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Märdla, S. (2017) Regional geoid modelling by the least squares modified
Hotine formula using gridded gravity disturbances. Doctoral thesis, Tallinn
University of Technology.

Abstract

A geoid model serves as a conversion surface between conventional sea level re-
ferred heights and modern GNSS-derived geodetic heights that are referred to the
Earth ellipsoid. A regional geoid model is commonly computed by the modi-
fied Stokes formula from gridded gravity anomalies and its accuracy evaluated by
comparison to co-located GNSS/levelling points.

This thesis investigates preparation of gravity grids, geoid modelling by the
alternative Hotine formula and geoid model validation in marine areas. All the
case studies concern the Nordic-Baltic region in Europe, while the findings are
applicable in any regional geoid modelling task elsewhere.

Despite satellite derived gravity field products being available globally, con-
tinuous efforts to improve and revise terrestrial gravity data are able to improve
regional geoid models in the order of centimetres, especially in coastal areas.

Gravity grids can be computed from irregularly spaced point data by the
remove-interpolate-restore process. For the remove step, gravity reduction to
Complete Bouguer Anomalies and Residual Terrain Model Anomalies are com-
pared. Although the residual gravity field properties are found to be rather dif-
ferent, the resulting gravity grids are numerically similar. Triangulation, nearest
neighbour, spline based and statistical (Least Squares Collocation and Kriging) in-
terpolation methods are compared to investigate their suitability for gravity grid-
ding. It is found that in case of inaccurate data, steep gradients and data gaps,
statistical interpolation can provide the most realistic representation of the gravity
field while spline based methods are to be avoided.

Equations are derived for the least squares modification of Hotine’s formula
and the corresponding additive corrections. The expressions and resulting geoid
models are compared to the traditional Stokes counterparts. Although numerical
results are similar, the benefit of using the Hotine formula lies in its use of gravity
disturbances as input.

Marine geoid validation by GNSS positioning on the sea (ice) is described,
tested and found to be usable at the 5 to 10 cm geoid model accuracy level. In situ
GNSS positioning is also shown to be useful for sea surface topography determi-
nation.

The findings of this thesis contribute toward improvement in regional geoid
modelling accuracy.

Keywords: gravity, disturbance, gridding, geoid, Hotine, least squares modifica-
tion, additive corrections, LSMHA
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Märdla, S. (2017) Piirkondlik geoidi modelleerimine vähimruutude mee-
todil modifitseeritud Hotine valemiga kasutades võrgustatud raskuskiiren-
duse hälbeid. Doktoritöö, Tallinna Tehnikaülikool.

Kokkuvõte

Geoidi mudeli abil saab teisendada tänapäevaseid Maa ellipsoidi suhtes mõõdetud
geodeetilisi kõrgusi klassikalisteks merepinnast lähtuvateks kõrgusteks ja vastupi-
di. Tavaliselt arvutatakse piirkondlik geoidi mudel modifitseeritud Stokes’i vale-
mi abil võrgustatud raskuskiirenduse anomaaliatest ning selle täpsust hinnatakse
võrdluses GNSS/nivelleerimispunktidega.

Väitekiri uurib raskuskiirenduse võrgustike arvutamist, alternatiivse Hotine
valemi abil geoidi modelleerimist ja geoidimudeli täpsuse hindamist merealadel.
Kõik empiirilised uuringud on tehtud Põhja- ja Baltimaade piirkonnas, samas on
tulemused rakendatavad geoidi modelleerimisülesannetele ka mujal.

Hoolimata sellest, et satelliitmõõdistused pakuvad globaalset raskuskiiren-
duse andmestikku, on maapealsete raskuskiirenduse andmete täiendamise ja revi-
deerimise abil siiski võimalik piirkondlikke geoidimudeleid mitmete sentimeetrite
võrra täpsustada, seda eriti rannikualadel.

Raskuskiirenduse võrgustikke saab ebakorrapäraselt paigutatud punktadne-
metest arvutada eemalda-interpoleeri-taasta (remove-interpolate-restore) protses-
si abil. Võrreldakse reljeefiparandiga Bouguer anomaaliate (Complete Bouguer
Anomaly) ja jääkpinnamudeli anomaaliate (Residual Terrain Model Anomaly) ka-
sutamist eemalda-etapis. Kuigi jääkanomaaliaväljade omadused osutuvad üpris
erinevaks, on saadud raskuskiirenduse võrgustikud numbriliselt sarnased. Võr-
reldakse ka triangulatsiooni, lähima naabri, splainipõhiseid ja statistilisi (vähim-
ruutude kollokatsioon ja Kriging) interpoleerimismeetodeid, et uurida nende sobi-
vust raskuskiirenduse andmete võrgustamiseks. Leitakse, et ebatäpsete andmete,
järskude kallete ja andmelünkade korral võib kõige realistlikuma raskuskiirenduse
välja mudeli saada statistilise interpoleerimise abil ning vältida tuleb splainipõhi-
seid meetodeid.

Tuletatakse valemid vähimruutude meetodil Hotine valemi modifitseeri-
miseks ning vastavate summeeritavate parandite arvutuseks. Valemeid ja neist ar-
vutatud geoidimudeleid võrreldakse klassikaliste Stokes’i ekvivalentidega. Kuigi
numbrilised tulemused on sarnased, räägib Hotine valemi kasuks raskuskiirenduse
hälvete kasutamine sisendina.

Kirjeldatakse ja katsetatakse meregeoidi kontrollimist mere(jää)l tehtud
GNSS mõõdistuse abil. Meetod osutub kasutatavaks 5-10 cm täpsusega geoidi
kontrollimiseks. Samuti osutub merepinna GNSS mõõdistus kasutatavaks mere-
pinna topograafia määramiseks.

Käesoleva doktoritöö tulemused aitavad kaasa piirkondliku geoidi modellee-
rimise täpsuse paranemisele.

Märksõnad: raskuskiirendus, hälve, võrgustamine, geoid, Hotine, vähim-
ruutude meetodil modifitseerimine, summeeritavad parandid, LSMHA
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RTM - Residual Terrain Model
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SST - Sea Surface Topography
SD - Standard Deviation
ULS - Unbiased Least Squares
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Symbols

The symbols used in the thesis include (references to pages containing their defin-
ing equations are given in parenthesis):

a semi-major axis of the Earth ellipsoid
akr coefficients of the linear system of equations constructed for the

determination of modification parameters sn (p. 56)
b∗n augmented modification parameters bn (p. 55)
c scale coefficient (p. 55)
c2

n gravity signal degree variances
dc2

n GGM error degree variances
h geodetic height
hkr coefficients of the linear system of equations constructed for the

determination of modification parameters sn (p. 56)
hARP ellipsoidal height of the antenna reference point
hISL ellipsoidal height of the instantaneous sea level (p. 82)
hMSS ellipsoidal height of the mean sea surface (p. 82)
n spherical harmonic degree
m spherical harmonic order
pn coefficient related to σ2

n (p. 54)
r geocentric radius
s∗n augmented modification parameters sn

Cn coefficient related to gravity signal and error degree variances (p.
56)

Cnm spherical harmonic coefficient
Enk function of the limiting radius ψ0 (p. 54)
G gravitational constant
GM gravitational mass constant
L modification limit
M maximum limit for the use of GGM
H levelled height
HN normal height (p. 22)
HO orthometric height (p. 22)
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HARP antenna reference point height
HIFB ice freeboard height
HISL instantaneous sea level height
HSST sea surface topography height (p. 83)
H(ψ) the Hotine function (p. 25, 54, 72)
HL(ψ) the modified Hotine function (p. 54)
N geoid height (p. 24, 25, 54)
Ñ approximate geoid (p. 24, 53, 54)
N̂ geoid estimator (p. 51, 57)
NGNSS GNSS derived geoid height (p. 82)
NGR gravimetric geoid height
Pn(cosψ) Legendre polynomials of spherical harmonic degree n
Qn unmodified truncation coefficients (p. 54)
QL

n modified truncation coefficients (p. 54)
R mean Earth radius
Rnk function of the limiting radius ψ0 (p. 54)
S(ψ) the Stokes function (p. 24, 54)
SL(ψ) the modified Stokes function (p. 54)
Ynm fully normalized spherical harmonic
γ normal gravity at the ellipsoid
δkr Kronecker delta (p. 56)
δg gravity disturbance (p. 25)
δgBP gravitational effect of the Bouguer plate
δgGGM

n GGM-derived Laplace harmonics of gravity disturbance
δgRTM RTM correction
δgTC terrain correction(

δ Ñ
)2

expected global mean square error of the geoid estimator Ñ (p.
55)(

δ Ñ
)2

GGM
expected global mean square error of the geoid estimator Ñ due
to GGM errors (p. 55)(

δ Ñ
)2

T
expected global mean square error of the geoid estimator Ñ due
to terrestrial gravity data errors (p. 55)(

δ Ñ
)2

TR
expected global mean square error of the geoid estimator Ñ due
to truncation (p. 55)

δNATM combined atmospheric correction for a geoid model (p. 58)
δNCOMB combined topographic correction for a geoid model (p. 57)
δNDWC combined downward continuation correction for a geoid model

(p. 57)
δNELL combined ellipsoidal correction for a geoid model (p. 58)
δζATM combined atmospheric correction for a quasigeoid model (p. 58)
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δζDWC combined downward continuation correction for a quasigeoid
model (p. 57)

δζELL combined ellipsoidal correction for a quasigeoid model (p. 58)
∆g gravity anomaly (p. 24)
∆gCBA Complete Bouguer Anomaly
∆gGGM GGM-derived gravity anomaly
∆gGGM
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∆gRTMA Residual Terrain Model anomaly (p. 38)
ζ quasigeoid height / height anomaly (p. 22)
ζ̂ quasigeoid estimator (p. 52, 57)
ζ 0 approximate value for height anomaly
θ geocentric co-latitude
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ρ topographic density
ρA atmospheric density
σ unit sphere
σ0 spherical cap
σ2

n terrestrial gravity error degree variances
ψ spherical distance between computation and integration points
ψ0 spherical distance corresponding to the cap size σ0
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skis, J., and Sjöberg, L. E. (2016). From Discrete Gravity Survey Data
to a High-Resolution Gravity Field Representation in the Nordic-Baltic
Region. In: 1st Joint Commission 2 and IGFS Meeting International
Symposium on Gravity, Geoid and Height Systems, 19-23 September.
Thessaloniki, Greece. DOI: 10.13140/RG.2.2.31906.32967.

18



VI Ågren, J., Strykowski, G., Bilker-Koivula, M., Omang, O., Märdla, S.,
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1 Introduction

1.1 Geoid model and its purpose

Geoid is an equipotential surface of the Earth’s gravity field, best reflected in the
nature by the ocean surface. Due to the Earth’s rotation and inhomogeneities in its
masses, the geoid is irregular. Its shape is described by its height N with respect to
a global reference ellipsoid, nowadays the GRS-80 (Moritz 2000). Geoid heights
N vary in the range of ± 100 m globally, from 15 to 50 m in the Nordic-Baltic
region and from 16 to 21 m in Estonia.

The geoid height can be determined from measurements of gravity accelera-
tion on the Earth. To obtain a global coverage of gravity surveys, dedicated satel-
lite missions such as CHAMP (Reigber et al. 2002), GRACE (Tapley et al. 2004)
and GOCE (Drinkwater et al. 2003) have been conducted. As a result, series of
global geoid models have been computed and made available in e.g. Barthelmes
and Köhler (2016). These are accurate to the level of 1 to 2 cm at spectral resolu-
tions of about 100 km (Denker 2013). However, high-resolution (in the order of
1 km) geoid models are needed for practical applications.

To compute high-resolution geoid models, the satellite derived gravity data
need to be augmented by accurate and densely acquired terrestrial gravity data.
Due to global (un)availability of terrestrial data and the computational burden,
such geoid models only cover a specific area of interest. These regional geoid
models can have resolutions down to about a kilometre. The scientific community
has presently set the goal for high-resolution geoid modelling accuracy at the 5
to 10 mm level (e.g. Ågren and Sjöberg 2014). However, the current accuracy of
regional geoid models is at the 1 to 10 cm level or worse due to insufficient gravity
data coverage or complicated geoid modelling conditions (i.e. rough terrain). See
e.g. Featherstone et al. (2010), Abbak et al. (2012), and Wang et al. (2017) for
examples of geoid modelling accuracy achieved in different parts of the world.

A geoid model and its temporal variations allow to study and explain vari-
ous natural phenomena such as the internal structure of the Earth and continuous
physical processes like hydrological mass variations, ice melt in Greenland or
Antarctica, isostasy, postglacial rebound, etc.

Besides containing information on the Earth’s structure and geodynamic pro-
cesses, geoid models have a very practical purpose, see Fig. 1. Knowing the
geoid height N, it is possible to convert modern GNSS (Global Navigation Satel-
lites System) derived geodetic heights h referring to the ellipsoid to conventional
sea level referred (orthometric) heights HO by:

HO = h−N (1)

Sea level referred heights (often used for the national vertical datum) are
customarily obtained by levelling, which is labour intensive. Using GNSS po-
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Figure 1: Height reference surfaces

sitioning for heighting is time and labour efficient. The latter also requires non-
sophisticated expertise from the user.

The current geoid modelling accuracy of 1 to 10 cm is largely sufficient for the
purposes of height conversion in hand-held GNSS devices and some land survey-
ing purposes, such as measurements in open mines, soil volume determination,
cadastral surveys, some construction surveys etc. However, geodetic GNSS re-
ceivers and processing algorithms have potential for height determination at the
cm level accuracy. Hence the current target of 5 to 10 mm in geoid modelling
accuracy which would be able to support high precision GNSS positioning.

With increasing use of GNSS, the modern solution (used in e.g. Canada, see
Véronneau and Huang 2016) to the problem of height conversion to and from
conventional sea level referred height values is to discard the nationwide geodetic
levelling network that needs maintenance and establish a geoid based national
height system. Such a decision again clearly sets high accuracy requirements on
geoid modelling.

Admittedly, GNSS itself may lack the required accuracy due to physical lim-
itations (atmosphere, signal reflections from surrounding obstacles, mechanical
constraints in antenna and clock construction, etc.) and data processing methods
that attempt to consider the physical problems (combination of different frequen-
cies, use of reference stations etc.), for an overview see e.g. Langley et al. (2017).
Nevertheless, GNSS as a system is also constantly improving.

Accurate height values are important not only to geodesists actually determin-
ing these, but also to the society. The design, construction and exploitation of the
built environment largely relies on the correct locations of its parts. Buildings,
roads, bridges and technical utilities need to fit together with each other and the
surrounding landscape, especially when it comes to discharging liquids (drains,
sewage). Therefore, a large part of engineering tasks depend on exact height de-
termination.
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Although for now, most specialised construction surveys remain a task for
conventional geodetic tools, GNSS is often used for establishing local reference
networks. Existence of an accurate geoid model allows to discard conventional
resource demanding geodetic traverses that are necessary for the establishment
of a local reference network at a construction site. Use of GNSS speeds up the
work of a geodesist, thus reducing the fraction of construction funds spent on
geodesy. Such solutions for geodetic engineering tasks are especially beneficial
for the construction and maintenance of nation-wide objects such as roads, rail-
ways, technical utility networks, communication cables etc.

There is an increasing trend of digitizing construction modelling through BIM
(Building Information Model), requiring more and more surveying based input
(the geometric properties of the objects), thus increasing the demand for accurate,
yet fast, positioning by GNSS methods.

Also, topographic surveying at the construction design stage could entirely be
based on GNSS technology, at least in the open field. With the development of
technology and increased speed of measurements, larger areas could be covered
with accurate positioning data.

In addition to the construction sector, the shipping industry is also a large user
of accurate GNSS positioning. The required marine geoid modelling accuracy is
also at the level of a few cm, especially nearby ports and fairways with critical
depth threshold.

1.2 Quasigeoid, fitted geoid

A geoid model serves thus as a height conversion surface between ellipsoidal and
orthometric heights. The orthometric height is measured along the plumb line
(tangent to the gravity vector), from the geoid to the point of interest. Besides or-
thometric heights HO, there are other height types used, namely the normal height
HN. Normal heights are measured along the normal of the reference ellipsoid,
see Heiskanen and Moritz (1967, Sect. 8-3) or Vaníček et al. (2012) for further
explanation.

The differences between ellipsoidal heights h and normal heights HN are
called height anomalies ζ . In analogy to the geoid model, these can be reflected
in a quasigeoid (i.e. height anomaly) model, see Fig. 1. Although a quasigeoid is
not an equipotential surface as the geoid, its position can similarly be determined
from gravity data. A normal height system is used in most European countries,
including Estonia.

National or local vertical datums (NVDs or LVDs) often refer to a historic
mean sea level value that does not necessarily correspond exactly to the surface
of the geoid. Therefore, for use as a height conversion surface, the gravimetric
geoid model can be fitted to the vertical datum. This conversion can be a one-
dimensional vertical shift, but also a more complicated polynomial surface in case
of distorted height systems.
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For practical purposes most countries have established an official fitted geoid
model corresponding to the height system(s) in use. In Estonia, the current geoid
model is the EST-GEOID2011 (Ellmann et al. 2011, RT I, 3 2011) which is based
on the corresponding GRAV-GEOID2011 gravimetric geoid model. The entire
Nordic-Baltic region is covered by the NKG (Forsberg et al. 2004) and the EGG
(Denker 2016) regional gravimetric geoid models. Such regional models can be
used for height system unification, scientific purposes and other regional tasks, but
also as national reference surfaces (after fitting to individual NVDs, if necessary).

1.3 Geoid modelling

Geoid modelling represents a boundary value problem (BVP) whereby a boundary
shape (geoid) is to be determined from boundary values (gravity derived quanti-
ties) that refer to the boundary surface (Heiskanen and Moritz 1967).

In particular, the input data to geoid modelling can be gravity anomaly ∆g
values. Surface (also called free-air) gravity anomaly is the difference of the mea-
sured gravity value gP (at point P at the height HP above the geoid) and the normal
gravity generated by the reference ellipsoid (ibid., Eq. 8-7):

∆gP = gP− γHP (2)

where the normal gravity γHP is evaluated at the height HP above the reference
ellipsoid (Molodensky 1945), using standard formulae (e.g. Moritz 2000).

In spherical approximation, a geoid model can be obtained from gravity
anomaly values by the Stokes (1849) formula:

N =
R

4πγ

∫∫
σ

S(ψ)∆gdσ (3)

where R is the mean Earth radius, γ is the normal gravity on the reference ellip-
soid, σ is the unit sphere, i.e. the globe. The Stokes function S(ψ) is defined
as:

S(ψ) =
∞

∑
n=2

2n+1
n−1

Pn(cosψ) (4)

where ψ is the spherical distance between the computation point P and the inte-
gration point Q; Pn(cosψ) are the Legendre polynomials of spherical harmonic
degree n, see Heiskanen and Moritz (1967, Eq. 1-57’).

Notice that Eq. 3 requires global integration of gravity anomalies. For re-
gional geoid modelling it is modified so as to combine the integration of terrestrial
gravity data ∆g from within a spherical cap σ0 (the near zone contribution) with
the far zone contribution from a global geopotential model (GGM) as (Sjöberg
2003b, Eq. 7):

Ñ =
R

4πγ

∫∫
σ0

SL(ψ)∆gdσ +
R
2γ

M

∑
n=2

bn∆gGGM
n (5)
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where bn are arbitrary modification parameters, ∆gGGM
n are the GGM-derived

Laplace harmonics of ∆g (Heiskanen and Moritz 1967, p. 97), M is the spher-
ical harmonic degree up to which the GGM is used, SL is the modified Stokes
function and L the corresponding degree of modification.

There are certain requirements that need to be considered before the applica-
tion of Eq. 3 in geoid modelling, resulting in a number of corrections to the input
gravity data or Eq. 5 itself, see Sect. 4.1 for details.

In contemporary gravity surveys, point heights are determined by GNSS with
respect to the ellipsoid. Knowing the ellipsoidal height of a gravity survey point
allows to compute an alternative residual gravity quantity, the gravity disturbance
δg. It is defined as the difference between the observed gravity gP and the normal
gravity γP at the same point in space (ibid., Eq. 2-142):

δgP = gP− γP (6)

While gravity disturbances can be converted to gravity anomalies using an
existing geoid model, they can also be used for geoid modelling directly by the
Hotine formula (Hotine 1969, Eq. 29.53):

N =
R

4πγ

∫∫
σ

H(ψ)δgdσ (7)

where H(ψ) is the Hotine function defined as (ibid., Eq. 29.17):

H(ψ) =
∞

∑
n=0

2n+1
n+1

Pn(cosψ) (8)

Notice that, in contrast to the Stokes function, the summation in Eq. 8 can
start from n = 0. In practical computations, the zero and first degree harmonics
can often be neglected since the origin of the geodetic system is conventionally
placed in the mass centre of the Earth and the adopted normal gravity field is
generated by the mass equal to the actual mass of the Earth.

Use of gravity disturbances in conjunction with the Hotine formula in regional
geoid modelling will be investigated in Chapter 4. The advantage of gravity dis-
turbances compared to the anomalies is that a previously existing geoid model is
not needed for geoid determination in case the survey points are positioned by
GNSS.

1.4 Gravity gridding

Evaluation of the Stokes or Hotine integral requires the input gravity anomalies
or disturbances to form a regular grid of rectangular or trapezoid like cells (except
for e.g. the Santos and Escobar 2004 study that uses Voronoi polygons). However,
it is not possible to conduct field surveys of gravity acceleration on a regular grid.
Instead, measurements are constrained to locations accessible with a gravimeter,
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which is an extremely sensitive and thus fragile instrument. Accordingly, a regular
gravity anomaly or disturbance grid needs to be deduced by interpolation from the
point-wise gravity data collected.

Most interpolation algorithms demand the phenomenon described by the point
data to be homogeneous and regarded as a spatial stochastic process. That is, sta-
tionarity (constant mean over the area of interest and position independent covari-
ance) and isotropy (independence of direction of the spatial dependence) have to
be assumed, see e.g. the discussion in Darbeheshti and Featherstone (2009).

Neither the gravity values measured nor the surface gravity anomalies or dis-
turbances satisfy the above conditions too well. However, a Remove-Interpolate-
Restore (RIR) process can be used to perform the interpolation on a more suitable
field. That is, gravity values can be reduced prior to interpolation and a corre-
sponding restoration process applied on the regular grid to yield a gravity anomaly
or disturbance grid. Various options exist both for gravity reduction and for in-
terpolation. Combinations of some popular reduction and interpolation methods
will be investigated in Chapter 3 to evaluate their suitability and quality in various
conditions.

Geoid modelling is one application for gravity (anomaly) grids, which are also
needed for other geosciences. For example, different gravity anomalies (free-air,
simple Bouguer, complete Bouguer, slab-residual, mantle Bouguer etc., see e.g.
Hackney and Featherstone 2003, Radhakrishna et al. 2008) are used in two- or
three-dimensional inverse as well as forward modelling by various techniques to
interpret variations in mass and density that reflect the structure of solid Earth.
Gravity field derivatives such as gradients also reveal density contrasts (Elkins
1951). Numerous contributions similar to Mandal et al. (2015), Baptiste et al.
(2016), and Klitzke et al. (2016) etc. describe and interpret the gravity field and
geophysical features of specific regions.

1.5 Validation of geoid models

Gravimetric geoid models obtained by Eq. 5 can be validated by comparison to
GNSS/levelling points i.e. the difference of the ellipsoidal height h determined by
GNSS and the levelled height H.

For such a comparison, sufficiently accurate co-located GNSS/levelling points
are needed. Obtaining a nation-wide coverage of such points with a distribution
comparable to typical gravimetric geoid model resolution is not economically fea-
sible. Therefore, the accuracy of gravimetric geoid models is judged by the distri-
bution and statistics of discrepancies on the available points, see an example over
Estonia on Fig. 2.

Using such comparisons, it is important to keep in mind that, due to inaccu-
racies of height data, vertical land motion, etc. the control GNSS/levelling data
themselves can contain errors, see e.g. Lysaker et al. (2007).

Although GNSS/levelling validation is widely used in regional geoid mod-
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Figure 2: GNSS/levelling evaluation of the GRAV-GEOID2011 model (after re-
moval of the mean difference; min: −5.7 cm; max: 3.6 cm; SD: 1.69 cm)

elling, it is not possible over marine areas due to data unavailability. For marine
geoid validation, alternative methods are therefore needed, one of which is pro-
posed in Chapter 5.

1.6 Geoid modelling in the Nordic-Baltic region

All the case studies of this thesis are conducted in the Nordic-Baltic region in
Europe, embedding the Nordic (Finland, Sweden, Norway, Denmark, Iceland)
and Baltic (Estonia, Latvia, Lithuania) countries, parts of Russia, Belarus, Poland
and Germany, the Baltic Sea, North Sea and a large portion of the Arctic Ocean,
see Fig. 3. In particular, Estonia is a country of about 45 000 km2, topographic
elevations from 0 to 320 m and a coastline of a few thousand kilometres, including
islands.

The Nordic-Baltic is a heterogeneous region covering both land and marine
areas. Norway has a rugged terrain with deep fjords and heights exceeding 2 km
while in Denmark and the Baltic countries the topographic heights only reach a
few hundred metres, see Fig. 3. The quality and coverage of gravity data vary
from satisfactory (e.g. Estonia) to sparse and inaccurate over some marine areas,
see Fig. 6 on p. 36.

There are currently two geoid modelling projects active in the Nordic-Baltic
area: the NKG geoid modelling project and the FAMOS project.

The Nordic Geodetic Commission (NKG) has a history of regional geoid mod-
elling in the Nordic-Baltic area. The succession of NKG geoid models include
NKG-86 (Tscherning and Forsberg 1986), NKG-89 (Forsberg 1991), NKG-96
(Forsberg et al. 1997), NKG2002 and NKG2004 (Forsberg et al. 2004).

27



−4˚
0˚ 4˚ 8˚ 12˚ 16˚ 20˚ 24˚ 28˚ 32˚ 36˚

52˚

54˚

56˚

58˚

60˚

62˚

64˚

66˚

68˚

70˚

72˚

74˚

0 400 800 1200 1600 2000 2400

m

Paper A

Paper B

Paper B
(Area 1)

Paper B
(Area 2)

Paper B
(Area 3)

Paper D

Papers C,E

Ba
lti

c 
Se

a

GOF

North
Sea

Arct
ic O

ce
an

 Norway

Sweden

Finland

Denmark

Estonia

Latvia

Lithuania

 Russia

Germany Poland

Belarus

UK

Figure 3: Terrain elevations in the Nordic-Baltic region of interest and specific
areas studied in the Papers

In 2011 the NKG Working Group of Geoid and Height Systems (NKG WG-
GHS 2017) started a project to compute and publish a new NKG geoid model
covering the area of 53 to 73◦ N, 0 to 34◦ E. It was decided to treat geodetic refer-
ence systems and epochs as rigorously as possible. Dozens of geoid models were
computed by many computation centres by their method(s) of selection using ex-
actly the same input data. Following their analysis, the most suitable methods
were selected for the computation of the NKG2015 geoid model.

See the relevant presentations, especially IV to XIII, for information on the
contribution of the Estonian computation centre and specifically the author of this
thesis to the NKG geoid modelling project. Notice however, that there are many
aspects to this project that are not discussed in the present thesis, for example uni-
fication of reference systems (including conventions for permanent tides), compi-
lation of GNSS/levelling or DTM data, selection of final geoid modelling meth-
ods etc. These essential aspects of any geoid modelling exercise are discussed in
Ågren (2013) and upcoming publications.

The NKG2015 geoid model is available at ISG (2015), its main characteristics
are described in IV.

Estonia is not officially part of the NKG association. Co-operation with the
NKG community has nevertheless been active in the past decade. As a coun-
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try, Estonia stands to benefit from the scientific and practical experience that the
NKG community has to offer. This particular project of regional geoid modelling
allows Estonia to investigate many theoretical and practical aspects of geoid mod-
elling, that would need tackling in national efforts anyway, in co-operation with
the NKG. Another important benefit of international cooperation is the possibility
of data exchange, especially since geoid modelling requires data from at least a
hundred kilometres surrounding the area of interest.

Another ongoing project related to geoid modelling in the Nordic-Baltic area
of interest is the international FAMOS (Finalising Surveys for the Baltic Motor-
ways of the Sea) Odin project (VEU16013). Activity 2 of this project aims at
adopting a new vertical reference level for the Baltic Sea, the Baltic Sea Chart
Datum (BSCD) 2000. The focus of this project is thus on marine geoid mod-
elling. More specifically, gravity data will be surveyed and validated over parts of
the Baltic Sea with the aim of computing a highly accurate and quality controlled
marine geoid model. See II for current progress of the project. An example of a
FAMOS marine gravity campaign can also be found in Varbla et al. (2017b).

1.7 Motivation and objectives

The underlying motivation of this thesis was largely the author’s participation in
the NKG geoid modelling project described in the previous section. Practical
geoid modelling is not a straight forward task with a standard work flow to fol-
low. Instead, there are numerous options in each stage of the process. Such tasks
contain data collection, extensive analysis, gravity gridding, selection of an appro-
priate GGM and its parameters, selection of geoid modelling methods, inclusion
of relevant corrections etc.

In this thesis, some specific aspects of gravity field and geoid modelling ef-
forts made in a particular region will be documented. However, the findings are
generally not area specific. Instead, these can be useful in any regional geoid
modelling task. In addition to individual countries continuously improving their
height reference surfaces, there has been international collaboration on regional
geoid modelling, for example within the frames of the GEOMED2 (Barzaghi et al.
2017) project or in the International Association of Geodesy (IAG) for the EGG
family of geoid models (Denker 2013, 2016).

It is important to notice, however, that the present thesis does not describe
the NKG geoid model nor its computational aspects (a dedicated publication is
currently under preparation), but reports upon the scientific research conducted to
support the project activities.

In the present thesis, the following topics are studied:
– Preparation of gravity grids (Papers B, C and D)
– Geoid modelling methods (Paper A)
– Marine geoid validation and applications (Papers C and E)
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While there is ample scientific literature available concerning modification of the
Stokes formula and other methodological aspects of geoid modelling (see the ref-
erences in Chapter 4), the gravity data analysis and preparation is often performed
without much documentation. Positive exceptions being Gil and Rodríguez-
Caderot (1998), Hinze et al. (2005), Jekeli et al. (2009), Martín et al. (2009),
Saleh et al. (2013), and Véronneau (2013) where regional scale gravity data anal-
ysis is reported in. Yet, the methodological possibilities available for preparation
of a high quality gravity grid are ample. Accordingly, these are analysed and
compared in this thesis.

Use of the Stokes formula has been the traditional method for regional geoid
modelling with dozens of variations. The alternative Hotine formula has also been
used before. However, the specific approach called the Least Squares Modifica-
tion of Stokes’s formula (Sjöberg 1984, 1991, 2003b) with Additive corrections
(Sjöberg 2003a) had not yet been fully implemented to the Hotine formula before
this thesis.

As mentioned in Sect. 1.5, an alternative to gravimetric geoid validation by
comparison to GNSS/levelling points is needed in marine areas. In this thesis, the
feasibility of marine geoid validation by direct GNSS positioning "on the geoid"
is investigated.

The general aim of this thesis is to analyse the improvements needed in gravity
data coverage, gravity gridding and geoid modelling methods to achieve target
accuracy of 5 to 10 mm in regional geoid modelling. Therefore, both theoretical
and data related aspects of gravity gridding and geoid modelling are considered.
In particular, the objectives are:

– to collect and analyse the Nordic-Baltic gravity data (Papers B, C and D)
– to select an optimal method of gravity gridding in a specific area (Paper D)

or in a large heterogeneous area (Paper B)
– to introduce a new geoid modelling method that fully implements the least

squares modifications of Stokes’s formula with additive corrections to the
Hotine formula (Paper A)

– to investigate use of GNSS surveys for marine geoid validation (Paper C)
and sea surface topography determination (Paper E)

The present thesis does not aim to deliver a practical product usable for industrial
height conversion. Therefore, only gravimetric geoid modelling is discussed: fit-
ting of gravimetric geoid models to NVDs or LVDs is considered to be outside the
scope of this study. However, the results of this study do allow for improvement
over existing geoid products in the Nordic-Baltic, but also other regions.
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1.8 Outline

For the readers’ convenience, the specific studies will be introduced and discussed
in the logical sequence they would come up in practical geoid modelling tasks.
Apart from the Introduction and Discussion, each chapter of this thesis describes
a specific task, methods involved in solving the problem and related findings of
the corresponding studies.

The theoretical findings presented in the studies making up this thesis are ver-
ified in the Nordic-Baltic region, sometimes focusing on a particular part of the
area with specific characteristics. The text of this thesis, as some of the consti-
tuting papers, intentionally turns some additional attention to Estonia. It is used
as an example for explaining geoid modelling problems and related findings, for
illustrating the relevance of the studies presented.

Chapter 1 has briefly explained the basics of regional geoid modelling and
provided the motivation and objectives of the thesis. Chapters 2 and 3 report upon
methods of gravity data analysis and gridding respectively. Chapter 4 concen-
trates on geoid modelling methods, specifically implementing the least squares
modifications of Stokes’s formula to the Hotine formula. Chapter 5 is a brief in-
vestigation of relations between the geoid and various sea levels in order to use
GNSS positioning for marine geoid validation. Chapter 6 summarises the find-
ings of the present thesis together with a discussion and suggestions for future
research.
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2 Gravity data analysis

Practical geoid modelling requires extensive data collection and analysis: in addi-
tion to gravity data, a digital terrain model (DTM) and a GNSS/levelling database
for evaluation are needed. Even the best of methodological improvements become
futile in practice if there is no adequate data to work with.

In this section, the process of collecting and analysing the necessary gravity
data (together with relevant meta data, most importantly uncertainty estimates)
will be described. The methods introduced can be of reference in projects else-
where, for example the ongoing EGG and GEOMED2 research mentioned earlier.

All the case studies of this thesis are conducted within (parts of) the Nordic-
Baltic area. For geoid modelling in the area of 53 to 73◦ N, 0 to 34◦ E, terres-
trial gravity data from 51 to 75◦ N, −4 to 38◦ E are used. Gravity data in the
NKG database have been cleaned and updated by the participating nations, see
Paper B. In this thesis, the Estonian gravity data are also used to illustrate some
of the processing tasks encountered. Similar procedures have been applied in the
other countries involved before inclusion of national data into the updated NKG
database.

In addition, the 3′′×3′′ DTM called NKG DEM 2014 and the NKG
GNSS/levelling database with 2538 points are used. The GNSS and levelling
data have been transformed to ETRF2000 (European Terrestrial Reference Frame)
epoch 2000.0 and EVRF2007 (European Vertical Reference Frame) respectively.

If not specified otherwise, these are the data used in this thesis and the consti-
tuting papers.

2.1 Updating the Estonian Gravity Database

The basis for accurate gravity data collection is a high quality gravity network.
Oja (2012) introduces the realisation of the national gravity system GV-EST es-
tablished for Estonia. Revision and transformation of existing gravity data over
Estonia has been ongoing, see Jürgenson (2003), Ellmann et al. (2009), and Jür-
genson et al. (2011). Meantime, new gravity surveys have been conducted, e.g.
Nikolenko (2010), Oja and Pihlak (2010), Oja (2011), Türk et al. (2011), and
Pehlak (2014).

Starting the current studies, the initial task was to establish a new structured
database where all the existing gravity data together with meta data could be col-
lected, see the Estonian Gravity Database (EGD) report (Talvik and Oja 2014)
and related plans presented in XIII. Similar work of generating and verifying
meta data is ongoing also on the global level, see Vergos et al. (2017).

After collection and cleaning of existing and recently acquired gravity data
(Fig. 4), the resulting data were compared to those used in the modelling of
GRAV-GEOID2011, see IX, X, XI. From initial analysis it was found that the
more recent gravity data can change the resulting geoid model significantly: in
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Figure 5: The EGD coloured according to error estimates

central and West Estonia but also near the terraced coast in the NE the geoid
change can reach ±2 cm which is well beyond the target accuracy of 5 to 10 mm
set in regional geoid modelling.

Such a significant improvement in estimated geoid model accuracy illustrates
the importance of continuing terrestrial gravity data collection and regional geoid
modelling efforts in the era of dedicated satellite missions providing global gravity
field and geoid products with increasingly high resolution and accuracy.

It was also clear that some specific areas need additional attention. As a result,
gravity data were specially collected and analysed nearby a terraced area (Paper
D) and on ice covered water bodies (Paper C).

A special effort was needed to analyse the Estonian Geological Survey (EGS)
gravity data consisting of about 130 000 points, mostly over North Estonia (Talvik
et al. 2014c). These had previously been digitized and transformed to the modern
reference level, see e.g. All and Gromov (2007) and other similar reports. How-
ever, some meta data, such as data collection epoch and estimated accuracy level
(0.2, 0.3 or 0.5 mGal) had to be newly gathered from the original reports. This
information was later used in data filtering, see Sect. 3.3 and Paper B.

As a result, the Estonian gravity database contains about 143 000 points with
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error estimates from 0.1 to 3 mGal, see Fig. 5.

2.2 Gravity surveys on ice

Geoid is a rather smooth surface where the long wavelength features dominate.
Accordingly the geoid height at a specific point is largely affected by the grav-
ity field in its surroundings, hence the original Stokes formula embedding global
integration. Therefore, gravity data from nearby coastal areas (and more specif-
ically, possible systematic errors in it) contribute to the mainland geoid model
significantly (Paper B).

Unfortunately, gravity surveys are considerably more complicated over ma-
rine areas, especially nearby the coast where the quality of satellite altimetry de-
rived gravity data degrades. The possible alternatives include marine gravimetry,
airborne gravimetry and, where possible, surveys on marine ice. The latter are
investigated in Paper C.

Previous attempts of ice gravity surveys are reported by Lehmuskoski and
Mäkinen (1978), Ugalde et al. (2006), Engberg et al. (2011), Oja et al. (2011), and
Ågren et al. (2014). The problems associated with gravity surveys on ice include
weight of equipment on ice; gravimeter tilting due to snow compaction and ice
melting; direct wind impact on the gravimeter; considerable ice oscillation, see
XII, Kiviniemi (1975), Lehmuskoski and Mäkinen (1978).

Gravity surveys over the Väinameri Basin in West Estonia are described in
Paper C. Attention is also given to vertical positioning of the gravity points. The
efficiency and accuracy of rapid static and kinematic GNSS surveys for the pur-
pose of positioning on ice (i.e. in relatively remote areas) is analysed. Contrary to
surveys on land, (vertical) position differences on revisited points reflect not only
GNSS inaccuracies but also motion of the ice sheet in tact with the sea level.

The ice gravity surveys serve not only the purpose of obtaining new data but
also to validate and transform existing data. For example, the sea bottom grav-
ity data of Gulf of Riga and the airborne gravimetry tracks over Väinameri are
validated in Oja et al. (2011) and Paper C respectively.

Considering the recent experience described above, the achievable accuracy
of gravity surveys on marine or lake ice is estimated to be ±0.15 mGal, i.e. com-
parable to terrestrial gravity surveys.

2.3 Updating the NKG gravity database

For the purpose of the NKG geoid modelling project, the (already existing) NKG
gravity database was also thoroughly modernised, see Paper B for some details.
It contains data from within the area of 52 to 74◦ N, −2 to 36◦ E, also acting as a
part of the future FAMOS gravity database.

Most importantly, each participating country is responsible for the data con-
cerned, hence the careful compilation of the Estonian gravity database, described
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Figure 6: The NKG gravity point data coloured according to a priori error esti-
mates (figure from Paper B). Notice that the colour scale differs from that used
in Fig. 5.

in Sect. 2.1. Each data point comes with a corresponding uncertainty estimate,
some carefully estimated to represent the actual quality of the observations, some
(usually those of older data) less so.

After initial database compilation, the NKG gravity data were analysed by the
participating computation centres to treat missing, overlapping or outlier data, see
VII and VIII. The final database contains over half a million gravity points with
a priori error estimates from 0.1 to 7.0 mGal originating from terrestrial, marine
and airborne gravity surveys (Fig. 6).

After compilation and analysis of gravity data using the methods described in
this chapter, the next task of gravity gridding necessary for geoid modelling can
be proceeded to.
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3 Gravity gridding

For input to geoid modelling by the Stokes (Eq. 3) or Hotine formula (Eq. 7),
a grid of free-air anomalies or disturbances is needed. Gravity surveys yield
point values of gravity acceleration, which are reduced to surface (free-air) grav-
ity anomaly ∆g point values by Eq. 2 (or disturbances δg by Eq. 6). Compared to
the initial gravity values, the free-air anomaly field is reduced in magnitude. How-
ever, it can still be quite rough and correlated with height, thus not very suitable
for high quality interpolation, unless sampled extremely densely (e.g. 10 values
per km2, according to Janák and Vaníček 2005).

As mentioned in the Introduction, gravity grids can be obtained from sur-
veyed point data through the remove-interpolate-restore process. However, for
both the reduction of gravity data and interpolation, there are numerous methods
available. Accordingly, Papers B and D investigate gravity anomaly gridding in
detail to find a combination of methods and computation parameters that results
in the highest quality gravity anomaly grid. The findings of these analysis are also
directly applicable for gravity disturbance gridding, as the two residual gravity
quantities (and data sets) share the same properties.

First, the methods (criteria) used in assessing gravity grids are discussed in
Sect. 3.1. Some widespread reduction, data filtering and interpolation methods
are then evaluated in Sections 3.2, 3.3 and 3.4 respectively. Sect. 3.5 discusses
the importance of area specifics in the selection of gridding methods. The overall
quality of gravity gridding and resulting geoid models is discussed in Sections 3.6
and 3.7.

3.1 Methods for assessment of gravity grids

First, criteria for the best quality grid need to be decided upon. Intuitively, one
would think that a grid with the smallest residuals with respect to the original
point data would be the optimum solution. This would certainly be so in case
of perfectly distributed flawless gravity data. However, survey data inevitably
contain measurement errors and voids. Therefore, under some circumstances, a
grid with larger residuals may in reality reflect the physical nature of the gravity
field better.

The focus of current research is on geoid modelling. In such a case, the quality
of the resulting geoid model offers additional means for validation of the gravity
grids. Preliminary geoid models can be computed from gravity grids obtained
by different methods. Each of these can then be evaluated by comparison to
GNSS/levelling points to determine gravity gridding methods yielding the highest
quality geoid models.

In this thesis, either quick geoid modelling by the Generic Mapping Tools
(GMT, Wessel et al. 2013) sub-program grdfft (in case of X, IX) or more accurate
methods similar to those used in the computation of the NKG2015 model (in case
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of Paper B) are used for such preliminary geoid computation intended for gravity
grid validation.

3.2 Gravity reduction

3.2.1 Reduction methods

Most of the high frequency information contained in the surface gravity values is
due to topography. Although most of it is removed by the free-air reduction, there
are a number of possibilities for further reduction of gravity anomalies. Out of
these, the reduction to Complete Bouguer anomalies (CBA, sometimes also called
Refined Bouguer anomalies) and to Residual Terrain Model anomalies (RTMA)
is investigated in Paper B. Both are well known and widespread gravity reduction
methods, albeit with different physical meaning.

The Complete Bouguer anomalies ∆gCBA are obtained from the free-air
anomalies ∆g (Eq. 2) by:

∆gCBA = ∆g−δgBP +δgTC (9)

where the second term δgBP represents the gravitational effect of the Bouguer
plate (Heiskanen and Moritz 1967, Eq. 3-19) and the third term δgTC the terrain
correction (ibid., Eq. 3-21).

The Residual Terrain Model anomalies ∆gRTMA are obtained by:

∆gRTMA = ∆g−∆gGGM−δgRTM (10)

where the second term ∆gGGM is the gravity anomaly from a GGM evaluated to
a suitable maximum degree and order (d/o) and δgRTM is the RTM correction
(Forsberg 1984). The RTM correction is similar to the terrain correction δgTC,
representing the gravitational effect of topography above a reference surface.

Possible alternatives to CBA and RTMA include mainly isostatic anomalies
such as the Airy-Heiskanen or the Pratt-Hayford reduction that could be quite
smooth over land or marine areas respectively (e.g. Novák et al. 2016).

Additional corrections to describe the gravitational effect of atmosphere or
ice are also discussed in Paper B. The atmospheric correction cannot exceed
0.87 mGal and is thus relatively small. The ice correction is relevant only in areas
where the gravity surveys are conducted on an ice sheet – i.e. over glaciers.

3.2.2 Evaluation of reduction methods

First, the effect of neglecting the terrain correction δgTC from Eq. 9 on resulting
geoid models is discussed. In mountainous areas reaching about 2 km in eleva-
tion, the resulting gravity grid and geoid model are clearly biased with deviations
reaching decimetres (in Norway). Deviations in the order of metres were noticed
in a similar experiment in the Rocky Mountains (Janák and Vaníček 2005). By
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Figure 7: Covariance functions for the RTMA (a to d) and CBA (e to h) anomalies
in different areas, see Fig. 3 for their locations∗ (figure from Paper B)

∗The red or green lines depict the empirical covariance function, blue line the sec-
ond order Markov and orange line the spherical model. Spherical distance [◦] and
variance [mGal2] are represented on the horizontal and vertical axis respectively.
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analogy, similar problems can be expected when neglecting the RTM correction
δgRTM in Eq. 10.

Another parameter that can be varied is the maximum d/o used for evalua-
tion of ∆gGGM in Eq. 10. Paper B compares the maximum limit (300) of a
satellite-only GGM to another reasonable choice of 240 degrees. The correspond-
ing difference of the two gravity grids and the resulting geoid models is rather
insignificant: over the study area of Paper B the standard deviation is 0.44 mGal
and 0.6 mm, respectively. The absolute maximum deviation in the resulting geoid
models is 1.4 cm.

The covariance analysis performed in Paper B (see Fig. 7) illustrates the
different characteristics of the CBA or RTMA field. First of all, the variance of
the RTMA field is much smaller than that of the CBA field, see the different scale
of Figs. 7a to 7d compared to Figs. 7e to 7h.

Table 2 of Paper B also lists the estimated correlation lengths for the full
NKG area and the specific study areas (Area 1 – mountainous, Area 2 – flat, Area
3 – marine). In general, the correlation lengths are two to three times smaller
for the RTMA and vary much less between areas with different characteristics
than those for the CBA. While the theoretical covariance model for RTMA fits
the empirical values rather well in the flat and marine area at least, that of CBA
under- or overestimates the spatial correlation in all of the test areas.

From the above analysis it would seem that the RTMA are more suitable for
interpolation, at least by statistical methods that make use of spatial correlation
information in the form of a covariance model, but also by other methods, as the
RTMA field is "more predictable".

However, the case study of Paper B does not confirm this conclusion. The
differences of reduced point values from the grid values (Table 4 of Paper B) are
very similar for both reduction schemes, neither of the methods showing signifi-
cantly smaller RMS (Root Mean Square) or extreme values. Comparing the final
surface anomaly grid to the original surface anomaly values, only the grid com-
puted via RTMA using the LSC interpolation (see Sect. 3.4) shows about 10 %
better RMS values in the overall and mountainous area statistics.

The two reduction methods have different physical meaning, but the resulting
surface gravity anomaly grids show a similar fit to the input data. Based on the
case study results, it is therefore difficult to prefer either of the reduction methods.
A reason to prefer the RTM anomalies for gravity data gridding could be their
properties of shorter, more uniform correlation length and smaller variability (as
discussed above) that are theoretically more suitable for interpolation.

3.3 Data filtering before interpolation

For practical implementation of many interpolation algorithms, the scattered point
data should first be low-pass filtered or averaged according to the grid step of
the final grid to reduce cluttering (or high frequency information) that results in
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Figure 8: Illustration of aliasing in gravity gridding: aliased (solid line) and de-
sired (dashed line) result

aliasing, see e.g. Smith and Wessel 1990.

The aliasing effects are different depending on the interpolation method. For
an algorithm considering also the estimated accuracy of data points, the situation
can be illustrated with the following example depicted on Fig. 8. There are two
points C and D with a small error estimate close by each other and other points
further away, the error estimates of these do not particularly matter. The interpo-
lation surface tries to follow the points C and D that it considers highly accurate.
As a result, the surface undulates between points B and E. If one of the points
C or D in fact contained a larger error than their error estimate allows, then the
desired surface should not pass through both of these points and the undulation
should not be present. However, if points C and D were either filtered (i.e. one
of the two removed) or averaged before interpolation, the desired smooth surface
would have been obtained.

3.3.1 Filtering methods

Again, there are a number of ways to generate a point cloud corresponding to the
selected grid step from the total number of observations. The GMT (a popular
tool used in geosciences) sub-program surface intended for interpolation suggests
the use of their blockmean, blockmedian or blockmode algorithms. In addition,
such averaging can be performed using unit or realistic weights (for example the
inverse of given error estimates squared).

An alternative to (weighted) averaging is the process of filtering. For exam-
ple, one step (according to accuracy estimates) and two step (according to survey
epoch, then estimated accuracy) filtering were attempted with the Estonian Geo-
logical Survey data collected over a longer time period (1968-2008) with different
accuracy (IX, X, XI). See Fig. 9 for an illustration of a filtering result, whereby
points with smaller error estimates have been preferred over those with a larger
error estimate.
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Figure 9: Gravity data before (left) and after (right) filtering according to error
estimates (red – 0.2 mGal, gray – 0.3 mGal, blue – 0.5 mGal)

3.3.2 Evaluation of filtering methods

Preliminary geoid modelling by the simplified grdfft method is used to evaluate the
effect of using these different averaging or filtering options, see X and IX. Over
Estonia the differences between geoid heights obtained from gravity data averaged
by blockmean or filtered according to uncertainty estimates remain within a few
millimetres.

The effect of using realistic weights instead of unit weights in the blockmean
process is local: it is noticeable within a distance of about 10 km around some
specific computation points. In case of the Estonian data, the maximum differ-
ence between preliminary geoid models are in the order of 2 cm. While in gen-
eral such local effects are rather harmless, they could have an adverse effect on
GNSS/levelling evaluations if a control point happens to be in an area where the
geoid modelling result has a large dependency on the weighting scheme used in
gravity gridding.

It can be concluded that in a flat area densely covered with gravity data, such
as Estonia, any of the above data filtering methods usually yield satisfactory geoid
modelling results. For a generalisation, additional analysis in other areas would
be beneficial.

3.4 Interpolation

In practice, the reduced gravity data are still somewhat non-stationary, anisotropic
(see e.g. Schwarz and Lachapelle 1980, Goad et al. 1984) and contain unavoidable
observation errors. However, they should now be much more suitable for inter-
polation. As the next step, an interpolation method best suitable for the specific
characteristics of the residual gravity field is needed.

A number of interpolation methods are described and tested in Papers B and
D, see Table 2. Most available interpolation tools fit in one of the categories listed
in Table 2. In addition to the specific parameters given in Table 2, most algorithms
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Table 2: Interpolation methods and tools used

Method Parameters Tool

triangulation - GMT triangulate
- Matlab1 griddata

splines in
tension

manual tension factor GMT surface
automatic tension factor GMT sphinterpolate

nearest
neighbour

search radius, number of sectors GMT nearneighbor

statistical covariance function or
(semi)variogram

Gravsoft2 (LSC)
Surfer3 (Kriging)

1 MathWorks Inc (2017); 2 Forsberg and Tscherning (2008); 3 Golden Software LLC (2016)

can also make use of individual error estimates. However, in the present study,
individual error estimates are only used with the LSC interpolation method.

3.4.1 Interpolation methods

Triangulation methods (used in Paper D) form triangles between data points, al-
lowing for sharp edges and gradients in the field. Although the gravity field itself
can not host such brake-lines that form on triangle sides, the triangulation methods
can still be useful in areas of larger gravity field variations, such as the terraced
area treated in the case study of Paper D.

The nearest neighbour algorithm (used in Paper D) depends on the specific
search radius and data requirements per sector that need to be selected beforehand.
An attempt to secure a high quality interpolation by setting strict requirements on
the number and distribution of data points per sector can result in the algorithm
being unable to estimate a value to many grid nodes due to lack of data. However,
the four sector interpolation used in the terraced study area of Paper D yields
rather good results.

Spline based methods (used in Papers B and D) form smooth surfaces, which
should be able to reflect the nature of the gravitational potential field well. De-
pending on specific tension parameters, the spline surface formed can host ex-
trema that do not coincide with data points (e.g. is able to represent a maximum
value at the bottom of a valley in case survey points exist only at sides of the
valley) and each data point is not necessarily passed through (allowing for mea-
surement errors), see Smith and Wessel (1990). While the GMT surface algorithm
demands that the tension factor determining the amount of undulation allowed in
the spline surface be selected beforehand, the sphinterpolate algorithm allows for
automatic determination of tension factors according to local gradients.

Statistical interpolation methods (used in Paper B) such as Kriging (Krige
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1951) and Least Squares Collocation (LSC, e.g. Moritz 1980) base their estimates
on a priori information about the spatial correlation of the data. The spatial de-
pendence information is provided in the form of a covariance or semi-variogram
model (see e.g. Isaaks and Srivastava 1989, p. 55), which is usually estimated
from the survey data.

3.4.2 Evaluation of interpolation methods

The case study of Paper B shows that (at least with the selected parameters) both
of the spline based methods tend to follow the input data rather closely, meaning
the input values differ from the resulting grid surface very little. In general, this
is a satisfactory result. However, such an "exact" surface does not consider the
possibility of data points containing errors. Thus, in some cases, for example in
areas of low quality gravity data (over Russia and the Atlantic Ocean), some other
interpolation method could generate a physically more meaningful surface.

Another important aspect with the spline based methods is their behaviour
in data gaps that are often present in marine areas. The case study of Paper B
demonstrates that spline based algorithms can generate erratic maxima (in the
order of 100 mGal) in data gaps. Unnecessary undulation can also appear nearby
steep gradients elsewhere (Fig. 14 of Paper B). Also, their behaviour can be
extremely noisy around and between track-wise (e.g. marine gravity) data (Fig.
15b of Paper B).

The LSC interpolation results of Paper B demonstrate the specific aspects
of such a statistical method used in conjunction with individual error estimates.
In areas of low quality gravity data, the interpolation results are rather smooth
with the residuals to input data reflecting the estimated large observation errors.
Therefore, these larger residuals (compared to the spline based methods used)
should not be interpreted as errors of the interpolation process.

The case study of Paper B also demonstrates the importance of supplying
realistic error estimates as these determine the smoothness of the resulting surface.
If the error estimates are unrealistic, it could be better to discard them.

Due to the underlying covariance model, the LSC interpolation provides rather
realistic results without unnecessary undulation nearby steep gradients and data
gaps (Figs. 14 and 15 of Paper B). It tends to disregard a single value that stands
out from the surrounding gravity field (Fig. 14 of Paper B), this being positive if
the value is erroneous and negative if representing the actual signal.

Based on the experience described above, it can be concluded that in most
areas of high quality gravity data all of the tested interpolation algorithms are
able to generate a good quality gravity grid; nearby inaccurate gravity data, steep
gradients and data gaps the spline based methods are better avoided; statistical
interpolation provides realistic results thanks to the underlying covariance model;
and unrealistic error estimates are better discarded.
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3.5 Area specific and generic selection of gridding methods

The extent and specific characteristics of the research area can play a role in the
selection of gravity gridding methods. It may be that the method working best in
one area is not suitable in another area.

Paper D investigates gravity gridding in a very specific area containing ter-
raced landforms, probably favouring methods that allow for more rapid changes
in the gravity field model than necessary in most areas. In addition to terrain
features, the distribution and accuracy of available data certainly plays a role in
which method suits the particular area best.

Complementary to Paper D investigating an area with specific characteristics,
Paper B attempts to generalise the task to a very large heterogeneous area. The
particular study area of Paper B covering the Nordic and Baltic countries is ex-
tremely varying in terms of terrain, data coverage and quality, thus representing
and illustrating most situations that will be met in gravity gridding tasks. The
following discussion relevant to the NKG study area illustrates the importance of
the area-dependent characteristics.

Figure 7 (on p. 39) depicts empirical covariance functions estimated for the
full NKG study area or particular case study areas of Paper B representing a
mountainous, flat or marine area. The difference of these covariance functions il-
lustrates how varying even the reduced gravity field characteristics can be. These
plots and Table 2 of Paper B reveal that the estimated correlation length of re-
duced gravity anomalies can vary two to three times between areas with different
characteristics.

Since Paper B aims to use a common method and parameters of gravity grid-
ding over all of the heterogeneous area, a single covariance model is fitted to the
empirical values representing the entire NKG area. Such an "average" model is
far from being optimum in the mountainous area (Figs. 7b and 7f). However, in
case of the RTM anomaly, the average covariance function is also representative
for the flat (Fig. 7c) and marine areas (Fig. 7d). In other words, interpolation pa-
rameters selected for the entire area should also be suitable for such flat or marine
areas and therefore a reasonable interpolation result can be expected there.

The majority of geoid signal power is embedded in the long wavelengths.
Although gravity gridding and geoid modelling can be relatively straight forward
in a flat area covered with high quality data (such as Estonia), the estimated geoid
height values are easily affected by methodological choices selected according to
the needs of a larger, heterogeneous area (in this case the entire NKG area). For
example, in Estonia it would not be so harmful to interpolate the surface gravity
anomalies directly, but computing a geoid model with such a grid over the entire
NKG area can result in a 10 cm tilt in the geoid model over Estonia (VIII).

The same problem of the gravity field having variable characteristics is also
met when processing satellite altimetry data, see Knudsen (2005). Estimation
and comparison of gravity field characteristics (over Canada) is also reported in
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Schwarz and Lachapelle (1980). Both of these publications attempt to find a way
to automatically vary related computational parameters according to specifics of
the area. Goad et al. (1984) reports upon the differences in variance and corre-
lation length values for the Bouguer anomalies (see Sec. 3.2.1) over the United
States.

3.6 Resolution of gravity grids

The gravity grids used for input to geoid modelling generally have the same res-
olution as the geoid model (typically about 1 km by 1 km). As demonstrated in
Paper D, the gravity field itself can contain signal with an even shorter wave-
length. This should be kept in mind when using the gravity grid products initially
generated for geoid modelling for other purposes (e.g. calculation of levelling
corrections, see Talvik 2014, or the various other uses in geosciences shortly de-
scribed in the Introduction).

The relatively low resolution gravity grids used for input in geoid modelling
could also be limiting the accuracy of resulting geoid models. The example of
a terraced area treated in Paper D shows that the short wavelength gravitational
signal of the terrace is not represented in a typical gravity grid used for geoid
modelling. Although the gravitational signal of a terrace is very local in the per-
pendicular direction of the terrace, the terrace can stretch for long distances (hun-
dreds of kilometres), possibly causing a systematic error in geoid modelling from
such a low resolution gravity grid omitting the terrace’s signal.

However, no significant improvement (compared to direct interpolation on the
required resolution) in grid quality is noticed when interpolation is performed on
a higher resolution grid which is later averaged to the required grid step. In other
words, to benefit from a higher resolution gravity grid able to represent more
detail, the geoid model also needs to be computed on a higher resolution grid
(Paper D).

3.7 Overall gridding quality

In the analysis of gravity gridding methods reported above, a number of extreme
examples and study areas were considered. Leaving these aside, it can be said
that all of the methods described are equally plausible for many practical gravity
gridding tasks. Under this assumption, the uncertainty stemming from the use of
different gridding approaches can be illustrated by the standard deviation of the
test grids of Paper B in each grid cell, see Fig. 10.

Thus, gravity gridding accuracy better than 0.5 mGal can only be expected in
flat areas with high-quality gravity data such as Denmark and Estonia, while the
accuracy is limited to around 1 mGal in areas with slightly lower quality gravity
data (Latvia and Lithuania) or higher terrains such as Sweden and Finland. Due
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Figure 10: Estimation of gravity grid uncertainty over the NKG study area stem-
ming from different gridding methods and options (figure from Paper B)
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Figure 11: Estimation of geoid modelling uncertainty over the NKG study area
stemming from gravity gridding methods and options (figure from Paper B)
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to sparse data tracks, the marine areas are affected most by the choice of gridding
methods.

Analogous analysis can be extended to estimate the uncertainty of geoid mod-
elling, see Fig. 11. From the gravity gridding point of view, geoid model accuracy
of 5 mm can be expected over most of the Nordic-Baltic dry land. Disqualifying
the spline based interpolation methods, it is possible to compute a geoid model
with an accuracy of 1 cm over most of the Baltic Sea (except the Eastern part of
Gulf of Finland). Therefore, in view of the desired 5-mm accuracy geoid model,
the data situation and gridding approaches still need some improvement in the
Nordic-Baltic area.

The Nordic-Baltic research area offers an overview of expected gridding re-
sults due to its rather heterogeneous topography and data coverage. However, the
results presented can only be of general reference to other similar computations
elsewhere as the final grid is strongly dependent on the local situation – gravity
data coverage and distribution, topography, bathymetry, glaciers etc.

In the context of geoid modelling, and the present thesis, the high quality
gravity anomaly or disturbance grid obtained by (one of) the methods described
in this chapter serves as input to the next step: the geoid modelling itself.
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4 Geoid modelling

The basics of regional geoid modelling by the Stokes and Hotine formula were
described in the Introduction. Sections 4.1 and 4.2 add some details about exist-
ing geoid modelling methods in order to provide a framework for presenting and
evaluating the new method in Sections 4.3 to 4.9.

4.1 Additional considerations in regional geoid modelling

Recall that for regional geoid modelling the Stokes formula is modified so as to
combine terrestrial gravity data with global geopotential models, see the Introduc-
tion. Numerous methods to modify the Stokes formula exist, for a recent overview
see Featherstone (2013, Appendix A). In general, these can be divided into deter-
ministic and stochastic modifications.

Deterministic modification methods, such as Molodenskii et al. (1962), Wong
and Gore (1969), Meissl (1971), Heck and Grüninger (1987), Vaníček and Kleus-
berg (1987), Vaníček and Sjöberg (1991), Featherstone et al. (1998), and Evans
and Featherstone (2000), aim at reducing the truncation error by imposing suit-
able, preselected limits on the integration kernel and its modification.

In contrast to deterministic methods, stochastic methods (e.g. Sjöberg 1980,
Wenzel 1983) make use of estimated gravity signal and error spectra to balance
the relative contribution of the GGM and terrestrial gravity observations. In par-
ticular, three stochastic modification methods of the Stokes formula proposed in
Sjöberg (1984, 1991, 2003b) minimize the truncation error, the influence of er-
roneous terrestrial gravity data and geopotential coefficients in the least squares
(LS) sense. The principles of these LS modifications are used for deriving the new
geoid modelling method in Sec. 4.3.

Application of the Stokes formula assumes fulfilment of certain requirements
(see e.g. Martinec 1998a), specifically the following.

First, the Stokes formula is valid only if the potential field is harmonic outside
the geoid, meaning no masses are allowed above the geoid surface. In reality there
are terrain and atmospheric masses above the geoid, violating the harmonicity
condition. These are therefore artificially "removed" for the computation, yielding
thus various topographic and atmospheric corrections, see e.g. Martinec (ibid.,
Sect. 1.2) for further explanation.

Second, the input gravity quantities (boundary values) need to refer to the
geoid instead of their initial surveyed position on top of the topography. These are
therefore analytically "downward continued" (DWC) to the geoid surface, result-
ing in the DWC correction, see e.g. Martinec (1996).

Third, the geoid is considered as a sphere when formulating the boundary
conditions regarding the Earth’s gravity potential. In reality, the Earth and the
geoid resemble an ellipsoid. The error made by such a spherical approximation
can be accounted for by an ellipsoidal correction, see Sjöberg (2004) and the
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Figure 12: Partial contributions to a LSMSA geoid estimator (modified figure
from Paper A)

references therein.
In general, there are two approaches to consider the aforementioned correc-

tions: the remove-compute-restore (RCR) and the KTH approach (the latter refers
to the KTH Royal Institute of Technology in Sweden, the affiliation of Prof. Lars
E. Sjöberg).

In the RCR geoid modelling approach the surface gravity anomalies are re-
duced before input in the modified Stokes formula. The direct effects for which
the reduction occurs are restored upon the geoid height as indirect effects, see
e.g. Ellmann and Vaníček (2007). The RCR method is used by e.g. Vaníček and
Kleusberg (1987), Vaníček and Sjöberg (1991), Forsberg (1993), Vaníček et al.
(1995), Forsberg and Tscherning (1997), Omang and Forsberg (2000), and Sansò
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Figure 13: Terrain elevations (left) and gravity disturbance values (right) in the
case study area of Paper A

and Sideris (2013).
In the alternative KTH approach (summarized in Sjöberg 2003a), the surface

gravity anomalies (Eq. 2) are directly used as the integral argument. The di-
rect and indirect effects of downward continuation, topographic, atmospheric and
ellipsoidal corrections can then jointly be applied as combined (additive) correc-
tions to the approximate geoid height obtained by the Stokes integration. A geoid
model value N̂ is obtained by adding the approximate geoid estimator Ñ of Eq. 5
and the corresponding corrections:

N̂ = Ñ +δNCOMB +δNDWC +δNATM +δNELL (11)

where δNCOMB is the combined topographic effect (Sjöberg 1995, 1997, 2000),
δNDWC is the combined downward continuation effect (Sjöberg 2003c), δNATM is
the combined atmospheric effect (Sjöberg 1999, 2001) and δNELL is the combined
ellipsoidal effect (Sjöberg 2003d, 2004).

Compared to the RCR approach, the computational effort is reduced by com-
bining the computation of the direct and indirect effect, see Sjöberg (2003a, Sec.
9.2). Also, as opposed to the RCR method, the magnitude of each correction
directly reflects the error made in geoid modelling by neglecting that particular
effect.

Used in conjunction with the least squares modifications of Sjöberg (1984,
1991, 2003b), the geoid modelling approach of Eq. 11 is called the method
of Least Squares Modification of Stokes’s formula with Additive Corrections
(LSMSA).

Figure 12 illustrates contributions of the individual terms in Eq. 11 to the
final geoid model in the study area of Paper A (see Fig. 13 for characteristics of
the area). Most of the long wavelength geoid signal originates from the far zone
(Fig. 12e) and the medium to short wavelength signal from the near zone (Fig.
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12d). The DWC correction (Fig. 12a) also adds significant signal in the order
of decimetres (in areas with an elevation of about 2 km) while the contribution of
atmospheric (Fig. 12b) and ellipsoidal (Fig. 12c) corrections could be numerically
below centimetre.

The approximate geoid Ñ can also be used for quasigeoid (i.e. height
anomaly) determination by:

ζ̂ = Ñ +δζDWC +δζATM +δζELL (12)

where δζDWC, δζATM and δζELL are the corresponding DWC, atmospheric and
ellipsoidal corrections for quasigeoid determination.

Examples of the LSMSA approach being used for regional geoid computation
include Ellmann (2005c), Kiamehr (2006), Daras (2008), Ågren et al. (2009b),
Ulotu (2009), Abdalla and Fairhead (2011), Abdalla and Tenzer (2011), Abbak et
al. (2012), Sjöberg et al. (2015), Kuczynska-Siehien et al. (2016), and Ågren et al.
(2016). The two approaches (RCR and KTH) are compared in e.g. Ågren (2004,
Chapter 7 and 9) and Ågren et al. (2009a). Computer code for LS modifications
is provided in Ellmann (2005a) and Abbak and Ustun (2015).

LSMSA is the method that will be implemented to the Hotine formula to yield
the new geoid modelling method presented in this thesis.

4.2 Geoid modelling by the Hotine formula

Although use of the modified Stokes formula is more widespread, the Hotine for-
mula has also been used for geoid determination, mostly from airborne gravimetry
(e.g. Novák and Heck 2002, Novák et al. 2003, Alberts and Klees 2004, Serpas
and Jekeli 2005, Sjöberg and Eshagh 2009), but also from altimetry (e.g. Zhang
1998) and land gravimetry (e.g. Kirby 2003).

Analogously to the Stokes formula, modifications to the Hotine formula have
been presented in e.g. Jekeli (1979), Jekeli (1980), Sjöberg (1986), Guan and
Li (1991), Sjöberg and Nord (1992), Vanícek et al. (1992), Zhang (1998), Novák
(2003), Novák et al. (2003), Sjöberg and Eshagh (2009) and summarized in Feath-
erstone (2013).

Featherstone (ibid., Sec. 4.5) demonstrates the application of LS modifica-
tion to Hotine’s formula in the special case of no truncation (see also Sjöberg
2003b, Sec. 4). However, this study (also in Paper A) is the first to comprehen-
sively adapt the particular least squares modification methods presented in Sjöberg
(1984, 1991, 2003b) to the Hotine formula. That is, equations are presented for
the biased, unbiased and optimum LS modification of Hotine’s formula. Also,
additive corrections for geoid and quasigeoid determination are developed analo-
gously to Sjöberg (2003a) to fully implement the LSMSA principles to the Hotine
formula. Correspondingly, the regional geoid modelling procedure developed in
Paper A is called the Least Squares Modification of Hotine’s formula with Addi-
tive Corrections (LSMHA).
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Together, Tables 3 to 7 summarize and compare the complete LSMSA and
LSMHA methods intended for geoid and quasigeoid computation.

4.3 Geoid modelling by the least squares modified Hotine formula

In analogy to the LSMSA geoid modelling method described in Sec. 4.1, a geoid
model computed by the LSMHA approach is obtained by adding the approximate
geoid estimator Ñ and the additive corrections as in Eq. 11 (or Eq. 12 for the
quasigeoid). This time, however, the approximate geoid estimator is computed
from the modified Hotine formula, see Eq. 13 below. Accordingly, the expressions
of additive corrections also need to be adapted to the use of Hotine’s formula, see
Sections 4.5 to 4.8 below.

The approximate geoid estimator Ñ combines the near zone and the far zone
gravity contributions analogously to Eq. 5:

Ñ =
R

4πγ

∫∫
σ0

HL(ψ)δgdσ +
R
2γ

M

∑
n=0

bnδgGGM
n (13)

where HL(ψ) is the modified Hotine function, δg are terrestrial gravity distur-
bance values, δgGGM

n are the GGM-derived Laplace harmonics of δg and bn are
again arbitrary modification parameters.

Equation 13 can equivalently be written in its spectral form as (analogously to
Sjöberg 2003a, Eq. 8a):

Ñ =
R

4πγ

∞

∑
n=0

(
2

n+1
−QL

n− s∗n

)
δgT

n +
R
2γ

M

∑
n=0

bnδgGGM
n (14)

with

s∗n =

{
sn, if 0≤ n≤ L
0, otherwise

(15)

where QL
n are modified truncation coefficients and sn are modification parame-

ters. The modified truncation coefficients QL
n are computed from the modification

parameters sn and the unmodified (Molodensky-type) truncation coefficients Qn

adapted for the Hotine function, see Table 3. The latter can be evaluated by recur-
sive relations given in Jekeli (1979, Appendix A or C) or Guan and Li (1991, p.
87).

For comparison, Table 3 presents equations and their components for geoid
modelling by the modified Stokes and Hotine formula.

Different modifications to the Hotine formula are applied through selecting
appropriate modification parameters sn and bn so as to minimize errors of the
geoid estimator. Table 5 presents the necessary equations derived for the com-
putation of the sn and bn parameters for the biased, unbiased and optimum least
squares modifications to the Hotine formula (denoted as BLS, ULS and OLS re-
spectively). Notice that even though these equations look exactly the same as the
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Table 3: Comparison of the modified Stokes and Hotine formula and their com-
ponents (the symbols are explained in text or the symbol list on p. 13)

Stokes Hotine

N =
R

4πγ

∫∫
σ

S(ψ)∆gdσ N =
R

4πγ

∫∫
σ

H(ψ)δgdσ

S(ψ) =
∞

∑
n=2

2n+1
n−1

Pn(cosψ) H(ψ) =
∞

∑
n=0

2n+1
n+1

Pn(cosψ)

Ñ =
R

4πγ

∫∫
σ0

SL(ψ)∆gT dσ

+
R
2γ

M

∑
n=2

bn∆gGGM
n

Ñ =
R

4πγ

∫∫
σ0

HL(ψ)δgT dσ

+
R
2γ

M

∑
n=0

bnδgGGM
n

SL(ψ) =S(ψ)−

−
L

∑
n=2

2n+1
2

snPn(cosψ)

HL(ψ) =H(ψ)−
L

∑
n=0

2n+1
2

snPn(cosψ)

Ñ =
R

4πγ

∞

∑
n=0

(
2

n−1
−QL

n− s∗n

)
∆gn

+
R
2γ

M

∑
n=2

bn∆gGGM
n

Ñ =
R

4πγ

∞

∑
n=0

(
2

n+1
−QL

n− s∗n

)
δgn

+
R
2γ

M

∑
n=0

bnδgGGM
n

s∗n =

{
sn, if 0≤ n≤ L

0, otherwise

∆gGGM
n =

GM
a2

∞

∑
n=2

(n−1)
(a

r

)n+2
×

×
n

∑
m=−n

CnmYnm

δgGGM
n =

GM
a2

∞

∑
n=0

(n+1)
(a

r

)n+2
×

×
n

∑
m=−n

CnmYnm

QL
n(ψ0) = Qn(ψ0)−

L

∑
k=0

Enksk = Qn(ψ0)−
L

∑
k=0

2k+1
2

Rnksk

Rnk from Paul (1973)

Qn(ψ0) from Paul (1973) Qn(ψ0) from Jekeli (1979)

pn =
2σ2

n

n−1
pn =

2σ2
n

n+1
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Table 4: Expected global mean square error of the geoid estimator for the modified
Stokes and Hotine formula (the symbols are explained in text or the symbol list
on p. 13)

Stokes Hotine(
δ Ñ
)2 (

δ Ñ
)2

TR
+
(

δ Ñ
)2

T
+
(

δ Ñ
)2

GGM(
δ Ñ
)2

TR
c2

∞

∑
n=0

(
b∗n− s∗n−QL

n
)2

c2
n

(
δ Ñ
)2

T
c2

∞

∑
n=2

(
2

n−1
− s∗n−QL

n

)2

σ
2
n c2

∞

∑
n=0

(
2

n+1
− s∗n−QL

n

)2

σ
2
n

(
δ Ñ
)2

GGM
c2

M

∑
n=0

b2
ndc2

n

b∗n =

{
bn, if 0≤ n≤M

0, otherwise

c
R
2γ

c2
n c2

n,∆g c2
n,δg

σ2
n σ2

n,∆g σ2
n,δg

dc2
n dc2

n,∆g dc2
n,δg
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Table 5: Modification parameters for the biased (BLS), unbiased (ULS) and optimum (OLS) least squares modifications, valid for
both the Stokes and Hotine formula (the symbols are explained in text or the symbol list on p. 13)

BLS ULS OLS

bn sn sn +QL
n

(sn +QL
n)c

2
n

(c2
n +dc2

n)

sr

L

∑
r=0

akrsr = hk,k = 0,1,2, ...,L

akr = ark

∞

∑
n=0

EnkEnr(σ
2
n + c2

n)+

+δkr(σ
2
r +dc2

r )−Ekrσ
2
k −Erkσ

2
r

∞

∑
n=0

EnkEnrCn +δkrCr−EkrCk−ErkCr

hk pk−Qkσ
2
k +

∞

∑
n=0

[
Qn(σ

2
n + c2

n)− pn
]

Enk pk−QkCk +
∞

∑
n=0

(QnCn− pn)Enk

Cn σ
2
n +

{
dc2

n, if n≤M

c2
n, if n > M

σ
2
n +

{
c2

ndc2
n/(c

2
n +dc2

n), if n≤M

c2
n, if n > M

δkr =

{
1, if k = r

0, otherwise
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Table 6: Computation of the additive corrections for the modified Stokes and Hotine formula (the symbols are explained in text or the
symbol list on p. 13)

Stokes Hotine

N̂ Ñ +δNCOMB +δNDWC +δNATM +δNELL

ζ̂ Ñ +δζDWC +δζATM +δζELL

δNCOMB(P) −2πGρ

γ

(
H2

P +
2
3

H3
P

rP

)
δNDWC(P) δN(1)

DWC(P)+δNL(1),far
DWC (P)+δNL(2)

DWC(P)

δN(1)
DWC(P)

∆g(P)
γ

HP +3
ζ 0

P
rP

HP−
1
2γ

∂∆g
∂ r

∣∣∣∣
P

H2
P

δg(P)
γ

HP +
ζ 0

P
rP

HP−
1
2γ

∂δg
∂ r

∣∣∣∣
P

H2
P

δNL(1),far
DWC (P)

R
2γ

M

∑
n=2

(sn +QL
n)

[(
R
rP

)n+2

−1

]
∆gGGM

n (P)
R
2γ

M

∑
n=0

(sn +QL
n)

[(
R
rP

)n+2

−1

]
δgGGM

n (P)

δNL(2)
DWC(P)

R
4πγ

∫∫
σ0

SL(ψ)

[
∂∆g
∂ r

∣∣∣∣
Q
(HP−HQ)

]
dσQ

R
4πγ

∫∫
σ0

HL(ψ)

[
∂δg
∂ r

∣∣∣∣
Q
(HP−HQ)

]
dσQ

δζDWC(P) 3
ζ 0

P
rP

HP +δNL(1),far
DWC (P)+δNL(2)

DWC(P)
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Table 7: Computation of the additive corrections for the modified Stokes and Hotine formula (continued)

Stokes Hotine

δNATM(P)
≈ δζATM(P)

− 2πRGρA

γ

M

∑
n=0

(
2

n−1
− sn−QL

n

)
Hn(P)−

− 2πRGρA

γ

∞

∑
n=M+1

(
2

n−1
− n+2

2n+1
QL

n

)
Hn(P)

− 2πRGρA

γ

M

∑
n=0

(
2

n+1
− sn−QL

n

)
Hn(P)−

− 2πRGρA

γ

∞

∑
n=M+1

(
2

n+1
− n+2

2n+1
QL

n

)
Hn(P)

δNELL(P)
≈ δζELL(P)

R
2γ

∞

∑
n=0

(
2

n−1
− s∗n−QL

n

)
×(

a−R
R

∆gGGM
n (P)+

a
R

δge
n

)
R
2γ

∞

∑
n=0

(
2

n+1
− s∗n−QL

n

)
×(

a−R
R

δgGGM
n (P)+

a
R

δge
n

)

δge
n

e2GM
2a

n

∑
m=−n

{[3− (n+2)Fnm]Cnm −

−(n+1)GnmCn−2,m− (n+7)EnmCn+2,m}Ynm(P)

e2GM
2a

n

∑
m=−n

{[3− (n+4)Fnm]Cnm −

−(5−n)GnmCn+2,m− (3n+7)EnmCn−2,m}Ynm(P)
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original equations intended for use with the Stokes formula, some of the symbols
used have a different definition.

To each set of sn and bn parameters corresponds a modified Hotine function
HL and modified truncation coefficients QL

n . Together, bn and HL determine the
relative contribution of the far zone and the near zone gravity information to the
particular geoid estimator, see Eq. 13. In fact, the modified truncation parameters
QL

n work in conjunction with the corresponding sn in such a way that the coeffi-
cients bn become numerically very similar regardless of the modification method
used.

For the unbiased modification, the truncation error is completely reduced up
to degree M, hence the name. The biased and optimum LS estimators are slightly
biased (c.f. Sjöberg 1991, 2003b). For the optimum method, this bias is small if
the GGM-related error estimates are small below the limit of M. With the GGM-
related errors becoming significant, for example by increasing the maximum de-
gree M of the GGM used, the bias increases (see Table 8 on p. 78).

Importantly, being stochastic modifications, all of the presented LS modifica-
tions depend on estimated gravity signal and error properties. These are provided
by the terrestrial gravity error degree variances σ2

n , GGM error degree variances
dc2

n and gravity signal degree variances c2
n which are used in the computation of

the modification parameters sn and bn (see Table 5).
The gravity disturbance (signal or error) degree variances d2

n,δg can be ex-
pressed in terms of the gravity anomaly degree variances d2

n,∆g as (Paper A):

d2
n,δg =

(n+1)2

(n−1)2 d2
n,∆g (16)

revealing that the difference in anomaly and disturbance degree variances be-
comes smaller and approaches zero with increasing degree n. Alternatively, in-
stead of adapting the gravity anomaly degree variances to gravity disturbance by
the relation given in Eq. 16, standard models (similar to Kaula 1963 or Tscherning
and Rapp 1974) can directly be constructed for the gravity disturbances.

4.4 Expected global error of geoid modelling

Means to evaluate the result of specific modifications to the Hotine formula is
provided by the expected global mean square error (MSE) of the geoid estimator
Ñ: (

δ Ñ
)2

=
(

δ Ñ
)2

TR
+
(

δ Ñ
)2

T
+
(

δ Ñ
)2

GGM
(17)

where the partial contributions represent the error due to truncation, terrestrial
data and the GGM respectively. See Table 4 for the computation of these partial
contributions.

Equation 17 allows to find an estimate of the geoid model error that corre-
sponds to the specific modification parameters sn and bn and the estimated gravity
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signal and error properties described by the degree variance models of c2
n, σ2

n and
dc2

n.
Under the assumption of equal degree variances (i.e. not using Eq. 16), the

Hotine formula will yield a smaller expected global MSE than its Stokes’s coun-
terpart, see e.g. Sjöberg (1986, Sec. 4) and Guan and Li (1991, Fig. 1).

4.5 Additive corrections for the LS modified Hotine formula

Tables 6 and 7 present the necessary equations for the computation of the four
additive corrections to geoid (Eq. 11) and quasigeoid (Eq. 12) modelling by the
modified Hotine formula.

These additive corrections follow the same principles as those summarized
in Sjöberg (2003a) for the Stokes formula. Accordingly they also have a similar
magnitude to the Stokes counterparts presented on Fig. 12. For an illustration of
their contributions to the (quasi)geoid model computed by the LSMHA method,
see Fig. 3 of Paper A. Notice however, that Eq. 46 (and consequently Fig. 3f) of
Paper A contains an error.

The following sections 4.6 to 4.8 of this thesis present details of the DWC and
ellipsoidal correction that were not included in Paper A due to space limitations.
The notation used in Sections 4.6 to 4.8 is deliberately kept similar to the original
publications and therefore deviates slightly from that used in the rest of the thesis
(and the symbol list on p. 13).

4.6 DWC correction for geoid modelling

In this section, the DWC correction for geoid modelling δNDWC (in Eq. 11) corre-
sponding to the LSMHA method will be derived similarly to the LSMSA version
presented in Ågren (2004, Sec. 5.4.1). For a slightly different derivation, see
Sjöberg (2003c) and Sjöberg and Bagherbandi (2017, Sect. 5.3).

The DWC effect at point P can be separated in two parts (anal. to Ågren 2004,
Eq. 5.32):

δNDWC(P) = δNL(1)
DWC(P)+δNL(2)

DWC(P) (18a)

=
c

2π

∫∫
σ0

HL(ψ) [δg∗(Q)−δg(rP,Q)]dσQ

+
c

2π

∫∫
σ0

HL(ψ) [δg(rP,Q)−δg(Q)]dσQ

(18b)

where δg∗(Q) is the downward continued gravity disturbance of the running inte-
gration point Q; rP = R+HP; δg(rP,Q) is the gravity disturbance of Q downward
continued to the level of the computation point P; c = R/2π . The second term
δNL(2)

DWC(P) represents the passage from the surface point Q to the level of point P
and the first term δNL(1)

DWC(P) the remaining continuation down to sea level, see Fig.
14. These could also be called the terrain and Bouguer part of DWC, respectively.
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Figure 14: Separation of the DWC effect

The first term δNL(1)
DWC(P) of Eq. 18a can be rewritten in terms of the difference

between the total contribution and the far zone contribution as (anal. to Ågren
2004, Eq. 5.33):

δNL(1)
DWC(P) =

c
2π

∫∫
σ

HL(ψ) [δg∗(Q)−δg(rP,Q)]dσQ

− c
2π

∫∫
σ−σ0

HL(ψ) [δg∗(Q)−δg(rP,Q)]dσQ

(19a)

=
c

2π

∫∫
σ

H(ψ) [δg∗(Q)−δg(rP,Q)]dσQ

− c
∞

∑
n=0

(
s∗n +QL

n
)[

1−
(

R
rP

)n+2
]

δgn(P)
(19b)

= δN(1)
DWC(P)+δNL(1),far

DWC (P) (19c)

The infinite series in the second term δNL(1),far
DWC (P) of Eq. 19c can in practice

be computed by a GGM evaluated up to maximum degree M:

δNL(1),far
DWC (P) = c

M

∑
n=0

(
s∗n +QL

n
)[( R

rP

)n+2

−1

]
δgn(P) (20)

Next, an approximate expression will be derived for δN(1)
DWC(P) (the first term

of Eq. 19c) representing downward continuation from point level to sea level
for the original Hotine formula, anal. to Sjöberg (2003c). For this, δg(rP,Q) is
approximated by the first three terms of its Taylor series (anal. to Ågren 2004, Eq.
5.37):

δg(rP,Q)≈ δg∗(Q)+
∂δg
∂ r

∣∣∣∣∗
Q

HP +
1
2

∂ 2δg
∂ r2

∣∣∣∣∗
Q

H2
P (21)
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Since

δg(P) =
∞

∑
n=0

n+1
R

(
R
rP

)n+2

Tn(P) (22)

where Tn(P) are the Laplace harmonics of the disturbing potential (Heiskanen and
Moritz 1967, Eq. 2-152), we have

∂δg
∂ r

∣∣∣∣
P
=−

∞

∑
n=0

(n+1)(n+2)
R2

(
R
rP

)n+3

Tn(P) (23)

and
∂ 2δg
∂ r2

∣∣∣∣
P
=

∞

∑
n=0

(n+1)(n+2)(n+3)
R3

(
R
rP

)n+4

Tn(P) (24)

Substituting the Taylor series of Eq. 21 into δN(1)
DWC(P) (Eq. 19b) yields (anal.

to Ågren 2004, Eq. 5.41):

δN(1)
DWC(P) =−

c
2π

∫∫
σ

H(ψ)

(
∂δg
∂ r

∣∣∣∣∗
Q

HP +
1
2

∂ 2δg
∂ r2

∣∣∣∣∗
Q

H2
P

)

=
1
γ0

∞

∑
n=0

[
n+2

R
HP−

(n+2)(n+3)
2R2 H2

P

]
Tn(P)

(25)

where γ0 is the normal gravity at the ellipsoid.
Since

n+2
R

=
n+1

R
+

1
R

(26)

and
(n+2)(n+3)

2R2 =
(n+2)(n+1)

2R2 +
2(n+1)

2R2 +
2

2R2 (27)

then

δN(1)
DWC(P) =

=
1
γ0

∞

∑
n=0

{[
n+1

R
+

1
R

]
HP−

[
(n+2)(n+1)

2R2 +
n+1

R2 +
1

R2

]
H2

P

}
Tn(P)

(28a)

=
δg∗(P)

γ0
HP +

1
R

T ∗(P)
γ0

HP +
1

2γ0

∂δg
∂ r

∣∣∣∣∗
P

H2
P −
[

δg∗

Rγ0
+

T ∗(P)
γ0R2

]
H2

P (28b)

As shown by Sjöberg (2003c), the last term of Eq. 28b can safely be neglected.
Thus

δN(1)
DWC(P) =

δg∗(P)
γ0

HP +
1
R

T ∗(P)
γ0

HP +
1

2γ0

∂δg
∂ r

∣∣∣∣∗
P

H2
P (29)

Since the downward continued height anomaly is defined as

ζ
∗
P =

T ∗(P)
γ0

(30)
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then (anal. to Ågren 2004, Eq. 5.42)

δN(1)
DWC(P) =

δg∗(P)
γ0

HP +
ζ ∗P
R

HP +
1

2γ0

∂δg
∂ r

∣∣∣∣∗
P

H2
P (31)

Notice that, compared to the original equation intended for the Stokes formula,
the factor 3 is not present in the second term of Eq. 31.

The downward continued height anomaly ζ ∗P of Eq. 30 can be expanded into
a Taylor series at the point P by (anal. to Sjöberg 2003c, Eq. 7):

ζ
∗
P =

∞

∑
k=0

(−HP)
k

k!
∂ kζ

∂Hk

∣∣∣∣
P
≈ ζP−HP

∂ζ

∂H

∣∣∣∣
P

(32)

The correct height anomaly at P is given by the Bruns’ formula (anal. to ibid., Eq.
4):

ζP =
TP

γ
(33)

where γ is the normal gravity at the telluroid. By differentiating Eq. 33 with
respect to H at the point P:

∂ζ

∂H

∣∣∣∣
P
=

1
γ

(
∂T
∂H

∣∣∣∣
P
− 1

γ

∂γ

∂H

∣∣∣∣
P

TP

)
=

1
γ

(
δg(P)− 2

R
TP

)
=−∆g(P)

γ
(34)

the following is arrived at (Ågren 2004, Eq. 5.43):

ζ
∗
P ≈ ζP +

∆g(P)
γ

HP (35)

Since (anal. to ibid., Eq. 5.44):

δg∗(P) = δg(P)− ∂δg
∂ r

∣∣∣∣
P

HP (36)

and
1
γ0

=
1
γ

(
1−2

HP

rP

)
(37)

and
1
R
=

1
rP

(
1+

HP

rP

)
(38)

the first part of δN(1)
DWC(P) given in Eq. 31 becomes:

δg∗(P)
γ0

HP =

[
δg(P)

γ0
− 1

γ0

∂δg
∂ r

∣∣∣∣
P

HP

]
HP (39a)

=
1
γ

δg(P)HP−
2
γ

H2
P

rP
δg(P)− 1

γ

∂δg
∂ r

∣∣∣∣
P

H2
P +2γ

HP

rP

∂δg
∂ r

∣∣∣∣
P

H2
P (39b)
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The second and fourth term of Eq. 39b can be omitted. Thus

δg∗(P)
γ0

HP =
1
γ

δg(P)HP−
1
γ

∂δg
∂ r

∣∣∣∣
P

H2
P (40)

Due to Eqs. 35 and 38, the second term of δN(1)
DWC(P) given in Eq. 31 be-

comes:

ζ ∗P
R

HP =
1
rP

[
1+

HP

rP

][
ζPHP +

∆g(P)
γ

H2
P

]
(41a)

=ζP
HP

rP
+

∆g(P)
γ

H2
P

rP
+ζP

H2
P

r2
P
+

∆g(P)
γ

H3
P

r2
P

(41b)

The last two terms of Eq. 41b can again be neglected. Also for H = 5(8) km
(Sjöberg 2003c, Sec. 3): ∣∣∣∣H2∆g

γr

∣∣∣∣≤ 1(3)mm (42)

which allows to neglect also the second term of Eq. 41b. Thus:

ζ ∗

R
HP = ζP

HP

rP
(43)

Assuming
∂δg
∂ r

∣∣∣∣∗
P
≈ ∂δg

∂ r

∣∣∣∣
P

(44)

the third part of δN(1)
DWC(P) given in Eq. 31 becomes:

1
2γ0

∂δg
∂ r

∣∣∣∣∗
P

H2
P =

1
2γ

∂δg
∂ r

∣∣∣∣
P

H2
P −

1
γ

∂δg
∂ r

∣∣∣∣
P

H3
P

rP
(45)

where the last term can be omitted (as it is in the order H3), thus

1
2γ0

∂δg
∂ r

∣∣∣∣∗
P

H2
P =

1
2γ

∂δg
∂ r

∣∣∣∣
P

H2
P (46)

Adding the three parts (Eqs. 40, 43 and 46) of δN(1)
DWC(P) (Eq. 31) together,

the following practical formula is arrived at:

δN(1)
DWC(P) =

δg(P)
γ

HP +ζP
HP

rP
− 1

2γ

∂δg
∂ r

∣∣∣∣
P

H2
P (47)

which is similar to that intentended for use with the Stokes formula, except that
the factor 3 is not present in the second term.
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Next, the other part of the downward continuation effect given in Eq. 18a is
concentrated on, i.e.

δNL(2)
DWC(P) =

c
2π

∫∫
σ0

HL(ψ)(δg(rP,Q)−δg(Q))dσQ (48)

In anal. to Ågren (2004, Eq. 5.50):

δg(rP,Q)−δg(Q) =
∂δg
∂ r

∣∣∣∣
Q
(HP−HQ) (49)

which leads to

δNL(2)
DWC(P) =

c
2π

∫∫
σ0

HL(ψ)

[
∂δg
∂ r

∣∣∣∣
Q
(HP−HQ)

]
dσQ (50)

Equations 47, 20 and 50 together make up the practical equation for the com-
putation of downward continuation correction δNDWC(P) presented in Paper A
and Table 6.

4.7 DWC correction for quasigeoid modelling

In this section, the DWC correction for quasigeoid modelling δζDWC (in Eq. 11)
corresponding to the LSMHA method will be derived similarly to the LSMSA
version presented in Ågren (ibid., Sec. 9.5.1).

The quasigeoid height ζ at the surface point P is given by (anal. to ibid., Eq.
9.15):

ζ (P) =
R

4πγ

∫∫
σ

H(ψ)

[
δg+

∞

∑
i=1

gi(rP,Q)

]
dσQ (51)

where the Molodensky series ∑
∞
i=1 gi(rP,Q) represents the downward or upward

continuation of the gravity disturbances to the sea level surface through the com-
putation point P.

Considering that the sphere through P has a radius of rP = R+HP, the height
anomaly becomes (anal. to ibid., Eq. 9.16):

ζ (P) =
rP

4πγ

∫∫
σ

H(ψ)

[
δg+

∞

∑
i=1

gi(rP,Q)

]
dσQ (52)

where γ is again the normal gravity at the telluroid.
Combining computations from terrestrial and GGM data (anal. to ibid., Eq.

9.17):

ζ (P) =
rP

4πγ

∫∫
σ0

HL(ψ)

[
δg+

∞

∑
i=1

gi(rP,Q)

]
dσQ

+
rP

2γ

M

∑
n=0

(
sn +QL

n
)( R

rP

)n+2

δgGGM
n

(53)
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The factor rP/γ can be approximated as (anal. to Ågren 2004, Eq. 9.18):

rP

γ
≈ R

γ0

(
1+

HP

rP

)(
1+2

HP

rP

)
≈ R

γ0

(
1+3

HP

rP

)
(54)

Substituting this into Eq. 53:

ζ (P) =
R

4πγ0

∫∫
σ0

HL(ψ)

[
δg+

∞

∑
i=1

gi(rP,Q)

]
dσQ

+
R

2γ0

M

∑
n=0

(
sn +QL

n
)( R

rP

)n+2

δgGGM
n +3

HP

rP
ζ

0
P

(55)

where ζ 0
P is an approximate value for height anomaly. Rewriting this with the first

term separated into the δg term and the gi term; the second term separated into
the usual GGM term and what is left of it:

ζ (P) =
R

4πγ0

∫∫
σ0

HL(ψ)δgdσQ +
R

4πγ0

∫∫
σ0

HL(ψ)
∞

∑
i=1

gi(rP,Q)dσQ

+
R

2γ0

M

∑
n=0

(
sn +QL

n
)

δgGGM
n +

R
2γ0

M

∑
n=0

(
sn +QL

n
)[( R

rP

)n+2

−1

]
δgGGM

n

+3
HP

rP
ζ

0
P

(56)

Rearranging the terms in Eq. 56:

ζ (P) =
R

4πγ0

∫∫
σ0

HL(ψ)δgdσQ +
R

2γ0

M

∑
n=0

(
sn +QL

n
)

δgGGM
n

+
R

4πγ0

∫∫
σ0

HL(ψ)
∞

∑
i=1

gi(rP,Q)dσQ

+
R

2γ0

M

∑
n=0

(
sn +QL

n
)[( R

rP

)n+2

−1

]
δgGGM

n

+3
HP

rP
ζ

0
P

(57)

Since (anal. to ibid., Eq. 5.52)

∞

∑
i=1

gi(rP,Q) = δg(rP,Q)−δg(Q) (58)
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then Eq. 57 can be written as (anal. to ibid., Eq. 9.20):

ζ (P) =
R

4πγ0

∫∫
σ0

HL(ψ)δgdσQ +
R

2γ0

M

∑
n=0

(
sn +QL

n
)

δgGGM
n

+
R

4πγ0

∫∫
σ0

HL(ψ) [δg(rP,Q)−δg(Q)]dσQ

+
R

2γ0

M

∑
n=0

(
sn +QL

n
)[( R

rP

)n+2

−1

]
δgGGM

n

+3
HP

rP
ζ

0
P

(59)

where the first line is the spherical geoid estimator of Eq. 13, the second line is
equal to δNL(2)

DWC(P) (Eq. 50), the third line is equal to δNL(1),far
DWC (P) (Eq. 20) and

the fourth line shares the factor HP
rP

ζ 0
P with δN(1)

DWC(P) (Eq. 47). From comparison
with the DWC effects for geoid computation given by Eqs. 50, 20 and 47:

δζDWC(P) =δζ
(1)
DWC(P)+δζ

L(1),far
DWC (P)+δζ

L(2)
DWC(P)

=δζ
(1)
DWC(P)+δNL(1),far

DWC (P)+δNL(2)
DWC(P)

(60)

i.e.

δζDWC(P) = 3
HP

rP
ζ

0
P +δNL(1),far

DWC (P)+δNL(2)
DWC(P) (61)

which is the downward continuation correction for quasigeoid computations
δζDWC(P) presented in Paper A and Table 6.

4.8 Ellipsoidal correction

In this section, the ellipsoidal correction for geoid modelling δNELL ≈ δζELL (in
Eq. 11) corresponding to the LSMHA method will be derived similarly to the
LSMSA version presented in Sjöberg and Bagherbandi (2017, Sect. 5.5), see also
Sjöberg (2003e) and Sjöberg (2004).

4.8.1 Components of the ellipsoidal correction

The original Hotine formula (Eq. 7) written as

N0 =
R

4πγ

∫∫
σ

H(ψ)δgdσ (62)

would provide the correct geoid height if:
– the Earth’s topography and atmosphere were disregarded (or accounted for

separately, which is assumed when deriving the ellipsoidal correction);
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Figure 15: The ellipsoidal correction

– the gravity disturbances δg would refer to the mean Earth sphere (MES) of
radius R;

– δg would satisfy the boundary value condition, i.e. be consistent with the
fundamental equation of physical geodesy (Heiskanen and Moritz 1967, p.
88):

δg0 =−∂T
∂ r

(63)

To make the Hotine formula consistent:
– integration is carried out on the sphere of radius a instead of the MES of

radius R;
– the original gravity disturbance (assumed to be downward continued to the

sea level approximated by the reference ellipsoid of radius re) is corrected
by δG so as to be consistent with the spherical approximation of the Hotine
formula on the sphere of radius a;

– the disturbing potential T obtained from the Hotine integration on the
sphere of radius a is downward continued to the geoid (approximated by
the reference ellipsoid of radius re)

The ellipsoidal correction corresponding to these three actions can be ex-
pressed as (Sjöberg and Bagherbandi 2017, Eq. 5.97):

δN0
e = kN0 +

a
4πγ

∫∫
σ

H(ψ)δGdσ −δNd (64)

where k = (a−R)/R is a scale factor augmenting N0 to the sphere of radius a, the
second term represents Hotine integration of the gravity disturbance correction
δG on the sphere of radius a and the last term δNd represents the DWC of the
disturbing potential, see Fig. 15. Specific equations for these terms will be derived
below.
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4.8.2 Gravity disturbance correction δG

The original gravity disturbance δg needs two corrections to become δg0 which
is consistent with the boundary condition: the ellipsoidal correction due to the
difference between the derivative of the potential T with respect to the plumb
line and the radial derivative (εh) and the ellipsoidal correction due to upward
continuation of the normal gravity field from the reference ellipsoid to the Earth’s
surface (εγ ):

δg0 = δg− εh− εγ (65)

To order e2 (Cruz 1986):

εh = e2 sinθ cosθ
∂T
a∂θ

(66)

and
εγ = e2 T

a
(3cos2

θ −2) (67)

where e is the ellipsoidal flattening and θ is the co-latitude of the computation
point; εh and εγ are computed at r = a.

Since δg0 refers to the ellipsoid, it needs to be upward continued to the
sphere of radius a for the integration by Hotine’s formula (anal. to Sjöberg and
Bagherbandi 2017, Eq. 5.96a):

δG0 = δg0 +(a− re)

(
∂δg0

∂ r

)
r=a

(68)

Using the following first order approximation for the ellipsoidal radius

re = a
√

1− e2 cos2 θ ≈ a−ae2 cos2 θ

2
(69)

Eq. 68 becomes:

δG0 = δg0 +
ae2 cos2 θ

2

(
∂δg0

∂ r

)
r=a

(70)

The total correction δG to the original gravity disturbance δg is thus:

δG = δG0−δg (71)

From Eq. 65:
δg = δg0 + εh + εγ (72)

Inserting Eq. 70 and Eq. 72 into Eq. 71, the following expression is obtained
for the gravity disturbance correction δG (anal. to ibid., Eq. 5.96b):

δG =
ae2 cos2 θ

2

(
∂δg0

∂ r

)
r=a
− e2 sinθ cosθ

(
∂T
a∂θ

)
r=a
− e2 Tr=a

a
(3cos2

θ −2)

(73)
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4.8.3 Relevant relations for the spherical harmonics

These relations will be used for representing the ellipsoidal correction as a har-
monic series in Sect. 4.8.4.

The spherical harmonic Ynm is defined so that the orthogonality relations apply
(Heiskanen and Moritz 1967, Eq. 1-68):

1
4π

∫∫
σ

YnmYkldσ =

{
1, if n = k and m = l
0, otherwise

(74)

where σ is the unit sphere.
The following relations from Moritz (1980), Martinec (1998b) or Claessens

(2005) apply:

cos2
θYnm = EnmYn+2,m +FnmYnm +GnmYn−2,m (75)

sinθ cosθ
∂

∂θ
Ynm = AnmYn+2,m +BnmYnm +DnmYn−2,m (76)

where the harmonic coefficients Anm to Gnm are given as (Sjöberg 2004, Ap-
pendix):

Anm =
n

2n+3

√
[(n+1)2−m2] [(n+2)2−m2]

(2n+1)(2n+5)
(77a)

Bnm =− n(n+1)−3m2

(2n−1)(2n+3)
(77b)

Dnm =− n+1
2n−1

√
[(n−1)2−m2] (n2−m2)

(2n−3)(2n+1)
(77c)

Enm =
1

2n+3

√
[(n+1)2−m2] [(n+2)2−m2]

(2n+1)(2n+5)
(77d)

Fnm =
2n(n+1)−6m2

3(2n−1)(2n+3)
+

1
3

(77e)

Gnm =
1

2n−1

√
[(n−1)2−m2] (n2−m2)

(2n−3)(2n+1)
(77f)

From their definition it follows that the coefficients are related by:

Anm = nEnm (78)

2Bnm = 1−3Fnm (79)

Dnm =−(n+1)Gnm (80)

The following summation relations apply (ibid., Eq. 21):

∑
n

An±2,mYnm = ∑
n

AnmYn∓2,m (81)
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4.8.4 The ellipsoidal correction as a harmonic series

The disturbing potential (Heiskanen and Moritz 1967, Eq. 2-137) is represented
by the following series (as in Sjöberg and Bagherbandi 2017, Eq. 5.98):

T =
GM

a

∞

∑
n=0

(a
r

)n+1 n

∑
m=−n

CnmYnm(θ ,λ ) (82)

where GM is the gravitational mass constant; r, θ and λ represent the geocentric
radius, co-latitude and longitude respectively; a is the semi-major axis of the Earth
ellipsoid; Cnm is the harmonic coefficient of the disturbing potential related to the
bounding sphere of radius a and the fully normalized spherical harmonic Ynm.

In the following, the abbreviated notation of

∑
n,m

=
∞

∑
n=0

n

∑
m=−n

(83)

will often be used. Also, where not specified otherwise, Ynm refers to the compu-
tation point P with the coordinates θ and λ , i.e. Ynm = Ynm(P) = Ynm(θ ,λ ).

Following Eq. 82, gravity disturbance is expressed by spherical harmonics as
(Heiskanen and Moritz 1967, p. 97):

δg0 =−∂T
∂ r

=
GM
a2

∞

∑
n=0

(n+1)
(a

r

)n+2 n

∑
m=−n

CnmYnm(θ ,λ ) (84)

Taking the radial derivative of Eq. 84:

∂δg0

∂ r
=−GM

a3 ∑
n,m

(a
r

)n+3
(n+1)(n+2)CnmYnm (85)

Accordingly

Tr=a =
GM

a ∑
n,m

CnmYnm (86)

and

δG0 =−
(

∂T
∂ r

)
r=a

=
GM
a2 ∑

n,m
(n+1)CnmYnm (87)

and (
∂δg0

∂ r

)
r=a

=−GM
a3 ∑

n,m
(n+1)(n+2)CnmYnm (88)

Considering the following property of Legendre polynomials (ibid., Eq. 1-73)

(2n+1)Pn(cosψ) =
n

∑
m=−n

Ynm(P)Ynm(Q) (89)
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the Hotine function (Eq. 8) can be represented in its spectral form as:

H(ψ) =
∞

∑
n=0

1
n+1

n

∑
m=−n

Ynm(P)Ynm(Q) (90)

where P and Q represent the computation and integration point respectively. From
the orthogonality relations of Eq. 74 it follows that:

1
4π

∑
n,m

Ynm(P)Ynm(Q)dσ = 1 (91)

Inserting the spectral forms of
(

∂δg0

∂ r

)
r=a

(Eq. 88) and Tr=a (Eq. 86) into the

gravity disturbance correction δG (Eq. 73):

δG =
ae2 cos2 θ

2
×−GM

a3 ∑
n,m

(n+1)(n+2)CnmYnm

− e2 sinθ cosθ

(
∂

a∂θ

)
× GM

a ∑
n,m

CnmYnm

− e2 1
a
(3cos2

θ −2)× GM
a ∑

n,m
CnmYnm

(92)

Simplifying:

δG =− e2GM
2a2 ∑

n,m

[
(n+1)(n+2)Cnm cos2

θYnm+

+2sinθ cosθ
∂

∂θ
CnmYnm +6cos2

θCnmYnm−4CnmYnm

]
=− e2GM

2a2 ∑
n,m

[
(n2 +3n+8)Cnm cos2

θYnm+

+2sinθ cosθ
∂

∂θ
CnmYnm−4CnmYnm

]
(93)

Using Eqs. 75 and 76:

δG =−e2 GM
2a2 ∑

n,m
×

×
[
(n2 +3n+8)(EnmYn+2,m +FnmYnm +GnmYn−2,m)Cnm+

+ 2(AnmYn+2,m +BnmYnm +DnmYn−2,m)Cnm−4YnmCnm]

(94)

Using Eqs. 78, 79 and 80:

δG =−e2 GM
2a2 ∑

n,m
×

×
{
(n2 +3n+8)(EnmYn+2,m +FnmYnm +GnmYn−2,m)Cnm+

+[2nEnmYn+2,m +(1−3Fnm)Ynm−2(n+1)GnmYn−2,m]Cnm

−4YnmCnm}

(95)
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Simplifying:

δG = e2 GM
2a2 ∑

n,m
×

×
{
−(n2 +5n+8)EnmCnmYn+2,m− (n2 +3n+5)FnmCnmYnm−

−(n2 +n+6)GnmCnmYn−2,m +3YnmCnm
} (96)

Using the summation relations of Eq. 81, the following expression for δG is
arrived at (anal. to Sjöberg and Bagherbandi 2017, Eq. 5.100):

δG = e2 GM
2a2 ∑

n,m
Ynm×

×
{[

3−
(
n2 +3n+5

)
Fnm
]
Cnm−

(
n2 +n+6

)
GnmCn+2,m−

−
(
n2 +5n+8

)
EnmCn−2,m

} (97)

i.e. the Laplace series for the correction δG is:

δG =
∞

∑
n=0

δGn (98)

with

δGn = e2 GM
2a2

n

∑
m=−n

Ynm×

×
{[

3−
(
n2 +3n+5

)
Fnm
]
Cnm−

(
n2 +n+6

)
GnmCn+2,m−

−
(
n2 +5n+8

)
EnmCn−2,m

} (99)

Considering the spectral forms of the Hotine function (Eq. 90) and δG (Eq.
98), the second term of Eq. 64 becomes:

a
4πγ

∫∫
σ

H(ψ)δGdσ =
a

4πγ

∞

∑
n=0

1
n+1

n

∑
m=−n

Ynm(P)Ynm(Q)δGndσ (100)

which in view of the orthogonality relations (Eq. 91) reduces to:

a
4πγ

∫∫
σ

H(ψ)δGdσ =
a
γ

∞

∑
n=0

1
n+1

δGn (101)

Next, the spectral form of δNd will be derived. Since (the Bruns’ formula,
Heiskanen and Moritz 1967, p. 85):

N =
T
γ

(102)

the geoidal correction due to downward continuation from the sphere of radius a
to the ellipsoid of radius re of the disturbing potential is represented by

δNd = (a− re)
1
γ

(
∂T
∂ r

)
r=a

(103)
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Using the approximation of Eq. 69, Eq. 103 becomes:

δNd = ae2 cos2 θ

2γ

(
∂T
∂ r

)
r=a

(104)

Inserting the spectral form of
(

∂T
∂ r

)
r=a

(Eq. 87) into Eq. 104:

δNd = e2a
cos2 θ

2γ
× GM

a2 ∑
n,m

(n+1)CnmYnm

=
e2GM
2aγ

∑
n,m

(n+1)Cnm cos2
θYnm

(105)

Multiplying and dividing by n+1:

δNd =
e2GM
2aγ

∞

∑
n=0

1
n+1

n

∑
m=−n

(n+1)(n+1)Cnm cos2
θYnm (106)

Using Eq. 75:

δNd =
e2GM
2aγ

∞

∑
n=0

1
n+1

n

∑
m=−n

(n+1)(n+1)Cnm×

× (EnmYn+2,m +FnmYnm +GnmYn−2,m)

(107)

Considering the summation relations of Eq. 81 the following expression is arrived
at (anal. to Sjöberg and Bagherbandi 2017, Eq. 5.101):

δNd =
e2GM
2aγ

∞

∑
n=0

1
n+1

n

∑
m=−n

(n2 +2n+1)Ynm×

× (EnmCn−2,m +FnmCnm +GnmCn+2,m)

(108)

i.e. the Laplace series for δNd:

δNd =
1
γ

∞

∑
n=0

δT d
n (109)

where

δT d
n =

e2GM
2a

∞

∑
n=0

1
n+1

n

∑
m=−n

(n2 +2n+1)Ynm×

× (EnmCn−2,m +FnmCnm +GnmCn+2,m)

(110)

Inserting the individual parts (Eqs. 101 and 109) into Eq. 64, the spherical
harmonic representation of the ellipsoidal correction is obtained (anal. to ibid.,
Eq. 5.102):

δN0
e = kN0 +

a
γ

∞

∑
n=0

1
n+1

δGn +
1
γ

∞

∑
n=0

δT d
n (111)
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To simplify practical computations, the last two terms of Eq. 111 can be
combined so that:

δN0
e = kN0 +

a
γ

∞

∑
n=0

δge
n

n+1
(112)

where

δge
n = δGn +

n+1
a

δT d
n (113)

are the Laplace harmonics of the ellipsoidal correction to the gravity disturbance.
From Eqs. 99 and 110:

δge
n = e2 GM

2a2 ∑
n,m

Ynm×

×{[3− (n+4)Fnm]Cnm− (5−n)GnmCn+2,m− (3n+7)EnmCn−2,m}
(114)

Notice that, in addition to the factors (n+ 4), (5− n) and (3n+ 7) differing
from the Stokes version (ibid., Eq. 5.103b or Table 7), the indexes of GGM coef-
ficients Cnm are also interchanged.

4.8.5 Ellipsoidal correction to the modified Hotine formula

The ellipsoidal correction (Eq. 112) can also be written in the space domain as
(anal. to ibid., Eq. 5.104):

δN0
e =

R
4πγ

∫∫
σ

H(ψ)
(

kδg+
a
R

δge
)

(115)

where

δge =
∞

∑
n=0

δge
n (116)

In case of the modified Hotine formula (Eq. 13) the ellipsoidal correction
becomes (anal. to ibid., Eq. 5.105):

δNELL =
R

4πγ

∫∫
σ0

H(ψ)L
(

kδg+
a
R

δge
)

(117)

which can also be represented as the harmonic series

δNELL =
R
2γ

∞

∑
n=0

(
2

n+1
− s∗n−QL

n

)(
kδgn +

a
R

δge
n

)
(118)

which is the ellipsoidal correction for geoid or quasigeoid computations
δNELL(P)≈ δζELL(P) presented in Paper A and Table 7.
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4.9 Comparison of LSMHA to LSMSA

Based on the case study of Paper A, the differences of the LSMHA procedure
developed from the original LSMSA methods will now be discussed. A simple
deterministic Wong & Gore (WG) type modification (Wong and Gore 1969) is
also used for reference, since it has been used in many geoid modelling tasks.

All of the test computations were performed for the integration cap size of
ψ0 = 2◦, using the GOCE data containing GO_CONS_GCF_2_DIR_R5 (Bru-
insma et al. 2014) GGM model with M = L and the modification limit of L = 200.

The modification limit L was selected according to expected global mean
square error estimates for different limits L. Fortunately, provided that the limit L
is sufficiently high to allow the GGM to contribute within the range of which it is
considered to contain valuable information, the expected global RMS is not very
sensitive to the actual modification limit selected. The weight of GGM contribu-
tion is automatically lowered for higher degrees, see Table 2 of Paper A.

For the LSMHA and LSMSA methods to be directly comparable, the zero and
first degree harmonics are neglected and computations are started at n = 2.

4.9.1 Modification parameters

The sn coefficients (starting from n = 2) for the deterministic WG type modifi-
cation are presented in Fig. 16a. Those of the Stokes function are essentially
computed from 2

n−1 , hence the sn values steadily decrease from 2 to 0. In contrast,
sn coefficients associated with the Hotine function are essentially computed from

2
n+1 , starting the decrease from 2

3 .
Interestingly, the sn coefficients of the BLS modification follow the WG coef-

ficients very closely. While the WG and BLS sn coefficients are steadily decreas-
ing, those of ULS and OLS modification undulate, see Fig. 16b. For the same
input parameters, the coefficients sn of ULS and OLS are almost identical. Com-
pared to the Stokes counterparts, the Hotine coefficients undulate with a larger
amplitude.

The sn parameters of the ULS or OLS modification of both Stokes’s or Ho-
tine’s formula depend strongly on the numerical (regularization) method used to
solve the linear system of equations defining these parameters (Ellmann 2005b;
Ellmann 2004, Sec. 3.3). Paper A also demonstrates an alternative set of ULS sn

parameters that undulates violently (Fig. 4c of Paper A) which is very difficult to
compare to the Stokes counterparts.

As discussed earlier, the bn coefficients (Fig. 16c) are very similar for all of
the modification methods. In fact, their values are close to 2

n−1 or 2
n+1 for the

Stokes or Hotine formula respectively. Consequently, the Hotine bn coefficients
start from a smaller value than the Stokes counterparts. The second part of Eq.
13 reveals that smaller values of bn result in a smaller contribution of the GGM
coefficients to the geoid estimator (which can be counterbalanced by the gravity
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Figure 16: Modification parameters for Hotine’s (red) or Stokes’s (blue) function∗

(modified figure from Paper A)

∗The horizontal axis of Fig. 16a to 16c depicts the degree n while that of Fig. 16d
the spherical distance ψ

disturbance values differing from the anomaly values).
Behaviour of the modified Hotine function HL (Fig. 16d) determining the ter-

restrial data contribution from within the spherical cap σ0 also varies depending
on the modification method used. Nevertheless, all of the least squares modifica-
tions presented, including BLS, follow the same curve that does not differ much
from the Stokes counterparts.

4.9.2 The expected global mean square error

The expected global MSE of Eq. 17 can be used to compare the different
geoid modelling methods. The total and partial contributions of the global root
mean square (RMS) error are presented for the different modification methods of
Stokes’s and Hotine’s formula in Table 8.
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Table 8: The expected global RMS error of geoid modelling (based on different
degree variance models for the Stokes and Hotine formula, see Eq. 16), units: mm
(table from Paper A)

n Stokes Hotine

WG BLS ULS OLS WG BLS ULS OLS(
δ Ñ
)2

TR
2...L 0.00 0.20 0.00 0.04 0.00 0.24 0.00 0.04

L+1...∞ 2.79 2.01 2.16 2.16 2.78 2.00 2.24 2.24
2...∞ 2.79 2.02 2.16 2.16 2.78 2.02 2.24 2.24(

δ Ñ
)2

T
2...L 6.54 6.39 6.33 6.33 6.53 6.51 6.41 6.41

L+1...∞ 8.66 8.67 8.67 8.67 8.66 8.67 8.67 8.67
2...∞ 10.85 10.77 10.73 10.73 10.85 10.84 10.78 10.78(

δ Ñ
)2

GGM
2...L 1.74 1.77 1.80 1.80 1.73 1.73 1.77 1.77

L+1...∞ – – – – – – – –
2...∞ 1.74 1.77 1.80 1.80 1.73 1.73 1.77 1.77(

δ Ñ
)2

2...L 6.76 6.63 6.58 6.58 6.76 6.74 6.65 6.65
L+1...∞ 9.10 8.90 8.93 8.93 9.09 8.90 8.95 8.95
2...∞ 11.34 11.10 11.09 11.09 11.33 11.16 11.15 11.15

Bold values represent the total expected error

All of the LS modifications of Hotine’s formula yield very similar global error
estimates. As the name suggests, the BLS modification yields a slightly larger
truncation error (bias) for degrees 2−L than the ULS and OLS modifications that
are numerically very similar to each other.

In the case study of Paper A, the LS modifications of Hotine’s formula show a
larger global RMS error than the Stokes counterparts. This result is dependent on
the gravity disturbance degree variance models being determined by Eq. 16 from
those of gravity anomalies. In practical computations, the gravity anomaly degree
variances dn,∆g can safely be used also for computations by Hotine’s formula as
the global signal and error models are rough and in no way specific to gravity
anomaly or disturbance, nor the region of study. Related quasigeoid model differ-
ences remain within a mm (standard deviation, SD) over the study area of Paper
A.

4.9.3 Geoid contributions

As discussed earlier, the modification parameters bn and sn define the partial con-
tributions of the near and far zone to the approximate geoid estimator. For exam-
ple, over the study area of Paper A (see Fig. 13 on p. 51 for the area characteris-
tics) the ULS modification of Hotine’s formula yields a near zone contribution that
is on average 7.8 cm smaller and a far zone contribution that is on average 7.1 cm
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Figure 17: Differences of geoid contributions computed by the Stokes or Hotine
formula (figures from Paper A)

larger than that of the corresponding Stokes formula. As a result, the approximate
geoid models computed by the ULS modified Hotine’s or Stokes’s formula differ
only by 3 mm (SD) with maximum differences of 1.3 cm occurring in the high
topography regions in the NW, see Fig. 17a.

Contribution of the combined topographic effect is identical for the Hotine and
Stokes formula. Differences in the atmospheric and ellipsoidal corrections are
at the sub-millimetre level over the study area of Paper A. However, the DWC
correction differences reach 7 mm, see Fig. 17b. Therefore, in many practical
geoid modelling tasks, the additive corrections for the combined topographic, at-
mospheric and ellipsoidal effect meant for the Stokes formula can be used also
for geoid modelling by the Hotine formula. However, the DWC effect is better
computed by the appropriate equations developed for the Hotine formula.

Together with the additive corrections, the geoid and quasigeoid models for
the study area of Paper A differ on average by 5 mm with a SD of 1 mm and
the maximum differences reaching 8 mm in the mountainous area in NW, see Fig.
17c.

The results described may be dependent on the way input data was generated
for the research presented in Paper A, that is, the gravity disturbances were com-
puted from gravity anomalies using an existing geoid model. For an improved
analysis on the differences of LSMHA from LSMSA, special data could be col-
lected.

It is concluded that the differences described between using the Stokes or
Hotine formula are marginal. They are smaller than the general geoid modelling
accuracy which is currently at the level of a few mm in the most suitable areas (e.g.
flat landscape) to centimetres in more challenging areas (e.g. rugged terrain).
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Agreement between the numerical results obtained by the existing LSMSA
and the newly developed LSMHA methods helps to confirm the correctness of the
equations developed.

Although numerically the LSMHA procedure developed differs very little
from the original LSMSA method, the benefit of using LSMHA stands in the
use of gravity disturbances as input. As gravity surveys are nowadays accompa-
nied with GNSS height positioning, disturbances can be obtained directly while
the determination of anomalies (for input to the LSMSA method) is dependent on
the quality of a previously existing geoid model.
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5 Specifics of the marine geoid

Recall that the standard gravimetric geoid evaluation method of comparison to
GNSS/levelling points is not possible over marine areas. Due to the long wave-
length nature of the geoid, the lack of evaluation possibilities is not only a problem
for marine geoid modelling, but also for nearby coastal areas where geoid mod-
elling accuracy can easily suffer due to insufficient or inaccurate data coverage
over the marine areas nearby.

As an alternative to the GNSS/levelling evaluation possible over land, several
attempts of measuring the actual sea surface position (that reflects the geoid in
the nature) by regular GNSS devices (Jürgenson et al. 2008, Liibusk and Ellmann
2015, Lavrov et al. 2016, Varbla et al. 2017b) or airborne laser scanning (Gruno
et al. 2013, Julge et al. 2014) have been made. Although special GNSS buoys
have also been used for sea level positioning (see e.g. André et al. 2013, Daw-
idowicz 2014, Lin et al. 2017 and references therein), their poor coverage is not
comparable to the surveys referenced above.

However, in addition to the geoid, the instantaneous sea level (ISL) also re-
flects sea surface height variation due to tides, water velocity, temperature, salin-
ity, currents, wind stress, atmospheric pressure, Coriolis force, water depth, bot-
tom friction (Pugh 1987), river discharge and seabed topography (Dunn and Ridg-
way 2002, Merry and Vaníček 1983). Some of these effects are predictable by
dedicated models (e.g. currents, tides, Coriolis force) while others (e.g. river
discharge, waves) are more difficult to estimate, making it difficult to extract the
actual geoid signal from the ISL.

To improve the possibilities of marine geoid validation, the problem of sepa-
rating the ISL height provided by in situ GNSS measurements conducted on sea
ice into geoid signal (Paper C) and the sum of the physical and meteorological
effects described above (Paper E) is investigated.

In the specific area of the Väinameri basin studied in Papers C and E, the
largest contributors to sea level deviation from the geoid are the water balance
of the Baltic Sea (depending on river discharge and water transport through the
Danish straights) and wind induced water convergence. Both of these can reach
±1 to 2 m in extreme cases. Wind induced seiches – waves with a period of a few
hours to about a day – can also contribute significantly. See Suursaar and Kullas
(2009), Suursaar et al. (2006), Hünicke et al. (2015) and references therein for
additional information.

5.1 Determination of sea level heights

The relations between various sea level heights and related reference surfaces are
illustrated in Fig. 18. Using a GNSS receiver, the ellipsoidal height hARP of the
antenna reference point (ARP) can be observed. The ellipsoidal height hISL of the
instantaneous sea level is obtained from hARP by subtracting the antenna height
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Figure 18: Relations of ice-tamed sea level heights (modified figure from Paper
E)

HARP and the ice freeboard (IFB) height HIFB recorded during the surveys:

hISL = hARP−HARP−HIFB (119)

The height HISL of the instantaneous sea level above the historic mean sea surface
(MSS) can be estimated from nearby tide gauges (TG).

Unfortunately tide gauges are rare and located only on the coastline. The qual-
ity of HISL values estimated from TGs may therefore be rather unrepresentative
for the actual survey point locations. Over larger open sea areas, satellite altime-
try can be used instead. However, in coastal regions satellite altimetry availability
and accuracy also degrades.

Using the value of HISL, the ellipsoidal height hMSS of the mean sea surface is
obtained:

hMSS = hISL−HISL = hARP−HARP−HIFB−HISL (120)

hMSS is what approximates the GNSS derived geoid height NGNSS that can be
used to evaluate the gravimetric geoid value NGR. However, the mean sea surface
actually reflects the geoid plus the sea surface topography (SST) height HSST. For
a more rigorous comparison, the GNSS derived geoid height can be computed as:

NGNSS = hMSS−HSST = hARP−HARP−HIFB−HISL−HSST (121)

SST is the time-average difference of the mean sea surface (or NVD) from the
geoid height N due to the various physical and meteorological effects described in
the beginning of this chapter. In general, there are four ways to estimate the SST:

– from satellite altimetry derived sea surface heights (e.g. Andersen 2010)
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– from long-term oceanographic data (e.g. Carlsson 1998)
– from geodetic measurements of sea surface heights at tide gauges (e.g.

Kakkuri and Poutanen 1997)
– from in situ sea surface measurements (see Eq. 122 below)

Out of these possibilities, only the SST models determined from oceanographic
data are (relatively) independent of existing geoid models. For SST determination
from the other sources listed, an existing geoid model is needed. The estimated
accuracy of SST models (in the current Nordic-Baltic area of interest) is 5 cm at
best, see the references given for each method. Also, the SST models estimated
by the above listed methods differ in the time period concerned: while in situ mea-
surements provide instantaneous information, the other models can (and usually
do) contain information averaged over periods as long as decades.

For determination of SST from GNSS survey positions on ice, a scheme sim-
ilar to Eq. 121 can be used:

HSST = hARP−HARP−HIFB−HISL−NGR (122)

Both, Eq. 121 and 122 can be used for geoid or SST determination by GNSS
surveys on board various (moving) platforms such as a car on ice (Liibusk and
Ellmann 2015), a ship (Varbla et al. 2017b) or an aeroplane (Julge et al. 2014).
Surveying from an aeroplane, the antenna height HARP is determined by laser
scanning the sea surface.

Using a ship, the ice freeboard HIFB is likely to be zero and the antenna height
HARP can be measured at the port from the antenna reference point to the water
level. For the best results it could be corrected to account for the ship’s squat,
roll and pitch when moving at different speeds in various wave conditions for
example by using two or more GNSS receivers or an inertial measurement unit
(IMU) similar to those used in airborne photogrammetry, see Lavrov et al. (2016)
and the references provided therein.

5.2 Marine geoid validation

Paper C presents a case study whereby gravity data was collected on ice of the
Väinameri basin in Estonia. The GNSS derived positions of these survey points
are used to validate the gravimetric geoid model GRAV-GEOID2011. A simpli-
fied version of Eq. 121 is used:

NGNSS = hARP−HARP−HISL−∆H (123)

where ∆H is the average difference between NGNSS and NGR.
Figure 19 depicts the GRAV-GEOID2011 model and its validation results.

The standard deviation of NGNSS minus NGR is 3.6 cm. Although differences on
adjacent points are similar and the results look promising, there are also large
differences (negative values in the NW) that appear where the GNSS processing
results by different methods varied up to 10 cm.
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Figure 19: NGNSS minus NGR (in cm), depicted by the coloured circles explained
in the bottom legend, together with the GRAV-GEOID2011 model (in metres),
contoured according to the top legend (figure from Paper C)

Also, a NW to SE tilt of up to 10 cm can be observed in the validation results
on the Eastern side. Considering the low accuracy of SST models, one was not
used in the case study of Paper C. However various SST models (e.g. those
presented in Paper E) for this specific area do reveal a similar NW to SE tilt that
would improve the validation results, but only by 2 to 4 cm.

Considering that the GRAV-GEOID2011 gravimetric geoid model should be
of rather high quality, the validation results are found to be too pessimistic. It is
suspected that the surveyed GNSS heights may have a systematic error component
in them.

Therefore it seems that the GNSS positioning methods used in Paper C are
not accurate enough to improve marine geoid determination in this particular area.
Nevertheless, high accuracy GNSS positioning on the sea ice could allow for di-
rect marine geoid determination using the method described above.

5.3 Determination of sea surface topography

While the sea surface topography needs to be eliminated from the instantaneous
sea level for geoid validation, SST could also be estimated from ISL by Eq. 122,
as done in Paper E. In this case, a suitable geoid model is subtracted instead.

The case study conducted in Paper E concerns the same Väinameri area as
in Paper C. SST surface models are computed from (parts of) the point-wise
GNSS survey used in Paper C and the profile-wise GNSS surveys of Liibusk and
Ellmann (2015).

Although the two surveys were carried out in different winter seasons, the av-
erage discrepancy between the profile wise SST values and the SST surface com-
puted from the point values remains within ±4.3 cm. Such a difference indicates
the combined effect of inaccuracies in GNSS measurements and ice freeboard
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estimates.
The GNSS derived SST model is compared to the global model DTU10MDT

(Andersen 2010) derived from satellite altimetry and a regional SST model pre-
sented by Liibusk (2013) derived from annual sea level observations at nearby
tide gauges. Clearly the resolution of the GNSS derived model is the highest, but
all three models show a NW to SE slope (2 cm in the DTU10MDT, 4 cm in the
annual and 6 cm in the GNSS derived model).

Relative differences between the models remain within 4...5 cm with the larger
differences being observed in the Northern part of the Väinameri basin. A local
SST anomaly not detectable by global models could exist in this area or the point
wise GNSS survey values could contain a systematic error component.

The relative coincidence between SST models based on short-term (some
days) and long-term (years of) sea surface observations is reasonable, remaining
within the estimated accuracy of the measurements and the geoid model. Thus,
the case study of Paper E demonstrates the possibility of using short-term GNSS
measurements on ice in combination with instantaneous tide gauge data to deter-
mine SST surface tilts in coastal regions. Further out the coast, such measure-
ments could provide SST models with similar accuracy but better resolution to
long term (years of) satellite altimetry observations.
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6 Conclusions and discussion

6.1 Conclusions

In this doctoral thesis, regional geoid modelling was investigated from the aspects
of gravity data analysis and gridding, geoid modelling methods and specifics of
the marine geoid. This was done by

– illustrating the possibilities available for gravity data analysis and improve-
ment (Chapter 2);

– collecting and rigorously comparing widespread gravity gridding methods
(Chapter 3);

– proposing a new geoid modelling method that uses gravity disturbances as
input, comparing it to its existing counterpart that uses gravity anomalies
(Chapter 4);

– proposing a method based on GNSS positioning on the sea for marine geoid
validation and sea surface topography (SST) determination (Chapter 5);

The main results of this thesis can be summarized as follows:
– Continuous efforts to improve terrestrial gravity data quality and coverage

are still needed in the era of dedicated satellite missions providing high
quality gravity field products.

– Based on the NKG case study, it is difficult to prefer either the Bouguer
type anomalies or the RTM anomalies for gravity reduction prior to inter-
polation. A reason to prefer the RTM anomalies could be their properties
that are theoretically more suitable for interpolation.

– In most areas of high quality gravity data, all of the triangulation, nearest
neighbour, spline based and statistical interpolation methods tested are able
to generate a high quality gravity grid.

– Under more difficult conditions, such as nearby inaccurate gravity data,
steep gradients and data gaps, statistical interpolation can provide the most
realistic representation of the gravity field while the spline based methods
are to be avoided.

– Interpolation can be improved by considering individual error estimates
only if these are realistic.

– From the gravity gridding point of view, geoid model accuracy of 5 mm
can be expected over most of the Nordic-Baltic dry land. Disqualifying the
spline based interpolation methods, it is possible to compute a geoid model
with an accuracy of 1 cm over most of the Baltic Sea (except the Eastern
part of Gulf of Finland due to large data void).

– Considering the target accuracy of 5 to 10 mm in regional geoid modelling,
the data situation and gridding approaches still need some improvement in
the Nordic-Baltic area.

– The differences in the resulting geoid models between using the least
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squares modifications and additive corrections with the traditional Stokes
formula or the Hotine formula are marginal compared to the general geoid
modelling accuracy. However, the partial contributions of the near and far
zone do differ in the order of a decimetre in a study area with elevations up
to 2 km.

– Although numerically similar to the existing LSMSA (Stokes) method, the
benefit of the new LSMHA (Hotine) method lies in its use of gravity distur-
bances as input.

– The adaptation of the LSMSA to the new LSMHA approach in high accu-
racy geoid modelling requires the use of corresponding additive corrections,
especially the DWC correction that differs significantly, while the atmo-
spheric and ellipsoidal correction differences are not exceeding the current
geoid modelling accuracy.

– Although the method of GNSS positioning on sea proposed for marine
geoid validation did not particularly improve the geoid modelling situation
over the Väinameri basin, it can still be useful for geoid validation at the 5
to 10 cm accuracy level.

– It is possible to use short-term GNSS measurements on sea in combination
with instantaneous tide gauge data to determine SST surface tilts.

6.2 Relevance and novelty of the study

Accurate height positioning is essential to the functioning of the modern society
living within a built environment in the globalised world. To provide fast and ac-
curate hight positioning by GNSS methods, a geoid model with sufficient accuracy
and resolution is needed. Countries have therefore invested into development of
national geoid models that are constantly being improved. In addition to national
models, regional geoid models serve to unify the height systems of neighbouring
countries and fulfil many other scientific tasks.

Reaching target accuracy of 5 to 10 mm in regional geoid modelling demands
continuous efforts in both data and methodological aspects. This thesis sum-
marises the author’s contribution to these efforts.

Both, gravity data analysis and gridding, are rarely reported upon in scientific
literature. Hardly any of the data analysis methods described in Papers B, C and
D are new in themselves, but they are reported in more detail than usually, so as
to be of reference to other similar tasks worldwide.

The used gravity reduction and interpolation methods themselves are not new
either. The value of related investigations reported in Papers B and D lies in the
rigorous comparison of these both in theory and in case studies representing many
of the possible situations that could occur in practical tasks.

From the references describing various modifications of the Stokes or Hotine
formula (see Sections 4.1 and 4.2), it is clear that an ample number of approaches
to regional geoid modelling already exist. The method of least squares modifica-
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tion of the Stokes formula (Sjöberg 1984, 1991, 2003b) with additive corrections
(Sjöberg 2003a), that uses gravity anomalies as input, has previously been shown
to yield high quality results (e.g. in the NKG geoid modelling project). Therefore
it was decided to adapt this approach to the Hotine formula that uses an alternative
residual gravity quantity, the gravity disturbance, as input. With GNSS position-
ing providing the height information that allows to compute gravity disturbances
instead of the anomalies, use of the Hotine formula in geoid modelling can only
grow.

Although the Stokes and Hotine formula and modifications thereof look rather
similar, the specific equations of the LSMHA approach needed deriving. Thanks
to Paper A these are now concisely presented in an academic publication.

To the author’s knowledge, the methods proposed in Papers C and E for geoid
and SST determination from the instantaneous sea level height measured by in situ
GNSS positioning with such a high spatial resolution have not been extensively
used elsewhere. In view of the attempts to increase the accuracy of the Baltic Sea
geoid within the FAMOS project, such an evaluation possibility could become
useful, e.g. by evaluating marine geoid models by non-dedicated GNSS surveys
on commercial ships sailing the Baltic Sea.

6.3 Discussion

Most scientific research regarding geoid modelling serves to improve practical
geoid modelling products. Therefore, the following discussion concentrates on
the latter.

The geoid modelling efforts made in the Nordic-Baltic region (and also glob-
ally) within the last five years have resulted in significant improvements of geoid
models. As an example, these improvements can be quantified by looking at
the difference of the current official gravimetric geoid model for Estonia (GRAV-
GEOID2011) and the new NKG2015 model (Fig. 20).

The differences between GRAV-GEOID2011 and NKG2015 reach 14 cm. In
comparison to the target accuracy of 5 to 10 mm, this is huge. Over mainland, the
differences are smaller, remaining within ±5 cm. Before discussing the specific
reasons for such differences, both geoid models are evaluated by comparison to
the same NKG GNSS/levelling data, see Fig. 2 on p. 27 and Fig. 21.

There are a number of features that can be spotted from the comparison and
evaluation results. First, the large differences between GRAV-GEOID2011 and
NKG2015 over the Eastern part of Gulf of Finland (GoF), that is, the negative
values depicted in black on Fig. 20. It is an area of about 20 000 km2 with no
terrestrial (marine) gravity data. In the older model the GoF area was filled by
gravity data from the high resolution EGM2008 (Pavlis et al. 2012) GGM model
(Ellmann et al. 2011) while in the newer model it was filled by the satellite-only
low-resolution GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2013) model. Due
to the geoid model containing strong long wavelength signal, systematic biases
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Figure 20: The NKG2015 geoid model minus the GRAV-GEOID2011 model (af-
ter removal of the mean difference)
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in gravity data over such a large area can seriously distort the geoid model over
mainland as well. This could be one reason as to why the models differ relatively
much also over mainland. The red rectangle West of Saaremaa (around 58.5◦ N,
22◦ E) is also caused by the differences of fill-in data.

Second, the GGM used for providing the far zone contribution (the right hand
side of Eq. 5) is different. Not only the selection of the GGM model, but also
the maximum limit M used in Eq. 5 has a strong effect on the long wavelength
signal of the geoid model. This is likely the reason why large positive and negative
difference areas (with a wavelength of about a 100 to 150 km) are visible on the
comparison plot in Fig. 20.

Third, the effect of new gravity data being included to geoid modelling is
visible in between mainland and the islands on the West (at the Väinameri Basin).
Due to the long wavelength differences between geoid models being dominant,
the other data related differences (see IX, X) are not very easy to spot. It can
only be assumed though, that new data improve a geoid model rather than make
it worse.

GNSS/levelling evaluation of the NKG2015 model (Fig. 21) suggests that it is
rather accurate over most of Estonia with many discrepancies being below the cm
level. In comparison, the GRAV-GEOID2011 evaluation (Fig. 2 on p. 27) shows
much larger discrepancies over most of Estonia, except for the SE corner where
their results are comparable and the NE where GRAV-GEOID2011 shows a better
fit to GNSS/levelling data. The patterns of negative and positive discrepancies vis-
ible on the comparison plot (Fig. 20) are also apparent in the GRAV-GEOID2011
evaluation plot, leading to believe that in most parts the NKG2015 model really is
an improvement over the older model (except for the NE part due to fill-in data in
the GoF).

This thesis itself does not provide a geoid modelling product. However the
findings can be used to compute a new geoid model for Estonia (or elsewhere).
Computation of a new geoid model for Estonia is especially relevant in the light of
adopting the new height system based on the European Vertical Reference System
(EVRS) from January 2018.

The above discussion illustrates the improvement that can be expected in new
geoid models thanks to the data related and scientific improvements to geoid mod-
elling methods reported in this thesis.

6.4 Recommendations for further studies

The results of this study lead to several perspectives for future research:
– In addition to the Bouguer and RTM anomalies compared for suitability

of interpolation, isostatic anomalies (see e.g. Novák et al. 2016) could be
considered.

– Reduction of gravity anomalies before interpolation can certainly be im-
proved, specifically by including bathymetry information. This would im-
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prove the accuracy of gravity gridding in marine areas, especially in rugged
coastline with fjords (such as Norway).

– One of the benefits of using the Hotine formula instead of the traditional
Stokes version is that the zero and first degree spherical harmonics can di-
rectly be considered, i.e. the normal gravity field adopted does not have to
correspond to the actual mass of the Earth and the origin of the geodetic ref-
erence system does not have to coincide with the mass centre of the Earth.
Although all of the geoid modelling equations derived include also the zero
and first degree harmonics, analysis of these was considered to be outside
the scope of this study.

– The marine geoid validation attempts would benefit from better SST data,
which could be provided by high-resolution (both in space and time) ocean
forecast models such as Lagemaa et al. (2011) or those analysed in Golbeck
et al. (2015).

– The empirical studies of this thesis were conducted over the Nordic-Baltic
region which is heterogeneous in terms of terrain and data coverage, host-
ing also rather challenging areas such as Norway. Yet, there exist even more
challenging areas in terms of poor data coverage (e.g. Russia) and hetero-
geneity (e.g. North America) or topography (e.g. the Himalayas).

– Data related improvements in the Nordic-Baltic region. While terrestrial
data coverage is rather good over most of the Nordic-Baltic mainland, it
can be poor over coastal and marine areas which has a strong effect on
the marine geoid, but also on the geoid on land nearby the coast. Terres-
trial gravity data collection is resource demanding, but fortunately signifi-
cant improvements are expected from the marine gravity campaigns of the
FAMOS project targeting the areas needing most attention.
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Abstract Geoid and quasigeoid modelling from gravity
anomalies by the method of least squares modification of
Stokes’s formula with additive corrections is adapted for the
usage with gravity disturbances and Hotine’s formula. The
biased, unbiased and optimum versions of least squaresmod-
ification are considered. Equations are presented for the four
additive corrections that account for the combined (direct
plus indirect) effect of downward continuation (DWC), topo-
graphic, atmospheric and ellipsoidal corrections in geoid or
quasigeoid modelling. The geoid or quasigeoid modelling
scheme by the least squares modified Hotine formula is
numerically verified, analysed and compared to the Stokes
counterpart in a heterogeneous study area. The resulting
geoid models and the additive corrections computed both
for use with Stokes’s or Hotine’s formula differ most in high
topography areas. Over the study area (reaching almost 2 km
in altitude), the approximate geoid models (before the addi-
tive corrections) differ by 7 mm on average with a 3 mm
standard deviation (SD) and amaximum of 1.3 cm. The addi-
tive corrections, out of which only the DWC correction has
a numerically significant difference, improve the agreement
between respective geoid or quasigeoid models to an aver-
age difference of 5 mm with a 1 mm SD and a maximum of
8 mm.
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1 Introduction

Traditionally, the geoid height N is determined from the
global coverage of gravity anomaly �g which is the dif-
ference of measured gravity values gP (at point P at the
height HP above the geoid) and the normal gravity field
generated by the reference ellipsoid (Heiskanen and Moritz
1967, Eq. 8-7). The normal gravity γQ is evaluated at the
telluroid point Q at the height HP above the reference ellip-
soid (Molodensky 1945), using standard formulae, cf.Moritz
(2000).

In spherical approximation, N can be determined by inte-
grating gravity anomalies over the mean Earth sphere by
using the Stokes formula (Stokes 1849). Fulfilment of certain
requirements (i.e. the harmonicity of the potential field) that
enable the application of the Stokes formulawill be discussed
in Sect. 3.

An alternative residual gravity quantity is the gravity dis-
turbance δg defined as the difference between the observed
gravity gP and the normal gravity γP at the same point in
space (Heiskanen and Moritz 1967, Eq. 2-142).

In traditional gravity surveys, heights referring to the
geoid, or in practice, the national vertical datum, were
obtained (by laborious levelling or less accurate methods like
barometric heighting), yielding gravity anomaly values. In
contemporary gravity surveys, direct positioning by GNSS
(GlobalNavigationSatellite System)with respect to the ellip-
soid is primarily used, yielding gravity disturbance values.
Disturbances can be converted into anomalies (to be used
for geoid modelling by the Stokes formula) using an exist-
ing geoid model, possibly introducing previous geoid model
errors into new geoid modelling. However, as proposed by
Hotine (1969, Eq. 29.53), the gravity disturbances can also
be used directly for geoid modelling by the Hotine formula
(Eq. 1).
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The Hotine formula has been used for geoid determina-
tion from airborne gravimetry (e.g. Novák and Heck 2002;
Novák et al. 2003; Alberts and Klees 2004; Serpas and Jekeli
2005; Sjöberg and Eshagh 2009),but also from altimetry (e.g.
Zhang 1998) and land gravimetry (e.g. Kirby 2003). How-
ever, the traditional Stokes approach is still more widespread
than the Hotine formula.

Studies applying the Hotine formula (e.g. Jekeli 1979,
1980; Sjöberg 1986b, 1989; Guan and Li 1991; Vanícek et al.
1992) have demonstrated that, in addition to the availability
of gravity disturbances, theremaybe other reasons (including
possibly higher accuracy in geoid modelling, see Sect. 7.2)
to prefer the Hotine formula to the Stokes formula. However,
both gravity anomalies and disturbances are affected by dis-
tortions in the respective height systems, especially in areas
of vertical land motion (e.g. postglacial land uplift).

To reduce the truncation error introduced by limiting the
integration to a spherical cap, theStokes function canbemod-
ified, which was originally presented by Molodenskii et al.
(1962). A number of alternative modifications of the Stokes
formula have later been developed, for a recent overview,
see e.g. Featherstone (2013, “Appendix A”). There are two
main groups: deterministic and stochastic modifications of
the Stokes formula.

Deterministic modification methods, such as Moloden-
sky’s and several others (e.g. Wong and Gore 1969; Meissl
1971; Heck and Grüninger 1987; Vaniček and Kleusberg
1987; Vaníček and Sjöberg 1991; Featherstone et al. 1998;
Evans and Featherstone 2000), aim at reducing the truncation
error by imposing suitable, preselected limits on the integra-
tion kernel and its modification. In contrast to deterministic
methods, stochastic methods (e.g. Sjöberg 1980; Wenzel
1983) make use of estimated gravity signal and error spectra
to balance relative data precision of the Global Geopotential
Model (GGM) and terrestrial gravity observations. In par-
ticular, three stochastic modification methods of the Stokes
formula proposed in Sjöberg (1984, 1991, 2003b) minimise
the truncation error, the influence of erroneous terrestrial
gravity data and geopotential coefficients in the least squares
(LS) sense.

Reviews and comparisons of modifications to the Stokes
formula can be found in e.g. Sjöberg (1986a), Sjöberg
and Hunegnaw (2000), Nahavandchi and Sjöberg (2001),
Ellmann (2004), Sjöberg and Featherstone (2004), Ågren
(2004), Sjöberg (2005), Yildiz et al. (2012). Computer code
for LS modifications is provided in Ellmann (2005a) and
Abbak and Ustun (2015).

Many geoid modelling methods (Vaniček and Kleusberg
1987; Vaníček and Sjöberg 1991; Forsberg 1993; Vaníček
et al. 1995; Forsberg and Tscherning 1997; Omang and Fors-
berg 2000; Ellmann and Vaníček 2007; Sansò and Sideris
2013) utilise the remove-compute-restore (RCR) approach,
where the surface gravity anomalies are reduced prior to input

in the modified Stokes formula. The various direct effects
for which the reduction occurs (downward continuation to
sea level, ellipsoidal correction, removal of topographic and
atmospheric masses or long wavelength features provided by
a GGM) are restored upon the geoid height obtained from the
Stokes integral as indirect effects.

Alternatively, Sjöberg (2003a) proposes to use the sur-
face gravity anomalies as the integral argument. The direct
and indirect effects of downward continuation, topographic,
atmospheric and ellipsoidal corrections can then jointly be
applied as combined corrections to the approximate geoid
height obtained by the Stokes integration. Used in conjunc-
tion with the LS modification, this method is called the
Least Squares Modification of Stokes’s formula with Addi-
tive Corrections—LSMSA.

The main advantage of using such combined corrections
is the reduced computational effort, see Sjöberg (2003a,
Sect. 9.2). For example, there is no need for global integration
(or a decision of a cut-off radius) for topographic corrections.
Also, the magnitude of each combined correction directly
reflects the error made by neglecting that particular effect.

Several corresponding LSMSA geoid models have been
computed, e.g. by Ellmann (2005c), Kiamehr (2006), Daras
(2008), Ågren et al. (2009b), Ulotu (2009), Abdalla and
Fairhead (2011), Abdalla and Tenzer (2011), Abbak et al.
(2012), Sjöberg et al. (2015), Kuczynska-Siehien et al.
(2016), Ågren et al. (2016), achieving results compatible
with GNSS/levelling control data down to about 3 cm and
significantly better in countries of high quality geodetic
infrastructure.

Modifications of Hotine’s formula have been presented
in e.g. Jekeli (1979, 1980), Sjöberg (1986b), Guan and Li
(1991), Sjöberg and Nord (1992), Vanícek et al. (1992),
Zhang (1998), Novák (2003), Novák et al. (2003), Sjöberg
and Eshagh (2009) and summarised in Featherstone (2013).

Featherstone (2013, Sect. 4.5) demonstrated the applica-
tion of LS modification to Hotine’s formula in the special
case of no truncation (see also Sjöberg 2003b, Sect. 4). The
current contribution will comprehensively adapt the princi-
ple of LSMSA to Hotine’s formula. Therefore, equations are
developed for the biased, unbiased and optimum LS modifi-
cation of Hotine’s formula and the four additive corrections
for both geoid and quasigeoid (c.f. Heiskanen and Moritz
1967, Sect. 8.3) computation. That is, the procedure of Least
SquaresModification ofHotine’s formulawithAdditiveCor-
rections (LSMHA) is presented. Application of the LSMHA
procedure for geoid or quasigeoid computation will be illus-
trated and compared to the LSMSA counterpart. For this,
several regional (quasi)geoid models are computed and com-
pared in a heterogeneous study area including marine and
land parts.

This contribution is organised as follows. After the intro-
duction, the general modification scheme and the specific LS
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modifications of Hotine’s formula are presented in Sect. 2.
The four additive corrections for Hotine’s formula are pre-
sented in Sect. 3. The estimation of gravity disturbance
signal and error properties is discussed in Sect. 4. Sec-
tions 5 and 6 numerically verify the LSMHA quasigeoid
computation scheme over the selected study area. Sect. 7
compares the LSMHAmethod to the LSMSAmethod, while
Sect. 8 demonstrates the differences of resulting (quasi)geoid
models over the study area. The contribution ends with
conclusions and discussion about the LSMHA procedure
developed.

2 Modification of Hotine’s formula

2.1 General expressions

The Hotine formula (Hotine 1969, Eq. 29.53) reads:

N = R

4πγ

∫∫
σ

H(ψ)δgdσ (1)

where R is the mean Earth radius, γ is the normal gravity on
the reference ellipsoid, σ is the unit sphere. H is the Hotine
function defined as (Hotine 1969, Eq. 29.17):

H(ψ) =
∞∑
n=0

2n + 1

n + 1
Pn(cosψ) (2)

where ψ is the spherical distance between the computation
and the integration point; Pn(cosψ) are the Legendre poly-
nomials of spherical harmonic degree n, c.f. Heiskanen and
Moritz (1967, Eq. 1-57′).

The appearance of Stokes’s formula and function are sim-
ilar to those of Hotine, see e.g. Heiskanen and Moritz (1967,
Eqs. 2-163b and 2-169).

Any modification of Hotine’s formula is obtained by
rewriting Eq. 1 as (analogously to Sjöberg 2003b, Eq. 3a):

N = R

4πγ

∫∫
σ

HL(ψ)δgdσ + R

2γ

L∑
n=0

snδgn (3)

where δgn are the Laplace harmonics of δg defined analo-
gously to Heiskanen and Moritz (1967, p. 97):

δgn = 2n + 1

4π

∫∫
σ

δgPn(cosψ)dσ (4)

or equivalently in spherical harmonic representation (Heiska-
nen and Moritz 1967, Eq. 2-153):

δgn = GM

a2

(a
r

)n+2
(n + 1)

n∑
m=0

{
Cnm cosmλ + Snm sinmλ

}
Pnm(sin φ) (5)

where Pnm are the fully normalised Legendre functions
(Heiskanen and Moritz 1967, Eq. 1-57), r , λ and φ are
the geocentric radius, longitude and latitude, respectively,
Cnm and Snm are the fully normalised spherical harmonic
coefficients of the disturbing potential corresponding to the
reference values of a and GM.

H(ψ)L is the modified Hotine function:

H(ψ)L = H(ψ) −
L∑

n=0

2n + 1

2
sn Pn(cosψ) (6)

where L is the selected maximum degree of modification
and sn are arbitrary modification parameters (also present
in the last term of Eq. 3). The unmodified Hotine function
H(ψ) can be evaluated in its closed form by Hotine (1969,
Eq. 29.17):

H(ψ) = 1

sin(ψ/2)
− ln

(
1 + 1

sin(ψ/2)

)
(7)

or

H̃(ψ) = H(ψ) − 1 − 3

2
cosψ (8)

if degrees n = 0 and n = 1 are omitted (Jekeli 1979,
“Appendix C”).

Limiting the integration to a spherical cap σ0 with radius
ψ0 �= 0 centred around the computation point, Eq. 3 can
equivalently be written as (anal. to Sjöberg 2003b, Eq. 5a):

N = R

4πγ

∫∫
σ0

HL(ψ)δgdσ + R

2γ

∞∑
n=0

(
QL

n + s∗
n

)
δgn (9)

where

s∗
n =

{
sn, if 0 ≤ n ≤ L

0, otherwise
(10)

Equation 9 combines gravity disturbance data within the
spherical cap around the computation point with the Laplace
harmonics δgn of the gravity disturbance. The representa-
tion of Eq. 9 is equivalent to Eq. 1. The modified truncation
coefficients QL

n (ψ0) are a function of the integration radius
and represent the geoid far-zone contribution (outside the cap
σ0):
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QL
n (ψ0) = QL

n =
∫ π

ψ0

HL(ψ)Pn(cosψ) sinψdψ (11a)

= Qn(ψ0) −
L∑

k=0

Enksk (11b)

where Qn(ψ0) = Qn are the Molodensky-type truncation
coefficients (Heiskanen and Moritz 1967, Eq. 7-34) adapted
for the Hotine function:

Qn =
∫ π

ψ0

H(ψ)Pn(cosψ) sinψdψ (12)

and

Enk = 2k + 1

2

∫ cosψ0

−1
Pn(t)Pk(t)dt = 2k + 1

2
Rnk (13)

In practical computations, the integral part Rnk of Eq. 13
is evaluated by recursive formulae given in Paul (1973). The
truncation coefficients of Eq. 11 are evaluated by recursive
relations given by either Jekeli (1979, “AppendixA”) orGuan
and Li (1991, p. 87). These are analogous to the so-called
Molodensky truncation coefficients evaluated by either Paul
(1973) or Hagiwara (1976).

Further, the true gravity disturbance δg is replaced by its
estimate δgT from terrestrial data and the spherical harmonic
expansion of the gravity disturbance δgn by its estimate
δgGGMn as given by a GGM model evaluated to a finite
maximum degreeM (often L = M is adopted). As a general-
isation, arbitrary parameters bn can be used for modification
(in case of Eq. 9, bn = QL

n + s∗
n ). The resulting geoid esti-

mator Ñ is written as:

Ñ = R

4πγ

∫∫
σ0

HL(ψ)δgTdσ + R

2γ

M∑
n=0

bnδg
GGM
n (14)

or equivalently in its spectral form as (c.f. Heiskanen and
Moritz 1967, p. 97):

Ñ = R

4πγ

∞∑
n=0

(
2

n + 1
− QL

n − s∗
n

)
δgTn

+ R

2γ

M∑
n=0

bnδg
GGM
n (15)

In contrast to the Stokes function, the summation in the
Hotine function can start from n = 0. However, in practical
computations, the zero and first degree harmonics can often
be neglected since the origin of the geodetic system is con-
ventionally placed in the mass centre of the Earth and the
adopted normal gravity field is generated by the mass equal

to the actual mass of the Earth. In this case, the recursive rela-
tions for computing the truncation coefficients Qn are given
in Jekeli (1979, “Appendix C”).

2.2 Error propagation

The main objective of modifying either Stokes’s or Hotine’s
formula is to minimise the errors of the geoid estimator.
Based on the spectral form of the true geoid height, the
expected global mean square error (MSE) of the geoid esti-
mator Ñ can be written as (anal. to Sjöberg 2003b, Eq. 13):

(
δ Ñ

)2 = (
δ Ñ

)2
TR + (

δ Ñ
)2
T + (

δ Ñ
)2
GGM (16)

where

(
δ Ñ

)2
TR =

(
R

2γ

)2 ∞∑
n=0

(
b∗
n − s∗

n − QL
n

)2
c2n (17a)

(
δ Ñ

)2
T =

(
R

2γ

)2 ∞∑
n=0

(
2

n + 1
− s∗

n − QL
n

)2

σ 2
n (17b)

(
δ Ñ

)2
GGM =

(
R

2γ

)2 M∑
n=0

b2ndc
2
n (17c)

and

b∗
n =

{
bn, if 0 ≤ n ≤ M

0, otherwise
(18)

Equations 17a, 17b and 17c represent the error con-
tribution due to truncation, terrestrial data and the GGM,
respectively.

The following notation is used: σ 2
n for terrestrial gravity

error degree variances, dc2n for GGM error degree variances
and c2n for gravity signal degree variances. Practical esti-
mation of these is discussed in Sect. 4. These models are
assumed to describe the gravity disturbance signal and error
properties which are then propagated through Eq. 16 to find
an estimate of the geoid model error that corresponds to the
specific signal and error models selected.

Notice that Eqs. 17a and 17c differ from the Stokes coun-
terparts only by the definition of the symbols used in them,
while Eq. 17b differs also by the first term in the parenthesis.

Apparently, the expected global MSE is affected by the
aforementioned variance models as well as by the modifica-
tion conditions: choice of ψ0, L and M . However, the key
factor to minimise

(
δ Ñ

)2
is a suitable selection of the param-

eters sn . Different modifications to the Hotine formula are
applied through selecting the bn and sn parameters. Specific
modifications will be presented below.
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2.3 The Wong and Gore type (WG) deterministic
modification

The modification coefficients sn of deterministic methods
are invariant to input data error estimates. Reviews and
comparisons of various aspects of the deterministic modifi-
cation methods can be found, e.g. in Jekeli (1981), Heck and
Grüninger (1987), Vaníček and Featherstone (1998), Feath-
erstone et al. (1998), Featherstone (2003a).

In this contribution, a simple deterministic band-limited
modification subtracting polynomial terms from the original
function is used. For the Stokes function, it was presented
by Wong and Gore (1969). It was first applied to the Hotine
function by Vanícek et al. (1992), Sjöberg and Nord (1992)
and also used byNovák andHeck (2002),Novák et al. (2003).
For this modification the coefficients bn = sn + QL

n with
sn = 2/(n + 1).

Although a deterministic modification does not require
estimation of signal and error degree variances for determi-
nation of the modification parameters sn , these are required
to compute the expected global MSE by Eq. 16.

2.4 Stochastic least squares modification

The globalMSE of Ñ given by Eq. 16 isminimised by select-
ing appropriate LS modification parameters bn and sn . To
obtain the modification parameters, Eq. 16 is differentiated
with respect to each sk (k = 0, 1, 2, . . . , L) and equated to
zero (anal. to Sjöberg 2003b, Eq. 15):

∂
(
δ Ñ

)2
∂sk

= 2

(
r

2γ

)2 ∞∑
n=2

(
δnk + ∂QL

n

∂sk

)

×
[(

QL
n + s∗

n

)
Cn − pn

]
= 0 (19)

where δnk is the Kroenecker delta defined as:

δnk =
{
1, if n = k

0, otherwise
(20)

and

pn = 2σ 2
n

n + 1
(21)

Cn is constructed from signal and error degree variances, see
Eqs. 28 and 29 below.

With Eq. 19, the following linear system of equations is
arrived at (anal. to Sjöberg 2003b, Eq. 14b):

L∑
r=0

akr sr = hk (22)

where the coefficients akr and hk can be expressed via Qn ,
Enk = −∂QL

n /∂sk , c2n , dc
2
n and σ 2

n (see Eqs. 26–31 below).
The system of equations is then solved in the least squares
sense for sn .

Sjöberg (1984, 1991, 2003b) present three methods of LS
modifications that differ in the choice of parameters bn . The
Biased LS (BLS) modification with

bn,BLS = sn (23)

the Unbiased LS (ULS) modification with

bn,ULS = sn + QL
n (24)

and the Optimum LS (OLS) modification with

bn,OLS =
(
sn + QL

n

)
c2n

/(
c2n + dc2n

)
(25)

The choice of bn dictates the contribution of the truncation
error (bias) in the global MSE (Eq. 17a). For the unbiased
modification, the truncation error is completely reduced up
to degree M , hence the name. The biased and optimum LS
estimators are slightly biased (c.f. Sjöberg 1991, 2003b).
For the optimum method, this bias is small if the GGM-
related errors dc2n are small below the limit of M . With the
GGM-related errors becoming significant, for example by
increasing the maximum degree M of the GGM used, the
bias increases (cf. Table 2). The deterministicWong andGore
method is also unbiased up to degree M .

For the optimum and unbiased method, the linear system
of equations given inEq. 22 is constructed as (anal. to Sjöberg
2003b, Eqs. 14c, 14d):

akr = ark =
∞∑
n=0

Enk EnrCn + δkrCr − EkrCk − ErkCr

(26)

hk = pk − QkCk +
∞∑
n=0

(QnCn − pn) Enk (27)

where for the optimum method:

Cn,OLS = σ 2
n +

{
c2ndc

2
n/

(
c2n + dc2n

)
, if n ≤ M

c2n, if n > M
(28)

and the unbiased method:

Cn,ULS = σ 2
n +

{
dc2n, if n ≤ M

c2n, if n > M
(29)

For the biased LSmodification,M = L is required, Eq. 19
is slightly different, Eqs. 26 and 27 become (anal. to Sjöberg
1991, Eqs. 2.9a, 2.9b):
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akr,BLS = ark =
∞∑
n=0

Enk Enr

(
σ 2
n + c2n

)

+ δkr

(
σ 2
r + dc2r

)
− Ekrσ

2
k − Erkσ

2
r (30)

hk,BLS = pk − Qkσ
2
k

+
∞∑
n=0

[
Qn

(
σ 2
n + c2n

)
− pn

]
Enk (31)

Notice that Eqs. 26–31 differ from the Stokes counterparts
presented in Sjöberg (2003b) by the definition of the symbols
used in them.

2.5 Solution to the linear system of equations

The linear system of equations given in Eq. 22 can be written
in matrix form as:

As = h (32)

Estimates ŝn of the modification parameters sn are then
expressed as:

ŝ = A−1h (33)

However, for the optimum and unbiased LS modification,
the system of equations given in Eq. 33 is ill-conditioned, see
Ågren (2004, Sect. 3.2.3). To obtain a solution, a numerical
method, such as Singular Value Decomposition (SVD), can
be used instead of direct inversion of A, see e.g. Ellmann
(2005b) and Ellmann (2004, Sect. 3.3).

Depending on the numerical method used to solve the sys-
tem of equations, the sn coefficients can be very different. For
each set of sn , a corresponding set of QL

n are computed by
Eq. 11b. The modified truncation coefficients QL

n counter-
balance the values of sn in such a way that the resulting bn
coefficients for different sets of sn are very similar (see also
Sect. 7.1).

3 Additive corrections

The application of Stokes’s or Hotine’s integral requires that
no masses lay above the geoid surface approximated by
radius R. The traditional remove-compute-restore method
to fulfil this requirement is to reduce the surface grav-
ity anomaly for forbidden masses, compute the co-geoid
from the reduced gravity anomalies and correct the co-geoid
by indirect effects (see e.g. Ellmann and Vaníček 2007 or
Sjöberg 2003a, Sect. 2). An alternativemethod of geoid com-
putation summarised by Sjöberg (2003a) is to compute an
approximate geoid height from the original surface gravity

anomalies by Eq. 15 and add the necessary effects directly
to the approximate geoid height as:

N = Ñ + δNCOMB + δNDWC + δNATM + δNELL (34)

where δNCOMB is the combined topographic effect, δNDWC is
the combined downward continuation (DWC) effect, δNATM

is the combined atmospheric effect and δNELL is the com-
bined ellipsoidal effect.

Ñ , the result of Eq. 15 can also be used for quasigeoid
(i.e. height anomaly) modelling by:

ζ = Ñ + δζCOMB + δζDWC + δζATM + δζELL (35)

where δζCOMB, δζDWC, δζATM and δζELL are the correspond-
ing combined,DWC, atmospheric and ellipsoidal corrections
for quasigeoid determination.

The combined corrections corresponding to the Hotine
functionhavebeenderived following the principles presented
in Sjöberg (2003a) and the original publications referenced
therein. These additive corrections will be presented for
both geoid and quasigeoid computations in Sects. 3.1–3.4.
Detailed derivations are omitted from this contribution to
keep the representation concise.

3.1 Combined topographic effect

The combined topographic effect reflects the removal and
restoration (by any method) of topographic masses from
above the geoid, see e.g. Sjöberg and Bagherbandi (2017),
Sect. 5.2. Since the combined topographic effect follows
from the potential of removed topography and the Bruns for-
mula (cf. Heiskanen and Moritz 1967, Eq. 2-144), it is the
same for the Stokes or Hotine formula.

δNCOMB can be computed as (Sjöberg 2007, Eqs. 20
and 27):

δNCOMB = −2πGρ

γ

(
H2

P + 2

3

H3
P

rP

)
(36)

For quasigeoid computations (Sjöberg 2000, Eq. 77):

δζCOMB = 0 (37)

i.e. there is no combined topographic effect in the LS modi-
fied Hotine formula.

3.2 Combined downward continuation effect

The combined downward continuation effect for geoid com-
putation is (anal. to Ågren et al. 2009b, Eq. 3, see also Ågren
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2004, Sect. 5.4.1):

δNDWC(P) = δN (1)
DWC(P) + δNL(1),far

DWC (P)

+ δNL(2)
DWC(P) (38)

δN (1)
DWC is the term for downward continuation from com-

putation point level to sea level of the unmodified Hotine
formula:

δN (1)
DWC(P) = δg(P)

γ
HP + ζ 0

P

rP
HP − 1

2γ

∂δg

∂r

∣∣∣∣
P
H2

P (39)

where ζ 0
P is an approximate value of the height anomaly ζ

(usually ζ 0
P ≈ Ñ is sufficient, see e.g. Ågren 2004, p. 120)

and ∂δg/∂r is the vertical gradient of gravity disturbance
computed analogously toHeiskanen andMoritz (1967, Eq. 2-
217). Notice that, compared to the Stokes counterpart, the
factor 3 is not present in the second term of Eq. 39.

δNL(1),far
DWC is the term for downward continuation from

computation point level to sea level of the far-zone contribu-
tion of modified Hotine’s formula:

δNL(1),far
DWC (P)

= R

2γ

M∑
n=0

(
sn + QL

n

)[(
R

rP

)n+2

− 1

]
δgGGMn (P)

(40)

δNL(2)
DWC is the term for downward continuation from the

integration point level to the computation point level of mod-
ified Hotine’s formula:

δNL(2)
DWC(P)

= R

4πγ

∫∫
σ0

HL(ψ)

(
∂δg

∂r

∣∣∣∣
Q

(HP − HQ)

)
dσQ

(41)

where Q is the running point in the integral.
The combined downward continuation effect for quasi-

geoid computation is (anal. to Ågren et al. 2009b, Eq. 9):

δζDWC(P) = δζ
(1)
DWC(P) + δζ

L(1),far
DWC (P) + δζ

L(2)
DWC(P)

= δζ
(1)
DWC(P) + δNL(1),far

DWC (P) + δNL(2)
DWC(P)

(42)

with

δζ
(1)
DWC(P) = 3

ζ 0
P

rP
HP (43)

Notice that, similarly to the Stokes counterpart, the factor 3
is also present in δζ

(1)
DWC.

3.3 Combined atmospheric effect

The combined atmospheric effect reflects the removal and
restoration of atmospheric masses. On the current accuracy
level δNATM ≈ δζATM (Ågren et al. 2009b) and the effect
can be computed by (anal. to Sjöberg andNahavandchi 2000,
Eq. 41):

δNATM(P) ≈ δζATM(P)

= −2πRGρA

γ

M∑
n=0

(
2

n + 1
− sn − QL

n

)
Hn(P)

−2πRGρA

γ

∞∑
n=M+1

(
2

n + 1
− n + 2

2n + 1
QL

n

)
Hn(P) (44)

where ρA is the atmospheric density at sea level, G is the
gravitational constant and Hn are the Laplace surface har-
monics of the topographic height.

3.4 Combined ellipsoidal effect

The combined ellipsoidal effect accounts for the error (to
order e2 with e being the ellipticity of the reference ellipsoid)
stemming from the spherical approximation of the Hotine
formula. On the current accuracy level δNELL ≈ δζELL
(Ågren et al. 2009b) and the effect can be computed by (anal.
to Sjöberg 2004):

δNELL(P) ≈ δζELL(P) = R

2γ

∞∑
n=0

(
2

n + 1
− s∗

n − QL
n

)

×
(
a − R

R
δgGGMn (P) + a

R
(δge)n

)
(45)

with

(δge)n = e2

2a

n∑
m=−n

{
[3 − (n − 3)Fnm]Tnm

− (n + 2)GnmTn−2,m

− (n + 5)EnmTn+2,m

}
Ynm(P) (46)

where Tnm are the spherical harmonic coefficients for the dis-
turbing potential. For the ellipsoidal coefficients Fnm, Gnm

and Enm, see Sjöberg (2004, “Appendix”).

4 Degree variance models of data and their errors

In contrast to deterministic modifications, the stochastic
methods aiming to minimise the truncation error and errors
stemming from input data, depend on a priori or empirical
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stochastic models describing the signal and error properties
of the input data. Therefore, estimates for the gravity dis-
turbance signal degree variances c2n , terrestrial error degree
variances σ 2

n and GGM error degree variances dc2n need to
be compiled.

Gravity anomaly signal degree variances can be based on
standard models such as Kaula’s rule (Kaula 1963) or the
Tscherning and Rapp (1974) model, a more recent model,
e.g. Rexer andHirt (2015), but also onGGMmodels directly.

The gravity disturbance (signal or error) degree variances
d2n,δg can be expressed in terms of the gravity anomaly degree

variances d2n,�g as:

d2n,δg = (n + 1)2

(n − 1)2
d2n,�g (47)

Equation 47 follows from the relation between the Laplace
harmonics of the disturbing potential and the gravity anomaly
(Heiskanen andMoritz 1967, Eq. 2-155) or the gravity distur-
bance (Heiskanen andMoritz 1967, Eq. 2-153). As seen from
Eq. 47, the difference in anomaly and disturbance degree
variances becomes smaller and approaches zerowith increas-
ing degree n.

Notice that, instead of adapting the gravity anomaly
degree variances to gravity disturbance by the relation given
in Eq. 47, standard models corresponding to Kaula’s rule
or the Tscherning and Rapp (1974) model could directly be
constructed for the gravity disturbances.

The signal and GGM error degree variances are usually
estimated as global averages, not necessarily yielding esti-
mates suitable for a specific region of study. However, if
necessary, regionally adapted estimates (e.g. Heiskanen and
Moritz 1967, Eq. 7-8) or empirical scaling factors can be
used.

In principle, a possible correlation between terrestrial and
GGM information can also be considered, see e.g. Sjöberg
(1991), Sect. 4. However, this can generally be avoided by
using appropriate modification limits. For instance, satellite-
only GGMs have no correlation with terrestrial data.

Although the spectral models are only estimates and may
be inaccurate, the choice of using stochastic modifications
assumes that a coarsemodel should be preferred over neglect-
ing the errors of terrestrial and gravity data completely (by
not modifying the Stokes or Hotine formula) or determinis-
tic modifications eliminating certain contributions (e.g. long
wavelength information from terrestrial data) by selection.
See also the discussion in Heck and Grüninger (1987).

5 Case study

The LSMHA method of geoid or quasigeoid computation
described above will be numerically verified in a case study.

Alternative geoid models will be computed from gravity
anomalies or disturbances using the different modification
methods described above, thereby explaining the differences
of geoid computation via various modifications of Stokes’s
or Hotine’s formula.

5.1 Study area and input data

To verify the LSMHA quasigeoid modelling approach both
in marine and land areas, a study area located in the North of
Sweden, Europe was selected. This area was selected as the
current researchwas conducted to support theNordic Geode-
tic Commission (NKG) geoid modelling efforts (Ågren et al.
2016; ISG 2015) and the FAMOS project (FAMOS Consor-
tium 2014) which aim at computing a geoid model over the
Nordic–Baltic area. It also includes both high terrain and
marine areas.

The target area with geographical limits of 64◦–68.2◦ N,
16.4◦–23◦ E includes a part of the Gulf of Botnia and terrain
with elevations from 0 to 1900 m. The aim was to compute a
quasigeoid model on a grid of 0.01◦ by 0.02◦ over the study
area.

A gravity disturbance grid generated for the NKG geoid
modelling project was used as terrestrial gravity information.
The disturbance grid was generated from an anomaly grid
using a quasigeoid model, i.e. it was not constructed from
real gravity data with ellipsoidal heights.

For the current case study, the gravity disturbances were
available on a grid of 0.01◦ by 0.02◦ over the target area
(Fig. 2) and its surroundings extended by 2◦ from each side
of the rectangular target area. Also, the digital terrain model
(DTM, averaged to 0.002◦ by 0.004◦, cf. Figure 1) and
the GNSS/levelling database compiled for the NKG geoid
project were used. The global topography was described
by the SRTM30_PLUS (Becker et al. 2009) model. The
GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2014) model
available from Barthelmes and Köhler (2016) was used as
a reference GGM both in gravity gridding and geoid mod-
elling. For more details on gravity gridding, see Märdla et al.
(2017a).

5.2 Parameters of geoid computations

An approximate geoid model was computed by four modi-
fication methods of Hotine’s formula: WG, BLS, ULS and
OLS. For comparison, traditional Stokes’s counterparts were
also computed.

All of the test computations were performed for the inte-
gration cap size of ψ0 = 2◦, which was also used for the
NKG2015 quasigeoidmodel. For other cap sizes, differences
between Stokes’s and Hotine’s formula may vary, see also
Jekeli (1980).
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Fig. 1 Terrain elevations

Fig. 2 Gravity grid

The zero and first degree harmonics were omitted from
computations by Hotine’s formula by starting the summation
at n = 2, using the corresponding Eq. 8 and truncation coef-
ficients Qn computed as in Jekeli (1979, “Appendix C”), thus
making the results directly comparable to the Stokes coun-
terparts. Correspondingly, the additive corrections of degrees
n = 0, 1 were also neglected from geoid and quasigeoid
computations.

The global RMS error (square root of MSE given by
Eq. 16) was used to find appropriate modification limits L ,
see Sect. 5.2.1. The use of estimated global RMS error values
for the selection of modification limits can yield geoid mod-
els with higher accuracy also with respect to GNSS/levelling
control points. Nevertheless, it also requires that appropriate
signal and error degree variance models be selected which is
otherwise not necessary for deterministic modifications.

5.2.1 Modification limits

Asoften done in practice (e.g. Featherstone 2003b, Sect. 4.1),
the Wong and Gore type modification was improved by
allowing twomodification limits L1 and L2 (L1 ≤ L2 ≤ M)

by which a transferring band from the Wong and Gore type
modification to no modification can be created, i.e. the coef-
ficients sn were computed as:

sn,WG =

⎧⎪⎨
⎪⎩

2
n+1 , if n ≤ L1
2

n+1 × L2−n
L2−L1 , if L1 ≤ n ≤ L2

0, if n ≥ L2

(48)

Table 1 illustrates the error contribution of different
sources through different WG modification degrees L1 and
L2. Judging by the total global RMS error, it would be opti-
mal to use a combination of low L1 and high L2, thereby
allowing a long span of degrees n for the transition from
the GGM to the terrestrial data contribution (which is in fact
automatically allowed by the LS modifications). Therefore,
the limits of L1 = 50 and L2 = 200 were selected for the
WG computations.

Although experience has shown that the WG solution
improves with increasing cap size (Sjöberg 2005, Table 1),
it was not the aim of the current study to find the optimum
WG solution. Thus, integration cap size ofψ0 = 2◦ was also
used for the WG modification.

The Wong and Gore type modification is often used in
conjunction with the RCR geoid modelling method whereby
the gravity data need to be reduced before input to the Stokes
formula. However, notice that, by applying the modification
the LSMSA way, the surface gravity anomalies are used for
integration. The LSMSAmethod has been compared to RCR
methods several times, see e.g. Ågren (2004), Chaps. 7 and 9;
Ågren et al. (2009a), etc.

A shortcoming of using the deterministic WG modifi-
cation is the effort needed to find appropriate modification
limits. Finding a suitable modification limit for the LS mod-
ifications requires considerably less effort.

As seen from Table 2, provided that the limit L is suffi-
ciently high to allow the GGM to contribute within the range
of which it is considered to contain valuable information,
the resulting expected global RMS is not very sensitive to
the actual modification limit selected (the GGM contribution
is automatically lowered for higher degrees). Consequently,
the limit of L = 200 was selected for all of the LS mod-
ifications. Although not presented in detail in the current
manuscript, many test computations performed during the
NKG geoid modelling project have confirmed the suitabil-
ity of such a limit in terms of expected global RMS and/or
GNSS/levelling fit.

Note that the use of L = 200 in LS modifications implies
that the data from the GGM can not be considered above
n = 200 and for all of the lower degrees, the contribution
of the GGM and terrestrial data is weighted according to the
error models supplied.

The additive corrections were computed using the cor-
responding limit M = L = 200. For the computation of
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Table 1 Expected global RMS
of the WG type modifications
for various modification limits
L1 and L2, units: mm

L2 200 150 100 50

L1 200 150 100 50 150 100 50 100 50 50

(
δ Ñ

)2
TR 39.8 18.25 9.17 2.79 16.81 10.21 5.81 9.52 14.61 14.28(

δ Ñ
)2
T 8.64 9.10 9.86 10.85 9.94 11.37 12.45 13.01 14.64 19.95(

δ Ñ
)2
GGM 6.08 4.47 2.86 1.74 2.93 1.54 0.81 0.97 0.91 0.72

(
δ Ñ

)2
41.18 20.88 13.77 11.34 19.75 15.36 13.76 16.15 20.70 24.55

Table 2 Expected global RMS of BLS modifications for various mod-
ification limits L , units: mm

L 150 200 250 300

(
δ Ñ

)2
TR 35.04 2.02 2.75 2.80(

δ Ñ
)2
T 10.83 10.84 11.58 12.00(

δ Ñ
)2
GGM 1.46 1.73 1.73 1.73(

δ Ñ
)2

36.71 11.16 12.02 12.44

the combined atmospheric effect, the spherical harmonic
expansion of the global topographic elevation was truncated
to themaximumdegree of n = 720 as inÅgren et al. (2009b),
see also Sjöberg (2003c, Table 2).

5.2.2 Degree variance models

As discussed in Sect. 4, the application of stochastic modifi-
cations to the Stokes or Hotine formula depends on a priori
knowledge of gravity signal and error properties provided
in the form of degree variances. Since the study area over-
laps, spectral models similar to Ågren et al. (2009b, Table 1)
were used for the case study of this contribution. For the used
degree variance plots, see Märdla et al. (2017b).

The gravity anomaly signal degree variances cn,�g were
constructed by the Tscherning andRapp (1974)model scaled
by 0.52. Such rescaling increases the model fit to GGM
signal degree variances most from degree 10 to 40. The
GGM error degree variances dcn,�g as published for the
GO_CONS_GCF_2_DIR_R5 GGM model were used with-
out rescaling. The terrestrial gravity error degree variances
σn,�g were constructed as a combination of the recipro-
cal distance (RD) and white noise (WN) models with the
following parameters: standard deviation of 0.5 mGal and
correlation length of 0.25◦ for RD, standard deviation of
1 mGal and Nyquist degree of 3960 for the WN part.

In this contribution, the gravity disturbance degree vari-
ances were derived by Eq. 47 from those of gravity anomaly.
However, in practical computations, the gravity anomaly
degree variances dn,�g can safely be used also for compu-
tations by Hotine’s formula as the signal and error models
are rough and in no way specific to gravity anomaly or dis-

turbance, nor the region of study. Related quasigeoid model
differences remainwithin amm(standarddeviation, SD)over
the current study area.

6 Illustration of the LSMHA computation scheme

The LSMHA (quasi)geoid computation scheme is illustrated
by the contributions of different computational steps. Fig-
ure 3 depicts these for the Unbiased LSMHA.

Figures 3a–d depict the partial contributions of the down-
ward continuation effect to the geoid and quasigeoid model
(Eqs. 38 and 42, respectively). In quasigeoid computation,
over the given study area the δζ

L(2)
DWC part dominates the

DWC correction with values from−6 to 11 cm together with
δζ

L(1),far
DWC with negative values up to−5 cm. In geoid compu-

tation, δN (1)
DWC is also significant, with values reaching up to

36 cm.
Figures 3e and f depict the contribution of the combined

atmospheric (Eq. 44) and ellipsoidal (Eq. 45) effect, respec-
tively. Both are in the order of a few mm, thus negligible in
many practical cases.

Figure 3g depicts the contribution of the near zone (first
part of Eq. 14), i.e. the terrestrial gravity data from within
the spherical cap σ0, while Fig. 3h depicts the contribution
of the far zone (second part of Eq. 14), i.e. long wavelength
information provided by the GGM.

Finally, Figure 3i depicts the resulting quasigeoid model
ζ of Eq. 35, i.e. the sum of the near zone, far-zone and the
additive correction contribution.

7 Comparison of the geoid modelling methods

In this section, the differences between geoid modelling by
Stokes’s or Hotine’s formula and the various modifications
thereof will be illustrated and discussed.

7.1 Modification parameters

First, the unmodified truncation coefficients of Eq. 12 eval-
uated by the recursive relations given in Jekeli (1979,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Contributions of different computational steps of the Unbiased
LSMHA procedure; min, max, mean and SD values in parenthesis,
units: m. a δζ

(1)
DWC (0.0000, 0.0293, 0.0055, 0.0043), b δζ

L(1),far
DWC =

δNL(1),far
DWC (−0.0470, 0.0010, −0.0080, 0.0070), c δζ

L(2)
DWC = δNL(2),far

DWC

(−0.0563, 0.1132, −0.0116, 0.0171), d δN (1)
DWC (−0.0382, 0.3664,

0.0115, 0.0223), e δζATM = δNATM (−0.0015, 0.0005, −0.0001,
0.0004), f δζELL = δNELL (−0.0014, 0.0012,−0.0005, 0.0005), g near
zone (−2.121, 1.340, 0.077, 0.380), h far zone (18.511, 33.055, 27.770,
3.525), i final quasigeoid model (18.442, 33.093, 27.833, 3.599)
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Fig. 4 Modification parameters for Hotine’s (red) or Stokes’s (blue)
function (the horizontal axis of Fig. 4a–e depicts the degree n while that
of Fig. 4f the spherical distance ψ). a sn coefficients for the WG (and
BLS) modifications, b sn coefficients for the ULS (and OLS) modifica-

tions, c sn coefficients for the ULSmodification obtained without SVD,
d Unmodified truncation coefficients Qn , e Modification parameters
bn , f the original (solid), WG modified (dotted), LS modified (dashed)
Hotine or Stokes function

“Appendix C”) are visualised in Fig. 4d. Compared to the
traditional Molodensky truncation coefficients that can be
evaluated by relations given in Paul (1973) or Hagiwara
(1976), theHotine counterparts have a slightly smaller ampli-
tude, but similar shape.

What distinguishes the different modifications of Hotine’s
formula from each other, are the modification coefficients sn .
For the deterministic WG modification of Hotine’s formula,
the coefficients sn steadily decrease from 2

3 to 0, see Fig. 4a.
Interestingly, sn of theBLSmodification follow theWGcoef-
ficients very closely. Compared to the Hotine versions, the
original Stokes WG and BLS sn coefficients start decreasing
from 2.

While the WG and BLS sn coefficients are steadily
decreasing, those of ULS and OLS modification undulate,
see Fig. 4b. For the same input parameters, the coefficients
sn of ULS and OLS are almost identical. Compared to the
Stokes counterparts, the Hotine coefficients undulate with a
larger amplitude (but roughly in the same phase).

As discussed in Sect. 2.5, the shape of ULS or OLS sn
coefficients depends strongly on the numerical method used
to solve the system of equations given in Eq. 22. The solution
presented in Fig. 4b has been obtained by Singular Value
Decomposition as implemented in Press et al. (1992) with a
singular value limit of 10−12. A different solution is obtained

by straightforward inversion of the matrix A, see Eq. 33 and
Fig. 4c. The undulation of this solution looks rather random
and difficult to compare to the Stokes counterpart. However,
the resulting quasigeoid models obtained by using the sn
coefficients depicted in Figs. 4b or c differ numerically by
±0.3 mm only.

As seen from Eq. 15, the contribution of terrestrial data
and the GGM is tuned by the combination of the modifica-
tion parameters sn , the modified truncation parameters QL

n
and the parameters bn , the latter two being functions of sn .
In fact, the modified truncation parameters QL

n determined
by Eq. 11b work in conjunction with the corresponding sn
in such a way that the coefficients bn become very similar
regardless of the modification method used. That is, for all of
the modifications, the bn coefficients are close to the sn val-
ues of the Wong and Gore modification method, see Fig. 4e.
Consequently, the Hotine bn coefficients start from a smaller
value than the Stokes counterparts. As seen from the sec-
ond part of Eq. 15, smaller values of bn result in a smaller
contribution of the GGM to the geoid estimator.

The contribution of the terrestrial gravity data within the
spherical cap σ0 is determined by the modified Hotine func-
tion (Eq. 6). As a result of different modification coefficients
sn , the modified Hotine function has a slightly varying shape,
see Fig. 4f.
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Table 3 Expected global RMS
error of geoid modelling (based
on different degree variance
models for the Stokes and
Hotine formula, see Sect. 5.2.2),
units: mm

n Stokes Hotine

WG BLS ULS OLS WG BLS ULS OLS

(
δ Ñ

)2
TR 2 . . . L 0.00 0.20 0.00 0.04 0.00 0.24 0.00 0.04

L + 1 . . .∞ 2.79 2.01 2.16 2.16 2.78 2.00 2.24 2.24

2 . . .∞ 2.79 2.02 2.16 2.16 2.78 2.02 2.24 2.24

(
δ Ñ

)2
T 2 . . . L 6.54 6.39 6.33 6.33 6.53 6.51 6.41 6.41

L + 1 . . .∞ 8.66 8.67 8.67 8.67 8.66 8.67 8.67 8.67

2 . . .∞ 10.85 10.77 10.73 10.73 10.85 10.84 10.78 10.78

(
δ Ñ

)2
GGM 2 . . . L 1.74 1.77 1.80 1.80 1.73 1.73 1.77 1.77

L + 1 . . .∞ − − − − − − − −
2 . . .∞ 1.74 1.77 1.80 1.80 1.73 1.73 1.77 1.77

(
δ Ñ

)2
2 . . . L 6.76 6.63 6.58 6.58 6.76 6.74 6.65 6.65

L + 1 . . .∞ 9.10 8.90 8.93 8.93 9.09 8.90 8.95 8.95

2 . . .∞ 11.34 11.10 11.09 11.09 11.33 11.16 11.15 11.15

Bold values represent the total expected error

7.2 Expected global mean square error

Although the expected global MSE of Eq. 16 is only a mea-
sure to propagate the assumed signal and error models to
expected geoid model errors, it can be used to compare
the different geoid modelling methods. In Table 3, the total
and partial contributions of the global RMS error are pre-
sented for the different modification methods of Stokes’s and
Hotine’s formula, again illustrating the similarities and dif-
ferences of the modification methods.

All of the LSmodifications of Hotine’s formula yield very
similar global error estimates. As the name suggests, the BLS
modification yields a slightly larger truncation error (bias) for
degrees 2− L than the ULS and OLS modifications that are
numerically very similar to each other.

With the optimal modification limits L1 = 50 and L2 =
200, the WG modification of Hotine’s formula shows rather
similar error characteristics to the LS modifications. How-
ever, as seen from Table 1, this is highly dependent on the
chosen modification limits. See for example how the terres-
trial data error contribution lowers with decreasing L1 for
fixed L2 = 200.

Although Table 3 suggests that the LS modifications of
Hotine’s formula yield a somewhat larger expected global
RMS than the LS modifications of Stokes’s formula, this
result is dependent on the way the gravity disturbance degree
variances were determined from those of gravity anomalies
by Eq. 47. If the degree variances of gravity disturbance
were assumed to be equal to those of anomalies (a case
not presented in Table 3), the corresponding total expected
error would be 11.01 mm which is in turn less than that
of the Stokes modifications. Such theoretical superiority of
Hotine’s formula over Stokes’s formula under the assump-

tion of equal (or smaller) degree variances has often been
pointed out, see e.g. Sjöberg (1986b, Sect. 4) and Li (1991,
Fig. 1).

8 Comparison of resulting geoid models

The differences of geoid models obtained by using the ULS
and WG modifications of the Stokes or Hotine formula will
be discussed below.

8.1 Approximate geoid models

First, the approximate geoid model Ñ (Eq. 15) computed
by the Hotine formula is compared to that computed by the
Stokes formula, see Fig. 5.

While the contributions of the near and far zone of theULS
modified Stokes’s or Hotine’s formula differ on average by
7 cm, the sum of these i.e. the approximate geoid Ñ , is rather
similar, see Fig. 5a. The maximum differences of 1.3 cm
occur in the high topography region, while the SD of the
differences is only 3 mm.

Since the LS modification can be sensitive to the input
error estimates, the comparison of WG modifications is also
shown, see Fig. 5b. The differences of the WGmodifications
are mostly within ±1 mm (SD, ignoring the edge effects).

8.2 Additive corrections

Second, the additive corrections for geoid or quasigeoid com-
putations by the Stokes or Hotine formula are compared.

As discussed in Sect. 3.1, the combined topographic effect
is the same for both approaches. Thefirst part ofDWCcorrec-
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Fig. 5 Differences of approximate geoid models Ñ computed by
Stokes’s or Hotine’s formula. a ULS modification, bWG modification

Fig. 6 Differences of partial contributions of the combined DWC
effect computed for usewith theStokes orHotine formula.a δζ

L(1),far
DWC =

δNL(1),far
DWC , b δζ

L(2)
DWC = δNL(2)

DWC

tion for quasigeoid computation δζ
(1)
DWC (Eq. 43) does not dif-

fer either. Although δN (1)
DWC (Eq. 39) differs from the Stokes

counterpart by the factor 3 missing from the second term,
the other two terms clearly dominate in δN (1)

DWC. As a result,

δN (1)
DWC is practically equal for the Stokes and Hotine case.

The differences in the other parts δNL(1),far
DWC (Eq. 40) and

δNL(2)
DWC (Eq. 41) can be significant, see Fig. 6. The total DWC

contribution differences to geoid or quasigeoid models have
an average of −0.2 mm, SD of 2 mm and an absolute maxi-
mum value of 7 mm with a clear NW–SE tilt, dominated by
the contribution of δNL(2)

DWC.
With maximum ±0.1 mm, the differences of the com-

bined atmospheric correction (Eq. 44) are negligible. The
combined ellipsoidal correction (Eq. 45) has a mean differ-
ence of 0.3 mm with a SD of 0.1 mm.

From the above, it can be concluded that to adapt geoid
or quasigeoid computation routines from the Stokes version
to the Hotine version, it is in most cases sufficient to adapt
only theDWCcorrection andmore specifically, the δNL(1),far

DWC

and δNL(2)
DWC contributions only. Intuitively, the gravity distur-

bance gradient present in the DWC correction can safely be
approximated with that of gravity anomaly.

8.3 (Quasi)geoid models

Third, the final geoid/quasigeoid models computed by the
Stokes or Hotine formula are compared. From the previous
subsection, it follows that the differences are the same for
geoid and quasigeoid models.

The models computed by ULS have an average differ-
ence of 5 mm, SD of 1 mm and the maximum differences
reach 8 mm, occurring in the mountainous areas, see Fig. 7a.
Together with the additive corrections, the differences of
WG modifications of Stokes’s or Hotine’s formula are only
slightly smaller than the ULS differences, see Fig. 7b.

These resultsmay by somewhat affected by the input grav-
ity disturbance grid being deduced from the anomaly grid
using an existing quasigeoidmodel. For amore rigorous com-
parison, synthetic or specially collected gravity data could be
used.

8.4 Evaluation by GNSS/levelling control points

Independent evaluation of geoid modelling is possible by
comparison to co-located GNSS and levelling control points.
However, it has to be acknowledged that both GNSS and
levelling data contain errors that can be much larger in mag-
nitude than the quasigeoid differences being evaluated (see
e.g. Lysaker et al. 2007).

Fig. 7 Differences of (quasi)geoid models computed by Stokes’s or
Hotine’s formula. a ULS modification, b WG modification
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Fig. 8 Hotine ULS quasigeoid validation by GNSS/levelling points
after mean removal, units: cm

Table 4 RMS values of the
quasigeoid differences from
GNSS/levelling control points
after mean removal, unit: cm

Stokes Hotine

WG 2.34 2.38

BLS 2.44 2.43

ULS 2.42 2.40

OLS 2.42 2.40

In the current study area, there are 37 GNSS/levelling
points available. These refer to the Swedish national ETRS89
realisation SWEREF99 (converted to the zero permanent
tide system) and the national EVRS realisation RH2000 (c.f.
Ågren et al. 2016; Häkli et al. 2016).

The differences of the quasigeoid computed by ULSmod-
ified Hotine’s formula from the GNSS/levelling points after
mean removal are presented in Fig. 8. The clearly systematic
NW to SE trend is characteristic to GNSS/levelling com-
parisons made in this area (although not all over Sweden)
possibly due to height data being inaccurate.

Existing control points are positioned mostly in areas of
low elevation, which is likely a case for most study areas as
accurate levelling lines are rarely available in highmountains.
There the alternative quasigeoid models differ very little.
Consequently, the validation results for other methods look
very similar to Fig. 8. The variation in RMS values of quasi-
geoid differences from the GNSS/levelling control points of
the alternative quasigeoid models are at the sub-millimetre
level (see Table 4) which is statistically insignificant.

Although it was not the aim of this contribution, it was
demonstrated that the deterministic WG solution can yield
geoidmodels as accurate as the LSmodification. However, to
obtain such results, a considerable effort to find appropriate
modification limits was required.With unsuitable limits (e.g.
L1 = L2 = 200), the respectiveWGmodified geoid models
can differ by±25 cm from the best LSMHAmodels, yielding
GNSS/levelling evaluation results that are 5 times worse.

9 Conclusions and discussion

This contribution adapted the (quasi)geoid modelling meth-
ods of Least Squares Modification of Stokes’s Formula
with Additive Corrections (LSMSA) as presented in Sjöberg
(2003a) to the Hotine formula. Three versions (biased, unbi-
ased and optimum) of the Least Squares modification were
considered. Additive corrections were derived for both geoid
and quasigeoid computations. The (quasi)geoid computa-
tion scheme presented is referred to as the Least Squares
Modification of Hotine’s Formula with Additive Corrections
(LSMHA).

The methods of LSMHA were compared to each other
and the LSMSA counterparts. As a reference, a deterministic
Wong and Gore type modification was used. The modifica-
tion parameters and the expected global root-mean-square
error of resulting geoid models of each method were anal-
ysed.

The final (quasi)geoid model is the sum of the near- and
far-zone contributions (the approximate geoid model) and
the additive corrections that consider the downward contin-
uation, topographic, atmospheric and ellipsoidal effect. The
additive corrections differ slightly for geoid and quasigeoid
modelling.

A case study was used to demonstrate the LSMHA meth-
ods for (quasi)geoid modelling. The results were compared
to the LSMSA counterparts.

The approximate geoid models (used both in geoid and
quasigeoid modelling) computed over the study area via the
Stokes or Hotine formula differ by a few mm (in terms of
SD) with maximum differences of 1.3 cm occurring in areas
of high topography (up to 1900 m). The respective geoid or
quasigeoid models computed have an average difference of
5 mm, SD of 1 mm and a maximum of 8 mm over the study
area.

It was concluded that the differences between using the
Stokes or Hotine formula are smaller than the general geoid
modelling accuracy which is at the level of a few mm in
the most suitable areas (e.g. flat landscape) to a few cm in
more difficult areas (e.g. rugged terrain). The differences are
therefore marginal and may be different under other circum-
stances.

As discussed in the introduction, gravity disturbances are
now often available and could be used for geoid modelling
without being converted to anomalies. It was demonstrated
that the least squares modification principles can be applied
to use gravity disturbances and the Hotine formula, yield-
ing very similar geoid modelling results to those obtained
by the Stokes counterpart. Therefore, either formula can be
used in practical geoid determination tasks. All the necessary
equations for the use of LSMHAwere collected, derived and
presented together in this contribution.
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Stochastic modifications (of both the Hotine and Stokes
formula), such as the LS modifications presented, depend
on estimates of gravity signal and error properties. How-
ever, detailed analysis and improvement of degree variance
modelling was considered to be outside the scope of this
contribution. An advantage of the Hotine formula is the
possibility of including the zero and first degree spherical
harmonics in geoid modelling, although numerical analysis
of their contribution was left for the future.

Although this contribution has presented the use of gravity
anomalies and disturbances via the Stokes or Hotine formula
as alternatives to each other, geoid modelling methods (such
as Least Squares Collocation or various Radial Basis Func-
tions) exist where the use of these can be combined. This is
likely a direction for the future of geoid modelling.
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ABSTRACT
The deduction of a regularly spaced gravity anomaly grid from
scattered survey data is studied, addressing mainly two aspects:
reduction of gravity to anomalies and subsequent interpolation by
various methods. The problem is illustrated in a heterogeneous study
area and contrasting test areas including mountains, low terrains, and
a marine area. Provided with realistic error estimates, Least Squares
Collocation interpolation of Residual Terrain Model anomalies yields
the highest quality gravity grid. In most cases, the Bouguer reduction
and other interpolation methods tested are equally viable. However,
spline-based interpolation should be avoided in marine areas with
trackwise survey data.

KEYWORDS
Bouguer anomaly; gravity
database; gridding;
interpolation; Nordic
Geodetic Commission (NKG);
regional geoid; residual
gravity anomaly; Residual
Terrain Model (RTM) anomaly

Introduction

Although Global Geopotential Models (GGM) have become increasingly detailed and accu-
rate, there is still a need for regional (quasi)geoid models that fulfil the needs of mapping
and engineering applications, especially the conversion of Global Navigation Satellite System
(GNSS)-derived ellipsoidal heights into conventional (physical) heights with respect to the
sea level (as the geoid is a surface that roughly coincides with the mean sea level). Currently,
the geodetic community has set the goal of achieving 5–10 mm accuracy in regional gravi-
metric (quasi)geoid modelling, imposing, thus, strict requirements not only on the model-
ling techniques but also on the input gravity data.

Even though there are (quasi)geoid determination methods that can be applied directly
without prior gridding of input gravity data (such as Tscherning 1985), many modelling
techniques (such as Haagmans, de Min, and Gelderen 1993; Forsberg and Sideris 1993; Li
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and Sideris 1997; Sj€oberg 2003; Ellmann and Van�ı�cek 2007) need a regularly spaced gravity
anomaly grid that has to be determined from the scattered survey data located from a few
hundreds of meters up to a few tens of kilometres apart.

Importantly, geoid modelling is not the only application of gravity (anomaly) grids, these
are also needed for other geosciences. For example, different gravity anomalies (free-air,
simple Bouguer, complete Bouguer, slab-residual, mantle Bouguer etc., see e.g. Hackney and
Featherstone 2003; Radhakrishna, Lasitha, and Mukhopadhyay 2008) are used in two- or
three-dimensional inverse as well as forward modelling by various techniques to interpret
variations in mass and density that reflect the structure of solid Earth. Gravity field deriva-
tives such as gradients also reveal density contrasts (Elkins 1951). Numerous contributions
similar to that of Mandal et al. (2015), Baptiste et al. (2016), and Klitzke et al. (2016) describe
and interpret the gravity field and geophysical features of specific regions. For the user of a
regularly spaced gravity anomaly grid, it is beneficial to be familiar with the basis upon
which such a grid can be constructed and also be aware of limiting factors in grid accuracy.

Regional scale gravity database analysis and gridding are reported in Gil and
Rodr�ıguez�Caderot (1998), Hinze et al. (2005), Vergos et al. (2005), Jekeli et al. (2009),
Mart�ın et al. (2009), Saleh et al. (2013), and V�eronneau (2013). Although gravity anomaly
gridding is a task often performed, it is rarely discussed in detail. Generally a method is
selected according to previous experience, popularity, or software availability. Sometimes
the choice is based on further analysis which is not reported upon in scientific literature.
Accordingly, this contribution will analyse various methods of gravity gridding to determine
their advantages and shortcomings. A general remove-interpolate-restore (RIR) process is
used. That is, the gravity anomaly point values are reduced, interpolated, and then restored
to result in a surface gravity anomaly grid. In further text, the entire RIR process is referred
to as “gridding” interchangeably.

A number of different aspects of gravity data processing are discussed. Most importantly,
two different gravity reduction/restoration methods and four different interpolation meth-
ods will be described and compared. All of these methods are known and often used, see the
reference list. However, this contribution aims at offering a consistent comparison and eval-
uation of some gravity reduction and interpolation methods that could be used over large
and challenging study areas.

In addition, the entire work flow of gravity data processing together with the effect of
some alternative processing choices (such as omitting/incorporating certain reduction
options, data weighting or changing the degree and order of the GGM used) will be dis-
cussed in detail. The current status (coverage and quality) of the North European gravity
data is reviewed, also illustrating the possible ways of solving gravity data unification issues
in the context of a multi-nation geoid modelling study covering both land and marine areas.

The different methodological approaches and subsequent results achieved over the study
area may be useful for any regional gravity gridding exercise worldwide. However, the qual-
ity of the actual result is dependent on many circumstances, including gravity data coverage,
distribution, accuracy, and gravity field properties (rough vs. smooth). These issues will be
discussed in appropriate sections of this contribution.

The research reported in this contribution is an input to the Nordic Geodetic Commis-
sion (NKG) geoid modelling project (A

�
gren et al. 2015, 2016) which aims at calculating a

high-resolution and accurate regional gravimetric quasigeoid model over the Nordic and
Baltic countries in Europe, embedding also the Baltic Sea, North Sea and a large portion of
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the Arctic Ocean. Parts of the research area are topographically varying and data coverage is
rather heterogeneous, challenging the choice of uniform modelling methods for the entire
research area comprising of marine and dry land parts.

The specific area of interest has been subject to NKG geoid modelling projects since the
mid 19800s. The succession of NKG geoid models include NKG-86 (Tscherning and
Forsberg 1986), NKG-89 (Forsberg 1991), NKG-96 (Forsberg, Kaminskis, and Solheim
1997), NKG2002, and NKG2004 (Forsberg, Strykowski, and Solheim 2004). These regional
geoid models were often adapted as national geoid models or height correction surfaces by
fitting to a set of national GNSS/levelling points. In addition to NKG geoid models, parts of
this region have been subject to other gravity field and geoid modelling studies such as
Vermeer (1994), Nor�eus et al. (1997), Korhonen et al. (1999), Omang and Forsberg (2000),
Omang and Forsberg (2002), Ellmann (2002, 2005), J€urgenson (2003), Nahavandchi et al.
(2005), Lysaker et al. (2007), A

�
gren et al. (2009), A

�
gren (2009), Denker et al. (2009),

Bilker-Koivula (2010), Ellmann et al. (2011), Omang et al. (2012), Bilker-Koivula (2014),
and Märdla et al. (2015).

The NKG geoid modelling activities have contained extensive data improvements and pre-
liminary computations. The NKG gravity database has been modernised, thoroughly updated,
and quality checked. A new regional high-resolution Digital Terrain Model (DTM) and an ice
thickness model have been compiled. The used datasets were, if possible and meaningful,
transformed into common reference frames. Preliminary grid compilations were made inde-
pendently by a number of geoid computation centres, using different methods, software pack-
ages and strategies (A

�
gren et al. 2015). It was decided that certain aspects of gravity gridding

should be further investigated before the final geoid computations. This triggered the present
study and also affected the choice of reduction and gridding methods tested.

This paper is organised as follows. First, the gravity reduction and interpolation methods
together with data requirements for accurate geoid computation are explained. Second, the
study area is introduced, leading to a description of experimental gravity gridding. The
results are then analyzed and presented in the context of quasigeoid modelling. Finally, con-
clusions are drawn from the findings of this study.

Gravity reductions for interpolation

Interpolating the surface gravity values g directly is inaccurate as the gravity field contains
high-frequency information due to the topography (or bathymetry), making it difficult for
interpolation algorithms to estimate the correct gravity values at the grid nodes. A gravity
reduction process converts the gravity point data values so that these are more reliable for
prediction at the desired locations.

Thus, the surface gravity anomalies need to be first reduced. After reduction, the scattered
point values are interpolated into a regular grid, leading to a reduced gravity grid. To obtain
the surface gravity anomaly grid, there has to be a corresponding restoration process. Impor-
tantly, the restoration step adds to gravity data gaps either higher or lower frequency infor-
mation from reference sources like the DTM, GGM or other relevant corrections.

The used anomaly types and applied corrections are reviewed below. Besides the two
reduction schemes tested in this contribution, there are others that could be used. These
include mainly isostatic reductions such as the Airy-Heiskanen or the Pratt-Hayford reduc-
tion that could improve the gridding outcome over land or ocean areas, respectively.

MARINE GEODESY 3
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Free-air anomalies

It is assumed that the gravity value g on or above the topography at point P and the corre-
sponding (normal or orthometric) height HP are known. As a first step, the free-air or sur-
face gravity anomaly DgFAA are computed by Heiskanen and Moritz [1967, (7) and (8)]:

D gFAAP D gP ¡ gQ (1)

where gQ is the normal gravity at point Q at the height HP (reckoned from the reference
ellipsoid) and is computed using standard formulas for the GRS-80 normal gravity field, cf.
Moritz (2000).

Although reduced in magnitude (compared to the initial gravity value itself), the free-air
anomaly field can still be quite rough and correlated with height. It is smoother in marine
areas, but significant variations in the bathymetry (not considered in this study) may result
in a comparatively rough field in these areas as well. Thus, a further reduction of gravity
anomalies is often needed to yield a smoother anomaly field.

Simple and complete Bouguer anomalies

Removing the gravitational effect of an infinite planar Bouguer plate leads to the simple Bou-
guer anomaly DgSBA by Heiskanen and Moritz [1967, (3)–(19)]:

DgSBAP DDgFAAP ¡ 2pGrHP (2)

where G is the gravitational constant and r is the topographic density (if approximated to
2670 kg.m¡3 then the last term in the right-hand side becomes 0:1119HP).

In areas of flat terrain, DgSBA can be a useful quantity for gridding. However, in moun-
tainous regions the DgSBA field can be too biased for a meaningful interpolation (Jan�ak and
Van�ı�cek 2005). Therefore, further reduction into planar complete Bouguer anomaly DgCBA

is obtained by Heiskanen and Moritz [1967, (3)–(21)]:

D gCBAP DDgSBAP C dgTP
z2 DHP
z1 DH

�� (3)

where dgTP is the planar terrain correction and H is the height of the moving integration
point (determined from a DTM). Note that the alternative spherical Bouguer anomalies (see
e.g. Van�ı�cek et al. 2001, 2004; Nov�ak et al. 2001; Kuhn et al. 2009) are not considered in this
contribution.

The terrain correction dgTP can be computed using different approximations. In the con-
text of the RIR technique, there is no need to extend the integration too far from the compu-
tation point P. The terrain correction is thus calculated by summing the attraction of a finite
number of prisms according to (Forsberg 1984):

dgTP D ¡G£
X Rx2

xD x1

Ry2
yD y1

Rz2
zD z1

r£ z¡ zPð Þ
x¡ xPð Þ2C y¡ yPð Þ2 C z¡ zPð Þ2� �3=2 dxdydz (4)

where xP, yP, zP and x, y, z are the local Cartesian coordinates of the computation point P
and the moving integration element, respectively. The z coordinate is the ‘up’ direction, the
limits x1, x2, y1, y2 are constants for each prism. Most commonly, only flat top prisms are
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used, i.e. z1 and z2 are also constant for each prism. The way z1 and z2 are chosen is indicated
by the type of notation used in (3). Again, due to lack of density information available, r is
usually taken to be constant.

In the present study, the curvature of the Earth is taken into account by shifting each
prism downwards by correcting the integration constants of (4) as (Forsberg 1984, p. 111):

z�1 D z1¡ s2

2R
; z�2 D z2¡ s2

2R
(5)

where s is the distance between the computation point P and the integration point, R is the
mean radius of the Earth. Admittedly, this is a crude way to take the Earth’s curvature into
account, but accurate enough in the context of the present study where the topographic cor-
rections in question are used only for the RIR process.

Residual Terrain Model (RTM) anomalies

An alternative to the Bouguer reduction described in the previous section is to reduce the
free-air anomaly field by a band-pass filter that attenuates signals above and below a desired
frequency. The free-air anomaly values can be reduced in the long-wavelength spectrum by
removing the gravity contribution of a GGM and in the short-wavelength spectrum by
removing the contribution of a Residual Terrain Model (RTM) by:

DgRTMA
P DDgFAAP ¡DgGGMP ¡ dgRTMP (6)

where DgGGMP is the gravity anomaly from a GGM evaluated to a suitable maximum degree
and order (d/o), and dgRTMP is the topographic effect of the RTM reduction computed as (cf.
Forsberg 1984):

dgRTMP D 2pGr
h
HP ¡Href

P

i
¡
h
dgTP j z2 DH

z1 DHP
¡ dgTP j z2 DHref

z1 DHref
P

i
(7)

where Href is the height of a smooth reference surface; dgTP j z2 DH
z1 DHP

and dgTP j z2 DHref

z1 DHref
P

denote
the terrain correction for the topographic surface and the reference surface, respectively.
Note that (7) does not demand the use of the so-called harmonic correction (Forsberg
1997, Section 2.3 and 2.4).

The reference elevation surface can be any smooth surface representing mean elevations
in the area. It is often constructed by averaging the fine resolution DTM grid and then low-
pass filtering this by taking moving averages of an appropriate number of adjacent blocks.
Or alternatively, a spherical harmonic representation of either the regional or an indepen-
dent global DTM is evaluated to a d/o that corresponds to the desired smoothness. For
related studies, see e.g. Hirt (2010, 2013) and references therein.

Atmospheric and ice corrections

For both of the gravity reduction processes described above, the atmospheric and ice correc-
tion (denoted below by superscript A or I, respectively) can be applied. Again, these are
applied before and removed after gridding.
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The atmospheric correction accounts for the gravitational effect of the atmospheric
masses, much as the terrain correction accounts for the topographic masses. This effect can
be computed by an empirical formula of DMA [1987, (4)–(23)]:

dgA D 0:87 £ e¡ 0:116£H1:047
(8)

where e � 2:718, dgA is in mGal and H is in km. The resulting numerical values are similar
to the recommendations given in Moritz (2000). This correction cannot exceed 0:87 mGal,
that is, the effect of atmospheric masses on the sea level.

dgA is added to the surface gravity anomaly point values and subtracted (in gridded form)
after interpolation.

The ice correction is needed since the Bouguer and RTM corrections are initially com-
puted using topographic density and DTM heights that refer to the surface of glaciers. The
ice masses are artificially filled up to reach topographic density r, at the same time as the
Airy-Heiskanen isostatic compensation is taken into account (e.g. S€unkel 1986). After inter-
polation, the reduction is reversed, leading back to ice density (masses are moved back to
where they originate from). To achieve this, a residual ice mass potential dVI is defined as
(e.g. Martinec 1998; A

�
gren 2004):

dVI
P DVI

P ¡Viso
P (9)

where Viso is the corresponding compensating potential according to the Airy-Heiskanen
hypothesis and VI

P is the potential generated by the mass deficit of the glaciers, which is
expressed by the Newton’s integral in spherical coordinates as

VI
P DG rI ¡r

� �Z Z
sI

ZRCHI

zDRCHI ¡TI

z2

s
dzdsI (10)

where rI is the ice density, sI is the spatial domain covered with glaciers, HI is the height to
the (ice) surface, and TI is the ice thickness. Note that the density difference in (10) is
assumed to be constant and that it is negative. The ice effect dgIP on the surface gravity anom-
aly is then given by the standard boundary condition of physical geodesy:

dgIP D ¡ @dVI
P

@rP
¡ 2

rP
dVI

P (11)

where rP is the geocentric radius of point P.
Thereafter dgIP is subtracted from the surface gravity anomaly point values and added (in

gridded form) after interpolation.

Interpolation methods

Most interpolation algorithms demand that the phenomenon described by the point
data to be gridded could be regarded as a spatial stochastic process and the field to be
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homogeneous: that is, stationary (the mean would be constant over space and the
covariance would be position independent) and isotropic (the spatial dependence of
values would be independent of direction). The reduction processes described earlier
aim at fulfilling this requirement as rigorously as possible. However, in practice, the
reduced gravity data are also somewhat non-stationary, anisotropic, and contain
unavoidable observation errors, resulting in various deficiencies of grids obtained by
different interpolation methods.

Numerous interpolation methods could be applied in gravity gridding. The four methods
described below were selected as these have been demonstrated to yield reasonable gravity
anomaly estimates and are also often used in similar studies.

Due to their varying nature, each method reveals different characteristics of the data. The
first two of these methods are simple and fast deterministic methods that generate a spline-
based surface. The latter two are stochastic methods that demand a priori information about
the spatial correlation and quality of the data. In different ways, all four interpolation meth-
ods allow the resulting gravity anomaly surface to deviate from input data, thus accounting
for inaccuracies of the input data.

Continuous curvature splines

According to this method, the gridded values zP (functions of grid node co-ordinates xP, yP)
are computed by solving:

1¡Tð Þ £ L½L zPð Þ�CT £ L zPð ÞD 0 (12)

where 0<T < 1 is a tension factor and L is the Laplace operator. T D 1 results in a surface
where maxima and minima are achievable only at data point locations while T D 0 results in
a minimum curvature solution (Smith and Wessel 1990).

The continuous curvature splines interpolation method has been implemented in the
Generic Mapping Tools (GMT, Wessel et al. 2013) sub-program surface and will hereafter
be referred to as SURF. The default tension factor suggested by the program’s manual for
interpolation of potential field data is T D 0:25.

The SURF method is expected to generate a smooth gravity grid. However, it has
previously shown some unreasonable undulation in larger data gaps, next to steep gra-
dients and near the borders of input data area. It is possible to reduce the latter defi-
ciency by setting the tension factor to 0 outside the research area. Another drawback of
the SURF method is that it computes the z values on a planar surface. Thus the Earth’s cur-
vature-induced errors may become significant over larger research areas. Third, the uni-
formly chosen tension factor may not represent the behavior of the gravity field in all areas
equally well. Note that, for practical purposes, the resulting grid has to be uniform and
seamless. Therefore varying the tension factor manually according to different sub-areas is
not a feasible option.

Spherical interpolation in tension

According to this method, a Delaunay triangulation on a sphere (e.g. Renka 1997a) is per-
formed on input data. Then, given a certain tension factor (determined automatically from
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local or global gradients) for each triangle side and arc containing the interpolation point
and connecting a triangle vertex to the opposite side, a value is interpolated to the new point
contained within that specific triangle, see e.g. Renka (1997b). Such a spherical interpolation
in tension algorithm has been implemented in the GMT sub-program sphinterpolate and
will hereafter be referred to as SPHI.

As this method is rather similar to the SURF method, it is expected to yield similar results,
desirably improved by the high degree of automation in choosing the tension parameters
and by accounting for the Earth’s spherical geometry.

Least squares collocation

In the Least Squares Collocation (LSC) method, the gridded gravity anomaly values are
obtained by solving the following matrix equation [Moritz 1980, (14.27)]:

DgP DCDgPDg CDgDg CD
� �¡ 1

Dg (13)

where Dg is the vector of known (surveyed) anomaly point values, DgP is the vector of
unknown (grid) values, CDgDg is the auto-covariance matrix of the Dg values, CDgPDg is the
cross-covariance matrix of the Dg and DgP values, and D is the noise variance-covariance
matrix. For further details, see Moritz (1980). LSC is implemented in the GEOGRID sub-
program of the GRAVSOFT research software package (Forsberg and Tscherning 2008).

Importantly, for such an interpolation approach, the spatial dependence of the data in
question is described by the covariance matrices and needs to be estimated from the survey
data. This can be achieved by fitting a theoretical model to empirical covariance values. In
this study, a second-order Markov model is used [Sans�o and Sideris 2013, (9.34)]:

C lð ÞDC0 1C l
a

� �
e¡ l=a (14)

where C lð Þ is the modelled covariance value over the distance l, C0 is the signal variance, and
a is a constant related to the correlation length X1=2 approximately as aD 0:595X1=2. The
correlation length X1=2 is here defined as the distance at which the covariance function
reaches the value of C0=2.

In addition, individual point weighting can be done using a priori standard deviation val-
ues supplied together with the gravity data, assuming that the variance-covariance matrix D
in (13) is diagonal.

As an advantage, a formal error grid can be determined together with the LSC predic-
tions. Being a powerful and flexible interpolation method, the LSC is expected to perform
well in areas that correspond to the average correlation properties estimated. Unfortunately,
a single covariance function is unable to fully describe a heterogeneous or anisotropic data-
set, which is a rather common situation in gravity anomaly gridding. Research on the
so-called non-stationary covariance function modelling is ongoing, see the detailed overview
in Darbeheshti and Featherstone (2009).
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Kriging

Kriging (Krige 1951, for a recent review see e.g. Cressie 2015) is an interpolation method that
is similar to the concepts of LSC, for their differences see e.g. Dermanis (1984).

In the current study, Kriging is implemented using a different covariance function from
LSC, namely, the spherical semi-variogram model SV lð Þ [Isaaks and Srivastava 1989, (16.6)]
is used:

SV lð ÞD c0C ½C0¡ c0� 3l
2A

¡ l
2A

� �3
" #

; if l � A

C0; if l > A

8><
>: (15)

where c0 is the nugget effect and A is a length parameter corresponding to the range after
which data are presumably no longer correlated. Note that the parameter A can be modified
to account for the anisotropy effect. In the simplest case of the anisotropy angle being 0�, A
is divided by the anisotropy ratio. The semi-variogram values are related to the covariance
values by

C lð ÞDC0 ¡ SV lð Þ (16)

Kriging has many forms. In this study, Ordinary Kriging without a drift function imple-
mented in the Surfer software (Golden Software LLC 2016) is used. This interpolation
method will hereafter be referred to as KRIG.

Propagation of terrestrial gravity data errors into geoid modelling

The data-related error of a (quasi)geoid model comprises of omission errors (the lacking
information with higher frequency than the model resolution) and commission errors
(errors in the existing data). The latter can in turn be separated into uncorrelated (white
noise) and correlated (systematic) parts.

The uncorrelated commission error has a relatively small effect as the positive and nega-
tive errors tend to cancel out. The most dangerous are long-wavelength systematic effects
because the (quasi)geoid has most power in long wavelengths. This is illustrated by the spec-
tral relationship of the geoidal undulation to gravity anomalies over the entire globe [e.g.
Goos et al. 2003, (1)]:

Nn D R
g0 n¡ 1ð ÞDgn (17)

where Nn is the n-th degree surface spherical harmonic of the geoid height, R is the mean
Earth radius, g0 is normal gravity on the surface of the reference ellipsoid, and Dgn is the
n-th degree surface spherical harmonic of the gravity anomaly.

In the simplified case of a sufficiently small spherical disc, the influence eN of a systematic
gravity data error eg on the geoidal height N can roughly be estimated by Heiskanen and
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Moritz [1967, (2)–(234)]:

eN D S
gP

eg (18)

where gP is the gravity value at the computation point and S is the polar distance. For
instance, the presence of a 0:1 mGal gravity bias within a 100-km radius around the compu-
tation point yields a geoid error in the order of 1 cm.

Commonly, the Stokes (1849) formula is used to compute a gravimetric geoid from the
gravity data. It can be modified so as to obtain the long-wavelength (global) information
from a GGM (see e.g. Van�ı�cek and Sj€oberg 1991) that is more accurate than the terrestrial
data in the long-wavelength spectrum. This alleviates the danger of having systematic errors
in the regional gravity database. Nevertheless, since gravity data have usually been collected
over long periods of time with varying accuracy and following different national conven-
tions, it would be beneficial to analyse these in order to detect and eliminate systematic
errors as much as possible, e.g. by a method in Saleh et al. (2013) or Wang et al. (2012).

Gravity point accuracy may currently be at the level of 5 mGal for absolute gravimetry
(Niebauer et al. 1995) and 20–100 mGal for relative gravimetry surveys. However, as terres-
trial gravity surveys are labour-intensive, a dense enough coverage of sufficient quality data
is not available everywhere. Especially, the coastal and marine areas have gravity coverage of
significantly lower quality and density (see e.g. Featherstone 2009).

A recent summary of the practical data requirements for a 1-cm geoid can be found in
Denker (2013), see also references therein. It is concluded that gravity data need to be con-
nected to a highly accurate gravity network (in the order of 0.01 mGal) while single observa-
tion accuracy of about 1 mGal is sufficient.

A
�
gren and Sj€oberg (2014) show that a 5-mm geoid can be achieved within a medium-

sized country (Sweden) if the gravity anomaly data with uncorrelated noise below 0:5 mGal
and systematic errors below 0:1 mGal are available on at least 5 km resolution with no data
gaps in the computation area or its vicinity. As this conclusion depends on the roughness of
the gravity field, it is not necessarily general. For instance, the extremely rough gravity field
in mountainous areas most likely requires a significantly denser gravity sampling.

Study area

In the NKG geoid modelling project the quasigeoid is computed for the area of 53� to 73� N,
0� to 34� E. This covers the territory of Denmark, Norway, Sweden, Finland, Estonia, Latvia,
and Lithuania plus the surrounding areas, including the Baltic Sea, North Sea, and large parts
of the Arctic Ocean (cf. Figure 1). The gravity data from the NKG database cover the area of
52� to 74� N, ¡ 2� to 36� E. It is a heterogeneous region covering both land and marine
areas. Norway has a rugged terrain with deep fjords and heights exceeding 2 km while in
Denmark and the Baltic countries (Estonia, Latvia, Lithuania) the topographic heights only
reach a few hundred metrs, see Figure 1.

The NKG gravity database holds data submitted by participating countries for NKG geoid
modelling purposes only. The information is stored as ‘publications’ (groups of observations
submitted together) that have various amounts of meta data in the form of a report or short
description. Most publications include a single approximate error estimate while some newer
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ones contain individual and well-reasoned error estimates for each data point. The distribu-
tion and estimated accuracy of gravity data in the NKG database are shown in Figures 2 and
3, relevant characteristics are summarized in Table 1.

According to the previous section, the average gravity coverage (that corresponds to
a distance of about 3:5 km between neighbouring points) could be sufficient for comput-
ing a geoid model with an accuracy of 5–10 mm. However, the average a priori error esti-

Figure 1. Terrain elevations of the NKG data area.

Figure 2. Distribution of the NKG gravity point data (blue—terrestrial, green—marine or sea bottom,
red—airborne).
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mate of gravity data is about 2:3 mGal which does not meet the aforementioned require-
ments.

To illustrate the differences in gravity field modelling methods, three test areas of 1� £2�

with contrasting characteristics that could commonly occur in any regional gravity field
study were selected. Area 1 (61� to 62� N, 6� to 8� E, Figures 4a and 5a) was selected in the
Sognefjord area, Norway. Sognefjord is a 200-km-long and, on average, 4:5-km-wide fjord

Figure 3. A priori error estimates of the NKG gravity point data.

Table 1. Characteristics of the research and test area data.

Full area NKG areaa Area 1 Area 2 Area 3

No. of points 512772 172406 4509 8043 1819
(after selection)b 421108 141418 1609 5928 1518
1 point per no. of km2 11.9 8.1 2.7 1.5 6.7
(after selection) 14.4 9.8 7.5 2.0 8.0
Elevation (m)c Mean 107 304 882 68 0

StDev 196 305 481 23 0
Min 0 0 0 0 0
Max 2419 2419 1977 146 0

Free-air anomaly (mGal) Mean ¡0.48 0.97 ¡61.84 ¡12.92 5.71
StDev 26.41 28.07 61.24 9.80 11.53
Min ¡307.79 ¡307.79 ¡117.70 ¡45.52 ¡19.10
Max 210.46 210.46 145.59 18.18 35.91

(after selection) Mean ¡0.35 1.35 ¡16.62 ¡12.70 5.40
StDev 24.65 27.48 75.33 9.90 10.97

A priori gravity Mean 2.32 1.83 2.01 0.34 3.76
error estimate (mGal) StDev 1.86 2.07 1.78 0.11 2.06

Min 0.10 0.10 0.20 0.10 2.00
Max 7.00 5.00 5.00 0.80 7.00

(after selection) Mean 2.22 1.63 3.09 0.32 3.81
StDev 1.84 1.99 2.09 0.12 2.10

aDry land and inland water territory of the participating Nordic-Baltic countries.
bAfter preserving a single point with the lowest a priori error estimate in each 0.01� £ 0.02� grid cell.
cTopographic elevation statistics are given from the 0.001� £ 0.002� DTM.
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with depths up to 1300 m surrounded by rugged cliffs. Area 2 (58:5� to 59:5� N, 25� to 27� E,
Figures 4b and 5b) was selected in central Estonia with flat terrain and unusually dense cov-
erage of accurate gravity data. Area 3 (55� to 56� N, 6� to 8� E, Figure 5c) was selected in the
marine area West of Denmark containing ship gravimetry tracks only. The data statistics for
these test areas can also be found in Table 1. Area 2 is an example of very good gravity cover-
age and quality that comfortably fulfils the accuracy requirements discussed in above while
Area 1 and 3 have similar statistics to that of the entire NKG area. The importance of elimi-
nating systematic long-wavelength errors was also stressed. In the current study, it was
assumed that, due to the great care taken in preparing the NKG database by representatives
of the participating countries, such errors would be minimal, at least for the Nordic-Baltic
countries. An example of examining national data for the presence (and elimination) of sys-
tematic errors within the current study area can be found in Ellmann et al. (2009).

For gravity data processing and evaluation, it is necessary to possess, in addition to the
gravity survey values and positions, some supplementary information. First, a high-resolu-
tion DTM is necessary for terrain correction computation by (4). Second, a GGM is needed

Figure 4. Terrain elevations in the test areas (note the different colour scales). (a) Area 1—Sognefjord
area. (b) Area 2—central Estonia.

Figure 5. Free-air gravity anomaly point data available in the test areas. (a) Area 1—Sognefjord area. (b)
Area 2—central Estonia. (c) Area 3—West of Denmark.
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for generating a reference gravity field used in (6). Optionally, co-located GNSS and levelling
points can be used for geometric geoid determination for comparison with the gravimetric
geoid models derived from the gravity grids.

As the current research was aimed at the NKG2015 geoid modelling project, it made use
of the 300£300 NKG DEM 2014, which in the present study was further averaged to
0:001�£0:002�� 3:600£7:200 (Figure 1) and 2538 GNSS/levelling points specially compiled
by the participating countries. Additionally, the project specification allowed for the use of
either the high-degree EIGEN-6C4 (F€orste et al. 2015) or the satellite-only
GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2013) global geopotential model.

Preprocessing gravity data

In this section, numerous steps of data preprocessing are described. It illustrates possible
ways of solving unification issues of a heterogeneous gravity dataset and could be of refer-
ence to other geoscientists working on similar tasks.

Reference systems

When working with gravity data from different sources, it is first necessary to make sure that
their horizontal positions, heights, and gravity values are in the same reference frames and
include the same, compatible corrections (e.g. tidal, atmospheric). In areas with significant
geodynamic motions, like the postglacial land uplift in the Nordic-Baltic region, it is also
important to choose a common reference epoch. Although small in magnitude, the errors
introduced by inconsistencies in the above are systematic and widespread, thus of impor-
tance in geoid modelling [see (17) and (18)].

In the NKG2015 geoid modelling project, it was set as a goal to transfer datasets of differ-
ent nations into uniform reference systems/frames. A common postglacial land uplift epoch
of 2000.0 and the zero permanent tide system were selected. The gravity values are given in
the official national gravity systems based on either modern absolute gravimetry or on the
International Gravity Standardisation Net 1971 (IGSN71, Morelli et al. 1971), in the latter
case, with a correction to convert from the mean tide to zero permanent tide system. Atmo-
spheric corrections are not included in the NKG gravity database. Point positions are
expressed in the national European Terrestrial Reference System (ETRS) 89 realisations and
the normal heights in the national European Vertical Reference System (EVRS) realisations.
More details on the NKG2015 geoid modelling project are available in A

�
gren et al. (2015,

2016).

Update and analysis of the NKG gravity database

Data updating for the NKG2015 geoid model project consisted of revising all the informa-
tion in the NKG gravity database, cleaning or removing overlapping datasets and replacing
or updating with new data in the correct reference systems/frames, permanent tide system
and postglacial land uplift epoch. It was the responsibility of national representatives to
decide which data to preserve and also to quality check all the remaining data within the
country.

14 S. M€ARDLA ET AL.
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The above rather challenging requirements on reference systems, unintentionally, resulted
in some large data voids. After extensive analysis, an exception was made for instance to parts
of publication no. 345 that cover data void areas east of the Latvian border. The filling of this
void affected the resulting quasigeoid model by around 2 cm in Eastern Latvia.

The Nordic and Baltic countries are surrounded by marine areas that possess significant
variations in gravity signal which can affect the gridding result also in coastal areas. There-
fore an effort has been made over the past decades to cover these areas with terrestrial, ship-
borne, airborne, and on-ice gravimetric data.

When updating the gravity database, a bias was found and corrected between two marine
datasets in Skagerrak, the strait between Norway and Denmark. Another problematical area
is the eastern part of Gulf of Finland (GOF) where there are practically no terrestrial/marine
data available in an area of about 20000 km2. It is not clear if there have ever been any sur-
veys. Regardless, these are not available to the NKG community. Yet, information from this
area directly affects the gravity gridding and subsequent quasigeoid modelling in Southern
Finland and Northern Estonia, regions of intense shipping and economical activities. There-
fore, to fill the data void in the eastern part of GOF, a patch was generated by evaluating the
GO_CONS_GCF_2_DIR_R5 GGM up to d/o 240 at empty cells of 0:01� £0:02� in the area
of 59� to 62� N and 25� to 30� E.

Further improvements in gravity coverage over the marine areas are expected within the
frames of the ongoing Finalizing Surveys for the Baltic Motorways of the Sea (FAMOS Con-
sortium 2014) international cooperation project.

In the context of gravity gridding, it is important to notice that the distribution of
data varies on land and sea. Gravity points surveyed on land are rather uniformly dis-
tributed while marine data are gathered along ship tracks. For the optimum gridding
results, these would demand different interpolation approaches. For example, the SURF
and SPHI algorithms may generate unnecessary undulations or large extrema in the rela-
tively large data gaps between tracks. This is likely a result of the selected tension factor
allowing the spline surface to undulate with a larger amplitude than appropriate. The
alternative statistical LSC and KRIG methods using a covariance function to model the
spatial dependence of gravity values can also start undulating between tracks. Consider
the following example: marine tracks are separated by 100 km and the spatial correlation
goes to (nearly) zero in, say, 30 km, then the resulting gravity anomaly grid may contain
artificial stripes. The actual performance of interpolation algorithms in marine areas will
be analyzed in a later section.

Automatic blunder detection

Plotting and visual inspection of data and their derivatives (such as the reduced gravity field
in this case) can help detect gross errors, see e.g. Vergos et al. (2005, Section 2.2). However,
larger datasets need a more automatic approach. A simple, yet effective, method for auto-
matic detection of outliers can be leave-one-out cross validation (CV). CV limits are, how-
ever, very dependent on the spatial variability of the modelled quantity. Therefore, it is best
used after the reduction of gravity anomaly values to assure a minimally and homogeneously
varying quantity across the entire research area.

Nevertheless, it is challenging to find a uniform CV limit suitable for a heterogeneous
area. In the current research area, CV limits as high as 20–30 mGal remove as many as

MARINE GEODESY 15

D
ow

nl
oa

de
d 

by
 [

90
.1

91
.2

1.
12

8]
 a

t 1
1:

42
 2

6 
A

ug
us

t 2
01

7 



0:1–1% of the total points. Most of these are located in the rugged landscape such as the
Norwegian mountains and clearly represent the actual gravitational signal. Meanwhile, no
points are removed over the other areas, where a much lower CV limit would be needed.

Certainly, automatic CV with a fixed limit across such a heterogeneous area is questioble.
Recall that manual separation of the research area into sub-areas cannot be considered for
practical reasons. Additionally, the reduced gravity fields computed as described earlier have
different characteristics, again demanding for slightly different CV limits. Therefore, means
to automatically differentiate CV limits between rougher and smoother parts of the
(reduced) gravity field under consideration can be investigated in further studies. Mean-
while, it was decided that for the purpose of the gridding-related research reported in this
contribution, no CV will be used. This will also ensure that the different gravity anomaly
grids will be comparable. Fortunately, an effort has already been made by participating coun-
tries to remove obvious gross errors from the NKG database.

Downward continuation of airborne data

Airborne gravimetry has proved to be a useful and fast method for covering large, sometimes
hard-to-reach, areas with gravity data, for connecting different terrestrial gravity surveys and
for improving the gravity field models in areas of high gravity field variability or low terres-
trial point density (such as coastal and marine areas), see e.g. Bae et al. (2012), Bolkas et al.
(2016), Tscherning et al. (1998), Forsberg and Olesen (2010), and Hwang et al. (2007). Sev-
eral low-elevation airborne gravity datasets are also available over the marine parts of the
study area, see the red-coloured tracks in Figure 2.

Aerogravity values are measured at flight altitudes. Due to the attenuation effect, it is not
sufficient to use the free-air gravity gradient (approx. 0:3086H) to ‘lower’ these to the topo-
graphic surface. Instead, an additional downward continuation (DWC) correction needs to
be added. After DWC, airborne data can be treated as terrestrial data. For the computation
of the DWC correction, two different methods were tested.

Method 1: The DWC correction is taken to be equal to the free-air anomaly difference at
the flight altitude and the surface by using a high-degree GGM (Ellmann 2011). The
EIGEN-6C4 GGM was used in numerical computations.

A drawback of this method is that it is limited to the maximum spherical harmonic
degree of the GGM, that is 2190. Also, the detailed gravity anomalies available for the
regional geoid determination are not utilised. Instead, the unknown and possibly lower qual-
ity GGM-derived gravity anomalies are used.

Method 2: The vertical gradient of the reduced gravity anomaly (in this study, the RTM
anomaly) is estimated and used to DWC the reduced airborne data. Such a method is limited
to the first linear term in the Taylor expansion of the reduced gravity anomaly with respect
to the height. Also, numerical problems might occur when estimating the gradient, although
the reduced field should be suitable for such a task. As opposed to Method 1, there is no lim-
itation of the maximum spherical harmonic degree, and the input information is of high
quality.

The standard deviation and maximum value of the DWC corrections computed are 0:37
and 3:3 mGal for Method 1 and 0:47 and 8:7 mGal for Method 2, respectively. The standard
deviation of the method differences is 0.38 mGal and the mean difference is 0:04 mGal. The
larger differences occur over Denmark and Sweden, where the flight heights were much
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higher than over the Baltic Sea (around 1000 and 250 m, respectively). Considering that the
measuring noise of these airborne datasets is around 2 mGal, such differences between the
methods can be considered negligible and either method can be used.

Covariance analysis

To provide LSC or KRIG interpolation with spatial correlation information, a covariance
analysis was performed on the reduced (either Bouguer or RTM) gravity anomalies.

First, the entire research area was considered. Empirical covariance functions were com-
puted for the RTM and Bouguer anomaly data, to which the second-order Markov covari-
ance functions (14) were fitted, see Figure 6a and e. Similarly, spherical semi-variogram
models (15) were computed. These were later used in the LSC or KRIG interpolations,
respectively. For comparability, the semi-variogram models were then converted to covari-
ance functions by (16) and also depicted in Figure 6a and e.

For reference, the empirical covariances of individual test areas were also estimated, see
Figure 6b–d, and f–h. Note, that separate theoretical covariance functions were not fitted for
the test areas as these would not be used in the interpolation process. For the Bouguer anom-
alies only, the three test areas were extended by 1� in the NS direction and 2� in the EW
direction, to increase the reliability of covariance estimation (because Bouguer anomaly cor-
relation length is in the same order as the test area size).

These figures illustrate the variability of spatial correlation of gravity anomalies between
the test areas. Judging by the fit between empirical and theoretical covariance curves, a

Figure 6. Covariance functions for the RTM (top row) and the Bouguer (bottom row) anomalies�. (a and e)
Full area; (b and f) Area 1; (c and g) Area 2; and (d and h) Area 3. �The red or green lines depict the empir-
ical covariance function, blue line the second-order Markov and orange line the spherical model. Spherical
distance [�] and variance [mGal2] are represented on the horizontal and vertical axes, respectively.
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reasonable interpolation result can be expected in Areas 2 and 3 using the RTM anomalies.
In case of the Bouguer anomalies, the theoretical covariance function either under or overes-
timates the spatial correlation in all the test areas.

Table 2 lists the estimated correlation lengths X1=2 for both reduction methods. It is worth
noting that the correlation lengths vary less for the RTM anomalies, while these of the Bou-
guer anomalies vary almost three times between the test areas. Another advantage of using
the (relatively short correlation length) RTM anomalies for gridding is that in larger data
voids, the underlying GGM and DTM will provide the missing information instead of the
interpolation algorithm attempting to estimate the values based on spatial correlation.

As a result of covariance analysis, for practical computations, the following parameters
were chosen (by rounding downwards): X1=2 D 15 km and AD 1� for the RTM
anomalies; X1=2D 70 km and AD 6� for the Bouguer anomalies.

Generating gravity anomaly grids

Before testing the different gravity reduction and interpolation processes on the NKG gravity
data, the following practical steps were taken.

First, all data with a priori error estimates �8 mGal were excluded from the gridding.
This limit corresponds to the highest realistic error estimates of the NKG gravity data.

Second, to improve interpolation quality along the edges of the area of interest, additional
gravity data were derived (on a regular grid of 0:01� £0:02� not closer than 0:15� to any
existing points) from EIGEN-6C4 GGM evaluated to its maximum d/o 2190 to fill all data
gaps in the area of 51� to 75� N, ¡ 4� to 38� E. This was considered sufficient for the pur-
poses of this study. However, considering the convergence of the meridians, an even larger
buffer area should be used for the actual geoid modelling in sub-polar latitudes. The error
estimate of these fill-in points was set to 6 mGal to comply with the typical accuracy of
GGMs over the oceans (see F€orste et al. 2015; Andersen 2010) and to be larger than that of
most observed data.

Third, the airborne observations were downward continued by Method 1. Fourth, multi-
ple observations within a 50-m horizontal range were identified, arithmetically averaged,
and the standard deviation of the resulting point was taken to be equal to the minimum stan-
dard deviation input value of the multiple-point cluster.

Fifth, the effect of using the atmospheric and ice corrections on the resulting surface grav-
ity anomaly grid and the subsequent quasigeoid model were analysed. For this, a gravity

Table 2. Estimated correlation lengths of gravity anomalies�.

Grid Area X1=2 (�) � X1=2 (km)

DgCBA;A;I Full area 0.65 71.5
Area 1 0.63 69.3
Area 2 0.23 25.3
Area 3 0.49 53.9

DgRTMA;A;I Full area 0.17 18.7
Area 1 0.11 12.1
Area 2 0.21 23.1
Area 3 0.21 23.1

�Explanation of the symbols used in this and the following tables can be found in the text.
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anomaly grid or corresponding quasigeoid with the atmospheric or ice corrections included
in gridding was subtracted from an analogous product computed without these corrections.

The effect of using the atmospheric correction (8) in the RIR process has a distinct pattern
that is correlated with height. However, it is in the order of only § 0:1 mGal on the resulting
surface gravity anomaly grid in the most rugged parts (Area 1) of the research area. The cor-
responding effect on the resulting quasigeoid model is certainly negligible with a standard
deviation of 0:3 mm and the maximum difference reaching only 2 mm.

The effect of using the ice correction (11) in the gridding process is relevant only in the
vicinity of Norwegian glaciers. In Area 1, it has a standard deviation of 1:4 mGal with maxi-
mum differences reaching 21 mGal, where the ice thickness reaches 440 m, see Figure 7a
and b. Comparison of the resulting quasigeoid models reveals a systematic difference reach-
ing 5 cm in the ice-affected area, see Figure 7c.

Although the atmospheric correction is very small and the ice correction is significant
only in Norway, both were applied in all of the test computations of the current study.
Recall, that a superscript A or I denotes quantities that are also corrected for the atmospheric
or ice effect, respectively.

Grids computed via Bouguer anomalies

Grids computed via Bouguer anomalies were compiled in the following way:
(1) The free-air anomaly point observations DgFAA (Figure 8) were reduced to simple Bou-

guer anomalies DgSBA according to (2). For the result, see Figure 9a.
(2) The DgSBA were further converted to complete Bouguer anomalies DgCBA according to

(3) by removing the terrain corrections dgT (Figure 9b). The terrain corrections were
computed according to (4) and (5), using the DTM grid of 0.001� £ 0.002� to a dis-
tance of 15 km and the DTM grid of 0.01� £ 0.02� to a distance of 200 km. Practical
computations within the radius of 15 km were done using the GRAVSOFT sub-pro-
gram TC. The DTM was locally spline interpolated to fit the given height of the gravity
observation in the computation point P (Forsberg 1984, p. 114). The sub-program
TCFOUR that speeds up the computation by Fast Fourier Transformation convolu-
tions was used for the distance of 15–200 km.

Figure 7. Ice thickness-related effects in Area 1. (a) Ice thickness. (b) Effect on the gravity field. (c) Effect on
the quasigeoid.
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(3) Since the atmospheric correction is not included in the NKG database, (8) was
applied.

(4) The ice correction was applied as described earlier. In practice, it was computed exactly
as in A

�
gren (2004, Chapter 6), using rectangular prisms (4) in the vicinity (closer than

0.1� in latitude and 0.2� in longitude) of each computation point P and spherical quad-
rature formulas with strict integration in the vertical (Martinec 1998, Section 3.8;
Sj€oberg 2000, Section 4) beyond the aforementioned limits. The ice density was set to
0.917 g.cm¡3, topographic density to 2.67 g.cm¡3

, and the isostatic compensation
depth was selected as 30 km.

(5) For practical implementation of most interpolation algorithms, the scattered point
data should first be low-pass filtered or averaged according to the grid step of
the final grid to reduce cluttering (or high frequency information) that results in
aliasing. Therefore, the point data to use were then selected so that a single point
with the smallest a priori error estimate was preserved in each 0.01� £ 0.02� cell
(c.f. Table 1).

(6) The resulting point values were interpolated to a regular grid using all the algorithms
described previously; for a sample result, see Figure 11a.
For the SURF algorithm, the GMT default tension factor of T D 0:25 was used. Note
that the research area is situated in sub-polar latitudes, around 60� N. Therefore, an
aspect ratio of d’D 1

2 dλ (where ’ is the latitude, λ the longitude, d the grid step incre-
ment) was used for remedying the effect of the convergence of meridians.
For the SPHI algorithm, a smoothing interpolation with global gradient estimation

was chosen with the -Q3 option in the GMT sub-program sphinterpolate, see
Renka (1997b).
When computing a LSC solution in GEOGRID, the signal variance C0 is automati-

cally determined for the entire computation area, but for computational efficiency,
only a limited number of (in this case 10) closest points in each quadrant are used in
the prediction of each point. The second-order Markov model is always used with the
user-specified length X1=2. Importantly, in this research, a minimum limit of 0.5 mGal
was set for point standard deviation values as a measure to dampen oscillations gener-
ated by closely located points that have a small standard deviation but a larger differ-
ence in values.
For the KRIG solution, the nugget effect c0 was set to 1 mGal.

(7) The ice and atmospheric effects were removed on the grid, resulting in a complete
Bouguer anomaly grid.

(8) The terrain correction of (4) and (5) was subtracted to yield the simple Bouguer anom-
aly grid.

(9) The simple Bouguer correction of (2) was added to the grid, yielding the final surface
gravity anomaly grid.

The effect of reducing gravity values to Bouguer anomalies is illustrated in Table 3,
Figure 8 vs. 11a and Figure 12c vs. 12a. Note, that this reduction did not reduce the overall
amplitude of the anomalies. The standard deviation of DgFAA is 26 mGal while that of
DgCBA;A;I is 28 mGal. However, there is a significant effect in the rugged Area 1 where the
standard deviation of DgCBA;A;I is three times smaller than that of DgFAA, see Table 3. The fig-
ures show that the reduced gravity field is much smoother and less detailed than the surface
gravity field, thus also more suitable for interpolation.
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Grids computed via RTM anomalies

Grids computed via RTM anomalies were compiled in the following way:
(1) The free-air anomaly point observations DgFAA (Figure 8) were first reduced by sub-

tracting DgGGM , the second term on the right-hand side of (6). DgGGM was computed
by evaluating the GO_CONS_GCF_2_DIR_R5 model up to its maximum d/o 300. For
the result, see Figure 10a.
The computation of DgGGM at point P was simplified to computing two regular grids at
different (minimum and maximum) altitudes and then interpolating both in horizontal

Figure 8. Free-air anomaly DgFAA data points.

Figure 9. The Bouguer reduction. (a) Simple Bouguer anomalies DgSBA. (b) Terrain corrections dgT .
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and vertical direction to specific point locations P (Forsberg 1997), thus reducing
computational effort.

(2) The GGM-reduced point observations were further reduced by removing the RTM
contribution (Figure 10b) computed according to (7). The integration to compute the
RTM effect was again performed over a grid of 0.001� £ 0.002� to a distance of 15 km
and a grid of 0.01� £ 0.02� to a distance of 200 km using the GRAVSOFT sub-pro-
grams TC and TCFOUR.
The height reference surface for the RTM reduction was computed by averaging the
DTM to approximately the same resolution as the GGM. This was motivated by the
fact that the GGM removal in the previous step also removes the topographic effect
below the maximum d/o used and the aim of the RTM reduction is to remove the
remaining topographic contribution beyond the maximum d/o used in the previous
step.

(3) The atmospheric and ice correction were applied.
(4) The same selection process was applied.
(5) The resulting point values were interpolated. For a sample result, see Figure 11b.
(6) Again, the ice and atmospheric effects were removed on the grid, resulting in a RTM

anomaly grid.
(7) The RTM contribution was restored on the grid.
(8) The GGM contribution was restored on the grid, yielding the final surface gravity

anomaly grid.
The effect of reducing gravity values to RTM anomalies is illustrated in Table 3,

Figure 8 vs. 11b and Figure 12c vs. 12b. Note, how the variability of the gravity field
lowers: the overall standard deviation of DgFAA is 26 mGal while that of DgRTM;A;I is only
12 mGal. The variability of the field in Area 1 again reduces about three times, see Table 3.
The reduced gravity signal is of short wavelength and uniform across most of the research
area.

It is worth noting that the standard deviation of DgRTM;A;I is two times smaller than that
of DgCBA;A;I in the overall statistics, but slightly larger in Area 1 statistics. This suggests that
RTM and Bouguer anomalies could be more suitable for gridding in low-elevation and rug-
ged terrain areas, respectively.

Table 3. Statistics of the NKG gravity anomaly points.

Full areaa Area 1

Quantity Mean StDev Min Max Mean StDev Min Max

DgFAA ¡0.48 26.41 ¡307.79 210.46 ¡61.84 61.24 ¡117.70 145.59
DgSBA ¡9.91 29.03 ¡307.79 174.59 ¡85.54 19.40 ¡117.70 ¡25.91
DgCBA ¡9.29 28.06 ¡255.31 176.50 ¡72.68 20.44 ¡108.77 ¡23.13
DgCBA;A;I ¡8.44 28.07 ¡254.46 177.34 ¡71.97 20.41 ¡108.01 ¡22.43
DgCBA;A;I (selected)b ¡8.96 27.13 ¡254.46 177.34 ¡61.04 18.97 ¡107.80 ¡22.47
DgFAA ¡DgGGM ¡3.68 20.95 ¡342.93 177.49 ¡109.44 59.95 ¡181.43 94.03
DgRTMA ¡1.28 13.15 ¡242.55 194.26 ¡31.07 24.26 ¡79.26 30.82
DgRTMA;A;I ¡0.42 13.15 ¡241.70 195.10 ¡30.36 24.23 ¡78.51 32.23
DgRTMA;A;I (selected) 0.21 12.27 ¡241.70 195.10 ¡15.98 21.64 ¡78.51 31.23

aIncluding the EIGEN-6C4 GGM based fill-in on the edges, 524,274 points.
bAfter preserving only the point with the lowest a priori error estimate in each 0.01� £ 0.02� grid cell.
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Test grids

Altogether, fourteen different free-air anomaly grids were computed, see Table 4. Grids
named G1–G4 and G5–G8 were computed exactly as described previously, using the corre-
sponding interpolation method in the first column of Table 4. Grids with the suffix B or C
are special cases of the above.

Figure 10. The RTM reduction. (a) Difference DgFAA ¡DgGGM . (b) RTM effect dgRTM .

Figure 11. Reduced gravity anomaly grids (interpolated by LSC). (a) DgCBA;A;I grid (G3). (b) DgRTMA;A;I

grid (G7C).
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For instance, G3B and G7B denote LSC grids that were computed by not using a priori
gravity error information from the NKG database, but a fixed value of 1 mGal instead. This
was motivated by the varying quality of the a priori error estimates (see Figure 3). For exam-
ple, most terrestrial gravity observations in Norway hold a pessimistic error estimate of
5 mGal while most error estimates of analogous data over the other participating countries

Figure 12. Reduced (a, b) and restored (c) LSC-derived gravity anomaly grids in Area 1. (a) DgCBA;A;I grid
(G3). (b) DgRTMA;A;I grid (G7C). (c) DgFAA grid (G7C).

Table 4. Reduced gravity anomalies minus interpolated values from the reduced grid, units in mGal.

DgCBA;A;I DgRTM;A;I

Interpolation method Grid Mean RMS Min Max Grid Mean RMS Min Max

Full area
SURF G1 ¡0.0035 0.8667 ¡121.74 81.87 G5 ¡0.0034 0.8670 ¡121.71 82.31
SPHI G2 ¡0.0062 0.5649 ¡71.60 82.47 G6 ¡0.0063 0.5667 ¡71.59 82.46
LSC G3 ¡0.0052 2.5168 ¡141.87 137.37 G7 0.0260 2.0091 ¡164.22 236.20
KRIG G4 ¡0.0029 0.9108 ¡127.91 120.11 G8 ¡0.0031 0.8873 ¡118.20 111.26
SPHI (no dgT ) G2B ¡0.0050 0.6737 ¡136.18 80.55
SPHI (GGM d/o 240) G6B ¡0.0064 0.5641 ¡71.59 82.47
LSC (all 1 mGal) G3B ¡0.0129 1.7532 ¡228.46 176.31 G7B ¡0.0030 1.2008 ¡186.71 155.08
LSC (Norw. 1 mGal) G3C ¡0.0404 2.1944 ¡227.25 176.31 G7C 0.0042 1.5158 ¡186.44 155.08

Area 1 – Sognefjord area
SURF G1 ¡0.0747 2.5996 ¡20.72 21.76 G5 ¡0.0721 2.6112 ¡20.79 21.90
SPHI G2 ¡0.3660 1.7543 ¡10.48 27.63 G6 ¡0.3695 1.7577 ¡10.46 27.66
LSC G3 0.0430 6.2978 ¡25.22 39.69 G7 0.5041 5.3594 ¡21.33 40.51
KRIG G4 ¡0.1750 2.8376 ¡10.78 29.36 G8 ¡0.2068 2.6996 ¡11.86 28.20
LSC (Norw. 1 mGal) G3C ¡0.5782 5.9242 ¡22.33 28.30 G7C ¡0.2090 3.8518 ¡19.18 22.66

Area 2 – central Estonia
SURF G1 0.0036 0.2073 ¡0.93 1.76 G5 0.0046 0.2078 ¡0.95 1.80
SPHI G2 ¡0.0011 0.1335 ¡0.71 0.87 G6 ¡0.0008 0.1336 ¡0.71 0.87
LSC G3 0.0006 0.3425 ¡1.94 2.01 G7 ¡0.0007 0.2007 ¡1.26 1.10
KRIG G4 ¡0.0015 0.1983 ¡1.31 1.10 G8 ¡0.0008 0.1916 ¡1.24 1.04

Area 3 – West of Denmark
SURF G1 0.0252 0.9318 ¡6.03 6.26 G5 0.0236 0.9311 ¡6.02 6.28
SPHI G2 0.5608 0.5614 ¡3.37 4.01 G6 0.5606 0.5613 ¡3.37 4.01
LSC G3 ¡0.4540 2.9997 ¡10.60 7.81 G7 0.2697 1.7776 ¡10.75 7.71
KRIG G4 0.0153 0.8634 ¡5.37 3.70 G8 0.0088 0.8530 ¡5.16 3.55
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have been set to represent the actual quality of the observations (typically less than 1 mGal)
after careful analysis.

G3C and G7C denote LSC grids for the computation of which only the a priori error esti-
mates of terrestrial points located in Norway were set to 1 mGal. Although the difference
from grids G3B and G7B is numerically rather small, the C version grids allow to keep the
error information in the other countries.

G2B represents a grid otherwise like G2 with the exception that the GGM contribution
DgGGM was computed up to d/o 240 instead of the maximum d/o 300 of the satellite-only
model used. The corresponding difference of the two gravity grids and the resulting quasi-
geoid models is rather insignificant: the standard deviation is 0.44 mGal and 0.6 mm, respec-
tively. The absolute maximum deviation in the resulting quasigeoid models is 1.4 cm.

G6B represents a grid otherwise similar to G6, except that the removal and restoration of
the terrain correction dgT was omitted to illustrate its effect on the gravity field and the
resulting quasigeoid model. As expected, the effect is small elsewhere, but significant in rug-
ged terrains such as Norway. In terms of the resulting quasigeoid model, the standard devia-
tion of differences over Norwegian territory is 1.8 cm and maximum deviations reach 30 cm.

Assessment of the gravity anomaly grids

Interpolation methods

First, the grids were analyzed to evaluate the different interpolation methods. One way to do
so is to examine the differences of reduced anomaly point data and the resulting reduced
grid values at the point locations, see Table 4. As an illustration, these are presented for G6,
G7, and G7C in Figure 13. The residuals of SURF (G1, G5) and KRIG (G4, G8) methods
appear to be numerically quite similar to those of SPHI (G2, G6).

The SPHI method shows by far the smallest residuals for the full area and test areas (see
Figure 13a and Table 4), revealing that (with the selected parameter T D 0:25) it is a rather
‘exact’ interpolation method. SPHI does not account for the errors in point data values and
in case these are large, like in the marine areas or Russian territory, the SPHI method
appears to follow the point data values too rigorously.

The LSC method shows the largest residuals, especially over areas where the a priori stan-
dard error of gravity data is large (see Figures 3 and 13b). Over areas of high-quality gravity
data and lower elevations (e.g. Area 2), the LSC residuals are larger than for other methods,
but not as significantly, see Table 4. Considering that LSC accounts for observation errors
and that the encountered residuals are in the same order of magnitude as the a priori error
estimates, these residuals should not be interpreted as errors of the interpolation process. If
data with large errors are situated close to each other, the optimal interpolation surface will
be a smooth one with large residuals.

Using LSC without individual or only partially individual a priori error information (grids
G3B, G7B, G3C, and G7C) also gives a more ‘exact’ interpolation of the input points, see
Table 4. Thus, the choice of interpolation methods somewhat narrows down to whether the
a priori error estimates should be trusted.

The grids’ behavior near the especially challenging Area 1 (see Figure 12) was further ana-
lyzed by examining two profiles: one crossing a fjord (Figure 14a) and the other crossing an
area where the computed grids showed large differences (Figure 14b). The profile plots
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depict grids G3, G7, G7C, and, to demonstrate the violent change in the resulting
grid depending on the chosen error estimate, an additional grid just like G7C except that
the accuracy of gravity points in Norway was estimated to be even higher, 0.5 mGal. To
visualize the input information available for grid generation, neighboring (selected) input
points together with a linear (triangulated) grid from input point values are plotted as a
reference.

Figure 14. Profiles of free-air anomaly grids computed via RTM anomalies�. (a) 5.52� E. (b) 7.72�E. �The
dots indicate input gravity data points coloured according to their a priori error estimates. RTM anomalies
in mGal and latitude are depicted on the vertical and horizontal axis, respectively.

Figure 13. Reduced anomaly point values minus reduced grid values interpolated to point locations. (a)
G6 – DgRTMA;A;I grid interpolated by SPHI. (b) G7 – DgRTMA;A;I grid interpolated by LSC. (c) G7C – D
gRTMA;A;I grid interpolated by LSC (Norway 1 mGal).
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At the edge of the fjord, the SPHI grids often show an abrupt zigzag pattern while
LSC generates a smoother transition. All of the gridding algorithms tested in this study
overestimate the gravity field, the more so, the larger the data gap next to the steep gradi-
ent. It is a typical behavior of minimal curvature algorithms such as SPHI, but it also
affects LSC depending on the covariance function. LSC with fixed (smaller) standard devia-
tion values is affected the least, generating the most realistic gravity anomaly field model.
This profile illustrates why gravity surveys in areas of a steep gravity gradient should
always be planned so that the immediate neighborhood would also be covered rather
densely.

On the fjord surface, the reference linear interpolation probably shows quite a realistic
gravity field as the gravity data are dense and accurate. There, all of the tested algorithms
underestimate the gravity field with SPHI usually going 5–10 mGal further down than the
other algorithms.

In the future, gridding in such fjord areas can be improved by using bathymetric correc-
tions which should reduce the extreme gradient currently present in the reduced gravity
field.

A single point that stands out from the surrounding field (Figure 14b), that may or may
not be erroneous, is expectedly reflected most in the SPHI grid and least in the LSC grid
with individual weights (as in this particular case the a priori error estimates were large and
the corresponding point weights thus small).

It is worth noting how large in magnitude are the differences in the grids on both of the
profiles, also between the LSC grids. These differences do not correspond directly to the a
priori error estimates supplied.

Another aspect discussed earlier is the behavior of different interpolation methods in data
gaps that are often present in marine areas. Let us inspect the reduced gravity grids of Area 3
(Figure 15), starting with Figure 15b depicting the SPHI grid. Triangular patterns have
formed, the most prominent one being at 55�50 N, 6�300 E. There is at least one area around
55�350 N, 7�100 E (depicted in purple) where an extreme minima is generated that most
likely does not reflect the actual gravity signal. In addition, there were several other marine
areas west of Norway, where the SPHI algorithm generated erratic maxima in the order of
up to 100 mGal(!). In general, there is abundance of noise around and between the survey
tracks. It is clear that SPHI does not qualify for interpolating track wise (marine gravity)
data.

On the plot of the SURF grid (Figure 15a), and also the very similar KRIG grid, smaller
anomaly values can be seen at the close vicinity of input gravity point tracks compared to
the areas in between, thus generating unrealistic undulation between the tracks. The LSC
grid (Figure 15c) is clearly the most physically meaningful grid in Area 3, although it also
suffers slightly from similar undulation, see the NE-SW track close to which the gravity val-
ues are slightly larger than in the neighborhood.

Gravity reduction methods

Second, the grids were analyzed and compared to evaluate the suitability of the RTM or the
Bouguer anomalies for interpolation. The differences in reduced point values from the grid
values presented in Table 4 are very similar for both reduction schemes with neither of the
methods showing significantly smaller RMS or extreme values.
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Although free-air anomalies are rough and maybe not best suited for evaluation, the final
free-air anomaly grids were also compared to input free-air anomalies. The only interpola-
tion method for which either of the reduction methods shows smaller residuals, is LSC,
where the grid computed via RTM anomalies shows 9% and 11% better RMS values in the
overall and Area 1 statistics, respectively.

The two reduction methods have different physical meaning, but the resulting surface gravity
anomaly grids show a similar fit to the input data. It is difficult to prefer either of the reduction
methods based on the test results obtained. A reason to prefer RTM anomalies could be their
properties of shorter correlation length that are theoretically more suitable for gridding.

Overall gridding quality

Leaving aside the extreme examples represented by Areas 1 and 3, in most areas, especially
where sufficiently high-quality data are available (e.g. Area 2), it seems clear that both of the
reduction and all of the interpolation methods could in practice be considered for gravity
gridding tasks. This is further supported by the GNSS/levelling evaluations of the corre-
sponding gravimetric quasigeoid models presented in the next section.

Under this assumption of all the reduction and interpolation methods being equally plau-
sible, the uncertainty stemming from the use of different gridding approaches is illustrated
by the standard deviation of the values of the different test grids in each grid cell, see
Figure 16. Thus, free-air gravity grid accuracy better than 0.5 mGal can only be reached in
flat areas with high-quality gravity data such as Area 2, Denmark and Estonia, while the
accuracy is limited to around 1 mGal in areas with slightly lower quality gravity data (Latvia
and Lithuania) or higher terrains such as Sweden and Finland. Due to sparse data tracks, the
marine areas are affected most by the choice of gridding methods, even if the spline-based
grids are excluded from such an evaluation.

The research area is rather heterogeneous in terms of topography and data coverage,
offering an overview of expected gridding results in varying conditions. However, in other
similar computations, the results presented here can only be of general reference as the final
grid is strongly dependent on the local situation – topography, bathymetry, gravity data cov-
erage, distribution etc.

Figure 15. RTM anomaly grids in Area 3, black dots indicate the locations of input gravity data. (a) G5 – D
gRTMA;A;I by SURF. (b) G6 – DgRTMA;A;I by SPHI. (c) G7 – DgRTMA;A;I by LSC.
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Assessment by subsequent quasigeoid models

The main aim of the NKG project is to compute a quasigeoid model. Each gravity anomaly
grid yields a preliminary quasigeoid model that is computed using Least Squares Modification
of Stokes’ formula with Additive Corrections (LSMSA, Sj€oberg 1984, 1991, 2003). The LSMSA
method is likely to be applied in the final NKG2015 quasigeoid computation (that will be
reported upon in a separate publication, see also A

�
gren et al. 2016). These gravimetric quasi-

geoid models were then compared with each other and to national GNSS/levelling datasets, i.e.
to a geometric geoid determined from the difference of physical and ellipsoidal heights.

The physical (normal) heights are either in the national EVRS realizations with land uplift
epoch 2000.0 (Nordic countries) or in the pan-European EVRS realization European Verti-
cal Reference Frame (EVRF) 2007 (Baltic countries), which also has epoch 2000.0. The zero
permanent tide system is used for the physical heights. The GNSS heights above the ellipsoid
were first transformed into European Terrestrial Reference Frame (ETRF) 2000 with land
uplift epoch 2000.0 using the NKG transformation parameters derived by Häkli et al. (2016)
and then converted to the zero permanent tide system. It is important to note that the fol-
lowing results may also contain errors in GNSS/levelling control points used for the quasi-
geoid validation.

The resulting RMS values of GNSS/levelling residuals (after mean removal) are reported
in Table 5. In the NKG area, there are all together 2538 points, out of which 51 and 23 fall in
test Areas 1 and 2, respectively. Again, the residuals are larger for the LSC grids, especially in
the mountainous Area 1. However, the LSC-associated residuals in the NKG area result only
from the algorithm generating an unrealistically smooth grid in Norway. Note that LSC
yields the best fit in Area 2. Also, quasigeoid models computed from the B and C versions of

Figure 16. Standard deviation of G1 to G8 (with C versions of G3 and G7) surface gravity anomaly values
in each grid cell.
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LSC grids show a better fit than the original LSC with individual error estimates. There is
practically no numerical difference in the two reduction methods, except that LSC grids yield
a slightly better fit to quasigeoid models in conjunction with RTM anomalies rather than the
Bouguer anomalies.

Unfortunately GNSS/levelling data are not available over marine areas. Therefore, in
specified computations the choice of gridding methods suitable for marine areas needs to
rely on the gravity grid analysis above and the conclusions drawn from studying land areas
with similar gravity field and data coverage characteristics.

The expected accuracy of quasigeoid models related to the used gravity gridding approach
was analyzed, again, presuming that all the tested gridding methods are equally plausible in
many practical cases. The expected accuracy for the NKG area is illustrated by the standard
deviation of quasigeoid models computed using the different gravity grids, see Figure 17.
Therefore, from the gravity data gridding point of view, it is possible to compute a 5-mm
(quasi)geoid model over most of the Nordic-Baltic dry land. Again, the marine areas are

Table 5. RMS values of the quasigeoid differences from GNSS/levelling points after mean removal.

Quasigeoid via DgCBA;A;I [cm] Quasigeoid via DgRTMA;A;I [cm]

Interpolation Grid NKG area Area 1 Area2 Grid NKG area Area 1 Area 2

SURF G1 2.92 4.94 2.04 G5 2.92 4.94 2.08
SPHI G2 2.85 3.80 1.96 G6 2.85 3.82 1.96
LSC G3 3.36 5.58 1.91 G7 3.16 5.37 1.94
KRIG G4 2.90 4.93 1.97 G8 2.90 4.80 1.99
SPHI (no dgT ) G2B 3.05 5.28 1.97
SPHI (GGM d/o 240) G6B 2.85 3.98 1.95
LSC (all 1mGal) G3B 2.96 5.64 1.97 G7B 2.89 4.66 1.98
LSC (Norw. 1 mGal) G3C 3.00 5.88 1.89 G7C 2.96 5.64 1.97

Figure 17. Standard deviation of quasigeoid models computed from G1 to G8 (with C versions of G3 and
G7) in each grid cell.
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affected most by the choice of gridding methods. If the spline-based grids are excluded from
such an evaluation, a 1-cm accuracy can be expected over most of the Baltic Sea (except the
Eastern part of GOF), but the situation does not improve much over remote parts of the Arc-
tic Ocean. Thus, for optimum outcome, the data situation and gridding approaches still need
to be improved in view of the desired 5-mm accuracy geoid model.

Conclusions

This contribution compared and analyzed methods of computing a surface gravity anomaly
grid from scattered survey data. A general RIR method was used, that is, the surface gravity
anomalies were reduced before and restored after the interpolation process. Two concurrent
reduction and four interpolation methods were studied and assessed in the extended Nor-
dic-Baltic area. The entire work flow of gravity data processing together with the effect of
some alternative processing choices was discussed. The gravity field model was reduced to
complete Bouguer or RTM anomalies; the interpolation methods analyzed include two
spline-based (SURF and SPHI) and two statistical (LSC and KRIG) methods. LSC was the
only method allowing points to be weighted according to individual a priori error estimates.
The resulting gravity grids were assessed by comparison to input data and subsequent
GNSS/levelling fit to the quasigeoid model.

Overall, it is not so crucial whether the surface gravity anomaly grid is computed via RTM
or Bouguer type anomalies. The numerical results are similar in reasonably flat terrain areas
containing high-quality observations. Due to their more homogeneous and isotropic prop-
erty, in conjunction with statistical interpolation methods such as LSC, the RTM anomalies
perform slightly better.

The spline-based interpolation methods SURF and SPHI generate a rather ‘exact’ grid
that closely follows the input data. So does the KRIG method, at least when using the param-
eters fitted for the current dataset. The result of LSC interpolation depends significantly on
the quality of the a priori error estimates: if these are not trustworthy, the benefits of using
LSC with individual weights become disadvantages.

It is advisable not to judge an interpolation method only according to its ability to gener-
ate a grid matching the input data as closely as possible. If the residuals between the input
point data and the resulting grid are within the limits of data error estimates, a smoother
grid can in fact be physically more realistic and thus more appropriate. This is especially
valid for marine areas where data points are often available along sparsely placed and rather
inaccurate survey tracks, but the gravity field is usually quite smooth.

Both spline-based methods, especially SPHI, are best used in areas with many observa-
tions and no data gaps. Grids computed by SPHI displayed some uncontrolled behavior
over marine areas with trackwise gravity coverage, data gaps and next to steep gravity gra-
dients. In such areas, other methods, such as LSC, should be preferred for generating a phys-
ically meaningful gravity grid.

Based on the above, it was concluded that, provided that realistic error estimates are avail-
able, gridding RTM anomalies using LSC results in the highest quality gravity field
representation.

It was also demonstrated that changing the maximum d/o (within reasonable limits of
240–300) to which the GGM is evaluated when computing RTM anomalies, has an insignifi-
cant effect on the resulting gravity field and subsequent quasigeoid models. As expected, the
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use of simple instead of complete Bouguer anomalies in gridding has a notable effect on the
resulting quasigeoid model in areas of rugged terrain and almost no positive effect elsewhere.
Over the rugged Norwegian territory, these differences had a standard deviation of § 2 cm.

The expected accuracy of quasigeoid models related to the used gravity gridding approach
was analyzed in view of the geodetic community now aiming at 5-mm accuracy in (quasi)
geoid modelling. The standard deviation of quasigeoid models computed from different
gravity grids confirmed that a quasigeoid model with an accuracy of 5 mm could be com-
puted in most areas with terrain elevations up to 2 km and gravity data with an average error
estimate of 1.8 mGal available with a density of 1 point per 10 km2. However, an accuracy of
5 mm has not yet been reached over more rugged terrain and most marine areas.

The main recommendations for the NKG2015 geoid modelling project that motivated
this research are the following. First, both, Bouguer type or RTM anomalies may be used for
gridding. Second, in general, any of the tested interpolation methods may be used. However,
the SPHI method should be avoided due to unrealistic and extreme behavior in between the
marine data tracks. Also, in Norway, where many of the a priori error estimates for contem-
porary terrestrial gravity data are set to be unrealistically large (i.e. 5 mGal), the usage of
LSC with such individual a priori error estimates should be avoided. Attempts to provide
more realistic error estimates should be encouraged.

Gravity gridding is of interest to other ongoing geodetic projects, for example the multi-
national GEOMED 2 (Barzaghi et al. 2016) and the EGG (Denker 2016) co-operation proj-
ects, or countries like Canada, USA, Russia, or Australia that have a large area covered with
inhomogeneous gravity data. Also, accurate gravity field and geoid modelling is a key feature
in the realization of the International Height Reference System (IHRS) reference stations
and other datum unification tasks.

Although the gravity gridding procedure was analyzed in ample detail, further work out-
side the scope of this study can be conducted to elaborate the analysis reported above. Other
gravity reduction methods, such as isostatic reductions, could be compared to the two meth-
ods tested. All of the gravity reductions could be improved by including density and bathym-
etry information, undoubtedly improving the accuracy of the resulting marine geoid model.
Statistical interpolation could be improved by future research in non-stationary covariance
function modelling (see e.g. Darbeheshti and Featherstone 2009). The KRIG solutions could
be improved by including individual error estimates as it was done for the LSC method and
the spline-based solutions of SURF and SPHI by tuning the tension factor according to
some criterion to better fit the characteristics of the gravity field automatically in a specific
area. The gravity data could benefit from automatically varying CV limits for gross error
detection according to the field’s roughness. Over the open oceans, it could be beneficial to
include satellite altimetry data (in combination with terrestrial data) as these have been
shown to reach accuracies of a few mGal, thanks to newer Cryosat and Sentinel satellite-
related improvements (Andersen and Knudsen 2016). As for the specific area of the Nordic-
Baltic region, improvements in the Baltic Sea gravity grid are expected due to the FAMOS
project (FAMOS Consortium 2014) collecting new shipborne gravity data.

The recommendations and methodological approaches discussed above, together with the
concerns and exceptions mentioned, are applicable to other gravity gridding tasks worldwide.
A resulting surface gravity anomaly grid can serve as input to numerous geoscientific tasks.
Other types of gravity anomalies, for example those used in geophysical studies or concurrent
geoid modelling techniques, can then be derived from the surface gravity anomaly grid.
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Improving and Validating Gravity Data Over
Ice-Covered Marine Areas

S. Märdla, T. Oja, A. Ellmann, and H. Jürgenson

Abstract

For accurate regional gravity field modelling it is vital to have dense and high quality data
coverage. Ice gravimetry is a viable alternative to ship- and airborne gravimetry to help
fill gaps over marine areas. A number of factors affect the accuracy of gravimetry on ice,
thus special survey and data processing methods are needed. Nevertheless with appropriate
methods an accuracy of ˙0.16 mGal was achieved on coastal ice. An efficient method for
positioning of survey points is RTK GNSS which takes no more than a few minutes on each
point and the accuracy achieved is at least ˙0.15 cm, while 10 min static surveys also yield
acceptable results.

This study reports ice gravity surveys proceeded on shore-fast ice in the Väinameri Basin,
Estonia. Acquired gravity data agree with existing airborne data while covering a larger
area. As a result of the survey it was possible to confirm and specify the extents of an
area of positive anomalies. An effort to determine the geoid heights over Väinameri Basin
directly via using the GNSS data gathered during gravity surveys on ice was made. For now
it proved to be less reliable than classical geoid determination from gravity data.

Keywords

Airborne gravimetry • Baltic sea • GNSS positioning • Gravity anomaly • Ice gravimetry •
Relative gravimetry

1 Introduction

Satellite data have resolved the long-wavelength part of the
global geoid with an accuracy of a few cm. In particular,
thanks to dedicated gravimetric satellite missions (mainly
GRACE and GOCE) there is now homogeneous global cov-
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erage of long wavelength gravity data with spatial resolution
better than 100 km. However, in regional geoid modelling
the satellite-only data need to be complemented with high
quality and dense regional data across the entire study area.
Therefore, when the gravity field is modelled in local scales
for geoid computation, large lakes and coastal waters also
need to be covered by gravity observations.

Filling gravity data gaps over water bodies is clearly
more complicated than on land. Satellite altimetry can be
used over open oceans. However, its usability in coastal
waters is limited, see e.g. Fernandes et al. (2003), Deng
et al. (2002) and references therein. Therefore a special
vessel as well as equipment is needed for marine gravity
surveys which make such observations expensive and time-
demanding. Also, marine gravity data may often be contam-
inated with systematic errors due to factors of the moving
survey environment, instrumental and navigational errors
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(Denker and Roland 2005), that need to be corrected via
data processing methods, see e.g. Motao et al. (1999) and
references therein.

During the past decade small aircraft have also been used
for gravity data acquisition above water bodies, see Forsberg
et al. (2001), Hwang et al. (2007) and references therein.
However, acquisition of low-elevation airborne data near
coasts may be complicated due to the turbulent environment
caused by different temperatures of land and water. Therefore
both coverage and quality of gravity data collected during
marine and aerogravity surveys at shorelines could be quite
heterogeneous, which affects subsequent geoid determina-
tion accuracy in the coastal regions.

Although not possible everywhere, gravity surveys on
shore-fast ice with terrestrial gravimeters is an alternative
to marine and airborne surveying. Modern equipment allows
for accurate, relatively fast and therefore cost-efficient acqui-
sition of gravity data over ice covered waters. Relative
gravity surveys near the coast can easily be connected to the
gravimetric network on land, which make them a valuable set
of information for validating marine and airborne data.

Gravity surveys on ice were tried already in the 1950s,
see a review in Lehmuskoski and Mäkinen (1978). Surveys
have been proceeded in the Gulf of Botnia (Lehmuskoski and
Mäkinen 1978), at Wanapitei Lake in Canada (Ugalde et al.
2006), Lake Vänern in Sweden (Ågren et al. 2015), on several
large Estonian lakes and the Gulf of Riga (Oja et al. 2011).
These studies reveal many issues related to mainly wind, ice
oscillation and movement, positioning and data processing
that affect the quality of gravity observations on ice and thus
need to be investigated.

The main objective of this contribution is to assess and
compare the quality of gravity data obtained by surveying on
marine ice. Emphasis is on methods of evaluation: mainly
comparison of gravity surveys on ice with airborne gravime-
try, but also using the precise GNSS positioning on top of ice
to validate possible geoid modelling improvements.

The paper is structured as follows. The introduction is
followed by a review on problems concerning gravity surveys
on ice alongside with methods of validating gravity surveys
over water. The methods and results of a case study con-
ducted on the Baltic Sea ice are presented. Brief conclusions
summarize the contribution.

2 Problems of Gravity Surveys on Ice

According to previous studies (cf. references above) survey-
ing gravity on ice is complicated by moving ice and weather
conditions. One problem is the gravimeter tilting due to some
compaction of snow as well as melting of ice under the tripod
(occurring even with insulation) and the weight of equipment
on ice. Modern gravimeters like Scintrex CG5 units have tilt

sensors which help correct for the inclination, but only as
long as it remains within their working range, thus possible
continuous measurement time is limited (Ugalde et al. 2006).

Another problem is strong wind above the ice that shakes
the gravimeter (which was one of the main problems on
Lake Vänern, see Alm et al. 2011) but also creates noticeable
ice oscillation (Kiviniemi 1975). Ice moves and vibrates
constantly: high frequency gravity records show peak-to-
peak amplitudes of over 150 mGal occurring at frequencies
of 0.05–0.35 Hz (at periods of 3–20 s), see Oja et al. (2011),
which creates certain challenges for subsequent data pro-
cessing. Similarly to surveys on land, to obtain reliable ice-
gravity results a number of points need to be revisited to
allow for gravimeter’s drift calculation. A detailed discussion
of other possible error sources in ice gravimetry is given in
Lehmuskoski and Mäkinen (1978).

Fortunately, visual output of observed high-frequency
signal on the screen of some modern gravimeters such as
the Scintrex CG5 helps to estimate the quality of surveys on
site and adjust the instrument and method accordingly. Hence
it has been possible to achieve uncertainties of ˙0.15 mGal
in recent surveys (Oja et al. 2011; Ågren et al. 2015). The
obtained results should be compared with existing gravity
datasets.

3 Comparing Gravity Data from
Different Sources

Comparing gravity anomaly values from different sources
can not be proceeded directly. First, locations of different
survey points do not coincide exactly. This can be overcome
by interpolating gravity anomaly values of one campaign
to the locations of the other. Second, survey altitudes can
be different and need to be accounted for. Fortunately, in
comparisons of ice gravity data to shipborne surveys the
difference in heights is not significant. Conversely, in case
of airborne surveys the results at flight level need to be
downward continued (DWC) to the sea level.

The problem of DWC is visualized in Fig. 1 that describes
comparison of gravity surveys on ice with airborne surveys.
The corresponding free air anomalies (�g) are calculated as
follows:

�gair.˝/ D g.rair; ˝/�
�
�0.re; ˝/C@�

@h
�Hair.˝/

�
(1)

�gice.˝/ D g.rice; ˝/�
�
�0.re; ˝/C@�

@h
�Hice.˝/

�
(2)

where g is measured gravity, �0 is the normal gravity on
the surface of reference ellipsoid, r is the geocentric radius,
˝ is the coordinate pair (latitude, longitude), H is the
height with respect to the vertical datum, h is the geodetic
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Fig. 1 Comparing gravity surveys on different height levels, the symbols used are explained in the text

height reckoned from the ellipsoid and @� /@h is the normal
gravity gradient. Subscripts ice and air denote parameters
acquired during ice and airborne gravity surveys, e refers
to the surface of ellipsoid. Note that h can be measured by
GNSS during surveys, Hice can be obtained from the sea level
data (nearby tide gauges) and Hair is conveniently derived
in aerogravimetric data processing. To find the difference
between gravity anomalies computed in air and on ice Eq. (1)
is subtracted from Eq. (2):

�gair.˝/��gice.˝/ D

g.rair; ˝/�g.rice; ˝/�@�

@h
�Hair.˝/C@�

@h
�Hice.˝/ D

dg

dH
.rair.˝/�rice.˝// �@�

@h
.Hair.˝/�Hice.˝//

(3)

where dg/dH is the gravity gradient. Since

rair.˝/�rice.˝/ D Hair.˝/�Hice.˝/ � Hair.˝/ (4)

then

�gair.˝/��gice.˝/ D Hair.˝/�
�

dg

dH
�@�

@h

�
(5)

Eq. (5) represents DWC correction for gravity anomaly and
needs to be accounted for in rigorous comparisons of differ-
ent gravity sets. There are a number of methods to estimate
it, see Ellmann (2011) and references therein for an extended
discussion.

4 Relation Between Gravity and GNSS
Observations

Without accurate positioning all the care taken to measure
the gravity signal becomes useless. Considering the gravity
gradient of about 0.3 mGal/m: to achieve the accuracy of

˙0.05 mGal of gravity values a vertical positioning accuracy
of about ˙0.15 m has to be achieved. Presently such an
accuracy can in most cases be achieved by using RTK (Real
Time Kinematic) GNSS positioning. For rapid positioning
a reliable VRS (Virtual Reference Stations) service and a
cellular data network can be used (where available), other-
wise rapid static GNSS observations or other approaches are
needed.

Gravity surveys are nowadays accompanied with precise
GNSS positioning. The sea ice should reflect quite well the
shape of a calm sea surface which in turn should reflect the
shape of the geoid. Therefore GNSS positioning provides
an additional dataset for validating the geoid model via
comparison of heights of survey points situated directly on
ice to the geoid model. For this it is important to consider
variations of sea level heights during the surveys: ice may
be above or below the national vertical datum (cf. Fig. 1 and
Sect. 6.3).

5 Case Study on the Väinameri Basin

Due to the large number of islands and islets more than
85% of Estonian borderline is in fact waterfront. Therefore
it is vital for Estonian gravity field (and consequent geoid)
modelling to have sufficient data available over marine areas.
For instance the historic (performed in the 1960s) Gulf of
Riga seabottom gravity survey results and the 1999 Baltic
Sea airborne gravity campaign (Forsberg et al. 2001) data
have been used in earlier geoid modelling studies (Forsberg
2001; Ellmann 2005; Ellmann et al. 2011).

There was evidence however that there may be biases in
existing datasets or some important features may be missing
from the current gravity field model over marine areas. Since
2009 numerous winter campaigns of relative gravity surveys
have been conducted on ice-covered lakes and coastal sea to
evaluate the historic datasets and to fill gaps of gravity data
in marine areas, the latest of these on the Väinameri Basin of
the Baltic Sea in the West Estonian Archipelago.
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5.1 Characteristics of the Study Area

The Väinameri Basin is a semi-closed (surrounded by an arc
of islands and the mainland) and rather shallow water body
with a mean depth of about 5 m. Its area is 2,200 km2 and it
contains hundreds of islets. Compared to the rest of the Baltic
Sea the ice cover is formed more frequently and lasts longer
(up to 4 months in cold winters). Väinameri, similarly to the
rest of the Baltic Sea, is almost tide-less (tides are below a
dm level). Instead, the sea level fluctuations are primarily
forced by the wind stress and atmospheric pressure changes
(Liibusk et al. 2013).

So far there were almost no gravity data except for a
few (possibly poorly connected) measurements on the islets
(Ellmann et al. 2009) and a single track of the 1999 airborne
gravity campaign. �g of these airborne data were the basis
for compiling the anomaly field model used for calculating a
recent national gravimetric geoid model GRAV-GEOID2011
(Ellmann et al. 2011), also for Märdla et al. (2015). Thus
possible errors in the airborne data strongly affect resulting
geoid models.

Indeed, a suspicious “lump” was detected in the anomaly
field model over the sea surface of Väinameri (see its location
on Fig. 4), showing anomalies up to 9 mGal larger than on
surrounding islands. This was in fact one of the main reasons
for conducting ice gravity surveys in this particular area.
With new gravity data obtained in the surveys it would be
possible to verify and improve the gravity anomaly field
model.

In the winter of 2013 the Väinameri Basin became covered
with a 20. . . 50 cm thick layer of shore-fast ice. The adjacent
marine areas were also covered with pack ice. Weather
conditions were stable with prevailingly Southern winds well
below 5 m/s and steadily high air pressure within the study
area during the gravity surveys.

Surveys over the Southern part of the Väinameri Basin
were carried out during 4 days in Feb–March 2013, covering
about 1,000 km2. The density (1 point/25 km2) of surveys
(altogether 41 points on ice, additionally 8 points on land)
corresponds to that over land. The coverage of ice surveys,
however, is more even since it is not constrained to existing
roads.

Data collection consisted of relative gravity surveys and
point positioning, additionally ice thickness and water depth
were recorded (not used in data processing). On ice the team
and equipment were transported by a lightweight amphibious
crawler (Fig. 2).

5.2 Relative Gravimetry

Gravity measurements were performed relative to points on
land using a digital Scintrex CG5 spring gravimeter no. 36

Fig. 2 Gravity surveys and GNSS positioning on Väinameri Basin, a
lightweight amphibious crawler was used for transport

(hereafter S36). The benefit of using a CG5 gravimeter is its
ability to record readings with a 6 Hz frequency, allowing for
study of accelerations created by the vibration of ice surface.

The S36 used has been tested on the Pärnu and Tõravere-
Haanja calibration lines in Estonia, an acceptable accuracy
of about 200 ppm was concluded (Oja et al. 2010). Since the
estimated gravity range in the study area was about 32 mGal,
the calibration error of the S36 has an insignificant effect on
the survey results (less than 10 �Gal).

On each point at least three sets of 60 s readings were
taken. Usually, the gravimeters readings in a set on ice were
scattered a few mGal from the average (on land the scatter
was 0.1. . . 0.2 mGal), the sets agreed with each other within
50 �Gal. In case the readings between sets deviated from
the average by more than ˙0.1 mGal the recording time was
extended to 90 or even 120 s. Observations much longer than
120 s tend to be affected by the gravimeter’s tilt and consume
twice the time, hence were not used.

Gravity surveying was proceeded using loops so that
every loop was closed within a day. The starting points on
land and one or two additional points were repeated during
the same day to estimate the drift parameters of the gravime-
ter in subsequent data processing. Moreover, on ice at least
one point from a previously measured loop was repeated to
estimate consistency between the results of different days.
The starting points were connected with the national gravity
network after the snow and ice melted and the network
points were accessible again. Note that different time periods
may introduce additional errors into survey results due to
changing environmental conditions such as fluctuations in
ground water level, sea level variations and so forth.

For gravity data processing and adjustment the GRAVS2
software package developed by the Estonian Land Board was
applied. Points of the gravity network were used as reference
for the adjustment. Gravity data was processed in much the
same way and considering the same issues as in previous ice
gravity campaigns in Estonia, see Oja et al. (2011) for more
details.
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Fig. 3 Histogram of residuals of the adjustment of 286 readings, the
bins near the edges and the misfit with the normal distribution curve are
apparently connected to the effect of vibration noise on the readings

For comparison of gravity values on revisited points the
results were reduced to the height level of the first mea-
surement by applying a free air correction corresponding to
the height difference obtained from GNSS data analysis (see
Sect. 5.3). The gravitational attraction of changing volume
of sea water nor the effect of changing air pressure were
accounted for as the effects were estimated to be insignificant
(both well below 10 �Gal). After the reduction of gravime-
ter’s drift effect on readings the discrepancies on revisited
points were less than 20 �Gal.

All in all the gravity data obtained on shore-fast ice
was reasonably good: the expanded uncertainty multiplied
by a coverage factor of k=2 (2-sigma) of ˙0.15 mGal was
achieved from a least squares adjustment. It can be seen from
the histogram of residuals of the adjustment of 286 read-
ings (Fig. 3) that most of the residuals are within 25 �Gal.
However, the variation of readings on ice is much higher
compared to land data, some residuals reach 40. . . 65 �Gal.
Therefore ice gravity data was weighted down (decreased by
a factor of 4) in the adjustment. In addition, the uncertainty
of reference points (about 60 �Gal) was considered.

Considering also the uncertainty of GNSS height posi-
tioning of ˙0.15 m (see Sect. 5.3) but neglecting a number of
factors with smaller significance mentioned in Lehmuskoski
and Mäkinen (1978) the final uncertainty estimation of grav-
ity values amounts to

�g D ˙
p

0:152 C .0:15 � 0:3086/2 D ˙0:16 (mGal) (6)

Uncertainty of ˙0.16 mGal is close to that of modern
gravity data collected on land and better than most data

currently available for gravity field modelling. The obtained
accuracy is largely sufficient for calculating a geoid model
with the accuracy below 1 cm (Ågren and Sjöberg 2015).

5.3 Survey Point Positioning

Positioning of the survey points at Väinameri was proceeded
by GNSS methods using a GPS/GLONASS Trimble R8
receiver and a VRS service provided by a commercial CORS
(Continuously Operating Reference Stations) network.

A combination of rapid static and kinematic surveys was
tested for additional estimation of efficiency and accuracy,
also because the availability of cellular network (necessary
to obtain corrections via the VRS service) in such a remote
area was uncertain before the campaign.

On 18 points a 10 min static measurement was conducted
together with at least three kinematic readings of 5 s whereas
towards the end of the campaign only kinematic readings
were taken. In addition to three evenly distributed CORS 35–
50 km away, a dual-frequency Trimble 5800 GPS receiver
was set up on the coast about 5 km away and operated as
a base point during 5 h of the campaign, covering the static
measurement of 9 points in the Western part of the study area.

Data processing, which consisted primarily of baseline
processing, was proceeded using a commercial software
(Trimble Business Centre). It has to be mentioned that having
an additional base point set up did not have a significant
effect on the accuracy of positioning. This was revealed from
varying baseline processing methods in which the base point
position was fixed with different accuracy.

Discrepancies between static and kinematic height results
at Väinameri reached C0.03˙0.04 m. Although static mea-
surements provided systematically larger height values, dis-
tribution of discrepancies does not reveal anything specific
(except for a few larger ones in the NE being close to 10 cm).

Additionally differences of height values on revisited
points were investigated. On land these were on a cm level,
on ice as much as 15 cm. This reflects not only precision of
GNSS positioning but also change in the water level during
the survey.

In the light of GNSS quality assessment at Väinameri
it can be concluded that an uncertainty of ˙15 cm can be
expected in height values although most points are likely to
have a smaller error than this. VRS RTK surveys should be
preferred as they are faster, but readiness for static surveys
needs to be maintained in case the cellular data network fails
in such remote areas.
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Fig. 4 Locations of air (line-like sequence) and ice (scattered) gravity
points over the Väinameri Basin. The figure is contoured according to
the �g field used for calculating GRAV-GEOID2011, the colour range

in mGal is explained in the top legend. Differences of �gice � �gfield

(shown as values on the figure) and �gair ��gfield in mGal are depicted
by the colours explained in the bottom legend

6 Results and Comparisons

The results of the Väinameri campaign were compared to
existing data that include (see also Sect. 5.1):
– Baltic Sea aerogravity survey from 1999
– The gravity anomaly field model used to calculate the

official gravimetric geoid model of Estonia, GRAV-
GEOID2011 (the existing gravity field model)

– The gravimetric geoid GRAV-GEOID2011 itself (the
existing geoid model)

6.1 Evaluation of Aerogravity Data

In the Baltic Sea aerogravity survey a precision of ˙2 mGal
was achieved (revealed from cross validation between tracks,
Forsberg et al. 2001). Gravity anomalies from the Baltic Sea
aerogravity data, downward continued to the sea level [see
Eq. (1). . . (5)] by an approach in Ellmann (2011), were used
in this study.

As airborne data is very sparse in the Väinameri area
(see the line-like sequence of points on Fig. 4), interpolation
does not yield very good results. Therefore only a visual
inspection of adjacent points of airborne and ice gravity data
was made. Comparisons revealed that the air and ice gravity
campaigns do not differ more than 2 mGal which confirms
the initial accuracy estimation achieved from cross validation
between tracks.

In marine areas off the NW coast of Estonia these airborne
data are (and most likely will be for a while) the only data to

describe the gravity field. Therefore knowing that airborne
data are trustworthy in this area is very important.

6.2 Improvements to the Existing Gravity
Field Model

Gravity data obtained in the Väinameri campaign was com-
pared to the existing gravity field model. Although the
average difference of ice gravity results from the anomaly
field model is only C0.09 mGal the standard deviation is as
large as ˙1.70 mGal (Fig. 4).

Looking at the distribution of these differences a number
of features can be noted. Importantly, the new ice gravity
dataset confirmed the existence and magnitude of the area of
positive gravity anomalies (the “lump” in the anomaly field)
estimated from airborne data. However, it reaches further
West than expected. Also, the Eastern part of Väinameri
has in fact slightly smaller anomaly values than previously
known.

An initial comparison has revealed that the errors in
the existing gravity field model in the Väinameri area have
an effect of about a cm on the geoid model. Therefore a
significant improvement has been made in the light of the
attempts to calculate a geod model with an accuracy of 1 cm.

6.3 Evaluation of the Existing Geoid Model
Using GNSS Surveys on Ice

The obtained geodetic heights of ice gravity points in the
Väinameri Basin are a rather interesting source for verifying
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Fig. 5 Contoured GRAV-GEOID2011 model, the colour range in metres is explained in the top legend. Discrepancies of GNSS heights with
respect to the GRAV-GEOID2011 model (in cm, GNSS-geoid, 1D offset removed) are depicted by coloured circles explained in the bottom legend

the shape of the marine geoid. In the following discus-
sion RTK heights are used since they exist on all survey
points and seem to be at least equally accurate as the static
results.

To be able to compare GNSS heights obtained on survey
points directly to the gravimetric geoid model heights in
the Väinameri Basin some corrections need to be accounted
for. During the surveys instantaneous sea level differed from
the mean sea level by 30. . . 45 cm (cf. Fig. 1). First, sea
level corrections obtained from interpolating values from five
surrounding tide gauges (from the online sea level system
of Marine Systems Institute, TUT) were applied to surveyed
heights. Second, the average difference of C0.375 m between
survey point heights and the gravimetric geoid model in
the study area was accounted for to simplify comparison.
Note that variations in ice top and sea level difference were
not accounted for, these could reach no more than 3 cm
considering that ice thickness varied from 20. . . 50 cm.

Difference of corrected heights of survey points from
the GRAV-GEOID2011 model are depicted in Fig. 5. The
standard deviation of differences was ˙0.036 m. The largest
differences (negative values in NW) appear where the dis-
crepancy between static and kinematic GNSS results was
also the largest (up to 10 cm), thus the comparison is not very
reliable in that particular area. Although, large deviations
could also be due to prevailing Southern winds raising the
sea level above average in the area, therefore contradicting
the assumption of the ice surface reflecting the geoid surface.

Although differences on adjacent points are similar and
the results seem promising they do not match so well with
the differences in the anomaly fields (Fig. 4). For example in
the East, with addition of ice gravity data, free air anomalies

decreased and the height values in NE also decreased but in
SE they increased. SE and NE were surveyed on different
days which leads to suspect that the points in South could
have a systematic error component in GNSS heights.

For now it seems like the GNSS positioning methods
used are not accurate enough for direct geoid determination.
Nevertheless, higher accuracy of height positioning on sea
ice could allow for direct marine geoid determination using
height data only.

7 Conclusions

Ice gravimetry is a viable alternative to ship- and airborne
gravimetry in areas of shore-fast ice formation – with appro-
priate survey and data processing methods it is possible
to achieve uncertainties of ˙0.16 mGal. This is better than
most gravity data currently available on land and satisfies
easily the accuracy requirements needed for a 1 cm geoid
determination.

One source of errors in collecting gravity data can be
the positioning of survey points. A preferred method, where
available, is RTK GNSS positioning using a VRS service.

Validation and comparison of ice gravimetry can be pro-
ceeded after reducing survey results to the same position in
space. It was found that in the Väinameri Basin the Baltic Sea
1999 airborne gravity data agree reasonably well (˙2 mGal)
with new ice survey results.

The survey in Väinameri has revealed important informa-
tion about the gravity anomaly field, confirming the existence
of a local anomaly in the gravity anomaly field, specifying its
magnitude and extents.
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GNSS positioning on shore-fast ice could become an
additional method of determining the shape of the marine
geoid. However, the achieved uncertainty of ˙0.15 m in
height determination seems insufficient for the method to
improve the marine geoid model in Väinameri to the same
accuracy as gravity data allow.
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Modelling the Influence of Terraced Landforms
to the Earth’s Gravity Field

Silja Märdla, Tõnis Oja, Artu Ellmann, and Harli Jürgenson

Abstract

Medium resolution (1–3 arc-min) gravity anomaly grids do not reflect reality very accu-
rately over terraced landforms, which in turn may affect the uncertainty of subsequent
geoid modelling. This inaccuracy is due to many factors. The gravimetric datasets used
in the gridding of gravity field models have a varying accuracy and coverage, especially in
terraced and coastal areas. Further, the resolution of the terrain model used in the modelling
of anomaly grids is usually too low to capture the complete gravimetric attraction of terraced
landforms.

Since the values of free-air anomalies are strongly correlated with terrain heights, it is
difficult to model the gridded surface over terraced landforms. Depending on the quality
of existing gravity data and terrain height models, different procedures should be used. In
the case of a terraced area that is densely covered by gravity data, if an accurate terrain
model exists, free-air anomaly grids should be calculated on high resolution (600 � 1200) and
using Bouguer anomaly values on grid nodes. If gridding is proceeded without Bouguer
anomalies, triangulation based gridding methods should be preferred.

Keywords

Gravity • Anomalies • Gridding • Terrace • North-Estonian Klint

1 Introduction

The Earth’s gravity field is varying, especially in areas of
changing terrain surface. Today the global, long-wavelength
features of the gravity field are relatively well known thanks
to dedicated gravimetric satellite missions. A recent com-
bined Earth’s geopotential model EGM08 (Pavlis et al. 2012)
has a resolution of 5 arc-min (corresponding to 9 km).
Although it could correspond well with local gravity data
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within gravimetrically well studied areas (see e.g. Ellmann
2010), its spatial resolution or accuracy is still not suffi-
cient for engineering applications, where 1–2 cm accuracy
of geoid model is needed. Having better knowledge about
the local nature of the gravity field would allow for more
accurate regional geoid models, calculation of which is aided
by the SRTM global topography model (Farr et al. 2007).
In many countries, even more accurate airborne LIDAR-
acquired data exist. Apparently, availability of detailed ter-
rain heights helps improve gravity anomaly data.

The conventional and still often used source data for
calculating a geoid model are the gravity free-air anomalies
(FAA) deduced from gravity measurements. For some geoid
computation methods (fast Fourier transform or Stokesian
integration), anomalies need to be calculated into regular
grids. This arises many questions about areas with sparse
data, see e.g. Kirby et al. (1997), Goos et al. (2003) and
references therein.
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Usually, when compiling gravity anomaly models, no dis-
tinction is made between gridding over different landforms.
It is, often optimistically, assumed that the selected gridding
algorithm is universally suited for all landforms within the
area of interest. In the past such simplification was often
justified by computational constraints. In this study however,
emphasis is on developing optimum gridding algorithms for
areas with contrasting landforms.

The question arose since discrepancies between the re-
sults of different gridding methods seem to be especially
large in areas with terraced landforms. Therefore, the be-
haviour of the gravity field in terraced areas, different meth-
ods for calculating gravity anomaly grids (without prior
removal of any frequency based information such as EGM-
based long-wavelength contribution) and the evaluation of
the resulting models of gravity anomaly fields are discussed
in this contribution.

First, different methods of gridding gravity data are intro-
duced. Then, a numerical case study is described to evaluate
these methods. The most suitable algorithm is found for
gridding gravity data in the terraced study area. Obtained
results are compared with existing models: the anomaly grids
used for the latest Estonian gravimetric geoid calculation are
evaluated. A discussion on practical uses of high resolution
anomaly grids concludes this contribution.

2 Methods of Gridding Gravity Data

Gridding of gravity anomalies is a critical issue in geoid
modelling, because any error committed at this stage will
propagate into the geoid solution. There are a number of
commonly used gridding methods. These include continuous
curvature, triangulation or neighbouring points’ based algo-
rithms, among others. These are programmed into many soft-
ware packages, including the free and open source Generic
Mapping Tools (GMT; Wessel and Smith 1998), often used
by geoscientists.

Continuous curvature is an algorithm that fits a curved
surface between data points, allowing for a smooth and in
a specific case even harmonic surface that either does or
does not pass through all data points. Nearest Neighbour
is an algorithm that considers only the very neighbouring
points when calculating values. Triangulation gives a so-
lution where the resulting surface passes through all data
points. A grid can be produced from a triangulated surface
by interpolation.

Due to free-air anomalies being strongly correlated with
terrain heights, the FAA values can change quite rapidly
in terraced areas. Therefore free-air anomalies are not very
suitable for gridding. As discussed by many, e.g. Janák and
Vaniček (2005), there are a number of different methods

Fig. 1 Detailed gravity measurement profiles Tabasalu1 and Tabasalu2
(depicted by red dots) crossing the North-Estonian Klint (depicted by
the brown line) near seashore (Color figure online)

for compiling FAA grids, yielding remarkable differences in
resulting anomaly models.

Instead of directly gridding the FAA values, the FAA grids
can also be obtained through simple or complete Bouguer
anomalies (denoted correspondingly as SBA and CBA) that
have a much smoother behaviour in most cases. The grid is
obtained by using a terrain model to calculate FAA values
at every grid node of the Bouguer anomaly grid. Note that
accurate height information at every grid node is needed for
such a gridding approach. If heights are not well known,
the free-air anomalies cannot be derived accurately through
Bouguer anomaly grids.

Over the Canadian Rocky Mountains Janák and Vaniček
(2005) calculated free-air anomalies through SBA and CBA.
Systematic errors up to 20 mGal between corresponding
FAA grids and 2 m in subsequent geoid models were de-
tected. Therefore it is reasonable to believe that, in a terraced
area, in addition to the gridding method, the way of obtaining
free-air anomaly grids is also important.

3 Gravity and Terrain Data
Within the Study Area

For the evaluation of gravity anomaly grids, detailed gravity
surveys were conducted at a terraced area in Tabasalu, some
10 km west from Tallinn, the capital of Estonia. It is an
area on the seashore with the North-Estonian Klint passing
through, having a height of about 30 m there. Two gravity
profiles (Tabasalu1 and Tabasalu2) were measured almost
perpendicularly to the Klint, see Fig. 1.

Gravity data were measured about every 100 m with
uncertainty of ˙0.07 mGal. Coordinates and heights were
deduced from GPS measurements with maximum uncer-
tainty of about ˙5–10 cm.
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For the modelling of the gravity field, an existing gravity
anomaly database of Estonia was used. The gravity data
available in the study area mostly consist of gravity values
with uniform uncertainty estimates (about ˙0.2 mGal) from
the surveys of Geological Survey of Estonia. For more details
on the database, the evaluation of the gravity data in question
and earlier use of the data see Ellmann et al. (2009) and
references therein. Average gravity data density within the
selected study area is 0.25 km in the North-south direction
and 1 km in the East-west direction (see Fig. 5 for gravity
points’ placement).

From the gravity data measured, free-air, simple and
complete Bouguer anomalies were calculated. For calcula-
tion of spherical terrain correction (e.g. Janák and Vaniček
2005) values, a LIDAR and SRTM combined digital terrain
model (A. Gruno, pers. comm.) with 300 � 300 (approximately
90 � 45 m2 in the study area) resolution was used. Discrep-
ancies between the DTM and heights measured on profile
points were found to reach up to 10 m. Apparently, even
the 300 � 300 DTM does not have a high enough resolution
or precise enough source data to reflect actual heights very
accurately near a terrace.

Since the calculated spherical terrain corrections are less
than 0.25 mGal the complete Bouguer anomaly values do
not differ much from the simple Bouguer anomaly values.
As the anomalies behave similarly, often no distinction is
made between SBA and CBA in further discussion. Also,
since both profiles showed similar gravity field behaviour,
only Tabasalu1 is discussed hereafter.

As expected, the gravity increases with the height decreas-
ing. Free-air anomalies are clearly correlated with height val-
ues with the change up to 6 mGal over the terrace. Bouguer
anomalies (BA) however are smooth and not correlated with
height values. Slight changes in the BA field near the terrace
may be explained by complex variations of ground density
underneath the terrace. See Talvik (2012) for a more detailed
description of the gravity field in the area.

4 The Optimal Gridding Algorithm

As discussed in Sect. 2, there are many ways for gridding
gravity anomalies. For this study, six different approaches
were used to generate regular grids from the gravity anomaly
database:
• GMT module surface, tension factors 0.25 and 1;
• GMT triangulate;
• Matlab griddata;
• GMT nearneighbour with 10 search radius and four sec-

tors (NN4);
• GMT nearneighbour with 10 search radius and eight

sectors out of which at least four must contain a point with
a value that is not NaN (NN4/8).

Each time free-air anomalies were in turn calculated
by the three different options described in Sect. 2. The
resulting anomaly grids were denoted as following:
FAAv (direct), FAAs (through SBA) and FAAc (through
CBA).

In addition, six different grid resolutions were tested:
10 � 20, 0.50 � 10, 1500 � 3000, 600 � 1200, 300 � 600 and 1.500 � 300.
The lowest, 10 � 20 (about 1.8 � 1.8 km2) resolution cor-
responds to the resolution of the contemporary geoid and
corresponding gravity (anomaly) field models of Estonia.
The highest, 1.500 � 300 (about 45 � 45 m2) resolution corre-
sponds to the shortest distances between gravity points in
the database and roughly to the distance between profile
points.

The optimal gridding algorithm for the given terraced area
proved to be the GMT triangulate with grid resolution of
600 � 1200. This was determined by comparing the gridded
anomaly data to the values obtained from the measurements
on the profiles. For this, gravity anomaly values were in-
terpolated from all the different grids to the profile points.
Differences of the interpolated values and the measured
values were depicted on one-dimensional profile graphs.
The mean, root mean square (RMS), minimal and maximal
discrepancies were found for each profile. The best algorithm
was then chosen by the statistics of discrepancies.

The explanation to the optimal resolution lies in the
average density of input gravity data in N-S direction
(250 m � 800). The advantage of the triangulate method
is its ability to better reflect rapid changes in the modelled
quantity, in this case, the anomaly field near the terrace’s
edge. Out of the modules available in GMT, the NN4
appeared to be almost as good as triangulate whereas the
NN4/8 option was unable to estimate a value to many
grid nodes. The GMT module surface with tension factor
0.25 distorts the gridded model unreasonably on resolutions
higher than 600 � 1200, which is something to take note of.
When the tension factor was increased to 1, which gives
a harmonic surface, the model was no longer distorted,
statistical indicators however were still not as good as for the
triangulate results.

Differences between methods were smaller for Bouguer
anomaly fields as these have a much smoother behaviour. The
best results were reached with the surface method, with other
methods differing only by 0.1–0.2 mGal.

Discrepancies between the measured and interpolated
(from the optimal triangulate 600 � 1200 grid) anomaly values
are shown on Fig. 2. The statistics of discrepancies between
free-air anomalies are shown in Table 1, left hand side. On
600 � 1200 resolution the free-air anomalies are considerably
more accurate when gridded through Bouguer anomalies
compared to when gridded directly.

In fact, the scheme of calculating the FAA grid through
Bouguer anomalies instead of direct gridding yields a more
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Table 1 Discrepancies of different type (FAA/FAAc) free-air anomaly grids from the profile data; units mGal

Optimal (600 � 1200) GRAV-GEOID2011 (10 � 20)

Profile Min Max Mean RMS Min Max Mean RMS

Free-air anomaly (directly gridded)

Tabasalu1 �1.74 C0.70 �0.34 ˙0.74 �1.02 C1.33 C0.10 ˙0.79

Tabasalu2 �2.06 C1.50 �0.41 ˙1.21 �1.65 C2.13 �0.16 ˙1.38

Free-air anomaly (using CBA)

Tabasalu1 �0.39 C0.30 �0.04 ˙0.18 �0.95 C1.55 C0.28 ˙0.93

Tabasalu2 �1.17 C1.87 C0.29 ˙0.77 �1.22 C2.58 C0.25 ˙1.40

Fig. 2 Discrepancies between the gravity free-air (FAAv, FAAs and
FAAc), simple Bouguer (SBA) and complete Bouguer (CBA) anomaly
values calculated for the Tabasalu1 profile and interpolated from the
optimal 600 � 1200triangulate grid (with suffix 612); the terrace is illus-
tratively depicted by the black line (Color figure online)

accurate FAA grid only if the DTM resolution is as high as
the resolution of the BA grid. If the DTM resolution is much
lower than that of the BA grid, the resulting FAA grid is
actually less accurate, which was noticed in the case of 10 � 20
resolution (for calculations on each resolution the DTM was
also sampled to that resolution).

5 Comparisons with Existing
High-Resolution Gravity Anomaly
Grids

The latest gravimetric geoid model of Estonia is GRAV-
GEOID2011 (Ellmann et al. 2011). It has a resolution of
10 � 20, which was also tested in this study. The free-air
anomaly grids used for the geoid modelling had also been
calculated directly from FAA values and through SBA or
CBA.

The anomaly grids used for GRAV-GEOID2011 were
compared to the profile measurements (Fig. 3). Discrep-
ancies of the free-air anomaly values used for the GRAV-
GEOID2011 from the measured data are shown in Table 1,

Fig. 3 Discrepancies between the free-air (FAA and FAAc) or com-
plete Bouguer anomalies (CBA) used for the GRAV-GEOID2011 (with
suffix _g) and the profile measurements on Tabasalu1

right-hand side. As mentioned, on low resolutions, gridding
FAA through BA leads to no improvement of the FAA grid.
That is why in case of the geoid modelling data, free-air
anomalies obtained by gridding through CBA do not show
a better agreement with the profile values.

Comparison of discrepancy graphs (cf. Figs. 2 and 3) and
the statistics in Table 1 reveal that the 600 � 1200 optimal grid
corresponds better to profile measurements than the grids
used for the geoid model.

Since the optimal 600 � 1200 triangulate grids were found
to have smaller discrepancies from the measured gravity
anomaly values than those of the GRAV-GEOID2011, free-
air anomaly grids of the geoid model were also compared
to the corresponding optimal grids of the present study. To
compare the free-air anomaly grids of GRAV-GEOID2011
to the optimal grid, the resolution of the first was increased
to 600 � 1200 by bicubic interpolation. Discrepancies between
directly gridded free-air anomaly models did not exceed
˙0.5 mGal and did not reveal any specific pattern.

However, discrepancies in free-air anomaly models ob-
tained by gridding through complete Bouguer anomalies
show a clear pattern with the optimal grid giving larger
values on top of the terrace and smaller values on the foot
than the grids used for the gravimetric geoid model (Fig. 4).
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Fig. 4 Comparison of free-air anomalies gridded through complete
Bouguer anomalies used for the GRAV-GEOID2011 model to the
corresponding optimal 600 � 1200triangulate grid (optimal minus GRAV-
GEOID); profiles depicted in green, the terrace by the aligned black
triangles (Color figure online)

6 Averaging the Optimal 600�1200
Anomaly Grid to 10 �20 Resolution

Using the optimal resolution of 600 � 1200 in regional geoid
modelling is computationally quite demanding (the number
of cells increases two magnitude orders when using the
resolution of 600 � 1200 instead of 10 � 20). Therefore, the
reasonability of extracting areas that need specific attention,
for example by selecting all cells that contain data points
with height difference of more than 15 m or have a certain
RMS value of heights within the grid cell, was investigated.
In such areas, high-resolution gridding could be used. These
grids could later be averaged back to 10 � 20 resolution and
substituted to the initial (10 � 20) anomaly grid.

In this study, 600 � 1200 grid averaged to 10 � 20 does not
show superiority over the initial model calculated directly
on 10 � 20 resolution. This was determined by comparing
the 600 � 1200 triangulate grid averaged to 10 � 20 resolution
with the original 10 � 20 triangulate grid (Fig. 5). Differences
between free-air anomaly grids are not very significant (aver-
age difference is 0.06 ˙ 0.20 mGal), yet larger discrepancies
occur near the terrace. Study of a longer strip along the
coastline may reveal a clearer pattern.

Comparison of the averaged grid to profile values yields
that the averaged grid is not necessarily more accurate than
the original one; the discrepancies are just the same or
slightly larger even. Similar results are seen for the free-air
anomaly grids calculated using Bouguer anomalies.

Fig. 5 Differences between the 10 � 20 triangulate FAA grid and the
600 � 1200triangulate FAA grid averaged to 10 � 20; profiles depicted in
green, gravity data points in brown (Color figure online)

Discussion and Conclusions

The 10 � 20 resolution used for the gravimetric geoid
model calculation appears to be too low to reflect short-
wavelength changes in the gravity anomaly field near the
terrace. One cell of the grid covers both the top and the
foot of the terrace, thus assigning both the same gravity
anomaly value which is a weighted average of the actual
values, depending on the position of the cell. This implies
that the magnitude of discrepancies from the actual value
on top of or on the foot of the terrace may reach up to half
of the actual change in the gravity (anomaly) field values
on the terrace.

To reduce errors in the anomaly field models in terraced
areas, the use of triangulation based gridding methods for
free-air anomalies can be the most suitable approach. It
would be best to increase the resolution of these models
according to the average density of gravity data to get
the most out of existing data. In case of North Estonia
that would be up to 600 � 1200. A significant improvement
can be achieved in high resolution free-air anomaly grids
if these are calculated using Bouguer anomalies which
include height information via a DTM.

Within the study area the anomaly values were best
reflected in the 600 � 1200 resolution triangulate grid. Even
if gravity data are gridded using the optimal algorithm,
the result has some discrepancies from the measured data
in terraced areas (cf. Fig. 2 and Table 1). This is due to
the low resolution of both gravity data and the used DTM.
It is therefore expected that LIDAR data will soon find its
way into gravity anomaly field gridding, terrain correction
calculation and geoid modelling [like the Stokes-Helmert
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geoid determination approach, where estimation of re-
lated topographical effects may be quite demanding, for
a review see Ellmann and Vaníček (2007)]. Discrepancies
between gridded (using the optimal algorithm) and actual
(measured) data may be larger in other areas (since gravity
data as dense as data in the study area are rare both in
Estonia and elsewhere), especially areas with much higher
terraces.

The discrepancies between different models and also
errors in the models (discrepancies of the models from
the measured data) have a systematic pattern (cf. Figs. 2,
3 and 4). From the edge of the terrace to the bottom, the
differences change sign. It is obvious that the terrace has
a significant but short (1–2 km) wavelength effect on the
gravity field and its models. In Estonia, the terraced Klint
areas are narrow, but they continue along the coast for
about a 100 km. These may cause noticeable errors in
gravity anomaly models which may propagate to subse-
quent geoid models. Therefore it is necessary to note the
existence of such areas, although the magnitude of the
effect on geoid modelling needs to be tested in further
studies.

It can be argued that gravity data with average distance
of 5 km between data points is sufficient for a 5 mm
quasigeoid solution (

0

Ågren and Sjöberg 2012). In this
study we have seen that gravity field models can be im-
proved by using appropriate gridding methods, however
in terraced areas the discrepancies are still significant (up
to 0.8 mGal). If the terraces are high and their effect to
gravity anomaly field models should also affect the geoid
solution, some additional gravity data may be needed.

For gridding free-air anomalies directly, there is no
remarkable difference between the optimal 600 � 1200 tri-
angulate grid and the 10 � 20 grid used for the GRAV-
GEOID2011. For gridding free-air anomalies through
(simple or complete) Bouguer anomalies, the 600 � 1200
grid is much more accurate than the grid used for the geoid
model (cf. Table 1) confirming that anomaly grids can be
calculated more accurately.

As the differences between the original 10 � 20 grid and
the 600 � 1200 grid averaged to 10 � 20 were insignificant
(cf. Fig. 5), it can be concluded that using the optimal
method is reasonable only if the gravity field model (and
if necessary, the subsequent geoid model) can also be
presented with the same resolution as the optimal one. If
this is too demanding, an option of calculating one general
model on a lower resolution and additional models on
higher resolutions for specific areas could be considered.

The results of this study can also be applied to gridding
the gravity field in other areas with terraced landforms.
Much higher terraces are found in Europe and elsewhere,
reaching more than 1,000 m. In these areas the effect of
the terrace certainly demands attention. Gridding methods
discussed here are well applicable to other areas; the
optimal model resolutions however are dependent on
existing gravity data density.
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Abstract – Sea surface topography (SST) – the difference 
between the geoid and sea surface height (SSH), is requested for 
many marine applications, e.g. for analyzing currents and 
variation of salinity. Globally, SST can be roughly determined by 
using satellite altimetry and oceanographic data. However, in 
coastal areas, the accuracy and spatial resolution of these 
methods are rather low. Accordingly, issues related to enhancing 
SST resolution and accuracy with GNSS (Global Navigation 
Satellite Systems) measurements are explored in this study. 

A practical case study that was carried out on the ice surface 
over a part of the Baltic Sea tackles profile- and point-wise GNSS 
measurements for determining SST. Profile-wise GNSS 
measurements were proceeded on official ice roads (altogether 50 
km) between the mainland and the two major islands (Saaremaa 
and Hiiumaa). The GNSS profiles were complemented with 
GNSS point-wise measurements scattered (1 point per 25 km2) all 
over the study area. The GNSS-derived SSH, which is the 
difference between the ellipsoid and the sea surface, was 
corrected with ice freeboard and corrections due to offsets of 
instantaneous sea level height values from the mean sea level. For 
calculating SST from the GNSS-derived and corrected SSH, a 
recent high-resolution (1' x 2') gravimetric geoid model GRAV-
GEOID2011 was used. The estimated SST was compared to the 
global SST model DTU10MDT and with an earlier regional SST 
model. 

Key words: sea surface topography, sea surface height, GNSS, 
geoid, Väinameri Basin, Baltic Sea 

I. INTRODUCTION 

Sea surface topography (SST) is affected by water 
velocity, currents, wind drag, water depth and bottom friction, 
water density, atmospheric pressure, the Coriolis force and 
gravity [1]. River discharge and seabed topography also 
contribute to the variability of SST in coastal regions [2, 3]. 
Globally, satellite altimetry has been used for more than 20 
years (from the late 1980’s) to observe sea surface height 
(SSH) changes. Using satellite altimetry, SSH can be detected 
with an accuracy of about 2 cm, at best. Additionally, for 
deriving SST from SSH, a geoid model is needed. However, 
the accuracy of global geoid models remains around 10 cm (in 
a regional scale). Thus the error of global geoid models is 
estimated to dominate in SST modelling in a regional scale. 
Therefore, the absolute accuracy of SST models based on 

satellite altimetry remains within about 10…15 cm. In 
addition, the quality of satellite altimetry measurements in 
coastal and semi-enclosed marine areas is relatively poor, see 
e.g. [4, 5, 6]. Also, the precision of geoid models in coastal 
areas can suffer due to heterogeneity of regional gravity data. 
Therefore, the accuracy of SST models in such areas can be 
even lower.  

Additional data sources used to calculate SST models 
include long-term oceanographic data [7, 8] and in situ sea 
surface measurements that are useful to improve and validate 
local SST models in the coastal areas. Third, geodetic 
measurements such as high precision levelling and GNSS 
observations at tide gauges are also used to detect SST, e.g. 
[9]. The accuracy of GNSS-based SST models is similar to 
satellite altimetry based models. The corresponding error 
budget comprises errors due to GNSS (~1…15 cm), local 
geoid model (~2…5 cm) and mean sea level determination 
(~1…2 cm) errors.  

The point-wise GNSS observation method to determine 
SST is mainly used on shoreline tide gauges (TG). In 
countries of seasonal formation of sea ice however, the GNSS 
method could also be used over marine areas. Note that the sea 
ice follows the shape of a calm sea surface which in turn 
reflects, to a certain extent, the shape of the geoid. GNSS 
measurements on such “ice-tamed” sea surface can be carried 
out to detect SST by using both point-wise and profile-wise 
measurements [10]. GNSS measurements on ice can improve 
and/or validate the accuracy of SST models near coastal areas 
with relatively little effort. 

This contribution presents the determination of SST on ice 
using point-wise and profile-wise GNSS measurements. First, 
principles of GNSS-based SST determination are explained. 
Next, methods of carrying out a case study in the Väinameri 
Basin are described. A GNSS-derived SST model is calculated 
using point-wise GNSS measurements on ice. The obtained 
results are compared with the global SST model DTU10MDT 
and with an earlier regional SST model of the Väinameri 
Basin. A brief summary concludes the paper. 

 



 

II. PRINCIPLES OF SEA SURFACE TOPOGRAFHY 
DETERMINATION BY GNSS SURVEYS ON ICE 

SST is derived from SSH that can be measured directly by 
GNSS methods. This can be proceeded either on sea ice or on 
board ships in open waters. Additionally, instantaneous 
absolute water level height (Hi, Fig.1) needs to be determined 
by nearby tide gauges. The antenna reference point (ARP) 
height (hi) is computed with respect to the reference ellipsoid; 
vertical distance between the ARP and instantaneous water 
level ( AH

waterHΔ ) is measured. In the case of ice, the thickness 
of ice freeboard (ΔHFB), also the distance between ARP and 
ice level ( AH

iceHΔ ) are determined. Thus, the instantaneous 

SSH ( ins
SSHh ) is computed as (cf. Fig. 1): 
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SSH ϕ+ϕ−ϕ−ϕ=ϕ  (1) 

 
where the geodetic coordinates φ and λ denote the location of 
measurements and the term �ε comprises measurement errors. 

Nevertheless, the ins
SSHh  at a location ),( λϕ is affected by 

wind direction and speed even in “ice-tamed” conditions. For 
the obtained ins

SSHh  to be comparable with the mean sea level 
(MSL), the absolute height Hi of the instantaneous water level 
needs to be accounted for: 
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where mean
SSHh  denotes mean sea level heights. Hi at a location 

),( λϕ is obtained from TGs readings (for the same time-

instant) at locations )λ,( TGTGϕ  by interpolating over the 
marine area of interest using some interpolation function, e.g. 
a linear interpolation [11] between the TGs: 
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where TG
jH  is instantaneous sea level height at j-th TG with 

coordinates TG
j

TG
j λ,ϕ . TG

1jH +  is instantaneous sea level height 
at other TGj+1 with coordinates TG

1j
TG

1j λ, ++ϕ . 
Considering Eqs. (1), (2) and the geoidal height from the 

gravimetric geoid model (N) (cf. Fig. 1), GNSS-derived SST 
(SSTGNSS) is calculated as:  

 

−ϕ−ϕ=ϕ λ),(ΔHλ),(hλ),(SST AH
iceiGNSS  

λ),Σε(λ),N(λ),(Hλ),(ΔH iFB ϕ+ϕ−ϕ−ϕ−  (4) 
 

Eq. (4) is used for calculating GNSS-derived SST values 
in the case study. 

 
Figure 1. Point-wise (GNSS antenna on a rod) and profile-wise (GNSS antenna mounted on a vehicle) GNSS measurements on ice-covered marine areas with 
respect to mean sea level. ΔHFB is the thickness of ice freeboard and AH

iceHΔ  is the distance between the antenna reference point (ARP) and the ice surface; in 
ship-borne surveys the ARP height is measured with respect to the water line ( AH

waterHΔ ). In all the cases, the ARP height is computed with respect to the reference 
ellipsoid (hi). The mean sea level (MSL) is the sum of the gravimetric geoid model height (N) and the GNSS-derived sea surface topography ( GNSSSST ). The 

absolute height (Hi) of the instantaneous sea surface height ( ins
SSHh ) with respect to the MSL can be determined by nearby tide gauge(s). 



 

III. CASE STUDY IN THE VÄINAMERI BASIN 

The Väinameri Basin (surface area about 2200 km2) is 
surrounded by six precise high-frequency automatic TGs (Fig. 
2 and [12]) for determining the absolute height (Hi) of the 
instantaneous SSH. Additionally, the study area is covered by 
a relatively accurate (±2…3 cm) regional gravimetric geoid 
model GRAV-GEOID2011 ([13], Fig. 2). Therefore, the 
selected study area appears to be a good test area for GNSS-
derived SST determination. 

 

 
Figure 2. Locations of GNSS points and profiles over the ice covered 

Väinameri Basin. Their colours express detected discrepancies between the 
GNSS-derived SST surface and the GRAV-GEOID2011 model (cf. Eq. (4)). 

The CORS (Continuously Operating Reference Station) in Kuivastu, the 
temporary GNSS station at Triigi and the VRS base stations in the middle of 
the straits used as reference for post-processing of GNSS measurements are 
also depicted. The regional gravimetric geoid model GRAV-GEOID2011 

(with a 40 cm offset) is placed in the background with a contour interval of 1 
cm. Inset: Location of the study area in the Baltic Sea region. 

 
Although Väinameri is a part of the Baltic Sea, its 

hydrodynamic conditions are slightly different from the rest of 
the Baltic Sea: wave heights are smaller, water is less saline, 
water temperature variations are larger, ice cover is formed 
more frequently and lasts longer. It is a semi-enclosed area 
surrounded by an arc of islands and mainland. The salinity of 
Väinameri remains mainly within 4…6‰ and thus could not 
have a large influence on the SST. The SST is mainly affected 
by water exchange processes and currents in the Väinameri 
Basin. Note that the Basin is a rather dynamic water body. 
Water exchange processes are forced by the nearby Baltic 
Proper and the Gulf of Riga. The main driver for water 
exchange and corresponding current speeds in the Väinameri 
straits is local wind speed and direction. Importantly, in 
Väinameri the currents can change their direction (and even 
become opposite) depending on wind direction and speed. A 
general description of the current system in the Väinameri is 
presented by Suursaar et al. [14]. Monthly SST changes in the 
Baltic Sea derived by satellite altimetry are studied by 

Poutanen [15]. The results also demonstrate seasonal 
dependency of SST changes in the Väinameri Basin. 
Therefore, considering all of the above and the small size of 
the area it is reasonable to expect that in “ice-tamed” 
conditions the weather-induced sea level slope and 
instantaneous SST would be minimal. 

Two very calm weather periods on February 2011 and on 
February-March, 2013 were selected for profile- and point-
wise GNSS surveys on the Väinameri Basin ice to determine 
SST by Eq. (4). 

 
A. Profile-wise GNSS measurements on ice, February 2011 

Profile-wise GNSS measurements were carried out on 
February 22-23, 2011. In February 2011 the Väinameri Basin 
became covered with a 30…50 cm thick layer of shore-fast ice. 
The adjacent gulfs (the Gulf of Riga, the Gulf of Finland) 
were also covered with pack ice; open seawater was further 
than 10 km away from the study area (Fig. 3A). A high 
pressure continental weather system covered the Baltic Sea 
entirely during the second half of February. Thus the weather 
conditions were very stable within the study area. On February 
20-25 the atmospheric pressure was almost the same and 
changed evenly over the Väinameri (cf. Table 4 in [12]). 
Recall that the instantaneous SST is mainly influenced by 
wind conditions in the Väinameri Basin. Therefore, it could be 
expected that the weather-induced sea level slope and 
instantaneous SST slope would be minimal. 

 
A B 

Figure 3. Ice conditions in the Väinameri and nearby areas on February 23, 
2011 (A) and February 24, 2013 (B) as seen on MODIS satellite images. The 
white area between mainland and the islands denotes shore-fast ice at least 50 
cm thick, the grey area denotes pack ice at least 10 cm thick; the darkest area 
denotes open water. The red dots indicate locations of Kuivastu, Kuressaare 

and Kärdla Continuously Operating Reference Stations used for post-
processing static GNSS measurements. Photos: MSI 

 
Two GNSS antenna/receivers (Trimble R8 and Spectra 

Precision Epoch 50) were mounted on the car roof (Fig. 1) for 
profile-wise GNSS measurements in kinematic mode. 
Tracking interval of 1 Hz was used in the receivers. 
Accordingly, profile points were positioned after every 7 
meters with the car speed being 20…25 km/h. The profiles ran 
on the official ice roads between Virtsu–Kuivastu, Triigi–Sõru 
and Rohuküla–Heltermaa (Fig. 2). At the start of every profile 
the height of GNSS antennas ( AH

iceHΔ ) was determined with 



 

an accuracy of ±0.2 cm. Ice freeboard ( FBΔH ) was measured 
nearby every TG from bore holes before and after GNSS 
profile measurements. Because of currents and changing sea 
depths, the ice thickness was not homogenous along the 
routes. The ice thickness at shoreline reached 50 cm but was 
most likely less in the middle of the route (~30 cm, according 
to authorities maintaining the ice road). The separation 
between water and ice surface (i.e. the ice freeboard ΔHFB) 
was determined indirectly. The density of ice is ~920 kg/m³ 
whereas that of brackish water is ~1004 kg/m³. Thus, 
approximately one-tenth of the ice volume floats above the 
water surface. Therefore, a 3 cm offset was used in Eq. (4) as 
the average ice freeboard. 

Virtual GNSS reference stations (VRS) were used as 
reference for data post-processing and ARP height (hi) 
calculations. VRSs were preferred as continuously operating 
reference stations (CORS) were situated farther than 20 km 
from the GNSS-profiles (cf. Fig. 3). Note that VRSs were 
artificially created from the VRS Network (at least three 
nearby CORS were used) in the middle of every route (Fig. 2). 
For more details about profile-wise GNSS data processing and 
working principles of VRS Networks see [10 and 16], 
respectively. 

The GNSS profiles measured are located in the periphery 
of the Väinameri Basin, which makes them less suitable for 
SST interpolation across the Basin. For reasonable SST 
modeling, more homogeneously spaced profiles are needed 
over the area. However, profile-wise GNSS measurements are 
valuable for validating existing SST models. 

 
B. Point-wise GNSS measurements on ice, February-March 

2013 
Point-wise GNSS measurements were carried out two 

years later – on February 21-22, March 12 and 14, 2013. The 
ice and weather conditions were similar to those of the 2011 
campaign. The Väinameri Basin was covered in shore-fast ice 
with a thickness of 25...55 cm, see also Appendix I. However, 
open water was close to the east part of the Väinameri at the 
end of February (cf. Fig. 3B). Days with stable weather 
conditions were chosen as to minimize the effect of wind and 
air pressure on the SST. There were prevailingly Southern 
winds with speed well below 5 m/s and steadily high air 
pressure. 

The point-wise survey covered an area of about 1000 km2 
with a density of 1 point/25 km2. Altogether 41 points were 
measured on the sea ice (Fig. 2, see also [17]). An amphibious 
lightweight crawler was used for transport of the survey team 
and equipment on ice and a Trimble R8 GNSS receiver was 
used for point positioning. An additional GNSS receiver 
Trimble 5800 was temporarily set up on the coast near Triigi 
to serve as a reference station during some 5 hours of the 
beginning of the campaign on February 21.  

Different GNSS survey methods were experimented with. 
Real Time Kinematic (RTK) GNSS measurements of at least 
3 times 5 seconds using a VRS network based on nearby 
CORS were used on all the points. The CORS stations were 
located about 35…50 km away from the centre of the study 
area (Fig. 3) and should therefore allow for reasonably 
accurate real time positioning providing that it is possible to 
establish a mobile (GSM, EDGE or 3G) connection with the 
network. In addition, static measurements of 10 minutes were 
used on 18 points in the Western part of the Väinameri Basin 
to investigate the possibility of using rapid static GNSS 
measurements if there should be no mobile connection 
available for the use of VRS. Nine of these static 
measurements were linked to the reference station (RS) 
operating near Triigi to investigate if an additional reference 
station could improve the accuracy of static positioning. Such 
(rapid) static surveys, however, need post-processing to obtain 
accurate coordinates. 

Data processing was proceeded according to different 
GNSS survey methods used. The 3 times 5 sec RTK 
measurements were averaged to get one result for each point. 
The accuracy of heights from RTK surveys in the area was 
estimated from measurements of a geodetic point and some 
temporary points on land. Discrepancies of 6...8 mm between 
repeated surveys as well as between the measured and the 
accurate height value of the geodetic point were found. 
Several points on ice were also revisited (points were found by 
their coordinates and marks on ice), the height discrepancies 
were much larger, reaching 70 mm after 6 hours in one case 
and 172 mm after 21 hours. Although TGs at shorelines only 
showed sea level change of a few cm it is most likely that such 
large discrepancies on ice heights in the middle of the 
Väinameri were caused by larger sea level changes in between 
revisiting such points. 

Static GNSS survey data processing was proceeded in 
three different ways described below (cf. Table I). 

Method 1: the coordinates of the RS near Triigi were first 
obtained by adjusting baselines to three CORS (Fig 3). 
Thereafter, the coordinates of the survey points measured 
within the same time frame were calculated with respect to the 
Triigi RS only. 

Method 2: a joint adjustment was proceeded for all of the 
18 static survey points – baselines from the RS near Triigi to 
the CORS and the baselines from the RS to the nine survey 
points covered by the RS operation time were processed 
together. 

Method 3: first, the coordinates of the RS near Triigi were 
obtained by adjusting the baselines to the CORS. Then the 
coordinates of the nine survey points covered by RS operation 
time were calculated by fixing the coordinates of the CORS 
completely while those of the RS were fixed with an accuracy 
of 1 cm in the baseline processing. 

 



 

TABLE I 
COMPARISON OF STATIC SURVEY RESULTS WITH RESPECT TO 

THE RTK DATA (STATIC MINUS RTK). UNIT IS METRE 

 
Method 1: 

With respect 
to Triigi 

Method 2: 
Joint 

adjustment  

Method 3: 
Stepwise 

adjustment 
Number of survey 
points processed 9 18 9 

Average difference 
and standard deviation 

from RTK results,  
9 points 

0.038±0.047 0.030±0.043 0.030±0.042 

Average difference 
and standard deviation 

from RTK results,  
18 points 

- 0.027±0.039 - 

 
The results of static data processing were checked against 

each other. Depending on the method used, the estimated 
height of a point could differ up to 6 cm. However, there was 
a static measurement on a known point on ground where the 
surveyed height value differed from the known value by 6 mm 
which is similar to that of RTK therefore it is not possible to 
tell which of the results are closest to the true value. It was 
decided to use RTK results as reference to judge the static data 
processing methods (cf. Table I). Method no. 2 performed best 
with the average height difference from RTK of +3.0±4.3 cm 
on nine points with the additional benefit of being able to give 
a result for all of the 18 points with the difference of +2.7±3.9 
cm from RTK. Although static measurements provided 
systematically larger height values, the distribution of the 
discrepancies does not reveal any specific pattern (except for 
the two larger discrepancies near Hiiumaa being close to a dm, 
see Fig. 4). It is not clear as to why such a large discrepancy 
occurred. It seems however, that in this case the static results 
have a better fit with the neighbouring points. 

 
Figure 4. Comparison of heights measured by static and RTK GNSS methods 

(static minus RTK). Unit is metre. 
 

As a conclusion from these tests with different GNSS 
survey methods it can be noted that a dm range uncertainty 
can be expected in height values, although most points are 
very likely to have smaller errors than this. RTK positioning 

should be preferred as it is much faster while static 
measurements can be used if a CORS network is not available 
in such remote areas. 

For calculation of ice freeboard correction (ΔHFB) the ice 
thickness was measured from bore holes at all (except four) 
measurement points. Where thickness information was 
missing a similar value of nearby points was used. 

 
C. GNSS-derived SST surface for the Väinameri Basin 

The profile- and point-wise GNSS measurements were 
carried out in different years (2011 and 2013). Although the 
weather and ice conditions were similar in both cases, the 
absolute values of SST could be varied by several centimetres. 
In addition to weather and ice conditions, instantaneous SST is 
affected by several hydrodynamic processes not only in the 
Väinameri Basin but also in the surrounding areas (i.e. in the 
whole Baltic Sea). Therefore, the GNSS-derived SST surface 
for the Väinameri Basin was calculated based only on the 
point-wise GNSS measurements carried out in 2013. ARP 
heights (hi) obtained by RTK GNSS were used for all points 
expect the two near Hiiumaa (cf. points with 0.089 and 0.131 
m difference from static measurements in Fig. 4). These 
heights were replaced with the results of static measurements 
due to better agreement with nearby point heights. A recent 
gravimetric geoid model GRAV-GEOID2011 was used for the 
geoidal heights (N) in Eq. (4).  

This geoid model has been computed by the least-squares 
modification of Stokes’s formula, whereas the ESA’s 
(European Space Agency) GOCE-satellite (Gravity field and 
steady-state Ocean Circulation Explorer) based geopotential 
model was used as the global reference. The resolution of the 
GRAV-GEOID2011 model is 1' x 2' (1.8 km x 1.8 km) and it 
covers the entire area of Estonia and surrounding waters of the 
Baltic Sea. Basically, this geoid model is a follow-up of an 
earlier geoid model [18], that uses a more complete set of 
gravity data. However, it should be noted that gravimetric data 
and their quality in the Väinameri Basin is heterogeneous, 
which could cause systematic errors in the marine geoid 
model [13, 19]. New gravimetric data that slightly changes the 
shape of the geoid model over the Väinameri basin has been 
collected since [17]. The accuracy of the regional gravimetric 
GRAV-GEOID2011 model has been estimated to be ±1.3 cm 
in the mainland of Estonia [20]. A recent study [21] validated 
the accuracy of the geoid model over the Väinameri Basin by 
using air-borne laser scanning profiles. Standard deviations of 
discrepancies between the gravimetric GRAV-GEOID2011 
model and the Väinameri ALS-derived SSH profile remained 
within ±1…±2 cm [21].  

In the present study a sea level corrected (Appendix I) 
GNSS-derived SST surface (Fig. 5) was calculated by using 
the ordinary kriging technique with a linear covariance model. 
A very clear NW-SE ward downslope of the modeled SST 
surface reaching up to 6 cm can be detected in the Väinameri 



 

Basin (cf. Fig. 5). The SST model is more even in the Eastern 
part of the Väinameri, although some North-South downslope 
exists between the islands of Saaremaa and Hiiumaa as well. 
This could be an effect of the inaccuracy of GNSS 
measurements. However, it is more likely that two points in 
the SW (Fig. 4) were affected by nearby open water (cf. Fig 
3B). Additionally, the enclosed Väinameri Basin is connected 
to the Baltic Proper through this strait. Therefore, the 
modelled SST could be less predictable in this area. 

 
Figure 5. Sea level corrected GNSS-derived SST model in the Väinameri 
Basin in February and March 2013 (i.e. from point-wise surveys). Unit is 

centimetre. 
 
For additional analysis, the sea level corrected GNSS-

derived SST model was compared with the profile-wise SST 
values in the straits (cf. Fig. 2). The discrepancies between the 
modelled SST (cf. Fig. 5) and the profiles (cf. Fig. 2) are 
depicted with black dots in Fig. 6. Although the GNSS 
measurements on ice were carried out in different winters 
(2011 and 2013), the average SST discrepancy remains within 
±4.3 cm in all straits (Table II). Such a difference may 
indicate the combined effect of the inaccuracy of GNSS 
measurements and ice freeboard estimates. The best SST 
coincidence is between Kuivastu–Virtsu. For illustration, the 
red trend lines depict the GNSS-derived SST surface from 
point-wise surveys (Fig. 6). Moving average filter with 
window w = 30 was used to calculate smoothed profile-wise 
GNSS data (see blue lines in Fig. 6). The length of along 
profile distance of each window is about 200 m. Both the 
point- and profile-wise results are sea-level corrected. 

 
TABLE II 

STATISTICS OF DISCREPANCIES BETWEEN THE POINT-WISE GNSS-
DERIVED SST MODEL AND THE SST PROFILES (MODEL MINUS 

PROFILE). UNIT IS CENTIMETRE. 

Profile-wise 
connection 

Number of 
profile-
points Average Minimal Maximal

Standard 
deviation

Rohuküa-
Heltermaa 1250 -3.0 -9.2 6.9 2.3 
Sõru-Triigi 1316 -2.1 -7.5 3.6 1.7 
Kuivastu-Virtsu 589 4.3 0.5 12.1 1.4 

 
Figure 6. Discrepancies between the sea level corrected GNSS-derived SST 

model (red lines, from point-wise surveys) and the SST profiles (model minus 
profile). Blue lines indicate smoothed SST profiles calculated by using 

moving average filter. 
 

D. Comparisons with a global and a regional SST model 
The GNSS-derived instantaneous SST model (Fig. 5) is 

compared with two SST models based on long-term SSH 
observations. First, a global model DTU10MDT (Mean 
Dynamic Topography model) by Andersen [22] is used for 
comparison (Fig. 7A). The DTU10MDT model was obtained 
by combining the Mean Sea Surface model (DTU10MSS) and 
the global geoid model EGM2008 [23]. The DTU10MSS 
model was derived from 17 years of data from the ERS and 
ENVISAT altimetry missions. The resolution of the 
DTU10MDT model is 1 arc-minute (about 1.8 km x 0.9 km) 
and the accuracy remains mainly within 10 cm in the test area. 
Note that the TOPEX/Poseidon satellite altimetry mission 
ellipsoid is used as the reference for the DTU10MDT model. 
The TOPEX/Poseidon ellipsoid axis are ~70 cm shorter than 
GRS-80, which is used for the GRAV-GEOID2011. Therefore, 
for a better comparison with mean sea level a 40 cm offset has 
been removed from the DTU10MDT model in this study (Fig. 
7A). 
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Figure 7. Global mean dynamic topography model DTU10MDT (A) and regional annual (2010) sea surface topography (B) in the Väinameri Basin. For a better 
comparison with mean sea level a 40 cm offset has been removed from the DTU10MDT model. Unit is centimetre. 

 
Second, a regional SST model based on GNSS 

measurements in conjunction with the GRAV-GEOID2011 
geoid model and annual (2010) mean sea level observations 
from six TGs around the Väinameri Basin (cf. Fig. 2) is used. 
The SST values at six TGs were calculated as: 

 
msliii Tλ),(Nλ),(hλ),(SST −ϕ−ϕ=ϕ  (5) 

 
where λ),(hi ϕ  is the geodetic height of the contact point on 
the top of TG, λ),(Ni ϕ  is the geoidal height at the same point 

and mslT  denotes the vertical distance between the annual 
(2010) mean sea level and the contact point. The annual mean 
sea level is based on high-frequency (5 min) automatic 

pressure gauge data series. More details about the data used 
for this model are presented by Liibusk [24]. By plotting the 
annual SST values at six TG stations a NW-ward downslope 
of up to 5 cm can be detected in the Väinameri Basin (Fig. 7B). 
From Fig. 7A and 7B it is obvious that in such small and 
enclosed areas the regional SST model from one year data 
series of TGs is more detailed than the global MDT model 
based on 17 years of satellite altimetry data. However, the 
same direction of downslope with a smaller magnitude of 3 
cm is also visible in the global DTU10MDT model. Note 
however, that the spatial resolution of both models is much 
lower than that of the GNSS-derived SST model in the 
Väinameri. 
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Figure 8. Differences between the GNSS-derived SST model and DTU10MDT model (GNSS minus MDT) (A) and between the GNSS-derived SST model and 
the regional annual (2010) sea surface topography (GNSS minus SST) (B). Unit is centimetre. 

 
Relative differences between the GNSS-derived 

instantaneous SST and the DTU10MDT global model (Fig. 
8A) or the annual SST model (Fig. 8B) remain within 4…5 
cm in SE-NW direction in the Väinameri Basin. In both cases 
the larger differences occur in the Northern part of the 
Väinameri Basin (near Heltermaa). A local SST anomaly 
could exist in this area which is not detectable by global 

models. However, it could also be an effect of the gravimetric 
geoid model GRAV-GEOID2011 used for the compilation of 
GNSS-derived SST (Fig. 5). All in all, the relative coincidence 
between SST models based on short-term (some days) and 
long-term (years) SSH observations is reasonable, remaining 
within the estimated accuracy of the measurements and the 
geoid model. 



 

Moreover, this case study demonstrates the possibility of 
using short-term GNSS measurements on ice in combination 
with TG data to determine SST surface tilts with similar 
accuracy but better resolution to long term (years of) satellite 
altimetry observations in coastal regions. 

IV. SUMMARY 

The current paper introduced the principles of SST 
determination by GNSS surveys on ice. As a case study, two 
expeditions were carried out on the Väinameri Basin ice in the 
Baltic Sea. In the first campaign in 2011 profile-wise GNSS 
measurements in kinematic mode were used on the official 
ice-roads in the fringe areas of the Väinameri. In the second 
campaign in 2013 point-wise GNSS measurements were made 
all over the Väinameri Basin. An instantaneous SST model 
was calculated based on the point-wise measurements and it 
was compared with the GNSS profiles, DTU10MDT global 
model and a regional annual (2010) SST model in the 
Väinameri.  

The comparisons of GNSS-derived SST model to the 
global and the regional SST models are not rigorous as the 
instantaneous SST was determined by GNSS measurements 
on ice during a few days whereas DTU10MDT is based on 17 
years of satellite altimetry data and the regional SST model is 
based on annual sea level observations from TGs. However, 
the comparisons revealed a good agreement between the 
different models. The differences remained within 5 cm which 
is within the accuracy of GNSS measurements and the geoid 
model. The case study demonstrated that GNSS measurements 
on ice could be a good alternative to detect SST surface in 
coastal regions or to validate satellite altimetry-derived SST in 
small and semi-enclosed water areas. 
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APPENDIX I 

RESULTS OF GNSS POINT MEASURMENTS ON ICE IN THE VÄINAMERI BASIN IN FEBRUARY AND MARCH 2013. UNIT IS METRE. 

Point Latitude (φ) Longitude (λ) Depth of 
water1 

Ellipsoidal height 
(hi) 

determined from 
RTK GNSS 

measurements (if 
not distinguished 

otherwise) 

Interpolated 
instantaneous 
absolute sea 

level height Hi 
4 

Ice thickness 

Sea level and ice 
thickness-corrected 
ellipsoidal height 

hi_corr 

1 58.58972001 22.71961097 - 20.199 -0.341 0.4005 20.500 
2 58.61507024 22.72549524 7.77 20.271 -0.335 0.400 20.565 
3 58.64256399 22.7163806 7.88 20.2372 -0.333 0.500 20.520 
4 58.67339708 22.68012816 4.22 20.200 -0.339 0.400 20.499 
5 58.69647419 22.73227195 4.76 20.228 -0.340 0.530 20.514 
6 58.72580901 22.75475000 3.56 20.226 -0.336 0.490 20.512 
7 58.75483635 22.76541934 3.95 20.171 -0.337 0.440 20.464 
8 58.75480355 22.84580877 5.02 20.2213 -0.324 0.540 20.491 
9 58.74362765 22.91256828 7.76 20.2563 -0.319 0.570 20.518 

10 58.72445453 22.83815804 8.18 20.238 -0.324 0.530 20.510 
11 58.69631957 22.81109990 8.12 20.262 -0.327 0.530 20.536 
12 58.66221430 22.78158426 8.19 20.260 -0.326 0.470 20.539 
13 58.63509540 22.65743359 5.66 20.206 -0.321 0.470 20.480 
14 58.64807495 22.85036889 7.64 20.281 -0.312 0.410 20.552 
15 58.67645235 22.87574615 8.07 20.316 -0.304 0.500 20.569 
16 58.70709685 22.91791985 8.02 20.290 -0.303 0.450 20.548 
17 58.75103210 22.99043872 7.37 20.249 -0.301 0.500 20.500 
18 58.71461004 22.99604086 6.49 20.281 -0.304 0.450 20.540 
19 58.71092708 23.07515960 5.46 20.248 -0.304 0.410 20.511 
20 58.67360937 23.06274982 4.77 20.252 -0.313 0.380 20.527 
21 58.67983661 22.97410468 7.02 20.272 -0.310 0.390 20.543 
22 58.65272554 22.93645302 6.84 20.253 -0.313 0.400 20.527 
23 58.71431701 23.16522742 5.42 20.113 -0.455 0.410 20.527 
24 58.75657249 23.15339077 2.23 20.116 -0.435 0.360 20.515 
25 58.78942541 23.13301875 3.40 20.106 -0.430 0.450 20.491 
26 58.86086608 23.14926309 5.30 19.988 -0.426 0.450 20.369 
27 58.85312907 23.22383883 8.40 19.992 -0.437 0.400 20.389 
28 58.84355047 23.30807354 8.80 19.994 -0.448 0.380 20.403 
29 58.80973003 23.22721358 8.25 20.045 -0.448 0.3505 20.458 
30 58.76802926 23.26925181 6.24 20.071 -0.453 0.3505 20.489 
31 58.72726586 23.24738876 6.39 20.059 -0.454 0.3505 20.478 
32 58.69495338 23.31361030 4.40 20.028 -0.496 0.310 20.493 
33 58.73732262 23.35884854 4.52 20.045 -0.493 0.400 20.498 
34 58.80667708 23.33702570 6.00 20.055 -0.469 0.360 20.489 
35 58.77725574 23.38864891 6.05 20.087 -0.478 0.320 20.533 
36 58.72933183 23.46535613 6.83 20.052 -0.477 0.470 20.482 
37 58.69992525 23.40252627 5.43 20.063 -0.470 0.250 20.508 
38 58.67064990 23.46493133 6.33 20.039 -0.472 0.350 20.476 
39 58.60020158 23.48284695 2.95 20.068 -0.464 0.340 20.498 
40 58.60297014 23.41421583 14.32 20.061 -0.451 0.290 20.483 
41 58.66524909 23.36971815 12.00 20.076 -0.438 0.310 20.483 
  Minimal: 2.23 19.988 -0.496 0.250 20.369 
  Maximal: 14.32 20.316 -0.301 0.570 20.569 
  STD: 2.30 0.102 0.071 0.076 0.042 

1 Water depth was measured from bore holes by lowering a flat metal weight with a ~10 cm diameter hanged to a cable until it touched the seabed and measuring 
the length of the cable submerged. Note that water depth is not sea level corrected in the table. 

2 This point was repeated; the second height value obtained was used as for the first one the height difference from static surveys was about a dm. 
3 Static GNSS height was used instead of RTK. 
4 Sea level values from TGs were interpolated over study area. TG data is measured by Marine System Institute (see: on-line.msi.ttu.ee/kaart.php). 
5 In situ ice thickness measurements were not carried out. The thickness is interpolated from nearby points.
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