parameters towards more efficient
MG operations. To achieve better control results, an approach
based on artificial neural networks (ANNSs) is also applied as
a tuning strategy due to its learning ability and adaptability
with parameter variation [19], [20].

All these works attempted to achieve a higher degree of
frequency deviation control by adjusting parameters with an
offline procedure, resulting in non-flexible approaches that
might fail in “dynamic adaptation” associated with a complex



TABLE 1
TUNING APPROACHES OF PID-TYPE CONTROLLERS IN FDC

Paper  Method Controller MG components

[15] GA PI/PID WTG, STP, AE, DEG, ESS
[16] BBO PID WTG, FC, PV, ESSs, AE

[2], [17] PSO (FO)PID  WTG, FC, PV, ESSs, DEG

[18] RL+Fuzzy  PID WTG, PV, FC, DEG, AE, ESSs
[3] BHA+Fuzzy (FO)PID  WTG, DEG, EV, BESS, FESS
[8] HSA+Fuzzy PI WTG, DEG, EV

[19] ANN PI WTG, PV, FC, DEG, ESSs
[20] PSO+ANN  PID WTG, DEG, EV

[21] RL+ANN PI WTG, PV, FC, BESS
*EV: Electric Vehicle, STP: Solar Thermal Power, AE: Aqua Electrolyser

microgrid environment. This issue instigated us to propose
a flexible and online-tuned PID-based FDC strategy using
ANN trained by the stochastic RL (SRL) technique [21].
However, the large search space of this algorithm requires
powerful computational units to backup dynamic microgrid
environments. In this light, we propose here a new flexible
PID-based FDC strategy, used for secondary frequency control
in an AC microgrid, with automatic manipulation of all the
controller’s features inside the stable region obtained by the
stability boundary locus (SBL) method. In the proposed con-
trol strategy, the constrained ANN-based architecture tunes the
controller in a reduced space where the weights in each neuron
are trained by using an RL technique on the specified stable
region, as opposed to the entire space. We discovered how the
proposed online tuning method offers many benefits for the
FDC system in an AC microgrid with the reduced parameter
space, where it shall facilitate the optimization procedure for
the network training as the search space becomes smaller.

II. STRUCTURE OF THE AC MICROGRID

In Fig. 1, an isolated AC microgrid system, including a
standard DEG, PV panels, WTGs, a FC system, a BESS, and a
FESS, is depicted associated with power electronic interfaces.
Fuel blocks, a DC/AC inverter, and interconnection devices
are all included in the FC system. Although the FC has a
high-order characteristic, frequency investigations only require
a three-order model [22]. Nominal values of rated power for
the subsystems DEG, RESs, FC, and ESSs are 160, 130, 70,
and 90 kW, respectively. The DEG is required to provide
a certain amount of power that is designated as a spinning
reserve for secondary frequency regulation. A block diagram
of the simplified frequency response model for the case study
is shown in Fig. 2 associated with the given parameters in
Table II, where Py ;g and ¢ are the mechanical power of the
WTG and solar irradiation, respectively.

In the illustrated model and to control the system frequency,
the DEG and FC are regarded as manipulating units. Also, due
to the variable and non-measurable nature of input powers
of PV, WTG, and load (denoted as Ppy, Pwrg, and Pr,
respectively), they can be considered as input disturbance
signal obtained as P;o;.1, = P — Ppv — Pwra,

& o,
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Fig. 1. General configuration of the isolated AC microgrid.
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Fig. 2. Frequency block diagram of the AC microgrid system.

TABLE 11
PARAMETERS OF THE AC MICROGRID

Parameter ~ Value Parameter ~ Value
D 0.0015 pu/Hz Ty 0.08 s
2H 0.1667 pu.s T: 04s

TrEss 0.1s TI/C 0.004 s

TBESS 0.1s TIn 0.04 s
Trc 0.26 s R 3 Hz/pu

Twra 15s Tpy 1.8 s

where Py 1, is the generalized load power used to derive
the characteristic equation in the following section.

III. STABILITY ANALYSIS OF THE AC MICROGRID

For stability analysis of the given microgrid system, the
characteristic equation of the system will be derived by

forming the closed loop transfer function as T'(s) = P,A,f, ,




and its roots will be checked regarding to the complex root
boundary (CRB). To this end, a PID controller

(6]

where K, K7, and K  are proportional, integral and deriva-
tive control gains, is applied to design the FDC system for
manipulating the DEG and FC units. After some mathematical
analysis, the denominator of the transfer function 7'(s) is the
characteristic equation A(s) expressed as

A(s) = 6.66 x 10795 +2.0894 x 107658
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In order to perform the required stability analyses, the char-

acteristic equation (2) will be rewritten by replacing s = jw.

As a result, we can arrange the obtained equation in a complex
polynomial form as

st~ [ ([3005)

i)
where

Ay (w, Kq) = —3.552w? + 0.05w* — 1.25 x 10780,

A (w, Kgq) =6 — 0.66w2 + 0.0013w?,

Az(w, Kgq) = —(5.3045 + 6 K4)w? + (0.66 K4 + 0.3788)w?
— (0.0029 + 0.0013K )w® + 2.0894 x 10~ %w®,

Bi(w, Kg) = 6w — 0.6612w® 4 0.0013w°,

By (w, Kg) = 3.552w — 0.045w3 + 1.25 x 107%w5,

Bs(w, K4) = 5.0045w — (2.0188 + 3.552K 4)w® + (0.042
+0.05K4)w’ — (1.25 x 1075 K, +1.2 x 107)
X w’ +6.7x 107%w°.

pat s [5]

By setting the imaginary and real parts of the last equation
equal to zero, we can derive two parameters of the controller
regarding the derivative control gain Ky and frequency w. In
this case, by considering K as a fixed parameter, we have

_ Ax(w, Kq)Bs(w, Kq) — Az(w, Kq) Ba(w, Kq)

P Al(w, 1”(vd)BQ(’LU7 Kd) —Ag(w, ]”(vd)Bl(’LU7 I{d)7 (3)
K' _ Ag(’w, Kd)Bl(’LU, Kd) — Al(w, Kd)Bg,(’LU, Kd)
¢ Al(’UJ, ]”(vd)BQ(’LU7 K(i) — 142(’UJ7 Kd)Bl(’LU, Kd)
Now, according to the defined boundaries as
w =0, K, =0
A(jw,Kpig) =0=10<w<oo, K,;€CRB %)

w = 00,
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Fig. 3. SBL of PID controller for the isolated AC MG.
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Fig. 4. Frequency deviation in different zones of Fig. 3a.

the SBL curves can be drawn in the K, — K; plane with respect
to K4 as shown in Fig. 3. Also, the frequency response of the
given AC microgrid, for different three zones (outside, on and
within the SBL curve) and when K; = 0, is depicted in Fig. 4.
For these three zones 3, 2 and 1, the microgrid is unstable,
marginally stable, and stable, respectively.

IV. CONSTRAINED NN-PID BASED TUNING ALGORITHM

In this section, we will introduce the architecture of ANN,
which is designed with constraints defined by stability region
to not only guarantee the stability of the PID controller in the
microgrid but also reduce the parameter space to facilitate the
optimization procedure for the network training. This strategy
will be limited by the range of ANN weights, constants for
the activation function, and tuner output values.

A. SRL-based Training for Constrained NN-PID Controller

To perform the training of the constrained NN-PID con-
troller, we apply the basic SRL algorithm proposed in [21]
and use it to train a designed agent to provide optimal tuning
of the PI part of the PID controller. The training is based on
reward feedback organized by the reward system (see Eq. 5),
where the optimal weights can be obtained via the selection
of actions with the highest possible reward. In this approach,
we perform actions a; (i.e., K,(t) and K;(t) for a fixed Kg)
and check the received maximum average reward 7ayg max Of
the RL agent. By using the regulation system

if 100]Af| < 0.05
if 100]Af| > 0.05,

1
ry = { OBFI00AF]
—200|Af],

where the main criterion on which rewarding based is the
magnitude of control error Af, the agent receives a positive
reward +r if Af < 0.05 Hz; otherwise, it takes a negative

(&)



reward or punishment —r. According to the applied SRL
optimization approach, agent will be defined as u(s | 6,,)
with initialized random weights > ]: 0, where 0 is array
of non-negative random values that initializes in each episode
M. Then, the reward function r;(at, s¢), where a; = Kpy(t)
and s; = Af;, will be observed at each action and state.
Finally, the weights ¢, of agent with best average reward will
be selected by

9“ — { 0#A1+1 = elLMv

if Tavg > Tavg,max> (6)
‘QMM = 6#1\17

if Tavg < Tavg,max

where g max = max (% >oire(se, at)). The pseudo-code of
this approach is summarized in Algorithm 1.

Algorithm 1 SRL optimization approach.

1: Initialize neural network of agent as a; = (s, | 6,)

2: for j =1to M do

3: Initialize random weights of agent 6,,,, M times

4: Execute action a;, observe reward 7, at each step ¢ in
common state ¢

5 if Average reward 7ag > Tavgmax then

6: Save weights of agent 6,

7 end if

8: end for

B. Activation Function

For the proposed constrained ANN-based tuner adopted
from [21] and constrained to the stability validation test, we
apply the activation function

m m

y(t) = T e 0s®l 2" @)

where constant m is the limiting feature for the range of every
ANN output. When K; = 0, the output range of two other
parameters are as K, € [0,...,5] and for K; € [0,...,16].
As seen in Fig. 5, while Fig. 5a shows ANN-based tuning of
the controller without stability analysis, Fig. 5b presents the
validated design of an ANN that “passes” the stability test,
where as opposed to the former, the automatic manipulation
of all parameters is limited to the reduced stable space.
Since the search space becomes smaller, this can facilitate the
optimization procedure for the network training.

0 5

15 20 el 0 1 3 4 5

2
K,

(b) Constrained

10
K,
(a) Unconstrained

Fig. 5. Validation of the proposed tuner by (un)constrained ANN.

V. NUMERICAL RESULTS

MATLAB/Simulink was used to build the proposed strategy
and test the performance of the constrained NN-PID controller
using the given FDC scheme. Figure 6 shows the power of
RESs with disconnection after 140 seconds and connection
at 180 seconds for WTG and PV, respectively, load demand
with disconnection and connection at 170 and 190 seconds,
respectively. Figure 7 and Table III show comparative results
and demonstrate how effectively the proposed algorithm can
solve the FDC problem and shows more smooth deviation as
compared to the usual PID controller with fixed parameters
K, = 3.712 and K; = 1.391 for the case when K
is zero. These optimal parameters have been obtained by
heuristic search to provide a comparison with the proposed
method. As can be seen, in both transient and steady state
response, the constrained NN-PID controller contributes more
effective results. By increasing K4, the performance is rather
comparable which can be negligible since the PI controller
is preferred in the industry due to the derivative component
typically contributing to amplifying noise. Figure. 8 shows the
dynamics of controller parameters in the online tuning strategy
of the proposed method in the given scenario.

. .
0 50 100 150 200 250 300
Time [s]

Fig. 6. Microgrid profile of load, wind and solar power.

TABLE 11T
NUMERICAL RESULTS OF COMPARED PID CONTROLLERS

K4  Controller TIAE RMSE MAE
1.0 NN-PID 0.9061 0.0042 0.0031
PID 0.9066 0.0038 0.0031

0.5 NN-PID 1.2960 0.0053 0.0044
PID 1.3853 0.0058 0.0047

0.0 NN-PI 2.757 0.0096 0.0078
PI 3.9297 0.0167 0.0133

- Without 80.5724 0.2744 0.2722

*IAE: Integral Absolute Error, MAE: Mean AE,
RMSE: Root Mean Square Error
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Fig. 8. Online tuning of the parameters with K4 = 0.

CONCLUSION

In this work, we propose a flexible and online-tuned PID-
based frequency deviation control strategy using an ANN
trained by the SRL technique. To derive this dynamic adapt-
able controller for the well-supported dynamic AC microgrid
environments, a constrained ANN-based tuning architecture
was introduced, in which the algorithm tries to meaningfully
tune the controller in a reduced stable space, as opposed
to the entire space. The simulation results verified how the
proposed method offers many benefits for the frequency de-
viation control of the microgrid, with automatic manipulation
of all the controller’s features inside the reduced parameter
space, where it facilitates the optimization procedure for
the network training. Future work could apply non-integer
controllers associated with communication delays and more
accurate training space to the proposed method to increase
the tuning freedom together with the microgrid stability that
leads to fulfilling intricate control performance requirements.
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Abstract—Developing accurate mathematical models for mi-
crogrid (MG) components is the initial step before implementing
various load frequency control (LFC) strategies and analysis. In
this regard, different high-order models associated with different
nonlinearities have been included to increase the modeling
accuracy resulted in a performance improvement in the LFC
techniques. Nevertheless, these high-order nonlinear models pose
some potential problems such as obstacles in the analytical
description of the system and control problem along with its
high computational complexity. In this light, the fractional order
based models are deployed to effectively balance the model
accuracy and analytical complexity. First, two fractional order
components (energy storage system and fuel cell) are arranged
in a controlled coordinated strategy to enhance the freq 'y
stability. Then, two artificial neural network (ANN) controllers
are deployed for each components in a multi-agent framework.
To accomplish this step, a multi-agent stochastic reinforcement
learning optimization is applied to train the two controllers. Test
results on an isolated MG with fractional components validate
the efficacy of the coordinated LFC strategy.

Index Terms—Load frequency control, multi-agent, neural
networks, reinforcement learning, fractional order

I. INTRODUCTION

A microgrid (MG) system is a localized power grid that can
operate autonomously or connected to a larger electrical grid
[1]. In MGs, wind turbine generators (WTGs) and photovoltaic
(PV) systems are promising renewable technologies for gen-
erating electricity [2]. To ensure a stable power supply and
mitigate fluctuations, MGs integrate energy storage systems
(ESSs) and additional generation components such as fuel
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cells (FCs) [3]. While FC systems perform well under steady-
state conditions, they have slow dynamics and a time delay, so
they are often used together with ESSs to achieve the desired
power output [4]. Due to the limited control capabilities of
FCs, double-layered capacitors (DLCs) are used to improve
the transient response of the system [5]. By employing a
combination of these subsystems, MGs can provide reliable
and sustainable power to local communities [4].

A hybrid MG is a power system that combines two or
more power generation sources to improve its overall per-
formance [6]. To ensure efficient power delivery to the load
sides, it is important to coordinate the frequency deviation
of the system’s components [7]. Various methods for load
frequency control (LFC) system have been proposed [8],
including droop control [9], model predictive control [10],
fuzzy logic control [11], and H., control [12]. A new co-
ordinated (fractional order) PID (FOPID) controller, which
has recently received the attention of researchers due to its
ability to be fine-tuned using extra adjustable parameters [13],
has been developed for an isolated MG [14]-[16], which
offers some enhancements over previous methods. However,
by optimizing the parameters of the PID-type controllers using
modern approaches such as genetic algorithm , particle swarm
optimization, and reinforcement learning (RL), the stability of
hybrid MG operation can be significantly improved [17].

To achieve better control results, accurate mathematical
models together with modern adaptable control approaches can
be exploited for LFC systems. From one side, artificial neural
networks (ANN) have been assigned as a well-suited candidate
for LFC purposes in a highly dynamic MG environment due
to its adaptability and learning ability [17]-[19]. On the other



hand, different high-order models associated with different
nonlinearities have been included to increase the modeling
accuracy resulted in a performance improvement in the LFC
systems [20]. Notwithstanding this, these high-order nonlinear
models pose some potential problems during analysis, design,
and verification process of the control system. One disadvan-
tage is that such nonlinear models contribute major obstacles
in the analytical description of the system and control problem
due to limitations of nonlinear mathematical tools. In addition,
such high-order models lead to an increase in computational
burdens and required processing time. The aforementioned
problems may be crucial in practical load frequency control
of complex MG environment under its intermittent dynamics
and variable operating points.

In this light, the present work exploit the fractional order
modeling techniques to effectively address a trade-off between
model accuracy and analytical complexity. Under this balanced
strategy, two fractional order components (DLC and FC) are
arranged in a coordinated strategy to enhance the frequency
stability. Then, two ANN controllers are deployed for each
components in a multi-agent framework where a common
stochastic RL (SRL) optimization method is applied to train
each controllers. Our strategy will facilitate model-based con-
trol for unlocking the full potential of the LFC system. Based
on the test results, we discovered that it leads to a superior
performance of the LFC, including improvements in frequency
stability and robustness.

II. CONFIGURATION OF MG SYSTEM
A. General Structure

Figure 1 presents the proposed isolated MG, which encom-
passes power generation subsystems consisting of a WTG,
PV panels, FC system, and a DLC. These subsystems are
interconnected in parallel to a shared AC bus that provides
isolated loads. To examine this system, high-order mathemat-
ical models with nonlinear dynamics are required for each
subsystem. However, in the majority of studies, first-order
transfer functions are used to analyze all components, and
the system simulations relied on a simplified linear models.
Although deploying nonlinear modeling techniques can greatly
increase the accuracy and extracting the full system potential,
they come at a high computational complexity along with
challenges in the LFC system analysis during the design
process [20]. In this regard, we substitute the FC and DLC
systems by their fractional-order models which eliminate the
disadvantage of the low accuracy while at the same time
reducing the model complexity.

B. WIG Model

The amount of power produced by wind turbines is di-
rectly influenced by the speed of the wind. The mechanical
power generated by the turbine is determined by Py e =
0.5pAv3Cp (A, 0), which takes into account the density of air
p, the swept area of the blades A, and the wind velocity v.
The rotor efficiency, or Cp, is also an important factor and is
determined by C,,(),6) = 0.5(116A~1 — 0.4 — 5)e~21A" 4
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Fig. 1. General structure of the isolated MG.

0.0068)\ with A=1 = (A + 0.080) — 0.035(6% + 1), which
is a function of the tip speed ratio A and pitch angle 6. The
maximum value of Cp ax can be obtained for a specific blade
direction and when the tip speed ratio is at its optimal level.
The rotor speed can be adjusted to keep the tip speed ratio
at this level, allowing for maximum energy extraction from
the wind (see Fig. 2a). As shown in Fig. 2b, the power output
Py e remains constant by using a pitch angle control system
to prevent excessive rotor speed and protect the equipment.
The power output reaches its maximum value when the wind
speed is between 14 and 25 m/s and is zero when the wind
speed is less than 4 m/s. However, if the wind speed exceeds
25 m/s, the system is shut down to prevent damage to the
turbine. The frequency domain’s mathematical representation
of a WTG’s dynamics can be expressed as

APwra - 1
APyina  sTwra +1°
This equation shows the relationship between changes in the

mechanical power of the turbine, denoted by AP,,;,,q4, and the
output power of the generator, represented by APy p¢.
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Fig. 2. The changes in C'p and Py g with respect to A an v.

C. PV Model

The PV system is an eco-friendly and highly versatile power
source that is made up of photovoltaic panels arranged in
series and parallel configurations. This system converts solar
radiation into electrical energy by utilizing the temperature of



the solar cells and the array’s surface area. The amount of
electrical energy produced by the PV system, represented as
Ppy, can be calculated based on the conversion efficiency 7,
the area of the PV array S, the solar irradiation ¢, and the
ambient temperature 7, as expressed by equation

Ppy =nS¢p(1 —0.005(T, + 25)). 2)
The relationship between the variations in solar irradiation and
the output power of the PV system is given as

AP, PV 1
=—, 3)

Agp sTpy +1
where Tpy is the time constant of the PV system.

D. Fractional FC Model

The FC technology is known for its high efficiency in
generating power by converting chemical energy into electrical
energy using hydrogen and oxygen. However, the fuel supply
sections of this device, such as pumps and valves, have slow
dynamics, which can result in a slower power output. To
analyze the dynamic response of this system, the first-order
time delay transfer function can be introduced as

1

sTpe +1

In order to improve control design and by using fractional-
order modeling technique, which is a versatile mathematical
tool enabling non-integer order derivatives in model descrip-
tions [21], a new fractional FC (FFC) was introduced in
the study [22]. This model accurately captures all dynamic
behaviors using proposed free fractional order elements. The
advanced solid oxide FC model includes two constant phase
element (CPE) components that describe the anode and cath-
ode behavior of the FC. The transfer function of the FFC
model can be represented as

“

Grc =

1
SalTFC +1 + SO‘ZTFC =+ 1’
where 0 < a; < 1, ¢ = 1,2 are fractional orders related to
each CPE [23]. Compared to classic integer-order models, the
presented FOFC model has the benefit of higher modeling ac-
curacy, particularly for the dynamic behavior during transient
operation.

5

Grro =

E. Fractional DLC Model

Electro-chemical capacitors were first patented by General
Electric Company in 1957, using a charging mechanism known
as DLC and consisting of porous electrodes [24]. Today,
this technology is widely used in a variety of applications,
including power quality, electric vehicles, and renewable en-
ergy systems. The device is highly efficient, with a fast load
frequency, and its transfer function can be approximated by
the first-order lag equation, specifically

1
sTpre+1°
This traditional modelling requires a large number of param-
eters in a larger frequency bands [23]. Therefore, researchers

6)

Gpro =

have explored fractional calculus potential for modeling elec-
trochemical systems, such as batteries and supercapacitors, and
have found that it can improve accuracy and reduce complexity
compared to other methods. For example, a simplified electro-
chemical model based on the fractional-order model has fewer
parameters than other approaches and can provide a more
accurate estimation of battery states [25]. Other studies have
investigated factors that affect the accuracy of fractional mod-
els, such as ambient temperatures, memory lengths, different
profiles, and voltage/current drifts [26]. Overall, the fractional-
order model shows great potential for improving the accuracy
of equivalent circuit models while reducing their complexity,
making it a promising tool for modeling electrochemical
systems [27]. A straightforward model for fractional DLC
(FDLC) can be derived from the behavior of porous electrodes
in DLCs. This model is represented by the equation

1
sPTpre’

Grprc =1+ O]
where 0 < 8 < 1 is the derivative order related to the CPE.

Table I summarizes the deployed parameters in the MG
system and given equations.

TABLE 1
PARAMETERS OF THE MICROGRID

Parameter Physical meaning Nominal Unit
value
TprLc WTG time constant 0.1 s
Trc FC time constant 0.2 s
Twra WTG time constant 1.5 s
Tpy PV time constant 1.8 s
B Derivative order of CPE in FDLC 0.5 -
a1 Derivative order of first CPE in FFC 0.8 -
g Derivative order of second CPE in FFC 0.8 -
M Inertia constant 0.166 pu.Hz
D Damping constant 0.015 pu/Hz

III. COORDINATED CONTROL STRATEGY

By utilizing a coordinated control strategy that combines
FC and DLC systems, the LFC problem can be effectively
resolved while also improving power quality, as depicted in
Fig. 3. In this approach, the fractional order DLC and FC
systems serve as backup systems and compensate for high and
low frequency deviations, respectively. Also, to minimize the
charging and discharging of FDLC during long-term operation,
a high-pass filter (HPF) is employed. Furthermore, to maintain
stable operation of the autonomous isolated MG system,
effective control of the supply power is necessary since the
output power of various power generation components can
fluctuate under certain conditions. The control strategy in this
system is based on the power balance error AP, which is
calculated as the difference between the power supply Ppye:
and the power demand Pr,oqq given as AP = Pyet — Ploqd-



As power generation varies, the frequency also fluctuates, and
this frequency deviation Af, is calculated using
AP
Af =—, 8
f % (®)
where K is the system frequency characteristic constant of the
system. However, due to delays in the frequency characteris-
tics, the above equation is modified to

AP AP

Af = =
/ K(sTy+1) sM+D’

©)

which takes into account the frequency characteristic time
constant T, as well as the load damping constant D and
the inertia constant M. The net power generation is computed
using Pyet = Pwra+Ppv+PrrcEPrprc, which involves
various contributing factors. For control purposes, two ANN
based control are employed for two fractional subsystems
associated with a common stochastic RL based training unit.
This control framework and its strategy, which is integrated
in control unit, will be more investigated in two following
subsections.

Fig. 3. Coordinated LFC strategy.

A. ANN-based Controller

The proposed NN-based controller, which is similar to PID-
type controllers, is illustrated in Fig. 4. The controller takes
frequency deviations as an error signal in three different forms:
original Af, differentiated dAf/d¢, and integrated Af/s,
and inputs them into neurons. In this architecture, multiple
ANN weights of actor systems are defined as w,; ; and w3 ;
for hidden and output layers, respectively. The hidden layer
consists of three neurons, while the output layer has one
neuron that summarizes all signals into output provided for
the inputs of FDLC and FFC systems. Every artificial neuron
uses an adjustable tansig activation function that provides
bipolar output and is suitable for many control applications.
The performance of the proposed controller depends on the
magnitude of the weights in each artificial axon and the
constants defined in the applied activation function as

y(t)

where weight w defines sensitivity to disturbances and con-
stant n defines limits for output signal in every neuron.

n n

T Tqew® 2 (19)

Hidden
layer

Wy2,i Output
. layer

Fig. 4. Proposed ANN-based controller.

B. Stochastic Reinforcement Learning

In order to train multiple agents to control the given isolated
MG, we utilize a stochastic reinforcement learning (SRL)
algorithm proposed in [17]. This algorithm initializes random
weights m times and evaluates each combination of weights
using a reward system. The proposed reward system is based
on the angular function

IAE .
. QM, Tf STn9<0.5
if sinf > 0.5

10—t
V/1AE2 42’

that takes into account the integral absolute error (IAE) of the
system’s performance defined as

an

ot
IAE = / |Af|de. 12)
0

The optimal weights are obtained through the selection of
actions that yield the highest reward for each agent. This
approach uses an ANN with the mentioned tansig activation
function and the PID-like control approach. In this approach,
we execute actions a; at a given state s; and assess the
maximum reward 7, received by each agent separately. The
reward is determined by the measured control error, which is
represented by the magnitude of the state difference (A f) and
is calculated as the IAE signal. If the error angle (6) is less
than 45 degrees, the agent receives a positive reward (+7);
otherwise, it receives a negative reward or punishment (—r).
Unlike a previous approach, which had limitations for highly
dynamic control applications such as interconnected MGs, the
new reward system is adaptive to such systems since it is based
on the performance metric IAE, which is an effective criterion
for process control. However, training multiple agents can be
challenging due to the interdependence of their actions. To
overcome this, we calculate a common summarized reward
for each agent and save the weights associated with the best
achieved reward.

The proposed optimization approach for multi-agent SRL
involves defining a certain number of ANN agents as
22:1 wi(s | wy,) with the non-negative random value w and
random weights 22:1 2?11 Wy, ;» which are modified over



a specific number of episodes (M). At each state and action,
the reward function r¢(ay,, s;), where a;, = ANN;(t) and
st = Af:, is observed and used to evaluate the performance
of each agent. The weights associated with the highest reward
for each agent are then selected, using

W, = { 11)[1[7]VI+I = Wy ars if Tnew; > Tmax;
HL

13)

w#LM = wm,mr if Tnch < 7“max“

that considers the maximum reward r,ay, = max (1, (8¢, ay,))
received by each agent. The approach is summarized in
Algorithm 1, which outlines the steps involved in selecting
the optimal weights for each agent.

Algorithm 1 Multi-Agent SRL optimization method.

1: Initialize neural network of agent [ as p;(s | wy,)
2: for j =1to M do

3: Initialize random weights of each agent w,,, M
times

4: fori=1t [ do

5: Execute action ay,, observe reward 7, at each step

t in common state s;

6: if Average reward r; > Tpax, then

7: Save weights of each agent w,,, ,,
8: end if

9: end for

10: end for

IV. NUMERICAL RESULTS

To test effectiveness of the proposed multi-agent strategy
in coordinating an ANN-based controller, a control scheme
was implemented in MATLAB/Simulink using the model
parameters provided in Table 1. The output power of the WTG
and PV systems, as well as the load demand, were monitored
and analyzed, as shown in Fig. 5.

The proposed controller was found to be effective in ad-
dressing the LFC problem, as shown in Fig. 6 (top plot),
where it outperformed the FOPID controller. In terms of
transient response, the ANN-based controller demonstrated
faster response times with smaller overshoots and shorter
settling times in a fractional order environment. The proposed
approach also exhibited smaller steady-state errors compared
to the traditional controller, as detailed in Table II. Our pro-
posed algorithm yields lower values of integral absolute error
(IAE), root mean square error (RMSE), and mean absolute
error (MAE) when compared to the FOPID controller, as
evidenced by the results. It is worth noting that for two
FOPID controllers, the parameters are set to fixed values as
K, prc =100, K; prc = 50, K4 prc = 0.5, A\pr.c = 1.35,
KUDLC = 1.2 and Kp,FC = 1000, Kinc = 200, Kd,FC =
0.5, Apc = 1.2, ppc = 1.25. According to the results, we
can see an insignificant influence of renewable energy sources
disturbances on the proposed ANN controller. In contrast, the
usual FOPID controllers show less flexibility in the distributive
process. Here, we can see how ANN is robust and adjusts the

parameters of both controllers to optimal values after each
time step.

To verify the effectiveness of the fractional order modeling
strategy and its impact on the LFC enhancement compared to
the classical integer order models, we repeated the experiment
for the considered MG system for the case of integer order FC
and DLC models with the same parameters. It can be seen in
Fig. 6 (bottom plot) that the proposed method with using the
same trained process for fractional order case, again shows
better performance than the FOPID controller One may see
that this resulted in a slightly degraded performance when
compared to the fractional order case above. Nevertheless,
in both cases the proposed controller was able to keep the
frequency within the limits.

TABLE II
NUMERICAL RESULTS

System order  Controller TIAE RMSE MAE
. Proposed  0.0221  1.7678 5  9.2214°6
Fractional
FOPID 0.3125 1.7269~%  1.3014~4
Proposed 05133 4.12684  2.1367%
Integer
FOPID 0.6186 3.9259—* 2.5763~%
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Fig. 5. Output power changes of renewable energy sources and load.

V. CONCLUSIONS

To overcome some issues related to the high-order nonlinear
models in an isolated MG system, fractional order-based
models were used to balance model accuracy and analytical
complexity. In this study, a coordinated LFC strategy was
proposed using two fractional order components to enhance
the frequency stability. Two ANN controllers were deployed
for each component in a multi-agent framework using a multi-
agent SRL optimization technique, in addition were compared
with two optimally tuned FOPID controllers. Test results
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on

an isolated MG with fractional components validated the

effectiveness of the proposed coordinated LFC strategy. As
illustrated in this study, it was observed that while the proposed
algorithm outperforms the FOPID controller in both systems
with integer and fractional model of components, it exhibits an
enhanced LFC system with greater stability in the MG system
with fractional order subsystems.
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9.1 Introduction

The problem of load frequency control (LFC) within prescribed nominal values is crit-
ical for the reliable operation of modern power systems [1]. The function of
microgrids (MGs) should be studied more carefully, particularly when they are iso-
lated and operate in remote locations. Because MGs in this case include converter-
based renewable energy systems (RESs) and integrated energy storage systems (ESSs)
with low inertia, which present additional challenges, more sophisticated control
approaches are necessary to ensure uninterrupted load delivery with excellent power
quality [2]. Even though several research studies have addressed MG management and
control from a variety of viewpoints in recent decades, the LFC problem in an isolated
MG is exacerbated by the rising penetration of RESs and ESSs, which necessitates
additional system reliability considerations [3].

Wind turbine generator (WTG) and photovoltaic (PV) systems are two of the most
promising RESs in isolated hybrid MGs (HMGs) [4]. Extra power generation compo-
nents, such as fuel cells (FCs), are placed in the system to reduce power fluctuations
caused by changing weather conditions and to provide a constant power supply [5].
Due to some drawbacks of the FCs, including slow dynamics and time delay resulted
from its inherent physical properties, it must always be used in conjunction with ESSs
to regulate power to a desired level and improve system performance [6]. The typical
DC link capacitor cannot adapt to variations in load demand because of the con-
strained control operation of FC and its long-time delay. As a result, double-layered
capacitors (DLCs) with fast power response can supplement the slower power output
of the main source to compensate for the load variations and transient responses [7].

In an isolated HMG, the power for the load side demand can be efficiently generated
and supplied by several energy generation sources with effective coordination of
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frequency deviation control (FDC) among various subsystems [8]. Hitherto, multiple
control methodologies for LFC in isolated HMG have been presented where the systems
under study experienced various disturbances. Among different efforts, the small signal
stability analysis of an HMG with an isolated load was explored in [9], in which the
suggested system could achieve a proper frequency balance at different operating points.
The load FDC of an isolated small-hydro plant was presented in [10], utilizing the
reduced dump or resistive load approach and on/off control technique. A coordinated
proportional-integral-differential (PID)-type control between FC and DLC systems
was suggested in [11,12] for an isolated HMG as a contribution to FDC, with certain
enhancements in quantitative and qualitative characteristics compared to prior studies.

In engineering practices, an efficient isolated HMG operation can be achieved by opti-
mal parameter tuning of PID-type controllers. In this regard, several control and optimi-
zation procedures for the FDC of isolated HMG have been developed [13,14]. Very
recently, tuned fractional order (FO)PID controllers were applied for automatic LFC
problem of islanded HMG in a hybrid classical and advanced strategy [15,16]. How-
ever, all these offline parameter tuning efforts experienced several issues such as pre-
mature convergence, time complexity, and parameter tuning search space to obtain a
higher degree of FDC. Applying the constant FOPID in these works might limit a
control engineer from manipulating all characteristics of this controller, such as
the usage of integration and derivative actions, toward a well-performing frequency
control [17].

To overcome the LFC problems in the isolated HMG, we aim to provide the syn-
thesis of a new flexible (FO)PID-based FDC to evaluate the grid stability under dif-
ferent levels of RESs penetration and load disturbances. For this goal, we describe an
online tuning of the variable (FO)PID (V(FO)PID) controller using a neural network
(NN) trained by the stochastic reinforcement learning (SRL) approach. This automatic
approach, which admits capturing all the controller advantages with its additional fea-
tures and “tuning knobs”, such as improved robustness and disturbance rejection, as
well as its contributions to time delay systems, can lead to the generation of such con-
trol laws that improve the performance of the control system. The research motivation
in this chapter is to design an online multiagent method to improve the system per-
formance by addressing the problem of FDC for an islanded HMG based on a self-
tuned NN-V(FO)PID controller connected with SRL. It is worth noting that the pres-
ented approach demonstrates a successful controller tuning effort in a multiagent
structure, which is valid for FDC in isolated HMG typologies.

9.2 Isolated HMG configuration and mathematical
modeling

9.2.1 System structure

A typical isolated power generation and energy storage system — the isolated HMG
under investigation — is shown in Fig. 1. The isolated HMG comprises several power
generation and storage subsystems referred to as WTG, PV, FC, and the DLC bank. To
provide isolated loads, all these four subsystems are linked in parallel to a shared AC
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Fig. 1 A schematic diagram of the isolated HMG.

bus line, with PV, FC, and DLC connected via three independent DC/AC converters.
This system uses the PV and WTG as major energy sources, with power generation
taking precedence to fulfill the load demand. The dynamic characteristic of the system
and components are usually time-varying with high order nonlinear dynamics. How-
ever, linearized low-order models are employed to execute LFC synthesis concerning
the variations in load or output power of RESs.

9.2.2 WTG model

Mechanical power in the turbine section is dictated by wind speed, which has a
direct impact on WTG output power Py7s. This effect can be illustrated as
Pwre= O.SpAv3 C,(4,0), where p (kg/m3) is the density of air, A (mz) is the area swept
by the blades of the rotor, v (m/s) is the wind velocity, and C,, is the rotor efficiency,
which is a function of tip speed ratio 4 and pitch angle 6. The maximum value of C),
can be obtained for a particular direction of the blades and when the A is at its specific
value (see Fig. 2A). The rotor speed can preserve 4 at its optimal value depending on v,
allowing the maximum energy from the wind to be utilized. Fig. 2B explains the var-
iation in Py¢ as a function of v. By control of 8, the power stayed constant when v
increased through the rated wind velocity and takes its maximum value when
14 <v <25. For v > 25, the system shuts down. By introducing Ty ¢ as the time con-
stant of the turbine, the mathematical model of WTG can be given by

APywrg 1

GWTG(S) - APwind N STWTG +1°

ey

where AP,,;,, and APy are the variations of the WTG mechanical and output
power, respectively.
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9.2.3 PV model

The PV system, which comprises solar panels coupled in series and parallel structure,
is one of the most promising, adaptable, and environmentally friendly power sources.
Based on solar cell temperature and array area, PV transforms solar radiation to elec-
trical data. The output power Ppy can be defined in terms of conversion efficiency
n ech, pv array area S (m?), solar irradiation Q@ (W/m?), and ambient temperature
T, (°C) as Ppy=nS¢@(1 —0.005(T,—25)). Variations in solar irradiation to PV system
output power can be characterized by

APy 1

Grv(s) =Ry = Tp + 1’

2)

where Tpy is the PV time constant. Due to dust accumulation and temperature
variations, the real efficiency of module might be as low as 70% of the standard test
conditions efficiency given by the manufacturer.

9.2.4 FC model

RESs that incorporate the DLC system are appropriate for power supply stabilization.
The suggested system, on the other hand, is mostly made up of natural energy sources
including FC technology, which is regarded as a high-efficiency power generation
system. The fuel supply portions of this static device, such as pumps and valves, have
slow dynamics, resulting in decreased power production. The first-order time delay
transfer function

1

Grels) = e v 10

3)
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with Trc as the FC time constant, is used to calculate the dynamic response of the FC
system. To simulate and explore our isolated HMG with complex components,
fractional-order models can also be used in FC and DLC modelling which offers
the benefit of improved accuracy as compared to traditional integer models, especially
for the dynamics under transient operating circumstances [18-20].

9.2.5 DLC model

Electrochemical capacitors with porous electrodes and the DL.C charging process play
a critical role in meeting the demands of a variety of applications, including electric
cars, power quality, and ESS technology for RESs. DLCs, sometimes known as super-
capacitors or ultracapacitors, can be represented by

1

GDLC(S) = m s

“)

where Ty, ¢ is the time constant, with bigger frequency bands needing a higher number
of parameters.

9.2.6 Frequency deviation model

An effective control of given subsystems is required for the isolated HMG in its steady
operation with various power generators. This is accomplished by controlling the var-
iation in the frequency profile Af, which can be given by Af=Ky1,GAP, with
AP=P,.,—Pipaq, Where P, and P,,,, are the net and load power, respectively,
and Ky is the system frequency constant of the given HMG. The dynamical model
of frequency variation based on per unit power deviation may be expressed as follows:

AF 1
AP~ sM+D’ ®

where M and D are inertia and damping constants of the isolated HMG, respectively.

9.3 (FO)PID controllers, actions, and tuning rules

PID-type controllers have a wide range of popularity due to their ease of design and
strong performance, which includes low overshoot and short settling time for slow
processes. (FO)PID controllers are less sensitive to parameter changes and can easily
achieve the property of iso-damping. The general form of a constant (FO)PID control-
ler is as

y(t) = Kpe(t) + K;D e(t) + KyD"e(t), (6)



208 Power System Frequency Control

K, VFOPID
H
2 >
i | X }7
11D E > 24
3w Pl
(A) (B) NN Tuner

Fig. 3 The proposed V(FO)PID controller: (A) basic scheme and (B) its NN-based tuning
scheme.

where D“ is fractional derivative and integral operators for positive and negative a,
respectively, and the positive real constants y and A are the integration and differen-
tiation orders, respectively. Also, u(f) and e(f) = Af(¢) are control and error signals,
respectively, and K, K;, and K ; are the constant gains. Although this controller, when
the orders are not equal to one, provides additional tuning freedom, allowing it to meet
precise control performance, it can bound a control engineer to manipulate all the fea-
tures. Instead, the V(FO)PID controller with five online tunable parameters can con-
siderably improve the control performance requirements. According to Fig. 3A, we
can not only move continuously in the PID plane instead of jumping between the fixed
points but we can also search for desirable controller parameters in a space inside the
cube and between the eight vertices.

9.3.1 Control actions

When the related gains and orders of each function change, both integration and dif-
ferential functions have an impact on the steady-state process and dynamic features. In
general, a PID-type controller has three control actions:

* Proportional action: When the control error is minor, the proportional advantage is its ability
to supply a smaller control variable and minimize unnecessary control efforts.

* Integral action: While a large K; will make a system more unstable with oscillations, a small
gain will cause the system to deviate from its optimal dynamic performance. The frequency
band is also large for small 4, and the system is stable with quick reaction and static error. In
the other direction, an oversize of A will overshadow the system stability with the increase of
the overshoot, rise time, and settling time.

* Derivative action: K, has no effect on steady-state error, but may enhance dynamic features.
With a small K, the overshoot and settling time will rise, but with a large gain, the system
noise will grow, and the system performance in disturbance tolerance will be degraded.
When p is small, it increases the response accuracy. However, increasing this order reduces
the system overshoot and settling time, and for an oversize y, the closed-loop stability will be
negatively affected.

To achieve sufficient control performance for a target system, it is required to keep not
only the gains but also the fractional orders of the controllers in a desirable range. This
can be obtained by optimal tuning of the parameters of the PID-type controllers
toward efficient operation of the system.
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9.3.2 Tuning rules

The tuning of most PID-type controllers is always a challenging task. According to the
literature, there are three types of tuning procedures for PID-type controllers [21]:
heuristic, rule-based, and model-based tuning approaches. A heuristic tuning
approach, such as the trial-and-error method, is one that uses general rules to provide
approximate or qualitative outcomes. This is currently the most often used method in
industrial control; however, due to the obvious drawbacks it is not acceptable to use
this method for intelligent system control where the goal is to achieve the best possible
control system performance while minimizing the required control effort to help
reduce energy waste. On the other hand, by using simple mathematical methods,
rule-based approaches, such as Ziegler-Nichols and Cohen-Coon, can tune a PID-type
controller by assuming a specific process response. Model-based tuning, also known
as optimization-based tuning, helps one to achieve the parameters optimally. In addi-
tion to these three methods, offline and online methods are two other well-known cat-
egories in the tuning of PID-type controllers. Unlike offline tuning, the online method
admits capturing all the controllers’ advantages with its additional features, resulting
in improved performance and disturbance rejection. For online tuning purposes, the
V(FO)PID controller can be given as

y(t) = K, ()e(t) + Ki()D " De(t) + K(1)D"Ve(t), (7

where D™ and D*® are variable fractional order integral (VFOI) and derivative
(VFOD), respectively. In the case of using fractional operators, a powerful computing
device is required to implement the controller (7) with fixed- or floating-point arith-
metic. Therefore, we apply parallel connections of fractional order modeling and con-
trol (FOMCON) library blocks proposed in [22] to offer a real-time switch between
fractional operators with an order resolution of 0.1. These functions switch between
multiple fractional integration and differentiation operators and are used to implement
a VFOPID controller according to the tuned parameters in combination with switching
objective functions and emerging from an input signal produced from the NN tuner
system (see Fig. 3B).

9.4 The proposed (FO)PID-based LFC: Multiagent
NN-based online tuning approach

9.4.1 Coordinated control strategy

The FDC problem in the proposed isolated HMG can be handled with improved power
quality by utilizing a coordinated control approach between FC and DLC subsystems, see
Fig. 4. These two devices serve as backups, compensating for large and low frequency
deviations, respectively. Also, in long-term operation, a high-pass filter (HPF) can
decrease DLC charging and discharging. The net power generation is determined by

Ppet = Pwrc + Ppy + Pre £ Pppc. (8)
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Fig. 4 Proposed coordinated multiagent FDC scheme.

For the control purpose, an online tuning-based V(FO)PID controller is used, which
admits capturing all notable features of the controller. It is worth mentioning that the
resilience of the isolated HMG can be increased by online tuning of the controller
using NN technique learned by SRL algorithm, which select right combination of
NN parameters to avoid conflict between agents and realize which V(FO)PID coef-
ficients are more significant. This approach of selecting the parameters is beneficial in
FDC purposes in the HMG, which necessitates additional system reliability consider-
ations. In this regard, a multiagent structure is used to adjust the controller, which is
beneficial for the FDC purpose. As illustrated in the next sections, our online-tuned
NN-based V(FO)PID controller technique makes a successful effort toward FDC in
the given isolated HMG.

9.4.2 NN-based online tuner

The main idea of NN-based online tuner is an architecture design that uses the control
error signal to change the values of the V(FO)PID parameters [23]. The PID-type con-
troller can be automatically adapted to any process using this intelligent technique. On
the other hand, it may be difficult to choose an appropriate architecture of the NN-
based tuner. In the proposed approach, evolutionary algorithms, such as the neuro-
evolutionary of augmenting topologies (NEAT) algorithm, tackle this problem by
changing the topology of NNs. We propose that the NN-based tuner adhere to the
PID-type controller concept, i.e., the NN-based tuner must include an integrator
D" and an optional differential element D due to perturbations in the control loop
which can destabilize the tuning process of all controller coefficients, see Fig. 4.
Moreover, NN must be built in such a way that negative outputs are avoided. Never-
theless, since variable K,(#) is very sensitive to any rapid change of controller error,
the V(FO)PI version is the better choice for most processes. In the case of variable
orders, we must be sure about exact the range and resolution of outputs because they
are computationally complex in real-time control.



Application of NN-based V(FO)PID controllers for LFC in isolated MGs 211

Selection of the suitable activation function is very important in the design of an
NN-based tuner, where it must transform all negative inputs to a positive output. Two
original tansig and sigmoid activation functions are not acceptable due to the negative
range of the first function and a failure to address the rising output for negative inputs.
As a solution, we propose the following modified ransig function

n n
Y= 11e W 2 ©)
with absolute input value of x and constrained output range determined by constant ».
Here, the absolute value of x is used to avoid negative output, provide a sufficient
range of coefficients for controller, and make the tuning more robust. We avoid con-
necting the HPF to the NN-based tuner since it has a negative impact on the stability of
the tuner and confuses the reward system. Therefore, the input signal for both agents is
the same.

9.4.3 SRL-based training for multiple agents

Using RL technique and in a combined strategy of both heuristic and rule-based
methods, we try to obtain the optimal NN weights. In our proposed method, the effec-
tiveness of the NN training system associated with RL is largely determined by the
design of the rewarding mechanism. In FDC purposes of the isolated HMG from any
order and degree of complexity, the most significant feature is the allowable range of
frequency deviation. However, the technique for designing a standard reward system
remains still an open question, as each application necessitates a unique approach.
Furthermore, the optimal range of weights for every tuner is also individual, but here
due to the unlimited range of optimal controller coefficients, it is not clear how
machine learning (ML) methods can find weights with right magnitude. To avoid
some problems related to the optimization algorithms, such as gradient descent in
which it takes a long time to reach a local minimum and only allows for a narrow
range of ideal weights, here we propose SRL method for effective tuning of the
parameters.

To train numerous RL agents and enable optimal online tuning of each V(FO)PID
controller, we employ a basic SRL in which random weights are generated M times.
The training is based on reward feedback arranged by the reward system provided in
[22], which allows for the best weights by selecting actions with the highest potential
reward. In this method, we perform actions at a, (i.e., K,(f), K(?), and K,(#)) and
check the received maximum average reward r,,, max Of €ach agent individually,
where the main criterion for rewarding is the magnitude of Af (see (10)), and an
agent receives a positive reward +r if Af is less than 0.01 Hz; otherwise, it receives
a negative reward.

- { (0.5+10|Af]) ", if 10]Af| < 0.01, (10)
—20|Af], if10|]Af] > 0.01.
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9.5 Simulation results

Dynamic models for the main subsystems were constructed using MATLAB/
Simulink to develop an overall power management strategy for the proposed system
and to examine its performance. The parameters used in the system modeling are as
Twrc=1.5s, Tpy=1.8s, Tpc=0.26s, Tp;~=0.01s, M=0.4, and D=0.03. Also,
Fig. 5A and B illustrates the real wind speed and sun irradiation, respectively. The
time scale utilized in analysis is expressed by sampling time, while the time on the
representative day to be simulated is expressed by assumption time. In simulation,
the sampling time interval was chosen as 5 x 10™°, which equals to 0.003 min in
the assumption time. The power produced by WTG and PV systems over the course
of a day is shown in Fig. 5C. From this figure, step load demands are applied to the
system to demonstrate effectiveness of the proposed method.
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Fig. 5 (A, B) The real data from RESs and (C) power produced by WTG and PV and variation
of load demand.



Application of NN-based V(FO)PID controllers for LFC in isolated MGs 213

=
I

T
NN-VFOPID
————— FOPID

Power of DLC system [pu]
Power of FC system [pu]

NN-FOPID

&
&

0 5 10 15 20 24 0 5 10 15 20 24
Time [hour] Time [hour]

(A) (B)
Fig. 6 (A) DLC output power and (B) FC output power with and without NN.

Fig. 6A and B shows the output power of DLC and FC, respectively, with and with-
out NN. As seen, the lower required ESS capacity can be found by using the
NN-FOPID. As shown in Fig. 7, the frequency deviation can be controlled suitably
by coordinating FC and DLC to compensate for the shortage and complement full
hybrid power generation with considering the impact of system frequency variation.
According to the results, we can see an insignificant influence of WTG and PV dis-
turbances on the proposed combination of NN and variable PID-type controller. In
contrast, the traditional controllers show less flexibility in this case. In terms of tran-
sient response, the NN-based V(FO)PID controller has a smaller overshoot with a
shorter settling time, thus indicating a faster transient time and hence better reference
tracking performance. In terms of steady state, the NN-based controllers have small
steady-state errors and reduce the values of the integral absolute error (IAE), mean
square error (MSE), and root MSE (RMSE) when compared to the traditional PID-
type controller (see Table 1). As seen, the proposed combination of NN and V(FO)
PID produces the best results. One can see that when NN is combined with V(FO)
PID, the reactions to the system disturbances are reduced. Fig. 8A and B illustrates
parameters of the online tuned V(FO)PID controller for both agents 1 and 2. Here,
we can see how NN adjusts the parameters of both controllers to optimal values after
each step in the signal.
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Table 1 Performance result of isolated HMG with different controllers.

NN-FOPID NN-PID FOPID PID Without]
IAE 0.003324 0.004559 0.005774 0.006403 13.78
RMSE | 0.0001804 0.0002482 0.000322 0.000323 0.6201
MSE 3.2528 x 108 6.1618 x 108 1.0633 x 1077 1.0416 x 1077 0.3845
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Fig. 8 Online tuning of VFOPID controllers: (A) agent 1 and (B) agent 2.

9.6 Conclusion

In this chapter, we presented a novel combination of NN and V(FO)PID controllers
applied to the LFC problem in isolated HMG with high RES penetration, where the
SRL algorithm optimized all tuned parameters (both gains and orders) of this control-
ler. We demonstrated that combining a V(FO)PID controller with an NN-based tuner
is an effective strategy for FDC tasks. Unlike traditional PID-type controllers, the
NN-based V(FO)PID controller has active support from a ML algorithm, allowing
it to self-adapt to HMG disturbances and produce smooth frequency deviation.
The results demonstrate that the proposed combination of PID-type controllers and
NN tuner captures all the remarkable advantages of the controller and gives rise to
the generation of control laws that improve both transient and steady-state errors.
In summary, the major benefits of the proposed solution can be summarized as
follows:

* Aneffective NN-tuning-based system for V(FO)PID controller coefficients using SRL strat-
egy to find optimal weights of the controller.

* Fast training of NN-based tuner by the proposed effective SRL algorithm.

+ Capturing all tuning knobs of the V(FO)PID controller by designing a self-tuning technique,
resulting in robustness improvement, fast recovery time, and frequency stability
enhancement.

+ Capability of the designed controller over a wide range of operating conditions due to its
flexibility in use of integration and derivative actions toward a well performance in fre-
quency support operations with multiple DGs and RESs.
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High precision modeling of the subsystems utilizing mathematical methodologies
such as fractional calculus, notably generating and storage elements like FCs and
DLCs, will be the foundation for the future study and development of the HMG, par-
ticularly for the estimation and energy management.
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