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INTRODUCTION

Delicate communication between the germline and ovarian somatic cells is the basis
for all processes in ovarian physiology: the formation of follicles in the foetus,
follicular dynamics throughout the menstrual cycles starting at puberty, as well as
follicular atresia occurring during human development and reproductive lifetime.

Post-pubertal stages of folliculogenesis encompass the meiotic maturation of
the oocyte and its successful ovulation. These processes are accomplished by
pituitary gonadotrophin stimulation that reach the ovary via blood flow, but also by
intricate local molecular signalling between the oocyte and the surrounding somatic
cells: theca and granulosa cells. Disturbances at either the systemic or local levels of
molecular interaction may lead to severe consequences regarding the fertility of the
woman: anovulation, incomplete oocyte maturation, premature ovarian failure etc.

The molecular mechanisms of oocyte maturation and folliculogenesis have
been revealed to a degree, which allows medical manipulation of these processes. A
large proportion of infertile couples can now be aided by controlled ovarian
stimulation, collection of oocytes via ovarian puncture, in vitro fertilization (IVF)
and the transfer of in vitro grown embryos to the uterus. In Europe, depending on the
country, 1-3% of children are already born aided by the assisted reproductive
technologies (ART).

Although the first IVF baby was born already in 1978, making the history of
ART rather long, the average success rate of each stimulation and IVF cycle remains
at approximately 30%. Increasingly more attention is being turned to women, for
whom conventional ovarian stimulation is contradictory. Protocols for in vitro
maturation of oocytes and follicles are extensively being sought for, but the success
rate using such techniques is even lower. All this creates substantial emotional as
well as economic burden for the infertile couples.

In order to increase the success rate of ovarian stimulation and improve in
vitro maturation techniques, it is of utmost importance to understand the molecular
mechanisms underlying in vivo folliculogenesis. Furthermore, regarding the
individual nature of each patient, the knowledge of how the general parameters of
female physiology influence the outcome of follicle development is far from
complete today.

During oocyte collection at ovarian puncture, the follicular fluid and
granulosa cells become available for research without creating further discomfort for
the patient. These components are valuable, as they constitute a major part of the
follicular environment of oocyte maturation. With the available whole genome-wide
methods, it has become within reach to gain vast amount of information from
individual samples, bringing the solutions to the described challenges closer at hand.

The present thesis concentrates on identifying the gene expression and
regulation characteristics of two granulosa cell populations: the mural and cumulus
granulosa cells, with distinct functions in folliculogenesis. Secondly, the follicle-
specific roles of cytokines and apoptosis markers as means of communication
between the granulosa cell populations are under focus. Finally, follicular fluid
levels of these markers are correlated with the etiology of female infertility and the
outcome of ovarian stimulation and IVF.



ABBREVIATIONS

AGO - argonaute protein

AMH - anti-Miillerian hormone

BMP — bone morphogenetic protein

CD44(v6) — CD44 antigen containing variable exon 6
CGC - cumulus granulosa cells

COC - cumulus-oocyte complex

COS - controlled ovarian (hyper)stimulation
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FAS — Fas cell surface death receptor
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FF — follicular fluid
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rFSH — recombinant FSH
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G-CSF — granulocyte colony-stimulating factor
GDF9 — growth differentiation factor 9
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hCG — human chorionic gonadotrophin

IFN — interferon

IL — interleukin
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LH - Iuteinizing hormone
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MCP-1 — monocyte chemotactic protein 1

M-CSF — macrophage colony-stimulating factor
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MIP — macrophage inflammatory protein

miRNA — microRNA

mRNA — messenger RNA

OHSS — ovarian hyperstimulation syndrome

PCOS — polycystic ovary syndrome
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TFI — tubal factor infertility

TGF-p — transforming growth factor beta
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VEGF - vascular endothelial growth factor



REVIEW OF THE LITERATURE

1. Overview of human folliculogenesis

The first follicular structures, primordial follicles, are formed by breaking down the
syncytium of mitotically proliferating oogonia and recruiting a layer of flattened pre-
granulosa cells to surround each oocyte starting its first meiotic division. There are
three signalling pathways considered to be responsible for this process: Notch
pathway, transforming growth factor beta (TGF-§) pathway and neurotrophic factors
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and
neurotrophin 4 (NTF4) (reviewed in Pepling, 2012). Oogonia that fail to switch to
meiotic cell cycle and are not recruited into primordial follicles are eliminated by
apoptosis (Fulton et al., 2005). The primordial follicles thereafter remain quiescent
with the oocyte arrested in the prophase of the first meiotic division. Only after
puberty follicle development and oocyte maturation continue periodically as
depicted in Figure 1 (reviewed in Tripathi et al., 2010).

cumulus granulosa

developing antrum |
/
/

oocyte

pre-granulosa

N
mural granulosa
9 Cumulus-oocyte

Primordial Primary Secondary Pre-antral Antral complex

Figure 1. Simplified schematic representation of post-pubertal follicle development from
primordial to antral stages. Cumulus-oocyte complex is extruded from the follicle after
ovulation.

Subsets of primordial follicles are activated to develop into primary stage
continuously throughout female reproductive life; this process is not dependent on
the periodical nature of the menstrual cycle. Some signalling pathways have been
proposed to be of higher importance in maintaining the balance between the resting
and activated follicles: KIT-PI3K-AKT pathway and basic fibroblast growth factor
(bFGF) expression in the oocyte, LIF-JAK-STAT pathway in the granulosa cells and
TGF-B family protein signalling networks are involved in follicle activation, while
anti-Miillerian hormone (AMH) in granulosa cells and tuberous sclerosis 1 (TSC1),
phosphatase and tensin homolog (PTEN), and cyclin-dependent kinase inhibitor p27
in the oocyte are responsible for maintaining the resting follicle pool (reviewed in
Oktem et al., 2010, Sobinoff et al., 2013). Disturbance in this balance leads to the
recruitment of all follicles at once and subsequently to premature ovarian failure, a
phenomenon that has been especially well demonstrated in case of the
PTEN/phosphatidylinositol-3-kinase (PI3K)/AKT pathway in the oocyte (Reddy et
al., 2008). The best notable morphological change during primordial to primary
follicle transition is that of the granulosa cells that acquire a cuboidal shape.
Precursor theca cells are recruited to the follicle via the expression of KIT ligand
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(KITLG) by the granulosa cells. The theca cells in return produce keratinocyte
growth factor (KGF) that further stimulates follicle activation (Skinner, 2005).

Thereafter, extensive mitotic proliferation of granulosa cells coincides with
the enlargement of the oocyte. Follicles containing multiple layers of granulosa cells
are referred to as secondary or pre-antral. Follicle growth at this stage is not
gonadotrophin dependent, but may be influenced by gonadotrophins, as granulosa
cells at this stage express the follicle stimulating hormone receptor (FSHR) on their
plasma membrane in mouse, sheep, as well as human (reviewed in Binelli et al.,
2010, Findlay et al., 1999). The ovary-specific proteins responsible for follicle
maturation at this stage again include the TGF-B family members: bone
morphogenetic protein 15 (BMP15) and activin A have been shown to promote
granulosa cell proliferation, while inhibin B and AMH counter-balance this process.
Oocyte-derived growth differentiation factor 9 (GDF9) is responsible for granulosa
cell proliferation and survival (reviewed in Sanchez et al., 2012).

At the same time with active granulosa cell proliferation the peri-follicular
theca cell layer becomes vascularised. Serum infiltrates into the follicle due to an
osmotic gradient caused by the synthesis of hyaluronan and chondroitin sulphate
proteoglycans by granulosa cells. Both, passive liquid transport due to the lack of
tight junctions between granulosa cells and active transport via aquaporins
contribute to this process (Clarke et al., 2006, Rodgers et al., 2010).

Expansion and liquid infiltration lead to the formation of a fluid-filled cavity
(or antrum) inside the follicle resulting in the division of granulosa cells into two
sub-populations: cumulus granulosa cells (CGC) that remain close to the oocyte
forming the cumulus-oocyte complex (COC), and mural granulosa cells (MGC) that
are separated from COC by the cavity and remain lining the basal membrane from
the inside of the follicle. Follicle growth from pre-antral to antral stage is dependent
on gonadotrophin secretion from the pituitary gland: FSH is necessary for antrum
formation (Dierich et al., 1998), while both FSH and luteinizing hormone (LH) are
required for antral follicle expansion (Burns et al., 2001, Zhang et al., 2001). FSH
also induces the expression and activation of aromatase (CYP19Al), the key
enzyme in estradiol-17f synthesis, marking the beginning of steroidogenesis in the
follicle (Burns et al., 2001, Danilovich et al., 2000). As previously, ovarian-specific
inter-cellular signalling modulates the effect of gonadotrophins. More specifically,
granulosa cells grown without the oocyte in 3D culture do not form an antrum.
GDF9 and BMP15 are two oocyte-secreted proteins partly responsible for the
process (reviewed in Binelli et al., 2010). In addition, insulin-like growth factor 1
(IGF1) expressed by somatic cells enhance the expression of FSHR (Zhou et al.,
1997), while BMP4 and BMP7 signalling from theca cells modulate FSH-induced
steroidogenesis in granulosa cells (Shimasaki et al., 1999). Activin-inhibin pathways
in granulosa cells are necessary for antrum formation and growth (reviewed in
Sanchez et al., 2012).

It is at the gonadotrophin-dependent stage of folliculogenesis that the
dominant follicle selection occurs in mono-ovulatory species leading to the
ovulation of a single oocyte. This process is accomplished by intricate
communication between the growing follicles and the pituitary gland via
gonadotrophins, steroid hormones and proteins secreted by follicular somatic cells.
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In short, estradiol synthesized by the granulosa cells as well as follicular inhibins are
the inhibitors of pituitary FSH production (Findlay et al., 1990, Zeleznik et al.,
1985). Therefore, competition for capturing the required amount of FSH for further
growth commences between the antral follicles. The follicle with granulosa cells
able to express the highest number of FSH receptors becomes dominant, while other
follicles undergo atresia due to FSH starvation (reviewed in Mihm et al., 2008).

It is noteworthy that by pre-ovulatory stage the human follicle has expanded
to over 20 mm in diameter, compared to only about 30 um at primary stage
(Gougeon et al., 1987, Griffin et al., 2006). This considerable distance between CGC
and MGC results in significant differentiation between the properties and functions
of these two somatic cell populations. According to various experimental proofs, the
rate of differentiation is positively correlated with the distance from the oocyte,
suggesting that signalling molecules secreted by the oocyte are affecting mainly the
most adjacent layers of granulosa cells, ie CGC (Diaz et al., 2007b, Diaz et al.,
2007a, Hussein et al., 2005).

Communication between CGC and the oocyte takes place via paracrine
signalling (reviewed in Gilchrist et al., 2008), as well as through physical
connections (gap junctions, adherens junctions and transzonal projections)
(Anderson et al., 1976, Motta et al., 1994). The latter are used for the transport of
ions, amino acids, pyruvate, nucleotides, and possibly ATP and glucose from CGC
into the oocyte (Collado-Fernandez et al., 2012). It is clear that the resumption of
meiosis in the oocyte is triggered by the closure of gap junctions with CGC, which
leads to the drop of cGMP and cAMP concentrations and subsequently the re-
activation of meiotic cell cycle (Norris et al., 2009). Several studies in other
biological systems (cardiac myocytes, various immortalized cell-lines and human
embryonic stem cells) have shown that bidirectional communication between cells
via gap junctions may also involve RNA molecules that can alter gene expression in
the adjacent cell (Kizana et al., 2009, Valiunas et al., 2005, Wolvetang et al., 2007).
It has however not yet been shown, if such communication exists between the
oocyte and CGC.

The oocyte-secreted factors TGF-f1, GDF9, BMP15, and activin A that
were mentioned in regard with previous stages of folliculogenesis are also involved
in inhibiting CGC luteinization, enhancing CGC proliferation and cumulus
expansion before ovulation via paracrine signalling (Elvin et al., 1999, Vanderhyden
et al., 2003, Yoshino et al., 2006). The latter process involves the expression of such
CGC transcripts as hyaluronan synthase 2 (HAS2), tumor necrosis factor alpha-
induced protein 6 (TNFAIP6), prostaglandin-endoperoxide synthase 2 (PTGS2), and
pentraxin 3 (PTX3), all necessary for the restructuring of the hyaluronan-rich
extracellular matrix between CGC (reviewed in Gilchrist et al., 2008). Reduction in
cumulus expansion is strongly associated with oocyte incomplete meiosis
resumption in in vitro fertilization (IVF) patients (Testart et al., 1983) as well as in
the bovine model (Aardema et al., 2013).

MGC remain in the proximity of theca cells and the capillaries that transport
hormones and other bioactive molecules to and from the follicle. The theca-MGC
tandem acquires the activity to synthesize steroid hormones that influence FSH and
LH release from the pituitary as well as the granulosa cell response to
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gonadotrophins (Hillier et al.,, 1994, Liew et al., 2010, Pincus et al., 1958). In
addition, MGC of the pre-ovulatory follicle express LHCGR earlier than CGC
(Eppig et al., 1997, Maman et al., 2012) and are therefore responsible for responding
to the LH surge that sets off several processes necessary for ovulation: tissue
remodelling for COC expulsion and MGC luteinization required for progesterone
production among many others (reviewed in Russell et al., 2007). The signal from
LH surge is mediated to the COC from MGC by EGF-like factors amphiregulin,
epiregulin and beta-cellulin, constituting additional signals for COC maturation
processes (Park et al., 2004).

After ovulation has taken place, MGC and theca cells form corpus luteum
with the main function of progesterone synthesis to prepare the endometrium for
potential embryo implantation (reviewed in Stocco et al., 2007). CGC also has
several roles once outside the follicle: it is clear that interaction between the
extracellular matrix of expanded COC and epithelial lining of the oviductal
infundibulum is necessary for COC transport towards the uterus (experimentally
proven in hamster model in Lam et al., 2000). In addition, there is evidence that
CGC performs as a filter for sperm cells before they reach the zona pellucida of the
oocyte (Hong et al., 2004, Jin et al., 2011, Van Soom et al., 2002).

2. Infertility

Infertility refers to a couple’s inability to conceive after 12 months of unprotected
regular intercourse and according to this criterion affects approximately 9-15% of
couples worldwide (Boivin et al., 2007, ESHRE, 2014). The diagnosis of infertility
affects both the male and female partner more or less equally, however in
approximately 10-20% cases the etiology of infertility remains unknown (ESHRE,
2014). Male factor infertility is diagnosed according to sperm parameters: the
motility, morphology and concentration of spermatozoa in ejaculate (Guzick et al.,
2001). The most frequent etiologies of female infertility are divided as follows
(according to Molinaro et al., 2009):

a. Endometriosis caused by the flourishing of endometrium outside of the
uterine cavity. The nature and severity of endometriosis varies significantly
depending on the location and size of endometriotic foci (reviewed in
Adamson, 2013). The connection between endometriosis and infertility is
extensively studied, but still not clear, as only up to 50% of endometriosis
patients are infertile (Bulletti et al., 2010). Several pathologies leading to
infertility have been proposed: from pelvic distortion to inflammation,
imbalance in local hormonal profile leading to disrupted ovulation, failure in
oocyte capture, inefficient uterotubal sperm transport and reduced embryo
implantation rate (reviewed in ASRM, 2012). All this information refers to
the fact that endometriosis patients are probably a very heterogenic group in
regards of molecular or physical etiologies of infertility.

b. Tubal factor infertility (TFI) caused by obstructed or removed oviducts after
ectopic pregnancy, salpingitis, adhesions or tubal polyps (Kodaman et al.,
2004).
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c. Polycystic ovary syndrome (PCOS) characterized by oligo- or anovulation,
hyperandrogenism and/or polycystic ovaries (The Rotterdam PCOS
Consensus Group, 2004).

d. Diminished ovarian reserve diagnosed in case of women reaching
menopause below the age of 40 (reviewed in Cox et al., 2014, Molinaro et
al., 2009)

e. Uterine conditions: fibroids, adenomyosis, polyps, intrauterine adhesions
that potentially interfere with embryo implantation or the development of
pregnancy (reviewed in Coughlan et al., 2014).

3. Assisted reproductive technologies

3.1.Controlled ovarian stimulation
Several infertility treatment strategies involve pharmacological or surgical solutions.
However, during the last 35 years the development of assisted reproductive
technologies (ART) has been substantial. The first child was born from an in vitro
fertilized oocyte in 1977 (Steptoe et al., 1978) followed by 5 million others
estimated by 2009 (Ferraretti et al., 2013). Today, depending on country,
approximately 1-3% of children are born via the use of ART (Ferraretti et al., 2013,
Sunderam et al., 2013).

The knowledge of gonadotrophin production and signalling mechanisms has
paved a way to the development of controlled ovarian stimulation (COS) protocols
used for increasing the success rate of IVF procedures. The universal aim of COS is
to abolish dominant follicle selection by providing sufficient levels of FSH allowing
multiple follicle maturation. The use of recombinant FSH (rFSH) produced by
genetically engineered cell-lines is preferred, due to its higher efficiency and purity
compared to the alternative preparation purified from the urine of postmenopausal
women (Palagiano et al., 2004). Endogenous gonadotrophin secretion is down-
regulated by gonadotrophin-releasing hormone (GnRH) antagonists or agonists and
ovulation is triggered most frequently by human chorionic gonadotrophin (hCG)
administration (reviewed in Santos et al., 2010), which binds to LH receptors, but is
more stable in bloodstream than LH (McFarland et al., 1989, Yen et al., 1968).
Alternative stimulation protocols have been developed and used depending on the
etiology of infertility as well as patient response to exogenous gonadotrophins
(extensively reviewed, eg in Hillier, 2013, Humaidan, 2012).

An important question is, whether COS could alternate the follicular milieu
and hence the developmental potential of the oocyte. However, studies to answer
this question are difficult to perform in human in vivo. De los Santos et al performed
a study measuring follicular hormone production, gene expression levels of CGC
and evaluating oocyte developmental competence in women undergoing either
natural or stimulated cycles (de los Santos et al., 2012). GnRH agonist long protocol
with rFSH stimulation and recombinant chorionic gonadotrophin (rCG) ovulation
triggering were used in COS procedure, while only rCG triggering was used in the
natural cycle group. Although significant differences were found between groups
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regarding individual steroid hormones in the follicular fluid (FF), the estradiol-
testosterone ratio remained unaltered. Also, LH level was significantly lower in the
stimulated group due to GnRH agonist exposure. Eighteen transcripts showed
statistically significant expression between groups. As a main result, no differences
in oocyte meiotic maturation, fertilization rate or subsequent embryo developmental
potential were observed. Hence the authors concluded that the observed differences
in CGC and FF do not probably contribute to IVF outcome.

3.2.In vitro fertilization

Oocytes are collected via transvaginal follicle puncture at about 36-38 hours after
hCG administration (Dellenbach et al., 1985). The IVF procedure may involve
conventional fertilization on a dish or in case of severe male infertility,
intracytoplasmic sperm injection (ICSI) is used (Palermo et al., 1992). For
performing ICSI, CGC layer is removed by hyaluronidase treatment and the
maturation state of the oocyte is inspected. In case of conventional IVF the COC is
not mechanically manipulated prior fertilization. If fertilization was successful,
further embryo development is monitored under the microscope. Single or multiple
embryos with the highest morphological quality are transferred to the uterus at 4-8-
cell or blastocyst stage. Implantation and early pregnancy is supported by the
exogenous administration of progesterone, compensating for the lack of natural
corpus luteum development (common practice in Estonian IVF clinics, personal
communication with Dr Elle Talving and Dr Peeter Karits from Nova Vita Clinic).

Despite the long history and large number of IVF cycles performed, the
success rate of conventional COS-IVF or -ICSI in Europe has remained at around
29% per ovarian puncture or 32% per embryo transfer (Ferraretti et al., 2013). The
rate may be higher in countries where multiple embryo transfers are more popular,
for example in the USA the pregnancy rate per transfer was 46.1% and live-birth
delivery rate 37.6% (Sunderam et al.,, 2013). As a downside, multiple embryo
transfer results in higher number of multiple pregnancies that may cause
complications both for the mother and the foetuses (reviewed in Norwitz et al.,
2005). Currently the direction in IVF practice is steadily moving towards single
embryo transfer in order to minimize these risks (Chambers et al., 2013, Ferraretti et
al., 2013). But to aim for maintaining and increasing the IVF success rate with single
embryo transfer, good oocyte or embryo selection criteria are needed.

3.3.In vitro maturation

There are several occasions, when standard COS is not successful or even not
possible to perform:

a. Women with high risk of potentially lethal ovarian hyperstimulation
syndrome (OHSS) (Nastri et al., 2010). This group often involves PCOS
patients, who produce large number of immature oocytes and elevated peak
estradiol levels after conventional COS that are both risk factors for
developing OHSS (Swanton et al., 2010, Tummon et al., 2005). The
alternative option to COS for this group is to collect the oocyte from
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immature follicles or the single dominant follicle produced during a natural

or mildly stimulated cycle (reviewed in Chian et al., 2013).

b. Cancer patients undergoing chemotherapy or irradiation that severely
damage the ovarian follicles, often leaving these women infertile. Ovarian
tissue can be cryopreserved prior to cancer treatment, re-implanted into the
ovary and conventional COS performed to retrieve healthy oocytes after
treatment (reviewed in Chian et al., 2013). However, gonadotrophin
administration during COS elevates serum estradiol levels and is therefore
not advisable for patients with estrogen receptor positive cancer history
(Balkenende et al., 2013). In such cases, maturing the follicles isolated from
cortical strips in vitro is necessary. Another option is to cryopreserve
immature oocytes collected before gonadotoxic therapy and further in vitro
maturation (IVM), as described for group a.

It is clear that various situations may require different IVM protocols, depending
on the time of oocyte or follicle collection and hence the developmental stage. It is
common knowledge that preserving inter-cellular connections and 3-dimensional
structure during follicle IVM is necessary for normal oocyte maturation. However,
depending on the follicular stage, this may appear difficult. Follicles isolated at early
stages expand substantially in diameter, necessitating the studies of artificial
matrixes that could support such growth, while preserving the follicular structure
(Krotz et al., 2010, Tagler et al., 2013). Since the hypothalamus-pituitary-ovarian
axis is disrupted in IVM, it is of utmost importance to know the micro- and
macromolecules that are necessary to add to cultured follicles or COC-s at various
stages for full maturation of the oocyte.

IVM of immature oocytes obtained from human antral follicles is being
routinely used in infertility clinics. However, the results are suboptimal compared to
standard COS and IVF: implantation rates of embryos generated by fertilizing IVM
oocytes are lower by approximately 50% (reviewed in Coticchio et al., 2012). Full in
vitro growth and maturation protocols from primordial follicles have so far provided
viable offspring only in mice (Eppig et al., 1996, O'Brien et al., 2003). COC IVM
has led to live births also in cow (Hirao et al., 2004). Unfortunately, in primate
models the most successful [IVM cases of primary or secondary follicles have halted
in zygote or early cleavage stages (Xu et al., 2013, Xu et al., 2011a, Xu et al., 2010).
All these results indicate that our current knowledge of folliculogenesis is not
sufficient enough to obtain clinically useful [IVM protocols.

4. Antral follicle markers in IVF

Clinical and basic scientific studies regarding human biological material may be
conducted under strict ethical guidelines (WMA, 2013, Rickham, 1964). There are
two options to retrieve human follicular material. Firstly, ovarian cortical strips can
be maintained in culture, enabling the investigation of folliculogenesis in vitro, as
described above. But as mentioned, the tissue culture conditions are suboptimal and
do not yet mimic the natural environment. Therefore, information gathered from
such experiments, although very valuable, is not always applicable to in vivo
systems. Second option is to gather material from ovarian biopsies or ovarian
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puncture procedures during an IVF cycle. Such biological material is derived from
its natural environment, providing information on in vivo biological processes.
However, it describes only the tissue stage it was obtained from and no invasive
time-lapse in vivo experiments in human are possible due to ethical reasons.

FF containing the COC and MGC is aspirated during ovarian puncture and
all these intrafollicular components, except for the oocyte used for fertilization, are
available for further study (Figure 2). Gene expression studies are most frequently
performed from granulosa cells, while more recent interest in cell-free miRNAs
measured from FF has arisen (Diez-Fraile et al., 2014, Roth et al., 2014, Sang et al.,
2013). In addition, FF is a source of a large variety of soluble proteins, steroid
hormones and metabolites secreted by the intrafollicular cells or infiltrated from
plasma (Rodgers et al., 2010). From oocyte polar body biopsy the chromosomal
consistency of the oocyte after the first or second meiotic division can be
extrapolated (Montag et al., 2013).

FOLLICULAR FLUID

P
Hormones

Metabolites

ROS and antioxidants GRANULOSA CELLS
Immunomarkers: Gene expression profile:

mRNA, ncRNA, proteins
Apopotosis markers

cytokines, antibodies
Apoptosis markers
Cell-free RNA
Proteins

OOCYTE POLAR BODY
Chromosomal integrity

Figure 2. Follicular material available for analysis after ovarian puncture. The most
frequently studied oocyte quality or infertility markers are presented. ncRNA — non-coding
RNA, ROS - reactive oxygen species.

The purpose of studies on human intrafollicular material can be divided into three
broad categories of high importance:

a. Descriptive studies using high-throughput screening technologies to identify
novel intrafollicular components: gene expression profile of COC (Assou et
al., 2006, Hernandez-Gonzalez et al., 2006), metabolome (Pinero-Sagredo et
al., 2010), or full proteome of FF (Ambekar et al., 2013, Angelucci et al.,
2006) are only a few examples.

b. Studies correlating intrafollicular molecular components to the physiological
parameters, lifestyle or other background information regarding the patient
provide new knowledge on their possible influence on folliculogenesis. To
mention only a few examples, the effect of age (Adriaenssens et al., 2010,
Manau et al.,, 2000, Pinero-Sagredo et al., 2010) and body-mass index
(Robker et al., 2009, Wu et al., 2007), nutritional (Boxmeer et al., 2008,
Ozkaya et al., 2010, Ozkaya et al., 2011) and smoking habits (reviewed in
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Dechanet et al., 2011), etiology of infertility (Buyuk et al., 2008, Haouzi et
al., 2012, Velthut et al., 2013), and hormone stimulation protocols (Assou et
al., 2013, Brannian et al., 2010, de los Santos et al., 2012) on follicular
environment and hence fertility have been unravelled. Ovarian response to
gonadotrophins during COS has also been correlated to intrafollicular
molecular markers (eg Adriaenssens et al., 2010, Velthut et al., 2013).
Especially of high importance in this regard is finding the molecular
markers that would distinguish between IVF patients with an elevated risk
for developing the potentially lethal OHSS. The proposed markers in FF for
OHSS cases are elevated interleukin 6 (IL-6) (Geva et al., 1997), decreased
vascular endothelial growth factor (VEGF) (Gao et al., 2011, Pellicer et al.,
1999), as well as inhibin A and inhibin B (Moos et al., 2009), when
compared to women with an average response to COS and no prevalence of
OHSS.

Studies aiming to find biomarkers that would predict the outcome of an IVF
procedure. Several research groups have sought to find non-invasive
molecular markers to predict the maturity and developmental potential of
the oocyte (reviewed in Fragouli et al., 2014, Revelli et al., 2009). Finding
such markers of high predictive value would enable a huge step towards
improving IVF outcome by using single embryo transfer. These studies
therefore have a potential clinically applicable value. The largest number of
publications in this field describe the search for biomarkers in the highly
accessible granulosa cell transcriptome, as genome-wide screening methods
for nucleic acids are well developed and give quantitative as well as
qualitative results (Uyar et al., 2013). The most frequently appearing marker
for embryo morphological quality is the mRNA expression level of gremlin
1 (GREM1) in CGC (Adriaenssens et al., 2010, Assou et al., 2013, Cillo et
al., 2007, McKenzie et al., 2004). However, studies accounting for inter-
and intra-patient gene expression differences (Feuerstein et al., 2012, Hamel
et al., 2010), the collection of samples at multiple centres (lager et al.,
2013), patient and stimulation characteristics (Wathlet et al., 2013, Wathlet
et al., 2012) do not propose GREM1 as a marker for IVF success. To the
contrary, all these studies propose different markers or algorithms for
predicting oocyte developmental potential and/or pregnancy outcome. The
described results indicate that further large-scale multicentre studies are
necessary and successful biomarkers, instead of being single molecules,
might involve complicated multi-factorial algorithms.

4.1.Role of cytokines in the antral follicle

Various cytokines play a crucial role in folliculogenesis. Perhaps the best-studied
cytokines regarding several processes of folliculogenesis are the TGF-f family
members involved in oocyte-somatic cell communication as described above. In
addition, several cytokines originally described in the immune cells have both,
immune-system-related as well as alternative roles in the ovarian follicle (reviewed
in Field et al., 2014). It is noteworthy that the concentration of several cytokines is
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higher in the pre-ovulatory FF as compared to peripheral blood (Asimakopoulos et
al., 2006). By the pre-ovulatory follicular stage several leukocytes invade the theca
layer, but do not penetrate MGC before the follicular basal membrane has ruptured
during ovulation, as seen in both, humans and rats (Brannstrom et al., 1994, Oakley
et al., 2010). It has therefore been proposed that most cell types in and around the
follicle produce cytokines that then either infiltrate through the basal membrane
(from theca cells and immune cells residing between them) or are directly secreted
into the FF by the granulosa cells or the oocyte (Field et al., 2014).

During antral growth the follicle experiences hypoxic conditions and several
mechanisms for peri-follicular neo-angiogenesis have been described. It has been
shown that FF IL-1P induces VEGF expression by rat granulosa cells (Levitas et al.,
2000). VEGF in turn induces the expression of chemokine IL-8, another pro-
angiogenic factor in granulosa and theca cells (Murayama et al., 2010) also involved
in neutrophil attraction (Baggiolini et al., 1992). In addition, IL-8 affects
steroidogenesis by decreasing estradiol and increasing progesterone production in
bovine pre-ovulatory follicle (Shimizu et al., 2012). During follicle growth tumour
necrosis factor alpha (TNF-a) expressed by the non-immune cells of the follicle is
involved in granulosa cell proliferation (Son et al., 2004).

Ovulation has been compared to inflammatory processes similar to injury
and wound healing (first comparison by Espey, 1980). It involves tissue remodelling
by several proteinases before follicle rupture, and rebuilding the ovarian epithelial
layer afterwards. Therefore it is not surprising that several cytokines secreted by
follicular cells act as chemoattractants for inflammatory leukocytes (reviewed in
Field et al., 2014). As an example, TNF-a as well as IL-1a both induce granulosa
and theca expression of monocyte chemotactic protein 1 (MCP-1) and macrophage
colony-stimulating factor (M-CSF) (Kawano et al., 2004) that are chemoattractants
for peri-follicular macrophages (Dahm-Kabhler et al., 2009, Nishimura et al., 1995).
Macrophages secrete RANTES (regulated on activation, normal T cell expressed
and secreted) required for the recruitment of T-cells, eosinophils and mast cells
(Alam et al., 1993, Schall et al., 1990). The recruited leukocytes then participate in
tissue remodelling and clearing of apoptotic follicular cells as well as modulate
corpus luteum development and degeneration (reviewed in Pate et al., 2010).

Cytokines have additional functions in ovulatory processes that are
independent of leukocytes. TNF-a is involved in the upregulation of collagenase
bioactivity in the FF of ewes (Johnson et al., 1999) as well as collagenase
expression by human ovarian surface epithelial cells (Yang et al., 2004), hence the
remodelling of the basal membranes of the follicle and the ovarian surface
epithelium prior to follicle rupture. IL-1p inhibits MGC proliferation and drives this
cell population towards differentiation (Karakji et al., 1995). IL-1p also modulates
granulosa cell prostaglandin E production (Hurwitz et al., 1995) that determines the
site of follicle rupture at the apical basal membrane (Gaytan et al., 2002). IL-6
expressed by mouse MGC and COC upon hCG stimulation promotes CGC
expansion and germinal vesicle breakdown of the oocyte (Liu et al., 2009).
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4.2.Apoptosis in the pre-ovulatory follicle

During human natural folliculogenesis a cohort of primordial follicles is recruited
for further development. Usually only a single dominant follicle survives up to
ovulation and the subordinate follicles undergo atresia making apoptosis a natural
process during folliculogenesis. However, markers of apoptosis may also be
connected with the outcome of IVF procedure. The apoptosis rate of CGC was
observed to be higher if the corresponding oocyte had not successfully completed
the first meiotic division during COS (Host et al., 2000). In addition, CGC around
oocytes that were successfully fertilized in vitro had the lowest apoptosis rate (Host
et al., 2000). The amount of apoptotic CGC at OPU has been correlated with
woman’s age, providing an explanation to the lower number of matured follicles and
reduced embryo quality in older patients (Lee et al., 2001). The health of the oocyte
is considered as one of the determinants of whether the follicle survives or not: it has
been shown that several oocyte-secreted factors create a pro-survival gradient on the
adjacent cumulus cells. IL-7, BMP-6 and BMP-15 are three of such well-studied
examples, where the ligand is secreted by the oocyte and receptors being expressed
on CGC (Cheng et al., 2011, Hussein et al., 2005).

Apoptosis rate in MGC has also been negatively correlated with the
developmental potential of the corresponding oocyte (Oosterhuis et al., 1998, Suh et
al., 2002). However, there are also studies that strongly question this association (eg
Jancar et al., 2007). Higher percentage of apoptotic MGC may also be one of the
possible underlying causes of unexplained infertility (Idil et al., 2004).

Several signalling pathways are involved in maintaining the balance
between survival and apoptosis in all cell types in the follicle. Some of the above-
mentioned cytokines have been described to have additional roles in retaining this
balance. TNF-a is one of those cytokines with various and sometimes opposing roles
in follicle biology, depending on the signalling partners and receptors that convey
the signal. Reduced oocyte apoptosis was observed in TNF-a knockout mice (Cui et
al., 2011). An apoptosis pathway is suggested to be triggered by this cytokine in
mouse granulosa cells together with excessive amounts of NGF (Garcia-Rudaz et al.,
2011) and signalling through receptor TNFR1 rather than TNFR2 (Tartaglia et al.,
1991). However, TNF-a expressed by theca cells plays a different role prior to
ovulation. It has been demonstrated in ewes that plasmine cleaves the
transmembrane TNF-a from theca cell membrane that thereafter induces apoptosis
in local ovarian surface epithelium cells, thus aiding in dissolution of tissues
necessary for follicle rupture (Murdoch et al., 1999).

FAS ligand (FASLG) and fas cell surface death receptor (FAS) are members
of the TNF and TNFR superfamily, respectively (Itoh et al., 1991, Suda et al., 1993).
FAS-FASLG system is well studied for their role in triggering apoptosis in many
tissues, including the ovarian follicle (Watanabe-Fukunaga et al., 1992). The FAS
receptor is expressed by all cell types in human follicle, but the expression level
depends on follicle stage and may not be evenly distributed between the different
layers of CGC, MGC or theca cells. FASLG, on the other hand, is predominantly
expressed by the oocyte at primordial and primary stage and by somatic cells in
atretic follicles (Cataldo et al., 2000, Jose de los Santos et al., 2000). In addition, a
soluble FAS receptor isoform (sFAS) is present in the FF (Jose de los Santos et al.,
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2000). This isoform is generated via alternative splicing that eliminates the
transmembrane region of the receptor. As a result, the soluble form binds FASLG
without transferring the death signal inside of the cell, thus acting as an anti-
apoptotic agent (Cheng et al., 1994).

IL-6 is a cytokine that exerts its pro-survival effect in porcine follicles
through its soluble receptor sIL6R and trans-membrane IL-6 signal transducer
(IL6ST) (Maeda et al., 2007a). It was shown that the expression levels of all these
three components diminished in atretic follicles compared to healthy ones, in
contrast to the trans-membrane IL6R (Maeda et al., 2007a, Maeda et al., 2007b). The
role of the latter in follicle atresia is yet not known.

CD44 is a highly glycosylated transmembrane cell surface protein with at
least 42 different alternative splicing isoforms in human, according to the Ensembl
database (http://www.ensembl.org). In the ovarian follicle, CD44 standard isoform
(CD44s) is well known as the receptor for hyaluronic acid, the main component of
extracellular matrix between the cells of COC (Culty et al., 1990, Underhill et al.,
1987). It has been shown that the anti-apoptotic effect of hyaluronic acid on CGC is
mediated by CD44 (Kaneko et al., 2000, Tunjung et al., 2009). However, follicular
atresia in the pig model is associated with elevated expression of CD44 on peri-
follicular macrophages, probably indicating the increased invasive and migratory
properties of these cells (Miyake et al., 2006). CD44 is also expressed in a sub-
population of MGC, but at a lower level compared to CGC (Ohta et al., 1999). In
addition, CD44s as well as the variable splice isoforms (CD44v) may be cleaved
from the cell surface by proteases and become soluble (reviewed in Nagano et al.,
2004). Such soluble CD44 molecules have been detected in the FF (Ohta et al.,
2001). The role of soluble CD44 protein isoforms is not known, but there is an
increase in their concentration in the FF upon luteinization, described by high
positive correlation with progesterone and hCG and negative correlation with
estradiol levels (Ohta et al., 2001).

5. The role of microRNAs in folliculogenesis

5.1.Biogenesis of microRNAs

MicroRNAs (miRNAs) are a class of short RNA molecules (on average 21-22
nucleotides long) that have an important role in post-transcriptional gene regulation
in most eukaryotes. Biogenesis of miRNAs involves transcription, cleavage steps by
endoribonucleases, RNA degradation and loading of the intermediate products to
various protein complexes that carry out these processes. According to the canonical
pathway, miRNAs are transcribed from miRNA genes by RNA polymerase 11, the
obtained product, named primary miRNA (pri-miRNA), is 5’ capped and 3’
polyadenylated as are mRNA strands (Cai et al., 2004, Lee et al., 2004). The
secondary structures of pri-miRNAs are recognized by the DROSHA/DGCRS
(DiGeorge syndrome critical region 8) complex, the RNase III component of which
cleaves the pri-miRNA into a short hairpin RNA, referred to as precursor miRNA
(pre-miRNA) (Lee et al., 2003). The short hairpin structure is recognized by another
type III RNase DICER in a multi-protein complex that cleaves the pre-miRNA
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molecule, producing a double-stranded, imperfectly paired RNA duplex (Hutvagner
et al.,, 2001). The duplex is then loaded into miRNA induced silencing complex
(miRISC), where argonaut (AGO) protein has a central role (reviewed in
Stroynowska-Czerwinska et al., 2014). One of the RNA strands (the mature miRNA
strand) is preserved and the antisense strand (passenger strand or star strand) is
degraded (Schwarz et al., 2003). The canonical pathway of miRNA biogenesis is
presented in Figure 3.
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Figure 3. Simplified scheme of the canonical miRNA processing pathway. DROSHA and
DICERI1 endoribonucleases act in protein complexes and pre-miRNA transport is performed
by exportin 5 (not shown). In addition, several non-canonical pathways have been proposed
as indicated in text.

During recent years several non-canonical pathways of miRNA biogenesis
have been described. The perturbations from the canonical pathway may include
every possible step: the miRNA gene may be transcribed by RNA polymerase III
(Borchert et al., 2006), the cleavage steps by either DROSHA/DGCRS (Ruby et al.,
2007) or DICER (Cheloufi et al., 2010, Cifuentes et al., 2010) may be skipped. A
subclass of miRNAs, the mirtrons, is generated by splicing mechanisms from
intronic regions (Berezikov et al., 2007, Okamura et al., 2007). These introns are
sufficiently short to form the pre-miRNA molecule without the need of cleavage by
DROSHA/DGRCS8 complex.

A class of miRNAs residing in the introns of coding genes, but generated
independently of the splicing machinery has also been described. The exact
components necessary for the biogenesis of the so-called “simtrons” have not been
fully defined. It seems that the intronic region itself contains all necessary sequences
for triggering miRNA biogenesis as the flanking exonic regions are not necessary
for this process (Havens et al., 2012).

However, miRNAs from longer introns need canonical biogenesis pathways
and DROSHA processing to cleave the unnecessary portions of pri-miRNAs. In
such cases the processes of pre-mRNA splicing by supraspliceosomes and pri-
miRNA cleavage by the microprocessor complex temporally overlap and
significantly influence the efficiency of one another (Agranat-Tamir et al., 2014).
Adjacent or overlapping pri-miRNA sequence and mRNA splice cite may activate
such interplay between splicing and miRNA processing mechanisms that lead to the
generation of alternative mRNA molecules and completely abolish miRNA
expression (Agranat-Tamir et al., 2014, Mattioli et al., 2013, Melamed et al., 2013).
Therefore, the machinery of miRNA generation may also modulate gene expression
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co-transcriptionally. In addition, it has been shown that approximately 35% of
intronic miRNAs are generated according to the canonical pathway, but
independently of their host genes or the host gene promoters (Monteys et al., 2010).

Computational predictions have proposed that miRNAs can also be
generated by virtually any hairpin-forming RNA molecules: short hairpin RNAs
(shRNAs), small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs), ribosomal
RNAs (rRNAs) etc (Castellano et al., 2013). However, the proportion of miRNAs
generated by non-canonical pathways seems to be modest and their nature
evolutionarily less conserved (reviewed in Westholm et al., 2011).

5.2.Function of microRNAs

The sequence of the single-stranded mature miRNA bound to AGO in miRISC is
matched to a target mRNA strand (Ameres et al., 2007). Targeting does not require
perfect complementarity between miRNA and mRNA. The majority of miRNA
binding regions appear in the 3° UTR of the mRNA strands, however coding
sequences and 5° UTR may also be targeted (reviewed in Stroynowska-Czerwinska
et al., 2014). There are two main outcomes of miRNA-mRNA duplex formation that
may be dependent on each other: the mRNA molecule may become degraded via
deadenylation (Wu et al., 2006) or the translation of that mRNA is inhibited
(Humphreys et al., 2005). Either of the two mechanisms leads to the reduction in the
concentration of the final protein product. Only a few cases in which miRNA action
has led to an increase in translation efficiency have been observed (Vasudevan et al.,
2007).

It has to be mentioned that the ability to define miRNA target regions on
mRNA strands by current methods and bioinformatic algorithms is far from
flawless. Due to imperfect complementarity between miRNA/mRNA duplexes one
single miRNA may target different mRNAs and several miRNAs are able to target
the same mRNA (Lewis et al., 2003). It has been shown that the number and
location of miRNA target sites on a particular mRNA strand are in correlation with
the level of mRNA degradation and/or translational inhibition (Saetrom et al., 2007).
However, these dynamical aspects are not yet well understood. It is also difficult to
distinguish between direct and indirect miRNA targets from high-throughput gene
expression studies. Therefore, all reports involving miRNA target predictions in
biological systems must be interpreted with great caution.

Several studies have proven that in addition to intercellular functions,
miRNAs are also secreted from the cells in extracellular vesicles (microvesicles,
exosomes, apoptotic bodies), high- and low-density lipoproteins or RNA-binding
proteins like AGO2 (reviewed in Kosaka et al., 2013). Due to their stability in such
complexes, miRNAs have been detected in nearly all biofluids (Weber et al., 2010),
including ovarian FF (Sang et al., 2013). Hence, cell-free miRNAs have gained
potential diagnostic importance in several fields of biomedicine, especially in the
studies of cardiovascular diseases and cancer (Creemers et al., 2012, Kosaka et al.,
2010).

An even more novel field involves verifying the purpose of cell-free
miRNAs. There are two main hypotheses: the secreted miRNA complexes may be
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cellular by-products or in fact targeted means of paracrine and endocrine
communication (Valadi et al., 2007). Depending on circumstances, both hypotheses
may be correct. As proofs for the latter, there are studies showing that packaging of
miRNAs into secreted vesicles in the cells is not random (Guduric-Fuchs et al.,
2012), and the up-take of such cell-free vesicles via endocytosis has been
demonstrated for various cell types, including granulosa cells (da Silveira et al.,
2012, Sohel et al., 2013).

5.3.MicroRNAs in ovarian biology and folliculogenesis: studies in
mammalian models and cell-lines

Since the DICER1 mouse knockout has an embryonic lethal phenotype (Bernstein et
al., 2003), conditional knockout models have been used to study the importance of
miRNAs in reproductive tissues. Two methods have been used thus far in mice:
deleting the gene in AMHR?2 positive cells in the reproductive tract (Hong et al.,
2008, Lei et al., 2010, Nagaraja et al., 2008) or by creating lines with hypomorphic
DICER expression (Otsuka et al., 2008). It appeared that the morphology and
function of the oviducts and uterus were more severely hampered in conditional
knockout mice compared to that of the ovaries (Hong et al., 2008, Nagaraja et al.,
2008). Although mice without DICER1 could produce fertilizable oocytes, reduced
follicular recruitment, maturation and ovulation rates as well as increased follicular
atresia and diminished progesterone production by corpora lutea were observed
(Hong et al., 2008, Lei et al., 2010, Nagaraja et al., 2008, Otsuka et al., 2008). No
knockout models deleting DROSHA/DGCRS complex or its components has been
created for studies in reproduction to our knowledge.

According to functional studies, miRNAs appear to be involved in the fine-
tuning of virtually all processes in folliculogenesis. miR-145 plays an important role
in maintaining the primordial follicle pool in mouse and the proposed mode of
action is via targeting TGF-p receptor 2 mRNA (Yang et al., 2013). In functional
studies using adult granulosa cells, this miRNA suppressed their proliferation by
targeting activin receptor IB (Yan et al., 2012). Further follicular development into
primary, secondary and antral stages is influenced by miR-143, miR-125b, let-7a,
let-7b, let-7c, and miR-21, the expression of miR-143, let-7a, and miR-15b being
down-regulated by FSH stimulation (Yao et al., 2009). The expression of miR-181A
is decreased upon follicular development from primary to pre-antral and antral
stages, which coincides with the up-regulation of its target activin receptor IIA
(Zhang et al., 2013).

Some of the best-studied biochemical pathways in growing follicles are
related to steroidogenesis. A few publications have addressed the role of miRNAs in
the process. miR-133b was shown to target FOXL2 mRNA in the human granulosa
cell-line KGN and cultured mouse primary granulosa cells. It is a transcription factor
responsible for repressing the expression of steroidogenic acute regulatory protein
(STAR) and aromatase genes (Kuo et al., 2012). As a result of miR-133b over-
expression, FOXL2 expression was down-regulated and estradiol secretion was
expectedly increased (Dai et al., 2013). miR-378 targets aromatase mRNA in
porcine granulosa cells in culture, leading to decreased estradiol production. /n vivo
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the expression of this miRNA was inversely correlated with that of aromatase gene
with significantly higher levels in small follicles (Xu et al., 2011b). In mouse, miR-
383 production was activated by steroidogenic factor 1 leading to enhanced estradiol
release from granulosa cells by suppressing the c-Myc pathway (Yin et al., 2012).

Insufficient steroidogenesis is correlated with apoptotic processes in the
follicle and one link between the two processes was revealed in a mouse in vitro
study showing that androgens inhibit apoptosis by increasing miR-125b, which
further targets mRNAs of such pro-apoptotic genes as Bcl-2 homologous
antagonist/killer (BAK), Bcl-2-associated X protein (BAX), tumour suppressor
protein p53 and Bcl-2 modifying factor (BMF) (Sen et al., 2014). Other anti-
apoptotic miRNAs expressed in mouse granulosa cells are miR-21 (Carletti et al.,
2010) and miR-224, the latter targeting the signal transduction protein SMAD4
mRNA (Yao et al., 2010). High expression level of miR-26b was shown to target
ataxia telangiectasia mutated (ATM) mRNA leading to increased follicular atresia
and DNA breaks in porcine granulosa cells (Lin et al., 2012).

Luteinizing hormone (LH) surge prior to ovulation triggers drastic molecular
and morphological changes in granulosa cells leading to their luteinization and
corpus luteum formation. Upon stimulation with human chorionic gonadotrophin
(hCG), expression differences of several miRNAs have been observed in the ovarian
follicles of different animals. Mouse miR-122, miR-132, and miR-30a were up-
regulated and let-7b down-regulated upon hCG stimulation (Fiedler et al., 2008,
Kim et al.,, 2010). Proposed indirect target for the first two miRNAs was the
transcription factor C-terminal binding protein 1 (CTBP1) that may lead to dramatic
changes in overall gene expression profile (Fiedler et al., 2008). The levels of miR-
21, miR-132, miR-212, and miR-224 were increased in hCG-stimulated equine
follicles; this was associated with reduced expression of the putative miRNA targets
PTEN, RAS p21 protein activator, and SMAD4 (Schauer et al., 2013). miR-136-3p
and mir-122 were both associated with LH receptor mRNA targeting in rat (Kitahara
et al., 2013, Menon et al., 2013). When transition from follicular to corpus luteum
stage was studied in sheep, miR-125b, let-7b, let-7c, miR-199a were shown to be
descriptive of follicular stage. miR125b (targeting LIF) and miR145 (targeting
CDKNI1A) were down-regulated in granulosa cells upon luteinization (McBride et
al., 2012). In cow, miR-378 was shown to be expressed in non-regressed corpus
luteum, targeting interferon gamma receptor 1B mRNA and thus inhibiting apoptosis
of progesterone-producing cells (Ma et al., 2011).

Follicle maturation, ovulation and corpus Iluteum formation require
multidirectional intercellular communication between granulosa and theca cells, as
well as the oocyte. An elegant study in cow showed that miRNA profile in CGC and
the oocyte were altered depending whether the cells were cultured as a cumulus-
oocyte complex or separately from each other (Abd El Naby et al., 2013). miR-210
was shown to be inhibited in cumulus cells by the proximity of the oocyte. Likewise,
a group of miRNAs (miR-205, miR-150, miR-122, miR-146a, and miR-146b-5p)
was over-expressed in the oocyte if the surrounding cumulus cells were removed.
The cumulus cell miRNA profile may also depend on the meiotic maturation stage
of the oocyte as shown in mice (Kim et al., 2013) and cow (Tesfaye et al., 2009).
Intercellular communication between cumulus and mural granulosa cells in the
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antral follicle requires overcoming considerable distance between these cell types
that are separated by a fluid-filled antrum. Such communication has been described
to take place via secreted vesicles packed with coding as well as non-coding RNA
molecules in protein complexes (Valadi et al., 2007). Microvesicles and exosomes
have been successfully purified from equine (da Silveira et al., 2012) and bovine
(Sohel et al., 2013) ovarian FF and their uptake by granulosa cells was observed in
culture. The difference in miRNA profiles was demonstrated between vesicles from
follicles of old and young mares (da Silveira et al., 2012), as well as between
follicles containing oocytes of different maturation states in the cow (Sohel et al.,
2013), indicating that such form of intercellular communication may play a
significant role in biological processes in the follicle.

Several studies have profiled the ovary-specific miRNA profile in animal
models (Ahn et al., 2010, Huang et al., 2011, Li et al., 2011, Mishima et al., 2008,
Ro et al., 2007, Torley et al., 2011, Tripurani et al., 2010). However, as the technical
possibilities evolve, increasing amount of information is retrieved from high-
throughput deep sequencing experiments. It has so far been well determined that
miRNAs in the ovary participate in regulating IGF-1 signalling, cell cycle, TGF-3
signalling, ephrin receptor signalling, steroid hormone metabolism, BMP signalling,
VEGF signalling, pro-apoptotic processes, and pathways associated with axonal
guidance (Hossain et al., 2009).

5.4.Studies of miRNAs in human reproduction

Studies with human material aim to reveal species-specific differences in
folliculogenesis, but more importantly to use the gained knowledge in the diagnosis
of subfertility, select developmentally competent oocytes and embryos, and optimize
follicle in vitro maturation protocols.

miRNAs in FF or follicular cells may fluctuate depending on the
physiological parameters of the woman, as well as the condition or maturation status
of the follicle. Four miRNAs in FF were determined to depend on the age of the
woman: hsa-miR21-5p was exclusively expressed in the age group below 31 years,
while hsa-miR-199b and hsa-miR-99b-3p were detected in women over 38 years.
The level of hsa-miR-134 expression was significantly higher in FF from the older
group. Signalling pathways targeted by these miRNAs include heparan-sulfate
biosynthesis, extracellular matrix-receptor interaction, carbohydrate digestion and
absorption, p53 signalling, and interactions between cytokines and their receptors
(Diez-Fraile et al., 2014).

Two recent studies aimed to find FF miRNA markers to explain the
molecular background of polycystic ovarian syndrome (PCOS) among in vitro
fertilization patients (Roth et al., 2014, Sang et al., 2013). The size of the study
groups as well as the methodology differed between these publications, which may
provide explanation for no overlap between them. The levels of hsa-miR-132 and
hsa-miR-320 were reported significantly lower in PCOS patients in one study (Sang
et al., 2013), and those of hsa-miR-9, 18b, 32, 34c, and 135a displayed a significant
increase in the PCOS group compared to oocyte donors in the other (Roth et al.,
2014). At the same time a rat model of PCOS was created by 5a-dihydrotestosterone
(DHT) treatment and miRNA profile of ovarian cortex confirmed the increase in
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expression of miR-32 and decrease in miR-132 in DHT-treated mice, the latter with
borderline statistical significance (Hossain et al., 2013). Taken together, the
proposed PCOS markers may have a true potential value, but their validation is still
necessary.

As there is constant infiltration of biomolecules across the follicular basal
membrane, there is also a possibility for detecting follicular markers in peripheral
blood plasma. This is especially true for miRNAs that are stabilized in vesicles or
protein complexes. So far hsa-miR-18la in plasma has been associated with
premature ovarian failure in humans (Zhang et al., 2013), but diagnostic markers are
extensively being sought for infertility as well as for detecting ovarian cancer
(Beach et al., 2014).

There is a potential use for miRNAs in improving IVF outcome, either as
prognostic markers for oocyte viability measured in the cumulus cells, as proposed
in animal studies (Kim et al.,, 2013, Tesfaye et al., 2009), or portraying the
transcriptome of the first polar body that has been performed in human (Reich et al.,
2011). One novel approach introducing miRNA mimics into follicle culture was
shown to alter oocyte maturation stage (Kim et al., 2013), a knowledge that could be
useful in practice for improving [VM outcome.
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AIMS OF THE STUDY

MGC and CGC are two granulosa cell sub-populations that differentiate from a
single population during the secondary-antral stage transition of folliculogenesis
(Figure 1). Differentiation leads to the gain of separate functions, the best studied of
which are steroidogenesis by theca-MGC compartment and the regulation of oocyte
maturation by CGC, just to mention a few. However, there are still several gaps in
information regarding the inter-cellular communication between different somatic
cell populations that is involved in the fine-tuning of folliculogenesis and oocyte
development. Secondly, many of the molecular processes involved in
folliculogenesis have been studied in animal models and the degree of species-
specific differences, especially when comparing animal models to human, need to be
elucidated. Finally, studies performed on human ovarian follicular material give
further information on female reproductive health, the etiologies of infertility and
the efficacy of COS regimens in individual patients.

The main aims of the present thesis are as follows:

1. To describe the mRNA profile of CGC and MGC isolated from hormonally
stimulated IVF patients with the aim to predict novel molecular functions
for the two cell populations.

2. To study the degree of co- and post-transcriptional modifications of
signalling pathways in the granulosa cell types by investigating differential
alternative splicing and determining the miRNA profile in MGC and CGC.

3. To analyse a panel of cytokines and apoptosis markers in the follicular fluid
of hormonally stimulated IVF patients and correlate the results with patient
physiological characteristics, COS and IVF outcome.

4. To examine the analysed cytokines as means of intercellular communication
between MGC and CGC based on the previously described mRNA profile.
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MATERIALS AND METHODS
The following methods were used in this study:

Archiving of the medical case history of each recruited patient (Publications
I, IT and IIT)

Mural and cumulus granulosa cell isolation (Publications I, II, I1T)
Follicular fluid isolation (Publication III)

mRNA isolation from granulosa cells and cDNA synthesis (Publications I, II
and III)

miRNA isolation from granulosa cells and cDNA synthesis (Publication II)
Gene expression analysis using Affymetrix GeneChip Human Gene 1.0 ST
Array (Publication I)

Gene expression analysis using high-throughput poly(A) RNA-seq
(Publication II)

Gene expression analysis using high-throughput small RNA-seq
(Publication II)

Gene expression analysis using real-time PCR (Publications I, II and III)
Bioinformatic analysis for microarray, poly(A) RNA-seq, small RNA-seq
and real-time PCR data (Publications I, II and III)

Bioinformatic prediction of miRNA targets (Publication II)

Gene ontology profiling of differentially expressed genes and miRNA
targets (Publications I and II)

Bioinformatic analysis for studying alternative splicing from poly(A) RNA-
seq data (unpublished data, details provided in Appendix I)

Multiplex flow cytometry analysis for detecting protein markers from
follicular fluid samples (Publication III)

Statistical analysis (Publication III)
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RESULTS AND DISCUSSION

1. mRNA expression differences between mural and cumulus
granulosa cells (Publication I, publication II, unpublished data)

The aim of the current chapter is to describe the degree of difference in the
expression levels of coding genes between MGC and CGC. Granulosa cells emerge
from a single layer of cells in the primary follicle stage and differentiate into two
sub-populations by the antral stage (Figure 1).

To study the molecular difference between the two sub-populations, two
genome-wide approaches were used: Affymetrix microarray (publication 1) and
next-generation polyadenylated RNA sequencing (poly(A) RNA-seq) on Illumina
platform (publication II). The advantages of microarray based technology are the
standardized sample preparation and analysis protocols as well as cost efficiency.
On the other hand, the RNA-seq method does not limit the number of different RNA
molecules detected and allows the identification of unannotated RNA transcripts.

Besides the detection method used, there are additional differences in the
set-up of the two studies. The number of patients recruited was 19 in the microarray
study and 3 in the RNA-seq study; the patients did not overlap between the two
groups. During the collection of the MGC samples for the RNA-seq study, the cells
were depleted of CD45+ leukocytes to give a more relevant picture on the
expression of immune-related genes in non-immune system cells. In spite of these
differences the results between the two studies showed very high and statistically
significant positive correlation (r = 0.82, p < 2.2x107'®, Supplemental figure 3 in
publication II). Therefore, if not mentioned otherwise, the gene expression
differences between MGC and CGC in the current chapter refer to the results of
publication .

Results obtained during these studies reflect women that have undergone
COS with GnRH antagonist protocol, rFSH stimulation and ovulation trigger with
hCG. Not only has it been shown that COS as such has an influence on the follicular
transcriptome (CGC population studied in de los Santos et al., 2012), but differences
are also obvious, depending on the protocol used. The effect of stimulation by rFSH
or human menopausal gonadotrophin (hMG) on MGC transcriptome has been
investigated in two studies (Brannian et al., 2010, Grondahl et al., 2009). Another
publication demonstrates the differences in MGC and CGC gene expression upon
ovulation triggering with either hCG or GnRH agonist (Borgbo et al., 2013). The
relevance of these differences still needs to be revealed, since all the described
stimulation protocols lead to successful folliculogenesis and potentially mature
oocytes.

Additionally, our study concentrated on the pool of MGC and CGC from the
whole cohort of stimulated follicles of a patient. Therefore we observed genes
expressed in all follicles regardless of the maturation state of the corresponding
oocytes. Differential transcriptome profile of CGC from individual follicles
containing an oocyte of germinal vesicle or metaphase 2 stage has been recently
determined (Yerushalmi et al., 2014).
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According to our results, statistically significant difference in expression
levels between MGC and CGC were observed for 15.5% of the analyzed genes,
which is enough to discriminate well between the two cell types (Figures 1 and 2 in
publication I). The result is not surprising, considering the already well-known
differential roles of these cells.

When the top differentially expressed genes were enriched into networks
according to their molecular function, the genes up-regulated in CGC turned out to
be mainly involved in tissue development and intercellular communication (Table 1
in publication I). The network with the highest IPA score (refers to p-value of 10™*)
is connected by a node depicting TGF- family members, well reflecting the role of
these genes in the oocyte-CGC communication necessary for COC expansion and
oocyte meiotic maturation (reviewed in Gilchrist et al., 2008). The COC expansion
process is also dependent on extracellular matrix (ECM) synthesis, remodelling and
the expression of cell-surface ECM receptors. Proteins involved in these processes
were strongly represented among CGC transcripts (Figure 3, Table 1 and 2 in
publication I).

A great number of membrane transporters from the solute carrier family
(SLC) proteins were exclusively expressed in CGC. In fact, none of the members of
this protein family were differentially expressed in MGC > 2.5 fold (Table 2 in
publication 1). The SLC proteins up-regulated in CGC are involved in the transport
of amino acids (SLC1A3, SLC7A11, SLC38Al), oligopeptides (SLC15A1),
nucleosides (SLC28A3) and choline (SLC44AS5), which is an indication towards the
metabolic communication between CGC and the oocyte (Collado-Fernandez et al.,
2012).

The genes up-regulated in MGC are predicted to be involved in immune
response and immunological diseases (Table 1 in publication I). However, upon sub-
setting the transcripts according to folliculogenesis-related functions, genes related
to immune response were strongly represented in both cell populations (Table 2 in
publication I). This result will be further discussed in chapter 4 later in the thesis.
One of the central proteins in the MGC network with the highest statistical
significance (p-value 10*') is the suppressor of cytokine signalling 3 (SOCS3), a
well-known inhibitor of the JAK-STAT pathway involved in the signalling of
several cytokines (reviewed in Carow et al., 2014).

In addition, transcription factors from the early growth response family
proteins (EGR1-3) are highly expressed and represented in the MGC network. The
role of EGR1 has been well studied in rodents (Espey et al., 2000, Russell et al.,
2003, Yoshino et al., 2002) and in the bovine model (Sayasith et al., 2006), where it
has been shown to be induced by FSH, LH and hCG. In return, EGR1 is necessary
for LHR expression in luteinized MGC (Sayasith et al., 2006, Yoshino et al., 2002).
In animal models the expression of EGR1 has been described as quick and transient:
expression peaks at 4h after hCG stimulation in rats and at 6h in cow; and declines
by 24h post-hCG. According to our results, the expression decline in human MGC
takes considerably longer as we still observed a strong signal after 36h post-hCG
stimulation.

The second group of transcription regulators highly expressed in the
network with the top score in MGC belong to the nuclear receptor subfamily 4 group
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A (three members: NR4A1-3). Although well studied in the processes of
inflammation (reviewed in McMorrow et al., 2011), these proteins have an
important role in regulating steroidogenesis in ovarian granulosa and theca cells of
several species, including human (Li et al., 2010). NR4A members are strongly
induced by LH (Park et al., 2003) and drive the cells towards the luteinized state by
inhibiting aromatase expression (Wu et al., 2005) and inducing expression of
proteins in the progesterone synthesis pathways (Havelock et al., 2005). Androgenic
hormone synthesis and signalling is also modulated by NR4Al, including an
increase in the expression of the testosterone biosynthesis pathway proteins and
androgen receptor (AR) (Dai et al., 2012, Li et al., 2010).

As a conclusion, our data demonstrated that the CGC coding transcriptome
is over-represented by genes involved in cell-cell interaction that is necessary for the
processes involved in COC expansion. MGC, on the other hand, carry out
differential roles in steroidogenesis and inflammation-related processes via
expressing distinct families of transcription factors not seen in CGC. Our further
interests in the study focus on the degree of differential co- and post-transcriptional
mRNA regulation between MGC and CGC, especially on alternative splicing and
function of differentially expressed miRNAs.

2. Gene expression regulation by alternative splicing in mural and
cumulus granulosa cells (unpublished results based on data from
publication II)

Typical large-scale gene expression study methods assume that the structure of
mRNA molecules under investigation does not vary between samples. However, in
biological systems this is rarely the case, especially when the samples differ
substantially in nature: they are isolated from different tissues, cell-types,
experimental conditions etc.

Alternative splicing is the most common diversification mechanism for
mRNA molecules, giving rise to a wide variety of mRNA transcripts encoded from
the same gene. It is estimated that 95% of multi-exon genes undergo alternative
splicing in humans (Pan et al., 2008). The inclusion or exclusion of exons and/or
introns into or from an mRNA molecule may substantially modify the stability and
the capacity of protein translation from the mRNA strand or the properties of the
translated protein itself. As a result, the whole signalling pathway containing the
protein may be altered, thus transforming the properties or the fate of the cell
(reviewed in Li et al., 2014).

The next goal was to obtain a preliminary insight into how much of the gene
expression profile in human MGC and CGC populations could be influenced by
alternative splicing. The RNA-seq data is a good source for answering such
questions, as the sequencing reads generated by this method are potentially without
bias, which is not the case with data derived from most microarray based or real-
time PCR experiments that use pre-designed probes or primers for the detection of
mRNA molecules. For analysing differential exon usage between MGC and CGC,
an R/Bioconductor package DEXSeq was used (Anders et al., 2012). A detailed
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description of the package is included as Appendix I. The main limitation of using
this package is that only previously known mRNA isoforms available at some
database can be analysed. Therefore, novel alternatively spliced mRNA molecules
were not included in the current study.

As a result, differential exon usage between MGC and CGC was
demonstrated for 1008 genes. Ensembl human genome version GRCh37 was used as
a reference, which contains all known and predicted non-coding mRNA isoforms.
Therefore, not all of the 1008 genes that differentiate between the two cell types
generate alternatively spliced coding mRNA molecules. However, since the role of
non-coding mRNAs in gene regulation is still poorly understood, it is not yet clear,
how such cases, where alternative splicing generates non-coding mRNA molecules
should be interpreted.

A subset of results on the differential exon usage between MGC and CGC is
presented in Table I. The gene ontology terms shown were chosen due to their
importance in the processes of folliculogenesis. As examples, sterol metabolism and
steroid hormone receptor signalling are regulated in granulosa cells by differential
splicing, as are processes involved in hypoxia, insulin-like growth factor receptor
signalling pathway, extracellular matrix remodelling and cell differentiation. BMP
receptor BMPRIB and epiregulin (EREG) involved in COC expansion are
expressed in both cell types, but as different mRNA isoforms.

It is clear that discussing the roles of all proteins that demonstrate
differential alternative splicing in human granulosa cells is out of the scope of the
current study and functions of many of the isoforms are still not known today. It is
however important to perceive the multi-level nature of gene expression data
available for any biological system under study.

However, a good example of a clear difference in the alternative splicing
pattern between MGC and CGC is the antagonist of IL1 receptor ILIRN (Figure 4).
While the protein-coding isoform IL1RN-005 is clearly expressed in both cell types,
the isoforms numbered 001-003 are exclusively expressed in CGC as no sequencing
reads are observed in the counting bins specific for these transcripts. The mRNA
isoform numbered 004 is not expressed in either cell type. Interestingly, IL1RN-005
is the only secretory isoform, while IL1IRN-001, -002 and -003 are intracellular
proteins that can be released only by certain cell-types (Evans et al., 2006). If not
released, the intracellular isoforms may have unique roles in certain cells: in
intestinal epithelial cell-line Caco-2, the intracellular form inhibits IL-1-induced
secretion of IL-6 and IL-8 production (Garat et al., 2003). The role of IL1RN
isoforms in human ovary still need to be elucidated.
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Table 1. A subset of gene ontology terms enriched for genes that demonstrated differential
exon usage between MGC and CGC. The presented terms were chosen due to their relevance
in the processes of folliculogenesis. Enrichment was performed in The Database for
Annotation, Visualization and Integrated Discovery (DAVID) v6.7.

Category | Gene Ontology Term | No of Genes Gene Symbols
G0:0030518 steroid NEDD4, DNAJA1, KDM3A,
hormone receptor 10 FHL2, YWHAH, RARA, RAN,
signalling pathway TGFBI1I1, CTNNBI1, CALR

SOD2, VEGFA, ECE1l, ITPR2,
gﬁg’fﬁiﬁéﬁlg"”"“e ACTN4, THBS1, PML, ADAM17,
GO:0070482 response 15 PLOD2, NR4A2, ADCK3,
to oxygen levels SMAD3, BNIP3, LONPI,

SERPINA1
G0:0048009 insulin-
like growth factor 4 IGFIR, PIK3R1, IRS1, EIF2AK3
receptor signalling
pathway

NFKB2, APLP2, FKBPIA,
g((t)rfcoez’ll?l 1lz§matrix 1 CRISPLD2, COL4A2, GFOD2,

L SERPINHI1, ACAN, ILK,
Biological |°r&anization ANXA2, COL5A2
process | ~.0016125 sterol MSMOI, IDI1, SCARBI, LIPE,
metabolic process 10 SCSDL, MVK, PPARD,

HMGCSI1, HMGCR, INSIG1
GO:0048165 fused
antrum stage, oogenesis
and GO:0001550 2 BMPR1B, EREG
ovarian cumulus
expansion

ACT3, GNAS, KLF10, PDLIM7,

ARHGDIA, SMAD3, SMAD4,

.. ACIN1, BMPR1B, BDNF,
rigﬁ?a(if If ?} f;?mve . CTNNBI, CLU, HIF1A, INHBA,
differentiation INS, IL4R, IL6ST, JUND,

MORF412, PNP, NDEL1, PPARD,

PPARG, RARA, RUNXI,

TGFBI1I1, TNFRSF12A, RELA
G0:0003707 steroid PPARD, NR4A1, THRA, NR1DI,
hormone receptor 9 RARA, PPARG, NR4A2, ESRRA,
activity NR2C2

Molecular | hortone receptor 7 |KDMBA FHL2 YWHAH, RAN,

. o TGFBI111, CTNNBI, CALR

Function | binding

UQCRCI1, PMPCB, PITRMI,
G0:0004222
metalloendopeptidase 11 ECEl, MMP19, YMEILI,
activity UQCRC2, ADAM17, ADAMTS?9,

ADAMY, SPG7
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Figure 4. An example of differential exon usage at the 5° end of ILIRN gene in MGC and
CGC. Counting bins that are differentially expressed between MGC and CGC are coloured
in violet. The process how counting bins are generated from the known exons of a reference
genome by DEXSeq package is described in detail in Supplementary figure 1 in Appendix 1.
The mRNA isoforms are named according to Ensembl human reference genome version
GRCh37. nc — non-coding mRNA isoform.

3. MicroRNA expression in human granulosa cells (Publication I1,
unpublished data)

MiRNAs are regulatory RNAs that have both, known and unexplored functions in
gene expression regulation. In order to investigate, how mRNA expression could be
regulated post-transcriptionally by miRNAs, we performed deep-sequencing
analysis of small RNAs with the intention to detect miRNAs and of poly(A) RNA-
seq with the aim to study potential miRNA targets in the same samples of MGC and
CGC. We compared the acquired small RNA sequencing data with miRBase version
18 (www.mirbase.org).

3.1. Annotated microRNAs in granulosa cells and their predicted targets.

Analysis of miRNAs with the highest expression levels did not reveal obvious
differences between the two granulosa cell types (Publication II, Table 1). Clearly
the most abundant miRNA in both populations was anti-apoptotic hsa-miR-21
(Carletti et al., 2010). Other functions for the most abundant miRNAs include
aromatase targeting by hsa-let-7f (Shibahara et al., 2012) and cancer growth
inhibition by hsa-miR-99a-5p (Cui et al., 2012). However, the functions of the latter
two miRNAs have not been demonstrated in the ovarian follicle.

Looking at the whole list of detected annotated miRNAs, 90 of them with
average or low expression levels were differentially expressed between MGC and
CGC: 57 being more abundant in MGC and 33 in CGC (Publication II, Table 2). As
transcripts of low expression levels tend to fluctuate between samples due to
technical errors, we used analysis algorithm that takes this possibility into account.
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We discarded all miRNAs with < 10 counts in all individual samples and performed
empirical Bayes shrinkage method, the aim of which is to normalize the expression
fluctuations at the lower end and making gaining statistical significance stricter for
molecules with low expression levels (Robinson et al., 2007).

It was surprising that the signalling pathways targeted by the differentially
expressed miRNAs in MGC and CGC partially overlapped (Figure 5). Based on that
information, it may be assumed that TGF-f, ErbB signalling and heparan sulfate
biosynthesis are pathways, where regulation by miRNAs is necessary also after the
two granulosa cells populations have differentiated. At the same time, the expression
of more than twice the number of miRNAs is upregulated upon differentiation in
MGC as compared to CGC. This was predicted to lead to the post-transcriptional
regulation of various signalling pathways involved in cellular adhesion, ligand-
receptor interactions as well as endocytosis and several metabolic pathways.

TGF-B signaling
ErbB signaling
Heparan sulfate
biosynthesis

Figure 5. Enrichment of genes that were targeted by differentially expressed miRNAs in
cumulus an mural granulosa cells (CGC and MGC, respectively) for pathway terms
according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The data shown is
based on Table 3 in publication II. The oocyte is depicted in yellow, CGC in pink and MGC
in green. The pathways targeted in both cell populations are presented in grey box.

3.2.Novel miRNAs and their targets.

Rapid development of deep sequencing technology enables the identification of
novel RNA molecules. Using small RNA-seq method, we detected nine novel
miRNAs (unannotated according to miRBase version 18, Table 4 in Publication II),
four of which were expressed at sufficiently high level to be confirmed by real-time
PCR (Supplemental Figure 2B in publication II).

Out of the four novel miRNAs hsa-miR-548ba and hsa-miR-7973 are of
special interest due to their predicted location of transcription origin from FSHR and
aromatase gene introns, respectively (Figure 1 in publication III). Taking into
account the fact that the samples under study were obtained from women after COS
performed with rFSH, there is a possibility that the expression of these miRNAs
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becomes detectable only in case of strong over-expression of their host genes and
these might not be observed from samples obtained during unstimulated cycles.
However, we have detected hsa-miR-548ba also in human endometrium samples
(Saare et al., 2014), a tissue well known to express FSHR (La Marca et al., 2005),
confirming the validity of our finding.

Secondly, based on the current knowledge, we cannot declare the
dependence of hsa-miR-548ba and hsa-miR-7973 expression on their host genes.
Further studies are needed to validate the biogenesis pathway of these two miRNAs:
whether they are generated by splicing machinery as mirtons, spliceosome-
independently as simtrons, or by RNA polymerase II or III from independent
promoters according to the canonical pathway as depicted in Figure 3 (Monteys et
al., 2010). We detected a few reads from poly(A) RNA-seq experiments in the locus
of hsa-miR-548ba hairpin expression in two out of the six samples analyzed (Figure
6). It is, however, too difficult to predict the pri-miRNA transcript due to such a low
coverage. We did not get a single read from poly(A) RNA-seq experiment
overlapping hsa-miR-7973 locus (data not shown). As only one time-point was
analysed in the current study, we hypothesize that the peak of expression of these
two novel miRNAs could appear in an earlier stage of folliculogenesis, possibly
coinciding with the expression of their host genes FSHR and aromatase in secondary
follicles (Findlay et al., 1999, Oktay et al., 1997).

MGC1 Coverage

MGC1 Reads [ TR T TR AT
VIR W i A

MGC2 Coverage

MGC2 Reads LU T T - }:m: }:H :: :H
N

i ! TR TS T W]
e T R R
1 K200 R0 i

L

RefSeq Genes FSHR
hsa-miR548ba -
hsa-miR-548ba hairpin e

Figure 6. FSHR gene intron region depicting continuous coverage of paired-end reads from
poly(A) RNA-seq that overlap with hsa-miR-548 hairpin and mature miRNA loci (depicted
as blue rectangles in the bottom panel). Low coverage was detected only in two MGC
samples (MGC1 in top and MGC2 in the middle panel). Paired-end reads are depicted as
coloured rectangles connected by a thin line. The figure was created in Integrative Genomics
Viewer version 2.3.23.

Hsa-miR-548ba is of interest due to its predicted targets being activin A receptor
type IIB (ACVR2B) and bone morphogenetic protein receptor type 11 (BMPR2).
Activin signalling is well known to increase FSHR expression (Minegishi et al.,
1999, Myers et al., 2008), therefore finding a miRNA from FSHR intron that may be
co-expressed with its host gene proposes a novel negative feedback loop in
folliculogenesis. BMPR?2 is a receptor component for the oocyte secreted factors
GDF9, BMP15 or their heterodimer, which have important roles in several aspects
of folliculogenesis: cumulus expansion, progesterone production, and oocyte meiotic
maturation (reviewed in Gilchrist et al., 2008). As the hsa-miR-548 miRNA family
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is relatively new in evolution, confirmed only in primates (Piriyapongsa et al.,
2007), it is highly possible that regulation of the described pathways by miRNAs is
species-specific.

4. Cytokines and apoptosis markers in follicular fluid (Publication
ITI, unpublished results)

FF filling the antral cavity contains a mixture of proteins and metabolites infiltrated
from plasma or secreted by follicular cells (Rodgers et al., 2010). We were further
interested in a panel of cytokines and apoptosis markers that have been shown to
possess several ovary-specific roles besides the ones investigated in relation to the
immune system (Table II). The studied protein markers include 8 pro-inflammatory
cytokines: IL-1B, IL-6, IL-18, IFN-a, IFN-y, TNF-o, IL-12, and IL-23; anti-
inflammatory cytokine G-CSF; 5 chemokines: MIP-1a, MIP-13, MCP-1, RANTES,
and IL-8; as well as 2 anti-apoptotic markers sAPO-1/FAS and CD44v6. As
mentioned earlier in the thesis, most of these proteins have alternative roles in
different tissues, therefore IL-6, G-CSF and TNF-o may also be added to the
category of apoptotic markers, and CD44v6 is well studied for its role in promoting
migration in cancer cells (reviewed in Heider et al., 2004).

To measure the concentrations of the above-mentioned proteins from small
volumes of FF obtained from 153 IVF patients, we used a bead-based cytometric
assay from Bender MedSystems (Young et al., 2008). The particular technology
uses microbeads of variable diameter and fluorescence intensities allowing highly
multiplexed analysis. Each type of bead is coated with a specific capturing antibody
for the antigen of interest. After incubation of the beads with a biofluid sample,
detection antibodies are included to the mix that add a second fluorescent label to
the system. The beads are then analysed by flow cytometry. The bead size and
intensity of fluorescence at 612 nm was used to distinguish between the different
analytes and phycoerythrin signal at 575 nm was used for discriminating between
empty beads and beads that carry the antigen. The number of antigen-coated beads
was counted by the flow cytometer and protein concentrations were calculated
according to standard curves. This technology has been shown to give more
sensitive signals when compared to standard ELISA protocols due to the use of
fluorescent signal over the colorimetric one. In addition, smaller volumes of body
fluids can be used due to the multiplex nature of the test and the increased surface
area of microbeads compared to the standard multi-well plates (Young et al., 2008).

All significant results are graphically presented in Figure 1 of publication III
and in Table II of the current thesis. We found no associations between IL-6, G-
CSF, MCP-1 and RANTES concentrations in the collected FF samples and the
studied parameters.
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4.1.Markers correlating with the etiology of infertility

Studies regarding the follicular milieu have not been widely carried out for all
etiologies of infertility. The peritoneal fluid samples in case of endometriosis and
hydrosalpingeal fluid in case of TFI are much more frequently under investigation.
Therefore our study is one of the few aiming to find protein markers descriptive of
various etiologies of infertility at the follicular level, potentially giving a further
insight into the molecular mechanisms that may be altered in these situations.

Unexplained infertility was associated with lower levels of CD44v6 when
compared to the reference group with male factor infertility, and lower IL-18
concentration, when compared to the TFI group. IL-18 appeared as a positive
marker for IVF pregnancy, as discussed later. It is known that deviations from
normal IL-18 signalling in the follicle leads to a diminished degree of COC
expansion and reduced number of ovulated ova (Tsuji et al., 2001). Additionally, FF
IL-18 has also been correlated with the number of retrieved oocytes after COS
(Gutman et al., 2004). Based on the background information the IL-18 signalling
pathway could play an important role during folliculogenesis, perturbations of which
may lead to infertility.

The FF of PCOS patients contained higher levels of MIP-1a and CD44v6.
The elevated level of MIP-1a may refer to the disturbed pro-inflammatory milieu in
the follicles of PCOS patients. This chemokines is normally secreted at the site of
injury, which is expected in case of tissue re-organisation prior to ovulation
(reviewed in Maurer et al., 2004). For some unknown reason in PCOS patients the
level of this chemokines is significantly higher than in other patient groups, a result
that cannot be well interpreted with the knowledge currently available. In the bovine
model, MIP-1a and one of its receptors CCR1 was shown to be up-regulated in the
granulosa cells during follicle expansion (Skinner et al., 2008). The authors suggest
that this chemokine may have therefore additional inflammation-independent roles
during folliculogenesis, perhaps involved in inter-cellular communication.

Women with endometriosis were distinguished by increased IL-23 levels in
their FF. The same cytokine has been previously shown to be elevated in the
peritoneal fluid samples of endometriosis patients (Andreoli et al., 2011). IL-23 has
been linked to several autoimmune diseases, an aspect that has been under close
surveillance for endometriosis as well (reviewed in Eisenberg et al., 2012). This pro-
inflammatory cytokine showed also other unfavourable associations regarding
fertility in our study: higher concentrations of IL-23 were measured in the FF of
smoking women as well as in samples obtained from women with secondary
infertility. The latter aspect may also revert to the direction of autoimmune causes of
infertility, but this claim needs further validation.

Additionally, the FF levels of IFN-y and TNF-a were higher in the
endometriosis group when compared to women with TFI, the latter result has been
previously shown by others (Falconer et al., 2009). In addition, a functional
experiment has demonstrated that MGC isolated from endometriosis patients secrete
significantly higher levels of TNF-a in culture (Carlberg et al., 2000). Perturbations
in the IFN-y pathway have also been acknowledged previously in case of
endometriosis: it has been shown that cells from endometriotic foci are considerably
more resistant to IFN-y-induced apoptosis compared to normal endometrial cells
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(Nishida et al., 2005). Disturbances in survival and apoptosis pathways may
therefore be another background mechanism in endometriosis patients at the
follicular level.

The effect of TFI on processes involved in folliculogenesis has not been
extensively studied. However, our results suggest that women with TFI are not
completely comparable with women undergoing IVF due to the infertility of their
partner. In fact, the TFI group of women was distinguished by the decreased
follicular levels of IL-1p and IFN-a, when compared to the male factor infertility
group. Considering the various roles attributed to these two cytokines in
folliculogenesis and steroidogenesis (see Table II), it is clear that the TFI group of
women need to be studied in further detail regarding their follicular environment.

Two markers, sAPO1/FAS and CD44v6 that are known as anti-apoptotic
proteins were both elevated in the FF of smoking women. This result is not
surprising, as it has previously been determined that the oxidative stress level in the
follicle is markedly elevated (Paszkowski et al., 2002) and the DNA in CGC
contains increasing number of breaks if the woman is a regular smoker (Sinko et al.,
2005). Therefore the anti-apoptotic proteins are expectedly over-expressed in these
follicles to counterbalance the stress evoked by the metabolites of cigarette smoking.

4.2 Markers correlating with stimulation and IVF outcome

IL-12 was the only cytokine in our study that correlated with COS efficiency and
embryo quality. The concentration of IL-12 in FF positively correlated with the
number of fertilized oocytes and the proportion of good-quality embryos of a
patient. Interestingly, a lot of controversial information regarding this cytokine is
available in publications by other research groups. Several of those associate the
high expression of IL-12 with a negative outcome in IVF: highly fragmented
embryos (Ledee et al., 2008) or embryo implantation failure (Bedaiwy et al., 2007,
Gazvani et al., 2000). Ostanin et al. concluded in their study that oocyte immaturity
and low morphological quality coincide with multicomponent cytokine deficit, IL-
12 being one of the components (Ostanin et al., 2007). Vujisic et al., on the other
hand, reported higher levels of IL-12/IL-23 common subunit p40 in FF samples that
contained an oocyte (Vujisic et al., 2006). All these contradictory results refer to the
need for further validation of IL-12 as an oocyte or embryo quality marker.

Three cytokines were associated with achieving clinical pregnancy after
COS and IVF procedure. MIP-1B is a chemokines that has been confirmed as a
positive marker for clinical pregnancy also by other researchers (Ostanin et al.,
2007). It is possible that the inflammatory milieu at the pre-ovulatory stage is
providing an optimal environment for the oocyte maturation, fertilization and further
embryo development.

IL-8 and IL-18 appear to provide a longer lasting favourable background for
a positive outcome for IVF, as these cytokines positively correlated with parity, as
well as with positive clinical pregnancy outcome. The importance of IL-18 was
already discussed above, as the diminished concentration of this cytokine in FF
described the group of women with unexplained infertility. In addition, IL-18 levels
in FF correlated with the number of foetuses detected by ultrasonography in case of
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multiple embryo transfer, confirming the positive influence of this cytokine on the
IVF outcome.

IL-8 correlated with serum progesterone levels at the day of OPU, this steroidogenic
effect has been confirmed also in the bovine model (Shimizu et al., 2012). It has also
been reported that IL-8 in MGC is stimulated by FSH and LH (Runesson et al.,
2000). Therefore it is safe to conclude that IL-8 plays an important part in the
luteinization of granulosa cells. Our gene expression results showed that IL-8 is
expressed at significantly higher levels in MGC compared to CGC, meaning that
luteinization processes are enhanced by MGC via an autocrine loop (Figure 2 and
Table 2 in publication III). Another role of IL-8 in the growing follicle is that of a
pro-angiogenic factor (Murayama et al., 2010). Our data revealed a positive
correlation between IL-8 expression and the follicle diameter, which coincides well
with functional results demonstrating that IL-8 is up-regulated upon follicular
hypoxia in human (Yoshino et al., 2003).

4.3.Cytokines as intercellular signalling molecules in the human
ovary

Our results regarding the measurements of various cytokines and anti-apoptosis
markers in the FF that demonstrated distinct profiles regarding the etiologies of
female infertility, the outcome of COS and that of the IVF procedure were described
above. The number of obtained statistically significant associations confirms the
high importance of these markers in follicle physiology. It is not straightforward to
confirm the source of the cytokines that were measured from the FF: leukocytes in
the theca layer, theca cells themselves and both types of granulosa cells may be
responsible for their production and secretion.

As there is not much knowledge about the role of cytokines in the
intercellular communication, we were interested, which cytokines, their receptors
and signalling modulators (if any) are differentially expressed between MGC and
CGC. Statistically significant differential expression would give preliminary
evidence that communication between these two sub-populations of granulosa cells
exists via the described mediators. In the current study, data obtained from RNA-seq
experiments (Publication II) is presented, because the MGC population used in the
experiment was depleted of CD45+ leukocytes and the nature of the data also allows
to study differential exon usage. The results are presented in Table II1.

As already noted earlier (Publication I), the majority of the studied immune
system components are more abundantly expressed in MGC (also represented in
Figure 2 and Table 4 in publication III). As a few examples, IL-8 and both of its
receptors are over-expressed in MGC, as are three of the four chemokines receptors
involved in the binding of the studied ligands. However, the only chemokine with
differential expression was RANTES that demonstrated higher levels in MGC, while
other chemokines are equally expressed in MGC and CGC. Also IL-12 system
containing a ligand, receptor and co-receptor demonstrated an autocrine loop in
MGC in our study. IL-12A over-expression in MGC was below statistical
significance in the RNA-seq study, but the result was statistically significant in the
real-time PCR experiments (Figure 2 and Table 4 in publication III).
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The IL-1B system represents a good example of communication between
MGC and CGC populations. Although IL-1f is more strongly expressed in MGC,
the secreted ligand seemed to have a different effect on MGC compared to CGC,
since the IL-1 receptor subtypes expressed in these cell populations differ
significantly: ILIR1 is more abundantly expressed in CGC, while IL1R2 conveys
IL-1P signals into MGC. It is well known that IL1R2 lacks the cytoplasmic domain
of IL1R1 and therefore acts as a decoy receptor inhibiting the IL-1 signal (Colotta et
al., 1993, McMahan et al., 1991).

In addition, as mentioned earlier, the antagonist for IL1 receptors, IL1RN, is
differentially spliced, when MGC and CGC are compared, meaning that the IL-1
signalling pathway is modulated differently in the two cell types. However, the full
meaning of this interesting result needs to be revealed by functional studies.

Table III. Differential gene expression and alternative splicing of studied markers, their
receptors, co-receptors and signalling modulators at mRNA level in human granulosa cells.
Transcripts depicted in green were more abundantly expressed in MGC, those in red were
over-expressed in CGC, and those in blue express different mRNA isoforms in MGC than in
CGC. Transcripts in black were not differentially expressed. Statistical significance
FDR<0.05 was used as a cut-off.

Marker Receptor Co-receptor Modulator
IL-1B [L-1R1 or IL1R2 IL-1RAP IL-1RN
IL-6 IL6R IL6ST
IL-12A and
IL-12B IL12RBI IL12RB2
IL-18 IL-18R1 IL-18RAP IL18BP
IL-23 and
1L-12B IL12RBI IL23R
IFN-o* IFNARI IFNAR2
IFN-y IFNGRI IFNGR2
TNF-a TNFR1 or TNFR2
G-CSF CSF3R
IL-8 CXCRI1 or CXCR2
MCP-1 CCR2
MIP-1a CCRI1 or CCR5
MIP-18 CCRI1 or CCR5
CCRI1 or CCR3 or
RANTES CCR5
FASLG FAS

*Refers to IFNA1 mRNA isoform.

Regarding IL-18 ligand-receptor system, it is surprising to find the ligand-
binding receptor and the signal-transducing co-receptor expressed in different cell
types. A possible explanation for such a result is that we have caught a time-
window, where the expression levels of either of the receptors start to shift from one

44



granulosa cell type to the other. Time-lapse experiments are necessary to reveal the
rearrangements in the IL-18 signalling system and to provide a clearer answer.

Data in Table 4 in publication III clearly reveals that it is not the equal
expression levels between MGC and CGC, but rather high inter-patient variability in
the transcription levels of several cytokine genes that rule out reaching the statistical
significance. Good examples are TNF-a, MIP-1a and MIP-15 in MGC and IFN-y in
CGC. These cytokines serve as excellent cases for further study, as their expression
in granulosa cells is probably influenced by the physiological background of the
woman. In the current study, we already revealed that TNF-a and IFN-y in the FF
are up-regulated in IVF patients with endometriosis, MIP-1a is more abundant in the
FF of women with PCOS and MIP-1B correlates positively with IVF outcome
(Figure 1 in Publication III). Interesting future prospects would be to study the
functional roles of these cytokines in follicle culture or in animal models to better
understand, how cellular signalling in the ovary is modulated by the cytokines
according to different etiologies of infertility and follicular physiology.
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CONCLUSIONS

The current thesis reached the following main conclusions:

The results demonstrated that approximately 15% of the polyadenylated
transcriptome is differentially expressed between MGC and CGC isolated
from hormonally stimulated patients. MGC was distinguished from CGC by
the up-regulation of immune system related pathways and transcription
factor families NR4A and EGR that are associated with the expression of
gonadotrophin receptors and genes involved in steroidogenic pathways.
CGC was characterized by the enrichment of transcripts of signalling
pathways involved in inter-cellular interactions: extra-cellular matrix
proteins and corresponding receptors, TGF-f family members and solute
carrier family gene products involved in inter-cellular molecular transport.
Over 1,000 genes produced different alternatively spliced mRNA products,
when MGC and CGC were compared, including genes in steroidogenic,
insulin-like growth factor signalling, hypoxia, cell differentiation and
cumulus expansion pathways.

The two granulosa cell types were not distinguishable by the most
abundantly expressed miRNAs, however, ninety miRNAs with moderate
expression levels were differentially expressed. The predicted miRNA
targets suggest that a large proportion of miRNA-regulated pathways
overlap between MGC and CGC. However, miRNAs that were differentially
expressed in MGC specifically targeted genes involved in cellular adhesion
and various metabolic pathways.

Nine previously unannotated miRNAs were discovered. Hsa-miR548ba in
the FSHR gene intron and hsa-miR-7973 in the aromatase gene intron
provide extended interest due to the roles of their host genes in
folliculogenesis. Two of the predicted targets for hsa-miR-548ba are the
TGF-B receptor family members ACVR2B and BMPR?2 that play crucial
part in the oocyte-cumulus communication leading to cumulus expansion
prior to ovulation.

Twelve of 16 cytokines and apoptosis markers investigated in the FF
samples of IVF patients are useful in distinguishing women according to the
etiology of infertility, and the outcome of ovarian stimulation and IVF. The
level of IL-12 positively correlated with the overall embryo quality of a
patient. The concentrations of MIP-1p, IL-8 and IL-18 in the FF were
significantly higher in women that achieved clinical pregnancy after IVF.
The presented data supports the involvement of the majority of the studied
cytokines in inter-cellular signalling within or between the granulosa cell
populations. The ligands and receptors of 1L-12, IL-23, IL-8 and RANTES
signalling pathways are significantly over-expressed in MGC, referring to
autocrine signalling loops within this cell layer. At the same time, the IL-1
pathway is a good example as a mean of communication between MGC and
CGC. However, functional experiments are needed to reveal the
mechanisms, how these pathways are affected by different etiologies of
infertility or other physiological parameters of the woman.
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APPENDIX I
Analysis of differential exon usage with R/Bioconductor package

DEXSeq
Data was generated from the same samples and according to the protocol described
in Publication II.

In brief, total RNA was extracted from CGC and MGC, enrichment for
polyadenylated RNA was performed and sequencing was carried out on Illumina
HiSeq2000 platform with 101 base pair long paired-end reads obtained. TopHat
algorithm was used for the alignment of reads to Ensembl human genome version
GRCh37 and for splice-junction mapping. Analysis of differential exon usage was
performed by R/Bioconductor DEXSeq algorithm (Anders et al., 2012).

DEXSeq algorithm creates counts for each exon determined in the reference
genome from user sequencing data. If the exons of alternatively spliced isoforms
overlap, they are divided into “counting bins” of overlapping and non-overlapping
regions (see figure below). Sequencing reads generated by user are then allocated
into these “counting bins” (see Supplementary Figure 1). Thereafter negative
binomial generalized linear model is used for detecting differentially expressed
exons between samples. The results are normalized according to the total library size
and overall differential expression of the gene.

transcript 1 | 1 |—
transcript 2 | 1 I I 2 |

counting bin [ 1 3 14 - 5 1]

Supplementary Figure 1. Principle of creating “counting bins” from multiple potential
transcript isoforms of a gene by the DEXSeq algorithm. An artificial “counting bin” is
created for regions, where the known exons of different transcripts overlap (bin number 2 in
the bottom row).
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ABSTRACT: Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles gran-
ulosa cells divide into two distinct populations of mural and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the
oocyte, respectively. Both cell types, with the mural compartment in excess, contribute to the floating granulosa cell (FGC) population in
the follicular fluid. The aim of this study was to compare the transcriptomes of FGC and CGC in stimulated antral follicles obtained from
19 women undergoing IVF—ICSI procedure. FGC were obtained from follicular fluid during the follicle puncture procedure and CGC
were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix
transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4480
were differentially expressed (g-value < 10™*) and 489 showed >2-fold difference in the expression level with 222 genes up-regulated in
FGC and 267 in CGC. The transcriptome of FGC showed higher expression of genes involved in immune response, hematological
system function and organismal injury, although CGC had genes involved in protein degradation and nervous system function up-regulated.
Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not
been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular
biology that will help to identify molecular markers for oocyte and embryo viability in IVF.

Key words: Affymetrix / gene expression / gene ontology / human granulosa cells / IVF

Introduction

The oocyte, intra-follicular granulosa cells, and theca cells that sur-
round the follicle are responsible for the dynamics of ovarian function
including the balance of signals necessary for follicular and oocyte
maturation and subsequent ovulation. In the mammalian follicle, gran-
ulosa cells surrounding the oocyte divide into two distinct cell popu-
lations by the antral stage of folliculogenesis. The cumulus granulosa

cells (CGC) are in physical contact with the oocyte through adhesive
and gap junction transzonal projections (Albertini et al., 2001) and col-
lectively form the cumulus-oocyte complex (COC). The CGC in this
complex are responsible for the metabolism of glucose and the supply
of pyruvate for oocyte energy production (Biggers et al., 967; Russell
and Robker, 2007). In return, the oocyte provides mitogenic stimu-
lation and controls the differentiation and expansion of CGC, a
process that is necessary for post-ovulatory COC transport in the

TThese authors contributed equally to this work.
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oviduct and sperm capacitation (McNatty et al., 2005; Russell and
Robker, 2007). In the antral follicle, the mural granulosa cells
(MGC) are situated in a distinct environment from the CGC
forming the inner lining of the follicular basal lamina. MGC are the
first intra-follicular targets of the ovulation-inducing endocrine signals
in the pre-ovulatory follicle, abundantly expressing the luteinising
hormone receptor (LHCGR) (Peng et al., 1991). In contrast to the
population of CGC, MGC are markedly influenced by molecular sig-
nalling from the theca cell layer and less so by the oocyte-secreted
factors (Erickson and Shimasaki, 2000). A proportion of MGC are
shed from the follicular wall into the follicular fluid and with a minority
of CGC constitute the compartment of floating granulosa cells (FGC),
also referred to as antral or luteinized granulosa cells.

Studies on transcripts expressed at a fixed time point provide an
opportunity to determine the cell function in a distinct biological
background. The signalling pathways involved in folliculogenesis and
ovulation make up a complex network between the different
ovarian cell types. Therefore, single gene expression experiments
have been replaced by large-scale transcriptome studies that
enable a more comprehensive and detailed analysis of active genes
and their networks. Extensive work has been done to reveal the
differential gene expression patterns of mammalian follicular cells iso-
lated at different stages of their maturation (Diaz et al., 2007; Skinner
et al., 2008). For human studies, ovum pick-up (OPU) in IVF pro-
vides an opportunity to collect FGC from the follicular fluid as
well as CGC from the COC without additional inconvenience for
the patient. However, the isolation of primary cells inevitably
causes contamination with other tissues up to a variable degree
(Beckmann et al., 1991; Quinn et al, 2006) and thus the results
must be dealt with certain reservation when comparing studies
using different cell purification methods.

OPU is performed 36 h after human chorionic gonadotrophin
(hCG) administration, which is comparable to the endogenous lutei-
nising hormone (LH) surge, and provides cells that correspond to
the pre-ovulatory stage of folliculogenesis. Previous gene activity
studies on either FGC or CGC obtained during IVF have shown cor-
relative gene expression patterns for the ovarian stimulation regimen
(Perlman et al., 2006; Grondahl et al., 2009), embryo cleavage rate
and morphology (McKenzie et al., 2004; van Montfoort et al.,
2008) and embryo viability (Feuerstein et al., 2007; Hamel et dl.,
2008). A report on pathway interactions between the human
oocyte and surrounding CGC is available (Assou et al., 2006) as
well as the transcriptome profiles of mouse COC during the differ-
ent maturation stages (Hernandez-Gonzalez et al., 2006). However,
a comparative study of floating and cumulus granulosa cell popu-
lations that are physically adjacent, yet functionally discrete, has
not been provided.

Our current study describes the differential transcriptome pro-
files of FGC and CGC collected during follicle puncture from
recombinant follicle-stimulating hormone (FSH) and gonadotrophin-
releasing hormone (GnRH) antagonist-stimulated female infertility
patients undergoing IVF with intracytoplasmic sperm injection
(ICSI). Our study approach provides the first genome-wide over-
view of the specific features of FGC and CGC transcriptional pro-
files. In addition to being of interest for basic science in the field of
follicular biology, our results may also be useful for identifying the
molecular markers for oocyte and embryo competence as an

approach towards improved embryo selection and IVF pregnancy
success.

Materials and Methods

Patients and stimulation protocol

A total of 19 women, aged 32.2 + 3.8 years (mean =+ standard deviation),
undergoing IVF—ICSI and embryo transfer at the Nova Vita Clinic (Tallinn,
Estonia) in the spring of 2008 were enrolled. All patients had been suffer-
ing from infertility for at least | year before entering the study. The reasons
for the couple’s infertility were the following: eight male factor infertility,
two polycystic ovarian syndrome (PCOS), two tubal occlusion patients,
one with endometriosis and six cases of combined causes for infertility.
In addition to male factor infertility these six latter patients were diagnosed
for the following female infertility associated diseases: one endometriosis
and tubal occlusion, two endometriosis, one tubal occlusion, one PCOS
and one autoimmune thyroiditis. [VF—ICSI was chosen for patients due
to male factor infertility or previous oocyte fertilization failure using the
conventional IVF. The study was approved by the Ethics Committee of
the University of Tartu and informed consent was obtained from all
participants.

Ovarian hormonal stimulation was conducted according to the GnRH
antagonist (Cetrotide, Merck Serono, Geneva, Switzerland) protocol
with the administration of recombinant FSH (Gonal-F, Merck Serono, or
Puregon, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA).
In average, 1667.1 +413.21U of FSH was used during the 9.3 + 0.5
days of ovarian stimulation. All patients underwent OPU after 36 h of
hCG administration (Ovitrelle, Merck Serono) with the puncture of fol-
licles > 15 mm in size. The total number of oocytes retrieved from each
patient was 13.2 +5.6, out of which 1224+ 4.7 were considered
mature at metaphase |l stage. ICSI was used to fertilize the oocytes 4—
6 h after OPU with 69.0% of oocytes fertilized. Up to three (1.9 4+ 0.5)
embryos were transferred using second (n= 17) or third (n=2) day
embryos, resulting in 26.3% (n=>5) of clinical pregnancies per embryo
transfer with two of them being twins. One additional clinical pregnancy
was achieved following frozen embryo transfer.

Granulosa cell collection: CGC and FGC

FGC were obtained from follicular fluid of patients after OPU and the
manual removal of COC and CGC aggregates devoid of the oocyte.
The fluid from all follicles of a patient was pooled, centrifuged at 450g
for 10 min, and the supernatant was removed. The cells were separated
on a 50% density gradient of PureSperm 100 (Nidacon, Mdindal,
Sweden) in Universal IVF Medium (MediCult, Jyllinge, Denmark), washed
three times in Universal IVF Medium at 37°C, lysed with Qiagen
RNeasy Mini kit lysis buffer (Qiagen, Hilden, Germany), and stored in
liquid nitrogen for future use.

CGC were collected 4 h after OPU during oocyte denudation lasting up
to 5min with type IV-S hyaluronidase extracted from bovine testes
(Sigma-Aldrich, St-Louis, MO, USA) and diluted in Sperm Preparation
Medium (MediCult). The CGC from all oocytes irrespective of their
maturity were pooled and centrifuged at 450g for 5 min, the supernatant
was discarded, and the cells were lysed and stored as described above.

RNA preparation and quality evaluation

Total RNA from CGC and FGC from all 9 patients was extracted using
the RNeasy Micro and RNeasy Mini Kit (Qiagen), respectively, according
to the manufacturer’s instructions. The quantity and purity of each RNA
sample was assessed by spectrophotometer (NanoDrop ND-I10,
Thermo Fisher Scientific, Wilmington, DE, USA). The integrity of the
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RNA was analysed using the RNA 6000 Nano Kit and RNA 6000 Pico Kit
with the 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA). All samples were
of high quality with the absorbance wavelength ratio (A260/A280) of
>1.9 and the RNA Integrity Number of >8.

Microarray analysis

For double-stranded cDNA synthesis, 0.3 pg of total RNA was used as a
template. Total RNA was reverse transcribed using T7-(N)g primers (WT
cDNA Synthesis and Amplification Kit, Affymetrix, Santa Clara, CA, USA).
cRNA was generated from the double-stranded cDNA template through
in vitro transcription reaction and 10 g of cRNA was reverse transcribed
into cDNA using random primers (WT cDNA Synthesis and Amplification
Kit, Affymetrix). In all samples, 5.5 g of ssDNA was fragmented by incu-
bation with a mixture of UDG and APE| restriction endonucleases, bioti-
nylated via a terminal transferase reaction, and hybridized to the
Affymetrix GeneChip Human Gene 1.0 ST Array (Affymetrix) for 16 h
at 45°C and 60 rpm. Subsequently, each chip was washed and stained
with the Affymetrix GeneChip Fluidics Station. Stained arrays were
scanned at 532 nm with an Affymetrix GeneChip Scanner 3000, which
generated CEL files for each chip. All protocols were followed according
to standard Affymetrix instructions. The microarray probeset data are
available at the Gene Expression Omnibus public repository (http://
www.ncbi.nlm.nih.gov/geo) with accession number GSEI8559.

Data processing and statistical analysis

After the images were processed using the Affymetrix Microarray Suite
5.0, the CEL file data were further analysed and assessed for quality
control with the Affymetrix Expression Console software. For probeset
summarization the Robust Multichip Analysis (RMA) was used. The nor-
malized, background-subtracted and modelled expression data were
further analysed in the statistical software package R (http://www
.r-project.org/) and Bioconductor without further transformation (lhaka
and Gentleman, 1996). A paired t-test and the R command t-test
(signal—tissue, paired = T) were used to analyse the differences in tran-
script expression levels of the cell populations. Correction for multiple
testing was performed employing the ‘qvalue’ package and the g-values
for each probeset were computed. In addition, we used ‘limma’ package
to construct a volcano plot and heat map.

Using the Ingenuity Pathway Analysis (IPA) Software (Ingenuity Systems
Inc, Redwood City, CA, USA), we performed the functional annotation of
expression data. For pathway analysis, the probesets were filtered accord-
ing to their P-values and grouped by the fold change. Two sets of genes
were uploaded: one set contained the top 100 genes up-regulated in
the CGC group and the second set contained the top 100 genes
up-regulated in the FGC group. For clarification: transcript up-regulation
in one cell population, as mentioned in this manuscript, automatically
refers to the down-regulation of the same transcript in the other popu-
lation in comparison. All genes in these sets had P-values from paired
t-test < 107> and were therefore considered statistically significant.

cDNA synthesis and mRNA quantification by
real-time PCR

For microarray validation, samples from 10 additional patients not included
in the Affymetrix GeneChip Array analysis were used. These women, aged
34.3 + 4.3 years, were enrolled in IVF cycle due to the following infertility
etiologies: five patients with male factor, three with tubal occlusion and
two with combined tubal occlusion and male factor infertility. The stimu-
lation was conducted as described above. The length of recombinant FSH
usage was 9.8 + |.| days and the amount used was 2177.5 + 987.6 |U.
The total number of collected oocytes was 14.] + 4.7, out of which

10.9+4.2 were considered mature and 54% were fertilized by ICSI.
One (n=1) or two (n=19) embryos (1.9 + 0.3) were transferred on
Day 2 (n=29) or 6 (n=1). Clinical pregnancy rate was 20% and one
additional pregnancy was achieved after frozen embryo transfer from
the same IVF cycle.

Five hundred nanograms of total RNA from FGC and CGC samples
were reverse-transcribed to cDNA using the RT? First Strand Kit (SABios-
ciences, Frederick, MD, USA) according to the manufacturer’s protocols.
RT? SYBR Green/ROX qPCR Master mix (SABiosciences), 400 nM of
primers (Sigma-Aldrich), and /200 of the cDNA synthesis mixture was
used for real-time PCR amplification of the mRNA from the following
genes: FGG, NTS, FOSB, DUSP6, TNC, ULBPI, RYR2 and EDIL3.
GAPDH amplification was used as an endogenous control. All primer
sequences are presented in Supplementary Table SI. The reactions were
performed on 7500 Real-time PCR System (Applied Biosystems, Foster
City, CA, USA). The results were analysed using the 7500 Software
(Applied Biosystems) and the AACt relative quantification method. PCR
efficiency for all primer pairs was determined using the standard curve
method of serial ¢cDNA template dilutions and taken into account
during relative quantification calculations. The fold differences in mRNA
expression levels between FGC and CGC samples were converted and
presented in log, scale. Paired student’s t-test was used to analyse the
difference in the mean relative gene expression levels of FGC and CGC
samples and statistical significance of P < 0.05 was acquired for all
transcripts.

Results

Paired samples of CGC and FGC populations isolated from 19
patients showed distinct gene expression profiles. Out of 28 869
analysed genes, 4480 showed a difference in mRNA expression
level with a g-value < 107* Out of these, 489 genes were differen-
tially expressed by >2-fold absolute difference with 222 genes
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Figure | Volcano plot depicting the fold differences in gene
expression levels between the CGC and FGC. Coloured points
refer to top 100 transcripts according to fold change (blue diamonds)
and P-value (red circles).
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Figure 2 Heat map and cluster dendrograms of gene clusters dif-
ferentially expressed between CGC and FGC populations.
Up-regulated genes are marked in red and down-regulated genes in
blue.

up-regulated in FGC and 267 genes in CGC. A volcano plot of the
combined expression data of all transcripts grouped by fold differ-
ence and P-values is depicted in Fig. |. In addition, the FGC and
CGC samples from each patient were analysed separately for tran-
scripts that had statistically significant differences, resulting in two
discrete hierarchical clusters on a heat map (Fig. 2). We also per-
formed statistical analyses whereas omitting the eight patients that
had been diagnosed with additional female infertility associated dis-
eases other than tubal occlusion. The list of differentially expressed
genes did not change, however, the statistical significance decreased
slightly due to the smaller sample size (data not shown).

One hundred genes with the highest fold difference in expression
levels between the FGC and CGC samples (Supplementary Table SlI)
were used for further study on cell population specific gene ontology
profiles. Comparing the two cell populations, transcripts from the
FGC and CGC groups were up-regulated 2.5—14.9-fold and 2.8—
2l.1-fold in absolute values, respectively. The aforementioned
genes were categorized by molecular function ontology using the
IPA Software and grouped into signalling networks. Network enrich-
ment was assessed by the IPA network score. Four networks with
the highest network scores for FGC and CGC are presented in
Table I. A large portion of transcripts up-regulated in FGC are
involved in immune response, hematological system function and
organismal injury, although transcripts that predominate in the

Table I List of cellular networks generated by the IPA Software

Molecules in network

(A) Floating granulosa cells

BHLHB2, BTG2, CCL20, CITEDI, DUSPé, EGRI, EGR2, EGR3, FOSB,
HDC, ILI8, LYZ, MSRI, NR4A|, NR4A2, NR4A3, NTS, OSBPL6, SHC4,
SOCS3, TRIB

A2M, ARHGDIB, AXUDI, CYBB, DHRS9, ENPP2, FGG, GM2A, ILIB,
KCNMAI, NFKBIZ, NRID|, PLD2, PPBP, PPMIL, PSMB9, SI00A8,
TREMI, UCP2, VCAMI

ANPEP, AOXI, C40RF7, CALCRL, DOCKS8, ENPP3, EREG, FGL2,
GPRI109B, HLA-DPAI, LAPTM5, MBOATS, MCC, MMP|0, MOCOS,
PLEK, RARRES2

CI30RFI5, CTSC, ENPP2, FREM2, GM2A, HIST2H2BE, HSD 1781, ID2,
ID4, KLF4, LYVEI, RGS18, TMEM37, TNFRSF2|

(B) Cumulus granulosa cells
ADAMI2, DLX5, DOKS, EPHBI, FBLNS, FBXO32, FOXGI, GFPT2,
GSTAI, IGFBPS, ITGB3, LIPG, LTBPI, MMPI6, RASDI, RGS4, RIMS2,
THBSI, TIMP3, TNC, ULBPI, ULBP3, VCAN
ABLIM3, ANKRDI, BDNF, BEX|, CACNAIC, CBLB, DTNA, E2F7,
FABP3, GABRAS, GAL, GAP43, GRIN2A, IL7R, LRAT, MCAM, NDRG2,
NEDD4, RYR2, TXNIP
CORO2A, DUOX2, EDIL3, GLIPRI, GRIK2, HMCNI, IL7R, KLF12,
MCAM, NDP, NT5E, PEG10, SLC38AI, SMOC2, TSPAN7, VCAN
ALOXS, B3GALT2, B4GALTS, BICCI, CTSK, DAAMI, EXTI, FOXGI,
HTRAI, MAOB, NFIB, SCN9A, SLC7AI |, TNC, VCAN

Score  Focus Top functions
genes

44 21 Cell cycle, immunological disease, cellular function
and maintenance

42 20 Immune response, cell-to-cell signalling and
interaction, hematological system development and
function

39 17 Immune response, cell-to-cell signalling and
interaction, hematological system development and
function

31 14 Organismal injury and abnormalities, cell cycle,
cellular assembly and organization

48 23 Protein degradation, cell-to-cell signalling and
interaction, tissue development

40 20 Cell-to-cell signalling and interaction, nervous system
development and function, behaviour

30 16 Gene expression, cellular development, cancer

27 15 Cellular development, cellular growth and

proliferation, respiratory system development and
function

One hundred genes with the highest fold difference for floating granulosa cells (FGC) (A) and cumulus granulosa cells (CGC) (B) were analysed by the program and grouped into functional
networks. The networks are characterized by scores indicating the degree of overlap between the inserted genes and the entire network generated by the software. Focus genes indicate

the number of up-regulated transcripts in our experiment belonging to the specific pathway.
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CGC are involved in protein degradation and nervous system func-
tion. Cell-to-cell signalling and interaction pathways were noted in
both cell populations.

The networks with the highest IPA score for both FGC and CGC
are depicted in Fig. 3. Twenty one differentially expressed transcripts
in FGC mediate their signalling through the up-regulation of EGRI and
SOCS3 and are important in cell cycle control, immunological disease

and cellular function and maintenance (Fig. 3A). The transcription
factor CREB, a central molecule in this network, was not differentially
expressed. Twenty three transcripts specific for CGC population are
joined by transforming growth factor (TGF)-beta family members
and the adhesion molecule ITGB3 (Fig. 3B), the latter being also
up-regulated in CGC. This network is involved in protein degradation,
cell-to-cell signalling and interaction and tissue development. The
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Figure 3 Pathway networks with the highest IPA scores identified from the comparison of gene expression profiles between FGC and CGC. (A)
Network with the highest IPA score in FGC is involved in cell cycle, immunological disease and cellular function and maintenance. (B) Pathway with the
highest IPA score in CGC is associated with protein degradation, cell-to-cell signalling and interaction and tissue development. Up-regulated genes in
our study are marked in colour. Transcripts in grey-scale were not differentially expressed.

Table Il List of differentially expressed transcripts grouped according to their function on the basis of the gene ontology

database and published literature

Functional category

(A) Floating granulosa cells

Folliculogenesis/cell

differentiation SLCI6A7

Ovulation steroidogenesis
SCP2

Hormone receptors ESRI
COX2, PLA2G4A, PTGES, PTGER4
FREM2, PTX3, TSG6

Prostaglandin synthesis

Extra-cellular matrix
molecules

Extra-cellular matrix
proteases

Cell cycle ESCO2, KLF4, PSMB9
Angiogenesis

Apoptosis

A2M, ANPEP, BHLHB2, BTG2, DUSP6, EPB41L4B, EVI2B, FOSB, ID2, ID4, NRIDI, PLD2, RARRES3,

EGRI, EREG, FGG, NTS, NRIPI, PAll, ACVRIB, AHR, CYPI7Al, CYPIIAI, FST, HSDI7BI, NR4AI-3, OSBPLS6,

ADAMTSI, ADAMTSI2, CTSLI, MMP9, MMP10, MMP|5

CALCRL, COLI5AI, EDG7, EGR3, ENPP2, FGL2, LYVEI, TRIBI, VCAMI
AXUDI, EGR2, FRAGI, MSRI, TEK, TNFRSF2I

Continued
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Table Il Continued

Functional category

Immune response

Retinoid metabolism

Cell migration

lon binding and transport
G-coupled receptor signalling

Transcription factors/
mediators

Metabolism and homeostasis
Unknown function in ovary
(B) Cumulus granulosa cells

Folliculogenesis/cell
differentiation

Qocyte development
Steroidogenesis
Hormone receptors
Prostaglandin synthesis

Adhesion/cell—cell
attachment

Extra-cellular matrix
molecules

Extra-cellular matrix
proteases

Angiogenesis

Apoptosis

Immune response

Retinoid metabolism

Cell migration

Whnt signalling

lon binding and transport
G-coupled receptor signalling
Transcription factors

Solute carrier family
transporters

Metabolism and homeostasis

Unknown function in ovary

CCL20, CDI4, CTSC, CYBB, ENPP3, HLA-DPAI, IFI30, ILIB, ILé, ILI18, LYZ, MSRI, NFKBIZ, SI00A8,
SOCS3, TRAF3, TRAM2, TREMI, TRIM22, TLRI,2,3,45,8, UCP2

AOXI, BCDO2, DHRS9, RARRES2
ARHGDIB, DOCKS, PIK3C2B, SHC4
KCNMAI, TMEMI 6E, TMEM37
GPRI109B, RGS18

CITEDI, HIST2H2BE, NPAS2

ACADSB, ACSS3, AK7, APOAI, GCNT4, GM2A, GKS5, HDC, LAPTM5, MBOATS5, MOCOS, MOSC2
ANKRD22, PGAS, PGA3, PPMIL, PLEK, RBMS3, PPBP, EVI2B, MCC, DEPDCé6, PGAPI, EPB41L4B, PHEX

ABLIM3, ADM, BEXI, BICCI, DLX5, EPHAS, EPHBI, FABP3, LTBPI, NDRG2

BDNF, IGFBP5

AKRICI, CYPIBI, CYPI9AI, GAL, GSTAI

AR, PGR

AKRICI, AKRIC2, AKRIC3, PLA2G4B, PLA2G 10, PTGER2, PTGFR
ASAM, GJAl, GJA5, GJA7

CD44, CILP, EPYC, FBLNS5, FNI, HAS2, HMCNI, ITGB3, THBSI, TNC, TSPAN7, VCAN

ADAMI2, ADAMTS6, ADAMTS 14, CTSK, HTRAI, MMP16, MMPI9, TIMP2, TIMP3

BMPER, EDIL3, MCAM, SMOC2

GLIPRI

ACE2, ALOX5, DUOXZ2, ILIRI, IL7R, ILI7RB, ILI8RI, IL23R, LXN, TXNIP, ULBPI, ULBP3
LRAT

GAP43, NT5E, ST8SIA6

DAAMI, NDP

CACNAIC, CALB2, GABRAS, GRIN2A, RYR2, SCN9A

GPRC5B, GPR56, GPR177, RASDI, RGS4, RGS5

AFF3, E2F7, FOXGI, KLF12, NFIB, PRB2

SLCIA3, SLC7AII, SLCI5AI, SLC28A3, SLC38AlI, SLC44A5

B3GALT2, EXTI, LIPG, MAOB, PDE5A, PLCXD3, ST6GAL2

CLSTN2, CORO2A, DTNA, DPY19L4, FBXO32, FRMD5, KRTAPI3-2, NEDD4, PEGI0, PRBI, RHOBTB3,
RIMS2, RPSAP52, STXBP5L

(A) Differentially up-regulated genes in FGC compared with CGC. (B) Differentially up-regulated genes in CGC compared with FGC. Transcripts in bold font were among the top 100
genes by fold difference in expression levels between the two cell types. All transcripts differ significantly in expression levels (P-value < 0.05) by at least |.3-fold. Transcripts without
published function or expression data from the ovaries and that did not fall under any available category were listed as ‘unknown function in ovary’.

MAPK/ERK and p38 MAPK pathways as well as signalling via platelet-
derived growth factor (PDGF) are central in both networks.

The 200 genes used for the IPA pathway analysis and a set of note-
worthy differentially regulated genes that have been given importance
in follicular development and ovulation in previous publications were
categorized into distinct functional groups in Table Il. Proteins from
these differentially expressed transcripts have been shown to partici-
pate in folliculogenesis, ovulation and oocyte function, as well as in
diverse cellular events like steroidogenesis, hormonal signalling, pros-
taglandin synthesis, cellular adhesion, the formation and modulation

of the extracellular matrix (ECM), cell cycle control, angiogenesis,
apoptosis, immune response, retinoid metabolism, cell migration,
Wt signalling, ion binding and transport, G-coupled receptor signal-
ling, transcription control, solute carrier family transporter activity
and metabolism and homeostasis. Most apoptosis-related molecules
were found in the list of FGC-specific transcripts. To the contrary,
the transcripts of cell-to-cell mediated gap junction proteins as well
as Whnt signalling proteins were up-regulated in CGC. As expected,
various genes involved in general homeostasis and metabolism were
found among the differentially expressed transcripts of both cell



Human granulosa cell transcriptomes

235

Fold change log,(CGC/FGC)
b e o
= |
I
I
[
—

FGG
NTS
FOSB
DuUsPs
TNC
EDIL3
ULBP1
RYR2

Figure 4 Validation of microarray results by real-time quantitative
PCR using the AACt method (mean + SD).

populations. Gene transcripts that have not been previously described
in folliculogenesis or to be expressed in the ovary were separated into
the group titled ‘unknown function in ovary’.

Ten FGC and CGC paired patients’ samples not used for the micro-
array experiments were included in the validation of the microarray
results. Four genes with the highest fold difference in expression
level acquired by microarray technique were chosen for both FGC
(FGG, NTS, FOSB and DUSP6) and CGC (TNC, EDIL3, ULBPI
and RYR2) and statistically different (P << 0.05) expression patterns
between the two cell populations were confirmed by quantitative real-
time PCR analysis (Fig. 4).

Discussion

Our study represents the first attempt to describe the differential tran-
scriptomes of two granulosa cell compartments from stimulated
human pre-ovulatory follicles. The analysed granulosa cells were
pooled from >15mm follicles containing mature and immature
oocytes and collected from patients with different infertility etiologies.
The analysis of gene transcripts from FGC and CGC on a whole-
genome microarray revealed the differential expression of nearly
500 genes with at least a 2-fold difference. The cut-off value for
further discussion was set to |.3-fold expression difference with stat-
istical significance of P < 0.05 (included in Table Il). These genes are
involved in diverse aspects of folliculogenesis and oocyte maturation
including gonadotrophin action, steroidogenesis, angiogenesis, ECM
remodelling and immune response, as well as other pathways.

Signalling via gonadotrophin receptors

The follicle stimulation protocol used during the preparatory phase of
IVF includes regular FSH administration and a single injection of hCG

to mimick the endogenous LH surge. We would therefore expect that
36 h after hCG injection, several previously described pathways
downstream of FSH receptor (FSHR) and LHCGR would be active
in granulosa cells. LHCGR mRNA has been detected in both granulosa
cell populations in previous publications (Peng et al., 1991; Assou
et al, 2006) and its expression levels in CGC are correlated with
the oocyte maturation capability in several species (Yang et dl.,
2005; Fu et al, 2007; Kawashima et al., 2008). Further, LHCGR
expression in CGC has been demonstrated to vary greatly between
individual human patients (Haouzi et al., 2009) and to be sensitive in
FGC to the stimulation protocol used in IVF (Grondahl et al., 2009).
Also the temporal fluctuation of transcript levels has been shown in
FGC as LHCGR mRNA is degraded upon LH surge and up-regulated
again after 24-48 h (Peegel et al., 1994; Menon et al, 2006).
According to our results, no difference in FSHR and LHCGR
expression was seen between FGC and CGC, the latter being in
line with (Foong et al., 2006). However, we expectedly observed
significant up-regulation of the transcription factor EGRI in FGC
that is responsible for LHCGR expression in the rat (Yoshino et al.,
2002). The Spl/Sp3 complex binding effectivity is mediated by
LHCGR signalling and this complex is required for EGRI transcrip-
tional induction (Russell et al., 2003a). Although Spl and Sp3 tran-
scripts were expressed in comparable levels between the two cell
populations, some known downstream targets of Spl/Sp3 alone or
in complex with EGRI, such as cathepsin LI, ADAMTSI and epiregu-
lin (EREG) were up-regulated in FGC, possibly as an outcome of FSH
stimulation or the hCG surge (Sekiguchi et al., 2002, Doyle et dl.,
2004, Sriraman and Richards, 2004).

Several publications have shown that FSH and LH/hCG impart their
action through the activation of kinase complex ERK1/2 (Das et al.,
1996; Maizels et al., 2001) and that this pathway is important for,
meiotic resumption of oocytes, COC expansion, FGC differentiation
and corpus luteum formation (Su et al., 2003; Fan et al., 2008, 2009).
The activity of ERKI/2 has been shown to be down-regulated by
phosphatase DUSP6 (MKP3) in mouse granulosa cells (Fan et dl.,
2008). Although active ERK1/2 signalling was proposed by the IPA
software modelling in both cell types, DUSP6 expression was higher
in FGC. Thus, the differential regulation of common pathways in
these two closely related cell populations effectively shows the dispa-
rate signalling outcomes in response to identical hormonal stimuli.
However, the specific role of DUSP6 in the gonadotrophin function
on the FGC compartment remains to be elucidated.

Adhesive and gap junction proteins

In addition to cellular communication via receptor—ligand interactions
and molecular signalling pathways, physical connections between the
cells are necessary for follicular development and oocyte maturation.
Gap junction protein alpha (GJA or connexin) family members form
transmembrane channels that connect adjacent cells for the exchange
of ions, nucleotides, second messengers and small metabolites
(Bruzzone et al., 1996). In our experimental system GJAl, GJA5 and
GJA7 (connexin 43, 40 and 45, respectively) were differentially
up-regulated in CGC. GJAl is necessary for granulosa cell layer expan-
sion and failure to form multilaminar follicles severely affects the ability
of the oocyte to fertilize (Ackert et al., 2001). The temporal
up-regulation of GJA| transcription in porcine CGC occurs after the
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mechanical rupture of CGC from MGC and the down-regulation at
protein level coincides with oocyte maturation (Sasseville et dl.,
2009). Therefore, GJAI most likely affects the intercellular connec-
tions between individual granulosa cells as well as between granulosa
cells and the oocyte. GJA7 partially co-localizes with GJAI in rat gran-
ulosa cells and has been proposed to complement the role of GJAI
(Okuma et al., 1996). In the same study GJAS was localized to
ovarian vascular endothelium by immunofluorescence method. Our
experiments propose that GJAS has a role in human CGC. Further,
adipocyte-specific adhesion molecule (ASAM), a novel component
of intercellular tight junctions (Raschperger et al., 2004; Sze et dl.,
2008), was significantly up-regulated in CGC and could possibly be
involved in intercellular adhesion in human ovarian follicle.

Steroidogenesis

After obtaining the responsiveness to LH and initiating progesterone
production from cholesterol, the mural compartment of FGC in the
late antral stage is referred to as luteinized granulosa. As expected,
we observed active regulation of steroidogenesis in FGC. Sterol-carrier
protein 2 (SCP2) is a cytoplasmic cholesterol transporter (reviewed in
Seedorf et al., 2000) that was differentially expressed in FGC in our
study. This up-regulation has been previously correlated with the matu-
ration of rat granulosa cell-line (Rennert et al., 1991). The cholesterol
side-chain cleavage enzyme (CYPIIAL) responsible for the conversion
of cholesterol to pregnenolone, as well as CYPI7Al that converts pro-
gesterone to androstenedione, and HSDI7B| converting estrone to
| 7B-estradiol were all up-regulated in FGC. Our results coincide with
some previous studies (Ghersevich et al., 2000; Bak et al., 2009) that
show HSDI7BI expression in murine granulosa cells being stimulated
by Activin A via its receptor Alk 4 (ACVRIB) and Smad 2 signalling
and modulated by follistatin activity. Interestingly, Alk 4 and follistatin
were up-regulated in FGC in the current study. We also detected the
down-regulation of enzyme AKRICI| (20aHSD) and aromatase
(CYPI9AL) in the same cell population. Both processes have been con-
sidered as indicators of granulosa cell luteinization (Niswender et al.,
2000; Stocco et al., 2001).

The only differentially expressed hormone receptors in our study
were the elevated levels of androgen (AR) and progesterone (PGR)
receptors in CGC, and estrogen receptor | (ESRI) in FGC. It has
been proposed that the oocyte orchestrates the follicular develop-
ment partly through the AR-mediated signalling (Hickey et al.,
2004). AR enhances the role of mitogens in porcine granulosa cells.
Its function depends on the distance from the oocyte as during follicu-
lar development AR activity was maintained in the COC, although
FGC lost responsiveness to androgens (Hickey et al., 2004). PGR is
up-regulated in porcine CGC when cultured in the presence of LH
and FSH, resulting in the down-regulation of GJAl expression and in
the initiation of the oocyte meiotic maturation (Shimada and
Terada, 2002). Supporting our results for ESRI, its expression has
been previously observed in human MGC to be increasing along
with the follicular development (Saunders et al., 2000), but is barely
noticeable in corpus luteum (van den Driesche et al., 2008).

Angiogenesis
During folliculogenesis, a capillary bed is formed around the growing
follicles for the supply of oxygen and nutrients. After the LH surge a

decrease in blood supply has been reported (Fraser, 2006). Although
angiogenesis in the peri-follicular region is mostly associated with the
layer of theca cells expressing angiogenic factors, several signalling mol-
ecules are also synthesized by granulosa cells (Fraser, 2006). One of
these molecules up-regulated in FGC in our study is fibrinogen-like
2 (FGL2), a pro-coagulant prothrombinase protein exerting angiogenic
effects (Su et al, 2008). The calcitonine gene-related peptide
(CALCA) signalling through its receptors CALCRL and RAMPI has
been described as a pro-angiogenic system in peri-implantation endo-
metrial tissue (Dong et al, 2007). CALCRL was differentially
expressed in FGC in our experiment. Adrenomedullin (ADM),
another ligand for CALCRL, was differentially expressed in CGC.
ADM has been shown to be expressed and secreted from granulosa
cells and is important for follicular maturation by affecting progester-
one synthesis (Balasch et al., 2004). Lysophosphatidic acid (LPA) is
secreted into human follicular fluid and promotes the expression of
angiogenic cytokines IL6, IL8 and VEGF (Chen et al., 2008). We
found the transcription of autotaxin (ENPP2), the enzyme that con-
verts lysophosphatidylcholine to LPA (Umezu-Goto et al., 2002), elev-
ated in FGC. In addition, an LPA receptor EDG7 (or LPAR3) was
selectively expressed in the same cell population, in agreement with
previous results (Chen et al., 2008).

Prostaglandin synthesis

Prostaglandin E, (PGE,) production from arachidonic acid (AA) is
necessary for successful ovulation as shown in several animal models
(Murdoch et al., 1993). The rate-limiting enzymes in this process are
phospholipase A2 (PLA2), cyclooxygenase (COX) | and 2 and PGE
synthase (PTGES), all of which were up-regulated in primate FGC
shortly after hCG stimulation (Duffy et al., 2005). In our study,
several PLA2 isoforms, responsible for AA generation, were differen-
tially expressed in either cell population as specified in Table II. In
agreement with a previous research in rodents, prostaglandin-E recep-
tor (PTGER) subtype 2 was expressed in CGC, though PTGER4 was
more abundant in the FGC population as were the genes of COX2
and PTGES, the three latter results being contrary to the earlier find-
ings (Segi et al., 2003). COXI| transcription levels did not differ signifi-
cantly. Interestingly, we found several transcripts related to the
production and signalling of prostaglandin F (PGF) expressed at
higher levels in CGC. These include PGF synthase AKRIC3, receptor
PTGFR, as well as enzymes AKRICI and AKRIC2 involved in PGF
and PGE interconversion (Dozier et al., 2008). PGF production by
bovine CGC has been previously shown in vitro (Kobayashi et dl.,
2007), but studies in human have been limited to FGC and corpus
luteum. These differences in transcription levels suggest that prosta-
glandin synthesis in human ovarian follicles might be spatially regulated,
but a thorough interpretation will require additional studies to reveal
the functional significance of our preliminary results.

ECM composition and remodelling

The cumulus matrix is an important component for the post-ovulatory
transport of the COC complex and sperm capacitation, but also for
the reduction of oocyte oxidative stress (reviewed in Russell and
Robker, 2007). The COC matrix is constructed of hyaluronan (HA)
that is cross-linked and stabilized by various ECM proteins. A substan-
tial proportion of these proteins are synthesized in CGC although
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others are produced in the mural compartment and subsequently
transported into the COC matrix. We found the HA receptor
CD44, as well as ECM proteins HAS2, fibronectin and tenascin C
(TNC) expressed in CGC. Surprisingly, the matrix-stabilising proteins
TSG6 and PTX3 in FGC and versican in CGC were up-regulated in
our study, findings opposite of those previously obtained in mice
(Fulop et al., 1997, Russell et al., 2003b, Salustri et al., 2004). This
result suggests a possible difference in the spatial regulation of
matrix protein synthesis in antral follicles of different species.

Various proteinases and their regulators are involved in remodelling
the ECM during follicular growth, ovulation, and the expansion of the
COC matrix (reviewed in Ohnishi et al., 2005). Matrix metalloprotei-
nases (MMPs) have been shown to degrade several ovarian ECM com-
ponents (Curry and Osteen, 2003). In our study, MMP16 and MMP |9
as well as two MMP inhibitors, TIMP2 and TIMP3, were differentially
up-regulated in CGC. Up-regulation of MMP9, MMP|0 and MMPI5
were observed in FGC. PAI-| a protein from the plasminogen regulat-
ory mechanism was differentially up-regulated in FGC. The role of plas-
minogen pathway in follicle rupture has been demonstrated (Peng et al.,
1993), and pathway inhibitory proteins PAI-1 and PAI-2 are expressed
by cultured human FGC and CGC (Piquette et al., 1993). A disintegrin
and metalloproteinase with thrombospondin motifs (ADAMTS) family
proteinases are also involved in intercellular and cell-matrix adhesion
modulation. ADAMTS| was up-regulated in FGC in our study and it
has been reported to regulate the COC expansion by cleaving the
COC matrix protein versican in mice (Russell et al., 2003b). Our
study supports a potential role in human follicle physiology for yet
three other members: ADAMTS6 and ADAMTS 4 were differentially
expressed in CGC and ADAMTSI2 in FGC.

Inflammatory system

Ovulation is an inflammatory-like process involving the rupture of the
follicular membranes and the ovarian surface epithelium as well as
tissue repair by mechanisms comparable to wound healing. Recently,
active innate immune system signalling has been demonstrated in the
ovarian somatic cells of mice (Shimada et al., 2006). Toll-like receptors
(TLRs) are factors of the innate response involved in recognizing the
‘non-self’ from ‘self’ molecules. Studies of mouse COC have shown
the expression of TLRs and downstream effector signalling molecules
linking these pathways to COC expansion, oviductal migration and fer-
tilization (Liu et al., 2008). Contrary to the above-mentioned study, we
observed a subset of TLR-related signalling components differentially
up-regulated in FGC. TLRI, 2, 3, 4, 5 and 8 were all detected in
this cell population. In addition, the TLR3/4-specific signalling mol-
ecules CDI4, TRAM2 and TRAF3 were differentially expressed in
FGC, as well as IL6, the target gene of TLR2/4 signalling. At
present, the functions of TLRs in FGC have not been addressed,
therefore subsequent studies will be needed to elucidate their roles
in follicular biology.

Cytokines execute an important role in the regulation of ovarian
function and oocyte quality (Vuijisic et al., 2006). Even though leuko-
cytes are the primary source of cytokines, ovarian stromal cells have
been shown to express cytokines and their receptors (Tsuji et al.,
2001). We detected interleukins ILI 3 and IL18 in FGC of human pre-
ovulatory follicles. The roles for the ILI system are still under great
controversy and the importance of ILIf and its receptors in oocyte

maturation, COC expansion, and progesterone synthesis may be
species specific. However, similar results from granulosa cells of
several species have been shown in regards to ILIB-mediated inhi-
bition of estrogen synthesis (Gerard et al., 2004). IL18 and its receptor
activity was shown in the mouse ovary and treatment of mice during
ovarian stimulation with an a-ILI8R blocking antibody reduced the
number of ovulated ova and inhibited the expansion of CGC (Tsuji
et al., 2001). Interestingly, the receptors for interleukins that were dif-
ferentially expressed in our study as ILIRI, IL7R, ILI7RB, ILI8RI and
IL23R showed up-regulation exclusively in CGC, suggesting a possible
signalling loop between the intrafollicular somatic cells. We also
detected the differential expression of chemokine CCL20 in FGC.
The level of secreted CCL20 in the follicular fluid has been correlated
with human oocyte maturity (Kawano et al., 2004).

Conclusion

The presented results are, to our knowledge, the first to describe the
unique transcriptomes of FGC and CGC of stimulated human pre-
ovulatory follicles required to decipher the sophisticated cellular inter-
play at the studied time-point of follicular maturation. This research
was performed on primary granulosa cells and the results were com-
pared with studies where the methods for obtaining the cells may have
varied leading to a dissimilar time-frame and different level of contami-
nating tissues. Further research is needed in this field. The comparison
of data from independent studies could simplify the identification of
new oocyte and embryo viability markers useful for improving preg-
nancy outcomes following IVF treatment.
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org/.
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The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signaling and are
involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression
and regulation in human granulosa cells are of interest due to their potential for estimating the
oocyte viability and in vitro fertilization success. However, the posttranscriptional gene expression
studies on micro-RNA (miRNA) level in the human ovary have been scarce. The current study
determined the miRNA profile by deep sequencing of the 2 intrafollicular somatic cell types: mural
and cumulus granulosa cells (MGCs and CGCs, respectively) isolated from women undergoing
controlled ovarian stimulation and in vitro fertilization. Altogether, 936 annotated and 9 novel
miRNAs were identified. Ninety of the annotated miRNAs were differentially expressed between
MGCs and CGCs. Bioinformatic prediction revealed that TGF, ErbB signaling, and heparan sulfate
biosynthesis were targeted by miRNAs in both granulosa cell populations, whereas extracellular
matrix remodeling, Wnt, and neurotrophin signaling pathways were enriched among miRNA
targets in MGCs. Two of the nine novel miRNAs found were of intronic origin: one from the
aromatase and the other from the FSH receptor gene. The latter miRNA was predicted to target
the activin signaling pathway. In addition to revealing the genome-wide miRNA signature in
human granulosa cells, our results suggest that posttranscriptional regulation of gene expression
by miRNAs could play an important role in the modification of gonadotropin signaling. miRNA
expression studies could therefore lead to new prognostic markers in assisted reproductive
technologies. (Molecular Endocrinology 27: 1128-1141, 2013)

ammalian ovarian follicles undergo substantial
Mchanges including recruitment, extensive expan-
sion, maturation, rupture of follicular membranes during
ovulation, development into corpus luteum, and final
atresia. These processes are controlled by gonadotropin
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secretion from the pituitary and intertwining signaling
networks between the oocyte and the somatic cells in the
ovary.

Inside the follicle 2 somatic cell types can be clearly
distinguished: the mural granulose cells (MGCs) and cu-

Abbreviations: ACVR2B, activin A receptor type IIB; BDNF, brain-derived growth factor;
CGC, cumulus granulose cell; Chr, chromosome; COC, cumulus-oocyte complex; ECM,
extracellular matrix; FDR, false discovery rate; FSHR, FSH receptor; hCG, human chorionic
gonadotropin; HS3ST1, heparin sulfate 3-O-sulfotransferase; HSPG, heparan sulfate pro-
teoglycan; KEGG, Kyoto Encyclopedia of Genes and Genomes; ICSI, intracytoplasmic
sperm injection; IPA, Ingenuity Pathway Analysis; IVF, in vitro fertilization; MGC, mural
granulosa cell; miRNA, micro-RNA; NGS, next-generation sequencing; OPU, ovarian punc-
ture; poly(A) RNA, polyadenylated RNA; pre-miRNA, precursor miRNA.
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mulus granulosa cells (CGCs). These cells derive from the
same population of early follicles, but differentiate into 2
subpopulations separated by distance by the preovulatory
stage (1, 2). CGCs remain close to the oocyte with the
inner layer forming adhesive and gap junction transzonal
projections that allow trafficking of metabolites between
the somatic cells and the oocyte (3, 4). The oocyte secretes
several signaling molecules that influence mitogenic pro-
cesses and the differentiation of CGC (reviewed in Ref. 5).
Collectively, oocyte and CGCs form the cumulus-oocyte
complex (COC) that remains intact during ovulation up
to fertilization (6, 7). MGCs receive weaker signals from
the oocyte due to their distance: these cells establish the
inner lining of the follicular basal lamina and are respon-
sible for the steroidogenic activity of the maturing follicle
(1). In addition, MGCs express receptors for LH neces-
sary for triggering the final maturation of the follicle and
ovulatory processes (8).

The intrafollicular cells can be collected without addi-
tional inconvenience during oocyte collection procedure
from women undergoing in vitro fertilization (IVF) with
intracytoplasmic sperm injection (ICSI), and the data ob-
tained from the collected material give valuable informa-
tion on the regulation of final stages of follicle matura-
tion. By determining the signals that trigger the processes
of folliculogenesis during IVF cycles, new ways to im-
prove the efficiency of stimulation as well as new markers
for predicting oocyte viability can be found.

The signaling cascades underlying the processes during
folliculogenesis have been extensively studied on several
model organisms as well as human samples (9-14). How-
ever, advances in the knowledge regarding posttranscrip-
tional regulation of mRNAs would make it possible to
better predict the actual composition of signaling mole-
cules in the cell. A group of highly conserved posttran-
scriptional regulators of gene expression are mature
micro-RNAs (miRNAs). These are small RNAs, on aver-
age 21 nucleotides long, that act by binding to target
mRNAs in the RNA-induced silencing complex followed
by translational suppression, or mRNA degradation (re-
viewed in Ref. 15). Preceding the described final outcome,
miRNAs undergo several stages of processing. Up to sev-
eral kilobases long, primary miRNAs are transcribed
from the miRNA genes, processed into hairpin-like pre-
cursor miRNAs (pre-miRNAs) by DGCR8/Drosha pro-
tein complex, and ultimately cut into final length by
endoribonuclease Dicer. The last stages of miRNA mat-
uration involve the loading of the short RNA duplex into
RNA-induced silencing complex and the degradation of
the star strand partially complementary to the mature
miRNA sequence (reviewed in Ref. 16). During the last
years, alternative pathways of miRNA generation have
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been revealed, showing that some pre-miRNAs derive
from short introns after alternative splicing, and others
do not require processing by Dicer (reviewed in Refs.
17 and 18).

The modification of signaling pathways by miRNAs
may have considerable importance during ovarian fol-
liculogenesis: abnormal follicle recruitment and matura-
tion were observed in conditional knock-out mice, in
which the Dicer1 gene was deleted from all cells express-
ing the anti-Miillerian hormone receptor (Amhr), includ-
ing the ovarian granulosa cells (19). In addition, increased
follicular atresia, reduced ovulation rates, and compro-
mised oocyte and embryo integrity were observed in these
mice by 2 independent investigators (19, 20). Another
study reporting an inbred mouse line with hypomorphic
Dicerl evidenced decreased progesterone secretion from
corpora lutea leading to infertility (21). However, the
ovulation processes were not hampered in this model.

High-throughput miRNA profile analysis from differ-
ent ovarian somatic cell types appears rare among the
publications so far. To our knowledge, one sequencing
study on human postmortem ovarian homogenate has
been published (22). There is slightly more data from
model organisms comparing the miRNA profiles between
the bovine ovarian and testis tissues (23) and different
stages of the corpus luteum (24), ovine follicle homoge-
nates from various stages of folliculogenesis (25), porcine
atretic and normal follicles (26), and cultured rat granu-
losa cells upon FSH stimulation (27).

The aim of the current study was to fill the gap in infor-
mation regarding the miRNA profile in human follicular
granulosa cells from IVF patients. We performed our study
using next-generation sequencing (NGS) that enabled us to
determine annotated as well as novel, yet unannotated,
miRNAs. Our goal was to examine the degree of difference
between MGCs and CGCs regarding their miRNA profile
and to predict the potential targets of annotated and novel
miRNAs in either cell type. In addition, the polyadenylated
RNA (poly[A] RNA) population from the same samples was
sequenced in order to acquire further biological confirma-
tion for the predicted miRNA targets.

Materials and Methods

Patients and stimulation protocol

The study was approved by the Ethics Committee of the
University of Tartu in Estonia, and informed consent was ob-
tained from all participants. Three women, aged 31.3 * 3.1
years (mean * SD), undergoing ICSI and embryo transfer at
Nova Vita Clinic (Tallinn, Estonia) were enrolled. Due to male
factor infertility, all patients had been unable to conceive for at
least 1 year before entering the study.
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Ovarian hormonal stimulation was conducted according to
the GnRH antagonist (Cetrotide; Merck Serono, Geneva, Swit-
zerland) protocol with the administration of recombinant FSH
(Gonal-F; Merck Serono or Puregon, Schering-Plough, Ken-
ilworth, New Jersey). On average, 1316.7 = 401.0 IU of FSH
was used during the 9.0 = 1.0 days of ovarian stimulation. All
patients underwent ovarian puncture (OPU) of follicles =15
mm in size after 36 hours of human chorionic gonadotropin
(hCG) administration (Ovitrelle, Merck Serono). The total
number of oocytes retrieved from each patient was 17.3 = 7.1,
of which 17.0 + 7.5 were considered mature at metaphase II
stage (97.0 £ 5.2% of all). ICSI was used to fertilize the
oocytes 4—6 hours after OPU with 73.4% of oocytes fertil-
ized. Up to 2 (1.7 = 0.6) second (n = 2) or third (n = 1) day
embryos were transferred, resulting in one patient achieving a
clinical pregnancy.

The control group used for confirming the differential and
novel miRNA expression consisted of samples from 8 additional
IVF patients with the following characteristics: age 31.0 + 6.2
years, FSH amount used was 1528.0 = 653.8 IU, the number of
retrieved oocytes was 12.0 = 9.1, of which 75.0 = 22.2% were
mature and 66.7 = 10.9% fertilized normally. All women un-
derwent IVF-ICSI due to male factor infertility, and 2 of them
had been additionally diagnosed with tubal infertility.

Granulosa cell isolation

MGCs were obtained from follicular fluid after OPU follow-
ing the manual removal of COC and CGC aggregates devoid of
the oocyte. The fluid from all follicles of a patient was pooled,
centrifuged at 450 X g for 10 minutes, followed by supernatant
removal. The cells were separated on a 50% density gradient of
PureSperm 100 (Nidacon; Mélndal, Sweden) in Universal IVF
Medium (Origio; Jyllinge, Denmark), washed 3 times in Univer-
sal IVF Medium at 37°C, depleted of CD45-positive leukocytes
according to the manufacturer’s suggested protocol (DynaMag
and Dynabeads; Life Technologies, Carlsbad, California), lysed
with QIAGEN miRNeasy Mini kit lysis buffer (QIAGEN,
Hilden, Germany), and stored in liquid nitrogen for future use.

CGCs were collected and processed as described in detail in
our previous publication (13).

RNA extraction and quality control (QC)

Total RNA and small RNA from MGCs and CGCs were
extracted using the miRNeasy Mini Kit (QIAGEN), according
to the manufacturer’s instructions. The quantity and purity of
each RNA sample were assessed with spectrophotometer Nano-
Drop ND-10 (Thermo Fisher Scientific, Wilmington, Dela-
ware). RNA integrity was analyzed using the RNA 6000 Nano
Kit and Small RNA Kit with the 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, California). All samples were of high
quality with the absorbance wavelength ratio (A260/A280) of
=1.9 and the RNA Integrity Number of =8.6. On average, 1 pg
of RNA was used as starting material for poly(A) RNA library
preparation, and 100 ng for small RNA library preparation.

Library preparation and sequencing

Library preparation and sequencing was performed at Bio-
medicum Functional Genomics Unit at the University of Hel-
sinki in Finland. The detailed protocol is described in Supple-
mental Materials and Methods published on The Endocrine
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Society’s Journals Online web site at http:/mend.endojournals.
org. In brief, separate libraries were prepared for small RNA
and poly(A) RNA population from the same samples. Unique
adapters from NEXTflex DNA Barcodes (Bioo Scientific Corp,
Austin, Texas) were ligated to separate samples for further in-
dexing, after which all 6 samples were pooled. After PCR am-
plification and cluster generation, paired-end sequencing of 101
bp read length was performed with HiSeq 2000 (Illumina, Inc,
San Diego, California) for poly(A) RNA libraries, and 36-bp
single reads were acquired on Genome Analyzer IIx (Illumina)
from small RNA libraries. Small RNA libraries were sequenced
twice, and the acquired data are further considered as technical
replicates.

Sequencing data analysis of poly(A) RNA samples

The pipeline for sequencing data analysis is described in de-
tail in Supplemental Materials and Methods. The number of
raw reads for each gene acquired via the described pipeline was
used as input for R/Bioconductor package EdgeR (28, 29) for
performing differential expression analysis between MGC and
CGC samples. Genes with less than 0.1 counts per million in all
samples were discarded, and false discovery rate (FDR) less than
5% was considered as statistically significant after multiple test-
ing correction.

Sequencing data analysis of small RNA samples

Raw filtered data was submitted to miRDeep2 software (30)
that integrates adapter trimming, sequence alignment, and
miRNA annotation according to miRBase version 18. Further,
novel miRNAs are predicted by miRDeep2 upon the detection
of potential mature, star and loop sequences from the read pool,
and hairpin formation stability of the potential miRNA precur-
sor according to the RNAfold algorithm (31). Default parame-
ters were used in all steps. Similarity search between potential
novel miRNAs and human mature miRNA sequences in the
miRBase database was performed by BLASTN algorithm online
(www.mirbase.org). Significant multiple alignments were visu-
alized in Jalview v.2.8 software (32).

Differential miRNA expression analysis was performed by
EdgeR as described for poly(A) RNA data analysis, except that
the reads for technical replicates were summed, and miRNAs
with less than 10 raw counts in all samples were discarded.

All data obtained via NGS is available at Gene Expression
Omnibus data repository, accession number GSE46508
(http://www.ncbi.nlm.nih.gov/geo/).

Validation of miRNA expression by
real-time RT-PCR

A selection of miRNAs showing statistically significant ex-
pression level differences between MGCs and CGCs in sequenc-
ing data was validated by predesigned real-time RT-PCR assays
(Exiqgon, Vedbaek, Denmark). cDNA was synthesized from 20
ng of small RNA from 8 patients from the control group using
the Universal cDNA Synthesis Kit, and real-time RT-PCR was
performed in triplicates with Universal RT SYBR Green Mas-
termix according to the manufacturer’s protocols (Exiqon).
7900 HT real-time PCR System and SDS 2.3 software were used
to run the reactions (Applied Biosystems, Foster City, Califor-
nia). Eight annotated miRNAs were tested: hsa-miR-30a-5p,
hsa-miR-142-5p, hsa-miR-126-3p, hsa-miR-223-3p, hsa-miR-
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874, hsa-miR196a-5p, hsa-miR129-5p, hsa-miR-129-3p, nor-
malized for hsa-miR-132-3p and analyzed for expression dif-
ferences between MGCs and CGCs according to the AACt
method.

Validation of 4 novel miRNAs was performed on the above-
described conditions with custom made real-time PCR assays
(Exiqon). In addition, synthetic RNA oligonucleotides with 5'-
end phosphate group corresponding to the mature sequences of
the tested miRNAs were used as positive controls (Integrated
DNA Technologies, Inc, Coralville, lowa).

Bioinformatic prediction of miRNA targets

Two approaches were used for predicting annotated miRNA
target genes and pathways. First, the lists of differentially ex-
pressed miRNAs were uploaded into DIANA miRPath version
2.1 (33), a web-based software that is updated to miRBase v18
and uses the microT-CDS algorithm for calculating miRNA
binding sites in the 3’-untranslated region as well as the coding
region of the mRNAs. It further predicts enriched signaling
pathways of the submitted miRNA targets using the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) database (34). Be-
cause the list of MGC miRNAs was longer than that of CGC
miRNAs, only the top 33 miRNAs were used in order not to
analyze significantly more targets from MGCs. Conservative
parameters were chosen for acquiring the union list of predicted
target genes (a priori method): MicroT score threshold was set
to 0.9, P value was set to .05, and both the Benjamini and
Hochberg FDR and the conservative statistics options were
used. Subsequently, the acquired KEGG pathways were studied
for their enrichment of genes that were differentially expressed
at mRNA level from our poly(A) RNA NGS experiment. Path-
ways with less than 10% of genes providing proof from the
experiment were discarded because they were considered to turn
up in the analysis by chance.

The second approach was used to analyze data from our
sequencing experiments only. Analysis was performed by Inge-
nuity Pathway Analysis (IPA) Software (Ingenuity Systems, Inc.,
Redwood City, California) and is described in detail in Supple-
mental Materials and Methods.

In order to predict targets for novel miRNAs, DIANA mi-
croT v3.0 (35, 36) that accepts novel potential miRNA mature
sequences as input was used. All predicted targets with a score
greater than 7.35 for each novel miRNA were further submitted
to The Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.7 (37, 38), where the list was further
enriched for gene ontology terms according to biologic process,
cellular compartment, or molecular function. FDR less than 5%
was used as a cut-off for statistical significance in DAVID in all
cases.

Results

NGS outcome parameters and the description of
the most abundant miRNAs

In addition to studying the miRNA profile of ovarian
somatic cells, we also attempted to predict their potential
targets and confirm these using experimental data. For
that reason, small RNA and poly(A) RNA sequencing
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Table 1. Top 10 Lists of Most Abundant miRNAs in
MGCs (A) and CGCs (B)

A B

Average Average

rpm in rpm in
miRNA MGCs miRNA CGCs
hsa-miR-21-5p 69080.68  hsa-miR-21-5p 89927.85
hsa-let-7f-5p 40089.97  hsa-miR-99a-5p  28689.39
hsa-miR-451a 16549.71  hsa-let-7f-5p 14219.34
hsa-miR-30a-5p  15931.49  hsa-miR-26a-5p 10606.24
hsa-miR-99a-5p  15257.67  hsa-let-7a-5p 8057.85
hsa-let-79-5p 14633.43  hsa-miR-451a 7119.30
hsa-miR-26a-5p  12858.71  hsa-miR-191-5p  6382.17
hsa-miR-27b-3p  8324.83 hsa-miR-22-3p 5731.12
hsa-miR-486-5p  7730.59  hsa-miR-146b-5p  5424.98
hsa-miR-191-5p  6858.22  hsa-let-7g-5p 5324.91

Expression is presented as average reads per million reads (rpm).
Common mIRNAs in two lists are printed in italic.

was performed from the same samples, and technical data
from the experiments are summarized in Supplemental
Table 1.

Altogether, we identified 1039 annotated mature
miRNAs with at least 1 raw read in at least 1 sample: 936
in MGCs and 883 in CGCs (Supplemental Table 2). The
most abundant miRNAs in either cell population are pre-
sented in Table 1. Seven miRNAs are common between
these lists, and the remaining 3 can be found among the
top 22 most abundant miRNAs of the other cell type
(Supplemental Table 2). Hsa-miR-21-5p was clearly the
most abundant miRNA in both MGCs and CGCs. From
poly(A) sequencing data we identified mRNAs corre-
sponding to 22 629 genes in MGCs and 22 554 genes in
CGCs. Among those, we found evidence of hairpin se-
quences for several miRNAs detected from the small
RNA library (Supplemental Table 2). The full list of tran-
scripts is available at Gene Expression Omnibus data
repository.

Based on both miRNA and mRNA expression profiles,
the samples clustered together on a multidimensional
scaling plot according to the individual patients and the
cell type from which the RNA was extracted (Supplemen-
tal Figure 1, A and C). This result was also confirmed
upon hierarchical clustering on heat maps (Supplemental
Figure 1, B and D).

Differentially expressed annotated miRNAs and
their targeted pathways

Ninety miRNAs were differentially expressed with sta-
tistical significance: 33 revealed higher expression levels
in CGCs and 57 in MGCs (Table 2). The expression levels
of 8 miRNAs were also validated by real-time RT-PCR
and normalized for hsa-miR-132-3p for which the small-
est relative standard deviation was calculated from NGS
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Table 2A. Differentially Expressed miRNAs According

to FDR < 0.05. A: List of miRNAs Up-regulated in MGC.

No. miRNA FC (MGC/CGCQ) FDR
1 hsa-miR-548ap-5p 5.97 0.0068
2 hsa-miR-548] 5.97 0.0068
3 hsa-miR-539-3p 3.71 0.0007
4 hsa-miR-142-5p 3.56 0.0002
5 hsa-miR-144-5p 3.37 0.0024
6 hsa-miR-126-5p 3.30 0.0060
7 hsa-miR-126-3p 3.17 0.0007
8 hsa-miR-487a 3.05 0.0114
9 hsa-miR-454-5p 2.95 0.0068
10 hsa-miR-223-3p 2.87 0.0009
11 hsa-miR-624-5p 2.87 0.0047
12 hsa-miR-30a-5p 2.83 0.0029
13 hsa-miR-335-5p 2.80 0.0068
14 hsa-miR-889 2.77 0.0041
15 hsa-miR-10b-3p 2.76 0.0374
16 hsa-miR-154-5p 2.72 0.0210
17 hsa-miR-655 2.69 0.0271
18 hsa-miR-4732-5p 2.68 0.0308
19 hsa-miR-32-5p 2.64 0.0167
20 hsa-miR-451a 2.62 0.0136
21 hsa-let-7i-3p 2.59 0.0392
22 hsa-miR-10b-5p 2.57 0.0068
23 hsa-miR-20b-5p 2.56 0.0068
24 hsa-miR-30a-3p 2.55 0.0068
25 hsa-miR-196b-5p 2.54 0.0271
26 hsa-miR-363-3p 2.52 0.0103
27 hsa-miR-429 2.49 0.0302
28 hsa-miR-194-5p 2.46 0.0121
29 hsa-miR-223-5p 2.43 0.0400
30 hsa-miR-379-5p 2.42 0.0128
31 hsa-miR-584-5p 2.41 0.0128
32 hsa-miR-656 2.40 0.0374
33 hsa-miR-106a-5p 2.38 0.0075
34 hsa-miR-144-3p 2.38 0.0271
35 hsa-miR-146a-5p 2.36 0.0128
36 hsa-miR-487b 2.35 0.0149
37 hsa-miR-142-3p 2.34 0.0308
38 hsa-miR-324-5p 2.34 0.0374
39 hsa-miR-377-3p 2.32 0.0257
40 hsa-miR-369-3p 2.31 0.0271
41 hsa-miR-374a-5p 2.28 0.0257
42 hsa-miR-409-5p 2.25 0.0084
43 hsa-miR-548b-5p 2.24 0.0308
44 hsa-miR-1185-2-3p 2.23 0.0480
45 hsa-miR-29b-3p 2.20 0.0257
46 hsa-miR-382-3p 2.20 0.0402
47 hsa-miR-494 2.19 0.0125
48 hsa-miR-98 2.19 0.0233
49 hsa-miR-199b-5p 2.17 0.0257
50 hsa-miR-10a-5p 2.14 0.0271
51 hsa-miR-335-3p 2.1 0.0404
52 hsa-miR-411-5p 2.07 0.0271
53 hsa-let-7f-2-3p 2.02 0.0385
54 hsa-miR-96-5p 1.96 0.0271
55 hsa-miR-483-3p 1.94 0.0302
56 hsa-miR-340-5p 1.93 0.0437
57 hsa-miR-16-5p 1.87 0.0302
(Continued)

Table 2B: List of miRNAs Up-regulated in CGCs

No. miRNA FC (MGC/CGQ) FDR
1 hsa-miR-129-2-3p —6.58 0.0000
2 hsa-miR-129-5p —5.57 0.0000
3 hsa-miR-1273e -3.86 0.0010
4 hsa-miR-4488 —3.62 0.0082
5 hsa-miR-4461 —3.61 0.0068
6 hsa-miR-181a-2-3p —3.60 0.0001
7 hsa-miR-1290 —3.46 0.0010
8 hsa-miR-34c-3p —3.41 0.0121
9 hsa-miR-196a-5p —3.31 0.0009
10 hsa-miR-4792 -3.17 0.0091
" hsa-miR-874 =-3.11 0.0006
12 hsa-miR-3651 —3.07 0.0009
13 hsa-miR-135a-5p —3.05 0.0098
14 hsa-miR-873-3p —3.04 0.0047
15 hsa-miR-1291 —2.93 0.0011
16 hsa-miR-876-5p -2.70 0.0154
17 hsa-miR-181a-3p —2.66 0.0065
18 hsa-miR-1275 —2.62 0.0241
19 hsa-miR-4497 —2.43 0.0352
20 hsa-miR-181c-3p -2.29 0.0257
21 hsa-miR-320c —2.25 0.0245
22 hsa-miR-23b-5p —2.24 0.0302
23 hsa-miR-378g -2.18 0.0462
24 hsa-let-7c —-2.14 0.0271
25 hsa-miR-320d —2.12 0.0344
26 hsa-miR-1292 —2.08 0.0480
27 hsa-miR-125b-5p —2.04 0.0245
28 hsa-miR-181b-5p —2.01 0.0302
29 hsa-miR-320b —-1.99 0.0271
30 hsa-miR-202-3p -1.92 0.0257
31 hsa-miR-1180 —1.91 0.0346
32 hsa-miR-4485 —-1.87 0.0305
33 hsa-miR-181a-5p -1.73 0.0374

FC, fold change in log, scale.

results. Samples from 8 women distinct from the NGS
experiment were used. According to real-time PCR exper-
iment, 6 miRNAs were differentially expressed with sta-
tistical significance, whereas the remaining 2 showed the
same trend as in NGS experiment (Supplemental Figure
2A). Differential expression of poly(A) RNAs was com-
pared with the results of our previous study on the Af-
fymetrix GeneChip Human Gene 1.0 ST Array (13). A
high positive correlation value of 0.82 was achieved when
comparing the 2 datasets with a P value <2.2 X 107!¢
(Supplemental Figure 3).

Besides observing a number of miRNAs that were dif-
ferentially expressed between MGC and CGC, we were
interested in the signaling pathways and biological func-
tions that could potentially be targeted by them. Because
there are tens of algorithms available for the bioinfor-
matic prediction of miRNA targets, we decided for two
different approaches. Firstly, we used DIANA miRPath
that is updated to miRBase v.18, the same version that
was used for annotating known miRNAs from our NGS
data. We allowed the software to predict miRNA target
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genes, performed the enrichment of KEGG pathways
from the predicted targets and then compared the results
with our poly(A) RNA data (Table 3). This approach
allows to observe additional targets that may have been
missed by poly(A) RNA NGS due to small sample size and
the lack of time-scale data.

Interestingly, there are several common signaling path-
ways that are targeted by the differentially expressed
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miRNAs: those involved in TGF-B and ErbB signaling
as well as heparan sulfate biosynthesis. From our poly(A)
RNA data we find evidence that in MGCs, already the
first essential steps of heparan sulfate biosynthesis may be
inhibited. More specifically, xylosyltransferase 1 that
transfers the first saccharide unit to the target peptide and
exostosin 1 responsible for further polysaccharide chain
elongation were down-regulated in MGC on mRNA

Table 3. KEGG Pathways Enriched for Targets of miRNAs That Were Differentially Expressed in MGC (A) and CGC

(B) According to DIANA miRPath v.2.1

A
No. of No. of miRNAs
FDR-Adjusted Targeted Targeting the Genes Confirmed by
KEGG Pathway P Value Genes Pathways Poly(A) RNA NGS
ECM-receptor 1.14E-16 29 22 ITGBS, ITGB3, ITGAS5, THBS1, COL5A1,
interaction COL1A2, FN1
TGF-B signaling pathway 1.35E-09 37 24 THBS1T, PITX2, ACVR1, ACVR2B, E2F5,
LTBP1, SMAD7
Endocytosis 5.22E-09 72 26 CBL, CAV1, NEDDA4L, RAB31, PSD3,
FLT1, NEDD4, DNM3, SMAD7,
ADRB1, ASAP2
Glycosaminoglycan 1.11E-06 10 9 EXT1, XYLT1
biosynthesis - heparan
sulfate
Focal adhesion 0.0005 65 27 ITGBS8, THBS1, CAV1, ITGB3, ITGAS,
MAPKS8, COL5A1, FLT1, COL1A2,
FN1
Neurotrophin signaling 0.0025 46 26 SORT1, BDNF, YWHAQ, RPS6KAS5,
pathway MAPKS8, CAMK2B
Wnt signaling pathway 0.0035 46 26 FZD7, WNT16, APC, FZD3, MAPKS,
CAMK2B, WIF1, DAAM1
Axon guidance 0.0065 40 25 PLXNA2, EPHAS, CXCL12, SEMAGB,
EPHA3, NCK2, SEMA3A, NTN4,
GNAI1, EFNA1
ErbB signaling pathway 0.0070 30 25 CBL, NCK2, MAPK8, CAMK2B
Endocrine and other 0.0251 15 16 KL, DNM3
factor-regulated
calcium reabsorption
N-Glycan biosynthesis 0.0290 13 13 ST6GAL2, MGAT3
Amoebiasis 0.0308 28 20 ARG2, COL5A1, COL1A2, FN1
Mucin type O-glycan 0.0342 7 9 GALNT3
biosynthesis
B
No. of miRNAs
FDR-Adjusted No. of Targeting the Genes Confirmed by
KEGG Pathway P Value Targeted Genes Pathways Poly(A) RNA NGS
Glycosaminoglycan 2.60E-07 6 6 HS3ST1
biosynthesis -
heparan sulfate
Lysine degradation 4.80E-06 14 13 TMLHE, SUV39H1
TGF-B signaling 0.0006 27 14 D4, DCN, BMP8A, TGFBR2
pathway
ErbB signaling 0.0395 26 18 TGFA, PAK7, SHC4, ERBB4, EREG
pathway
Glioma 0.0423 17 13 TGFA, IGF1, SHC4,

Italic text represents common pathways between MGC and CGC. NGS, next-generation sequencing.
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Table 4. Novel miRNAs Predicted from Small RNA Sequencing Data by miRDeep2

No. of Samples

Predicted

No. of Samples  Hairpin Genomic

miRNA Mature Average Read Detected Average Read  Detected Coordinates Predicted Hairpin
Identification ~ Sequence Count in MGCs  in MGCs Count in CGCs  in CGCs and Strand Genomic Region
Chr1.1 uuucaggucuggggcugaaaccu 18.3 3 48.7 3 chr1:113424681..113424744:+  Intergenic

Chr2.1" aaagguaacugugauuuuugcu 46.3 3 14 3 chr2:49286742..49286798: + FSHR gene intron
Chri5.1a"" ugugacccuagaauaauuac 343 3 11 1 chr15:51606231..51606307:+ CYP19A1 gene intron
Chr15.1b"**  ugugacccuagaauvaauuac 343 3 1 1 chr15:51606228..51606304:—  CYP19A1 gene intron
chr19.1* aggcugugaugcucuccugagcee 43 3 217.7 3 chr19:11606358..11606437:— Intergenic

Chr1.2 aguugggagagcauuagacuga 0 0 3.5 2 chr1:213020182..213020250: +  Intergenic

Chr19.2%% auccuagucacggcacca 19 1 3 1 chr19:55634592..55634660:—  Intergenic

Chr3.1* ugcccugagacuuuugceuc 12.7 3 4 1 chr3:127305953..127306019:—  Intergenic

Chr3.2** uucccagccaacgcacca 2 1 0 0 chr3:176232891..176232940:+  Intergenic

Chrg.1%** ucugguguauagcguugcuca 0 0 4 1 chr4:21466322..21466381:— KCNIP4 gene,

intronic region

Two versions of Chr1.1 (miRNA on chromosome 1.1) mature sequences were observed with similar prevalence, the difference in 5’-end is
underlined. Chr15.1a and Chr15.1b share the same mature sequence. miRNAs in bold were studied in detail (see text).

# hsa-miR-548ba.
##* hsa-miR-7973-1.
### hsa-miR-7973-2.
* hsa-miR-7974.

% hsa-miR-7975.

*, hsa-miR-7976.
** hsa-miR-7977.
*** hsa-miR-7978.

level. At the same time, 3-O-sulfotransferase (HS3ST1),
which performs one of the many possible modifications at
a later stage of heparan sulfate biosynthesis, was down-
regulated in CGC via predicted miRNA targeting.

Although the number of miRNAs uploaded to the soft-
ware was equal, the number of targets and target path-
ways was considerably greater for MGCs than for CGCs.
Extracellular matrix (ECM) proteins, endocytosis path-
ways as well as signaling via neurotrophins and Wnt path-
ways were specifically targeted by miRNAs from MGCs.

Asasecond approach, we only used data from our own
poly(A) RNA NGS experiment to perform the enrichment
of miRNA targets. The IPA software merges several target
prediction algorithms into 1 environment. The differen-
tially expressed genes from poly(A) RNA NGS results
that were considered as highly predicted or experimen-
tally validated targets for differentially expressed
miRNAs in our data were further analyzed for their en-
richment according to their molecular functions in gene
ontology database and signaling pathways from KEGG
and Reactome (Supplemental Table 3A).

For MGCs, the results acquired by the described
method confirm well the outcome from miRPath. ECM-
receptor interaction and axon guidance referring to neu-
rotrophin signaling were also enriched by this approach.
In addition, targets were grouped significantly into mo-
lecular functions involved in cytoskeletal protein binding,
ion binding, and protein kinase activity (Supplemental
Table 3A).

In contrast, in CGCs the molecular functions enriched

were rather involved in phosphatase activity and tran-
scription factor activity, including steroid hormone recep-
tor activity. For example, estrogen receptor-a (ESR1) is a
potential predicted miRNA target in CGCs. Enrichment
of signaling pathways was not as successful for CGC as it
was for MGC data. Only amino acid metabolism is pre-
dicted to be specifically targeted by miRNAs in CGCs
according to Reactome (Supplemental Table 3B).

Prediction of novel miRNAs and their targeted
pathways

A great advantage of the NGS technology is the possi-
bility of identifying novel transcripts. Therefore, our next
aim was to predict novel, unannotated miRNAs from the
small RNA data by miRDeep2 software. miRDeep2 pre-
dicts the probability of a sequence being a novel miRNA
according to its surrounding genomic context and its po-
tential to fold into hairpin-like structure with low free
energy characteristic of miRNAs. Although there were
several unannotated short sequences in our data, we in-
troduce nine different potential novel miRNAs that were
present in both technical replicates of at least 1 sample
with a minimal average read count of 2 (Table 4). None of
the novel miRNAs aligned with any other classes of small
RNA, rRNA, or coding sequences. We further concen-
trated on 4 potential novel miRNAs with the highest ex-
pression values and the most frequent appearance among
samples. Those miRNAs aligned on different chromo-
somes: 1, 2, 15, and 19 and, for the sake of clarity, are
further referred to according to the chromosome (Chr)
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Figure 1.

Hairpin Structures and Graphical Representations of pre-miRNA Genomic Locations for Novel miRNAs on Chr2.1, Chr15.1a and 15.1b.

A, Hairpin structure of miRNA on Chr2.1. B: Graphical representation of FSHR gene. The transcription site for miRNA on Chr2.1 in the intronic

region is marked in red. C and D: Two possible hairpin structures for mi

RNA on Chr15.1 noted as Chr15.1a and 15.1b. E: Two possible genomic

locations for miRNA on Chr15.1 in the intronic region of CYP19A1 gene. Genomic location of miRNA on Chr15.1a is marked in red and Chr15.1b

in blue in the subset.

number. We validated the expression of those 4 novel
miRNAs by real-time RT-PCR. These miRNAs are ex-
pressed in both MGCs and CGCs, and only miRNA on
Chr19 was more abundant in CGCs with statistical sig-
nificance (Supplemental Figure 2B).

miRNAs on Chrl.1 and Chr19.1 are both transcribed
from intergenic regions. For miRNA on Chrl.1, two al-
ternative mature reads were observed with similar fre-
quency: a 23-nucleotide read with 3 uridine residues in
the 5'-end or a 22-nucleotide read with 2 uridine residues
(Table 4). The hairpin of Chr2.1 pre-miRNA structure is
depicted in Figure 1A, and its sequence aligned to the
intronic region of the FSH receptor (FSHR) gene (Figure
1B). miRNA on Chr15.1 is predicted to be transcribed
from an intron of the aromatase gene (CYP19A1). In-
terestingly, there are 2 possible genomic locations for
this miRNA in the same intron, one from the plus

(miRNA on Chr15.1a) and the other from the minus
strand (miRNA on Chr15.1b), giving rise to 2 slightly
different possible hairpins with the same mature se-
quences (Figure 1, C-E).

We searched for high-similarity sequences for the pre-
dicted novel miRNAs in the miRBase online search tool.
High similarity with several members of the hsa-miR-548
family was found for the sequence of miRNA on Chr2.1.
The highest BLASTN score of 78 was acquired by pair-
wise alignment between miRNA on Chr2.1 and hsa-miR-
548d-5p, hsa-miR-548w, and hsa-miR-548ag as well as
hsa-miR548ay-5p. In all of the cases, 3 mismatches ap-
peared in the alignment, and discrepancies in the 3’-ends
of the sequences were observed (Figure 2). No other pre-
dicted novel miRNAs showed similarities to any anno-
tated human mature miRNAs.

Subsequently we analyzed the potential targets of the
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hsa-miR-548d-5p
hsa-miR-548ay-5
hsa-miR-548ag
hsa-miR-548w

Figure 2. Sequence Alignment between miRNA on Chr2.1 (shaded) and Four Members of
the hsa-miR-548 Family. BLASTN score for each pair-wise alignment with Chr2.1 was 78 and

e-value was 0.2.

novel miRNAs using DIANA microT v3.0, a web-based
software that accepts unannotated user-defined miRNA
sequences as input. The potential targets predicted for the
4 miRNAs are available as supplemental material (Sup-
plemental Table 4). Fifty-five targets were predicted for
miRNA on Chrl.1, 132 for miRNA on Chr2.1, 20 for

miRNA on Chr15.1, and 91 for
miRNA on Chr19.1. The enrichment
of targets according to gene ontology
(biologic processes, molecular func-
tions, and cellular compartments) is
presented in Table 5. The targets of
miRNA on Chrl.1 are predicted to be
cytoskeleton proteins associated with
cell morphogenesis. Targets of miRNA
on Chr2.1 are involved in response to
carbohydrate stimulus, peptide secretion, and gene silenc-
ing. One of the predicted targets of this miRNA is DICER
mRNA that is further translated into a central protein in
miRNA biogenesis. Interestingly, activin A receptor
type I[IB (ACVR2B) and SMAD2, a component of activin-

signaling cascade, are common genes in most of the en-

Table 5. Gene Ontology Terms Enriched by Predicted Novel miRNA Targets

miRNA
Identification Category Term Count Genes FDR %
Chr1.1 Cellular component Cytoskeleton 14 LOC651610, DLGAP1, KAZ, TOPBP1, AKAP9, PCM1, 0.09

Cytoskeletal part

Biological process Cell projection morphogenesis
Cell part morphogenesis
Cellular component
morphogenesis
Cilium assembly
Chr2.1 Biologic process Pancreas development
Postembryonic development

Response to glucose stimulus

Response to hexose stimulus

Response to monosaccharide
stimulus

Posttranscriptional regulation
of gene expression

Response to carbohydrate
stimulus

Insulin secretion

Protein amino acid
phosphorylation

Peptide hormone secretion
Peptide secretion
Gene silencing by miRNA,
production of miRNAs
Chr15.1 None
Chr19.1 Biologic process Cellular component
morphogenesis
Cell projection morphogenesis
Cell part morphogenesis
Cell morphogenesis

Positive regulation of
transcription, DNA-
dependent

Cell projection organization

Positive regulation of RNA
metabolic process

Positive regulation of
transcription from RNA Pol
Il promoter

Regulation of transcription
from RNA Pol Il promoter

Positive regulation of
transcription

Molecular Function Transcription activator activity

TTN, ATM, RAB3IP, PPP1R9A, PAK2, MACF1,
MYOM1, EDA, DLG2

10 LOC651610, DLGAP1, PPP1R9A, AKAPS, TOPBP1, 1.49
MYOM?1, TTN, PCM1, DLG2, ATM, RAB3IP

6 MACF1, ONECUT2, NTNG1, VAX1, PCM1, RAB3IP 1.09

6 MACF1, ONECUT2, NTNG1, VAX1, PCM1, RAB3IP 132

7 MACF1, ONECUT2, NTNG1, VAX1, TTN, PCM1, 1.50
RAB3IP

3 ONECUT2, PCM1, RAB3IP 4.47

5 ACVR2B, ONECUT2, NEUROD1, SMAD2, PROX1 0.17

6 ACVR2B, MORC3, BCL11B, SMAD2, MECOM, 0.28
BCL2U11

5 ACVR2B, NEUROD1, SMAD2, FKBP1B, PTEN, PTENP1 0.47

5 ACVR2B, NEUROD1, SMAD2, FKBP1B, PTEN, PTENP1 0.55

5 ACVR2B, NEUROD1, SMAD2, FKBP1B, PTEN, PTENP1 0.55

8 CPEB2, MORC3, IMPACT, DICER1, QKI, SMAD2, 1.26
LINZ8B, PTEN, PTENP1

5 ACVR2B, NEUROD1, SMAD2, FKBP1B, PTEN, PTENP1 1.40

4 ACVR2B, NEUROD1, SMAD2, FKBP1B 1.45

14 CDK19, ITK, WNK1, BMPR2, MOBKLIA, ABI2, 1.45

SMAD?2, CDK6, PRKG1, ACVR2B, PAK2, MORC3,
COL4A3BP, LOC100132369, EIF2AK2

4 ACVR2B, NEUROD1, SMAD2, FKBP1B 421

4 ACVR2B, NEUROD1, SMAD2, FKBP1B 484

3 DICER1, SMAD2, LIN28B 4.96

9 RAB8A, TNR, PCNT, NFASC, CNTN2, PIP5K1C, TTN, 0.51
GAS7, CDH23

7 RABBA, TNR, PCNT, NFASC, CNTN2, PIPSK1C, GAS7 1.09

7 RAB8A, TNR, PCNT, NFASC, CNTN2, PIP5K1C, GAS7 137

8 RAB8A, TNR, PCNT, NFASC, CNTNZ, PIPSK1C, 1.42
GAS7, CDH23

9 CIITA, PPARA, FOXK1, ZMIZ2, MAML1, PAXS, 1.70
TEADT, FOXO1, NR5A2

8 RABSA, TNR, PCNT, NFASC, CNTN2, PIPSK1C, 1.72
GAS7, CDH23

9 CIITA, PPARA, FOXK1, ZMIZ2, MAML1, PAXS, 1.80
TEADT, FOXO1, NRSA2

8 CIITA, PPARA, ZMIZ2, MAML1, PAX8, TEADT, 1.80
FOXO1, NR5A2

11 CIITA, PPARA, FOXK1, ZMIZ2, MAML1, PAXS, 1.83
TEAD1, FOXO1, MDMA4, NR5A2, KCNIP3

9 CIITA, PPARA, FOXK1, ZMIZ2, MAML1, PAXS, 479
TEAD1, FOXO1, NR5A2

9 CIITA, PPARA, FOXK1, ZMIZ2, MAML1, PAXS, 0.43

TEAD1, FOXO1, NRSA2
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riched pathways targeted by miRNA on Chr2.1 referring
to its potential role in the modulation of activin signaling.
miRNA on Chr19.1 potentially silences transcripts re-
lated to cell morphogenesis, similarly to miRNA on
Chr1.1. In addition, it may inhibit the translation of a
group of transcription activators. Due to the small num-
ber of targets predicted for miRNA on Chr15.1, no gene
ontology terms became enriched.

Discussion

In the current study we presented, to our knowledge, for
the first time the differential miRNA expression profiles
of intrafollicular somatic cell populations, MGCs and
CGCs, from human stimulated preovulatory follicles. Us-
ing NGS technology, we could detect annotated and novel
miRNAs that provide new information on the basic
biologic processes in the follicle via gene expression
modulation.

Our data reveal that it is the miRNAs expressed at low
levels that differentiated most significantly between
CGCs and MGCs, and the most abundant miRNAs were
highly similar between the cell types. In comparison with
previous publications, there is a clear difference in the
expression levels of abundant miRNAs, depending on
whether follicular material or whole ovarian homoge-
nates are analyzed (reviewed in Ref. 39). Therefore our
results coincide best with those obtained from sheep fol-
licular and luteal tissues (40): hsa-miR-21 being the most
abundant miRNA, and hsa-miR-143-p, highly expressed
in the ovarian homogenates of several mammals, is fur-
ther behind in our top expression lists (22, 23, 41-43).

The mouse analog of hsa-miR-21 plays a role in gran-
ulosa cell survival during the transition from the follicular
to luteal stage and is up-regulated by hCG-induced ovu-
lation (44). Inhibition of this miRNA therefore leads to
cell apoptosis (44). The second most abundant miRNA,
hsa-let-7f, has been described as a tumor suppressor tar-
geting aromatase mRNA in breast cancer cell lines (45).
Aromatase, a key enzyme in estradiol biosynthesis, is ev-
idently expressed in the ovarian follicle, proposing new
potential roles for hsa-let-7f in the modulation of steroido-
genesis. The third abundant miRNA in our data, hsa-
miR-451a, is a proof of Dicer-independent miRNA bio-
genesis in granulosa cells. It has been the model miRNA
for studying alternative pathways for miRNA generation,
although by now it is clear that several other miRNAs are
processed without Dicer (46). This finding may explain,
in part, the relatively modest severity of the ovarian phe-
notype observed in conditional Dicerl knock-out mice
(19, 20).
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The miRNA database miRBase is rapidly expanding
with hundreds of new miRNA sequences added with ev-
ery update. Therefore we were looking for unannotated
miRNAs from our data, because human granulosa cells
have not been studied in this regard. We identified 9 dif-
ferent novel miRNAs, 4 of which were expressed at a
sufficient level for successful validation. Interestingly, 2 of
the novel miRNAs (miRNA on Chr2.1 and miRNA on
Chr15.1) are predictively transcribed from introns of 2
genes of high importance for folliculogenesis: FSHR and
CYP19A1 (the gene encoding aromatase), respectively. It
has been shown that by the end of follicle growth the
expression of these 2 genes diminishes (47, 48). We cur-
rently have no knowledge, whether those miRNAs are
coexpressed with their host genes or whether they are
transcribed from independent promoters (49, 50). We
also have no information on the role of the 2 miRNAs
regarding the posttranscriptional regulation of their host
genes. Both synergistic and antagonistic influences on the
host gene mRNAs have been shown for intronic miRNAs
(51, 52), and experimental validation is therefore neces-
sary for each individual case. Our preliminary bioinfor-
matic analysis did not confirm direct targeting of the host
mRNAs by the 2 miRNAs. However, miRNA on Chr2.1
may be involved indirectly in the inhibition of FSHR ex-
pression. ACVR2B and SMAD2 are two members of the
activin signaling cascade that are both predicted targets of
miRNA on Chr2.1. Activin signaling leads to increase in
FSHR mRNA expression in granulosa cells in the expan-
sion stages of folliculogenesis (53, 54). If the elevated
expression on FSHR mRNA leads to the coexpression of
miRNA on Chr2.1 from FSHR intron, a negative feed-
back loop by targeting ACVR2B may be initiated, con-
tributing to decreased FSHR expression by the preovula-
tory stage. Modulation of activin signaling by miRNAs
has recently been studied in mouse, where mmu-miR-1435
was experimentally confirmed to target ACVR2B mRNA
in granulosa cells and inhibit their proliferation (55).

miRNA on Chr2.1 has high sequence similarity with
the members of the hsa-miR-548 miRNA family. This is a
group of miRNAs relatively new in evolution, only dis-
tinguishable in the primate lineage, that evolved together
with a class of miniature inverted-repeat transposable el-
ements Madel (56). Our data therefore present further
evidence that several new miRNAs will be discovered in
known and unknown miRNA families when more cell
and tissue types are investigated with sufficient depth.

In addition to providing new high-throughput data on
miRNA expression, we were interested in determining the
differentiating miRNA profiles and their roles between
the human MGCs and CGCs. It is well known that a
single miRNA may have several targets, and therefore
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analyzing a group of miRNAs according to the ontology
profiles of their targeted mRNAs is a common approach
(57). However, there is no common tool for miRNA tar-
get prediction, and all available ones suffer from a high
degree of both false-positive and false-negative results.
Better prediction algorithms evolve together with exper-
imental data on miRNA-mRNA binding sites. For higher
confidence in estimating targets by bioinformatic meth-
ods, the use of mRNA data from the same system for
comparison is suggested (57, 58). This approach is also
not a golden standard, because not all posttranscriptional
gene expression modifications can be evidenced on
mRNA level, and several observed changes may be indi-
rect (reviewed in Ref. 59). Therefore, although reducing
the number of false predictions by using high-throughput
mRNA and miRNA data together, the results should still
be judged with caution. Another approach is to report
overlapping data from several target prediction algo-
rithms. This methodology may lead, on the other hand, to
increased number of false-negative results with less true
targets predicted.

Finding available miRNA target prediction software
that is up to date with current miRBase is another chal-
lenge, as new miRNAs are constantly discovered and the
database enlarges quickly. Therefore we used DIANA
miRPath v.2.1 that is updated to miRBase v.18, the same
version that was used for our small RNA NGS data
analysis. Using this software, we only lost some miR-
NAs from analysis due to using very strict thresholds.
As a second approach, we used IPA software that com-
bines TargetScan, TarBase, and miRecords databases
with our poly-A RNA seq results. With this method we
lost data and obtained results for 25 miRNAs in CGCs
and 19 miRNAs from MGCs (33 were uploaded in both
cases).

TGEFpB, ErbB, and heparan sulfate synthesis pathways
were similarly targeted by miRNAs in MGCs and CGCs,
although differentially expressed lists of miRNAs were
used as input for bioinformatic analysis. The enrichment
of these pathways is not surprising because their role in
the fine-tuning of oocyte-somatic cell communication has
appeared essential for follicular somatic cell differenti-
ation and ovulation. The TGFB family members Gdf9
and Bmp15 are the best studied mammalian oocyte-
secreted factors that retain CGCs their specific molec-
ular functions and inhibit their differentiation into
MGC s (reviewed in Ref. 60). Recently, heparan sulfate
proteoglycans (HSPGs) were shown to mediate the sig-
naling of Gdf9 to CGCs in the mouse (61). The ErbB-
signaling pathways modulate LH induction involved in
COC expansion and follicular membrane rupture.
More specifically, in mice the oocyte-secreted factors
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up-regulate the ErbB family member epidermal growth
factor receptor expression in CGCs to enable these cells
to respond to LH-induced signaling from MGCs (62).
On the other hand, mouse CGCs were shown to express
ErbB family ligands Areg and Nrgl, which promote
oocyte developmental competence as well as progester-
one production by MGCs (63). HSPG synthesis is up-
regulated in MGCs of mammalian preovulatory folli-
cles, and this is necessary for tissue remodeling during
basal membrane rupture at ovulation (reviewed in Ref.
64). MGCs secrete HSPGs that bind antithrombin to
maintain the fluidity of follicular fluid up to COC ex-
pulsion (65, 66). Interestingly, follicular fluid HSPGs
contain 3-O-sulfated chains with unusually high fre-
quency (66). According to our data, HS3ST1, the en-
zyme responsible for the side-chain addition, may be
down-regulated by miRNAs in CGCs, proposing one
more differential role for the granulosa cell types in the
ovarian follicle. In MGCs we identified miRNAs tar-
geting several ECM proteins: laminins, integrins, col-
lagens, and fibronectin 1, providing further evidence of
the fine tuning of tissue remodeling.

Members of the Wnt- and neurotrophin-signaling
pathways were 2 differentially enriched groups of genes
potentially targeted by miRNAs in MGCs. The down-
regulated neurotrophin confirmed by the poly(A) RNA
NGS in MGCs was brain-derived growth factor (BDNF),
which corroborates with the results obtained from exper-
imental data with human follicular cells. More precisely,
CGCs, but not MGCs, secrete BDNF, the ligand for TrkB
receptor that among follicular cells is expressed exclu-
sively on oocytes (67-69). The signaling cascade upon
TrkB activation is involved in the oocyte cytoplasmic
maturation and the resumption of meiosis before ovula-
tion (67-69). Although BDNF expression is significantly
induced by LH and hCG in both granulosa cell popula-
tions in vitro, MGCs are incapable of secreting the protein
(67,69, 70).

The role of Wnt signaling in CGCs is not definitely
clear in humans. This pathway is involved in cellular pat-
terning, proliferation, survival, and modulation of LH
stimulation in rodents and cows (71). However, conflict-
ing results exist regarding the expression of some Wnt-
signaling pathway proteins upon LH stimulation when
rodent and human granulosa cells were compared (72—
73). In addition, we have described several Wnt pathway
genes expressed in human granulosa cells that have never
been studied in relation to ovarian functions (demon-
strated in the current study and in Ref. 13).

In conclusion, the current study provides new informa-
tion on the posttranscriptional regulation of gene expres-
sion in the human stimulated preovulatory luteinizing
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follicle. We have clearly shown the similarities and dif-
ferences in miRNA expression between CGCs and MGCs
and provided a bioinformatic prediction of their roles in
various signaling pathways. Novel miRNAs from the in-
trons of FSHR and aromatase genes provide new evidence
of their mRNA processing, but their role during follicu-
logenesis remains to be determined. Importantly, the
miRNA profile in granulosa cells may possess high poten-
tial as a new marker for successful folliculogenesis and
oocyte developmental capacity.
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Cytokines are key modulators of the immune system and also contribute to regulation of the ovarian cycle. In this study, Bender
MedSystems FlowCytomix technology was used to analyze follicular cytokines (proinflammatory: IL-1, IL-6, IL-18, IEN-y, IFN-
o, TNF-q, IL-12, and IL-23;, and anti-inflammatory: G-CSF), chemokines (MIP-1a, MIP-1j3, MCP-1, RANTES, and IL-8), and
other biomarkers (sAPO-1/Fas, CD44(v6)) in 153 women undergoing in vitro fertilization (IVF). Cytokine origin was studied by
mRNA analysis of granulosa cells. Higher follicular MIP-1a and CD44(v6) were found to correlate with polycystic ovary syndrome,
IL-23, INF-y, and TNF-« with endometriosis, higher CD44(v6) but lower IL-f and INF-« correlated with tubal factor infertility,
and lower levels of IL-18 and CD44(v6) characterized unexplained infertility. IL-12 positively correlated with oocyte fertilization
and embryo development, while increased TL-18, IL-8, and MIP-1f were associated with successful IVF-induced pregnancy.

1. Introduction

Immunological abnormalities have been implicated in
female reproductive failure, but whether these represent a
cause or effect is unknown [1, 2]. According to our previous
research, cellular and, particularly, humoral autoimmuno-
logic perturbations are responsible for development of
female infertility. Disturbances in the humoral immune
system may lead to impairments in ovarian folliculogenesis
[3-5], a long and complex process in which both the
endocrine and immune systems play significant roles.
Cytokines, originally identified as products of immune
cells, are important mediators of immune responses. These
proteins are able to stimulate or inhibit cell growth, regulate
cell differentiation, induce cell chemotaxis, and modulate the
expression of other cytokines. However, recent research has
indicated that cytokines are synthesized by a broad range

of nonimmune cell types, including the normal ovarian
cells. Cytokine function in the ovary has been described as
promoting processes of follicular growth, steroidogenesis,
recruitment and activation of leukocytes necessary for ovula-
tion and tissue remodelling during ovulation, luteinization,
and luteolysis [6].

To gain a more detailed understanding of the cytokines
involved in female fertility and their role in pregnancy
outcome, we assessed 16 different follicular cytokines during
infertility treatment. In particular, we evaluated the cytokines
for Thl/proinflammation (interleukin- (IL-) 1, IL-6, IL-
12, IL-18, IL-23, interferon (IFN)-p, IFN-a, and tumor
necrosis factor-(TNF-) «) and anti-inflammation (granu-
locyte colony stimulating factor (G-CSF)), the principal
chemokines (macrophage inflammatory protein- (MIP-)
la, MIP-1§3, monocyte chemotactic protein- (MCP-) 1,
regulated on activation, normal T expressed and secreted



(RANTES) and IL-8), and other biomarkers (soluble apop-
tosis antigen (sAPO)-1/Fas and CD44 variant isoform
CD44(v6)) secreted into the follicular fluid. The cytokines
chosen for evaluation were shown in our previous study
to be appreciably expressed in follicular granulosa cells at
the mRNA level [7]; moreover, the importance of these
particular cytokines in ovarian function has been proposed
by others [8].

IL-1p, IL-6, and IL-18 are key mediators of inflammation
and mediate many pathways of the normal immune response
[9-11]. Human IFN-« comprises a family of extracellular
signalling proteins with demonstrated antiviral, antiprolif-
erating, and immunomodulatory activities [12]. The type
IT interferon IFN-yp is another proinflammatory cytokine
and has been implicated in the development of a variety
of autoimmune diseases [13]. IL-12 regulates cell-mediated
immune responses. The p40 subunit of IL-12 is shared with
IL-23 and is essential for recruitment and activation of many
inflammatory cell types. Both of these cytokines interact
with the innate and adaptive immune systems [14]. TNF-
a, an acute phase protein, is critically involved in innate
immune responses caused by pathogen exposure [15] but can
also mediate noninfectious inflammatory processes such as
autoimmunity and cancer [16].

Among the chemokines examined in this study, I1L-8
is a neutrophil-specific factor involved in inflammatory
processes and angiogenesis [17]. MIP-la and MIP-1f are
known as CC chemokines, and both act as chemoattractants
for T cells and monocytes to mediate beneficial inflammatory
processes, such as wound healing [18]. Meanwhile, MCP-1
and RANTES are potent chemoattractants of monocytes and
T lymphocytes [19].

The other biomarkers examined in this study are estab-
lished immunomodulators. G-CSF acts as a growth factor
for haematopoietic cells [20]. APO-1 regulates tissue ho-
meostasis by acting as the receptor for Fas ligand, the
binding of which triggers a signaling cascade that leads to
apoptosis inhibition [21]. And CD44(v6), a splice variant of
the CD44, is a transmembrane glycoprotein associated with
cell adhesion and has mostly been investigated in tumours
[22].

In recent decades, above-mentioned cytokines have
become the subject of studies examining normal mammalian
reproduction [23], which have indicated a significant role
for these factors in supporting female fertility. Thus, we
carried out a simultaneous (multiplex) examination of these
cytokines and biomarkers in follicular fluid of infertile
women in order to assess their effects on oocyte and
embryo quality and on pregnancy outcome of in vitro
fertilization (IVF) treatment. The approach of cytokine
profiling using multiplex assays offers a promising tool
for identifying condition-specific biomarker panels with
high accuracy [24]. We employed the Bender MedSystems
FlowCytomix platform, which uses antibody-coated autoflu-
orescent beads to simultaneously measure corresponding
analytes from small sample volumes and low concentrations
[24], facilitating time- and cost-efficient high-throughput
screening. In addition, we sought to determine the origin of
the secreted cytokines by performing mRNA analysis from
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two distinct follicular somatic cell populations: mural and
cumulus granulosa cells (MGC and CGC, resp.).

2. Materials and Methods

2.1. Patients. The Ethics Committee on Human Research of
the University of Tartu approved this study, and informed
consent was obtained from all patients. The study group
consisted of 153 women, aged 33.3 + 4.5 years (mean +
standard deviation), who underwent IVF at Nova Vita Clinic
between 2007 and 2010. IVF with intracytoplasmic sperm
injection (ICSI) was performed in all women in this cohort,
and the case was either male factor infertility or previous
oocyte fertilization failure. The causes of infertility were
distributed as follows: male factor infertility (43.8%, n = 67),
tubal factor infertility (TFI; 28.8%, n = 44), polycystic ovary
syndrome (PCOS; 5.2%, n = 8), endometriosis (15.0%,
n = 23), unexplained infertility (4.6%, n = 7), and other
reasons (2.6%, n = 4).

Ovarian hormonal stimulation was conducted according
to a protocol of gonadotrophin-releasing hormone (GnRH)
antagonist (Cetrotide; Merck Serono, Geneva, Switzerland)
administered with recombinant follicle-stimulating hor-
mone (Gonal-F; Merck Serono or Puregon, Schering-Plough,
Kenilworth, NJ, USA). ICSI was performed at 4-6h after
oocyte pickup (OPU), resulting in a 68.9% fertilization rate.
ICSI-derived embryos were cultured up to 48 h, after which
good-quality embryos were identified by the presence of at
least four blastomeres and <20% fragmentation. The rate of
good-quality embryos was calculated as the proportion (%)
of good-quality embryos out of all fertilized oocytes. Two
embryos were chosen for transfer to the uterus, and 25.5%
of clinical pregnancies resulted per embryo transfer. Clinical
confirmation of intrauterine pregnancy was made using an
ultrasound scan performed at the 6th or 7th week after
transference. Follicular fluid samples from each individual
were taken from a single follicle on the day of OPU and stored
at —80°C until further use.

2.2. Flow Cytometry Analysis. Altogether, 16 biomarkers
(divided into two 8 plexes) were evaluated from the individ-
ual follicular fluid samples by using a commercially available
FlowCytomix Human Basic Kit Assay (Bender MedSys-
tems, Vienna, Austria) and following the manufacturer’s
instructions. Quantitation measurements were performed
by flow cytometer instrument FC 500 and accompanying
CXP Software (Beckman Coulter, Calif, USA). The first
8 plex consisted of: IL-23, sAPO-1/Fas, MIP-13, MIP-1a,
CD44(v6), 1L-8, G-CSF, and RANTES. The second 8-plex
consisted of IL-12p70, IFN-y, MCP-1, IL-6, IFN-qa, 1L-18,
1I-18, and TNF-a. Samples were prepared for processing
by first thawing follicular fluids and centrifuging the whole
volume at 450g for 10min. The resulting supernatants
were used for analysis. FlowCytomix Pro 2.3 Software
was used to perform calculations (Bender MedSystems).
Standard curves for each biomarker were generated with
manufacturer-supplied reference analyte (pg/mL concentra-
tions). The concentration of a biomarker was calculated as
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TaBLE 1: List of primers used for real-time PCR analysis.

Gene Forward primer Reverse primer NCBI reference

G-CSF [25] GCTTGAGCCAACTCCATAGC CAGATGGTGGTGGCAAAGTC N1\;11],\2(3117127;311;1‘72.)11,\%1\7/16&57252;%2,
IL-23A [26] TGTTCCCCATATCCAGTG TCCTTTGCAAGCAGAACTGA NM._016584.2

IFN-y TGATGGCTGAACTGTCGCCAGC ~ CTGGGATGCTCTTCGACCTCGA NM_000619.2

MIP-1a TCAGAAGGACACGGGCAGCAGA  TCAGCAGCAAGTGATGCAGAGAAC NM_002983.2
SAPO-1/Fas CCAAGTGCAAAGAGGAAGTGAAGAG TGGTTTTCCTTTCTGTGCTTTCTGC NM_152871.2
CD44(v6)  GCTACCACAGCCTCAGCTCA ACCTCGTCCCATGGGGTGTGA NA*

“The forward primer was designed to cross the junction between exons 5 and 11, characteristic for only CD44(v6)-soluble splice isoform not described in

NCBI database.

mean fluorescent intensity divided by single median standard
curve.

2.3. Gene Expression Analysis. Gene expression studies of
the measured cytokines were performed by real-time PCR
of mRNA isolated from MGC and CGC from six patients.
MGC were obtained from follicular fluid after OPU, and
CGC were collected 4 h after OPU during oocyte denudation
with bovine type IV-S hyaluronidase (Sigma-Aldrich, St-
Louis, Mo, USA). The detailed isolation protocol has been
previously published [7]. For leukocyte elimination, the
MGC pool was incubated with CD45-coated magnetic beads
(Dynabeads; Invitrogen, Oslo, Norway) for an additional 1 h
at 4°C, followed by magnet-based cell sorting (DynaMag-
15; Invitrogen) according to the manufacturer’s protocol.
Total RNA was extracted, and real-time PCR analysis
was performed using either commercially available real-
time PCR arrays (products PAHS-011A and PAHS-021A;
SABiosciences, Frederick, Md, USA) or in-house designed
and synthesized primers when the desired transcripts were
not included in the kits or the quality of amplification, and
melting curves were not satisfactory. Primers for Fas were
designed to exclusively detect the soluble isoform, and those
for CD44 were designed to amplify only exon 11 (the variable
region 6). All primer sequences used in this study are listed
in Table 1.

For double-stranded ¢DNA synthesis, 1ug of high-
quality total RNA was treated with DNase (Fermentas,
Burlington, ON, Canada) and reverse transcribed to cDNA
using the RT? First Strand Kit (SABiosciences) according to
the manufacturer’s protocols. RT? SYBR Green/ROX qPCR
Master Mix (SABiosciences) and cDNA template were added
to the array and product amplification was performed on a
7500 real time PCR System (Applied Biosystems, Foster City,
Calif, USA). Those real-time PCR reactions using in-house
primers were performed using the Power SYBR Green PCR
Master Mix (Applied Biosystems) and the 7900HT real-time
PCR instrument (Applied Biosystems).

Results were analyzed with instrument-specific soft-
ware using the AACt relative quantification method. Three
housekeeping genes were used for normalization of the
amplification data: beta actin, glyceraldehyde-3-phosphate
dehydrogenase, and ribosomal protein RPL13A.

2.4. Statistical Analysis. The R2.3.1 A Language and Environ-
ment (Free Software Foundation, Boston, Mass, USA) was
used to perform t-, Mann-Whitney U- and proportion tests
and adjusted simple regression analysis. A P value <0.05 was
considered as indicative of statistical significance.

3. Results

Table 2 summarizes the clinical data and infertility treatment
parameters, while Table 3 lists detected concentrations of
the tested biomarkers. Figure 1 summarizes the main asso-
ciations observed between the clinical data and the levels
of follicular biomarkers, according to analysis by adjusted
regression models.

3.1. Associations between Infertility Cause and Levels of
Biomarkers in Follicular Fluid. Patients characterized by male
factor infertility represented the reference group in simple
regression analysis, unless otherwise stated. Our results
indicated that women with TFI had lower concentrations of
IL-13-adjusted r = —12.6 pg/mL, P = 0.037), and lower
IFN-« levels were also significantly associated with TFI when
the status of current smoking was included in the model
(adjusted r = —13.9 pg/mL, P = 0.046).

PCOS patients were characterized by significantly
higher follicular levels of CD44(v6) (age-adjusted r =
2072.7 pg/mL, P = 0.010) and MIP-1« (adjusted for age,
cause of infertility, and follicular count in prestimulatory
ovary r = 3111.7pg/mL, P = 0.007). Women with
endometriosis presented with higher levels of IL-23 than
male factor infertility patients (adjusted by follicular number
prior to stimulation r = 157.1 pg/mL, P = 0.025). Moreover,
when compared to TFI patients, women with endometriosis
had higher levels of follicular TNF-a (age-adjusted r =
2.6 pg/mL, P = 0.047) and IFN-y (adjusted by follicular
number prior to stimulation r = 16.4 pg/mL, P = 0.030). In
women with unexplained infertility, significantly lower levels
of follicular CD44(v6) were measured, as compared to male
factor infertility patients (age-adjusted r = —1888.4 pg/mL,
P = 0.025). However, when compared to TFI patients, the
unexplained infertility patients also had lower levels of IL-18
(age-adjusted r = —186.7 pg/mL, P = 0.021).
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FIGURE 1: Associations between biomarkers and infertility parameters. Red boxes indicate positive association, green boxes negative
association; empty boxes indicate no association found by adjusted regression analysis. Male factor infertility was chosen as a reference
group, but in cases marked with . TFI was used as a reference. Abbreviations are as mentioned in the text.

Active smoking was associated with elevated follicular
CD44(v6) levels (adjusted for age and cause of infertility
r = 1227.8 pg/mL, P = 0.019 versus never smokers group)
and sAPO-1/Fas levels (adjusted r = 464.9 pg/mL, P = 0.031
versus never-smokers group). Similarly, follicular IL-23 levels
were higher in women who reported history of smoking or
current smoking, as compared to never-smokers, regardless
of age or cause of infertility (adjusted r = 107.6 pg/mL,
P = 0.043). In addition, an elevated IL-23 concentration was
associated with women experiencing secondary infertility
rather than primary infertility (regardless of the cause of
infertility; adjusted r = 94.6 pg/mL, P = 0.043).

3.2. Associations between Infertility Treatment Parameters and
Biomarker Levels in Follicular Fluid. A positive association
was determined to exist between the concentration of fol-
licular IL-12 and the number of fertilized oocytes (adjusted
r = 0.15 pg/mL per every additional 2PN oocyte, P = 0.007)
and the proportion of good-quality embryos (adjusted r =
0.22 pg/mL per every additional embryo, P = 0.006), when
the data were adjusted for age, cause of infertility, and fol-
licular size. Achieving intrauterine pregnancy was associated
with higher levels of follicular MIP-18, as compared to hCG-
negative patients (adjusted for age and cause of infertility
r = 48.0pg/mL, P = 0.047). In addition, follicular MIP-
18 and IFN-a levels were both positively associated with the
diameter of a follicle (adjusted r = 7.8 pg/mL, P = 0.037 and
r = 2.4pg/mL for every millimeter in diameter, P = 0.023,
resp.), regardless of age or cause of infertility.

The concentration of IL-8 in follicular fluid was pos-
itively associated with intrauterine pregnancy (adjusted
for age, cause of infertility, rate of good-quality embryos
transferred, and endometrial thickness r = 207.5 pg/mL, P =
0.051), and also with parity (adjusted for age and cause of
infertility » = 150.6 pg/mL for every child born, P = 0.039).
Not surprisingly, IL-8 was also associated with higher levels
of serum progesterone after ovarian stimulation (adjusted
r = 4.7 pg/mL, P = 0.031).

Follicular IL-18 levels appeared to be positively corre-
lated with several outcomes, including increased chance for
intrauterine pregnancy (adjusted for the cause of infertility
r = 71.6pg/mL, as compared to hCG-negative patients,
P = 0.054), number of fetuses detected by ultrasonography
(adjusted for age, cause of infertility, number of embryos
transferred, rate of good-quality embryos among them, and
endometrial thickness r = 67.2 pg/mL for every additional
fetus, P = 0.020), and with increased parity (adjusted for age
and cause of infertility » = 60.7 pg/mL for every child to give
birth, P = 0.038). Interestingly, the levels of both follicular
IL-8 and IL-18 increased as follicles grew (adjusted for age
and cause of infertility r = 40.2pg/mL, P = 0.005, and
r =1 3.1 pg/mL for every additional millimeter in diameter,
P =0.022, resp.).

3.3. mRNA Analysis of the Measured Protein Transcripts from
MGC and CGC. Our mRNA expression analysis demon-
strated that most of the studied transcripts were more
abundantly expressed in MGC (Figure 2). G-CSF and sAPO-
1/Fas were not differentially expressed in the two cell types.
Both of the interferons examined were found to be more
highly expressed in CGC, although this result was not
statistically significant (Table 4). When the abundance of
intracellular transcripts was analyzed, the mRNA levels were
found to differ by several orders of magnitude and were
characterized by substantial interpatient variability (Table 4).

4. Discussion

In the current study, we evaluated the expression of 16
different biomarkers in the follicular fluid of infertile
women by using multiplex assay from Bender MedSys-
tems. These biomarkers included Th1/proinflammatory and
anti-inflammatory cytokines, chemokines and antiapoptotic
biomarkers that had previously been implicated in ovarian
function by our previous study [7]. Ultimately, we found
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TABLE 4: Relative* mRNA abundance of measured proteins in cumulus and mural granulosa cells.

Biomarkers CGC + SD MGC =+ SD P value (paired t-test)
G-CSF 0.000216 = 0.000151 0.000207 = 0.000109 0.930
IL-18 0.001025 + 0.000640 0.070199 = 0.108075 0.178
IL-6 0.000082 + 0.000059 0.003981 + 0.006412 0.209
IL-12A 0.000104 + 0.000047 0.000209 = 0.000083 0.022
1L-18 0.001506 + 0.000958 0.007472 + 0.002346 <0.001
IL-23A 0.000009 = 0.000004 0.000025 = 0.000014 0.016
IFN-« 0.000236 = 0.000186 0.000044 = 0.000021 0.127
IFN-y 0.000064 = 0.000045 0.000027 = 0.000021 0.157
TNF-a 0.000133 = 0.000150 0.001899 = 0.002363 0.117
IL-8 0.022214 = 0.009590 0.487650 = 0.431439 0.045
MCP-1 0.003409 + 0.004521 0.008618 + 0.009842 0.239
MIP-1a 0.000015 + 0.000011 0.000451 + 0.000718 0.191
MIP-1p 0.001029 = 0.000864 0.055073 = 0.071566 0.122
RANTES 0.000650 + 0.000282 0.014258 + 0.021169 0.293
sAPO-1/FAS 0.000024 + 0.000014 0.000024 = 0.000016 0.979
CD44(v6) 0.000024 + 0.000006 0.000045 = 0.000028 0.158

* As compared to the average of three housekeeping gene transcripts: beta actin, glyceraldehyde-3-phosphate dehydrogenase, and ribosomal protein RPL13A.
Abbreviations: CGC: cumulus granulosa cells; MGC: mural granulosa cells; SD: standard deviation.
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FiGURE 2: Differential expression of measured protein transcripts
in cumulus and mural granulosa cells. * Differences in expression
were statistically significant. CGC: cumulus granulosa cells, MGC:
mural granulosa cells.

that 12 of the 16 examined biomarkers were associated with
a cause of infertility or IVF treatment outcome.

The mammalian ovulation event can be considered
from the perspective of an inflammatory reaction, with
proinflammatory cytokines produced and functionally inter-
acting throughout the process [10]. For example, IL-18
has been evidenced to participate in ovulation induction
by facilitating follicular rupture [27]. The fact that we
found lower values of IL-1f in TFI patients indicates that
impairment of folliculogenesis might have occurred and
contributed to the infertility of these women. IL-18 is
known to induce cytokines that are important for both
folliculogenesis and ovulation, including IL-1f3, TNF-a, and
IFN-y [28]. Our finding that levels of IL-18 were relatively
low in unexplained infertility patients might then reflect

an underlying perturbed immunological profile for this
infertility cause. Importantly, IL-18 has been suggested to
favor ovarian folliculogenesis; a positive correlation has been
reported between the level of follicular IL-18 and the number
of retrieved oocytes and implantation success in women
with different etiologies of infertility [29, 30]. Our finding
that follicular growth positively correlates with IL-18 levels
indirectly supports the role of IL-18 in follicle maturation.
Furthermore, our finding that higher follicular IL-18 was
associated positively with parity indicates that this cytokine
may increase the chance for pregnancy.

The elevated levels of follicular IFN-y found in our
group of endometriosis patients is in agreement with
previous results obtained with serum samples [27]. Increased
production of IFN-p may reflect the immune system’s
efforts to overcome apoptosis inhibition and to decrease cell
proliferation in the case of endometriosis [31]. Additionally,
while a temporary increase in the concentration of IFN-y
seems to be essential for ovulation, IFN-y levels that exceed
normal physiologic concentrations may inhibit ovulation
and contribute to early pregnancy loss [28]. IFN-a is
synthesized primarily in response to infection, but the IFN-
« signaling pathways have also been demonstrated to be
involved in reproduction processes, even in the absence
of detectable infection [12]. The fact that the group of
healthy women (with male factor infertility) in our study
possessed higher levels of IFN-a than did women with TFI
further supports a positive role for IFN-« in reproduction.
In addition, the positive correlation that was identified
between follicular IFN-« levels and follicular diameter was
in accordance with previous IFN-« data from preovulatory
granulosa cells [32].

We observed elevated levels of TNF-« in endometriosis
patients, as compared to TFI patients. It is possible that
this finding simply reflects increased TNF-a serum levels



that had infiltrated into the follicular fluid [33] or increased
secretion by granulosa cells induced by the inflammatory
pelvic milieu in endometriosis [34]. TFI patients’ expression
of follicular TNF-« has also been previously suggested to
be below the threshold of standard detection systems [6].
TNF-« in IVF has already been the subject of much study
by infertility researchers. Some authors have concluded that
follicular TNF-a might deteriorate the microenvironment in
the follicle, thereby negatively affecting oocyte and embryo
quality [35]. Still others have proposed a positive role of
TNF-a regarding oocyte quality, and ovulation [36]. Overall,
the roles of TNF-« in female reproduction are likely to be
complex and dynamically involved in the different stages of
folliculogenesis [37].

Previous studies examining IL-12 in the follicular fluid
have yielded contradictory results. Nevertheless, a majority
of the findings have indicated that IL-12 is associated with
a negative effect on folliculogenesis, oocyte quality and
implantation [9, 20, 38]. We failed to detect any correlation
between the follicular level of IL-12 and the pregnancy
outcome of IVE. Nonetheless, there was a positive association
identified between IL-12 and the quality of oocytes and
embryos. Our results are similar to a study published by
Ostanin et al. [39], wherein the authors reported that
follicular concentration of IL-12 was elevated in women who
produced more high-quality oocytes. IL-12 is a Th1 cytokine
that can become cytotoxic at high levels. It is, therefore, not
unexpected that high concentrations of IL-12 in the follicular
fluid might impair the natural process of folliculogenesis
and ovulation [38]. However, in the current study, the mean
concentration of IL-12 was found to be more than 10-fold
lower than that reported in studies that had concluded dele-
terious function of IL-12 on reproduction [9, 20, 38]. Thus,
we suggest a dose-dependent role for IL-12 in the follicles.

We also determined that endometriosis was associated
with increased levels of follicular IL-23. Given that IL-23 is
known to participate in autoimmune diseases by promoting
inflammation, a hallmark of endometriosis, this result was
not surprising. Impaired follicular fluid microenvironment
characterized by elevated inflammatory cytokines may in fact
be the cause for poor oocyte quality, which in turn could
lead to poor IVF outcome in patients with endometriosis
[19]. The detrimental effect of IL-23 on fecundity is further
supported by our findings of higher levels of IL-23 in women
who smoked or who suffered from secondary infertility.

MIP-1« is a marker for ongoing acute or chronic inflam-
matory host responses [18, 40]. Dahm-Kihler et al. [41]
failed to detect MIP-1« in follicular fluids of unstimulated
menstrual cycles, leading to their conclusion that MIP-
la is not produced under physiological conditions. Our
contradictory findings of elevated levels of MIP-1a in PCOS
patients may reflect a character of increased inflammation
in stressed ovaries. To date, very few studies have appeared
in the literature that investigate the function of MIP-
13 in female reproduction, although this chemokine has
been suggested to promote folliculogenesis and pregnancy
establishment [39]. Such a positive role was also supported
by our finding that higher follicular fluid MIP-1j levels
correlated with follicular growth and achieving pregnancy.
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The correlation of IL-8 concentration with follicular
growth is in accordance with previously reported results.
When taking into consideration that IL-8 has also been
detected in unstimulated cycles [38], the involvement of
this chemokine in the natural process of folliculogenesis
and ovulation can be assumed [42]. Moreover, a recent
study showed that lower serum levels of IL-8 correlated
with a higher risk for extrauterine pregnancy [43]. Thus,
our finding of higher follicular fluid IL-8 in cases of
normal intrauterine pregnancy seems sensible. Nonetheless,
two previous studies demonstrated no correlations between
follicular fluid IL-8 concentration and IVF cycle parameters
or pregnancy results [38, 42]. The discrepant results obtained
from these studies and our own could be due to differences in
sample sizes, patient groups examined, or detection methods
used; this issue needs further investigation.

sAPO-1/Fas mediates apoptosis inhibition, which is im-
portant in preventing oocytes from succumbing to atresia
during follicular maturation [21]. Increased sAPO-1/Fas
levels have also been associated with enhanced activity of
smoking-induced antiapoptotic signaling pathways in the
oral cavity, which leads to epithelial hyperplasia [44]. In
our study, we detected higher levels of sSAPO-1/Fas in active
smokers. Thus, our findings suggest that a compensatory
increase of SAPO-1/Fas was established in the apoptosis-
favoured environment of the follicles in active smokers.
A similar effect has also been proposed for CD44(v6) in
the ovary, where macrophage membrane-expressed CD44
protein has been shown to participates in clearance of
apoptotic granulosa cells [44, 45]. Our findings of lower
levels of CD44(v6) in unexplained infertility and higher
levels in PCOS and active smokers might reflect impaired
apoptosis mechanisms in the ovaries of these patients.

Considering that cytokines likely affect ovarian function,
one could argue about the source of these immunomod-
ulatory factors in follicular fluid. The ovulatory process is
comparable to a classical local inflammatory reaction, and
leukocytes have been shown to participate actively in the
cyclic events of the ovary [6]. However, it is unlikely that
migrating leukocytes producing proinflammatory cytokines
represent the principal mechanism by which ovarian fol-
liculogenesis is regulated [6]. Increased levels of serum-
derived cytokines in follicular fluid have been demonstrated
in endometriosis [33]. In addition, upregulated expression
of proinflammatory cytokines by granulosa cells has been
detected in cases of infertility [7]. Here, we confirmed our
previous findings from the Affymetrix GeneChip platform
using real-time PCR analysis to monitor mRNA expression
in different conditions of infertility, as compared to levels
expressed in conditions of normal fertility. To the best of
our knowledge, our results represent the first description
of the human granulosa cell expression profile of IL-12A,
IL-23A, IL-18, MIP-1a, MIP-18, TEN-«, IFN-y, and sAPO-
1/FAS. MIP-18 has been studied in the mouse cumulus-
oocyte complex, where its expression increased in response
to experimental exposure to hyaluronan fragments, and the
related signal was determined to be mediated by Toll-like
receptors [46]. On the other hand, luteinizing hormone
induction of IFN-a was shown in rats and determined
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to function as a modulator of steroidogenesis and MGC
differentiation [47]. It is well known that cytokines and
apoptosis networks functionally interact with one another in
a variety of mammalian, and human, tissues. Therefore, our
results also indicate a strong role of these proteins in human
follicular physiology.

In conclusion, we discovered that various infertility eti-
ologies are accompanied by distinct intrafollicular cytokine
profiles. Furthermore, some of the cytokines evaluated, such
as IL-12, were determined to influence oocyte fertilization
and embryo quality, while others, such as IL-18, IL-8, and
MIP-18, were found to be correlated with successful preg-
nancy following IVF treatment. Collectively, these factors
appear to be promising prognostic markers for IVF success
and should be evaluated as such by future prospective
studies.
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ABSTRACT

Female gametogenesis is a long process that depends on hormonal influence from
the pituitary gland and communication between the oocyte and various somatic cells
in the ovary. During post-pubertal gametogenesis the meiotic and cytoplasmic
maturation of the oocyte coincides with structural changes in the ovarian follicle,
where oocyte development takes place. While the oocyte matures, the follicle
expands considerably, becomes filled with follicular fluid (FF) and surrounded by
blood capillaries. The one layer of granulosa cells in the early stages of follicle
development starts to proliferate and differentiates into two distinct populations: the
mural and cumulus granulosa cells (MGC and CGC, respectively) with distinct
functional properties by the pre-ovulatory stage.

The knowledge of follicle and oocyte maturation have led to assisted
reproductive technologies, including controlled ovarian stimulation and in vitro
fertilization (IVF) that are helpful for many infertile couples. However, there is
considerable room for development in these technologies, as only about 30-35% of
IVF cycles culminate with a live birth. Therefore, information regarding the
molecular processes involved in follicle development and oocyte maturation, as well
as the extent of how these processes are influenced by the individual physiological
properties of a woman is useful for treating more infertile patients.

The aim of the thesis was to give a thorough overview of differential gene
expression between MGC and CGC by using several genome-wide methods. Beside
gene expression at mRNA level, post-transcriptional gene regulation by alternative
splicing, miRNA expression and mRNA targeting was studied to better understand
the potential functions of these two granulosa cell population in human follicles just
before ovulation. Secondly, 16 protein markers including cytokines and apoptosis-
related proteins were studied in the FF of IVF patients with various etiologies of
infertility and IVF outcome to reveal how the environment of oocyte maturation is
modified by physiological background of a woman.

The thesis concludes that at mRNA level the gene expression profile
between the two cell populations differs significantly, leading to various potential
molecular functions that can be attributed to these cells. However, at the miRNA
level the differential expression was not as significant and the miRNAs that were
differentially expressed targeted the same molecular pathways to a large extent.
Only in MGC, during the path of differentiation, the over-expressed miRNAs have
switched to targeting several cell adhesion and metabolic pathways as compared to
miRNAs in CGC. New miRNA molecules were identified in granulosa cells that are
derived from the introns of two important genes in folliculogenesis: follicle
stimulating hormone receptor and aromatase.
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Fourteen of the proteins measured in the FF were found to be useful in
discriminating the studied group of women according to the etiology of infertility,
the outcome of ovarian stimulation or IVF procedure. Of potential further clinical
use, IL-12 concentration was descriptive of embryo quality and MIP-1p, IL-8 and
IL-18 correlated with the pregnancy outcome of the IVF cycle. In addition, several
cytokines were found to be potentially involved in intercellular communication in
the follicle according to our gene expression experiments and should be further
studied in this regard.
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KOKKUVOTE

Naise sugurakkude areng soltub nii ajuripatsi poolt eritatud hormoonidest kui ka
munaraku ja seda {lmbritsevate somaatiliste rakkude omavahelistest
interaktsioonidest. Puberteedijargse sugurakkude arengu kdigus toimuvad {iheaegselt
munaraku meiootiline ja tsiitoplasmaatiline kiipsemine ning struktuursed muutused
munasarja folliikulis, kus toimub munaraku areng. Ajal, mil munarakk valmib,
suurenevad méarkimisvaarselt folliikuli modtmed, see tditub follikulaarvedelikuga
ning Umbritsetakse kapillaaride poolt. Folliikuli arengu varajastes etappides iihe
kihina munarakku {imbritsevad granuloosrakud jagunevad intensiivselt ning
moodustavad ovulatsioonieelseks staadiumiks kaks eraldi rakupopulatsiooni:
muraalse ja kumuluse granuloosa, millel on erinevad rollid folliikuli arengu
viimastes etappides ja ovulatsioonil.

Olemasolevad teadmised folliikuli ja munaraku arengust on viinud mitmete
meditsiiniliste tehnoloogiate kasutuselevotuni nagu munasarjade stimulatsioon ja
kehaviline viljastamine (IVF), mida kasutatakse rutiinselt viljatusravis. Ent vaid 30-
35% IVF protseduuridest on tdnapédeval tulemuslikud, 1dppedes -elussiinniga.
Seetdttu on ravi efektiivsuse tdstmiseks ddrmiselt oluline munaraku ja folliikuli
arengu molekulaarsete protsesside ning naise individuaalse fiisioloogia mdju parem
moistmine.

Kéesoleva uuringu eesmérgiks oli anda pdhjalik {ilevaade muraalse ja
kumuluse granuloosa geeniekspressiooni mustritest, et moista erinevate
granuloosrakkude seni  kirjeldamata rolle inimese munasarjas. Lisaks
ilegenoomsetele  geeniekspressiooni  uuringutele mRNA  tasemel  uuriti
transkriptsioonijirgset geeniregulatsiooni alternatiivse splaissingu, mikroRNA-de
(miRNA-de) ja nende sihtmirk-mRNA-de tuvastamise kaudu. Teiseks suuremaks
eesmérgiks oli leida follikulaarvedelikust markereid, mis kirjeldaksid munasarja
tasemel viljatuse pohjuseid ja IVF protseduuri tulemuslikkust. Selleks méérati
erinevate viljatuse pShjustega IVF patsientide follikulaarvedelikust 16 valgu tase,
mille hulgas olid tsiitokiinid ja apoptoosiga seotud valgud, ning uuriti naise
individuaalsete fiisioloogiliste néitajate seost munaraku kiipsemise keskkonnaga.

Uuringus  leiti, et mRNA tasemel erinevad kaks granuloosa
rakupopulatsiooni teineteisest mirkimisvédrselt ning nendele rakkudele omistati uusi
seni avaldamata molekulaarseid funktsioone. Seevastu miRNA ekspressioonimustrid
olid uuritud rakkudel enamjaolt sarnased, omades sihtmirke samades
signaaliradades. Muraalse granuloosa populatsioonis oli siiski suurenenud nende
miRNA-de tase, mis reguleerivad rakkude fiiiisilisi kontakte véliskeskkonnaga ja
mitmeid ainevahetuse protsesse. Mdlemas rakupopulatsioonis leiti uusi seni
tuvastamata miRNA molekule, millest kaks péarinevad kahe folliikuli arengus
tlitdhtsa geeni, folliikuleid stimuleeriva hormooni ja aromataasi, intronitest.
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Follikulaarvedelikust mdddetud valkudest neliteist vdimaldasid eristada
patsiente nende viljatuse pdhjuse, munasarja stimulatsiooni voi IVF protseduuri
tulemuslikkuse  alusel.  Potentsiaalset  kliinilist véartust omavad IL-12
kontsentratsioon, mis seostus embriio kvaliteediga, ning MIP-1f, IL-8 ja IL-18,
mille tasemed follikulaarvedelikus erinesid oluliselt IVF-i tulemusena rasestunud ja
mitterasestunud patsientide vahel. Lisaks leiti geeniekspressiooni andmete pdhjal, et
mitmed uuritud tsiitokiinidest omavad voimalikku olulist rolli granuloosrakkude
omavahelises interaktsioonis.
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