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Annotatsioon

Maatriksite ümberkorrastamine on arvutuslikult kallis andmeteaduse metodoloogia, mille
eesmärgiks on maatriksi kujul esitatud andmete sisemise struktuuri avaldamine, läbi ümber-
järjestamise viisil, et järjestus oleks optimaaln vastavalt mõõdikuks olevale funktsioonile.

Arvutusliku ressursimahukuse leevendamiseks on loodud eri algoritme, nende variatsioone
ning realisatsioone. Tihti on kasutusel heuristikud, mis võimaldavad parendada kiirust,
samal ajal ohverdades täpsust. Tasakaalu leidmine täpsuse ja kiiruse vahel ja jõudluse
suurendamine on päris maailma rakendustes oluline. Seotud probleemiks on sobiliku
algoritmi leidmine antud valdkonna ning sisendi suuruse jaoks.

Metoodiline lähenemine nendele probleemidele on võrdlusuuring ja selles sisalduvad
alamprobleemid arvutipõhise eksperimenteerimisega. Nendeks alamprobleemideks on
reprodutseeritavus, uuestiarvutatavus ja taaskasutus.

Töös pakutakse välja järjestuste võrdlusuuringuid võimaldav keskkond. Peale ümberkor-
rastamisele spetsiifilise äriloogika eraldamist isoleeritud taaskasutatavatesse komponen-
tidesse, jõutakse üldistatud arvutipõhiste eksperimentide käivitamise probleemistikuni
ning pakutakse välja põhimõtteline arhitektuur, mis lähtub funktsioonidest ja funktsioonide
komponeerimisest.

Kuna eelnevad sarnased tööd keskenduvad kasutajaliidestele ning koostöö funktsioonidele,
siis antud töö katab vähem puudutatud arvutuslikku hajusrakendust, mis lubaks massilist
algoritmide käivitamist ja analüütikat.

Kuna teadusliku ja insenerivaldkonna areng baseerub paljuski eelnevatele tulemustele
toetumisel ja iga tööriista edu sõltub selle kasutatavusest ning laiendatavusest, siis töös
pakutakse välja, et arvutipõhised eksperimendid peaksid olema valmistatud kasutades
tavapäraselt kätte saadavaid komponente, millel on olemas aktiivne kasutajaskond ka väl-
jaspool teaduslikku maailma. Need tööriistad peavad võimaldama korratavust, taaskasutust,
taasarvutust ning komponeerimist, et lahendada järgmisi ja keerulisemaid ülesandeid.
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Lahendusena pakutakse välja konteinerid ja konteinerite orkestreerimine. Arhitektuuri
realiseeriv prototüüp on loodud Microsoft Azure [1] pilve platvormil, kasutades Docker
[2] konteinerid ja Kubernetes [3] konteinerite orkestreerimise platvormi, et demonstreerida
tarkvara maailmas levinud komponentide kasutatavust.

Lõpuks käivitatakse loodud prototüübil hulk eksperimente, et demonstreerida arvutuslikku
ja analüütilist võimekust. Samas on viimistletud tarkvaratoote loomine ressursside puudu-
mise tõttu väljaspool fookust. Eelnevaid võrdlusuuringuid kasutatakse sisendite allikana
ning prototüübi tulemuste valideerimisel. Eksperimentide tulemusi võrreldakse eelnevate
tööde järeldustega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 5 peatükki, 27
joonist, 8 tabelit.
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Abstract

Seriation is a computationally expensive data science methodology, with a purpose of
revealing the inner structure of data represented in a matrix form, through optimizing for a
given function. To remedy the high tax on compute resources a number of algorithms and
implementations has been created with various heuristics to improve the speed of execution,
while sacrificing accuracy. Improving algorithms, finding the most suitable algorithm
for a problem domain and input size is crucial. Methodical approach to this problem is
called benchmarking and it contains the subproblems of computer based experimentation
and reproducibility, recomputability and reusability. In this thesis an architecture for a
benchmarking environment for seriation algorithms is proposed. By extracting the seriation
domain specific functions into black box isolated components, a generalized problem of
computer based experimentation is reached and a conceptual architecture, that derives
from concepts of functions and function composition is proposed. As the previous work
largely focuses on user interfaces and collaborative aspects of such environments, this
thesis focuses on the computation backend, that allows scalable distributed mass execution
of seriation algorithms in a reproducible way.

As the basis of scientific and engineering advancement is building on the work of others
and the success of any toolkit is dependent on the ease of use and extensibility, the thesis
advocates, that computer based experiments should be done using standard off the shelf
tools, that enable composing them to be used in further research with easy reusability.

Containerization together with a container orchestrator is proposed as the solution and
implementation for the architecture. A prototype environment is created, in Microsoft
Azure [1] cloud platform, to show that implementation is possible with widely used com-
ponents known from software engineering world. Docker [2] is used for containerization
and Kubernets [3] as the orchestrator.

Finally a series of experiments are executed on the prototype to demonstrate the computa-
tional and analytical capabilities, while a fully functional software as a service is out of
scope for this work, due to resource constraints. Previously published research papers on
similar topics are used as input sources. Results from the experiments are compared to
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results from previous research, to validate correctness of the built tool.

The thesis is in english and contains 50 pages of text, 5 chapters, 27 figures, 8 tables.
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1. Introduction

This thesis is exploring technical solutions for doing benchmarking in a data science
technique called seriation, by exploring the general challenges related to computer based
experimentation.

In paragraph 2 seriation is covered more in depth. As a short context, seriation is a
descriptive analytical technique, the purpose of which is to arrange comparable units in a
single dimension such that the position of each unit reflects its similarity to the other units
[4]. Such units form a matrix data structure with n rows and m columns. There are n! ∗m!

possible arrangements. Manual reordering of such matrixes is clearly not effective, when
they get bigger, so a number of computer implementations exist.

As the amount of data is growing daily, algorithms and implementations need to be
constantly improved. New-ones need to be invented. Algorithms and implementation
have also parameters, that can be adjusted to get variations. This amounts to running a
vast number of experiments, requiring the analysis of a large amount of results, making
research labor intensive. Many steps in the process of such research seem to be repetitive
and are good candidates for automation.

Vitruvius, a Roman architect and military engieer, born around 80–70bc, wrote in his tenth
book on architecture: "The difference between machines and engines is, that machines need
more workmen and greater power to make them take effect. Engines on the other hand,
accomplish their purpose at the intelligent touch of a single workman" [5]. Computers
are good machines at doing repetitive tasks. Computers won’t do research for us yet, but
letting computers do the repetitive work, of wich there are many in empirical research, is
well within our reach.

Another complexity related to empirical research that plagues computer based research
as well as any other, is the challenge of reproducibility. The complexities of recreating
the experiments and analyzing results is a considerable waste in engineering as well as
research. It is common to build on the previous theoretical work, but it is more complex to
build on the more material artifacts created in previous research. Computer based research
is in this area in a special position. It should be far easier to re-build experiments with
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software, than it is with complex physical objects. Yet there are many difficulties related to
doing so. These will be covered with more detail in section 2.3.

The thesis has the following goals it attempts to achieve:

� Suggest engineering practices, that would improve computer based experimentation
� Benefit the field of seriation, by contributing towards an extensible distributed

computing backend for benchmarking
� Generalize an accessible computer algorithm benchmarking environment backend

architecture
� Build a prototype of the backend architecture
� Run a set of benchmarks on the prototype and present results
� Compare the results with previous research to find validation

To achieve this this thesis is structured broadly in the following way:

1. Introduction to the seriation method and a survery of the previous work
2. Overview of computer based experimentation
3. Overview of engineering tools as solution candidates
4. Architecture description of the environment
5. Description of implementation
6. Results of the experiment
7. Discussion, conclusions and further work

2



2. Theoretical framework

To set the stage for achieving the goals, an introduction to the domain of seriation, computer
based experimentation and an overview of plausible tools is necessary.

2.1 Introduction to seriation

Seriation is applicable to various fields of research like archeology, cartography, social
sciences and manufacturing [4]. It enables to find patterns in otherwise seemingly unrelated
groups of data, by reordering rows and columns of matrixes. The process is stopped
where the arrangement fits a defined criteria. Historically this stopping point was chosen
subjectively, depending on the person who did the work.

A thorough history and description of the technique is in-depth covered by I. Liiv [6]. As
an illustration for the subject matter, let’s take a classical example dataset from J. Bertin
[7], that represents the evolving of towns to cities. The dataset is fictional and is meant
for demonstration purposes. It answers questions about presence of a property for any
settlement.

Example questions that the dataset in table 1 is able to answer:

1. Does a settlement A contain a highschool?
2. Is there a veterinary in B?

The cells of table 1 represent a binary condition, where 0 represents the absence of a
property and 1 represents the existence of a propery. A small section of the full dataset is
given to save space.

Such a table can be represented also in a matrix form 2.1.

A =

(
0 0 0 1

0 1 0 1

)
(2.1)
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Table 1. Townships with presence or absence of a property
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A 0 0 0 1
B 0 1 0 1

To make the dataset visually more expressive, the cells can be colorcoded so, that a 1 is
rendered black and a 0 is rendered white. The resulting image in Figure 1 is commony
known as a bertin plot, after J. Bertin who introduced this way of visualizing. Figure 1
represents the full unordered dataset.

Figure 1. Bertinplot of the townships dataset

To find a pattern in this seemingly unrelated group of data, a seriation algorithm called
PCA (Principal Component Analysis), implemented with the free software environment for
statistical computing and graphics - R [8], in package Seriation [9], is applied, revealing
the structure in Figure 2.

It appears, that there are groups of settlements with similar properties. H and K both have
a high school, police station and a railway station. There is also a water supply and they
have doctor, but no veterinary. Interpreter of these facts might conclude based on prior
experience, that this is characteristic to bigger cities. Applying similar logic to N and J

4



Figure 2. Bertinplot of the reordered townships dataset

suggests, that they could be small villages.

The reordering in Figure 2 is one out of many possible and it might be argued, that the
reordering given by Bertin himself, using manual reordering, in Figure 3 gives a clearer
hint, that this is an evolution of settlements from rural to urban.

Figure 3. Bertinplot of the townships dataset, ordered by Bertin
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J. Bertin himself assessed that a direct graphic processing of matrixes is possible until the
size reaches 120 rows and 120 columns [10]. He proposed various machines and tools to
help with that.

Since then a number of algorithms have been developed to automate the seriation process.
And there exists a number of implementations of the algorithms in different programming
languages and computer platforms. The most abundant source for these algorithms is the
mentioned Seriation [9] package of the R [8] statistics software platform.

A formal definition of the underlying problem to solve in seriation is necessary, to imple-
ment seriation algorithms.

Definition 2.1.1. Seriation is a combinatorial optimization problem, where the goal is
to find a permutation function F that optimizes the value of a given loss function L on
equation 2.2, or merit function M on equation 2.3 on a matrix A.

F ∗ = argminFL(F (D)) (2.2)

F ∗ = argmaxFM(F (D)) (2.3)

The functions L and M are called evaluation functions and they are also one of the ways to
assess the performance of the seriation algorithm.

The n! permutations for n objects makes the search space too large for brute forcing
all combinations for real world datasets in an attempt to find the most optimal solution.
Classical method to approach such problems are heuristics. Results therefore can be
approximations or exact.

Some algorithms fit some data better than others. Ideally, we would have general purpose
algorithms that extract the underlying structure regardless of the problem domain. In
practice this is not necessarily so, similarly to the subjectivity of assessing the beauty of a
reordered matrix expressed by a bertin plot.

2.2 Related work on seriation

To propose an environment and technical architecture for a system, that automates part of
the work involved in inventing new seriation algorithms and improve existing ones, it is
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necessary to learn, what is seriation as the domain subject and how this type of research
is conducted classically. The related work will serve as the main tool to extract general
principles, requirements and validation for the proposed architecture.

The chosen related work is loosely grouped into categories:

� Seriation as a concept
� Comparison of existing algorithms
� Proposing new algorithms
� Proposing collaborative environments

This categorization is based on the weight assigned to each of the categories in the
corresponding article, based on the subjective opinion of the author and serves a descriptive
purpose.

2.2.1 Seriation as a concept

Into this category fall the works that touch seriation as field of study or application. I.
Liiv gives in his article [6] a comprehensive overview of seriation, evolving from a dating
method in archeology to a general purpose data mining tool. The article outlines, how
seriation is an interdistiplinary method that helps in decision making processes.

G. Toth and S. Amari-Amir rise awareness of the seriation method in the field of chemo-
metrics. In their article [11] they state: "The overview and the assessment of the different
merit/loss functions, algorithms, visualization methods, and numerical indicator values
seem to be an enormous task where Liiv’s unifying article is only the first step." A set
of seriation methods from the R [8] package Seriation [9], PAST [12] and an orginially
developed method are applied to various chemistry related datasets. For performance
comparison, they resorted to a parallel visual check of the data matrix, the object distance
matrix, and the variable correlation matrix. The conclusion they make is, that the result of
seriation is something that can be justified by human visual perception and not by numbers
as long as a comparative study has not cleared up the role of indicators. The source code
of the developed algorithm was sadly not easly obtainable.

The R [8] package Seriation [9] focused article by M. Hahsler introduces an infrastructure
for creating seriation methods [13]. It is also one of the richest available repository of
method implementations together with evaluation methods. This work is more a tutorial
focused on practical use of seriation.

7



2.2.2 Comparison of methods

In this category, the goal is to compare existing methods, to provide objective choices for
researchers. No new methods or improvements are introduced.

Michael Hahsler provides a review of the currently most popular seriation criteria and
methods for one-mode two-way data using a consistent formulation as an combinatorial
optimization problem in operations research [14]. The R [8] package Seriation [9] is used
for running experiments and concludes, that different seriation methods highlight different
structural aspects of the data, and it can be useful to explore them in the decision making
process. Runtime performance is assessed using a "wall clock". Quality of seriation results
is assessed using anti-Robinson events and hamiltonian path length. Similarity of the
resulting matrixes is assessed using the Kendall rank order coefficient [15].

2.2.3 Proposing new algorithms

In the field of genome sequencing a DNA strand is reconstructed from randomly sampled
sub-fragments (reads) whose positions within the genome are unknown [16]. The article
shows, how this can be mapped to a seriation problem. Algorithms that solve this specific
problem efficiently are proposed with runtime performance assessment and deviation from
an ideal solution using the Kendall rank order coefficient [15].

J.Liiv in his doctoral thesis explores the idea of using Kolmogorov complexity, wich is the
length of the shortest effective description of an object, as a way to evaluate the quality
of a matrix reordering [4]. As a sufficient approximation for calculating the Kolmogorov
complexity, the result length of a compression algorithm gzip [17] is used. Results are
evaluated with three criterias and agreement between these criterias is reported. In addition
a variation of conformity analysis using SQL (Structured Query Language) is presented.

2.2.4 Proposing new environments

Behrish, Schreck, and Pfister propose as a novel approach a method for user guided matrix
reordering [18]. It is a critical view on matrix reordering algorithms, that are based on
heuristics and optimization criteria. They argue, that such algorithms behave as black
boxes and domain knowledge is required to make educated decisions, what algorithms to
choose. The tool they propose compiles a set of interactive, automatic and semi-interactive
apporaches to matrix reordering into one user interface. In their processing pipeline, a
matrix is projected into 2 dimensional space as vertices, the projection is interactive and
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allows for applying seriation methods onto parts of it. Manual reordering of parts is
possible. Finally the vertexes are re-assembled to a matrix. The prototype gives access to
about 70 seriation algorithms and 15 evaluation algorithms, that can be applied to input
matrixes on demand. Code is not available and although the authors claim to be using a
microservices architecture, it is not clear, what efforts are required to add more methods.

I.Liiv, R. Opik, J. Ubi and J. Stasko propose another web-based tool to support seriation
[19]. The focus of this tool is on collaboration, data annotation and turning data into
knowledge. The proposed tool sets its weight onto user interface and visualization. In
principle, the tool is open for extension and allows for adding new seriation methods
as precompiled binaries. Software architecture is monolithic. The same computer that
executes the tool, also executes the algorithms. A standing out property of this article is
the available source code, including 6 seriation algorithms implemented in the c language.

2.2.5 Summary

The articles produce one or many of the following artifacts:

� Input dataset descriptions
� Inputs datasets
� Evaluation methodology description
� A set of algorithm names
� Algorithm source code
� Visualizations of results in form of various plots
� Numeric results of evaluation

As a general observation, the articles do lack some artifacts of interest.

Even if the algorithms used are well described, the implementations are rarely included.
Comprehensive tools, like the user guided matrix reordering solution [18] don’t share the
code in an easily available source. An exception is the visual matrix explorer [19].

Also the input data is always not publicly available. Using the artifacts of existing reasearch
for further work is cumbersome, due to having to re-create the experiments based on
documentation. Similarly reproducing the results is complex if not impossible.
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2.3 Related work on computer based benchmarks and experiments

For data science applications, W. Dai and D. Berleant [20] summarized 7 principles for a
good benchmark:

� Relevance: Benchmarks should measure important features
� Representativeness: Benchmark performance metrics should be broadly accepted by

industry and academia
� Equity: All systems should be fairly compared
� Repeatability: Benchmark results should be verifiable
� Cost-effectiveness: Benchmark tests should be economical
� Scalability: Benchmark tests should measure from single server to multiple servers
� Transparency: Benchmark metrics should be readily understandable

In their best practices article J. Fehr, J. Heiland et. al. state "Like experiments in natural
sciences, a CBEx (Computer Based Experiment) should be designed in a way that is robust
against uncertainties, i.e., such that it can be replicated to give the same results" [21].

More formally, this is defined as the three R’s of Open Science [21]:

� Replicabiliy
� Reproducibility
� Reusability

Based on [21], the three R’s can be defined as follows:

Definition 2.3.1. Replicability is the basic capability to repeat a CBEx and obtain the
same numerical results. This is similar to the falsifiability of a theory.

Definition 2.3.2. Reproducibility is the practical challenge of reproducing the experiment

Commonly, reproducibility means making available the detailed documentation and build-
ing blocks. In software these are the formal algorithm descriptions and implementation
used. Also hardware descriptions, if results are hardware dependent, which presents a class
of own problems, like how to assemble this hardware.

Definition 2.3.3. Reusability allows to create added value through composability, by using
the artifacts of the experiment.
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To expand on that, the Recomputation Manifesto [22] states 6 tenets to follow, to more
easily achieve the three R’s in the context of a CBEx:

� Computational experiments should be recomputable all the time
� Recomputation of recomputable experiments should be very easy
� Tools and repositories can help recomputation become standard
� It should be easier to make experiments recomputable than not to
� The only way to ensure recomputability is to provide virtual machines
� Runtime performance is a secondary issue

While the first 5 points are about enabling deterministic execution of experiments, the last
point, about runtime performance being a secondary issue is interesting. It is trivial that an
executable experiment with deterministic results has to be available before any performance
related evaluation can be done. Being secondary, is due to intrinsic difficulties in black box
performance assessment of algorithms. P. Posser demonstrates in his performance study of
exact algorithms for maximum clique [23], that running code on different machines will
lead to different relative algorithmic performance, even when machines are calibrated and
results rescaled. Only way to obtain comparable results, is to recreate the executables and
run them on the original machine.

At minimum, executables should be made available. J.Fehr et. al. argue in [21], that source
code availability is similar to materials and methods in any other research. The article [21]
touches many aspects of what could be called best practices of software engineering. The
artifacts, that a CBEx based research should produce are by [21]:

� Source code
� README - a brief description of the functionality and guide how to install
� LICENCE - states the rights for using and modifying the artifact
� RUNME - how to replicate the results, tests
� CITATION - guide how to cite the software project
� AUTHORS - authors and main contributors
� DEPENDENCIES - the third party dependencies of the software
� CODE - various other metadata about the project

GitHub [24], the source code repository provider that crossed the 100 million repository
mark in 2018 [25] states in their guidelines [26] similar artifacts:

� README
� LICENCE
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� ACKNOWLEDGEMENTS - Equivalent of AUTHORS
� Automated tests and builds - Equivalent of RUNME

These principles and guidelines are in practical software engineering called a definition of
done. Similarly, as computer based experimentation is software engineering, these could
be called a definition of done for research with CBEx. These principles are achievable
with common automation and documentation. A naive approach would still violate the
requirement of easy reproducibility, definition 2.3.2, producing yet another program
that needs to satisfy these requirements. It would help the given researcher, but not
necessarily benefit researchers to come. Given the diverse landscape of operating systems
and languages is an inevitability and good thing, similarly as how diversity works in
nature, the efforts should be around achieving a common standard interface, rather than
one common implementation. In the end there will always remain the lowest common
denominator - a tool that everyone needs to have, but this is similar to the requirement of
having a computer.

This following sections address the standardization and common interface problem in a
world of diverse platforms, by looking at it from systems thinking and human cognition
perspective.

2.4 Standardization and automation

As noted previously, experimental computer science research, like any other, depends
greatly on the experiment setup, inputs, processes, methods and instruments. Inevitably it
suffers also from the problem of disturbances due to environment and taking measurements.
The experimentation conditions have to be as similar as feasible, to obtain compareable
results. The tools used for experiments need to be standardized and equipment rigorously
described. In case of a CBEx, one way to divide equipment is:

� Hardware that runs software
� The runtime environment that makes it possible to run the experiment - operating

system and supporting code
� The software that makes experiment code runnable in the environment - a compiler

or interpreter

A high-level process of running a CBEx, is on figure 4 in BPMN [27] notation.

The key takeaway is, that from these steps, only analyzing and drawing conclusions is the
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Figure 4. A classical CBEx process

phase where a human is strictly necessary. In terms of Vitruvius [5], a computer is used as
a machine and a human behaves as the engine. In context of benchmarking, this means
orchestrating inputs, algorithms, evaluation methods and results. On figure 5 a closer to the
ideal model of a CBEx is given, where most of the tasks have been moved to the computer
system side.

CB
Ex

Ex
pe

rim
en

te
r

Co
m

pu
te

r 
sy

st
em Configure runtime 

environment
Translate algorithm 
into an executable Run the executable Collect 

measurements Preliminary analysisInterpret 
instructions

Trigger experiment Interpret

Figure 5. A more ideal sketch CBEx process

2.5 Units of computation

A fundamental problemsolving technique is decomposing complex problems into simpler
ones. The inverse is about taking simple solutions and composing them to produce solutions
to complex problems. This way of approaching problems is according to [28] a limitation
of our short term memory and cognitive abilities and not the intrinsic requirement of the
world. Software and producing software is a complex system as they satisfy the criterias
set by P. Collier [29]. A complex system that works is invariably found to have evolved
from a simple system that worked. The inverse proposition also appears to be true: A
complex system designed from scratch never works and cannot be made to work. You have
to start over, beginning with a working simple system [30]. In the context of this thesis,
it means that there needs to be a set of proven to work and simple to use building blocks
that can be orchestrated, to solve a complex problem. It is necessary to define the basic
building blocks, the entities that are automated and implement a standard interface. These
building blocks should be treated as black boxes. Definition 2.5.1 summarizes, what these
these building blocks are.

Definition 2.5.1. Unit of computation is an atomic, black box building block, with a well
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defined interface, that maps its inputs to output and can produce side-effects.

This is analoguous to a mathematical function, or a function in functional programming, as
a field closer to computer based experiments. For the purposes of this thesis and because
the idea is to work with black boxes, a function is defined as follows:

Definition 2.5.2. Function f : X → Y is a mapping of elements from the input X into
output Y elements.

Functions can be composed to create further units of computation, compositions as defined
in definition 2.5.3.

Definition 2.5.3. Composition of function f : Y → Z and g : X → Y is the function
e : Y → Z = f ◦ g

The third function e is the solution for a more complex problem. Functions can roughly be
divided into pure (definition 2.5.4) and impure (definition 2.5.5)

Definition 2.5.4. Pure function is a function that given the same inputs, will always
produce the same outputs without any side effects (definition 2.5.6).

Definition 2.5.5. Impure function is a function that is not pure.

Definition 2.5.6. Side effect is any observable change in the world in addition to the
mapping of inputs to outputs.

The benefit of pure functions is, that it makes reasoning about them and about the compo-
sitions possible. Working with such functions is arguably simpler, as there is no need to
account for unwanted changes, they approach the mathematical definition of a function
and similar tools can be applied. In context of software, input and output to files, network
can be treated as side-effects. In real-world programs side-effects can not be avoided, as
without side-effects, a program is unable to produce an observable effect. The goal is
rather to write as much as possible without side-effects and push them to the edges of the
program. An example of a side-effect in context of reordering a matrix, where the expected
output is another matrix, would be writing a file. Such a function is not pure. But on the
abstraction layer of certain black boxes, where the standard way of producing output, is
writing to a file, it will not be a side effect any more and the function will be pure for given
purposes. For example, if a file written with a specific name to a specific place is defined
as the output.
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Pure functions are the lowest elements of truly reusable software. A composition of
functions is a program and the next layer of composition is the composition of programs.
Ideally, given input and output are well defined, it becomes possible to reason about whole
programs similarly to functions.

2.6 Units of computation for CBEx

The last chapter introduced programs as composable units of computation. Given programs
can be written for a variety of platforms and in a variety of languages a function expressed
as source code or even as an executable program is not a satisfactory unit of computation.
Programs do not exist in isolation, they run in a runtime environment. In addition to
composing programs, there is also a need to compose runtime environments.

In Recomputation Manifesto [22], the author emphasizes the use of virtual machines as
a means to capture the runtime environment. This is a specific technology with multiple
implementations. Other principles in the manifesto are conceptual. At the time of writing,
virtual machines were the popular technology and it is safe to assume, that also here a
concept of capturing the runtime environment is meant. Since then another also long
existing technology called containerization, for capturing the runtime environment has
reached maturity.

There are differences in these two technologies as summarized by definitions 2.6.1 and
2.6.2

Definition 2.6.1. Virtual machines capture a full software environment together with
virtualized hardware into an image file, that can be shared and started later on differ-
ent physical machines, that support virtualization, resulting in the same behaviour and
execution environment.

Definition 2.6.2. Containers capture the software environment into an image file, that can
be shared and started later on different physical machines, that support a container runtime,
resulting in the same behaviour and execution environment.

Containers, as it’s widely understood today is very similar to virtualization, yet a technically
different approach. A full comparison is not the subject of this paper, but it is worth to
show key differences.

Properties of a virtual machine:

� Virtualizes hardware
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� Runs on top of specialized software called hypervisor
� Requires a full operating system
� Is isolated in its entirety

Properties of a container:

� Includes only the files necessary for the functionality that is containerized
� Runs directly on the host operating system
� Applications are isolated

In summary, a virtual machine provides an abstract machine and a container provides
an abstract operating system. Container technology, while gaining popularity in recent
history, dates back to 1979, when Unix 7 released the chroot command, that allows to
change the root directory of a process, encapsulating it inside this directory. FreeBSD
added in 2000 the concept called "jails", that are a partition of the system, and allowed
adding an ip address to such a partition [31]. In windows operating system a mechanism
called AppContainer exists, that allows isolating processes. It is used for example to create
safe runtime environments that prevent potentially malicious code from impacting other
resources on the host machine [32].

The choice between the two technologies comes down to non-functional requirements,
which stem from the properties of both. Virtual machines tend to require more host system
resources such as memory and storage space, as they contain the full machine. Because
containers run on top of a host operating system, they can be run on virtual machines, to
get the best of both worlds.

2.7 Container technology overview

To introduce containers, a short list of commonly used containerization technologies is
given. This list is not exhaustive as this space is moving fast and many smaller new
implementations of the technology emerge and disappear often.

2.7.1 LXC

LXC is a userspace interface for the Linux kernel containment features. Through a powerful
API and simple tools, it lets Linux users easily create and manage system or application
containers. LXC containers are often considered as something in the middle between a
chroot and a full fledged virtual machine. The goal of LXC is to create an environment as
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close as possible to a standard Linux installation but without the need for a separate kernel.
[33].

LXC is a platform with the most market share of 34.75% [34].

2.7.2 Docker

Docker is a platform for developers and sysadmins to build, run, and share applications
with containers [2]. It commands the second biggest market share of 25.2% [34].

The main components of Docker are:

1. Image - a set of instructions for how to create a container
2. Container - a runnable instance of an image
3. Daemon - manages Docker objects such as containers and images. Exposes an

interface to take commands
4. Registry - stores images

The solution also provides tools to interact with the Daemon.

2.7.3 Rkt

Rkt is an application container engine developed for modern production cloud-native
environments [35]. The market share of Rkt is 5.86% [34]. The main components of Rkt
are:

1. Image - a set of instructions for how to create a container
2. Container - a runnable instance of an image
3. Command line client - manages Rkt system directly, instead of delegating to a central

daemon

Main high level difference is that there is no central daemon process that controls the
system, but the client code itself takes care of managing Rkt objects. There is also no
central image registry. Rkt project has been deprecated by the governing body, so it is not
wise to invest in this technology.
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2.7.4 Singularity

Singularity is a container platform. It allows you to create and run containers that package
up pieces of software in a way that is portable and reproducible [36]. This is a platform, that
has been created from ground up, keeping high performanc computing in mind. Meaning
it is well suited for running in clusters and includes certain architectural choices, that make
sense in these environments.

Being a very domain specific platform, it does not figure on mainstream market share
analysis.

The main components of Singularity are:

1. Image - a set of instructions for how to create a container
2. Container - a runnable instance of an image
3. Command line client - manages Singularity system directly, instead of delegating to

a central daemon

Additional important characteristics:

1. Single file format - with the purpose of being easier to share and a caveat of being
larger in size.

2. Linux focus - tooling and documentation does not touch popular platforms from
Microsoft and Apple.

For interoperability, there exist tools that enable conversion to and from other container
formats, like Docker.

2.7.5 Open Container Initiative

Every technology has a lifecycle and an end of life. Choosing in favor of a technology
stack includes the risk, of this stack being deprecated, illustrated by the deprecation of
the Rkt. Having a vibrant and vast community as well as organizational support for an
implementation will help, but standardization will enable evolution and interoperability.

For containers this is Open Container Initiative. The Open Container Initiative is an open
governance structure for the express purpose of creating open industry standards around
container formats and runtimes [37]. A vast majority of containerizarion technologies
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implement and contribute to the standards.

2.7.6 Summary

There are many container platforms, that target a special flavour of user, a certain workflow,
or are just the newest fashion. The open container initiative standard enables moving
between these platforms and increases chances, that the container image will also be
runnable in a somewhat not so immediate future. An example of this is the convertibility
of Docker and Singularity images. Consolidating to a single platform is an elusive goal, it
is more important to be able to evolve and embrace change. There will always be the next
thing and restricting choice would hinder evolution. This thesis uses in it’s prototype the
very common Docker platform. Nothing would prevent the same architecture to also work
with the Singularity images.

2.8 Composing containers

To be useful as a unit of computation, containers need to support composition given by
definition 2.5.3. Candidates for achieving this are known from general communication
methods between computer processes:

� Shared volumes - definition 2.8.1
� Container network - definition 2.8.2
� Inter process communication - definition 2.8.3

Definition 2.8.1. Shared volume is a file system like structure exposed to containers by
the container runtime and allows the containers to see the same files and directories.

Definition 2.8.2. Container network is a private network formed between containers,
giving them access to each other using TCP/IP protocols.

Definition 2.8.3. Inter process communication are operating system exposed methods for
processes to signal each other. Different operating systems provide different capabilities.

It is certainly possible to compose containers manually, using one of the given methods, by
writing special code, that imperatively orchestrates calling multiple containers. As this is a
common problem, domain specific tools have been created for such purposes. This chapter
is about introducing some commonly used tools to achieve that.
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2.8.1 Docker compose

Compose is a tool for defining and running multi-container Docker applications [38]. Tradi-
tionally this has been a light weight way of defining development and testing environments.
In addition to standard Docker components, it adds two more:

1. docker-compose - command line client and interpreter for the special compose file
2. compose file - a domain specific configuration file for defining all required containers

and their connections

2.8.2 Docker swarm

A cluster of Docker Engines that act as managers and workers [39], it adds the following
components:

1. manager - manages cluster membership and work delegation
2. worker - runs the containers

These components work to keep the requested state of the cluster, that includes keeping a
certain number of containers running, making sure the requested operations will be retried
if they happen to fail.

2.8.3 Kubernetes

Kubernetes, also known as K8s, is an open-source system for automating deployment,
scaling, and management of containerized applications [3]. It is a vast system with many
components and detailing all of them is not the goal of this paper, but a general overview
is below.

The principal component of a Kubernetes cluster is a Pod, definition 2.8.4.

Definition 2.8.4. Pod Is the smallest unit of compute in Kubernetes. It contains one to
many containers.

Containers in a Pod can form a composition through the use of init containers, definition
2.8.5.

Definition 2.8.5. Init containers are containers that run only once in defined sequence
during a Pod lifecycle, before the main container starts.
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Other systemic components are:

� kube-apiserver - Exposes the management api. All control goes through api server
� etcd - as a distributed system, Kubernetes needs a distributed consistent storage for

it’s state
� kube-scheduler - takes care of assigning Pods to Nodes.
� kube-controller-manager - runs controllers, that are responsible for responding to

various events in the cluster, such as maintaining the requested state of the cluster.
� cloud-controller-manager - is the integration layer between a possible cloud provider

like Microsoft Azure of Amazon Web Services [40].

Work in a Kubernetes cluster will be handled by a Node, definition 2.8.6.

Definition 2.8.6. Node is a computer, registered in the Kubernetes cluster, that provides a
compute environment for other cluster participants.

A node runs in addition to the operating system services, the following components:

1. Node
(a) kubelet - An agent that runs on each node in the cluster. It makes sure that

containers are running in a Pod
(b) container runtime - software that runs containers, such as Docker.
(c) kube-proxy - handles networking requirements

21



3. Benchmark environment for seriation

Having introduced seriation, challenges and requirements around CBEx, concepts and tools
that potentially allow solving them, it is time to look at principial functional requirements
of a benchmarking system for seriation.

Existing research around seriation methods asks the following questions:

Question 3.0.1. Given data represented in a matrix form A, what is the inner structure of
the given data?

Question 3.0.2. Given an input matrix A, what is the optimal implementation for a given
seriation algorithm?

Question 3.0.3. Given an input matrix A, is there an method that suits better a given
situation?

Question 3.0.1 is the primary question of seriation, as described in detail in chapter 2.1.
Finding answers to the questions 3.0.2 and 3.0.3 can be called benchmarking. Definition
3.0.1 formalizes these questions to an activity.

Definition 3.0.1. Benchmarking is the process of comparing the results of an algorithm
implementation against an ethalon result.

The purpose of asking these questions is to turn facts into knowledge. Problem domains
can be formed and when matched to algorithms that work best, will result in a set of
recommendations that makes it faster to get from questions to answers. If an algorithm has
parameters, then knowing the problem domain allows to have insight, what parameters to
choose for an algorithm. Also an implementation, that finds the solution, but takes infinite
time to find it, is of no practical use. In the case of seriation, when input datasets grow,
the brute force processing times grow exponentially. This quickly becomes impractical.
A classic way of solving this is to apply a heuristic as a short-cut. An example of such
a general purpose algorithm is the Bond Energy Algorithm or BEA [41]. Heuristic
approaches don’t usually result in the ideal ordering, rarther an approximation, sacrificing
accuracy for speed.
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Algorithms can be analyzed broadly as a white-box or black-box object. A black-box
approach to algorithm benchmarking means assessing the performance solely based on
inputs, outputs and measurements, that an observer can make. A white-box approach
analyzes the algorithm complexity, with access to source-code and models of the algorithm.
The subject of this thesis is a black-box approach, as the goal is to empirically explore
performance of seriation algorithms.

3.1 Domain concepts

The following core domain concepts are necessary to allow for reasoning about the
questions in previous chapter.

Definition 3.1.1. Ranking is a monotonically decreasing weakly ordered sequence of
objects in a set.

Definition 3.1.2. Evaluation is a mapping e : A → R, where A is a matrix of Defini-
tion 2.1.1 and e ∈ {L,M} of Definition 2.1.1.

Definition 3.1.3. Ranking of seriation methods Rf is a ranking of tuples tr = (f, e(A)),
where the order between two elements is defined by the value of e(A).

Result of Evaluation is an exact value. Additional characteristics of the seriation process
itself are handled by measurement. Examples of such measurements are the wall clock
runtime and used memory.

3.2 Benchmarking

Processes involved are described in form of business process modelling notation or BPMN
[27]. Only processes that will be automated in prototype, are described. These processes
will be the base for system components and map almost one to one to component diagrams
in chapter 3.3. The diagrams are accompanied with small commentary. The abstraction
level is kept fairly high.

Process 3.2.1. Adding an input matrix A. The system will in parallel calculate all reorder-
ings for this input and then analyzes the produced reorderings according to Process 3.2.5.
See Figure 6.

Process 3.2.2. Adding a seriation method. All input matrixes A are reordered using this
new method and again outputs are analyzed in bulk. See Figure 7.

23



Ad
di

ng
 a

n 
in

pu
t m

at
rix

Analyze reorderingReorder reordering

Input matrix Input matrix added

reordering

For every seriation 
method

Figure 6. Process 3.2.1 Adding an input matrix

Ad
di

ng
 a

 s
er

ia
tio

n 
m

et
ho

d

Reorder reordering Analyze reordering

Seriation method Seriation method added

For every 
input matrix

Figure 7. Process 3.2.2 Adding a seriation method

Ad
di

ng
 a

n 
ev

al
ua

tio
n 

m
et

ho
d

Evaluation method Evaluation method added

Analyze reordering

For every 
reordering

Figure 8. Process 3.2.3 Adding an evaluation method

24



Process 3.2.3. Adding an evaluation method. All already existing reorderings are evaluated.
See Figure 8.

Reordering and evaluation both contain an identical subprocess Process 3.2.4 for executing
the algorithm to map inputs to results. On figure 9 there are generic tasks, that are about
working with input and output and a task called Process, where mapping inputs to output
happens. This is where seriation and evaluation algorithms are executed.

Process 3.2.4. Map input to output. This process is about finding the raw data to answer
the question 3.0.1, about revealing the inner structure of a matrix. See figure 9.
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Figure 9. Process 3.2.4 Calculate seriation and evaluation results

By now, the necessary raw reorderings are generated. To answer questions about the
optimal implementation 3.0.2 and domain suitability 3.0.3, further analysis is needed.

Process 3.2.5. Analyze reordering. This process consists of finding all evaluations for a
reordering and analytics, to turn raw data into knowledge. See figure 10.
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Figure 10. Process 3.2.5 Analysis of reordering

Figure 11 shows finding the final ranking. Similarly to an athletics competition, where
every seriation is a competitor, an evaluation method is a event and an input is a competition.

25



This ranking table serves as a basis of further analytics - finding the top and bottom seriation
methods.

Process 3.2.6. Analyze evaluation results. For every input matrix in the system, rankings
(definition 3.1.1) are calculated.
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Figure 11. Process 3.2.6 Analyze evaluation results

3.3 Implementing components for the business processes

The main components of the system with interfaces they require and provide are described
using the Unified Modelling Language component diagram notation. A component is
defined by definition 3.3.1. Interactions of components are described in chapter 3.4.

On diagrams, the components contain their stereotypes in «» brackets. The components
and interfaces are logical, they don’t imply a particular implementation or a communication
protocol.

� User - A human actor that takes on various roles.
� Infrastructure - generic components that enable functions like storage and messaging.
� Pod - a unit of comuptation as given by Definition 2.8.4.
� Container - See Definition 2.6.2.

Definition 3.3.1. Component is a high level part of the system that can be independently
changed, as long as the interface is satisfied.

System user roles:

Component 3.3.1. Method author wants to benchmark a new version of a method.

Component 3.3.2. Data analyst is interested in extracting reports about benchmarking
results, to answer benchmarking questions.

Infrastructure components:
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Component 3.3.3. Queue is a messaging solution with first in first out semantics.

Component 3.3.4. Database is a queryable storage for structured data.

Component 3.3.5. Blob storage is a service for storing unstructured binary data, such as
an image or a comma separated file.

Component 3.3.6. Kubernetes is a container orchestrator, described in chapter 2.8.3.

Functional components:

Component 3.3.7. API/UI takes input and makes output accessible to users and external
systems. See figure 12.
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Figure 12. Component 3.3.7 API/UI

Component 3.3.8. Work dispatcher contains an algorithm for applying methods to inputs,
via scheduling a job for each one. See figure 13.
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Figure 13. Component 3.3.8 Work dispatcher

A work dispatcher component 3.3.8 on figure 13 is needed to decide what seriations and
evaluations need to happen. This can be all to all in case of the process 3.2.1, or a subset to
subset, in case of the processes 3.2.3 and 3.2.2. Since the component needs to know about
existing methods and inputs, it needs access to the database component 3.3.4. Work is
handled by jobs, that are in turn scheduled in the system by the job dispatcher component
3.3.9.
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Component 3.3.9. Job dispatcher ranslates the job description into an acceptable format
for a job controller component 3.3.10. See figure 14.

Component 3.3.10. Job controller makes sure jobs in the system are executed in a resilient
manner, with retries. It tries to ensure at least once semantics, that at least one instance of
the job executes successfully. See figure 14.
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Figure 14. Component 3.3.9Job dispatcher

Component 3.3.11. Task worker takes care of executing jobs, the seriation and evaluation
methods. It uses a blob storage component 3.3.5 for storing unstructured output and a
database component 3.3.4 to store evaluation results and metadata about unstructured
results. See figure 15.
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Figure 15. Component 3.3.11 Task worker

After storing the results, it needs to notify other system participants, that it has done its
work using a queue component 3.3.3. A detailed description of internals of the task worker
is on figure 16.

The input worker component 3.3.12 handles downloading the unstructured input, specified
by the task specification. Work is done in the algorithm worker component 3.3.13.

Component 3.3.12. Input worker ensures that inputs for the main worker 3.3.13 are
available.

Component 3.3.13. Algorithm worker maps input to output.

The output worker component 3.3.14 stores the unstructured results to blob storage compo-
nent 3.3.5, numeric results and metadata into database component 3.3.4.

Component 3.3.14. Output worker takes the output produced by task worker component
15 and ensures it gets stored. It also notfies downstream actors about task completion.
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3.4 Interactions of components

Primary component interactions are described with UML sequence diagrams. Adding
a seriation methord is shown on figure 17. This sequence covers also reordering inputs,
evaluating results and analytics. As it would not add new information, these sub-sequences
are not covered on separate diagrams.

A single task of seriation or evaluation is handled by identical components with an identical
sequence on figure 18.

3.5 Implementation

A prototype implementation for the architecture in chapter 3.2 was created using the C#
programming language targeting the .NET Core 3.0 [42] runtime.

In the spirit of prototyping, the technology choices and runime were chosen keeping the
rapid iteration and simplicity for the author in mind. Programming language was chosen
on the basis of authors prior experience, to reduce the amount of new things to learn.

All components above were packaged as Docker [2] container images and composed as
relevant Pods, see definition 2.8.4, for running them in a managed Azure Kubernetes
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Service [43] cluster.

Choice for Microsoft Azure [1] is due to funding. The author has monthly credit in
Microsoft Azure cloud platform, that can be used for educational and personal purposes.
As the core components are cloud platform agnostic, then this his will not change the
applicability of the architecture on other platforms.

Infrastructure component implementation choices follow naturally from Azure platform
offerings and are given in table 2. With the exception of the queue implementation, where
the criteria for choice was simplicity of local development.

Table 2. Infrastructure component implementations

Component Implementation
Queue 3.3.3 RabbitMq messaging queue [44]
Database 3.3.4 Microsoft CosmosDb object oriented database [45]
Blob storage 3.3.5 Microsoft Azure Storage [46]
Job controller 3.3.10 Kubernetes Jobs [47]

In the prototype, a variety of algorithms are included, packaged as docker container
images. Inputs are gathered from related work and the the R[8] statistics package. Table 3
summarizes the counts of different entities.

Table 3. Prototype statistics

Inputs Seriation methods Evaluation methods Reorderings Total operations
42 38 12 1596 22344

The code is available from GitHub https://github.com/antero-lukkonen/serikube.

Examples of seriation algorithms implemented with containers are demonstrated in the
chapter .1.1 and chapter .1.2.

3.6 Algorithms

Thanks to the popular R[8] package Seriation [9], there is a number of seriation and
evaluation algorithms available. A subset of them is included in the prototype. To prove
the capability of using different programming languages, algorithms Minus and Plus
Technique and Count Ones written in C are added [19]. The algorithms are packaged
as Docker images, that satisfy the input and output interfaces described in the chapter
3.3. These images are uploaded to the Docker image registry with a fully qualified name
"serikube.azurecr.io/serikube". Table 4 lists seriation methods in the porototype along with
the Docker image name with the repository name prefix omitted to save space.
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Table 4. Seriation methods in the prototype

Method Docker image
BEA_TSP r-seriate-matrix
BEA r-seriate-matrix
PCA r-seriate-matrix
TSP r-seriate-dist
OLO r-seriate-dist
HC r-seriate-dist
GW r-seriate-dist
ARSA r-seriate-dist
R2E r-seriate-dist
Original ordering noop
Count ones kurtmoser/loenda1
Plus kurtmoser/plusstehnika
Minus - standard kurtmoser/miinustehnika
Minus - 0-con kurtmoser/miinustehnika
Minus - 1-con kurtmoser/miinustehnika
ROC2 C++ tanelpipar
Modified ROC C++ tanelpipar
Zodiac C++ tanelpipar
ART C++ tanelpipar
Random r-seriate-matrix
QAP_BAR r-seriate-dist
SPIN_STS r-seriate-dist
HC_single r-seriate-dist
GW_complete r-seriate-dist
SPIN_NH r-seriate-dist
MDS_nonmetric r-seriate-dist
Spectral r-seriate-dist
MDS_metric r-seriate-dist
MDS_angle r-seriate-dist
PCA_angle r-seriate-matrix
HC_complete r-seriate-dist
HC_average r-seriate-dist
OLO_complete r-seriate-dist
Spectral_norm r-seriate-dist
VAT r-seriate-dist
QAP_LS r-seriate-dist
QAP_2SUM r-seriate-dist
QAP_Inertia r-seriate-dist

The image names convey meaning:

� r-seriate-matrix - R based seriation method that expects a matrix of values as input
� r-criterion-matrix - R based evaluation method that expects a matrix of values as

input
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� r-seriate-dist - R based seriation method that expects a matrix of eucleidian distances
as input

� r-criterion-dist - R based evaluation method that expects a matrix of eucleidian
distances as input

Similarly to seriation methods, a wealth of evaluations comes from the R Seriation package.
A variety of using the gzip [17] compression algorithm as an evaluation is included, in the
spirit of using the Kolmogorov complexity as proposed by I. Liiv [4].

Table 5. Evaluation methods in the prototype

Method Docker image
Path_length r-criterion-dist
Least_squares r-criterion-dist
Moore_stress r-criterion-matrix
Neumann_stress r-criterion-matrix
Gradient_raw r-criterion-dist
Gradient_weighted r-criterion-dist
Inertia r-criterion-dist
ME r-criterion-matrix
Gzip gzip
PImage size r-seriate-pimage-size
PImage r-seriate-pimage
Bertinplot r-seriate-bertinplot
AR_deviations r-criterion-dist
AR_Events r-criterion-dist
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3.7 Experiment results

The prototype was used to run experiments on the inputs gathered from previous work.
The aim of these experiments was to replicate previous research and find validation for the
proposed architecture. For practical reasons, only a selection of results produced by the
prototype are included in result tables. Results presented below are made available also
through user interface of the prototype. Summary statistics of the performed experiments
is in table 3.

On table 6 is a selection of three best ranked seriation methods by evaluation method for
the input Jaccard index for incidence matrix for 59 graves and 70 artifacts [48].

Table 6. Top evaluations for input matrix Jaccard index for incidence matrix for 59 graves
and 70 artifacts (Hodson, 1968).

Method Top evaluation 1 Top evaluation 2 Top evaluation 3
ARSA 1 AR_Events 1 AR_deviations 1 Least_squares
ART C++ 3 Gzip 20 Moore_stress 20 ME
BEA 13 ME 14 Neumann_stress 15 Path_length
BEA_TSP 1 ME 1 Neumann_stress 1 Moore_stress
Count ones 11 Gzip 23 Inertia 25 AR_deviations

Table 7 gives similar results for three worst ranked seriation methods for the same input.

Table 7. Bottom evaluations for input matrix Jaccard index for incidence matrix for 59
graves and 70 artifacts (Hodson, 1968).

Method Bottom evaluation 1 Bottom evaluation 2 Bottom evaluation 3
ARSA 31 Moore_stress 29 Path_length 28 ME
ART C++ 36 AR_Events 36 Gradient_weighted 36 AR_deviations
BEA 38 Gzip 33 Least_squares 33 Inertia
BEA_TSP 38 AR_deviations 38 Gradient_weighted 38 Gradient_raw
Count ones 38 Path_length 37 Neumann_stress 37 Moore_stress

To demonstrate drilling down into each individual ranking by a particular evaluation
method, figure 19 shows the full ranking of seriation methods based on anti-Robinson
events.

The prototype currently implements runtime measurements using a wall clock method. To
get more reliable results, seriation is executed 10 times and the median with interquartile
range is given on figure 20. Dots outside the boxes are outliers.

Figure 21 shows median anti-Robinson events with interquartile range for a selection of
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Figure 19. anti-Robinson events for seriation methods, for input Jaccard index for incidence
matrix for 59 graves and 70 artifacts [48]
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Figure 20. Runtime performance by seriation method, for input Jaccard index for incidence
matrix for 59 graves and 70 artifacts [48]
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inputs in the system given in table 8. Inputs are chosen from the comparison article by M.
Hahsler [14].

Table 8. Inputs used for median anti robinson events plot

Input
Psych24 - Pearson correlation between results of 24 psychological tests given
to 145 seventh and eighth grade students in a Chicago suburb [9]
Irish - Euclidean distances of scaled results of eight referenda for 41 Irish
communities [9].
Munsingen - Jaccard index for incidence matrix for 59 graves and 70 artifacts
[48].
Zoo - Euclidean distance for 17 features for 101 animals [49]
Iris - Euclidean distances (scaled) for Fisher’s Iris dataset with 150 flowers
and four features [9]
Wood - Euclidean distance for sample of the normalized gene expression data
for six locations in the stem of Popla trees [9].

3.8 Discussion

The author went into this paper with a hypothesis, that there is an overlap between
challenges in compute based experimentation and challenges in sustainable software
engineering. Similarly as theoretical research is standing on the shoulders of previous
theoretical work, so could executable artifacts serve as building blocks for further research.

In software engineering, libraries and other types of reusable components are used for
reproducing behavior. Frameworks based on these components are used to let engineers
focus on solving the business problems. Standards ensure that different components and
systems can communicate and spcific implementations can change, so that systems don’t
break.

Containerization was found to be a viable option to be used in computer based experiments.
The 6 tenets to follow in [22] are fulfilled with containers, allowing relatively easy execution
and a more standard way of sharing and packaging experiments and serve as viable black
box building blocks, the equivalent of a library, that is able to encapsulate a whole runtime.
No study was conducted to validate this statement, rather the author considers them
fulfilled by the fact, that it was possible to include multiple methods, built with different
languages, running on different operating systems and recompute all the results without
human involvement multiple times over. Implementation complexity of the seriation
methods remains constant and is independent of an orchestrator.

The goal of proposing a benchmarking environment for seriation methods and while doing
so, suggest an architecture for general purpose benchmarking was achieved by moving
the domain specific concepts into containers as building blocks. This naturally left a
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Figure 21. Median anti-Robinson events for seriation methods, for inputs in table 8
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set of domain agnostic requirements, that revolve around mapping inputs to outputs and
connecting these mappers in a defined way. Similarly as functions in mathematics and
functional programming can be composed. Container orchestrators are ready made tools
to achieve that if the units of computation are containers. The popular Kubernetes [3] was
chosen after a study of existing orchestrators as it was most feature rich and programmable.
It became also evident, that when treating containers as a unit of computation, a general data
processing pipeline emerges, where all domain specific functionality is abstracted away
into containers. In this way the architecture starts to resemble a generic data processing
pipeline with sources, transformers, stores and aggregators.

The architecture and implementation choices enabled to build a prototype, that was used
to do an extensive set of experiments and do preliminatry analysis of the results. Inputs,
reordering and evaluation methods from previous work were containerized and inserted
into the prototype. In implementation phase, the bet on commonly used and available
implementations of Docker and Kubernetes paid off in a relative ease for creating the
prototype. An alternative path to take would have been to use a ready made workflow
engine or a data pipeline for these components. The choice of building from scratch was
made due to the following factors:

� It was unknown if this would be the case a priori and comparing workflow engines
would be a resource consuming task

� Curiosity and fun factor for the author, to learn what it would mean to build such an
engine

� Opportunity to use familiar tools, languages and environments
� Practical reasons - funding for compute resources

As the container community is revolving around common standards provided by the Open
Container Initiative [37] and the engineering world is betting on them it is probable that
the approach remains valid for at least the near future and due to the principles of economy
a transition path will be provided if the directions will change. It is unreasonable to expect
the scientific community to be able to also cater for production quality engineering tools.
This must be a collaboration both ways.

After completion of the prototype, a series of experiments based on previous studies
was executed, with an attempt to replicate the results. Due to inavaiability of some of
the inputs and the incompleteness of informal descriptions of the experiment setup, the
results could not as expected, be exactly replicated, but side by side comparison reveals
strong similarities. In summary, the results aligned with similar comparison studies done
previously.
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To demonstrate the benchmarking capability of the system, on table 6 it is visible that
the seriation method ARSA (simulated annealing heuristic) performs best according to
the evaluation method anti-Robinson events. This is expected and agrees with theory, as
ARSA optimizes for anti-Robinson events. Multiple methods achieve a compareable result
to the best reordering given by ARSA. Such small differences are not enough to make a
choice. Other aspects of obtaining the reordeing might outweigh the small improvement in
result accuracy, in a real worls setting. A multi dimensonal ranking is necessary to rank the
results further. A way to use the runtime performance of the algorithm. In the prototype
this was done using a wall clock method to measure the running time of the algorithm.
This is shown on figure 20. MDS_nonmetric, QAP_Inertia and QAP_2SUM are good
tradeoffs between quality of the result and runtime. This correlates with the finding of M.
Hahsler [14].

The same seriation method ARSA is on the 31st position by Moore stress evaluation for
the same input as it is visible on table 7.

Measurement of the runtime performance using a wall clock is imprecise using the proto-
type architecture. It is affected by every other process that that runs on the same computer
at the time of the measurement. This is illustrated by the outliers visible on the same graph.
The prototype is a massively shared environment as opposed to an isolated system, wich
would be more suitable for measuring execution time. The compute cluster consists of
virtual machines that run containers. Multiple containers are scheduled in parallel on these
virtual machines.

On figure 19 is the full spectrum on seriation methods evaluated by anti-Robinson events
for the same input. At end of the spectrum is random reordering. In total 5 seriation
methods make the situation worse than the original ordering. This illustrates the need
of knowing how the seriation methods perform and how they are suitable for a specific
problem domain. The prototype has not tagged input datasets with a domain identifier, the
input on these figures and tables is from the field of archeology.

It is also interesting to know if these results hold globally, for more inputs in the system, or
is this just a domain specific outlier. Figure 21 shows the median anti-Robinson events
for all seriation methods. ARSA is still the leader and also other methods hold their
places quite well when compared to the single input figure. As it was not possible to
obtain all matrixes used in the article by M. Hahsler, it is impossible to obtain exactly the
same results. M. Hahsler reports the QAP to be the best reordering. The benchmarking
environment places three variants of the QAP algorithm at the top, right after ARSA. On
figure 21 the best seriation method is ARSA and QAP_2SUM is the close second.
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4. Contributions

Contributions of this thesis can be summarized as follows:

� a proposal to approach computer based experimentation with tools familiar in soft-
ware engineering

� a suggestion to solve reproducibility, replicability and reusability using containerized
software for computer based experiments

� a general architecture for bulk experimentation with software alogorithms on various
platforms and operating systems;

� a prototype of the architecture using Microsoft Azure [1] cloud provider, Docker [2]
containers and Kubernetes [3] container orchestrator;

� a reproduction of previous research using the prototype, that resulted in a comparable
outcome;

� source code with example containerized seriation algorithms and the prototype
implementation;

41



5. Next steps

As recent years have shown, for example in deep learning space, empirical research contin-
ues to be relevant in compter science. We will surely gain more insight into algorithms,
that we don’t understand formally, only to find new areas, where we have a vast number
of free variables to tune and experiments to run and where the inner structure is complex
enough, for the research community only be able to approach it through experimentation.
So investment in tools that allow more efficient work and gamification seems valuable.

The architecture and prototype provided in this thesis are a long way from a productized
tool ready for adoption. Further research can not solve productization. A reasonable
outcome can be development of conventions and standards. Also envangelization of the
approach and further validation.

More important than a concrete implementation is to converge onto a set of standard and
interoperability models, that would allow to have a certain stability from the researcher
perspective and at the same time gives the freedom for implementation to change, as
technology changes. This is illustrated by the Open Container Initiative, that gives a
standard way to work with containers [37], with a relative certainty, that the code written
today, will still run in the longer term, even if the underlying execution platforms change.
Similar Open Computer Based Experimentation Initiative would bring value into the space.

This thesis did not reach a description of such standard, but it achieved initial conventions
and validation that it is possible with off the shelf components.

The author sees as more important areas of research and investment as follows:

� Standardization of the experimentation worklfow engine. A benchmarking protocol.
� Standardization of the extension and integration model.
� Optimized resource usage of the system. Fair use protocols for a shared execution

environment.
� Improving the runtime measurement problem. The noisy neighbor problems in

containerized environments.
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Appendices

.1 Example seriation Docker files

This appendix contains examples of docker files that are Docker image specification. The
goal is to illustrate what it means to create a reproducible experiment.

.1.1 Gzip evaluation method

FROM a l p i n e : 3 . 7
RUN mkdir −p / home / i n p u t

&& mkdir −p / home / work
&& mkdir −p / home / o u t p u t

COPY t e s t i n p u t . c sv / home / i n p u t / i n p u t . c sv
ENTRYPOINT [

" / b i n / sh " ,
"− c " ,
" g z i p −c / home / i n p u t / i n p u t . c sv
| wc −c > / home / o u t p u t / o u t p u t " ]

Figure 22. Gzip used as evaluation method

.1.2 R based seriation

This is a more complex example, where parent Docker container is used on figure 23, to
encapsulate the complexities of reading input and writing output, handling csv format and
measuring execution time. An R script on figure 24 is used as template and includes a
specific algorithm R script on figure 26. Figure 25 shows the Docker file that inherits from
the standard R based parent and provides only the parts required by the parent. This is a
demonstration of a way to standardize by convention. The result is a Docker file that takes
ta seriation method name in the package Seriate as input, looks for a file called input.csv in
the working directory, executes the algorithm and writes the reordering as output.csv back
into the working directory. On figure 27 is a Powershell script to build and run this setup.

46



FROM r o c k e r / r − v e r : 3 . 6 . 1
RUN R −e " \
i n s t a l l . p a c k a g e s ( ’ s e r i a t i o n ’ ) "

RUN mkdir −p / home / i n p u t
&& mkdir −p / home / work
&& mkdir −p / home / o u t p u t

COPY main . r / home / work / main . r
COPY t e s t i n p u t . c sv / home / i n p u t / i n p u t . c sv
ENTRYPOINT [ " R s c r i p t " , " / home / work / main . r " ]

Figure 23. Parent docker file for R based seriation methods

l i b r a r y ( s e r i a t i o n )
a r g s = commandArgs ( t r a i l i n g O n l y =TRUE)
method = a r g s [ 1 ]
m a t r i x C s v F i l e = ’ / home / i n p u t / i n p u t . csv ’
m a t r i x = as . m a t r i x ( r e a d . t a b l e ( f i l e = m a t r i x C s v F i l e , sep = " , " ) )
s o u r c e ( ’ / home / work / a l g o r i t h m . r ’ )
t r y C a t c h ( {

t 1 = Sys . t ime ( )
p e r m u t a t i o n = a l g o r i t h m ( ma t r i x , method )
w r i t e (

a s . numer ic ( d i f f t i m e ( Sys . t ime ( ) , t1 , u n i t s =" s e c s " ) ) ,
f i l e = " / home / o u t p u t / t i m e s p a n . r e o r d e r " )

i f ( l e n g t h ( p e r m u t a t i o n ) == 1) {
p e r m u t a t i o n = c ( p e r m u t a t i o n , NA)

}
r e o r d e r i n g = permute ( ma t r i x , p e r m u t a t i o n )
w r i t e . t a b l e (

r e o r d e r i n g ,
f i l e = " / home / o u t p u t / o u t p u t " ,
c o l . names = TRUE,
row . names = TRUE,
sep = " , " )

} , e r r o r = f u n c t i o n ( e r r ) {
p r i n t ( e r r )
w r i t e ( g e t t e x t ( e r r ) , f i l e = " / home / o u t p u t / e r r o r " )

} )
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Figure 24. Base R script that implements a template for all other R based seriations

FROM s e r i k u b e / r − s e r i a t e
COPY a l g o r i t h m . r / home / work / a l g o r i t h m . r

Figure 25. Docker file that inherits from parent

a l g o r i t h m <− f u n c t i o n ( x , method ) {
r e t u r n ( s e r i a t e ( a s . m a t r i x ( x ) , method ) )

}

Figure 26. algorithm.r - R script that implements seriation with matrix of values type of
inputs

$imageName = " s e r i k u b e / r − s e r i a t e "
d oc ke r b u i l d $ P S S c r i p t R o o t −− t a g =" $imageName "
d oc ke r b u i l d $ P S S c r i p t R o o t / Ma t r i x −− t a g =" $imageName − m a t r i x "
d oc ke r run −−rm −v ${ P S S c r i p t R o o t } : / home / o u t p u t

" $imageName − m a t r i x " BEA
Get − C o n t e n t $ P S S c r i p t R o o t / o u t p u t

Figure 27. Powershell script that illustrates building and running BEA algorithm with the
above setup
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