
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Software Engineering Department

Michailas Ornovskis 204790IVCM

Secure Software Development Lifecycle Reference

Meta-Architecture

Master Thesis

Supervisor

Dr. Hayretdin Bahşi

1

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia Teaduskond

Michailas Ornovskis 204790IVCM

Turvalise tarkvaraarenduse elutsükli referents

metaarhitektuur

Magistritöö

Juhendaja

Dr. Hayretdin Bahşi

2

Tallinn 2022

Author's declaration of originality

I hereby certify that I am the sole author of this thesis and that it has not been

presented for the examination or submitted anywhere else for defense purposes. All

used materials, references to the literature, and work of others have been cited.

Author: Michailas Ornovskis

14.05.2022

3

Abstract

The ability to choose information security controls for the development pipelines and

other types of software development models based on clear Secure Software

Development Lifecycle ((S)SDLC) reference meta-architecture, its components,

software development methodologies criteria, and other elements will enable

organizations to achieve measurable levels of security in an optimal fashion.

The main objective of this study is to create such a reference meta-model, that would

be then transformed into a reference architecture for the DevSecOps methodology

and to calculate the most optimal controls for specified selection of software errors.

The calculation method is based on the Analytic Hierarchy Process (AHP) and the

usage of software development methodology principles as an input for its criteria.

During the control prioritization process for each selected software error, the

optimality factor is found in the overall weighted sum value across all errors in

general. This way will enable organizations to find a suitable finite selection of top

controls that would be effective for a given scenario – based on the methodology,

coding language, software errors, and unique threats applicable to the operating

environment.

The results show that reference architecture model follows industry controls

selection in general but is more precise in case of specific organization and given

software errors selection. The overlap with industry architectures and their control

selection is significant, yet the resulting architecture is specific, and each control

selection is justified.

This study could be further expanded into calculating specific controls and defining

architectures for other methods and even become more specific in automating

security controls selection for them.

The thesis is written in English, and it comprises 58 pages of text, 6 chapters, 19

figures and 11 tables.

4

Annotatsioon

Võimalus valida tarkvara konveierite ja muud tüüpi tarkvaraarendusmudelite jaoks

infoturbe kontrolle, mis põhinevad selgel turvalise tarkvaraarenduse elutsükli

((S)SDLC) referents metaarhitektuuril, selle komponentidel, tarkvaraarenduse

metoodika kriteeriumidel ja muudel elementidel, võimaldab organisatsioonidel

saavutada mõõdetav turvatase optimaalsel viisil.

Selle töö põhieesmärk on luua selline referents metamudel, mis transformeeriks

seejärel DevSecOps metoodika referents arhitektuuriks ning arvutada

tarkvaravigade kindlaksmääratud hulga jaoks kõige optimaalsemad infoturbe

kontrollid. Arvutusmeetod põhineb analüütilise hierarhia protsessil (AHP) ja

tarkvaraarenduse metoodika põhimõtete kasutamisel selle kriteeriumide sisendina.

Iga valitud tarkvaravea infoturbe kontrolli prioriseerimise protsessi käigus leitakse

optimaalsustegur kõigi vigade üldise kaalutud summa väärtuses. See võimaldab

organisatsioonidel leida sobiva lõpliku valiku infoturbe kontrolle, mis oleksid antud

stsenaariumi jaoks üldiselt tõhusad – lähtudes metoodikast,

programmeerimiskeelest, tarkvaravigadest ja operatsioonikeskkonna uniklaasetest

ohtudest.

Tulemused näitavad, et referents arhitektuuri mudel järgib üldiselt tööstusharu

kontrollide valikut, kuid on täpsem konkreetse organisatsiooni ja antud

tarkvaravigade valiku korral. Kattuvus tööstuse arhitektuuride ja nende infoturbe

kontrollide valikuga on märkimisväärne, kuid magistritöö meetodist tulenev

arhitektuur on spetsiifilisem ja iga infoturbe kontrolli valik on õigustatud.

Seda tööd võiks veelgi laiendada spetsiifiliste infoturbe kontrollide arvutamisele ja

muude meetodite põhinevate arhitektuuride määratlemisele ning isegi nende jaoks

infoturbe kontrollide valiku automaatsel valikul.

Lõputöö on kirjutatud inglise keeles ja sisaldab 58 lehekülge teksti, 6 peatükki, 19

jooniseid ja 11 tabeleid.

5

List of abbreviations and terms

SAST Static Application Security Testing
SCA Software Composition Analysis
DAST Dynamic Application Security Testing
NIST National Institute of Standards and Technology
SDLC Software Delivery Lifecycle
(S)SDLC Secure Software Delivery Lifecycle
ISC2 The International Information System Security Certification

Consortium
TOGAF The Open Group Architecture Framework
AHP Analytic Hierarchy Process
XP Extreme Programming
RUP Rational Unified Process
OWASP The Open Web Application Security Project
CWE Common Weakness Enumeration
API Application Programming Interface
CR Consistency Ratio
CI Consistency Index
RI Random Index
DOD Department of Defense (United States)
PCI-DSS Payment Card Industry Data Security Standard
COBOL Common Business Oriented Language
SQL Structured Query Language
XSS Cross-Site Scripting
HTML5 HyperText Markup Language, version 5
J2EE Java 2 Platform, Enterprise Edition
TLS Transport Layer Security
RASP Runtime Application Self Protection
IAST Interactive application security testing
IDE Integrated Development Environment
CI/CD Continuous Integration / Continuous Deployment
MCDM Multiple Criteria Decision Making

6

Table of Contents

List of Figures ... 8

List of Tables ... 9

1 Introduction .. 10

1.1 Motivation .. 10

1.2 Research Problem and Questions ... 11

1.3 Limitations and Assumptions .. 12

1.4 Scope and Goal .. 13

1.5 Novelty ... 13

2 Background Information and Literature Review .. 15

2.1 The analysis of identified studies ... 15

2.2 Software Development Lifecycle.. 15

2.3 Waterfall model ... 15

2.4 Iterative models .. 17

2.5 Modern development methods and methodologies .. 19

2.6 DevSecOps ... 21

2.7 Security control types .. 23

2.8 Software Security Errors Taxonomy .. 24

2.9 Multiple Criteria Decision Making .. 25

2.10 Analytic Hierarchy Process ... 26

2.11 SDLC Reference Architecture, Meta-architecture, and related work 28

3 Research methodology ... 31

3.1 Research design ... 31

3.1.1 The controls library ... 32

3.1.2 The expert group .. 32

3.1.3 Development phases identification, methodology selection 32

3.1.4 Applicable criteria identification and selection ... 33

3.1.5 AHP process to determine pair-wise comparison to criteria 34

3.1.6 Software errors taxonomy selection, applicable software flaws identification .. 37

3.1.7 Ranking and criteria weights estimation of suitable controls 39

3.1.8 Creation of applicable SDLC architecture with a list of security controls and

processes .. 40

3.1.9 Calculation of most important controls, validation of architectures 41

7

4 Results ... 42

4.1 Calculating results for individual flaws .. 42

4.2 Final table with mathematical mode and cumulative scoring for top 20 controls 44

4.3 Validation against other peers .. 47

4.4 DevSecOps architecture with top 20 identified controls ... 49

5 Discussions ... 50

6 Summary ... 52

References .. 53

8

List of Figures

Figure 1. The Waterfall development model [20] .. 16

Figure 2. The Waterfall development model with Royce's iterative feedback [21] 17

Figure 3. The SDLC iterative model [23] .. 18

Figure 4. The Spiral development model [23] ... 18

Figure 5. The Scrum methodology flow [28] ... 20

Figure 6. The DevOps methodology developer self-service phases [6] 21

Figure 7. Cost of the software bug in different phases of development [33] 22

Figure 8. The United States Department of Defense DevSecOps software lifecycle

model [8] .. 23

Figure 9. The AHP process scheme example [49] ... 26

Figure 10. Saaty comparison scale for the AHP process [50] 27

Figure 11. AHP Consistency Index calculation [49] .. 27

Figure 12. AHP Consistency Ratio calculation [49] .. 27

Figure 13. United States Department of Defence DevSecOps phases and security

controls [8] .. 29

Figure 14. MDA-SDLC architecture overview [54] .. 29

Figure 15. (S)SDLC meta-architecture model with derived DevSecOps architecture

model ... 31

Figure 16. DevSecOps SDLC AHP process layers .. 34

Figure 17. Top 20 security controls chart ... 46

Figure 18. Top 20 security controls reordered based on their rate of appearance ... 46

Figure 19. Microsoft DevSecOps controls architecture [59] 47

9

List of Tables

Table 1. Saaty Consistency Index table [50] .. 28

Table 2. Swedbank Group versus US DoD DevSecOps phases 32

Table 3. AHP pair-wise comparison matrix .. 35

Table 4. AHP normalized pair-wise comparison matrix .. 36

Table 5. Seven Pernicious Kingdoms selected software security flaws 38

Table 6. Control pipeline position value for AHP calculation 39

Table 7. SQL injection top 20 security controls .. 42

Table 8. Disgruntled employee inject security controls... 43

Table 9. Top 20 security controls with mathematical mode 45

Table 10. Top 20 security controls comparison .. 48

Table 11. Security controls distribution across different phases of DevSecOps 49

10

1 Introduction

The following chapter introduces the research questions, thesis motivation, and

scope novelty. It formulates the goals of the thesis and supplements the reader with

the background information necessary for understanding the topic.

The following sections also include a literature review and gaps analysis sections.

1.1 Motivation

The current situation in the software development, secure deployment, and operation

shows that security controls across all three control areas of information security –

human, processes, and technology, are suggested to developers and infrastructure

engineers. The majority of papers and Internet articles tend to suggest using a

described selection of controls (such as Static Application Security Testing (SAST),

Software Composition Analysis (SCA), Dynamic Application Security Testing

(DAST), etc.) that are proposed in the studies themselves [1][2][3][62]. NIST in its

withdrawn technical publication, focuses more on phases, different activities, and

SDLC (Software Development Lifecycle) control gates. However, the controls and

security activities suggested in the implementer tips do not have another basis than

just being suggested [63]. Moreover, the security controls tend to be tied to DevOps

or DevSecOps software development methodologies only, ignoring that different

criteria, such as control effectiveness, coverage, implementation time, measurability,

and simplicity, might be used in other models and methodologies. They could also

have different weights and suitability depending on the methodology used – some

manual controls such as granular security review might fit perfectly well into projects

that follow classic methodologies, such as Waterfall, and have lengthy release

cycles.

Up to the author's knowledge, there is no comprehensive study or literature source

that would suggest a method to calculate security controls and activities suitability

depending on the software development methodology, the coding language used,

and possible security flaws they are meant to protect against.

The problem that the industry might face is that the same security controls with

similar configurations are not used effectively across various methodologies,

languages, and projects. This might result in controls not being used optimally,

coverage being inadequate, and as a result – production deployments being

vulnerable and insufficiently defended against the security flaws identified earlier in

the threat modelling phase.

This approach is often one-sided as it is more likely to suggest technological controls

over others, such as process-related (effective change management and defect

management processes, for example) and human-related (job hiring procedures,

comprehensive application security education). Also, such a suggestion for selecting

a particular set of controls without knowing the exact environment, programming

11

language(s), or software development specifics does not seem right – vulnerabilities

that are introduced due to software errors are different, and there is no "one size fits

all" approach that can be used. For example, buffer overflow vulnerabilities are most

common in the languages with manual memory allocation and management and do

not apply to other languages that use a different approach, such as interpreted

languages [61]. In addition, more security controls can be chosen compared to the

limited selection presented in various study guides and grey literature articles.

Since code runs in the target environment, situation differs depending on which

deployment method is chosen (artefact–based deployment, container, serverless

function, package, or library) and which target environment code will operate in –

container worker node with orchestrator and bare metal server versus smartphone

have different security features; since the operation is part of the modern

development process, it should be considered as well (but it often is not) [4][5].

As a consequence, there are many software errors and vulnerabilities in various

products. The author believes that common thinking and selecting tailored controls

from all control areas can reduce this number. It also must be noted that academic

pieces echo the need for understanding how security fits into DevOps; to generalize

this question, how security fits into generic Software Development Lifecycle [6][7].

1.2 Research Problem and Questions

The research problem and area are the rationale and methods behind a selection of

particular security controls based on development needs. A particular research

outcome is the Secure SDLC meta-architecture model that can be converted to a

simpler security architecture for a particular methodology based on the selected

number of security controls deemed to be most optimal in the current situation for a

given development model, language, and most common security flaws. In addition,

an example security architecture (the model to arrange control gates and security

controls) for DevSecOps methodology is created.

The term meta-model, or in this case, a meta-architecture model, is captured in

TOGAF (The Open Group Architecture Framework) and is defined as "A model that

describes how and with what the architecture will be described in a structured way"

[64].

As defined by Mohamed Sami, a meta-model in architecture is an abstraction layer

upon the system, and a meta-meta-model is an abstraction layer of a meta-model

that contains meta-entities [65].

For SDLC, such entities might will contain methodology, criteria, and security

controls. This meta-model, or in this case meta-architecture model, could later be

used to create an SDLC architecture system-level model for a given methodology.

This research hypothesizes that it is possible to create a working meta-architecture

model that would fit together security controls from all three control areas and that it

can convert to the particular software development methodology of DevSecOps.

12

In this research, the author will answer the following research questions:

• RQ1: Which most common security controls are possible in different stages of

the development lifecycle?

• RQ2: Which security controls bring the most value based on software

development methodology input to their cost and how to convert architecture meta-

model into DevSecOps SDLC architecture model?

• RQ3: How to calculate and identify the most important security controls that

take care of various software errors?

The first research question lies in understanding which possible security controls

from the three pillars of information security – people, processes, and technology are

applicable at which particular stage of SDLC, as defined in the United States

Department of Defense Enterprise Reference Design [8]. Generalized control

selection can still be used in other methodologies, but the scope is to tie them to

DevSecOps stages.

The second research question focuses on identifying a method to understand

controls with the most value, given the DevSecOps methodology and criteria that

define it.

The third research question focuses on calculating the most important security

controls from all three pillars for a generalized set of software errors as defined in the

Seven Pernicious Kingdoms taxonomy [9].

1.3 Limitations and Assumptions

The following thesis results and methods are applicable in an enterprise that the

author works in (Swedbank Group) since the method used to assess security

controls selection, their placement across different stages of SDLC, DevSecOps

criteria ratio, criteria values for different security controls versus software errors is

Swedbank Group expert-based opinion with results validation. Results in other

companies, applied to other methodologies, specific languages, and specific

software errors might differ.

In order to apply a given method to a particular enterprise, all meta-architecture

model steps need to be revisited, and new architecture needs to be calculated, given

input to all relevant security controls and criteria.

Using the AHP [10] multiple-criteria decision-making methodology to align criteria

and calculate the most effective security controls, the author will be able to show a

method of their identification. Controls ranking is done according to a generalized set

of most common (32) software flows based on languages listed in the Seven

Pernicious Kingdoms taxonomy. The controls selection method depends on the

number of security controls that the enterprise can afford and its risk appetite. At the

same time, some security controls are effective against multiple software errors. By

calculating their appearance rate as effective against software flaws, it is possible to

13

determine the mathematical mode – count of appearance. The assumption is that

the controls that are effective against more software flaws should be preferred since

using specific controls (against specific flaws) in the pipeline leads in unnecessary

pipeline sophistication, which could otherwise be avoided by using more common

controls that are effective against multiple software flaws at once.

1.4 Scope and Goal

The goal and main deliveries of this study are:

• (S)SDLC Reference Meta-architecture model

• DevSecOps Reference Architecture and its graphical representation

• Most optimal security steps and controls identification for DevSecOps model

• A method to identify these controls for DevSecOps model and its library of controls.

The scope of this study will stay within the boundaries of (S)SDLC, security controls,

software error taxonomies, and reference architecture models. The financial cost of

controls implementation, detailed review of the pipelines, their architectures, security

controls, software errors, and their descriptions is out of the scope.

There are two main limitations – security controls selection will be based on expert-

driven opinion; also, quantitative evidence of security controls implementation and

effectiveness is not possible within such a short timeframe – the adoption of security

architecture models varies in different organizations but usually takes quite some

time; however, the measurement should base upon the number of software security-

related errors that reach production environment; therefore outcome and

effectiveness are measurable.

One minor gap is the method flexibility – some additional efficiency-related aspects

might be taken into account based on the organization – such as risk appetite,

uniqueness of the environment, programming language, existing controls, and

tolerance for having vulnerabilities in the production environment.

1.5 Novelty

The novelty of a master thesis lies in a combination of controls selection applicable

against software errors based on given threat taxonomy and usage of this selection

to create particular SDLC security architecture based on defined criteria,

language(s), and methodology. While there are other studies that use similar security

control selection methods [43], controls and their alternatives selection are not

applicable against particular software errors affecting the SDLC. Controls and control

gates selection might depend more on the identification of software flaws affecting

the product and its different pipeline phases, while precise controls suggestions in

14

this thesis are driven by methodology criteria as defined in the methodology

description.

15

2 Background Information and Literature Review

This chapter provides background information necessary for understanding the

thesis, such as Software Development Lifecycle and its phases, Analytic Hierarchy

Process (AHP) multiple-criteria decision-making method, Software Security Errors

Taxonomy, and SDLC Reference Architectures. This chapter explains why particular

methods and taxonomies were chosen and provides a methodology basis.

In addition, it also discusses related work in the field.

2.1 The analysis of identified studies

The reviewed literature mainly focuses on analyzing practices of embedding security

into the existing software development process, separately analyzing challenges

[11][12], tools [13], security controls, review of taxonomies [14], and others. The

author found it interesting that there is a lack of the original research in this field –

mostly one or another approach references back to some book or comprehensive

study (in the best case scenario) – such as ISC2 recommendations, Department of

Defense publications [1][8][15][16], other grey literature sources [4][17] or simply

"internet artifacts" [18].

2.2 Software Development Lifecycle

Before reaching the target operation environment, the software undergoes different

phases of the development process. Depending on the methodology or development

method chosen, these phases can be different and might include various software

quality gates and security controls.

Moreover, the overall logic of development methodologies sometimes suggests the

usage of different quality gates and controls, depending on the project nature, its risk

appetite, timeframes, and other criteria.

There are various methodologies that have been developed during the last 50 years

– examples include Waterfall, Spiral, V-Model, Agile, DevOps, and others [19].

Different methodologies have different advantages and disadvantages and are

commonly chosen based on organization needs, projects and concerns.

2.3 Waterfall model

Phases, their iteration, and overall logic depend on the methodology chosen. Some

methodologies, such as the Waterfall development model, do not have feedback

16

loops – software release and related processes are moving strictly in one direction

from the requirements phase towards the maintenance phase, as shown in Figure 1.

Figure 1. The Waterfall development model [20]

The waterfall development model does not allow moving back in its phases and

expects the previous phase to be complete before proceeding further to the next

phase, thus being sequential.

This causes a problem in the development process since the classic Waterfall model

expects starting each software release from scratch – back from the requirements

phase. In case software errors are discovered in the process – correcting a mistake

or moving backward in one or two phases is not ordinarily possible.

The waterfall model has derivatives that fix mentioned flaw and introduce feedback

to one or two phases backward. One example of such an advanced Waterfall model

is the Waterfall model with Royce's iterative feedback, as shown in Figure 2 [21].

17

Figure 2. The Waterfall development model with Royce's iterative feedback [21]

This model allows iteration between adjacent phases. In some versions, it allows

moving backward more than one phase. For instance, if one or more flaws are

discovered during the validation phase, the issue will again be corrected in the

previous development phase. Similarly, more severe issues related to software

design can be addressed from the validation phase in case this is required.

The Waterfall model has some advantages compared to other ones – such as

having a clear structure and defining goal it is aimed to achieve early, but it also has

significant disadvantages, such as fixed requirements, inability to adapt to the

changes, project overall high risks and costs [20][22]. The software itself is only

produced during the late phases of the Waterfall model [19].

There are other models based on Waterfall, such as the V-Shaped model, which is

mainly seen as a Waterfall extension with additional validation and verification steps,

but all these models have a fatal flow – they are sequential and require starting from

the beginning each time a new product, release or version are developed [23].

The necessity to start each project back from the requirements phase and

incompliance with modern development practices and business needs, where

standard products typically have many versions, subversions, and single release

trains, has created a need for iterative models.

2.4 Iterative models

Iterative models are meant to eliminate initial steps from the iterative process cycle

and concentrate on product development with fixed initial requirements. These SDLC

18

models commonly have the initial planning stage done once for the entire project,

and the iterative process itself concentrates on the actual release planning,

requirements, design, development, and testing stages. Initial planning can indeed

take a significant amount of time, but once the project's initial requirements are set,

they do not change in time [23]. Figure 3 shows common SDLC iterative model

steps.

Figure 3. The SDLC iterative model [23]

Different iterative models are fit for different project needs. For example, the Spiral

model combines the advantages of Waterfall's rigorous controlled features and

evolutionary nature of the iterative process and allows to start small by creating a

proof of concept prototype and later feed it with necessary features, still going

through iterative cycles of the same major project. Figure 4 displays the steps and

phases of the Spiral model.

Figure 4. The Spiral development model [23]

19

Spiral models favor the development of large and complex systems [24].

Due to its various advantages of moving through the same phases in each prototype

release – thus a possibility of quality gates automation, producing a working

prototype by the end of each release and performing risk analysis at the beginning of

each sequential release step the Spiral model has become popular. The last

prototype of the Spiral model is called the operational prototype. After passing final

quality gates, including but not limited to unit, integration, and acceptance tests, it

reaches production deployment and service operation.

The Spiral model is complex and requires manual user involvement at each cycle, at

least at the stage of risk analysis. While it might be a well-balanced fit for the

development of complex mission-critical systems with a low-risk appetite, it is

considered to be heavy and complex for smaller teams and projects. In addition,

Spiral model interoperability (including sharing of libraries, quality gates

configuration, and security controls) between different projects is limited due to the

high degree of customization.

RUP model is also considered to be a heavyweight in the industry and shares the

same complexity disadvantage as the Spiral model [25].

2.5 Modern development methods and methodologies

Disadvantages of development methodologies discussed in the previous chapter,

such as the inability to change requirements during the development phases, model

complexity and overall velocity, and other similar factors, made them unsuitable for

smaller teams and projects. It resulted in the development of lightweight

methodologies, methods, and derivatives – such as Agile process model, Extreme

Programming (XP) design method, Scrum/Kanban methodologies and brand new

SDLC methodologies – such as Dev and DevSecOps.

One of the essential milestones of realizing this unsuitability and seeking better ways

to develop software resulted in creating the Agile Manifesto in 2001 [26]. The Agile

Manifesto has four core principles:

- Individuals and interactions over processes and tools

- Working software over comprehensive documentation

- Customer collaboration over contract negotiation

- Responding to change over following a plan [26]

Focus on responding to change implies ability to bring in changes in the

development process; otherwise, previously impossible change of the initial

requirements during the process. None of the previously discussed models allowed

that since the initial setting of the requirements is done only once during the early

stages of the project.

20

Working software over comprehensive documentation eliminates the usage of the

Waterfall model since the model is formal and implies producing extensive

documentation in each stage [27].

Scrum methodology has raised on top of the Agile Manifesto and suggested

changing the way of working, including roles, methods, and iterations. This resulted

in the creation of iterative cycles - sprints, where features to the product are added

from the common backlog, and requirements might change between the sprints. The

development itself is continuous and is monitored in often daily feedback meetings.

Figure 5 displays the Scrum flow.

Figure 5. The Scrum methodology flow [28]

Modern development methodology requires the same modern SDLC methodology

that would adopt changes to the requirements, cater for sprint iterations, and the

ability to deploy rapidly – preferably with a high degree of automation. Thus, DevOps

and its derivative DevSecOps were born.

DevOps methodology stands for a combination of development and operations,

while DevSecOps adds a security aspect to the methodology.

The DevOps methodology, similarly to the Agile Manifesto, stands on four principles:

- Culture

- Automation

- Measurement

- Sharing

These principles together assemble the acronym CAMS [6].

Together, these principles imply multiple practices and shift industry towards certain

choices, as DevOps is broadly adopted and has become the de-facto standard

methodology of modern development and operation, with up to 88% of organizations

adopting it [29].

The culture principle requires a higher degree of trust between development and

operation teams, removing the silo-based approach.

21

The automation principle implies automating releases, quality gates, and overall

increasing software development velocity by automating all possible steps to a high

degree. Automation also implies better customer and developer experience through

self-service phases in release pipelines, as displayed in Figure 6.

Figure 6. The DevOps methodology developer self-service phases [6]

The measurement principle is a derivative of automation and allows monitoring of

important metrics directly from the pipeline with the goal of adjusting the process.

Measurement combined with automation produces automated real-time reporting of

software builds and indicates overall release health.

Sharing principle primarily implies sharing good and bad experiences across the

organization – this includes several important atomic security controls to be seen

later, such as sharing successful software libraries and learning from mistakes.

DevOps does not directly involve security aspects and mandate for security controls

in its pipelines – initially, security was bolted on instead of being an integral part of

this SDLC methodology itself [30].

Such an approach resulted in an unacceptable situation of not being able to conduct

security and risk management activities of these high-velocity pipelines.

To fix the matter, security was added into various phases of the DevOps, resulting in

the creation of the DevSecOps SDLC methodology.

2.6 DevSecOps

Due to being based on the same automation principles, DevSecOps prefers the

usage of automated security checks as much as possible. Pipelines favor automated

tools that provide security controls that can run in a predetermined time. Both

DevOps and DevSecOps advocate for having so-called "coffee tests "or "coffee

builds "– being able to run software build through the pipeline while drinking one or

two cups of coffee, equivalent to five to ten minutes [31].

DevSecOps is characterized by putting security controls and activities in the early

stages of the pipeline and preferring automated controls over manual ones [32].

22

There are multiple reasons for doing this; one of them is identifying security flaws in

the software as early as possible until the build reaches the late stages of

development and operations. This reduces the cost of correcting mistakes.

The cost of repairing software bugs or security flaws once the software release

reaches the production stage can be very high compared to the early development

stages. The study by Muhammad Asad and Shafique Ahmed shows that this cost

might vary 30-60 times, as shown in Figure 7 [33].

Figure 7. Cost of the software bug in different phases of development [33]

Inherited from the four DevOps principles, DevSecOps also advocates for the usage

of automated metrics in the key focus areas for both development, operations, and

security purposes. While there are different types of controls, they usually get

suggested in different studies as industry best practices without tailoring their

selection to the organizational needs.

DevSecOps is portrayed similarly to DevOps, with added security controls in different

stages of development and operation. US Department of Defense, in its Enterprise

DevSecOps Reference Design document, thoroughly addresses the topic of using

DevSecOps methodology in a large-scale enterprise, describing topics of software

factories, Continuous Integration and Continuous Delivery (CI/CD) pipelines, and

suggested security controls.

In an earlier version of the same document, the DevSecOps software lifecycle model

already contained various suggested security controls placed against different

DevOps stages, as shown in Figure 8.

23

Figure 8. The United States Department of Defense DevSecOps software lifecycle
model [8]

The document also states that "Security is not a separate phase of the DevSecOps

lifecycle; rather security activities occur in all phases. This DevSecOps security

practice facilitates automated risk characterization, monitoring, and mitigation across

the application lifecycle. "[8]. However, these activities and security controls are

again suggested as possible, and the document does not state exactly why they

became industry best practice or industry default selection and whether they are

applicable to all programming languages, companies, and pipelines.

2.7 Security control types

It is common to divide security controls into different categories – the industry agrees

that security controls can be either preventive, detective, or corrective and either

administrative, technical, or physical if divided by their type [34].

Preventive controls are meant to prevent security events from happening, detective

controls are used to detect security events taking place, and corrective controls are

meant to correct or remediate damage caused by the security events once they took

place.

Security controls functions division largely depends on the area of their application –

for instance, technical controls depend on technology – such as usage of antivirus

against malware threats. Administrative controls might include security education

and awareness training – these are the controls that consist of policies, guidelines,

and expectations, combined with enabling users to do something. Physical controls

are a separate family of controls and are tangible. For example, mantrap preventing

entry into a building, smoke, heat detectors, and fire suppression systems are all

physical controls of either detective or corrective nature, depending on their goal.

Similar logic applies to software and application security – controls can be divided

into different areas depending on their field of application and nature. Moreover,

different security controls help against different types of software vulnerabilities and

threats posed in the production environment.

24

2.8 Software Security Errors Taxonomy

While security controls can prevent, halt or remediate vulnerabilities and damage

caused by them, application security uses several well-known taxonomies to classify

these. One of the most well-known taxonomy is the OWASP (Open Web Application

Security Project) [36]. The project started with issuing the famous top ten most

critical web application vulnerabilities that need to be addressed while building

applications. It later brought more complete classification, expanded the scope, and

started producing guidelines on how to develop applications securely [37].

The second famous taxonomy that is used in the industry is Mitre CWE (Common

Weakness Enumeration). CWE enumerates weaknesses in multiple areas, including

hardware design and software development. The list of weaknesses (or software

flaws) is more comprehensive compared to OWASP and contains 699 entities at the

time of writing the thesis [38]. The list is community-developed.

In 2005, the Seven Pernicious Kingdoms software security errors taxonomy was

published [9].

Under this taxonomy, the errors are divided into seven kingdoms (or classes) with an

additional class of environment errors. The ranking is done in order of importance to

application and software security:

1. Input Validation and Representation

2. API Abuse

3. Security Features

4. Time and State

5. Errors

6. Code Quality

7. Encapsulation

*. Environment [9]

Each kingdom from the taxonomy represents separate field from where software

security errors can come from.

Input Validation and Representation kingdom focuses on injection, encodings,

validation and other types of errors that result from trusting input.

API Abuse kingdom focuses on API-related types of errors, such as bad language

practices, API misuse, dangerous functions, and restrictions.

Security Features kingdom focuses on software security errors that come from

unsafe or incorrect usage of security functions – such as violating the privacy, least

privilege concepts, mishandling passwords, and using weak cryptography.

25

Time and State kingdom enumerates weaknesses related to abusing time and state

– such as race conditions, insecure temporary files, and mishandling threads and

sessions.

Errors kingdom focuses solely on insecure error handling – such as catching overly

broad extensions, being too verbose during error conditions, leaving stack traces

visible to users etc.

Code Quality kingdom focuses on software errors caused by poor code quality –

often forgotten aspect – memory leaks, usage of obsolete functions, uninitialized

variables, and similar flaws.

The encapsulation kingdom focuses on software flaws caused by incorrect or

insufficient encapsulation – the creation of boundaries to separate sensitive

functionality and data from the rest of the environment.

Finally, the Environment kingdom, which is often presented separately, focuses on

issues caused by production environment misconfiguration and lack of proper

security controls. This kingdom described flaws related to Dockerfile

misconfiguration, insecure deployment, insecure storage etc.

Since Seven Pernicious Kingdoms taxonomy provides comprehensive insight also

into environment issues, I use it to classify software flaws and applicable security

controls in this thesis. The taxonomy has evolved into Fortify Taxonomy due to one

of the original authors moving to work in this company. At the time of writing this

thesis, it contains a list of 1079 classified weaknesses that can be filtered by

language, framework, kingdom, applicable security standard, and other categories

[39].

2.9 Multiple Criteria Decision Making

There are several alternatives when it comes to decision-making methodologies. A

typical relationship between major alternatives is a unique goal that needs to be

achieved based on multiple criteria with different weights and several alternatives to

consider. Criteria selection is based on the problem nature, interconnection of

different criteria, criteria weights, and others. [40].

There are multiple studies that address the problem of method selection [41],[42]

and a wide variety of alternatives to consider from.

However, since one of the research questions is application security controls

prioritization based on the MCDM method, such studies and comparisons have

already been made for information security controls selection and prioritization [43].

The method used in the study is called Fuzzy AHP of Fuzzy Analytic Hierarchy

Process. The only difference between this method and the AHP is the use of so-

called triangular numbers, which tend to show more precise results in calculations

[44] [45].

26

However, the difference for this thesis is not that high since proposed security control

efficiency values, as will be shown later, differ significantly. This fact advocates for

the usage of a method with more simple calculus – the AHP.

2.10 Analytic Hierarchy Process

Analytic Hierarchy Process is a quantitative method of multi-criteria decision making

used for solving various problems across different fields of study, including

economics, information technology, and particularly information security controls

prioritization, risk management, resource allocation [46], and others [47][43].

In an original publication by R.W. Saaty, the inventor of the method, it is described

as the general theory of management that uses ratio scales and paired comparisons

[48].

The goal of the method is to select the best alternative using scales of criteria and

sub-criteria (in case they are introduced) among multiple choices available.

Figure 9 shows the AHP scheme of hierarchy levels in its simplest form, with a single

level of criteria.

Figure 9. The AHP process scheme example [49]

The idea of the AHP method is described in six steps:

1. Definition of the unstructured problem,

2. Development of the hierarchy of interconnected decision-making elements that

describes the problem,

3. Comparison of pairs of decision elements, using the Saaty comparison scale, to

obtain input data,

4. Prioritization by calculating the relative weights of decision-making elements,

which are afterwards combined into the total priority alternatives,

27

5. Checking of the consistency of the decision maker,

6. Obtaining of the overall ranking [49].

Saaty comparison scale is filled with measurement numbers between each pair of

criteria, including reciprocal ratio for inverse comparison. The measurements are

usually done during questionnaire interviews with experts and rating their opinion

using an understandable scale of importance expressed with words and compared to

numerical ratings, as shown in Figure 10.

Figure 10. Saaty comparison scale for the AHP process [50]

If there are multiple experts involved in the questionnaire, usually the geometrical

mean from several ratings is taken into account. However, other techniques are also

used, such as arithmetic mean. Each criterion is then compared to each other

criteria, including itself, and the ratio is calculated.

Ratio calculation results in the creation of the table, and after performing

normalization, the normalized pair-wise matrix with criteria weights is calculated [49].

The resulting matrix needs to pass the CR test (Consistency Ratio). First, the

consistency index needs to be calculated according to the formula in Figure 11.

Figure 11. AHP Consistency Index calculation [49]

Lambda max value means the maximum eigenvalue of the calculated comparison

matrix. The consistency ratio is then calculated according to the formula in Figure 12.

Figure 12. AHP Consistency Ratio calculation [49]

28

RI is the value of the random consistency index determined by the table given by

Saaty, as shown in Table 1.

Table 1. Saaty Consistency Index table [50]

The n value stands for matrix dimension, and the appropriate consistency ratio test

needs to be below 0,10 to be treated valid result. The consistency ratio test shows

that the result is sufficiently accurate and that the weights can be used later in the

calculations.

The overall ranking calculation in step six is a standard weighted average summation

for each particular alternative, where the weights are taken from the matrix calculus.

2.11 SDLC Reference Architecture, Meta-architecture, and related work

There were multiple approaches to defining SDLC architecture views, its stages,

security controls, and common components [33][51].

According to DOD reference [8], application DevSecOps processes are placed

across different phases of the development and operation, and there are several

best practices to follow, including involving multidisciplinary teams in the process

design effort, automating most of the processes, and treating the entire DevSecOps

lifecycle as iterative closed loop [8]. Both DOD and OWASP have published

DevSecOps maturity models [52][53], which allow measuring team maturity by

grading answers to various questions related to secure coding, organizational

structure and so on. Each particular process architecture or, in other terms, process

design description follows the same logic – the process is divided into phases, then

the phases are covered with security activities and security controls, as shown in

Figure 13.

29

Figure 13. United States Department of Defence DevSecOps phases and security
controls [8]

In DOD reference, DevSecOps architecture highlights eight distinct phases – plan,

develop, build, test, release & deliver, deploy, operate and monitor. Since it is treated

as closed loop, system decommission is not part of the architecture.

After the division, process continuity is highlighted by pointing arrows back to the

planning phase since both DevOps and DevSecOps require continuous tolling

feedback, as it was mentioned earlier.

Then, the same figure highlights activities, security processes, and controls in each

phase. For example, the development phase requires SAST tooling and Unit testing

to be included, while the test phase runs DAST tool and system integration tests.

MDA-SDLC architecture overview has a similar approach but different phases and

controls, as shown in Figure 14.

Figure 14. MDA-SDLC architecture overview [54]

30

It has five phases – requirement, design, implementation, maintenance & operation,

and disposal. All stages contain activities such as software requirement modelling,

threat modelling, disposal process, configuration management etc.

While such modelling construction is justified by referencing different case studies

and best practice guides in selecting stages and controls, it does not explain the

meta-architecture which is used to derive these, nor does it explain the justification of

given phases and selected processes and controls. The meta-architecture is the

meta-model that defines a particular architecture for a given scenario based on

multiple criteria.

Therefore, there is a gap in the studies – no meta-architecture model with a method

to derive phases, security controls, their number, and coverage based on multiple

criteria such as the language used, software flaws, and security threats that can

affect selected phases and other important factors.

31

3 Research methodology

The research methodology chapter explains how the results were achieved and

which methods were in use. The methods include an interview with experts, expert-

driven opinion about the controls, expert-driven validation, and both quantitative and

qualitative measurements.

3.1 Research design

This section explains what research design looks like and which steps are included.

The research design is built on the inference of creating a Secure SDLC meta-

architecture, or (S)SDLC for short, which combines multiple steps needed to

assemble the process of creation of other architectures applicable to SDLC based on

different criteria, methodologies, and software error taxonomies.

The meta-architecture and created SDLC architecture for DevSecOps methodology

are then validated together with calculated controls. The meta-architecture model

with its derived DevSecOps Reference Architecture model is shown in Figure 15.

Figure 15. (S)SDLC meta-architecture model with derived DevSecOps architecture
model

Such a model, using steps described in further sections, will be able to create

DevSecOps Reference Architecture.

32

3.1.1 The controls library

I have assembled the library of security controls and practices based on my

knowledge of the domain and have validated them together with the reference group

of Security Architects and Offensive Security Officers from the Swedbank Group to

see if any important controls are missing. The controls divided into categories are

located in the Github repository [35]. These are the controls we see as applicable

and acceptable in the area of application security. These controls and practices will

be the ones used in the thesis.

3.1.2 The expert group

The expert group consists of seven security architects and two offensive security

officers (penetration testers) from the Swedbank Group company. The architects

have experience in different information security domains, including application

security; their regular task is to consult business and development teams in matters

of making SDLC pipelines secure and compliant with both internal security standards

and industry regulations, such as PCI-DSS. The security architects also are

responsible for performing regular security reviews of application development

projects, target environments, and application delivery platforms.

The offensive security officers have substantial experience in testing for various

flaws in developed applications in different languages – such as Java, Python,

Node.js, and COBOL.

3.1.3 Development phases identification, methodology selection

For this research, it was decided to run trial against DevSecOps methodology. The

phases of the methodology were aligned to reflect Swedbank Group view on the

development process. In the original version presented by Department of Defense,

DevSecOps methodology has eight phases [8]. For Swedbank Group use, these

eight phases are converted into six, as shown in the following Table 2.

Swedbank DevSecOps
phases

DoD DevSecOps Reference Design phases

Plan Plan

Develop Develop

Build & Test
Build

Test

Release & Test Release & Deliver

Deploy Deploy

Operate & Monitor
Operate

Monitor

Table 2. Swedbank Group versus US DoD DevSecOps phases

33

3.1.4 Applicable criteria identification and selection

Since the selected methodology is DevSecOps, both DevOps and DevSecOps

important criteria are selected from the methodology definition. As was mentioned

earlier, both methodologies have several important statements which imply the

usage of automated controls over manual ones, which states the significance of

controls measurability.

Since both methodologies also advocate for having coffee builds and modern

development release cycles are frequent, security control implementation duration

(time of executing checks) is a significant criterion as well.

DevSecOps advocates for the usage of security controls early in the pipeline, the

same goes for other methodologies as well. Since the cost of repairing software

errors grows multiple times while moving towards final phases of the development

cycle security control placement in the phases, or pipeline position criteria in other

words, is also important and needs to be taken into account.

The last criterion identified is security control effectiveness against given software

security flaw – different controls are effective to a different degree. The effectiveness

can be seen as the subjective value of handled security flaws – 80% effectiveness

would mean that 4 out of 5 security flaws trigger a control reaction. The effectiveness

criterion is important as well.

The author has identified four criteria – Effectiveness, Pipeline position,

Implementation duration, and Measurability. After identification, the list of criteria was

presented to the expert group for validation. It was agreed that they derive from

DevOps principles, and it makes sense to use these four to proceed with the AHP

process.

The AHP process layers were created, as shown in Figure 16.

34

Figure 16. DevSecOps SDLC AHP process layers

The goal is to select suitable controls out of alternatives in Level 3; the Level 2

criteria correspond to the ones selected and verified using expert opinion.

The AHP process used in this thesis contains only a single layer of criteria (Layer 2).

There are more sophisticated AHP models, where criteria might have sub-criteria,

such as the division of measurability into two separate sub-criteria of completeness

of coverage and usefulness of the results. In such a model, further calculation of

criteria weights would entirely depend on the weights of their sub-criteria. According

to the definition of four DevOps principles, there was no sense in dividing them into

sub principles; therefore, the AHP process layers have single criteria layer.

3.1.5 AHP process to determine pair-wise comparison to criteria

Once the AHP structure was set, each expert reference group member got a task to

compare each criterion as AHP requires in order to build a pair-wise comparison

matrix. Using the Saaty scale from Figure 10, each representative compared each

criterion according to the AHP process. The results were similar to Table 3, but

individual values were collected.

The results were later calculated using the geometric mean formula and rounded

against the closest measurement value from the reference scale.

𝐶𝑖 = √𝐶1 × 𝐶2 × … × 𝐶𝑛
𝑛

35

Since there were nine experts in total, the n value is 9, and each distinct pair-wise

value was calculated separately. Reciprocal (inverse) values were taken from the

reference scale, as shown in Figure 10.

The resulting pair-wise comparison matrix is shown in Table 3. This matrix shows

relative criteria importance when compared to each other. For example, pipeline

position is relatively two times more important compared to effectiveness.

Pair-wise comparison
matrix

Effectiveness
Pipeline
position

Implementation
duration

Measurability

Effectiveness 1 0,5 1 2

Pipeline position 2 1 1 3

Implementation
duration

1 1 1 3

Measurability 0,5 0,333 0,333 1

Sum 4,5 2,833 3,333 9

Table 3. AHP pair-wise comparison matrix

Using this table, the normalized pair-wise comparison matrix was calculated by

dividing each value by the sum of the values in the respective column. The

normalized pair-wise comparison matrix is shown in Table 4.

36

Normalized Pair-wise
comparison matrix

Effectiveness
Pipeline
position

Implementation
duration

Measurability
Criteria
weights

Effectiveness 0,222 0,176 0,300 0,222 0,230

Pipeline position 0,444 0,353 0,300 0,333 0,358

Implementation
duration

0,222 0,353 0,300 0,333 0,302

Measurability 0,111 0,118 0,100 0,111 0,120

Sum 1 1 1 1 1

Table 4. AHP normalized pair-wise comparison matrix

Lambda value was then calculated for all criteria:

𝜆𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = (𝐶1 + 𝐶2 + 𝐶3 + 𝐶4)/𝑊𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

where sum of respective criteria values is divided by criteria weight [48].

The maximum lambda is then calculated as an arithmetic average of all lambdas:

𝜆𝑚𝑎𝑥 = (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4)/4

Since we have four criteria, there are four lambdas.

The lambda max value turned out to be 4.04584115. Then, the Consistency Index

and Consistency Ratio were calculated according to formulas in Figure 11 and

Figure 12, respectively.

Consistency Index (CI) turned to be 0.015280372 and Consistency Ratio (CR)

0.016978191. Since the Consistency Ratio value is significantly smaller than the

reference value of 0.1, the weights and the matrix itself are trustworthy and

consistent [48]. In turn, it means that there are no mistakes made during the

calculation process and that the resulting matrix accurately represents the given

input.

The resulting criteria weights can then be used in later calculations. Each criteria

weight shows how important it is compared to others in the evaluated model by

assigning a criteria weight multiplier to each identified control.

37

3.1.6 Software errors taxonomy selection, applicable software flaws identification

It was decided to use the Seven Pernicious Kingdoms taxonomy due to it being more

comprehensive for this study – it contains the environment kingdom, which is

deemed important in the organization the model will be used in (Swedbank Group).

Due to its comprehensive insight and the coverage of the operational environments,

it is the most suitable for the Swedbank Group. This taxonomy usage was agreed

upon with the reference group used for this master thesis.

In order to identify which software errors to cover, the author has used Fortify

Taxonomy webpage [39] and has selected the most common software flaws

applicable to a majority of languages. The Fortify taxonomy is a continuation of the

Seven Pernicious Kingdoms taxonomy that contains a more comprehensive list of

software flaws divided into the same kingdoms. This generalized set contains 32

software flaws, where some environment flaws were added manually to better reflect

Swedbank Group concerns (such as disgruntled employee inject, which was not

initially present). The result was then validated against the reference group as

suitable to continue with and the one that brings value to the company. The complete

list is presented in Table 5.

38

Kingdom Software Security Flaw

Input Validation and
Representation

SQL injection

Command injection

Cross-Site Scription (XSS)

Dynamic Code Evaluation (unsafe deserialization and
script injection)

Denial of Service

API Abuse
Often misused

Code Correctness

Security Features

Access Control

Cookie Security

Insecure Transport

Key Management

Password Management

Privacy violation

Privilege management

Weak cryptography

Time and State
Race condition

J2EE Bad Practices

Errors Poor error handling

Code Quality

Code correctness

Dead code

Poor style

Unreleased resource

Encapsulation

HTML5

Insecure storage

System information leak

*Environment

Build misconfiguration

Dockerfile misconfiguration

Target environment misconfiguration

Disgruntled employee inject

Insecure deployment

Usage of third-party components

Test environment data leakage

Table 5. Seven Pernicious Kingdoms selected software security flaws

Flaws in bold font are the ones added manually, and there are three of them –

disgruntled employee inject, usage of third-party components, and test environment

data leakage.

Disgruntled employee inject flaw indicates the ability of a developer or operations

team member to inject malicious code into production in a way that other security

controls such as peer review will deem to be ineffective.

Usage of third-party components combines two weaknesses – these components

being vulnerable and with unsuitable licenses. This might result in system

compromise or a penalty paid to the license owner.

Test environment data leakage is a specific threat of leaking data from test

environments in cases where this data has some value (for example, is anonymized

39

production set). This particular flaw is not applicable to the company I work in but is

still considered.

All other descriptions are taken from Fortify Taxonomy the way they are explained

[39].

3.1.7 Ranking and criteria weights estimation of suitable controls

The security controls and processes are previously agreed upon and are known in

advance [35]. Also, their pipeline position does not change and is fixed – this way,

Threat Modelling is performed in the planning phase, at least for DevSecOps

methodology [8]. It was proposed to the experts and later agreed upon to rank

controls pipeline position and assign values gradually starting from 60 to 10,

depending on the pipeline position [55]. All intermediate values are multiples of 10.

This way, the closer control is to the left side (planning phase), the larger the value

gets, as seen in Table 6.

Pipeline phase Plan Develop
Build &

Test
Release
& Test

Deploy
Operate

& Monitor

Control pipeline
position value

60 50 40 30 20 10

Table 6. Control pipeline position value for AHP calculation

Similarly, implementation duration and measurability criteria do not depend on a

particular software flaw addressed. Their values are the same for all flaws.

Implementation duration criteria got three grades – either 30, 60, or 100. The idea to

grade them this way was to separate control values as much as possible within the

scale of 100 – this way, the distance between controls in the scale is 30 (30-0), 30

(60-30), and 40 (100-60). The less time it takes to perform the security control or

process, the higher the value is. Since results are quantified, it will affect

computation in a way that controls with faster implementation will be chosen among

slower ones. This decision was taken and agreed upon beforehand within the

experts' team to separate controls into distinct groups and not to use a continuous

scale for these. This way, all slow manual controls will get significantly fewer points

than automated ones in the implementation time. This is also justified if looking at the

time to perform a manual task such as a security review – it might take up to a week.

Technical control such as SAST scanning in the Swedbank Group environment will

not take longer than a couple of hours for a single project. If to measure

implementation time directly, the difference scale would be inefficient as one would

need to know on an average – how much time does the scanning take and how

much time regular security review takes. These values might differ significantly

depending on the project; therefore, it makes more sense to grade such activities

within scale groups to separate them.

Measurability grading is multiple of 25 and has three values – either 0, 25, or 50. It

was decided to try this scaling with three groups with the expert team, each control

group being at the same distance of 25 value points from each other. Controls that

40

have the best measurability got a grade of 50, and the ones with bad or no

measurability got a grade of 0. Measurability got a lower grade value since criterion

weight is the lowest, and in practice, security controls reporting is not that well-

established in the Swedbank Group to assign high values, to begin with.

Implementation duration and measurability were calculated using the same principle

as for the AHP – all members of the reference group assigned their values to each

control in the list for these two criteria, then the geometric mean was taken and

rounded to the nearest possible value agreed upon.

Control effectiveness had to be calculated separately for each given software flaw.

This process took the most time since 32 flaws were considered. Security controls

effectiveness was estimated in values from 0 to 100 with a step of 10. If the control

was not effective at all, it was given a value of 0, and if the control had complete

effectiveness against a given type of flaw – it was assigned a value of 100. After

calculating the geometric mean and rounding to the nearest allowed value from 0 to

100, the result was recorded.

In total, 122 security controls and processes were evaluated against 32 software

flaws. For each software flow, the control weighted sum average value was

calculated, and the top 20 controls were selected, starting from the highest value and

moving to the lowest [56].

3.1.8 Creation of applicable SDLC architecture with a list of security controls and

processes

This step's goal is to map and highlight the connection between all controls and

phases in the SDLC methodology. Since controls are known, the main task is to

interconnect them in a way this is aligned with Swedbank Group's development

methodology and tooling possibilities. The resulting (S)SDLC reference architecture

with all possible controls is located in the Github repository because it is too big to be

inserted into the thesis document [57].

Operate & Monitor phase shows a separate circle of Operational Blueprint – this

indicates that particular security controls might vary based on the operational

environment and need to be considered separately for each. It made sense to pull

environment controls into a separate area. For example, container orchestrators

might have image immutability protection which terminates containers that have

changed in time, but serverless deployments do not need this feature nor have it.

The controls and processes in the architecture are connected in a logical manner

across different phases of the DevSecOps methodology.

41

3.1.9 Calculation of most important controls, validation of architectures

This meta-architecture step is to use calculated top 20 controls for 32 software flaws

addressed, estimate their mathematical mode – rate based on occurrence across all

software flaws, and then determine the top controls that need to be present in the

final architecture and highlight them in red color in that architecture. These will be the

ones ranked top 20 across all software flaws.

Since the goal of an enterprise is to select a necessary number of controls and due

to the nature of presented software flaws, cumulative scoring is introduced along

with mathematical mode – e.g., for each software flaw that appears more than once,

results in individual scores are added together, and the final ranking table needs to

be considered while looking into top 20 controls overall.

Once the architecture is complete, it needs to be validated against a peer group of

experts – whether it makes sense to rank controls this way and what could be done

differently. If the produced architecture is valid against selected software flaws, it will

also mean that meta-architecture and methods used within meta-architecture are

also validated, thus making it verified for use.

42

4 Results

This section describes calculation and ranking results for all software flaws and

controls. It also provides a final ranking table and final Secure SDLC architecture for

Swedbank Group use, given top 20 controls overall need to be selected against the

top 32 identified software flaws (both taxonomy-based and three manually added).

4.1 Calculating results for individual flaws

The calculation results for all 32 software flaws and top 20 security controls are

located in the Github repository [56]. For an example of SQL injection, the following

top 20 controls were calculated as shown in Table 7.

Suitable controls Score

Shared Security Patterns & Libraries 75,59

Security Education 73,29

IAST (Interactive Application Security Testing) 67,16

SAST (Static Application Security Testing) 66,13

IDE SAST (Integrated Development Environment SAST) 65,11

DAST (Dynamic Application Security Testing) 64,86

Input Validation 60,96

Application Security Risk Matrix 60,76

Regression test 60,25

SQL Stored Procedures 60,01

Database Firewall and Activity Monitoring 60,01

Vulnerability testing 57,95

Continuous Security Verification 57,71

RASP (Runtime Application Self-Protection) 57,71

Logging and Security Monitoring 55,40

Workloads Micro-segmentation 55,40

Data Leakage Prevention 55,40

Web Application Firewall 55,40

TLS Interception 55,40

Canary Breach Detection 55,40

Table 7. SQL injection top 20 security controls

As we can see from the list, due to pipeline position criteria weight, both security

education and shared security pattern & libraries are selected as the top two

controls. This is due to the fact that shared patterns & libraries are already controlled

and are good to use since they do not contain any known software flaws at the time

of usage. It is indeed much better to share pieces of code among multiple teams and

control them once. Security education as an administrative type of control is also

very important – it happens even prior to the design and plan phase and is indeed

considered one of the most important controls there could be in any development

process [58].

43

The main idea of having top controls and a list to select from is to provide

alternatives with different values. Some controls are considered to be best based on

their ranking, but there are alternatives available, and the end result is not mandated

to be strictly followed. The values overall show rankings in the given methodology.

The following controls are technical – IAST provides white box testing in a test

environment and is likely to find SQL injection flaws. It is usually integrated as a

module inside of the application; therefore, it can make tests against all available

interfaces. SAST tooling checks source code in the previous phase and is likely to

find the same errors just as well.

There are specific types of controls as a defense against SQL injection, such as

using stored procedures in the database. It is justified to appear in this table, but its

overall value while looking at the entire set of 32 software flaws is insignificant since

it is specific and only protects against SQL injections.

Production or Operate & Monitor phase controls [35] are still very effective, but not

as much compared to the top five controls. It is also notable that if such an event as

SQL injection happened in production, the cost of mistake would be much higher;

therefore, it is still preferred to have multiple control coverage against a single

security flaw and prefer controls from the initial phases of SDLC.

For specific environment types of flaws, looking at the disgruntled employee inject

and its controls as shown in Table 8.

Suitable controls Score

Configuration compliance 67,16

SCA (Software Composition Analysis) 66,13

SAST (Static Application Security Testing) 63,83

Attack Surface Minimization 63,06

Vulnerability testing 62,56

Separation of Duties 60,75

Complete Mediation 60,75

Workloads Micro-segmentation 60,01

Privileged Session Management 57,71

Supplier Chain Management 57,18

Job interview & Hiring Strategy 55,70

Compliance & Policy Checks 55,40

Continuous Security Verification 55,40

Anomaly Detection 55,40

Peer Review 53,60

Data Leakage Prevention 53,10

Canary Breach Detection 53,10

TLS Interception 53,10

Database Firewall and Activity Monitoring 53,10

Image Admission Control 52,21

Table 8. Disgruntled employee inject security controls

44

Control distribution also seems logical. Overall scoring still shifts towards the

compliant configuration of the target environment (top control in the list), using

software composition analysis to prevent malicious injects of vulnerable libraries,

having use of such concepts as vulnerability testing, separation of duties (in the

production environment), complete mediation (to prevent sessions mismanagement)

and even taking into account supplier chain management issues along with

privileged session management and so on. The difference in scoring value between

the top ten controls does not exceed ten points, making them relatively close in a

matter of choice against particular software flaws and threats.

Two security architects raised the topic that this type of scenario, such as disgruntled

employee inject might be done differently, therefore, some controls might prevail

over others. For example, if the inject is done through a malicious third-party library

that comes from an unscanned repository, the image admission control would

probably be more effective than data leakage prevention in case the ultimate goal

was not to exfiltrate the data. At the same time, the group agreed that the vast

majority of controls that would apply in the general scenario are present in Table 8. It

might be argued in which particular order could they be arranged – depending on the

scenario; still, all controls seem very reasonable.

One offensive security officer noted job interview and hiring strategy being on this list

and questioned whether this would be effective control against a disgruntled

employee. After discussing the nature of this control with the group, we came to a

consensus that during the hiring process within our company, employee background

and criminal records are thoroughly checked; therefore, this control is effective in

case of similar events taking place in the past during the employment in other

companies. Therefore, having this control in the list is also justified, despite it being

of administrative nature.

4.2 Final table with mathematical mode and cumulative scoring for top 20 controls

The final table with all controls, their cumulative scoring, and mathematical mode for

the top 20 controls (count of appearance across all 32 software flaws) is located in

the Github repository [56]. Out of 122 controls proposed, only 87 controls were used

more than once. This is due to the fact that the remainder was not deemed effective

to be highlighted during the interview section and filled in the table.

The table is sorted by controls total scoring value, starting from highest to lowest in

the top 20, as shown in Table 9.

45

Suitable controls Total score
Mathematical
mode

Security Education 2153,01 29

Shared Security Patterns & Libraries 1963,07 26

SAST (Static Application Security Testing) 1687,88 25

Coding Best Practices 1552,46 28

Peer Review 1539,91 30

CI/CD pipeline design 1441,57 31

IDE SAST (Integrated Development Environment SAST) 1410,97 21

Continuous Security Verification 1281,03 23

Penetration testing 1227,13 30

Application Security Checklists 1225,50 22

Learning from Mistakes 1224,53 27

Pair Programming 1097,53 20

Vulnerability testing 1090,68 18

DAST (Dynamic Application Security Testing) 1061,17 17

Security review 1045,73 29

IAST (Interactive Application Security Testing) 1019,33 16

Configuration compliance 1007,00 16

Application Security Risk Matrix 985,04 17

Red Teaming 980,95 30

RASP (Runtime Application Self-Protection) 916,39 16

Table 9. Top 20 security controls with mathematical mode

It turns out that the security education is deemed to be the most important control if

taking all security flaws into account – it appears 29 times. In other words, it is

effective against 29 types of security flaws out of 32. The second most effective

control is shared patterns & libraries. Overall controls ranking looked correct and was

validated together with a team of experts. Initially, one security architect and one

offensive security (security verification) officer explained their concerns about the

second top control in this list, but after careful consideration and understanding of

the value of this control, no other objections were raised.

Cumulative effectiveness differs more than two times between the first and the last

control in the table. Figure 17 shows all controls with their total score (cumulative

values).

46

Figure 17. Top 20 security controls chart

The second way to understand this table is to calculate the average score per

appearance – divide the cumulative score with a mathematical mode for each

control. Figure 18 shows this representation and reorder.

Figure 18. Top 20 security controls reordered based on their rate of appearance

0

500

1000

1500

2000

2500

Total score

0

10

20

30

40

50

60

70

80

Average score per appearance

47

Such reordering tends to place manual controls towards the end of the graph with

lower values and brings automated controls closer to the middle. This, in turn, means

that, on average, against a single software flaw – automated controls are preferred

over manual controls, which is logical since the implementation duration criteria

value is higher. Hense, RASP has moved from place 20 to place 10. At the same

time, the top 5 controls do not change significantly.

This ranking might be more suitable for fully automated pipelines where time is

important since the top 8 controls are fully automated.

4.3 Validation against other peers

Threat modelling as a security practice did not end up in the top 20; its overall

position is top 22. The experts' group opinion was that it would be included in the top

20 under the condition that environment kingdom software flaws and threats would

be considered during the threat modelling process. Usually, threat modelling does

not take the operational environment into account; therefore, it was not deemed

effective against environment kingdom software flaws and threats. If to validate this

result against common, well-known reference examples by either Schleen or

Microsoft [2][59], the majority of controls overlap. This means that control selection is

justified, and at the same time, validation from expert reference group together with

their input means that this particular selection is better adapted to the selected

scenario and enterprise. Also, the Microsoft example does not rank controls based

on their importance though DevSecOps assumes that this ranking has already taken

place prior (since controls in the early phases impact the price of mistake correction).

Simplified Microsoft DevSecOps controls architecture is presented in Figure 19.

Figure 19. Microsoft DevSecOps controls architecture [59]

Though some control names might be confusing since they are named differently

than in the thesis example, the reference table is presented below in Table 10.

48

Top 20 Microsoft
DevSecOps controls

Top 20 thesis DevSecOps
control name

Top 20 thesis
DevSecOps control
place

Threat modelling Threat modelling 22

IDE Security plugins IDE SAST 7

Pre-commit hooks Pre-commit hooks 29

Secure coding standards Coding best practices 4

Peer review Peer review 5

SAST SAST 3

Security unit and functional
tests

Unit tests, Functional
testing

21, 79

Dependency management Supplier Chain
Management, SCA

36, 42

DAST DAST 14

Cloud configuration
validation

Configuration compliance 17

Infrastructure scanning Vulnerability testing, top
13

13

Security acceptance testing Security review, top 15 15

Security smoke tests - -

Configuration checks Configuration compliance 17

Live Site Penetration testing Penetration testing 9

Continuous monitoring Logging and security
monitoring

38

Threat intelligence Threat & Risk Landscape Not scored

Penetration testing Continuous security
verification

8

Blameless postmortems Learning from mistakes 11

Table 10. Top 20 security controls comparison

Overall, there are 12 out of 20 controls that overlap or 60%. If controls selection is to

be expanded to cover the top 22 controls, it will also cover Threat modelling and

Security unit testing, which will give 14 out of 20, or 70%.

The main reason why controls did not match up to 100% is that in the security flaws

selected, there are ones that apply to the Environment Kingdom, some of them being

not related to the development process, but rather to operation. For example, threat

modelling was not deemed effective against disgruntled employee inject since it

normally does not cover platform administration means and privileges access issues.

Therefore, its value has decreased, and it ended up being in the 22 place.

The threat intelligence control proposed by Microsoft is technical – its operation most

likely focuses on sharing indicators of compromise and scanning for their presence

in the deployment environment. The counterpart threat & risk landscape control is an

administrative control whose main aim is to supply risk management process with

increased threat values for given threat actors based on annual reports by the

industry.

49

Software composition analysis is indeed important and would have been found in the

top 20 list if there had been more software flaws related to vulnerable third-party

libraries.

These are good results compared to the reference given by the vendor; although

Microsoft's method of controls identification is not revealed, it is stated that this is a

vendor recommendation [59].

4.4 DevSecOps architecture with top 20 identified controls

The resulting architecture with highlighted top 20 controls is presented in the Github

repository due to its size [60].

Security controls distribution over different phases is shown in the following table 11:

Plan Develop Build & Test Release & Test Deploy Operate & Monitor

4 5 2 6 0 3

Table 11. Security controls distribution across different phases of DevSecOps

It is clear that controls in the earlier phases of the model prevail – there are nine

controls out of 20 in the first two phases and 17 out of 20 in the first 4 phases. Since

early involvement of security controls was an important criterion, this table reflects

the result.

50

5 Discussions

This study dealt with the certain literature gap on covering the subject of choosing

suitable application security controls based on organizational needs, different

methodologies in use, and their criteria of choice.

The results showed that reading literature and methodologies principles allows to

figure out criteria, and later usage of AHP method can rank these criteria so that

organizational needs are covered in the best way. The chosen security controls are

well in line with industry best practices, but their method of selection is validated

together with peers and has a scientific basis.

The selection of the top 20 controls is reasonable, but it can be either expanded or

downsized. Controls number depends on a budget, risk appetite, and other factors

which derive from the organization's needs. The control list is applicable for software

flaws selection and subjective ranking of their effectiveness in a given organization. It

can be tailored for a specific coding language by following the same method

proposed. The number of resulting controls, their ranking, and effectiveness will then

most likely change, but the result can be used to build a specific pipeline for a

specific language and organization. Not all organizations can afford to have ten

controls in a row effective against each proposed software error, but it is possible to

select the top 5, top 10, top 20, or top 50 using this method. By knowing risk appetite

and calculating software error coverage by all controls in a pipeline, it is possible to

know what the residual pipeline risk is and which software errors need more

attention or more effective controls.

The entire method resulted in the creation of (S)SDLC meta-architecture (Secure

SDLC) can be used to create SDLC architectures for DevSecOps based on the

organization's needs. It also can be used to create architectures for different

methodologies and phases and with different security controls. Though it has not

been validated yet, it would be interesting to see the end result of an architecture for

a Waterfall methodology using OWASP taxonomy and how it fits into industry best

practice, if there is any.

Since the meta-model was used to derive the reference model for DevSecOps and

reference architecture itself got validated, at least for DevSecOps methodology - this

also means that the meta-model is correct since all attributes are derived directly.

This, in turn, answers research questions. The first question was related to the used

controls pool, but they are still shared across different software development

methodologies – they just have different values based on the criteria chosen.

This thesis could have been extended with additional research questions by bringing

price perspective into account – since different controls might have different price

tags. Some solutions that perform SCA (Software Composition Analysis) are open

source, while some might be pretty expensive for a small enterprise. Bringing the

cost of mistakes into the equation might result in a next thesis – for example, by

calculating pipeline security controls that would make the pipeline "profitable "– by

extrapolating the ideal assumption that sufficient control coverage can be effective

51

against selected types of software security flaws. Various risk management and risk

calculation ideas might also grow out of this study.

However, it is outside of the study goal and scope, and therefore, not addressed.

52

6 Summary

In this thesis, the author has created a Secure SDLC meta-architecture model that

was able to produce successful DevSecOps SDLC architecture with security controls

that are based on methodology criteria and chosen software errors taxonomy.

The validation has shown that control selection is reasonable and that proposed

architectures make sense to be used in the production to suit organization needs.

The study has shown that usage of AHP can indeed be expanded on the application

security domain, which it previously did not consider.

While control estimation and calculation tasks take much time – the end result is still

thriving. Most probably, such a method could be improved using automation and

suggesting particular controls and configurations for a specific software model or

pipeline.

53

References

[1] United States of America Department of Defense. (2021). DevSecOps

Fundamentals Guidebook: DevSecOps Tools & Activities, Version 2.1.

https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundament

als%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-

CIO_20211019.pdf (accessed 02.05.2022)

[2] DJ Schleen. (2019). Interactive DevSecOps Reference Architecture.

https://www.alldaydevops.com/blog/interactive-devsecops-reference-architecture

(accessed 02.05.2022)

[3] Mojtaba Shanin, Muhammad Ali Babar, Liming Zhu. (2017). Continuous

Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools,

Challenges and Practices. IEEE Access Volume 5, 22.03.2017, pp 3909-3943.

[4] Runfeng Mao, He Zhang, Qiming Dai, Huang Huang, Guoping Rong, Haifeng

Shen, Lianping Chen, Kaixiang Lu. (2020). Preliminary Findings about DevSecOps

from Grey Literature. 2020 IEEE 20th International Conference on Software Quality,

Reliability and Security (QRS), Macau, China.

[5] Nor Shahriza Abdul Karim, Arwa Albuolayan, Tanzila Saba, Amjad Rehman.

(2016). The practice of secure software development in SDLC: an investigation

through existing model and a case study.

https://onlinelibrary.wiley.com/doi/full/10.1002/sec.1700 (Accessed 02.05.2022)

[6] Anna Koskinen. (2020). Master Thesis: DEVSECOPS: BUILDING SECURITY

INTO THE CORE OF DEVOPS. University of Jyväskylä, 2019.

https://jyx.jyu.fi/handle/123456789/67345 (Accessed 02.05.2022)

[7] Mansfield-Devine, S. (2018). DevOps: Finding Room for Security. Network

Security, 2018(7), pp. 15−20.

[8] United States of America Department of Defense, Chief Information Officer.

(2021). DoD Enterprise DevSecOps Reference Design, Version 1.0, 12.08.2019.

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps

%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-

115824-583 (accessed 02.05.2022)

[9] Katrina Tsipenyuk, Brian Chess, Gary McGraw. (2005). Seven pernicious

kingdoms: a taxonomy of software security errors. IEEE Security & Privacy (Volume:

3, Issue: 6, Nov.-Dec. 2005), pp 81-84

[10] Roseanna W Saaty. "The analytic hierarchy process—what it is and how it is

used". In: Mathematical modelling 9.3-5 (1987), pp. 161–176.

[11] Jose Andre Morales, Hasan Yasar, Aaron Volkman. 2018. Implementing

DevOps Practices in Highly Regulated Environments. In Proceedings of International

Workshop on Secure Software Engineering in DevOps and Agile Development (XP

'18 Companion). ACM, New York, NY, USA, Article 4, 9 pages.

https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DevSecOps%20Fundamentals%20Guidebook-DevSecOps%20Tools%20and%20Activities_DoD-CIO_20211019.pdf
https://www.alldaydevops.com/blog/interactive-devsecops-reference-architecture
https://onlinelibrary.wiley.com/doi/full/10.1002/sec.1700
https://jyx.jyu.fi/handle/123456789/67345
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583%20
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583%20
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583%20

54

[12] Jose Andre Morales, Thomas P. Scanlon, Aaron M. Volkmann, Joseph D.

Yankel and Hasan Yasar. 2020. Security Impacts of Sub-Optimal DevSecOps

Implementations in a Highly Regulated Environment. In Proceedings of the ACM

ARES 2020, August 25–28, 2020, Virtual Event, Ireland.

[13] Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen, Fatih Turkmen. (2020).

Continuous Security Testing: A Case Study on Integrating Dynamic Security Testing

Tools in CI/CD Pipelines. 2020 IEEE 24th International Enterprise Distributed Object

Computing Conference (EDOC), Eindhoven, Netherlands.

[14] Vinay M. Igure, Ronald D. Williams. (2008). Taxonomies of attacks and

vulnerabilities in computer systems. IEEE Communications Surveys & Tutorials

(Volume: 10, Issue: 1, First Quarter 2008), pp 6-19.

[15] United States of America Department of Defense. (2021). DoD Enterprise

DevSecOps Reference Design: CNCF Kubernetes, Version 2.1.

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20Dev

SecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-

DD1910_cleared_20211022.pdf (accessed 02.05.2022)

[16] United States of America Department of Defense. (2021). DoD Enterprise

DevSecOps Strategy Guide, Version 2.0.

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20Dev

SecOps%20Strategy%20Guide_DoD-CIO_20211019.pdf (accessed 02.05.2022)

[17] Havard Myrbakken, Ricardo Colomo-Palacios. (2017). DevSecOps: A Multivocal

Literature Review. International Conference on Software Process Improvement and

Capability Determination. Palma de Mallorca, Spain, October 4–5, 2017.

[18] Laurie Williams, Akond Ashfaque Ur Rahman. (19.04.2016). Security Practices

in DevOps. Department of Computer Science, North Carolina State University,

Raleigh, NC, USA. HotSos '16: Proceedings of the Symposium and Bootcamp on the

Science of Security, pp 109-111.

[19] Yashod.R. (2021). Overview of System Development Life Cycle Models. SSRN

Electronic Journal. 11(1), pp 12-22.

[20] Cois, C. A., Yankel, J. & Connell, A. (2014). Modern DevOps: Optimizing

Software Development Through Effective System Interactions. 2014 IEEE

International Professional Communication Conference, IPCC (1−7). Pittsburgh, PA,

USA, 2014.

[21] Nayan B. Ruparelia. (05.2010). Software Development Lifecycle Models. ACM

SIGSOFT Software Engineering Notes 35(3). pp 8-13

[22] Denmark Technical University. Waterfall model.

http://apppm.man.dtu.dk/index.php/Waterfall_model (Accessed 02.05.2022)

[23] Mahdi H. Miraz, Maaruf Ali. (01.2020). Blockchain Enabled Smart Contract

Based Applications: Deficiencies with the Software Development Life Cycle Models.

Baltica 33(1). pp 101-116

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Strategy%20Guide_DoD-CIO_20211019.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Strategy%20Guide_DoD-CIO_20211019.pdf
http://apppm.man.dtu.dk/index.php/Waterfall_model

55

[24] Ediz Şaykol. (10.2012). An Economic Analysis of Software Development

Process based on Cost Models. INTERNATIONAL CONFERENCE ON EURASIAN

ECONOMIES 2012.

[25] Asif Irshad Khan, Rizwan Jameel Qurashi and Usman Ali Khan. (07.2011). A

Comprehensive Study of Commonly Practiced Heavy & Light Weight Software

Methodologies. IJCSI International Journal of Computer Science Issues, Vol. 8,

Issue 4, No 1, July 2011.

https://arxiv.org/ftp/arxiv/papers/1202/1202.2514.pdf (Accessed 02.05.2022).

[26] Agile Manifesto. (2001). Agile Manifesto, https://agilemanifesto.org/ (accessed

02.05.2022)

[27] Asma Aziz. (04.2012). Brief comparison of SDLC models.

https://www.researchgate.net/publication/271834029_Brief_comparison_of_SDLC_

models (Accessed 02.05.2022)

[28] Putu Adi Guna Permana. (09.2015). Scrum Method Implementation in a

Software Development Project Management. International Journal of Advanced

Computer Science and Applications 6(9).

[29] Ur Rahman, A. A. and Williams, L. (2016). Software Security in DevOps:

Synthesizing Practitioners' Perceptions and Practices. 2016 IEEE/ACM International

Workshop on Continuous Software Evolution and Delivery, CSED (70−76). Austin,

TX, USA.

[30] Yuri Bobbert. (01.2021). Problems of CI/CD and DevOps on Security

Compliance. In book: Strategic Approaches to Digital Platform Security Assurance

(pp.256-285)

[31] Thomas Zühlke, Arvato Systems. (20.09.2018). Die Time-To-Market liegt

zwischen zwei Tassen Kaffee. https://www.arvato-systems.de/blog/schnelle-time-to-

market-mit-devops (Accessed 02.05.2022), publication is in German.

[32] Fabiola Moyón, Rafael Soares, Maria Pinto Albuquerque and Daniel Méndez

Fernández. (05.2021). Integration of Security Standards in DevOps Pipelines: An

Industry Case Study.

https://www.researchgate.net/publication/351929062_Integration_of_Security_Stand

ards_in_DevOps_Pipelines_An_Industry_Case_Study (Accessed 02.05.2022)

[33] Muhammad Asad, Shafique Ahmed. (06.2016). Model Driven Architecture for

Secure Software Development Life Cycle. International Journal of Computer Science

and Information Security, 14(6).

[34] Ngethe Simon Ngug, Tumuti Joshua. (05.2021). INFORMATION SYSTEM

SECURITY CONTROLS AND DATA SECURITY IN UNIVERSITIES IN KENYA. A

CASE OF KIRIRI WOMEN'S UNIVERSITY OF SCIENCE AND TECHNOLOGY.

IARJSET 8(5)

https://arxiv.org/ftp/arxiv/papers/1202/1202.2514.pdf
https://www.researchgate.net/publication/271834029_Brief_comparison_of_SDLC_models
https://www.researchgate.net/publication/271834029_Brief_comparison_of_SDLC_models
https://www.arvato-systems.de/blog/schnelle-time-to-market-mit-devops
https://www.arvato-systems.de/blog/schnelle-time-to-market-mit-devops
https://www.researchgate.net/publication/351929062_Integration_of_Security_Standards_in_DevOps_Pipelines_An_Industry_Case_Study
https://www.researchgate.net/publication/351929062_Integration_of_Security_Standards_in_DevOps_Pipelines_An_Industry_Case_Study

56

[35] Michailas Ornovskis (author). Security Controls and Processes in private Github

repository. https://github.com/mikkyornyx/SDLC/blob/main/README.md (Accessed

02.05.2022).

[36] OWASP project vulnerabilities taxonomy. https://owasp.org/www-

community/vulnerabilities/ (Accessed 02.05.2022)

[37] Khairul Anwar Sedek, Osman Norlis, Mohd NIZAM Osman, Kamaruzaman

Jusoff. (10.2009). Developing a Secure Web Application Using OWASP Guidelines.

Computer and Information Science 2(4).

[38] Mitre CWE taxonomy. https://cwe.mitre.org/data/definitions/699.html (Accessed

02.05.2022).

[39] Fortify Taxonomy: Software Security Errors.

https://vulncat.fortify.com/en/weakness (Accessed 02.05.2022).

[40] Kadri Cahani master thesis. (2020). Aligning Information Security Risks with

Strategic Goals. Tallinn University of Technology.

https://digikogu.taltech.ee/et/Download/b8ab352f-f2b2-4964-882a-0b7b5be986a9

(Accessed 02.05.2022).

[41] Pedro Mota, Ana Rita Campos, and Rui Neves-Silva. "First look at MCDM:

Choosing a decision method". In: Advances in Smart Systems Research 3.1 (2012),

p. 25.

[42] Evangelos Triantaphyllou. "Multi-criteria decision making methods". In:

Multicriteria decision making methods: A comparative study. Springer, 2000, pp. 5–

21.

[43] Muhammad Imran Tariq, Shakeel Ahmed, Nisar Ahmed Memon, Engr. Dr.

Shahzadi Tayyaba. (02.2020). Prioritization of Information Security Controls through

Fuzzy AHP for Cloud Computing Networks and Wireless Sensor Networks. Sensors

20(5):1-39.

[44] Željko Stević, Ilija Tanackov, Ilija Cosic, Slavko Vesković. (09.2015).

COMPARISON OF AHP AND FUZZY AHP FOR EVALUATING WEIGHT OF

CRITERIA. Conference: V International Symposium New HorizonsAt: Doboj, Bosnia

and Herzegovina. (In Croatian).

https://www.researchgate.net/publication/310618533_COMPARISON_OF_AHP_AN

D_FUZZY_AHP_FOR_EVALUATING_WEIGHT_OF_CRITERIA (Accessed

02.05.2022).

[45] Golam Kabir. (01.2011). Fuzzy AHP for Contractor Evaluation in Project

Management-A Case Study. Int. Jour. Of Business & Inf. Tech. Vol-1 No. 1 March

2011. pp 85-96.

[46] Eddie WL Cheng and Heng Li. "Information priority-setting for better resource

allocation using analytic hierarchy process (AHP)". In: Information Management &

Computer Security (2001).

https://github.com/mikkyornyx/SDLC/blob/main/README.md
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://cwe.mitre.org/data/definitions/699.html
https://vulncat.fortify.com/en/weakness
https://digikogu.taltech.ee/et/Download/b8ab352f-f2b2-4964-882a-0b7b5be986a9
https://www.researchgate.net/publication/310618533_COMPARISON_OF_AHP_AND_FUZZY_AHP_FOR_EVALUATING_WEIGHT_OF_CRITERIA
https://www.researchgate.net/publication/310618533_COMPARISON_OF_AHP_AND_FUZZY_AHP_FOR_EVALUATING_WEIGHT_OF_CRITERIA

57

[47] Valentinas Podvezko. (06.2009). Application of AHP technique. Journal of

Business Economics and Management 10(2):181-189.

[48] R.W.Saaty. (1987). The Analytic Hierarchy Process – What It Is and How It Is

Used. Mathematical Modelling 9(3-5):161-176.

[49] Petar Markovic, Dejan R Stevanovic, Milica Pesic-Georgiadis, Mirjana Banković.

(01.2021). Application of MCDA in the determination of optimal block size for open-

pit modelling and mine planning. Podzemni Radovi 2021(38):67-85.

[50] Edie Ezwan Mohd Safian, Abdul Hadi Nawawi. (01.2011). The Evolution of

Analytical Hierarchy Process (AHP) as a Decision Making Tool in Property Sectors.

https://www.researchgate.net/publication/254445031_The_Evolution_of_Analytical_

Hierarchy_Process_AHP_as_a_Decision_Making_Tool_in_Property_Sectors

(Accessed 02.05.2022).

[51] Mubarak Mohammad. (09.2008). TADL - An Architecture Description Language

for Trustworthy Component-Based Systems. Conference: Software Architecture,

Second European Conference, ECSA 2008, Paphos, Cyprus, September 29 -

October 1, 2008, Proceedings.

https://www.researchgate.net/publication/220757055_TADL_-

_An_Architecture_Description_Language_for_Trustworthy_Component-

Based_Systems (Accessed 02.05.2022).

[52] United States Department of Defense DevSecOps Reference Design v1.6

Maturity Review document. https://software.af.mil/wp-content/uploads/2019/12/DoD-

Enterprise-DevSecOps-Maturity-Review-v1.6.docx (Accessed 02.05.2022).

[53] OWASP DevSecOps Maturity Model DSOMM. https://owasp.org/www-project-

devsecops-maturity-model/ (Accessed 02.05.2022).

[54] Aws Magableh, Anas Alsobeh. (08.2018). Aspect-Oriented Software Security

Development Life Cycle (AOSSDLC). Conference: 5th International Conference on

Computer Science and Engineering (CSEN-2018) August 25 ~ 26, 2018, Dubai,

UAE Volume Editors: Dhinaharan Nagamalai, Jan Zizka ISBN: 978-1-921987-90-

8At: Dubai

[55] Michailas Ornovskis (author). Security Controls calculation, All flaws Tab.

https://github.com/mikkyornyx/SDLC/blob/main/control_PoC.xlsx (Accessed

02.05.2022).

[56] Michailas Ornovskis (author). Security Controls calculation, All Results Top 20

Tab. https://github.com/mikkyornyx/SDLC/blob/main/control_PoC.xlsx (Accessed

02.05.2022).

[57] Michailas Ornovskis (author). SDLC DevSecOps Architecture with all controls

and processes. https://github.com/mikkyornyx/SDLC/blob/main/SDLC_arch.jpg

(Accessed 02.05.2022).

[58] Snyk. Secure Software Development Lifecycle (SSDLC).

https://snyk.io/learn/secure-sdlc/ (Accessed 02.05.2022).

https://www.researchgate.net/publication/254445031_The_Evolution_of_Analytical_Hierarchy_Process_AHP_as_a_Decision_Making_Tool_in_Property_Sectors
https://www.researchgate.net/publication/254445031_The_Evolution_of_Analytical_Hierarchy_Process_AHP_as_a_Decision_Making_Tool_in_Property_Sectors
https://www.researchgate.net/publication/220757055_TADL_-_An_Architecture_Description_Language_for_Trustworthy_Component-Based_Systems
https://www.researchgate.net/publication/220757055_TADL_-_An_Architecture_Description_Language_for_Trustworthy_Component-Based_Systems
https://www.researchgate.net/publication/220757055_TADL_-_An_Architecture_Description_Language_for_Trustworthy_Component-Based_Systems
https://software.af.mil/wp-content/uploads/2019/12/DoD-Enterprise-DevSecOps-Maturity-Review-v1.6.docx
https://software.af.mil/wp-content/uploads/2019/12/DoD-Enterprise-DevSecOps-Maturity-Review-v1.6.docx
https://owasp.org/www-project-devsecops-maturity-model/
https://owasp.org/www-project-devsecops-maturity-model/
https://github.com/mikkyornyx/SDLC/blob/main/control_PoC.xlsx
https://github.com/mikkyornyx/SDLC/blob/main/control_PoC.xlsx
https://github.com/mikkyornyx/SDLC/blob/main/SDLC_arch.jpg
https://snyk.io/learn/secure-sdlc/

58

[59] Microsoft Cloud Adoption Framework DevSecOps controls. (2021).

https://docs.microsoft.com/en-us/azure/cloud-adoption-

framework/secure/devsecops-controls (Accessed 02.05.2022).

[60] Michailas Ornovskis (author). SDLC DevSecOps Architecture with top 20

controls and processes highlighted.

https://github.com/mikkyornyx/SDLC/blob/main/top_20_controls.jpg (Accessed

02.05.2022).

[61] Megan Kaczanowski. (05.04.2021). What is a Buffer Overflow Attack – and How

to Stop it. https://www.freecodecamp.org/news/buffer-overflow-attacks/ (Accessed

02.05.2022).

[62] Tenendo. Secure Software Development Life Cycle (Secure SDLC)

https://tenendo.com/secure-development/ (Accessed 02.05.2022).

[63] Richard Kissel, Kevin Stine, Matthew Scholl, Hart Rossman, Jim Fahlsing,

Jessica Gulick. (October 2008). Security Considerations in the System Development

Life Cycle. NIST Special Publication 800-64 Revision 2.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-64r2.pdf

(Accessed 02.05.2022).

[64] Pavel Hrabě. Change of TOGAF structure and meta-model. (May 2012).

Conference: 18th IBIMA Conference.

https://www.researchgate.net/publication/259532982_Change_of_TOGAF_structure

_and_metamodel (Accessed 02.05.2022).

[65] Mohamed Sami, (21.01.2020). "Architecture Model, Meta-Model, and Meta-Meta

Model," in Mohamed Sami - Personal blog.

https://melsatar.blog/2020/01/12/architecture-model-meta-model-and-meta-meta-

model/ (Accessed 02.05.2022).

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/secure/devsecops-controls
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/secure/devsecops-controls
https://github.com/mikkyornyx/SDLC/blob/main/top_20_controls.jpg
https://www.freecodecamp.org/news/buffer-overflow-attacks/
https://tenendo.com/secure-development/
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-64r2.pdf
https://www.researchgate.net/publication/259532982_Change_of_TOGAF_structure_and_metamodel
https://www.researchgate.net/publication/259532982_Change_of_TOGAF_structure_and_metamodel
https://melsatar.blog/2020/01/12/architecture-model-meta-model-and-meta-meta-model/
https://melsatar.blog/2020/01/12/architecture-model-meta-model-and-meta-meta-model/

