TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

1956

Серия А № 81

Л. А. ТЕПАКС

ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПРИ ТУРБУЛЕНТНОЙ ФИЛЬТРАЦИИ

ЭСТОНСКОЕ ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТАЛЛИН 1956

Ep 6.7

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

Серия А	№ 81	1956

Л. А. ТЕПАКС

ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПРИ ТУРБУЛЕНТНОЙ ФИЛЬТРАЦИИ

Ep. 49 ENBY Tenduste Akadeemie

ЭСТОНСКОЕ ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТАЯЛИН 1956

1. ПОСТАНОВКА ВОПРОСА

Проблему сопротивления фильтрующего слоя можно решать двумя способами.

С точки зрения внешней проблемы скелет фильтрующего слоя рассматривается как множество тел, обтекаемых потоком. Сопротивление слоя в целом является суммой сопротивлений всех тел. При малой скорости обтекания сопротивление обусловлено трением жидкости о поверхность тела (ламинарный режим). При возрастающих скоростях, за телом образуется мертвая область. При какой-то скорости обтекания начинается отрыв вихрей, причем в пространстве между телами происходит интенсивное перемешивание жидкости. Сопротивление в турбулентной области относится в основном к типу сопротивления формы, т. е. зависит от формы частицы и от ее положения по отношению к основному направлению потока.

Скелет фильтрующего слоя можно рассматривать так же, как систему поровых трубок, т. е. с точки зрения внутренней проблемы. Движение жидкости в трубках может иметь как ламинарный, так и турбулентный характер. При этом следует отметить, что к сопротивлению по длине трубки присоединяются местные сопротивления за счет изменения направления, слияния, разделения и изменения сечений потоков. Рассуждения Т. Х. Чильтона и А. П. Кольбурна¹ приводят к выводу, что местные сопротивления преобладают по сравнению с сопротивлениями по длине. Можно заключить, что при турбулентном движении, основная часть сопротивления является сопротивлением типа Борда и что при этом существенную роль играет форма частицы и ее положение. Таким образом, рассматривая вопрос сопротивления фильтрующего слоя, как внешнюю или как внутреннюю проблему, приходим к одинаковым выводам.

Скелет фильтрующего слоя состоит из множества тел более или менее разнообразной формы; поровые трубки имеют также многообразные очертания. Нельзя ожидать

одновременного возникновения турбулентности во всех порах. Отрыв потока от тела, с образованием мертвой области, происходит, по-видимому, сперва в порах, имеющих наибольший размер, и при внезапном расширении потока. При возрастающей скорости фильтрации турбулентность охватывает постепенно все поры. Сопротивление фильтрующего слоя в целом имеет статистический характер. Кривые, изображающие закономерности сопротивления, имеют как все статистические кривые вид плавных кривых.

Установить чисто теоретическим путем закон сопротивления, является задачей, по-видимому, неразрешимой. Возможно установить лишь полуэмпирические выражения, основанные на критериальных зависимостях с коэффициентами, определяемыми опытами.

2. СОПРОТИВЛЕНИЕ СКЕЛЕТА, КАК МНОЖЕСТВА ОБТЕКАЕМЫХ ТЕЛ

Из теории гидродинамического сопротивления известно, что при движении жидкости с преобладающим влиянием сил вязкости подобие осуществляется при удовлетворении критериев Рейнольдса и Эйлера

$$Re = \frac{VL}{\nu} \tag{2-1}$$

И

$$Eu = \frac{p}{\varrho V^2}.\tag{2-2}$$

Исключение кинематической величины — скорости — из выражений (2—1) и (2—2) приводит к понятию динамического критерия $\sqrt{Eu} Re$, широко используемого при изучении движения жидкости в трубах. Критерий Эйлера выражает коэффициент сопротивления. Критерий $\sqrt{Eu} Re$ представляется обычно в виде $\frac{u_*L}{v}$, где u_* — динамическая скорость.

При ламинарном режиме закон сопротивления имеет вид

$$Eu = \frac{A}{Re} = \frac{Av}{VL}.$$
 (2-3)

В случае турбулентного движения, выражение (2—3) не действительно. Автором предлагается новое, расширенное понятие коэффициента виртуальной вязкости ε , определяемое выражением

$$Eu = \frac{A\varepsilon}{VL} = \frac{A}{Re} \cdot \frac{\varepsilon}{\nu}.$$
 (2-4)

Соотношение $\frac{\varepsilon}{v}$, называемое показателем турбулентности, определяется опытами и может быть переписано в виде

$$\frac{\varepsilon}{\nu} = \frac{Eu\,Re}{A}\,.\tag{2-5}$$

Закон сопротивления, охватывающий как ламинарную, так и турбулентную область, можно представить в виде

$$\frac{\varepsilon}{\nu} = f\left(\frac{u_*L}{\nu}\right). \tag{2--6}$$

Указанная методика использована автором при рассмотрении обтекания шероховатой стенки², т. е. множества тел, расположенных в одной плоскости, а также и в случае обтекания одного тела³, при свободном падении частиц в жидкости. В последнем случае мы пользовались понятиями коэффициента сопротивления и числа Рейнольдса

$$P = \frac{gr\left(\frac{\varrho_1}{\varrho} - 1\right)}{V^2}, \qquad (2-7)$$

$$Re = \frac{Vr}{v}, \qquad (2-8)$$

предложенными М. А. Великановым 4.

В ламинарной области, сопротивление выражается в виде

$$P = \frac{A}{Re}.$$
 (2—9)

В квадратичной области коэффициент сопротивления принимает постоянное значение

$$P = B. \tag{2-10}$$

5

Обработка опытов многих исследователей показывает, что закономерностъ (2—6) может быть представлена в виде

$$PRe = A + \sqrt{B} \sqrt{PRe}. \qquad (2-11)$$

Выражение (2—11) обосновано теоретическими рассуждениями, изложенными в цитированной работе автора³.

Возвращаясь к рассмотрению сопротивления при фильтрации, отметим, что фильтрующий монолит может принять взвешенное состояние под действием восходящего фильтрационного потока. Это происходит при критическом уклоне, согласно формуле

$$i = \left(\frac{\varrho_1}{\varrho} - 1\right)(1 - m), \qquad (2 - 12)$$

·где *т* — коэффициент порозности.

Подстановка $\left(\frac{\varrho_1}{\varrho}-1\right)$ по (2-12) и (2-7) определяет выражение коэффициента сопротивления для фильтрующего слоя, в виде

$$P = \frac{gri}{(1-m)\,V^2},\tag{2-13}$$

где V — скорость фильтрации.

Обработка многочисленных опытов по формулам (2-13) и (2-8) показывает, что зависимость (2-11) действительна для фильтрационного потока. Графики, составленные в координатах *PRe* и \sqrt{PRe} , показывают, что опытные точки укладываются на прямую в соответствии с выражением (2-11). В качестве примера на рис. 1 изображена обработка двух серий опытов Г. М. Ломизе⁵, где исследовалась фильтрация в зернистых однородных грунтах (песок и гравий кругловатой формы)*.

Обработка опытных данных показывает, что численные коэффициенты в формуле (2—11), в случае фильтрации, получаются во много раз больше, чем в случае свободного падения. Для двух указанных серий Г. М. Ломизе получаем A = 520-700 и B = 15-21. Те же коэффициенты для свободного падения имеют значения ³: A = 5-6 (теоретическое решение Стокса для шара дает A = 4,5) и B = 0,4-0,6 (для частиц кругловатой формы B = 0,4).

^{*} Численные данные опытов были любезно предоставлены автору проф. Г. М. Ломизе.

Следует отметить, что сравниваемые явления отличаются друг от друга тем, что при свободном падении, в турбулентной области, частицы падают не вертикально, а по сложным зигзагообразным траекториям. Такая свобода перемещения в поперечном направлении отсутствует в случае фильтрации. При ламинарном движении, поперечные перемещения отсутствуют; между тем, коэффициент А получается для фильтрации примерно в 100 раз больший, чем при обтекании одного-единственного тела.

Рис. 1.

Скорость обтекания частиц в скелете грунта больше скорости фильтрации. Среднюю скорость в порах можно представить в виде

$$w = \frac{V}{m}.$$
 (2-14)

Путем замены скорости фильтрации V скоростью в порах w в выражениях (2—8) и (2—13) можно получить новые выражения коэффициента сопротивления и числа Рейнольдса. Однако обработка опытов показывает, что такая замена не приводит к положительным результатам: коэффициенты A и B получаются разные для разных порозностей.

Таким образом, рассматривая сопротивление скелета, как множества обтекаемых тел, можно лишь заключить, что при близком расположении отдельных частиц по отношению друг к другу сопротивление увеличивается. Чем ближе расположены частицы, т. е. чем меньше порозность, тем больше сопротивление. Рассматривая вопрос с точки зрения внешней проблемы, влияние порозности можно установить только чисто эмпирическим путем, так как теоретические соображения о взаимном влиянии множества обтекаемых тел отсутствуют.

Более удачной является трактовка вопроса с точки зрения внутренней проблемы, излагаемая ниже.

3. СОПРОТИВЛЕНИЕ СКЕЛЕТА, КАК СИСТЕМЫ ПОРОВЫХ ТРУБОК

Исходя из аналогии движения жидкости в капиллярных трубках, вместо размера частицы в качестве характерной длины были предложены различные выражения размера пор (напр., Слихтер ⁶, Е. М. Минский ⁷, М. Д. Миллионщиков ⁸). Большинство авторов (И. Козени ⁹, И. Донат ¹⁰, И. И. Зауербрей ¹¹, Г. М. Ломизе ⁵, В. А. Клячко ¹², Д. М. Минц и С. А. Шуберт ⁸ и др.) предлагают пользоваться понятием гидравлического радиуса пор. Это понятие привело к формуле ламинарной фильтрации, подтверждающейся многочисленными опытами.

Гидравлический радиус пор, т. е. соотношение объема пор к их поверхности, выражается в виде

$$l = k \frac{m}{1-m} r, \qquad (3-1)$$

где k — коэффициент пропорциональности, отражающий форму частиц. Для упрощения записей будем определять гидравлический радиус в виде

$$l = \frac{m}{1 - m} r, \qquad (3 - 2)$$

причем влияние формы будет учитываться другими коэффициентами. За характерную скорость возьмем среднюю скорость в порах по (2—14). По аналогии с движением в трубах, коэффициент сопротивления и число Рейнольдса определяются выражением

$$P' = \frac{gli}{w^2},\tag{3-3}$$

$$Re' = \frac{wl}{v}.$$
 (3-4)

8

Эти выражения можно переписать, подставив l по (3-2) и ш по (2-14):

$$P' = \frac{m^3}{1-m} \frac{gri}{V^2}, \qquad (3-5)$$

$$Re' = \frac{Vr}{(1-m)v}$$
. (3-6)

Следует отметить, что понятия коэффициента сопротивления по (3-5) и числа Рейнольдса по (3-6) не являются новыми. Аналогичные (пропорциональные) выражения приводятся в литературе ^{5, 8}. Сопоставление (3—5) с (2—13) и (3—6) с (2—8) опре-

деляет связь

$$P' = m^3 P, \qquad (3-7)$$

$$Re' = \frac{Re}{1-m}.$$
 (3-8)

Закон сопротивления (2-6) можно записать по аналогии с (2—11) в форме

$$P'Re' = A' + \sqrt{B'} \sqrt{P'} Re'. \qquad (3-9)$$

Сравнение (2-11) с (3-9), с учетом (3-7) и (3-8), определяет взаимную связь коэффициентов:

$$A' = \frac{m^3}{1-m}A,$$
 (3-10)

$$B' = \frac{m^3}{(1-m)^2} B, \qquad (3-11)$$

причем новые коэффициенты А' и В' теперь уже не зависят от порозности, а только от формы частиц.

4. РЕЗУЛЬТАТЫ ОБРАБОТКИ ОПЫТНЫХ ДАННЫХ

При постоянной порозности значения P', Re', A' и B' являются пропорциональными P, Re, A и B. Из этого следует, что точки, изображенные на рис. 1, укладываются после соответствующих пересчетов на прямые также и в координатах P' Re' и $\sqrt{P' Re'}$. При этом сами прямые, полученные для разных порозностей и при разных по размеру, но одинаковых по форме зернах, должны совпадать.

Изложенные теоретические предпосылки полностью подтверждаются обработкой опытов Г. М. Ломизе⁵ (рис. 2). В этих опытах были использованы однородные грунты с пятью различными диаметрами и порозностями (песок и гравий округленной формы речного и морского происхождения). Точки всех пяти серий укладываются на прямую

$$P'Re' = 50 + 0.95 VP'Re',$$
 (4-1)

определяющую значения коэффициентов A' = 50 и B' = 0,90.

Менее удачной получилась обработка опытов Д. М. Минца и С. А. Шуберта⁸ (фильтрация в слоях антрацита). Коэффициент А' имеет приблизительное значение

 $A' = \sim 75$, причем его точное определение невозможно изза небольшого количества точек (рис. 3). Коэффициент B' имеет разные значения для разных серий:

d	=	7,79	MM,	m =	0,515,	B' =	1,58
d	=	5,1	MM,	m =	0,504,	B' =	1,74
d	=	3,46	MM,	m =	0,513,	B' =	2,14
d	#	2,08	MM,	m =	0,516,	B' =	1,78.

Для серии с d = 0,937 мм и m = 0,542 коэффициент B' не определялся из-за малого количества данных. Среднее значение для четырех серий B' = 1,81.

Значения коэффициентов для антрацита получились больше, чем для песка округленной формы. Этим еще раз подтверждается давно установленный факт влияния формы зерна на сопротивление. Отметим попутно, что это влияние выявляется также и при свободном падении зерен в жидкости ³.

Различие в значениях коэффициентов В' четырех серий с антрацитом не имеет систематического характера и его следует объяснить, по-видимому, также различием формы частиц. Куски антрацита имеют значительную шероховатость и весьма неправильную форму. При взятии проб с разными размерами зерна, геометрическое подобие, повидимому, нарушается.

Опыты Д. М. Минца и С. А. Шуберта с мелким гравием d = 3,665 мм и m = 0,472 (рис. 3) показывают, что этот гравий имел менее правильную форму, чем гравий Г. М. Ломизе. Значения коэффициентов получились: A' = 55, B' = 1,44, т. е. большие, чем по (4-1). Неправильность формы выявляется также и в порозности, которая значительно больше порозности проб Г. М. Ломизе.

Подстановка (3—5) и (3—6) в основную зависимость (3—9) определяет формулу скорости турбулентной фильтрации в виде

$$V = \frac{\frac{m^3}{(1-m)^2} gr^{2i}}{A'v + \sqrt{B'(\frac{m}{1-m})^3} gr^{3i}} = \frac{\frac{m^3}{(1-m)^2} gd^{2i}}{4A'v + \sqrt{2B'(\frac{m}{1-m})^3} gd^{3i}} \cdot (4-2)$$

5. ЛАМИНАРНАЯ ОБЛАСТЬ СОПРОТИВЛЕНИЯ

При изучении скорости падения частиц в жидкости автором установлено³, что закономерность (2—11) не действительна при малых числах Рейнольдса. То же самое наблюдается и в случае фильтрации.

При отсутствии сил инерции взамен выражения (3—9) следует пользоваться выражением

$$P'Re' = A'_{A}. \tag{5--1}$$

На рис. 4 изображена обработка вышеуказанных опытов Г. М. Ломизе; масштаб рис. 4 искажен по сравнению с рис. 2, изображены только точки с $\sqrt{P'}Re' < 100$. На рис. 5 изображена аналогичная обработка опытов Д. М. Минца и С. А. Шуберта. Опыты с антрацитом охватывают в основном турбулентную область, поэтому на рис. 5 использованы лишь 2 серии с мельчайшими частицами. Там же изображены опыты со стальными шариками и с гравием.

Рис. 4.

Вопрос о критическом числе Рейнольдса, при котором закон фильтрации Дарси не действителен, многократно рассматривался в литературе. Предложенные рекомендации дают результаты, имеющие значительные расхождения.

Сравнение опытов по рис. 4 и 5 позволяет установить, что выражение (5—1), т. е. закон Дарси, действителен при

$$\sqrt{\overline{P'}Re'} \leqslant (\sqrt{\overline{P'}Re'})_{\circ} = \sim 15$$
 (5-2)

для разных материалов, образующих скелет фильтрующего слоя.

Учет граничного условия (5-1) приводит к выражению

$$P'Re' = A'_{a} + \sqrt{B'} [\sqrt{P'}Re' - (\sqrt{P'}Re')_{o}]. \quad (5-3)$$

Сравнение (5—3) с ранее установленным (3—9) определяет взаимную связь коэффициентов

$$A' = A'_{a} - \sqrt{B'} \left(\sqrt{P'} Re' \right)_{\circ} = A'_{a} - 15 \sqrt{B'}. \quad (5-4)$$

Предельное значение числа Рейнольдса определяется совместным решением (5—1) и (5—2) в виде

$$Re_{o}^{\prime} = \frac{225}{A_{A}^{\prime}}.$$
 (5—5)

Многочисленные исследования, охватывающие не только фильтрацию в естественных грунтах, а также и гидрав-

лику сушильных и каталитических процессов ^{13, 14}, позволяют определить значения коэффициентов A'_{A} для тел различной формы, создающих фильтрующий слой. Пользуясь коэффициентами формы И. М. Федорова ¹³, полученными на основании обработки обширного опытного материала, можно предложить в среднем для песка

с округлыми частицами	$A_{_{A}}' = 50,$	$Re'_{o} = 4,5,$
обычного	$A'_{n} = 75,$	$Re_{o}^{\prime} = 3,0,$
с остроугольными частицами	$A'_{A} = 105,$	$Re'_{o} = 2,14.$

Обработка опытов Г. М. Ломизе определяет по (5-4)величину $A'_{a} = 64$, т. е. песок был кругловатой формы, как это и отмечается автором исследования. Для антрацита получается соответственно $A'_{a} = \sim 95-100$, что согласуется с вышеуказанными значениями A'_{a} . Критические числа Рейнольдса получаются соответственно $Re'_{o} = 3,5$ для кругловатого песка и $Re'_{o} = 2,25$ для антрацита.

Подставляя (5—4) и (4—2), получаем формулу скорости турбулентной фильтрации

$$V = \frac{\frac{m^3}{(1-m)^2} g d^2 i}{4\nu \left(A'_a - 15 \sqrt[3]{B'}\right) + \sqrt[3]{2B'} \left(\frac{m}{(1-m)}\right)^3 g d^3 i}.$$
 (5-6)

При удовлетворении условия (5—2), которое можно представить в виде

$$i \leqslant \frac{1800 v^2}{\left(\frac{m}{1-m}\right)^3 g d^3}$$
, (5-7)

сопротивление имеет ламинарный характер. Скорость фильтрации определяется формулой, выражающей закон Дарси и предложенной многими авторами

$$V = \frac{m^3}{(1-m)^2} \frac{gd^2i}{4A'_{a}v} \,. \tag{5-8}$$

6. КВАДРАТИЧНАЯ ОБЛАСТЬ СОПРОТИВЛЕНИЯ

Если пренебречь влиянием вязкости в формуле (5—6), т. е. отбросить первый член в знаменателе, получим формулу квадратичного сопротивления

$$V = \sqrt{\frac{m^3}{1-m}} \frac{gdi}{2B'}.$$
 (6-1)

В этой области было произведено сравнительно мало работ и поэтому невозможно установить предел Re_1' квадратичной области.

Пользуясь значениями коэффициентов, найденными для песка и гравия кругловатой формы по опытам Г. М. Ло-

мизе и предполагая $\nu = 0,01$ см²/сек и m = 0,4, формула (5—6) преобразуется в

$$V = \frac{87,2d^2i}{1+11,4\sqrt[3]{d^3i}} \quad [cm/ce\kappa]. \tag{6--2}$$

Для камня с d = 5 см эта формула принимает вид

$$V = \frac{2180i}{1+127\,\sqrt{i}} \,. \tag{6-3}$$

При i > 0,025 эту формулу можно заменить более простым выражением, аналогичным (6—1)

$$V = 17,2 \ / i$$
, (6-4)

так как скорости, подсчитанные по (6—3) и (6—4), расходятся менее, чем на 5%. Из этого можно заключить, что при расчетах фильтрации через каменную наброску, можно пользоваться формулой (6—1).

С. В. Избаш¹⁵ предложил для квадратичной области формулу

$$V = Sm \, \sqrt[]{di}, \tag{6--5}$$

где

$$S=20-\frac{14}{d}.$$

Гравий и булыжник в опытах С. В. Избаша имели кругловатую форму, причем наибольшие размеры камней были d = 8,9-13,6 см, чему соответствует S = 18,4-19,0. Коэффициент порозности составлял в среднем m = 0,4. Коэффициент Sm перед радикалом в формуле (6-5) имеет значения 7,36-7,6.

Отбросив первый член в знаменателе формулы (6—2), иолучаем

$$V = 7,65 \/di \ [cm/cek],$$
 (6-6)

т. е. хорошее совпадение с результатами по формуле С. В. Избаша.

М. Ф. Срибный ¹⁶ предложил шкалу коэффициентов фильтрации в крупнозернистых материалах различной формы. Обработка этой шкалы приводит к следующим значениям коэффициента *B*':

камень	круглый, окатанный	B' = 0,85,
,,	промежуточный	B' = 1,05,
,,	неправильный, остроугольный	B' = 1,30.

Впредь, до получения более полных данных, можно пользоваться этими значениями. Отметим однако, что возможны и гораздо большие значения B' (напр., для антрацита B' = 1,8).

Исследование П. И. Гордиенко¹⁷ позволяет провести проверку формулы (5—6), в случае рваного камня. П. И. Гордиенко выражает скорость фильтрации в виде

$$V = k i^{\frac{1}{n}}$$
 [CM/CEK]. (6-7)

Для больших уклонов, т. е. 0,1 < i < 0,8 и порозности m = 0,49 показатель определяется как

$$n = 2 - \frac{0,40}{0,40 + d^{1,5}}.$$
 (6-8)

Наибольшие камни в опытах имели размеры d = 1,87и 4,6 см. По (6—8) получаем соответственно n = 1,865 и n = 1,96.

Для определения k П. И. Гордиенко предложил график, по которому при d = 1,87 см, k = 12,2 и при d = 4,6 см, k = 19.6.

Пользуясь приведенными значениями, получаем для камней d = 1,87 см:

$$V = 12,2i^{0.536}.$$
 (6—9)

В пределах градиентов i = 0,1-0,8 получаем скорости фильтрации V = 3,55-10,8 см/сек.

Для камней d = 4,6 см:

$$V = 19.6i^{0.510}, \qquad (6-10)$$

и для градиентов i = 0, 1 - 0, 8 соответственно

V = 6,06 - 17,5 см/сек.

Пользуясь формулой автора (5—6), принимая m = 0,49, $\nu = 0,01$ см²/сек и коэффициенты для камня остроугольной формы $A'_{A} = 105$ и B' = 1,30, получаем

$$V = \frac{126,2d^2i}{1+13,53\sqrt[]{d^3i}} \quad [cm/ce\kappa]. \tag{6--11}$$

В аналогичных условиях, т. е. при градиентах i = 0,1-0,8, получаем: для камней d = 1,87 см, V = 3,70-11,0 см/сек и для камней d = 4,6 см, V = 6,18-17,7 см/сек.

Из этого следует, что формула (6—11) дает результаты, практически совпадающие с результатами по формулам (6—9) и (6—10). Расхождения порядка 1—4% можно объяснить неточностью в подборе значения коэффициента *B*'.

7. СВОДКА ФОРМУЛ

Для гидравлических расчетов турбулентной фильтрации рекомендуется формула скорости фильтрации

$$V = \frac{\frac{m^3}{(1-m)^2} g d^2 i}{4 v (A'_{A} - 15 \sqrt{B'}) + 1/2B' \left(\frac{m}{1-m}\right)^3 g d^3 i} .$$
 (5-6)

Этой формулой можно пользоваться при

$$i \geqslant \frac{1800r^2}{\left(\frac{m}{1-m}\right)^3 g d^3}.$$
 (5-7)

В противном случае следует пользоваться формулой скорости ламинарной фильтрации

$$V = \frac{m^3}{(1-m)^2} \frac{gd^{2i}}{4A'_{a}\nu} . \tag{5-8}$$

При больших размерах фильтрующего материала и при больших градиентах, взамен формулы (5—6) можно пользоваться формулой квадратичного сопротивления

$$V = \sqrt{\frac{m^3}{1-m} \frac{gdi}{2B'}}.$$
 (6-1)

В случае неоднородных материалов, диаметр зерна *d* следует заменить в формулах эквивалентным диаметром *d*_{эк}, определяемым по формуле Козени

$$\frac{1}{d_{s\kappa}} = \sum \frac{p_i}{d_i}.$$
 (7-1)

Рекомендуемые значения коэффициентов в формулах: песок и камень круглой, $A'_{,} = 50, \quad B' = 0.85,$ окатанной формы песок и камень обычной $A'_{a} = 75, \quad B' = 1,05,$ формы песок и камень остроугольной, $A'_{*} = 105, \quad B' = 1.30.$ рваной формы

Рекомендуется определять значения коэффициентов постановкой соответствующих опытов. Опыты можно производить на геометрически подобной модели, с изменением масштаба длины. Пересчеты модельных результатов проводятся по выражению (3-9).

ЛИТЕРАТУРА

- 1. T. H. Chilton, A. P. Colburn, Heat Transfer and Pressure Drop in Empty, Baffled, and Packed Tubes, Industrial and Engineering Chemistry, 1931, 23, 8, 910.
- 2. Л. А. Тепакс, Граничные условия турбулентного потока при обтекании шероховатых стенок, Труды Таллинского политехнического института, 1956, А-78. 3. Л. А. Тепакс, Скорость падения частиц в спокойной жидко-
- сти, Труды Таллинского политехнического института, 1956, А-77.
- 4. М. А. Великанов, Равномерное движение шара в жидкости, Известия НМИ, 1929.
- 5. Г. М. Ломизе, Фильтрация в трещиноватых породах, 1951.
- 6. Л. С. Лейбензон, Движение природных жидкостей и газов в пористой среде, 1947.
- 7. Е. М. Минский, О турбулентной фильтрации в пористых средах, Доклады АН СССР, 1951, 78, 3.
- 8. Д. М. Минц, С. А. Шуберт, Гидравлика зернистых материалов, 1955.
- J. Kozeny, Hydraulik, Wien, 1953.
 J. Donat, Ein Beitrag zur Durchlässigkeit der Sande, Wasser-kraft u. Wasserwirtschaft, 1929, 17, 225.
 И. И. Зауербрей, К вопросу о коэффициенте фильтрации
- грунтов и методике его исследования, Известия НИИГ, 1931, 3 и 1932, 5.
- 12. В. А. Клячко, О влиянии формы зерен фильтрующего слоя на скорость фильтрационного потока, Доклады АН СССР, 1948, 60, 8, 1329.
- 13. И. М. Федоров, Коэффициенты испарения, теплоотдачи и сопротивления при сушке зернистых материалов с продувкой воздуха через слой, Сб. Современные проблемы сушильной техники, 1941.
- 14. Н. М. Жаворонков, Гидро- и аэродинамика насадок скрубберных и ректификационных колонн, Химическая промышленность, 1948, 9 и 10.

- С. В. Избаш, О фильтрации в крупнозернистом материале, Известия НИИГ, 1931, 1.
- М. Ф. Срибный, Фильтрующие искусственные сооружения и гидравлика турбулентной фильтрации, 1933.
- П. И. Гордиенко, Фильтрация воды через наброску рваного камня, Сборник Трудов МИСИ, 1955, 9, 124.

оглавление

Стр

		- P -
1.	Постановка вопроса	3
2.	Сопротивление скелета, как множества обтекаемых тел .	4
3.	Сопротивление скелета, как системы поровых трубок	8
4.	Результаты обработки опытных данных	9
5.	Ламинарная область сопротивления	12
6.	Квадратичная область сопротивления	15
7.	Сводка формул	18
	Литература	19

Тепакс, Лео Андроникович ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПРИ ТУРБУЛЕНТНОЙ ФИЛЬТРАЦИИ Эстонское Государственное Издательство

Таллин, Пярну маантеэ 10

Редактор Х. Вельнер Технический редактор А. Сепп Корректор Н. Круглова

Сдано в набор 3 XII 1956. Подписано к печати 21 XII 1956. Бумага 54х84, 1/16. Печатных листов 1,25. По формату 60х92 печатных листов 1,03. Учетно-издательских листов 0,78. Тираж 800, МВ-09501. Заказ № 7255. Типография «Коммунист», Таллин, ул. Пикк, 2.

Цена 55 коп.

Цена 55 коп.

